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1.0 Introduction

PAN AIR (an abbreviation for "panel aerodynamics") is a system of computer

programs designed to analyze subsonic or supersonic inviscid flows about

arbitrary configurations. It is one of a sequence of computer programs

developed over the past two decades which fall in the category of "panel

methods." Generally speaking, a pane] method is a program which solves a

linear partial differential equation numerically by approximating the

configuration surface by a set of panels on which unknown "singularity

strengths" are defined, imposing boundary conditions at a discrete set of

points, such as panel centers, and thereby generating a system of linear

equations relating the unknown singularity strengths. The equations are then

solved to obtain the singularity strengths, which, once known, provide

complete information about the flow.

PAN AIR differs from earlier panel methods in that it is a "higher order"

panel method; that is, the singularity strengths are not constant on each

panel. This is necessitated by the more stringent requir@ments of supersonic

flow problems. Numerical solution of the differential equation for supersonic

flow, the wave equation, is far more sensitive to the numerical idiosyncracies

of a panel method than is the solution of Laplace's equation, which governs

subsonic flow. The potential for numerical error is greatly reduced by

requiring the doublet singularity strength to be continuous.

It is this "higher order" attribute which, in turn, allows PAN AIR to be

used to analyze flow about arbitrary configurations. The A-230 program

(Reference 1.1), for instance, can only analyze flow about thick objects such

as bodies and thick wings, while the Woodward program (Reference 1.2) can only

deal with "linearized" configurations, in which a wing is represented by its

mean surface. So, PAN AIR can handle the simple configurations considered in
preliminary design, and at the same time serve as an "analytical wind tunnel"

for the analysis of flow about detailed, complex configurations.

The basic Version 3.0 PAN AIR capabilities include:

Ca) the ability to handle, within the limitations of linear potential

flow theory, completely arbitrary configurations, using either exact

or linearized boundary conditions,

(b) the ability to handle asymmetric configurations as well as those with

one or two planes of symmetry,

(c) the ability to handle symmetric configurations in either symmetric or

asymmetric flow,

(d) the ability to superimpose an incremental velocity on the freestream,

either locally or globally, in order to simulate effects such as a

rotational motion, differing angles of attack for different portions

of a configuration, or a propeller slipstream,

(e) the ability to calculate pressures, forces and moments using a
variety of pressure formulas (such as isentropic, linear, etc.),

including the forces and moments due to momentum flux through the
surface,

1.0-i



(f) the ability to calculate leading edge and side edge thrust forces and
momentsfor thin configurations,

(g) the ability to perform non-iterative design of a configuration, a

process in which a desired pressure or tangential velocity

distribution is specified. The program then determines the
"residual" normal flow through the surface required to obtain the

desired pressure distribution, and

(h) the ability to calculate streamlines and to evaluate flow properties

at user specified off body points.

This document has been structured to provide an overview of the theory of

potential flow in general and PAN AIR in particular, with detailed

mathematical formulations reserved for the appendices. Section 2 contains a

brief discussion of fluid dynamics, outlining without proofs the steps from

the Navier-Stokes equations to the linear differential equation solved by PAN

AIR. Section 3 discusses the general theory of panel methods without

discussing PAN AIR in particular. Section 4 is an overview of PAN AIR as it

compares to older panel methods. Section 5 is devoted specifically to PAN AIR.

A complete discussion of the theory of potential flow and PAN AIR will be

given in the appendices.

This document is not intended to be a textbook on fluid dynamics, and thus

detailed derivations which are available in standard texts will not be

repeated here; rather, the appropriate reference will be given. The standard

potential theory and fluid mechanics references we will use are the works of

Kellogg (1.3), Liepmann and Roshko (1.4) and Ward (1.5). Those appendices

dealing with items of theory unique to PAN AIR will be more thorough, however,

referring to outside sources only for standard discussions of topics such as

linear algebra, graph theory and numerical analysis. There will be a

correspondence between appendices and portions of the actual computer code,

with each appendix either supplying background information or discussing the

theory behind a module or part of a module of PAN AIR.

A glossary containing the definition of technical terms is contained in

this document. When a term first appears, it will be given in quotes, and

briefly defined. The glossary will give a more detailed definition if

necessary.

The authors wish to thank Kathleen Christianson, Michele Sorensen, and

Valerie Spura for their efforts in typing this document and Forrester Johnson

for his assistance in its preparation.
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2.0 Fundamental Fluid Dynamics

In this section, we will outline the process by which one arrives at a
second order linear partial differential equation, called the Prandtl-Glauert
equation, which describes steady, irrotational, inviscid flow in a perfect
fluid. Our starting point is the Navier-Stokes equations, which describe flow
in a fluid under very general circumstances. The assumption that viscosity
can be neglected permits the Navier-Stokes equations to be replaced by a
simpler system of equations including a "continuity equation," a "momentum
equation," two "energy equations," and "Euler's equation." The further
assumptions of "irrotationality" and "isentropic flow" lead to the "unsteady
potential equation." The assumption of steady flow leads to the "steady
non-linear potential equation." Finally, the "small perturbation assumption"
leads to the "Prandtl-Glauert equation." The remainder of this documentwill
deal with the numerical solution of the latter equation.
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2.1 The Navier-Stokes Equations

The basic equations describing the flow of a viscous compressible,

heat-conducting fluid are the Navier-Stokes equations. These are:

(a) The equation of continuity,

3 a(pVi)
a--EP+ v (p 7) ap + _ _ 0 (2.1.1)
at " = a-_ i=I axi

where V = (a--_1 a ax-_), a--_2, is the gradient operator with respect to the

location vector x = (Xl, x2, x3), and where we have used the conventional index

notation as an alternate to _ = (x, y, z). In addition, t is time, p(_,t) is

the density, and _(_,t) is the total velocity, with _ = (VI, V2, V3).

(b) The momentum equation

3 3

a Tji + pfj
a (p Vj) + _ a (p _ _ -ap + _ aT

i=1 axi ViVa) 3xj i=1 i

(j = 1,2,3) (2.1.2)

where Tij is the deviatoric portion of the "stress tensor" which vanishes for a

frictionless fluid, f(x,t) is an external body force per unit mass exerted on
the fluid, and p(x,t) is the pressure.

(c) The energy equation

(pe * p * P) * _ ax_ p P) Vi
i=1

ap a BT _ fi V) +
a--_+ _ a-_T (Tim vm + k_i P i 1

i,m
(2.1.3)

where e(_,t) is the "internal energy" of the fluid, k is the coefficient of
heat conductivity for the fluid, and T(_,t) is the temperature.

(d) The equation of state

f(p, p, T) = 0 (2.1.4)

where the function f depends on the type of fluid. For a perfect gas, (2.1.4)

can be written as

p = p RT (2.1.5)

where R is a constant.

The equations in this section are derived in Liepmann and Roshko (1.4),
section 13.13.
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2.2 Euler's Equation

The Navier-Stokes equations can be simplified by the neglect of viscosity,

which is equivalent to setting the deviatoric stress tensor Tij = O.

Combining the momentum and continuity equations, we obtain

p dVJdt- axjaP+ pfj j : 1,2,3 (2.2.1)

where the usual convective derivative operator is defined,

d a + _ Vi a
_I_ = _ i ax--_

Equation (2.2.1) is called Euler's equation. We can obtain a full system of

equations including (2.2.1) as follows (see Liepmann and Roshko (1.4), p. 188,

for details).

The continuity and energy equations can be reduced to two energy equations:

d (i i .1z -,,. -.- -"p _ ) = -V . Vp + pV . f
(2.2.2)

and the rate of increase of heat per unit mass is given by

q =__I V.(kVT) = _ p ( ) (2.2.3)

In addition, it follows from (2.1.5) and (2.2.3) that a perfect gas obeys

the equation

De aT
: Cv 3-(

where Cv is the specific heat of the gas at constant volume.

(2.2.4)
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2.3 The Unsteady Potential Equation

The equations of section 2.2 can be reduced to a single equation (see ref. 2.1
Landahl, section 1.2, for details) if four further assumptions are made.
First we assume"isentropic flow" so that no heat is added to the fluid, and
thus

q = 0 (2.3.1)

Second, we assumeirrotationality, that is,

V x V = 0 (2.3.2)

which is shownin Liepmannand Roshko (p. 196) to be equivalent to the
existence of a "potential" function ¢(_,t) such that

.¢,

v ¢ = V (2.3.3)

Third, we assume the existence of, a freestream potential _. , whose
gradient is the uniform velocity V® attained at points sufficiently distant

from the disturbance being analyzed, and thus write

_: _-¢®
(2.3.4)

and

V = (u,v,w) = v • = v _® + v_ = V. + v_ (2.3.5)

The quantities ¢ and v are called the perturbation potential and velocity,
respectively. For convenience, we assume the freestream v, is aligned in

x direction and has magnitude 1.

the

Fourth, we assume that

I;I << a. (2.3.6)

everywhere, where a® is the freestream speed of sound. Equation (2.3.6)
generally called a small perturbation assumption, but the reader is warned

that other "small perturbation" assumptions exist in the literature and in
this document.

is

Based on these four assumptions, one can obtain (denoting differentiation

by subscripts) the unsteady potential equation (writing M® for IV-I /a® ):

(1-M'2)_xx + #yy + _zz - 2M®2 _xt- M'2 _tt

= M_2 [½ (y - 1) (2u + 2 _t + Ig12)v2_

2 v2 + 2vw + w2
+ (2u + u ) _xx + _yy _yz _zz

+ 2(1 + u) (v _xy + w _xz ) + 2(uu t + vv t + wwt)]
(2.3,7)

where y is the ratio of specific heats
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2.4 The Steady Non-Linear Potential Equation

If we assume the flow conditions do not change with time, we can eliminate

the time derivative terms in (2.3.7), obtaining (see Landahl, (2.1))

(1 M2) J6xx ÷ _xx + _zz

1½

(2u u2) _xx v2 + w2 _zz+ + + _yy ÷ 2vw _yz

+ 2(1 + u)(v _xy + W#xz)l]
(2.4.1)

where y is the ratio of specific heats.

Equation (2.4.1) is often called the "small perturbation transonic

equation" because it holds at transonic speeds (that is, for M.:I) under the

assumption (2.3.6). Of course, the assumptions of steady, inviscid,

irrotational, and isentropic flow must also hold.
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2.5 The Prandtl-Glauert Equation

So far, each reduction of the Navier-Stokes equations to a simpler form
has been based on precisely defined assumptions. But the conditions under

which (2.4.1) reduces to a linear differential equation are not so precisely
defined.

If M® = O, (2.4.1) reduces to Laplace's equation,

v 2 # : 0 (2.5.1)

_ linear partial differential equation. If M® _ O, (2.4.1) reduces to a
inear differential equation provided additional assumptions are made.

Suppose

and

.2 I;I << I - .Z (2.5.2)

M2 I_I << 1 (2.5.3)

which, like (2.3.6), are called small perturbation assumptions. Under those

assumptions, the steady non-linear potential equation reduces (see Appendix A)

to the Prandtl-Glauert equation:

(1 - M2) _xx + _yy ÷ _zz = 0
(2.5.4)

Equations (2.5.2) and (2.5.3) should be considered carefully by any user

of PAN AIR, since they best indicate when PAN AIR will provide a reasonable

analysis of the flow about a configuration. Equation (2.5.2) clearly cannot
be satisfied for M® :1, and thus the Prandtl-Glauert equation does not

describe "transonic" flow. Equation (2.5.3) does not hold for M® >> 1, and

so (2.5.4) does not describe "hypersonic" flow.

But there is no precise answer to the question: for what range of Mach
numbers does (2.5.4) describe the flow For a thick configuration, or one at

a high angle of attack, the perturbation quantities u, v, and w tend to be
large, and thus (2.5.2) and (2.5.3) only hold for a narrow range of Mach

numbers. For a very slender configuration, at a small angle of attack,

(2.5.3) and (2.5.4) hold for a much wider range of Mach numbers. But deciding
whether (2.5.4) is a "reasonable" approximation for a particular configuration

and a particular Mach number may be very difficult, and depend greatly on
one's definition of "reasonable."

The remainder of this document will deal with the solution of the Prandtl-

Glauert equation. Using Green's theorem, (2.5.4) is used to derive an integral
representation formula where the integrals extend over the configuration

surface. Additional assumptions are then brought to bear in order to obtain
an integral equation on the configuration surface. The integral equation is

then solved by a "discretization" process: the configuration surface is

divided into panels, "boundary conditions" are imposed at a discrete set of

points, and a system of linear equations is generated. The system of equations
is solved, and data of aerodynamic interest is calculated from that solution.
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3.0 Panel Method Theory

In this section, we outline the process by which the Prandtl-Glauert

equation

(1 - M.2) _xx ÷ _yy + _zz : 0
(3.0.1)

is converted to an integral equation, and the way in which a general panel

method solves that integral equation.

In section 3.1 we describe the Prandtl-Glauert scale transformation by

which equation (3.0.1) is converted to either Laplace's equation (M® < 1) or

the wave equation (M® > 1). In section 3.2 we state Green's third identity

which provides a representation formula for _ in the subsonic case (M, < 1).
(The corresponding representation formula for the supersonic case is given in

Ward, ref. (1.5)). For the subsonic case, a simple problem is then formulated

showing how the integral representation formula leads to an integral

equation. Finally, in section 3.3 we describe the discretization process by

which a panel method solves the resulting integral equation.
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3.1 Coordinate Scaling

Equation (3.0.1) is further simplified by performing a scaling of the

coordinate system. If we define the flow type indicator s by

2
s = sign (1 - M, )

and the compressibility scale factor B by

8 : 1_s (1 - M. 2)

then the scaled coordinates we require are given by

X = X

(3.1.1)

(3.1.2)

= B y (3.1.3)

Z=BZ

In this new, scaled coordinate system, (3.0.1) can be written

(3.1.4)

But equation (3.1.4) is just the same as (3.0.1) with M® = 0 or M, = _/-2-.

Thus, the subsonic case reduces to the M® = 0 case while the supersonic case

reduces to the M® = _/-2-case. Equation (3.1.4) is called Laplace's equation

if s = 1, and the wave equation if s = -1. These equations occur in other
branches of physics (for instance, Laplace's equation occurs in electrosta-

tics), and thus PAN AIR potentially has applications in fields other than
fluid mechanics.

For the rest of section 3, we will assume M® = 0 (note, incidentally,

that this does not mean IV, I : O; rather, IV_ I : i and the freestream speed

of sound a, is infinite). A similar discussion, for the case M, =V_-- , is

given in Ward (1.5). The integral representation formula (3.2.7) which results

may be generalized to arbitrary subsonic and supersonic Mach numbers, as dis-
cussed by Ward in sections 2.8 and 2.10.
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3.2 Green's Theorems

There are a number of theorems, all of them slightly different

formulations of the same result, known as Green's theorem or theorems. It is

one of these results, often known as Green's third identity (see Kellogg, p.

219) which allows us to obtain an integral representation formula for a

function _ satisfying Laplace's equation. The most fundamental version of

these theorems is also known as the "divergence theorem," or Gauss' Theorem,

which states that if F(x) is a "well-behaved" function (that is, continuously

differentiable) on a "nice" region V in space with boundary S (see figure

3.1), then

fff + flv. F OV = _ . F OS (3.2.1)

V S

where n(_) is an outward-pointing unit normal to the surface. This theorem is

discussed on p. 39 of Kellogg.

Green's third identity follows from (3.2.1). We need some notation to

state this result, however. Let U be a twice continuously differentiable

function in a region V of space. Let P be a point in V, S the boundary of V,

Q an arbitrary point of integration on S, and R = I _- QI. Then

ffI ,vQ
U(P) = - _T_ V

1 ff n. VU dSQ-_-_ R
S

1 ff u v 1 dSQ+4-T g
S

(3.2.2)

This result is derived in Chapter VIII of Kellogg, where opposite signs appear

because Kellogg's normal points inward. Also,

3
2 a2

V = V.v = _ _ (3.2.2a)

i=I Bxi

A number of results follow by substituting into (3.2.2) a function

satisfying Laplace's equation

2

v _=0 (3.2.3)
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First, letting P approach S we find that _ is finite as we approach S. Thus,
is an integrable function over S. Next, let V be a region consisting of all
of space except for a surface S, which is thus the boundary of V. We
illustrate two such cases. In figure 3.2, S is a closed surface, and thus V
is divided into two regions: V1, the "interior" of S, and V2, the "exterior."
In figure 3.3, S is not closed, and thus V consists of a single region. Let
us define the "upper" surface of S as the surface bounding that portion of V
into which n points, where _ is the outward-pointing normal for a closed
surface, and maybe chosen arbitrarily otherwise. Let us write _U and _L to
denote the limiting values of # at a point on S, approaching from above and
below. Then (see p. 221 of Kellogg)

I S_ [ _ " (V#U" V_L)16(P) = - _ R

S

(16 U - _L)n. V 1 ] dSQ

(3.2.4)

Equation (3.2.4) is the fundamental integral representation formula which

a panel method uses to obtain a solution to the potential flow problem. When
combined with appropriate "boundary conditions" (see below), the formula

(3.2.4) can be manipulated to yield an integral equation (of Fredholm type) on

the singularity surface S. A panel method then obtains an approximate
solution of this integral equation by means of the numerical method of

collocation. Two functions defined on S are generally introduced because of
their importance in the manipulation of (3.2.4). The first is the "source

strength," defined by

o(Q)= a.[v u(e)-v L(Q)] (3.2.5)

and the second is the "doublet strength," defined by

,(Q) = _u(Q) - _L(Q) (3.2.6)

These quantities are often called "singularity strengths," because they

measure the singular behavior of _ on S. Using these quantities, (3.2.4)
becomes

#(P) : - 4_ T- " "

S

As mentioned above, equation (3.2.7) must be supplemented with boundary

conditions in order to obtain the integral equation that is solved by PAN

AIR. Generally, these boundary conditions are equations relating _, o, _ and

their derivatives on S. The specification of boundary conditions in
conjunction with (3.2.7) amounts to a formulation of a "boundary value

problem." This problem in turn is called "well-posed" if it has a unique

solution, and "ill-posed" otherwise. A typical example of a set of boundary

conditions leading to boundary value problem formulation might be (see
figure 3.2)
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#L = 0 (3.2.8)

combinedwith

V_ U . _:b

= - V.. , say

(3.2.9)

It can be shown (see Appendix B) that the combination of (3.2.7) with the

specification of the boundary conditions (3.2.8) and (3.2.9) on the
configuration in figure 3.2 is a well-posed boundary value problem. We will

discuss ill-posed and we11-posed boundary value problems further in section 4
and Appendix B of this document; see also Appendix A of the PAN AIR User's
Manual.

In fact, the boundary conditions (3.2.8) and (3.2.9) constitute the

"Morino formulation" of the potential flow problem (cf. ref. (4.6)).

Referring again to figure (3.2), we see that the boundary condition (3.2.8)

implies that _ = 0 for all points interior to VI. This follows from the

general uniqueness result for solutions of Laplace's equation with Dirichlet
boundary conditions (cf. Kellogg). Consequently we find that

V#L " _ = 0 (3.2.10)

Substituting this and (3.2.9) into (3.2.5) yields for a,

(3.2.11)

Note as well that _ is equal to the doublet strength u; for, combining

(3.2.6) and (3.2.8) we get

" : _U " _L = _U - 0 : _U
(3.2.12)

We can now obtain the integral equation mentioned above. Evaluating equation

(3.2.7) on the upper surface of S, we obtain after using (3.2.11) and (3.2.12)

_(P) - _ , • v :
U ---R---

(3.2.13)

When proper care is taken to evaluate the integral appearing on the left
hand side on the upper surface of S, this equation is the integral equation

for u(Q) that is solved by PAN AIR, given the Morino formulation of the

boundary value problem.
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3.3 Discretization

We now outline the discretization process by which a panel method solves
the integral equation obtained by combining (3.2.7) with a properly posed set

of boundary conditions. In point of fact we will not actually describe the

integral equation formulation of the potential flow problem. Rather, we shall
describe in an operational way the process by which PAN AIR transforms a

specific boundary condition imposed at a particular point into a constraint

relation imposed on a set of singularity parameters. This point of view is

consistent with the actual operation of PAN AIR, in which the problem

formulation is implicitly left as a task to the user.

The general idea of this discretization process consists of two parts.

First, finite dimensional approximate representation formulas are developed

for the singularity functions o(Q), _(Q) which express these functions as

linear combinations of known basis functions si(Q), mi(Q) with unknown

N

coefficients xi, i:l, ... , N. The set {xi} i:i is called the set of

singularity parameters. In the second part, a set of equations determining

the unknown coefficients xi is obtained by imposing the boundary conditions

specified by the program user at selected points, called "control points" or

collocation points. By imposing a total of N conditions of this sort using N
control point/boundary condition combinations, we obtain a system of N

constraint relations involving the N unknown singularity parameters {xi} N
i=i

Solving this system of equations yields values for xi, completely determining

the functions o and u by virtue of the finite dimensional representation

formulae (see equations (3.3.1) and (3.3.2) below). Then, by virtue of the

integral representation formula (3.2.7), the potential function ¢(P) is

determined for all points P, solving the problem. We now amplify somewhat the

details of this two part discretization process.

The first part of the discretization process consists of the development

of finite dimensional representations for o and _. One begins by
approximating the singularity surface S by a collection of "panels." Next a

collection of points is chosen (for example, all panel centers), and the

values of o and u at these points are identified as the unknown singularity

parameters, xi" Approximate distributions o(Q) and _(Q) are then developed by

assuming that the values xi are known and applying a combination of linear

least squares fitting techniques and polynomial interpolation processes to

extend the discrete values of Ixi }N to all points on the surface S. One
i=1

obtains by this method the representations for o and u,
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N
o(Q) = _ xi si(Q) (3.3.1)

i=1

N

"(Q) : _ xi mi(Q) (3.3.2)

i=1

Here, the functions si(Q) and mi(Q) , called the source and doublet basis

functions, describe the source and doublet distributions obtained by setting

xi = 1 and _j = 0 for all j _ i. Of course if xi is a doublet parameter the

corresponding source basis function si is identically zero. Similarly if xi

is a source parameter, mi(Q)10. (The simplest sort of basis functions,

frequently employed in "constant strength" panel methods, are obtained by ex-

tending the value xi over its associated panel. A basis function for such a

method is illustrated by figure 3.4).

Having described the finite dimensional representation formulae for o(Q)

and u(Q), (3.3.1-2), we now show how a particular boundary condition imposed

at a control point is transformed into a linear constraint relation imposed on

(_i} N . In order that this process by made quite clear, we consider the case
i=i

of boundary condition (3.2.8) imposed at P:

_L(P) : 0 (3.3.3)

Upon substituting the representations (3.3.1-2) into the integral representa-

tion formula (3.2.7), one obtains the expression for _L(P) (note the evaluation
at P-_n, a point just below P)

I
_L(P) : - _

i 1

xisi(Q)

E Ji _ v(1/R) _ xim i(Q) dS (3.3.4)+ _ •

We identify the coefficient of xi in this equation the i-th component of a

row vector ¢ICL:
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i _ + I f_ B. v(I/R)m i dSQL_ICL(P)j . = - _ (si/R) dSQ
I

S S
(3.3.5)

Combining (3.3.4) with (3.3.5), we have expressed 16L(P) as a linear combination

of " :
i:i

_L(P) :L¢ICL(P) ] _ (3.3.6)

Finally, imposing the boundary condition (3.3.3) leads to the "AIC constraint
equati on:"

L¢ICL(P)J_ : 0 (3.3.7)

Now we impose boundary conditions (which are not necessarily the same form

as equation (3.3.3)) at all the control points in the configuration, obtaining

as many boundary conditions as there are singularity parameters. Each

boundary condition generates one linear equation, and thus we have a system of

N equations in the N variables x , ... , x :
i N

[AIC] _ : b (3.3.8)

where b is a vector of "constraints" (the entry of b corresponding to the

boundary condition equation (3.3.7) is zero). Each row of the square matrix

[AIC] is a row vector of a form similar to L_ICL(P_ for some control point P.

Once the AIC equation (3.3.8) has been formulated, it is solved for the

values xi by means of standard linear algebra techniques. With these values

known, e(Q) and u(Q) are known by virtue of equation (3.3.1-2). The potential

at a point can be computed by evaluating equation (3.2.7), the representation

formula for _. The velocity can be computed by evaluating the gradient of

equation (3.2.7). Once the velocity is known, the pressure and pressure

coefficients can be obtained from standard formulas (see figure (5.21) below).

In section 5 below, we will describe the PAN AIR discretization process

more fully. In particular, we will describe the process of transforming a

eneral boundary condition into an AIC constraint relation of the form
3.3.7). For even more detail, the reader is referred to appendix K.
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4.0 An Overview of PAN AIR

4.1 Historical Development of Panel Methods

In this section, we wtll discuss the features which distinguish PAN AIR
from earlier, less complex, panel methods. These features are (a) "continuous
geometry," (b) linear source and quadratic doublet variation, and (c) continuity
of doublet strength. We will explain how these features make PAN AIR more
accurate and reliable than previous methods, and discuss briefly the manner in
which these items are implemented in PAN AIR.

Virtually every panel method approximates the configuration geometry with

panels whose planform is a quadrilateral. Thus, if the panels themselves are

planar, only a small class of configurations (such as cylinders and flat

wings) can be described without gaps being left between panels. These gaps

tend to be very small, except for highly twisted surfaces. In subsonic flow,

the gaps cause little numerical error, but in supersonic flow the cumulative

effect of the gaps is serious, not because of "leakage" of flow through the

gaps, but because the doublet strength jumps abruptly from a non-zero value to

zero at a panel edge which does not exactly meet the adjacent edge. In PAN

AIR, gaps are closed by means of "piecewise flat" panels, that is, panels

which are comprised of several planar regions.

Some panel methods use "curved" panels, generally paraboloidal in shape.

These approximate the configuration surface far more accurately in regions of

high curvature such as the leading edge of a wing, but necessarily have gaps,
even though small ones. Thus they are excellent for the analysis of subsonic

flow, but not for supersonic flow.

As we stated earlier, PAN AIR employs a linear source variation and a

quadratic doublet variation. That is, the basis function bi corresponding to

a source parameter is locally linear, while the basis function corresponding

to a doublet parameter is locally quadratic. This contrasts with earlier,

simpler programs in which the doublet and source variations were locally
constant.

The reasons behind the "higher order" singularity distributions in PAN AIR

are discussed in detail in Appendix B.4. Brlefly, they are as follows.

Consider a control point on a panel, and assume the source and doublet
distributions in the immediate neighborhood of the control point are

polynomials. Then we show in Appendix B.4 that a source distribution locally
of the form

o. 2N S _i n2N'i
a(6, n) = _ _ aiN

N=I i=O

(4.1.i)

or a doublet distribution

o, 2N+I D _i
_(6 , n) = _ _ aiN

N=I i=I

2N+1-i
n (4.1.2)
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does not induce any perturbation velocity locally. That is, even terms in the
polynomial source distribution and odd terms in the doublet distribution do

not generate a local perturbation velocity. So, since we have concluded that

constant source and doublet strengths are insufficient, the next reasonable

higher order approximation to use is linear source strength and quadratic
doublet strength.

Another reason for using a higher order doublet distribution is to provide

a continuous doublet distribution; that is, each of the basis functions m is
constructed so that it is con_,nuous everywhere. (Obviously, a locally i

constant function cannot be continuous.) A continuous doublet strength, once

_gain, is much more important in supersonic than in subsonic flow. This is
ue to the failure of disturbances caused by doublet discontinuities to

diminish with distance in supersonic flow as they do in subsonic flow. A
detailed description of the behavior of these disturbances is given in
Appendix J.11.

In addition, experimental evidence (references (4,5)_ (4.8)_ (4.9))indicates
that exact surface analysis is not feasible in supersonic flow without doublet

continuity. The requirement of doublet continuity results in the spline

complexity discussed in section 5.

In figure 4.1, we compare some panel methods of the last two decades. The

list is by no means complete, with inclusion in the list generally reserved
for methods containing innovations, whether or not the method enjoyed any
great success.

Of the other panel methods described in figure 4.1, the one which most

closely resembles PAN AIR is that of Ehlers et al. That program was written

to demonstrate the technological feasibility of a panel code which was capable

of analyzing arbitrary configurations in supersonic flow. The development of

that program took place with the intention of eventually constructing

production software (that is, PAN AIR) based on the same principles, and thus

that program is generally referred to as the PAN AIR "pilot code."
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4.2 Summary of PAN AIR Technology

We now outllne the method by which PAN AIR computes a row of the
aerodynamic Influence coefficient matrix. There are four basic steps. First,

the basis functions must be computed. That is, the locally linear or Iocally

uadratlc variation on every panel must be precisely defined for each basis
unction (see section 4.2.1). Next, for each panel, the perturbatlon that the

panel induces on the potential and velocity at each control point, in terms of

the singularity parameters, must be computed (see section 4.2.2 for details).

Next (see section 4.2.3) these perturbation influences must be summed over all

panels, to give a "potential influence coefficient" row vector (L$1C(P)j )

and a "velocity Influence coefficient" matrix [VIC(P)] with the properties

N

_A(P) = _ L¢IC(P)jj. xj = L¢IC(P)J x

j=l (4.2.1)

N

(VA(P)) i = _ [VIC(P)]ij xj = ( [VIC(P)] _)i

j=l i = 1,2,3 (4.2.2)

That is, the jth columns of L$IC(P)= and [VIC(P)] give the dependence of the

potential and velocity at P on the j-th singularity parameter. The subscript

A indicates that the average of upper and lower surface potential and velocity

are to be computed. Note that upper and lower surface potential and velocity

are different, their difference being defined by the source and doublet

strength (cf. (3.2.5-6)).

Finally, a fairly general boundary condition of the form

aA vA . n + cA #A + tA " VA = b (4.2.3)

.$.

(where t is a user-defined tangent vector) leads to a row LAIC(P}j
as follows:

of [AIC]

LAIC(P)J = CALOIC(P) J + (aA _ + _A )T [VIC(P)] (4.2.4}

More general boundary conditions than this are handled by PAN AIR, but we

defer their full treatment until later (see sections 5.4.2.5, 5.6 and 5.7
below).

4.2.1 Basis Function Computation

The computation of the basis functions is one of the more complex portions
of PAN AIR. To be precise, we do not directly compute basis functions, but
rather, for each region on which the source and doublet strengths are defined
by a single polynomial, we compute matrices which describe the coefficients of
these polynomial distributions as linear combinations of the singularity
parameters in the neighborhood of the panel. A column of such a matrix
defines the coefficients of a basis function on a subpanel.
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These matrices are called "spllne" matrices, and are computed in two steps
as described in the following two subsections.

4.2.1.1 Subpanel Spllnes

The first step is the computation of a "sub-panel spline" (SPSPL) matrix.

Each panel is divided into eight triangular regions called "subpanels", as

indicated in figure 4.2. The source subpanel spline matrices are 3x5 matrices

, , of a linearly varying sourceSPSPL S giving the three coefficients oo oC an

strength (a linear function in two variables has three coefficients) in terms

of five "panel source parameters," Ol, ..., o4, o9, that is, the values of

source strength at five points on the panel:

{aO}aCsPsSI I}a4
n a9

(4.2.5a)

where o is defined in terms of local coordinates by

o({, n) = a0 + a_C + on n (4.2.5b)

Similarly, the (6x9) doublet subpanel spline matrices give the six

coefficients of a quadratically varying doublet strength on the region in

terms of nine "panel doublet parameters:"

{;o}EsPso{11}
_nn w9

where

(4.2.6)

I 2 Cn + 1 2
_((,n) = _o + _CC + Unn + _ _CC ¢ + UCn _ _nn n (4.2.7)

4.2.1.2 Outer Splines

Next, in the second step, the five panel source parameters and nine panel

doublet parameters are described, as linear combinations of singularity

parameters in the neighborhood of the panel, by "outer spline" matrices BS

(5xkS) and BD (9xkD) where kS and kD are the number of source and doublet

singularity parameters in the neighborhood of the panel for which the
dependence is non-zero:
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al)(s! --ZBs]

°4 S

a9 XkS

[BD]

w9J /X_D

(4.2.8)

(4.2.9)

The values kS and kD depend on the location of a panel in a network (networks

are discussed in section 5.1). In general, kS is 9 and kD is 21. In all

cases, kS + kD _ 31.

4.2.2 Panel Influence Coefficients

The perturbations that a source and doublet distribution on a panel induce

at a control point are described by "panel influence coefficient" (PIC)

matrices. These matrices include a 4x5 matrix PIC S and a 4x9 matrix PIC D which

give the potential and velocity at the control point, induced by the panel, in

terms of the five panel source parameters and nine panel doublet parameters.
That is,

I¢(P)I = [PICs] " + [PIDD]
J perturbation

induced by panel 04

o9 t_9

(4.2.10)

where oI through a4, a9 and _1 through P9 are the panel source and doublet

parameters.

The method by which the PIC matrices are calculated depends on the

distance from the panel to the control point.

4,2.2.1 Near Field PIC's

If the distance is small compared to panel size, a "near field" method is

used, and the PIC matrices are computed as a sum uf integrals over the eight
subpanels. For instance,
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i 8 [SPSPLiS]3x5
i=l I _ L1 _ nA d_ dn

ai
(4.2.11)

Here, ((, n) are the local coordinates on the i-th subpanel ai, and SPSPL_

is the 3x5 source subpanel spline matrix; Ji denotes an area jacobian for the

local to reference coordinate transformation. Note that, for a point

Q = (_ , n), using (4.2.5a) and (4.2.5b),

{°I}.[SPSPLi S] : (4.2.12)
a(Q) = L i _ n j a4

a9

and thus (4.2.11) follows from (3.2.7) and (4.2.10). The integrals in

(4.2.11) are evaluated analytically, and can be expressed as logarithms and

arctangents of quantities which are determined by the geometric relation
between the panel and the control point. In equation (4.2.11) the entries of

[SPSPLi S] are constants and may be removed from the integral. The application

of (3.2.7) and an equation similar to (4.2.12) leads to a similar equation for

the row of PICD corresponding to the potential. The rows of the PIC matrices

orresponding to velocity are computed by using a differentiated version of

3.2.7). The entire subject of PIC computation is discussed in more detail in

section 5.6 and Appendix J.

4.2.2.2 Far Field PIC's

If the distance from the panel to the control point is large compared to

panel size, a "far field" approximation is used in computing the influence of
the panel. This is done by approximating the expression (I/R) by a power

series

1 AR + a2 AR2

where Ro and AR are illustrated in figure 4.3.

requires considerably less computer time than the near field method (see
section 5.6 for further details). To further save computer time, an

"intermediate field" method described in section 5.6 is used when the near

field method is not necessary and the far field method is inadequate.

(4.2.13)

This far field evaluation

4.2.3 Potential and Veloclty Influence Coefficient Assembly

The influence of each panel is accumulated to determine the influence of

the entire configuration on the control point. Combining equations
(4.2.8-10), we see that the products
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[PIC S . BS] and [PICD . BD]

give us the potential and velocity induced by a panel, in terms of the

singularity parameters in the neighborhood of the panel. These matrices are
then "added" together; that is, entries of distinct PIC matrices which

correspond to the same singularity parameter are accumulated, so that the

"sum" of expanded PIC matrices (none of which has more than 31 non-zero
columns) is the 4xN matrix

VlC(P)

Here, N is the total number of singularity parameters.

4.2.4 Aerodynamic Influence Coefficient Matrix Construction

Once the matrices L ¢IC(P)j and [VIC(P)] have been constructed, the

vector LAIC(P)j is easily constructed using equation (4.2.4). The entire

process is performed for all the control points in the configuration, and the

result is the square matrix [AIC]. Additional details are given in section
5.7.

From here on, the basic structure of PAN AIR is similar to that of other

panel methods. The system of linear equations is solved "post-multiplica-
tion" (multiplying L¢ICj and [VIC] by the vector _) _s performed, and the

resulting potential and velocity values are used to compute pressures.
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5.0 Elaboration on the Technology in PAN AIR

We now proceed to greater depth in the discussion of the technological
details of PAN AIR. In section 5.1 we describe the way in which the program

user describes his configuration geometry to PAN AIR using networks of

panels. Section 5.2 gives the form of the general integral representation

formula for # together with a summary of all of the coordinate transformations
used by PAN AIR, while section 5.3 discusses doublet matching along network

abutments. The general form of a PAN AIR boundary condition is developed in
section 5.4 and this is followed by the treatment of spline matrices in 5.5

and panel influence coefficients (PIC's) in 5.6. The results of sections 5.4,
5.5 and 5.6 are then combined to describe the formation of the aerodynamic

influence coefficient matrix (AIC) and right hand side vector (b) in section
5.7. The discussion concludes with some remarks on the solution of the AIC

constraint equation (section 5.8) followed by a summary of PAN AIR's post

processing features (section 5.9).
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5.1 Networks and Panels

The configuration on which boundary conditions are to be imposed is

described by a collection of networks of points. Each network consists of
(say) N columns of points lying on the configuration surface, where each

column has the same number (M,say) of points. By a point, we mean its (x,y,z)
coordinates, with each point's coordinates given in the same arbitrary

coordinate system. Thus, each network consists of an MxN grid of points in

space (see figure 5.1). This grid need not lie in a plane, but it should be

sufficiently regular to define a surface which does not intersect itself and

on which the surface normal does not change too radically from panel to

neighboring panel.

Each network is assigned two "singularity types," describing the manner in

which the source and doublet distributions are defined on the portion of the

surface defined by the network. A network source type may be "null,"

"analysis," or "design," while its doublet type may be "null," "analysis,"

"design," or "wake." The singularity type "null" means that the corresponding

singularity distribution is identically zero over the whole network. The

singularity type "analysis" is used when the corresponding boundary conditions

are the standard ones of zero normal flow, while the singularity type "design"

is used when the boundary conditions correspond to specifying a desired

pressure distribution on the surface. The doublet type of "wake" is generally

used with a source type of null to model a wake surface. A wake is a surface

across which a discontinuity in potential exists, while normal flow is

continuous; generally a wake is attached to the trailing edge of a lifting

surface. The positioning of wakes can be a complicated problem, and is
discussed in more detail in the PAN AIR User's and Case Manual.

Note that, unless the source or doublet type is null, all networks are

composite networks, that is, both the network's source distribution and its
doublet distribution are non-zero. This is in contrast to most earlier panel

methods, which required source networks and doublet networks to be entered

separately. Generally speaking, all non-wake networks in PAN AIR will be

composite networks which directly describe the impermeable object about which

one is analyzing the flow. In particular, the "internal lifting system"

doublet networks required by the Boeing A-230 program (Ref. 1.1) are not

required in PAN AIR. These composite networks allow two boundary conditions,

such as the standard boundary conditions of (5.4.28), to be imposed on a
surface.

Each network of M rows and N columns of points defines (M-l) rows and

(N-l) columns of panels, where a panel is a quadrilateral defined by four

network points all lying in two adjacent rows and two adjacent columns of a

network. Figure 5.1 illustrates the subdivision of a network into panels. In

the example of Figure 5.1, there are five rows and columns of points and four

rows and columns of panels.

Now, each panel is defined by its four corner points, but these four

points need not lie on a plane. Previous programs using flat panels on

arbitrary surfaces have handled this problem by projecting the four corner

points onto an "average plane," thus forming a planar quadrilateral panel.

The formation of such panels leaves gaps between panel edges, however, since

the resulting planar panels do not in fact go through their corresponding

corner points.
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This discontinuity in geometry is avoided by constructing piecewise flat

panels which do in fact contain all four corner points and, in fact, all four

panel edges (a panel edge is a line segment connecting adjacent corner

_oints). The decomposition of a panel into five planar regions is illustrated
In figure 5.2. It will be shown in Appendix D that the four edge midpoints,

which define the vertices of the interior quadrilateral, do in fact lie on a

plane. In section 5.5, the interior quadrilateral will be divided into four

triangular regions for the purpose of defining source and doublet

distributions. Thus the panel will be divided into 8 "subpanels" there, but

at least four of them will lie in one plane.
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5.2 Coordinate Transformations

Recall (see (3.2.7)) that for M. = O, we wrote the fundamental integral
representation formulas as

ff °.1
#(P) : _ [ - _ _ • ..

S

We can easily generalize this equation to arbitrary Mach number. For details,

see Ward (Ref. 1.5). Let P = (x,y,z), and the point of integration

Q = ( 6, n, (). Recall

s = sign (I - M2,)

_= _s(1 - M2.)

(5.2.2)

Now, generalizing the definition of R for M. # O, let

R = _( 6 - x)2 + s B2 (n - y)2 + s B2 ( { - z)2 (5.2.3)

when the expression under the square root is non-negative. Let R be zero
otherwise.

For subsonic flow, let Dp, the "domain of dependence" of the point P, be

all of space, while for supersonic flow let it be the set of points Q such that

6 < x , and the expression under the square root is non-negative. Let K = 27
w

if s = -1, K = 4x if s = +1. Let us define the compressible gradient operator

_= (s B2 _ _ @
B6' Bn' B_) = [B] V

(5.2.4)

where the dual metric matrix [B], referred to compressibility coordinates, is

sB2 0 0 1
[B] = 0 1 0 (5.2.5)

0 0 I

given

Let the conormal vector B = _ be defined

= _ = [B] fi

and let o be given by

o = V (_U - _L ) " B

(5.2.6)

(5.2.7)

a generalization of our previous definition of source strength to arbitrary

Mach number. Then we can rewrite (5.2.1) for arbitrary M, as
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SnDp

Here, "SODp meansthe set of points commonto both S and Dp. This is the
general form of the integral representation for 6, upon which all of PAN AIR
is founded.

Now, in order to obtain "panel influence coefficient" matrices, we must

perform integrations of the form of (4.2.11). This task is somewhat obscured

by the multiplicity of coordinate systems with which we deal. We will now

discuss these coordinate systems and describe the transformations among them.

The coordinate system with which this document primarily deals is the

"compressibility axis coordinate system." This is the system in which
equation

(I- M2®) + + --0 (5.2.9)

is valid.

For M_ _ O, (5.2.9) requires a preferred direction, called the

"compressibility direction," which is the direction of V,. We have assumed

so far that this is the x-direction.

A program user, however, may not want to describe the configuration

geometry in the compressibility axis coordinate system. PAN AIR permits the

user to specify an arbitrary compressibility direction by specifying angles

Oc and Bc , angles of attack and sideslip, which describe the compressibility

direction with respect to the input (or reference) coordinate system.

If the coordinates of a point are (x,y,z) in the compressibility axis

system, and (xo, Yo' Zo) in the reference axis system, then

x {o}Y = [ _c ] Yo (5.2.10)

Z Zo

where Pc is the coordinate transformation matrix

I_C =
i cos ac cos Bc -sin Bc

COS =C" sin Bc cos Bc

-sin =c 0

sin =c cos Bc 7

sin _c sin Bc

cos _c

(5.2.11)
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Weshow how P c is obtained as a product of a rotation by an angle :c about
the y-axis and a rotation by an angle Bc about the modified z-axis in
Appendix E.3. It should be noted that the above sequence of coordinate
rotations is equivalent to the opposite sequenceof basis vector transfor-
mations. That is, the configuration is first rotated about its z-axis by an
angle Bc, then about its y-axis by an angle ac. This transformation is dis-
cussed further in the User's Document.

Now, the unit vector in the compressibility direction is given in
reference coordinates by

I11}co = [Pc ] 0 (5.2.12)

0

Since Pc is an orthogonal matrix,

{C°ccost}Eo = [ PC ] 0 = -sin Bc

0 sin ac cos Bc

(5.2.13)

The relationship of Co to the reference coordinate system is shown in figure
5.3.

A third coordinate system of importance in PAN AIR is the "local"

coordinate system (see Glossary). We want to compute the surface integrals

required for PIC calculation as integrals in two variables, and thus we
construct a local coordinate system (x',y',z') for each subpanel, in which the

subpanel lies in the x'-y' plane.

The transformation from reference to local coordinates is not orthogonal,

however, but includes a scaling transformation so that the factor B does not

appear in the expression for R. This simplifies the influence coefficient

integrals, such as (5.6.9), which must be calculated.

Recall from (5.2.3) that in compressibility coordinates, for a control

point P = (x,y,z) and field point (_ , n, C ), we have

R2 : ( _ - x)2 + s s2 (n - y)2 + s s2 ( { - z)2 (5.2.14)

where R is the denominator of the integrand of (5.2.8). In order to describe

the appearance of R in local coordinates, we need to introduce the panel
inclination indicator r,
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r = sign (n . _)

= (by (5.2.6)) sign (_T [B] n)

: sign (n, n }

where we define (.,. } by saying that for any two vectors X and Y,

(5.2.15)

:  TEB] (5.2.16)

The meaning of r can be understood if we work in compressibility
coordinates.

Then by (5.2.5) and (5.2.6),

2 + n 2 + n 2) (5.2.17)
r = sign (s B2 nx y z

If s = 1 (that is, for subsonic flow), we see that the expression in

(5.2.17) is positive, and so r = i. If s = -1 (supersonic flow), and a = 1

(M® = _ ), we see that

r : -i if n 2 > n 2 + n 2
x y z

r = +I if nx2 < ny2 + nz2 (5.2.18)

Recall from section 4.2.1.1 that the PAN AIR panels are comprised of eight

triangular suDpanels. Each of these flat subpanel surfaces has a unit surface

normal n of fixed direction. If n is such that r = -1 in equation (5.2.18),

the surface normal is inclined at more than 45" to the freestream. But this

45" angle is also that of the "Mach cone" emanating forward from a point P on

the subpanel, as illustrated in figure 5.5, and defines the "domain of

dependence" of P. In other words, point P is affected only by disturbances

(such as those produced by the source and doublet distributions) that

originate within this forward Mach cone.

Thus we see that if r = -1, no point on the subpanel surface lies in the

domain of dependence of any other point on the subpanel, and we call such a

surface "superinclined." If r = *1, the more upstream points on the subpanel

do lie in the domain of dependence of^the more downstream points, and such a
surface is called subinclined. If n.n = O, the more upstream points lie

exactly on the boundary of, but never in the interior of, the domain of

dependence of more downstream points. Such a surface is called
Mach-inclined. We will see shortly that no portion of the panelled

configuration is permitted to be Mach-inclined. The above definitions,

illustrated in figures 5.4 and 5.5, are equally valid at all supersonic Mach
numbers.
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Now, for ease of integration, we want the local coordinate system
(x',y',z') defined on each subpanel to have the property that if

P (x',y' z'), Q = (_° ' ': , , n , _ ) then

R2 = r( (' - x') 2 + s(n' -y,)2 + rs ( {' - z')2 (5.2.19)

In this manner, we reduce the denominator of (5.2.8) to one of three standard
forms:

(a) Subsonic flow

R = V( (' - x') 2 + (n' . y,)2 + ( (' - z')2 (5.2.20)

(b) Supersonic flow, subinclined panels

R : V( (' x') 2 (n - - ( ( z (5.2.21)_ _ , y,)2 , _ ,)2

(c) Supersonic flow, superinclined panels

R = _({' - z')2 - ( 6' - x')2 - (n' - y,)2 (5.2.22)

So, if we can find a local coordinate system in which (5.2.19) holds, we

will have succeeded in removing the factors of B from the integrand of

(5.2.8). Further, the subpanel always lies in the (_', n') plane.

We will compute the reference to local coordinate transformation A, such
that

[A] : y' (5.2.23)

z'

in Appendix E.3.

We now describe the result computed there. Let _o be a unit vector

perpendicular to Co and no' the unit normal to the subpanel, all three of

these vectors being expressed in reference coordinates. Let Go = Vo x no"
Let the metric matrices in reference coordinates be given by

[CO] = s B2 [I] + (i - sB2) [Co CoT] (5.2.24)

[Bo] : [I] + (s B2 - i) [60 CoT] (5.2.25)

Note that the definition (5.2.5) of [B] in the compressibility axis coordinate

system is consistent with (5.2.25) since
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[_ _T] : 0 0 (5.2.26)

0 0

in the compressibility axis coordinate system, in which the compressibility

axis coincides with the x axis. Recalling the definition (5.2.16) of {., .},
the 3x3 matrix A is found to be given by

A =

I 1

rs

7 [Co]

T

]B no

(5.2.27)

Several remarks may be made here. First, if M, = O, Co is meaningless,

but is given a default value by PAN AIR just so that no special formula is

needed to replace (5.2.27). Since all occurrences of co are multiplied by

(1 - s B2) = M2. any value for Co is equally valid if M® = O.

Next, (5.2.27) blows up if B = 0 or {no, no } = O. Both of these cases

are disallowed in PAN AIR, the case B = 0 corresponding to transonic flow,

M® = 1, the case{n o , no} = 0 corresponding to a Mach-inclined panel.
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5.3 Network Edge Matching

The splines which are discussed in section 5.5 insure that the doublet

strength on the configuration is continuous within a network, but do nothing
to insure continuity across network edges. The contribution of continuous

doublet splines to the goal of increased program reliability would be wasted
if the doublet strength were discontinuous at network boundaries.

One solution to the problem of matching doublet strength at network edges

(hence called the edge matching problem) is to impose the boundary condition
of zero normal flow along the edge. As shown in Appendix J.11, a

discontinuity in doublet strength along an edge induces an infinite velocity
there. Thus, the requirement that the flow be finite causes the doublet

strength to be continuous across the edge. This method has worked

successfully (in the earlier versions of the "pilot code," for instance) in

many cases. Unfortunately, the method requires that the geometric fit among

networks be exact; if there is a gap, say, where networks meet, the boundary
condition of zero normal flow will force the doublet strength along the edge
to zero.

The requirement that network edges match exactly in a geometric sense is a

severe burden on the user of a panel code. Figure 5.6 illustrates the type of
panelling frequently used by aerodynamicists at the intersection of the

leading edge of a wing and the body of an airplane. The aerodynamiclst is

usually more interested in detailed wing pressures than detailed body

pressures; further, the high curvature of the wing leading edge requires dense
panelling for accurate definition. But accurate definition of the leading

edge of the wing is incompatible with coarse definition of the body, unless a

gap is left between network edges. In figure 5.6, the shaded area represents

the gap between the body and the wing.

The most complex portion of the edge matching problem is the determination

of those pairs (or larger collections) of network edges along which the

doublet strength is to be matched. This determination is performed in two

ways: (1) For each network edge, the program searches for other network edges

which lie within a user-input tolerance distance of the first network edge.

(2) For edges which lie far from each other (compared to the tolerance), but
which ideally would be identical, such as those of figure 5.6, there is an

option which permits the user to directly specify that doublet matching should

occur along the edges.

PAN AIR incorporates two features to insure the matching of doublet

strength across network edges. The first feature is that the matching of
doublet strength is done directly rather than indirectly. That is, in

construction of the AIC matrix, the boundary condition wI - _2 = 0 (assuming

_I and _2 are the doublet strengths at two opposing points where networks

meet) is imposed exactly (rather than approximately by the requirement of zero

normal flow). The second feature is that "gap-filling" panels are introduced

whenever there are gaps between network edges which do not actually represent

gaps in the physical configuration. A doublet distribution is defined on

these gap-filling panels in such a manner that continuity of doublet strength
is produced everywhere.
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Imposing doublet matching exactly, rather than indirectly, requires

considerable care. The doublet matching boundary conditions must never be

redundant. Redundancy is permissible in the case of zero normal flow boundary
conditions because of the rather inexact manner in which these boundary

conditions perform doublet matching. (Experimentation has shown however that

the partial redundancy of zero normal flow boundary conditions may lead to

ill-conditioned matrices.) But when matching of doublet strength is imposed

exactly, any redundancy leads to a singular AIC matrix.

Preventing redundancy along a curve where two or more network edges meet

(such a curve is called an abutment) is fairly straightforward. The only

difficult problem occurs at "abutment intersections." that is, points where
several abutments meet (see figure 5.7). The detai_s concerning the

imposition of edge matching, the generation of gap-filling panels and the

handling of abutment intersections are given in Appendix F.
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5.4 Control Points and BoundaryConditions

5.4.1 Control Point Location

Control points are points at which boundary conditions are imposed. Such

points are either (1) in the vicinity of a panel center (the point whose

coordinates are the average of the panel corner coordinates), (2) in the

vicinity of the midpoint of a panel edge which also lies on a network edge, or

(3) in the vicinity of a panel corner which lies on a network edge. These

points are called center, edge, and corner control points respectively.

"Extra" corner control points are located at panel corners which belong to

"abutment intersections." Figure 5.7 illustrates a situation which would

cause the construction of an extra control point. There, N1, N2, and N3 are

three separate networks.

In figure 5.8 we illustrate the control point locations on a network with

no extra control points. Note that control points are always receded slightly

from a panel edge. This is done because the velocity induced by the doublet

distribution on a panel causes an infinite velocity at the panel edge. Thus,
for numerical reasons the control point is withdrawn approximately 1/10 of the

way toward the center of the panel• The precise method by which contro]
points are receded is described in Appendix G.

5.4.2 Boundary Conditions

Boundary conditions are imposed only at control points. Recall that a

boundary condition is a linear equation in # and its derivatives. Since _ or

its gradient may be discontinuous on the configuration surface, upper and
lower surface potential and velocity are different, and so the boundary

condition equation may involve "upper surface" and/or "lower surface" terms.

The number of boundary conditions imposed at a control point is between zero

and two (inclusive), and is determined by the basic principle that the number

of boundary conditions must equal the number of singularity parameters. For

analysis networks, there are two boundary conditions imposed at every panel

center control point, but, since only doublet parameters (and not source

parameters) are located on network edges, there is only one boundary condition

imposed at panel edge and corner control points.

5.4.2.1 ImPermeability Boundary Conditions

For most cases, the boundary condition the user wishes to impose is that

there is no flow through the configuration surface. At Mach zero, this is
achieved by setting

-4,

v . = 0 (5•4.1)

or equivalently,

• = v . = - v.. (5.4.2)

Equation (5.4.2) does not generalize in that form to arbitrary Mach number

however. In Appendix H, we see that the appropriate boundary condition for

non-linear potential flow (that is, flow satisfying the non-linear potential

equation (2•4.1)) is
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p v . R _-0 (5.4.3)

where p is the density of the fluid.

In section 1.11 of Ward (1.5), it is shown that, neglecting terms of the

same order as those neglected in reducing equation (2.4.1) to the
Prandtl-Glauert equation, we have

p V = p® iV = p® ( V # + V® ) (5.4.4)

where p, is the density at infinity. Note that v# rather than

in (5.4.4). Thus the appropriate boundary condition to impose is

p® (_¢+v.) ._=o

or _ . B =-v® .

V # occurs

(5.4.5)

(5.4.6)

The validity of (5.4.4) can be justified intuitively by recalling that the
continuity equation (2.1.1), neglecting the unsteady flow term, is

v. (p v) = 0 (5.4.7)

while the Prandtl-Glauert equation

s B2 + = 0
_xx 6yy + 6zz (5.4.8)

can be rewritten as

. (p® V_ + p® V_) :0 (5.4.9)

since p® is a constant and

V • V® = 0

So, we see that both the left and right hand sides of (5.4.4) are vector

fields whose divergence is zero, that is, they are "conserved quantities."

Th_ expression (p/p.) V (also denoted W) is called the mass flux,
# + V® is called the total linearized mass flux, and V # (also denoted _)

is called the linearized perturbation mass flux. We will not consider the

non-linear mass flux in this section, and thus will drop the modifier ÷ ÷
"linearized." We will denote the perturbation and total mass flux by w and W

_ A _ A

respectively, and call w.n and W.n the perturbation and total normal mass

flux. Note that as a consequence of the definition (5.2.25) of Bo and (5.2.4)

of V together with the fact the perturbation velocity _ is given by v W, we

have, in reference coordinates,

v (5.4.10)w = v _ = Bo v _ = Bo _

Now, the combination of (5.4.3) and (5.4.4) indicates that to specify

impermeability of a surface, we set total normal mass flux equal to zero. This

can be done directly or indirectly, as illustrated by the following examples.

F
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5.4.2.2 Thin Surfaces

In the case of the thin wing illustrated in figure 5.9, we clearly require

both the upper and lower surfaces to be impermeable, and thus specify

wU . = - v® .

÷ _ (5.4.11)

wL . n : - V® .

But recall from section 5.2 that

o = V (J6U - l_L) • _": v (16u - 16L) • [Bo] (5.4.12)

{V (16u - _L)J T [Bo] _ : ([B o] V(_U - #L)J T _ (5.4.13)

^

= _ (i6U - _L ) . n = W+U.n - wL.n (5.4.14)

Note that these equations reveal

.v= .w (5.4.15)

This relation will be used later. Combining (5.4.11) and (5.4.14) now yields

a = 0 (5.4.16)

so that the thin wing boundary conditions (5.4.11) are equivalent to

-4,

_u • a = -v® .

a=O

(5.4.17)

Note that we show a wake trailing behind the wing in figure 5.9. A wake

is a surface across which a potential jump occurs, even though the surface

does not correspond to a solid, physical object. Deciding where to position

the wake for a particular configuration is an extremely difficult problem.

For many problems, however, any wake position roughly parallel to the

freestream and extending downstream from the object being analyzed is

adequate. A detailed study of wake positioning is not part of this document.

5.4.2.3 Thick Confl_uratlons

For a "thick" wing, that is, a wing for which we panel both the upper and

lower surfaces, we cannot simply impose the boundary conditions (5.4.17).

This is because imposition of zero normal flow at all points on the interior

of a closed surface is an ill-posed boundary value problem since there is no

unique solution: if a particular function _ satisfies the Prandtl-Glauert

equation and the boundary conditions, then adding any constant to # in the

interior of the closed surface yields another solution. We illustrate the two

possible solutions in figure 5.10.
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So, we must specify zero normal flow on the interior of a closed surface
in someother manner. There are manypossibilities, someof which are
discussed in section 5 of the maintenance document. The method illustrated in

figure 5.11 has been experimentally shown to be reliable in a wide variety of

circumstances. There, the boundary condition _L = 0 on the configuration

surface ensures (assuming a sufficient density of control points) that _ is
identically zero in the entire interior region. Such a condition is called

"perturbation stagnation" (it is not really stagnation, since the total

potential is not constant), since v #, the perturbation velocity, is zero in
the interior region.

Thus we impose the boundary conditions

#L = 0

-Hb

WU •

(5.4.18)

But _L = _ _L

we obtain

= O, so we can replace WU.n by (_U - w_}.n --o, and thus

_L = 0

-¢.

0 ---- -V_

(5.4.19)

The boundary conditions (5.4.19) for a thick wing, or (5.4.17) for a thin

wing are preferable to their equivalents (5.4.18) and (5.4.11) because they
directly specify the source strength. This allows the source parameters to be

removed from the system of linear equations, thus considerably lowering the
cost of solving the equations.

5.4.2.4 Superinclined Surfaces

A final example of the imposition of boundary conditions is shown in

figure 5.12. The surface shown perpendicular to the freestream is a

superinclined surface; recall from section 5.2 that a surface is superinclined
whenever

• _ < 0 (5.4.20)

An important result, which we discuss further in Appendix B, is that
boundary conditions of zero normal mass flux must never be placed on the

upstream side of a superinclined surface, or else the boundary value problem

is ill-posed. This is not really too surprising, since the flow about any

impermeable object so blunt as to be superinclined certainly violates the

"small perturbation" assumption.

The need for permeable superinclined surfaces does occur, however, nacelle

faces being the prime example. The example in figure 5.12 shows the use of
boundary conditions on the lower (that is, downstream) surface to induce

perturbation stagnation in the interior of the configuration.
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5.4.2.5 The General Boundary Condition

The previous three examples do not exhaust the generality of boundary
conditions which a PAN AIR user may impose. But we must warn that, while an

arbitrary condition on _ and its derivatives is permitted, the boundary

condition may not yield a well-posed problem. The arbitrary boundary

condition can be written

-4- "_ -P

aA WA " n + CA _A ÷ tA " VA

+ aD o + cD _ + tD • V u = b

(5.4.21)

where the subscripts A and D stand for "average" and "difference," that is,

_A = ½ (_U + _L ) (5.4.22)

_D = _U - _L = u (5.4.23)

Comparing to equation (3.2.6), we see that the definition of doublet strength
is the same for all Mach numbers. The constants a and c may be arbitrary,

while the vectors _ are tangent to the surface at the control point (as

opposed to _, which is normal to the surface).

To see that (5.4.21) permits an arbitrary combination of upper or lower

surface conditions, we solve (5.4.22-23) for _U and #L' obtaining

_U = _A + ½ ¢_D = _A ÷ ½_

(5.4.24)

i

_L = _A -2u

Similarly,

WA • n :Z " "

wU - wL •

(5.4.25)

and, solving,

_U 1.6:W+A.B+ o
(5.4.26)
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Thus the boundary condition pair

_L = 0

Wu.

can be written as

1
CA-_U =0

wA • n +To = _

Thus, the first equation in (5.4.28)is equivalent to (5.4.21) with

cA = 1

i
cD = _

aA = aD = 0

_A =_D=O

(5.4.27)

(5.4.28)

(5.4.29)

b=O

while the second equation corresponds to

CA=CD= 0

aA=l

1
aD =

-_, -h

tA = tD = 0

b = -V. .

(5.4.30)

For the remainder of this document, we will generally use the boundary

condition formulation (5.4.21) since it is used internally in PAN AIR. It

should be noted, however, that the program user need not be concerned with

this formulation, but may express boundary conditions in the upper and lower
form if he wishes. The average and difference formulation is used in PAN AIR

in order to separate out the singularity strength (or difference) contribution

to the boundary condition, which are computed from the splines. The

difference potential and velocity are given in terms of the singularity

distributions at a point by the formulae (cf. eqns. (5.4.23) and (B.3.29-31))

#D = _ (5.4.31)

vD = Ion + (n x V g) x _]/(n,v) (5.4.32)
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The average potential and velocity at a point on the surface are given in

terms of the complete singularity distribution functions by the formulae (cf.
eqns. (5.2.8) and (B.3.28); we use the formula for the velocity field q(_)

with the line vortex term removed),

SnDp

vA(P) = (1/.) S"
nDp

[-_/R ÷ _ _. Vq(1/R)]dSql
avg

(5.4.33)

[a Vq (I/R) + (n x Vq _) x _}q (i/R)]dSq] avg

(5.4.34)

Note that the subscript "avg" refers to the process of evaluating the average

value of the given integral expression above and below the singularity surface

S at the point _. In appendices J.6, J.7 and J.8 it is shown that this

average value calculation is a matter of concern only for the subpanel QcS

that contains the point _. For this case, it is shown in appendix J that the
average value calculation is accomplished simply by using an average value of

the panel integral J to evaluate the influence coefficient matrices [S] and

[D] (cf. eqns. (j.6.152) and (J.6.164)]. The surface average value

calculation for the panel integral J is fully discussed near the end of

appendix J.8.

There is one type of user-specified boundary condition, called a closure

boundary condition, which is not of the form (5.4.21). This is used in design

problems to specify the integral of the normal mass flux over a surface. A
detailed description of the use and implementation of closure boundary
conditions, discussed briefly in section (5.7.1), will be treated fully in

Appendices H.2.5, K.1.3 and K.6.3.
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5.5 Singularity Splines

In this section we will discuss without details the construction of spline

matrices for analysis and wake networks. The technical details of the spline

construction, and all discussion of splines for design networks, will be

reserved for Appendix I. In figure 5.13, we illustrate the locations of

source parameters on a source analysis network, and the locations of doublet

parameters on a doublet analysis or wake network.

Source parameters on analysis networks are located at panel centers only.

Doublet parameters on analysis networks are located at panel centers and in

addition along network edges as illustrated. The value of a source parameter
is always the value of source strength at the parameter location, and

similarly for a doublet parameter. The "extra" doublet parameters occur at

those points at which an "extra" corner control point was stationed because of

edge matching considerations (see figure 5.7). Doublet parameters are

required on network edges (while source parameters are not) because of the

quadratic variation of the approximation to the doublet strength. A quadratic

variation causes rapid changes in doublet strength which make extrapolation of
the doublet values from the interior of the network to the edges ill-advised.

The source strength approximation is only linear, however. Finally• doublet

parameters are only located on the upstream edge of a wake network. The

doublet strength on a wake network is defined to be constant in the streamwise

direction, and thus doublet parameters are only required on one edge in order

to define the doublet strength on the entire network.

5.5.1 The Matrices BS and BD

The outer spline matrices define the source strength and doublet strength

at certain points on the panel as linear combinations of source and doublet

parameters in the neighborhood of the panel. While a single doublet outer

spIine matrix has been found satisfactory for all purposes, it has been found
that two source outer splines matrices are generally required. One of the
source outer spline matrices helps define a continuous source distribution

used in post processing applications, where it is essential for processing

considerations that source strength be a uniquely defined function on a
network (cf. sec. 5.5.3). The other source outer spline matrix helps define a

discontinuous source distribution used in AIC matrix construction• where it is

important that the total source strength on a network be accurately measured
by the corresponding integral of the splined source distribution (cf. sec.
5.5.4).

To be precise• consider the panel and network in figure 5.14. A source

outer spline matrix BS is a 5 x 9 matrix which gives the value of source

strength at PI,P2,P3,P4, and P9 in terms of the source parameters

I_S i = 1, ,9} located at the nine panel centers marked by a circle. The
i • 00.

matrix Bo is a 9 x 21 matrix giving the values of doublet strength at Pl...,P9

in terms of the doublet parameters (_i D, i=I,...,21} located at the 21 panel

centers marked by an x. Because _ is a continuous locally quadratic

function whereas e is only a locally linear function, _ must be defined at 9

points on a panel by BD while a is only defined by 5 poin}s b_ BD. The values
of a at the 5 points are called "panel source parameters• whlle the values of
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u at the 9 points are called "panel doublet parameters."

5.5.2 Definition of SPSPL

The subp_nel spline matrices (one source matrix SPSPL S and one doublet

matrix SPSPL u for each of the eight triangular regions composing the panel)
each define the coefficients of the polynomial distribution of singularity

strength on the triangular region as a linear combination of the singularity

strengths at the panel points Pi mentioned above. Thus, on each triangular
region, source and doublet strengths a(6', n') and u(6', n') are defined in

terms of local coordinates (6', n'). (Cf. eqn. (5.2.27) for the definition of

the local coordinate transformation A. Note that the lo_al coordinate_ 6', n'

used here include an origin shift as well; i.e. _' = A (x - _o ) where x is the
triangle's origin.) o

a(6' ,n)=a 0

_(_', n') = Uo

+ o_ _' + ann

+ u_ _' + Unn'

1 6,2 +
+ _ _

I ,2 (5.5.1)

_n_' n' + _ _nn n

where the constants oo, o , on, _o,...,_nn are defined by the subpanel
spline matrices:

a(P I )

ao a(P 2 )

a_ = [SPSPL S] a(P3)

an o(P4)

o(Pg)

and

°]

nn _(P9 )

(5.5.2)

(5.5.3)

5.5.3 Construction of B Matrices for Continuous Singularity Distributions

A B matrix associated with a continuous singularity distribution is

constructed one row at a time. Each row defines the singularity strength at a

panel corner, edge midpoint, or panel center in terms of surrounding

singularity parameters. This identical row vector then becomes part of the B

matrix of each panel which shares the particular grid point. This insures

that the value of the singularity strength is identical as one approaches the

grid point from the interior of any of the panels sharing it.

The source strength at a panel corner is obtained from the source

singularity parameters located at the centers of the four panels sharing that

corner, as illustrated in figure 5.15. The dependence of oI on Xl,...x 4 is

.j-
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determined by a bilinear fit procedure described in Appendix 1.1.
Essentially, this procedure determines what "bilinear" function (a bilinear
function in two variables (_,n) is a quadratic function which reduces to a
linear function for constant _ or n)

f(_, n) : a + b_ + Cn + d_ n (5.5.4)

S

is determined by the four values _i' and then sets 01 to be the "value"

the function takes at that point. By "value", we nw_an a row vector

(a1,a2,a3,a 4) such that

oI = cal a2 a3 a4 j

/%q

b

jvv
^4

(5.5.5)

regardless of the values of the S,
i s"

Now, finding the row vector that describes the source strength at a panel

center is very simple, since a source parameter is located there. To obtain a

matrix BS for a panel, we assemble the row vectors corresponding to the 5 grid

points. Each row vector has length 4, but by adding zeros each row vector

expands to length 9. Thus each row vector has one entry from each of the 9

source parameters in the neighborhood of the panel. While only four

parameters lie in the neighborhood of a particular corner point, (cf. figure
5.14) nine parameters lie in the neighborhood of at least one of the panel

corners. Collecting the five row vectors, we have the 5 x 9 matrix BS, which

was first introduced by equation (4.2.8).

Thus, for the panel In figure 5.14, Bs has the structure

BS

D

0 * * 0 * * 0 0 0

• * 0 * * 0 0 0 0

0 0 0 * * 0 * * 0

0 0 0 0 * * 0 * *

0 0 0 0 * 0 0 0 0

(5.5.6)

where the columns of BS are arranged according to the integer labels given

to the source parameters in figure 5.14. Here, an asterisk denotes some
generally non-zero entry.
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The outer doublet spline matrix BD, introduced in equation (4.2.9), is
similarly constructed row by row. To obtain the row vector describing u at a
panel corner, a least squares fit is used. As shown in figure 5.16, u(P) is

obtained by finding the quadratic function _(_,n) which best goes through the

_iD at the 12 doublet parameter locations in the neighborhood of P in12 values

a weighted least squares sense (a quadratic function in two variables

certainly can not go through 12 values exactly). The computation of the

weights is discussed in Appendix 1.1.2.4. The quadratic function thus

obtained (its 6 coefficients are each row vectors of length 12, since they

depend on the _) is evaluated at P to obtain _(P). This weighted least squares

procedure will be described in detail in Appendix 1.5.

To obtain a row vector defining u at a panel edge midpoint, we again use a
weighted least squares fit, though this time we only fit to 8 neighboring

singularity parameters, as illustrated in figure 5.17. If the grid point lies
near the network edge, a special treatment (which is described in Appendix
1.1) is used.

5.5.4 Construction of the Discontinuous Source Outer Spline Matrix

The discontinuous source outer spline matrix (cf. appendix 1.1.15), is

constructed by means of a two stage process. First, a linear source distribu-

tion over the whole panel is determined in terms of the panel's neighboring

S i 1 ...,9 by means of a weighted least squaressource parameters _i ' = '

procedure. Second, this distribution is evaluated at the five points PI' PP'
P3, P4, P9 to give the dependency of the five "panel source parameters" upo_

S
the neighboring source parameters _i"

It is the first step of this process that ensures that total source strength

is accurately measured. This accuracy is achieved by the combination of the

linear fit and the fact that the panel's own source parameter is heavily weighted

in the least squares fitting procedure.

It is appropriate to observe here that although the discontinuous source outer

spline is not explicitly constrained to be continuous, it is in fact very nearly

continuous wherever the configuration is sufficiently finely panelled that the

angle between adjacent panel normals is less than, say, 10°.

5.5.5 Construction of SPSPL

Next, let us consider the method by which the subpanel spline matrices use the

panel singularity values (aI ...a4, a9, _1...u9 ) to define singularity

distributions within a panel. In referring to the panel illustrated in figure

5.18, we will write ai for a(P i) and _i for u(Pi).

Recall that 01, a2, a3, a4 and a9 are defined in terms of neighboring

source singularity parameters by the matrix BS. We then define
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1 1 I 1
o5 = _ (aI + a2) , a6 = _ (02 + 03), a7 = _ (o3 + a4), and a8 = _ (a4 + 01 ) .

We have now defined ai at all vertices of all 8 triangular regions, and we

now define a linear distribution o(_', n') i, i = 1,...,8 on each triangular

region by specifying it to be the unique linear distribution to attain the
appropriate values at the 3 vertices of the triangle.

Note that this construction forces a to vary linearly along the edge of a

triangular region, and thus the value of a at any point along the edge is

determined by the values of a at the two endpoints of the edge. Thus a is

continuous within the panel. Further, since o at a panel edge midpoint M is
the average of the values at the adjacent corners, a varies as a single linear

function on an entire panel edge. Thus a on a panel edge is determined by its

values at the two endpoints, and so, within a network, a is continuous across
panel edges, as long as the continuous source spline is being used. At network

edges, a is not continuous across the network edge.

To determine the doublet distribution on each of the 8 regions, we note

first that a quadratic distribution on a triangular region is uniquely defined
by its value at the three vertices and the three edge midpoints of the

triangle. Thus the doublet distribution on each triangle is determined once

we know u at PI'"" Pg' and MI,..., M16. Now _ at PI'"" P9 is defined by

BD . We define u at M1,..., M8, and M13,..., M16 by requiring that _ be

described by a single quadratic function in one variable on the line segments

PIPsP2 , P2P6P3 , P3P7P4 , P4P8P1 , P5PgP7 , and P6PgP 8. Note that a quadratic

function on a line is uniquely determined by its values at 3 distinct points.

Finally, u is defined at M9, MIO, Mll, M12 in such a manner as to minimize the

discontinuities in doublet gradient at P5' P6' P7' P8"

By defining _ at Mi, i = 1,..., 16, in this manner, we insure that, within

a network, the doublet strength is continuous across triangle boundaries.

(Doublet strength matching at network edges is discussed in section 5.3.) In

addition, the doublet gradient is continuous at P9" Also, the doublet

strength is continuous across panel edges because the values of u at the
endpoints and midpoints of an edge define the value on the whole segment.

Summarizing, for each triangular region we obtain subpanel spline matrices

SPSPL S and SPSPL D such that

a 0

I

a_ i = [SPsPLS]

P •

a1

I
(5.5.7a)
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roI. : [SPSPL D]

.Unn _9

(5.5.7b)

Furthermore, we have already discussed the construction of outer spline

matrices BS and BD such that

a1

• : [Bs]

a 4

a 9

_q

• u

^Q

(5.5.8a)

and

" J : [BD]_9 xD
, 21

(5o5.8b)

Combining (5.5.7) and (5.5.8), we obtain the source and doublet

distributions on a triangular region, in terms of source and doublet
parameters, by

a o

a_

a

[SPSPL s] [Bs] {i9s}(5.5.9a)

{io}EssOrOI°]I(5.5.gb)
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5.6 Influence Coefficients

In order to impose the arbitrary boundary condition given by equation
(5.4.21), viz.,

_A ^ _ _aA .n + cA _A + tA'VA + aD° + CD_ + tD'V_ : b

(5.6.1)

at a control point, it is necessary to evaluate the left hand side expression

as a linear combination of the singularity parameters I xi } • To evaluate o

and V at the control point, we use the subpanel spline and outer spline
matrlces. For example, if a control point P has local coordinates (_', n'),
we find, using equations (5.5.1), (5.5.7) and (5.5.8),

_(P) = L.1 _' , SPSPL S BS "n- [ ] [ ] . (5.6.2)

S is the
and thus the row vector describing o(P) in terms of all the _i
expansion of the ix9 matrix

I _' n' [SPSPL S] [BS]

into the corresponding lxN matrix (where all but 9 values are zero), with an

entry for each of the N singularity parameters in the entire configuration.
We obtain the row vector describing u(P) similarly.

5.6.1 Computation of Potential and Velocity

Next we wish to evaluate _A and _A at a control point, as a linear

combination of all the singularity parameters in the configuration. The row

vectors which describe these quantities at a control point are called the

potential influence coefficient and velocity influence coefficient matrices,
or _IC and VIC respectively. The matrices #IC and VIC should not be confused

with the panel influence coefficient (PIC) matrices, introduced in section

4.2.2, which define the perturbation potential and velocity induced by a panel

on a control point. The _IC matrix is evaluated by using the basic

representation formula, equation (5.2.8)

_(x,y,z) = - _1 _ _(Q)R dS + I_ _ _(Q)n . v Q(_)_ dS

S' S' (5.6.3)

(where S' = SnDp is the intersection of the domain of dependence of P with the

surface of integration S) while the VIC matrix is calculated using the gradient
of equation (5.2.8),
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;(x,y,z) : - 1. Vp --R-

S'

dS

S'

where P' = (x,y,z), Q = ({,n,_) is a point on S,

and

dS

(5.6.4)

VQ = alan alay (5.6.5)

a/a{ alaz

R2 = (_ - x)2 + s B2 (n - y)2 + sB2 (__ z)2 (5.6.6)

We perform the integration one triangular region at a time; thus, denoting

a subpanel by A, with local coordinates (_', n'), we have

Is-7 R ,n))

A ANDp

K u(_' ' • ' '- , n ) _ _ ) dS (_(_ , n ))

ANDp
(5.6.7)

and a corresponding expression for _(x,y,z). Here we substitute for the exact

(and unknown) values of o the row vector in (5.6.2) and a similar row vector

for ,.

In practice, the sum over triangular regions is taken as a sum over all

anels, and the integral over a panel is taken as a sum of integrals over the

triangular regions in the panel. The integral over a single panel describes

the perturbation potential and velocity induced at the control point (which

does not necessarily lie near the panel) by the panel. Since the singularity

distribution on the panel depends on the 5 panel source parameters and the 9

panel doublet parameters, the perturbation potential and velocity induced by

the panel can be defined by two "panel influence coefficient" (PIC) matrices,

one a 4x5 source matrix, PIC S, the other a 4x9 doublet matrix PIC D.

That is,
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#(x,y,z)

a#/ax(x,y,z)

a_/ay(x,y,z)

a_laz(x,y,z)

: [PIC S]

o1

04

09

[PICD]

(5.6.8)

Substitution of (5.6.2) into (5.6.7) shows that

pic s :

8 sub-

panels

Similarly,

8

1
PIC D _

i=I

i IIR }
I _ alax(11R)

- ¥ alay(I/R)

ai N Dp alaz(llR)

4xl

I _ .vq(I/R) l
_f alax _ .VQ(1/R)

a/ay n .VQ(1/R)

aiF_DP alaz n .9Q (I/R)

!

,I _' n j

4xi

lx3 s]3x5
[SPSPL i dS

(5.6.g)

(5.6.10)

L

lx6 6x9

i _' n' _'1 _,2 {, ,n _-nl ,2. [SPSPL D] dS

5.6.2 Reformulation of the Doublet Velocity Integral

In Appendix J, we describe the method by which we calculate the matrix

PIC S .

of u.

written as

The integral PIC D, however, is evaluated by making use of the continuity

We show in Appendix B°3 that the velocity due to the doublet can be

1 IIC(P) : _ Vp

SnDp

= K

SNDp

"(Q) _ " _0_ dS

VQ ,) x (v_) dS + I_ u _Q llTx dl+

aSNDp

(5.6.11)

Here. aS is the boundary of the surface S. The first integral is called
the regular part of the doublet velocity, and the second integral is called

the line vortex part. Now, in general, u = 0 on the boundary of an isolated
network edge because the doublet matching boundary conditions in PAN AIR force
this to be the case. Further, where two networks meet along a common llne,
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the doublet strengths in PAN AIR are made equal; thus, if the integration is

performed one network at a time, the integral of the line vortex term over the

edge of the first network cancels with the corresponding integral over the
edge of the second network (see figure 5.19). The integrals similarly cancel

when three or more networks meet because of the doublet matching boundary

conditions which are imposed (see Appendices B.3, F and K).

Similarly, when we divide S up into subpanels (triangular regions), the

line vortex integrals cancel on the subpanel boundaries because the doublet
strength is continuous. Thus every contribution to the second integral in

(5.6.11) is cancelled by an equal and opposite contribution, provided u is

everywhere continuous. So, if u is continuous, we see that the doublet
velocity may be defined by an integral in the quantity BxV_, which is

generally known as the surface vorticity. For a discussion of surface

vorticity, see section 2.8 of Ward.

The assumption that _ is continuous everywhere is in fact violated in only

one instance in PAN AIR, namely, on the trailing edge of a wake. The doublet

strength there is non-zero, but this edge is so far from the control points at

which boundary conditions are imposed that neglect of the line vortex term for

this edge results in a negligible error.

There are two reasons for evaluating the regular part of (5.6.11) rather
than the complete integral. First, if the boundary of a subpanel (triangular)

region of integration contains points Q = (6',n',{') for which R = O, the line

vortex term may be infinite (especially in supersonic flow), where this

infinite quantity is cancelled out by an identical infinite integral in the

opposite direction. This is unacceptable in a numerical method; even if

infinite quantities are avoided, the cancellation of large numbers of opposite

sign tends to be inexact, and the final answer may lose many digits of

accuracy. In evaluating the regular part of the integral, however, large

numbers are generated, with a few exceptions, only when the final answers are

large. The singular behavior of these integrals will be discussed further in
Appendix J.11.

5.6.3 The Far Field Expansion

The second reason for evaluating only the regular integral is efficiency.
When R is small compared to panel size, the integral in (5.6.11) must be
evaluated exactly in terms of transcendental functions (logarithms and arc

tangents) whose arguments are complicated expressions depending on the
geometric relationship of the control point and the panel. To evaluate the

first form of equation (5.6.11), that is, the complete integral, requires the

computation of a greater number of these expressions than is required by the

regular part of (5.6.11), and thus takes longer. Further, if R is large
compared to panel size, the integrand can be replaced by a power series in

= Q-Qo = ((' n' C' '- - {o ) (5.6.12)

' ' ' +iswhere Qo = (6o'no'{o) the panel center. This power series has coefficients

which only depend on Qo and the control point P, while the terms of the power

v
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series only depend on the panel. Then (see Appendix J.9 for details) the

coefficients can be taken out from under the integral, while the integral
itself now depends only on the panel and thus need only be evaluated once in

the course of the problem, rather than once for every pair of panel and

control point. The approximation of the integrand by a power series in AQ is
called a far field expansion.

Now, applying a gradient operator to I/R yields with a factor of R-3, and

applying a gradient operator to those terms yields terms with the factor R-5.

Thus the left hand expansion in (5.6.11) contains terms with R"5, while the

regular part only contains terms with R-3. Now, for a fixed value of R,
-3

R is more accurately expressible as a power series in aQ of fixed length

than R"5 (see below for a justification), and so a far field expansion can be

used for smaller values of R if only the regular part of (5.6.11) is

evaluated. This is important since the far field expansion is considerably
less time-consuming than the exact evaluation of the integral. In practice,

PAN AIR will use the far field expansion if R is large compared to the panel

diameter for all points Q on the panel. For details, see appendix J.2.

To justify these remarks about accuracy, consider a quantity _<<1. By the
binomial theorem

(i ÷ _)r _ 2: i ÷ rE + E + ,..

® r(r-l)...(r-i) i*1
: I + _ L _ (i+1) :

i:1
(5.6.13)

3 5
That is, taking r = - _ and then r = - _,

)-3/2 3 15 2 135 3
(I+E =I-z¢+ +-fie - -41g E ...

)-5/2 5 _ 2 315 2(i + c = 1 -_¢ + c --T_c +

(5.6.14)

So if we want to approximate (1+_) -5/2 by a power series with 3 terms

(that is, a quadratic expression), the first neglected term has a coefficient

of 315/48, which is more than twice the size of the first neglected

coefficient if we approximate (i+_) -3/2. Thus, for a particular value of ¢

our quadratic approximation to (1+_) -3/2 is better than our quadratic

approximation to (1+c) -5/2.
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5.7 The Aerodynamic Influence Coefficient Matrix

Once the IxN matrix _IC and the 3xN matrix VIC (N the total number of

singularity parameters in the configuration) have been computed for a control

point, it is quite straightforward to impose the boundary condition (5.6.1).

The left hand side of (5.6.1) then gives a row of the [AIC] matrix (see

equations (4.2.4) and (3.3.8))

aA (_ } T lx3 T1X3[VlC(P)] 3xN + cA _¢IC(p)jlxN + (_A} [VlC(p)]3xN

lx3 3x5
, [SPSPL S] [BS] 5xN

+ aD L 1 _' n j

+ cD _1 _' n' __1 ,2 _, ,n _ n,1 ,2

lx6 6x9 9xN

[SPSPL D] [BD]

3x6

}T ix3 [AT]3X3 [0 i 0 _' n' O] 6x9 9xN

+ {_D 0 0 1 0 _' n' [SPSPLD] [BD]

0 0 0 0 0 0
(5.7.1)

In arriving at this result, equation (5.6.2) was used for o (a similar
equation for _), and we have used the fact that B.T=_._ (see equation

(5.4.15)). The control point P has local coordinates (_', n'), A is the

transformation from reference to local coordinates and BS and BD are the outer

spline matrices, the overbar signifying that they have been expanded to N

columns, with one column of zeros for every singularity parameter on which the

panel source or doublet distribution does not depend. We will show in

Appendix K that the last term of (5.7.1) is equivalent to tD. vu ; the

remaining terms have been discussed previously. Thus, a row of the AIC matrix

(corresponding to a boundary condition) can be generated in a completely
straightforward manner. Several considerations make the process somewhat less

straightforward, however. These are: imposition of boundary conditions which

are not of the form (5.6.1), utilization of the existence of one or two planes

of configuration symmetry in order to reduce the size of the problem, and

elimination of singularity parameters whose values are directly specified by a

boundary condition ("known" singularity parameters) from the system of equations.

5.7.1 Non-Standard Boundary Conditions

There are two types of boundary conditions which are not of the form

(5.6.1). The first type is a matching boundary condition (see section 5.3, or
Appendices K.1.2, K.6.2 for full details). The second type is a closure

boundary condition, described in full detail in Appendices K.I.3, K.6.3. To

understand how a closure condition arises, observe that a program user may

specify a desired pressure distribution on a design network by imposing
boundary conditions of the form

"_ --P -4- --P

tU . vU + tL . vL = b (5.7.2)
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at panel center control points. When a tangential component of the flow is

thus specified over a surface, there are no boundary conditions remaining at

panel centers to also require that the normal flow to the surface be zero; but
the boundary conditions at a network edge may not yet have been used. At

these control points one may specify

If [ " ]au _U " n + aL wL . _ dS = b (5.7.3)

column or

row of panels

For aL = 0 = b, for instance, equation (5.7.3) requires that the integral

of the normal flow over a column (or row) of panels be zero. When the program

user then updates the network geometry to approximately impose impermeability

of the surface, the position of the trailing edge of the network will not be
changed.

This alternate iteration of a potential flow solution with an update of

the surface geometry is a method of solving the design problem, in which a

user wishes to obtain an impermeable surface with a specified pressure
distribution. The closure boundary condition is used, for example, in

designing a thick wing, in order to ensure that the trailing edge of the wing

remain closed. The design problem is discussed further in Appendix C. The

implementation of eqn. (5.7.3) is discussed in appendix (K.I.3) where it is

shown how the integral is approximated as a weighted sum over panel centers in
a column or row of panels.

5.7.2 Symmetry

While we defer to the appendices all of the detailed technical details

associated with the treatment of symmetry, we will describe here at a fairly

cursory level how PAN AIR takes advantage of configuration symmetry to reduce

the cost of solving the potential flow problem. (For greater detail see

especially appendix K and also appendices F.5 and H.)

In the discussion that follows, we will treat in detail the case of a

configuration having one plane of configuration symmetry as illustrated in

figure 5.20. That part of the configuration surface lying to the right of the

plane of symmetry is denoted S+, its image on the left is denoted S" and the

part of the configuration surface lying on the plane of symmetry P1 is denoted
+

SI. The combined surface S u S1, which is the geometry input by the user, is

called the principal image of the configuration. To simplify the discussion
we will further assume the following:

(i) The compressibility axis is aligned with the x-axis of the reference

coordinate system.

(ii) The single plane of symmetry coincides with the x-z plane,(_ I Y : O}

As a consequence of these assumptions the normal to the plane of symmetry is

^T O) Further, for any point p _ S , the corresponding
given by nI = (0, I, .

point _- +¢ S-, the image of S , is given by

V
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Notice that we have implicitly given here the definition of RI, the reflection
matrix associated with the plane of symmetryPI"

Having defined this muchof the terminology of symmetry, we can now state
the basic principal that motivates our treatment of symmetry. In PANAIR,
symmetry is handled by setting up separate integral equations for the

symmetric and antisymmetric parts of _, defined by

_÷(p) = _S(p) = symmetric part of j6

(5.7.5a)

_-(p) = _A(p) = anti symmetric part of )6

(5.7.5b)

The integral equations that we obtain for _S and _A involve only integrals
÷

over the principal image of the configuration, S uS I. Thus, each integral

equation, when discretized, leads to an AIC equation that is (approximately)
half the dimension of an AIC equation for the whole configuration. Since the

cost of solving a large, dense AIC equation increases as the cube of its

dimension, we find -

cost of solving 2 AIC equations of size N/2 = 2[K(N/2) 3]

= K[N3/4]

cost of solving 1 AIC equation of size N = KN3

so that symmetry permits us to reduce by a factor of 4 the cost of AIC

solution. Further, (and this is actually more significant), symmetry also

allows us to reduce by a factor of two the cost of AIC generation. This last
fact follows from the observation that of the four influence coefficients

defined by:

÷ + +

¢_ (_) : cQa (_' Sl) + CQu (_'ml)

potential induced at _ due to the source distribution sI

and the doublet distribution mI restricted to panel

Q+ c S+
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_ + _- ÷- _+ ++ Q+Q : image of Q = { l q = R1 q , q ¢ }

only the first two need to be computed since

÷

We now show how PAN AIR combines the boundary conditions at control points

_÷ S t _÷p c andS'(= R1 p c S-) to obtain a boundary condition for each of _S and

_A imposed at _+. (See below for the discussion of control points _ ¢ $1.)

First we note that corresponding boundary conditions at points _ and RI_

are required by PAN AIR to be connected to one another as follows. (Compare

these forms with equation (5.4.21))

p :

RI_ :

aA_T(_)B(;(_))A+CA(_(_))A+_T(v(_))A
= b+

aA _T(_) R1 B(T(RI_))A + CA(I6(RI_))A + _T RI(T(RI_)) A

÷ aoo(RI_)+ co_(RI_)+_TRI V_(RI_) - b"

(5.7.6a)

(5.7.6b)

Adding and subtracting these equations while taking account of the following
definitions

s( _ (R_

_A(p) = o (_) -o (RI_)

(5.7.7a)

(5.7.7b)

(5.7.8a)

(5.7.8b)

v
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_S(_) : u (_) + _(RI_)

-A,_,
{PJ = u (P) + /_"+-|RIPJ

we obtain after some manipulation

(5,7.8c)

(5.7.8d)

_St "4W ,

aA BT(_) (GS(_))A + CA(e {PJ)A

m

+ aD $S(_) + CD _S(p) + v_S = b + b

aA _T(_)(;A(_))A + CA(_A(_))A +_T (;A(_)) A

+ aD oA(_) + CD ;A(_) + _T v_A = b+ - b

(5.7.9a)

(5.7.9b)

Now it can be shown that the fundamental representation formulas (5.6.3-4) for

and _ induce similar representation formulas for _i and _i (see equations

(K.3.28) and (K.3.46)) having the following properties:

÷

(i) the integralsextend only over the principal image S o $I,

(ii) _i and _i depend only upon _i and _i, the corresponding symmetrized

singularity distributions.

These observations combined with a close inspection of equations (5.7.9) show

that we have decoupled the symmetric and antisymmetric parts of _, at least as
far as boundary conditions away from the plane of symmetry are concerned.

When a control point lies on a network which itself lies on a plane of
symmetry, it is still possible to obtain a decoupling of the symmetric and

antisymmetric potentials, provided the user's boundary conditions satisfy
certain restrictions. If the network in question is a source network, the

user must specify a nontrivial boundary condition of the form

aD _(_) . CA(#(_))A + _T (_(_))A= b
(source network, on a
plane of symmetry)

This is equivalent to the following condition imposed upon _S:

_T, i, =
aD _S(_) + CA(__)(_S(_)) A + _AI__j(_S(_))A b (5.7.10a)

The corresponding condition to be imposed upon _A is the degenerate boundary

condition,

= 0

Notice in equation (5.7.10a) that because a source distribution on S1 induces

a component of # that is symmetric with respect to the plane of symmetry P1'
we make the identification:
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SI

AS
O

S1

For doublet networks lying on a plane of symmetry, the user must specify a
nontrivial boundary condition of the form

aA _T(_) B(T(_))A + Co u(_) + _T V,(p) : b

(doublet network on

a plane of symmetry)

This is equivalent to the following condition imposed upon _A:

AT
aA n (_)(½) B(_A(_))A + cD ;A(_) + i_ v;A(p) = b

(5.7.10b)

The corresponding condition to be imposed upon _S is the degenerate boundary
condition

^s. : o

Notice that in deriving (5.7.10b) we have made the identification:

g = p

S1 S1

because a doublet distribution on SI induces a component of potential that is

antisymmetric with respect to PI"

A comment is in order regarding the rather anomalous factors of (1/2) that

appear in equations (5.7.10). To see how these factors arise, consider the

evaluation of (_(_))A" Solving equation (5.7.5) for _(_) we obtain

1:
Averaging the relation above and below p, which lies on the plane of symmetry
we get

(_(_))A = ½(_S(_))A+ _A(_)) A

Since the function _A(_) is antisymmetric with respect to the plane of

symmetry, (_A(_)) A = 0 (to see this, examine eqn. (5.7.5b) carefully). Thus

=

and the factor of (1/2) appearing here is the same as that appearing in

equation (5.7.10a).

All of the results given here for networks lying on a plane of symmetry

are worked out in detail in appendix (K.3). Further, in appendices (K.6.2)

and (K.6.3) the corresponding decoupling results are worked out for matching

and closure boundary conditions.
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The treatment of doublet matching when symmetry is present deserves

special comment. Whenever doublet matching is performed on an abutment or at

an abutment intersection that lies on a plane of symmetry, doublet matching
conditions must be selected separately for each symmetry condition• That is,

the matching condition overrides must be assigned separately for _A and _S.

Thus, it is in the handling of doublet matching that we see most clearly the
fact that the discretization in PAN AIR is formulated separately for each

symmetry condition.

5.7.3 Known Singularity Parameters

In a variety of cases, the value of a singularity parameter is directly
specified• The most common example occurs with impermeable boundary

conditions on a thick configuration (equation (5•4.19)), in which case a
source parameter is specified directly as

a = -V® • B (5.7.11)

If, of the N singularity parameters in the whole configuration, p are directly

specified and q are not, we can reorder them so that (_l,...,_p) are specified,

and thus (assuming no planes of symmetry) the basic system of linear equations
can be written as

l

I

[Di]pxp I oPXq
I
f
I
i

[AICKp]qXp j

i
f

[AICup]qXq

_p

Xp+l

m

XN

bI

P

bp+1

bN

(5.7.12)

Here, the matrix DI is a diagonal matrix whose entries are the coefficients

aD or cD in equations of the form

or

aDo = b

CD_ : b

(5.7.13)

which specify the value of a singularity parameter.

The matrix AICKp (KP stands for known parameters, UP for unknown

parameters) gives the dependence of the boundary condition expressions

aAw A . _ + CA# A + tA . vA + aD o + cD _ + tD • Vu
(5.7.14)
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on the set of known parameters, while AICup gives the dependence of the

expressions (5.7.14) on the set of unknown parameters.

As a specific example, consider the case where all the source singularity

parameters are specified according to equation (5.7.11)• Then, Xp+1,...,x N

are the unknown doublet singularity parameters, while for 1<j<p, xj = o(Pj) and

bj = -V= . nj. Also, [DI] = Ill, and [AICKp] gives the effect of the known

source strength singularity parameters on the expression (5.7.14), which, in

our example, becomes lower surface potential.

Now, the first p lines of (5.7.12) express the system of equations

[DI] (5.7.15a)

which implies

{11) bllP

: [DI] -1 ,.

Xp ,bp

(5.7.15b)

where [DI]-1 is readily computable since [DI] is a diagonal matrix. The

remainder of (5.7.12) is

[AICKp]

e

w •

Xp j

÷
[AICup]

FXp+ "bp+ 1

• •

q

,XN .bN

(5.7.16)

Substituting (5.7.15b) into (5.7.16), we obtain

[AICup]qXq

qxl qxl pxl

[AICKp] [DI-

>'N _ bN bp
(5.7.17)

We have thus reduced (5.7.12), a system of equations in the N parameters

Xl,..., xN to a system of equations in the q unknown parameters Xp+l,...,x N.

v
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5.7.4 Multiple Right Hand Sides

So far, we have always considered a system or systems of equations of the
general form

[Aic]nXn _nxl = _nxl (5.7.18)

But if the AIC matrix does not change, it is very economical to solve (5.7.18)

for a sequence of distinct vectors b i, obtaining a sequence of solution

vectors _i"

The ability to solve (5.7.18) for multiple vectors b can be very useful.
The uses include analyzing the flow about a configuration at multiple angles
of attack or sideslip, evaluating stability derivatives, or analyzing a
variety of quasi-steady flows in which the configuration is undergoing a
pitching, rolling, or yawing motion. This is especially useful when M_ : O,
and the small perturbation assumption is not necessary for the Prandtl-Glauert
equation to hold. For a further discussion of "right hand side" or
"constraint" vectors _, see Appendix L.

So, in its most general form, (5.7.18) can be written

[AIC] nxn [A]nxm = [B]nxm (5.7.19)

where each of the m columns_ of B is a constraint vector b i, and each column of
A is a solution vector x..

1

5.7.5 Updatability

Another feature of PAN AIR is that of "updatability." That is, a program
user may identify certain networks as being subject to modification. The
program then segregates boundary conditions and singularity parameters
corresponding to these networks, so that the AIC matrix in
(5.7.18) can be partitioned as:

I ]AICNu II AICu'I
[AIC] = I (5.7.20)

T

AICu,2 II AIC U,3
I

Here, the subscripts U and NU stand for updatable and non-updatable.

Now, the matrix AICNu is stored, and when the program user makes a second

run in which updatable networks are modified, the program need only

recalculate AICu, 1, i : 1, 2, 3, rather than the whole AIC matrix. Here,

"modification" may consist of the alteration of the network geometry, or the

alteration of the left hand side boundary condition expressions (5.7.14). It

is easy to see that AICNu remains unchanged under a modification of an

"updatable" network. For a full discussion, see Appendix K.7.
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5.8 Solution of the System of Equations

As we see from (5.7.7), (5.7.8), (5.7.18), and (5.7.19) the program sets

up a system or systems of linear equations of the general form

[A] nxn [X] nxm : [B] nxm (5.8.1)

Generally speaking, the matrix A is too large to store in the central

memory of a computer at one time. Thus the matrices are stored in block
format on a disk, and (5.8.1) is solved with no more than three of these

blocks in core at once.

Generally, the matrix A is decomposed as a product of lower triangular and
upper triangular matrices

[A] nxn : [L] nxn [U] nxn (5.8.2)

This process frequently involves "in-block pivoting," that is, the interchange

of columns within one of the blocks composing A. It can happen that a

boundary value problem of aerodynamic interest results in one of the blocks of

A which lies on the diagonal being singular, in which case a decomposition of

the form (5.8.2) is not possible. Such a case requires the interchange of

columns lying in different blocks, a process called "out-of-block pivoting."

The out-of-block pivoting process decreases the efficiency of the solution

process since additional data must be transferred between disk and core. This

process is described in Appendix L.

After the decomposition (5.8.2) the next step is "forward substitution,"

that is, the system of equations

[L]nxn [y]nXm = [B]nxm (5.8.3)

is solved for the matrix Y.

the system

The final step is "back substitution," in which

[U]nxn [X]nxm = [y]nXm (5.8.4)

is solved for the matrix X.

The solution procedure has two distinct "updatability" features. First,

suppose A is an AIC matrix partitioned as in (5.7.20). Then the factorization

(5.8.2) is performed on AICNu first, after which A is factored in its entirety.

The factorization of AICNu is stored, and in a later run in which AICu, i ,

i = I, 2, 3, are changed, the factorization continues from that point. They

may result in a significant saving of time.

The other "updatability" feature is that a program user may request the

entire factorization (5.8.2) to be stored, and then at a later time submit

additional constraint vectors b. Thus, a user may find that the results for

one angle of attack are useful, and thereupon obtain results for additional

angles of attack, angles of sideslip, or for stability derivatives, at small
additional cost.
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5.9 Post-Solution Features

5.9.1 Computation of Potential and Velocity

Once the system or systems of linear equations (5.7.19) have been solved
for one or more solution vectors, it remains to translate the vector(s) into
quantities of aerodynamic or hydrodynamic interest. The first step is to

obtain the values of #A and TA at control points. Clearly

ixN ÷Nxl
_A = [_IC]

VA = [VIc]3XN _Nxl

(5.9.1)

but obtaining _A and vA this way requires the storage of 4N words of data for

each control point. Often it is possible to obtain _A from a boundary

condition. For example (recalling _L = (_U + _L ) " (_U - _L ) = _A " _ _)'

the boundary condition

i
_L = _A - _ _ = 0 (5.9.2)

is often imposed at control points. Thus,

i
_A = 2 " (5.9.3)

Since , at the control point is already available (it is one of the unknown

parameters), we can obtain _A without storing the _IC matrix.

Once _A has been found at every control point, we may make use of the

doublet spline matrices to obtain a distribution of _A on the whole surface.

This quadratic distribution may then be differentiated to obtain tangential

velocities on the surface. The conorma] component of velocity, vA . n = wA . n,

can often be obtained from a boundary condition of the form

wA . : v® .

Then, all three components of velocity may be obtained from the tangential and
conormal components. The details of how we can use boundary conditions and
splines to obtain velocities at control points or grid points (panel corner
points, centers, or edge midpoints) are given in Appendix M.

The velocities are calculated at control points or grid points in a

user-selected reference coordinate system (xo, Yo' Zo)" The formulas for

calculating pressures are most easily written in the compressibility

coordinate system (x,y,z), in which the freestream direction is the
x-direction, so we will describe them in that system, in which we write
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v : (u,v,w) and V (the total velocity) = (I_'.I +u, v, w).

5.9.2 Pressure Computation

PAN AIR will calculate the pressure from the velocity according to any of

five different pressure coefficient rules. These pressure rules will be
derived in Appendix N. We assume we are dealing with a gas or an

incompressible liquid. Let y be the ratio of specific heats. Subject to
certain constraints on the range of velocities for which the pressure

coefficient rules hold, they are listed in figure 5.21. For an incompressible

liquid, the isentropic formula does not apply.

5.9.3 Velocity Corrections

In addition, PAN AIR will calculate two semi-empirical velocity correction

formulas. The first is often used in practice in areas such as inlets where

the component of the velocity in the freestream direction is less than the
|o

freestream. If u < O, we solve the following equation for Vx.

1

, 'I2 y--Ylwl ÷ sB2u = wx : vx [i + M2_ (1 - Ivx )] (5.9.5)

The corrected velocity is given

IV}xV' = v (5.9.6)

W

This velocity correction, denoted SA1 in the User's Manual, is closely related

to the Lieblein-Stockman formula (cf. Reference 5.1).

The second velocity correction formula, denoted SA2 in the User's Manual,

is often used in regions of near-stagnation such as the leading edge of a

wing. If u > O, we set

v Ill_' _ W (5.9.7)

If u < O, we set

÷ W
V' -

l-M® 2 u

(5.9.8)

where the denominator is a first order approximation to p/p_ •

These two correction formulas are essentially empirical. The first has

been used successfully only in subsonic flow, while the second has been used

successfully in both subsonic and supersonic flow. Successful applications of

the second velocity correction are given in reference 4.9 (Ehlers et. al.,

p. 89 and figure 36) and reference 5.4 (Chen and Tinoco, figure 5).
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5.9.4 Force and Moment Computation

PAN AIR will also integrate pressures on a surface to obtain coefficients
of force. The formula we use for the force is

li_'l v + pn dS (5.9.9)

where p is the pressure and p is the density.

The first term in the integrand, the momentum flux term, is zero for an
impermeable surface, but does in fact contribute to the force on a porous
surface. The evaluation of this integral is discussed in Appendix O.

PAN AIR al_o evaluates the moment M about a point. If Ro is the point in
question, and Q is a point on the surface,

ssI }* + (o V . n V) + p (Q Ro) x n dSM : - (Q - Ro) xs Iwl z
(5.9.1o)

The derivation of (5.9.9) and (5.9.10) is given in Ashley and Landahl
(reference 5.3), section 1-6.

Equation (5.9.9) ignores a contribution to the total force, called the

edge force, which occurs for thin configurations. To obtain the force on the

configuration illustrated in figure 5.22, we should integrate the expression

in (5.9.9) over the combined surface SIU S2, while in fact we only integrate

the expression over S1. The evaluation of the integral over $2, the edge

force, requires the use of some special extrapolation and correction

techniques. The basic idea is to evaluate the limit in the expression for
edge force, (cf. ref. 5.2):

edge force per unit length = (x/8)B n [lira (u/ _XXn ) ]2

Xn-_ 0

(5.9.11)

(here, Bn is an edge normal compressibility factor and xn is the distance

from the edge) by evaluating the expression (_/V-x n) at panel centers near

the edge. A correction factor is then applied to the result to account for

some nonuniform convergence effects arising from the fact that PAN AIR does

not allow _ to behave like C V_n in the neighborhood of the leading edge.

For more details of the edge force computation, see appendix O.

5.9.5 Off-Body Points and Streamlines

In order to help the program user in visualizing the flow field, PAN AIR

provides the capability to calculate potential and velocity at off body

points. In addition, this basic capability of evaluating _ and g at points

away from the configuration surface has been combined with an ordinary
differential equation solver to provide a streamline tracing capability. In
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this section we summarizethese capabilities, deferring to appendix P the
details of their implementation.

The evaluation of _and T at off body points is a straightforward task once
the singularity vector _ has been obtained by solving equation (5.7.18). To
see this, simply observe that once ; is known, the source and doublet distri-
butions are completely determined by equations (3.3.1-2). Oncea and _ are
known, _ and v are given at any point P by the integral representation
formulas, equations (5.6.3) and (5.6.4). The evaluation of the integrals
appearing in equations (5.6.3) for i_ and (5.6.4) for v is treated in detail in
appendix J.

Given the capability of evaluating _ at an arbitrary point P, the tracing
of a streamline is accomplished by numerically solving an ordinary
differential equation. To see this let P(t) denote the coordinates of a
velocity streamline parameterized by t. By the definition of such a
streamline, the tangent vector to the streamline given by

dP (5.9.12)
tangent to streamline P(t) = _-_

is parallel to the velocity field at P(t). Mathematically this implies

dP
= g(t) _(_(t))

The apparently arbitrary function g(t) does not affect the shape of the
streamline but rather, just modifies its parameterization. By convention we

set g - 1 in PAN AIR. Thus, given an initial point Po on a velocity

streamline, PAN AIR determines a sequence of points on that streamline by

solving the following initial value problem:

dP _(_(t)) _ + _(P(t)) (5.9.13)
:

P(O) : Po

In actual practice, it is usually preferable to compute mass flux

streamlines, i.e., streamlines where tangents are parallel to the mass flux

vector field W(P). The initial value problem used to define these streamlines

is given (cf. equations (5.4.4) and (5.4.10))

dP W(P(t)) = V_ + Bo v(P(t)) (5.9.14)dt-

g(o): Po
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Figure 5.4 - Superinclined Surface, r = -I
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Figure 5.5 - Subinclined and Mach-inclined surfaces
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Figure 5.6 - Gap between leading edge of wing and body
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Figure 5.9 Thin wing boundary conditions

Figure 5.10 - Two solutions for potential in enclosed volume
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Figure 5.11 - Thick wing boundary conditions

V:= Moo> 1
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Figure 5.12 - Boundary conditions on superinclined surfaces
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Figure 5.13 - Singularity parameter locations
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Figure 5.14 Singularity parameters in the neighborhood of the panel

5.10-8



2

• _3

1

• _'4

• neighboring source parameter

Figure 5.15 - Neighboring source parameters for a panel corner point
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Figure 5.16 - Neighboring doublet parameters for a panel corner point
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Figure 5.17 - Neighboring doublet parameters for a panel edge midpoint
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Figure 5.18 - Panel points and midpoints
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Figure 5.19 - Opposite orientations of adjacent networks
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Figure 5.20- Configuration and image
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Isentropic

I ncompressibl e

Cp
Y

y_.2 (_ iTl2>]Y--T _}
T_l2

used if Moo > .01

Second Order

Slender Body

Linear

Reduced Second Order

l_iVI2 + M 2u

-(2u + v 2 + w2)

-2u

Figure 5.21 - Pressure coefficient rules

S2

Figure 5.22 - Surfaces of integration for leading edge force
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6.0 A Guide to the Appendices

Tile purpose of the appendices is three-fold:

(aj they give background r:aterial, not reflected in the computer code, but
explaining _ny the computer program performs t_e functions it does,

(D) they describe in considerable detail the functions performed uy tile
program, and

(c) they describe the equations which are actually implemented in t_]e code.

Appendices A through C cover background material exclusively. The
restraining appendices are predominantly devoted to the PANAIR program, but
often derivations are supplied to prove or justify the validity of an equation.

Often a conflict may occur between organizing the material accordiug to
the structure of the program or organizing it according to subject matter (for
instance splines, panels, networks, pressures, etc.l or capability (for
instance symmetry, updatabi]ity, r lultiple right _and sides, etc.). This
conflict will almost invariably be resolved in favor of organization according
to subject matter.

This document will generally discuss ouly engineerirlg functions within PAN
AIR. Specifically, the functions of the Data Input Processor {DIP), which
reads and eciloes user-input data, and the Print Plot Processor, whicih prepares
files of output data for processing by plotting programs, will be ignored.
Also, input/output and other data manipulation functions which are necessary
due to core limitations, will, with few exceptions, be ignored. For example,
a detailed discussion of the abutment analysis processor in DOG will De
contained in the Maintenance Document rather than the Theory Document, since
the complexity of this procedure is largely due to data manipulation
problems. Finally, there _ill be no discussion of the "Scientific Data
Hanagement System" (SDNS) used by PAN AIR to transfer data between core and
disk.
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8.O

a, a®

a A , a D

a, ai, a k

S D
aiN, aiN

a i

A,_

A

[A], [A_]
4X4

, Ak

A i

A(G)

[A], A

g. ,

zj

A(i,j)

[AIC], AIC

List of Symbols

Latin Symbols

speed of sound, freestream speed of sound

(m/sec)

average and difference normal mass flux

coeffcients

distance (signed) from control point's

projection to an edge of Z (local

coordinates)

fundamental integrals in PIC computation

generic coefficients in polynomial

expansions for source and doublet

constant coefficient of L i, linear

basis function on a triangle

end point of an edge [cf.: B, M, CAB]

area [i.e., dA]

reference (Xo) to local (X') coordinate

transformation (Ak = transformation
for k-th panel or subpanel, depending

on context)

i-th abutment in an abutment intersection

adjacency matrix of a graph G

Left hand side (AIC) matrix

submatrix of AIC matrix A

partiaily reduced AIC matrix, after stage

(i,j) of factorization

aerodynamic influence coefficient matrix

Variants: (AIC_ j AIC entry for AI

symmetry condition

(i,j), [K.6])

[2.3]

[5._.2.5]

FJ _]

[J .6]

[4]

[1.2]

[I .2.3.2]

[5.2, E.3]

IF.5]

[F.5]

[5.8.2]

[L.2]

[L.2]

[3.3, 5.7]

(AICKp, AICup, [5.7.3])

(AICNu, AICu, I, AICu, 2, AICu, 3 [5.7.5])
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A
1

b i

B,_

[B]

[B]

[B]

Intermediate matrix used in PSPL D

calculation

a 2x2 hyperbolic skew

generic right hand side term for a

boundary condition
Variants: (b, vector of right hand side

terms, [5.7])

(_ij , _ for symmetry condition

(i,j), solution index _,

[L.O])

fundamental integrals in PIC computation

£-coefficient of L i, linear basis
function on a triangle

end point of an edge [cf.: A, M, <AB ]

fundamental integrals in PIC matrix

right hand siae matrix containing con-

straint vectors for multiple solutions

dual compressibility metric matrix,

compressibility axis coordinates

Variants: (B, same as [B], [5.2])

(Bo, [Bo] , reference coordi-

nates, [5.2])

(B, [B], scaled coordinates [E.3])

(B', [B'], local coordinates [E.3])

[I.3.1]

[J .5]

[5._]

[J .5]

[I.2]

[I .2.3.2]

[J.5]

[5.8]

[5.2]

BS

BD

Bi(Q), BI(Q)

[BL]

c
o

source outerspline matrix

Variant: (Bs extended to all N A [5.7])
I'

doublet outer spline matrix

Variant: (BD , extended to all N AI' [5.7])

quadratic interpolatary basis functions on

a triangle

oilinear generalized Vandermonde matrix

compressibility axis, reference coordinates
^

Variant: (c : compressibility axis

coordinates [5.2])

[5.5, I.l]

[5.5, I. I]

[T.2]

[1.I]

[5.2, E.3]
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CA , cD

C.
1

average and difference potential

coefficients

a curve on the singularity surface S

R-coefficient of Li, linear basis
function on a triangle

[5.4.2.5]

c4, coefficients of _. in evaluation of
l

_(s,t) at _*

Cij mean panel moment integrals

CV ratio of specific heats at constant volume

Cp

_F

CM ,

pressure coefficient

(C fin
Variants: P , Linear Cp, [H.2.4])

(AC , pressure jump,

P Cp,upper - Cp,lower )

(Cp,vac, vacuum value o[

Cp, [N])

force coefficient vector

m_ment coefficient vector

(C_ : referred to an alternate origin)

cO(s), C-I(S), CI(s) Continuity classes for functions

defined on S

half panel #4 center (C4 ) and corresponding ÷,

point on the hyperbolic paraboloidal panel (C4)

C(Q) a cubic basis function on a triangle

C i , C I , C ÷ , C-

clj j i
, C 1 , C 2

regions of space when one plane of

symmetry is present

regions of space when two planes of symmetry

are present.

++ +- + _ + ;Variants: (C , C etc., C I, C , C 2, C )

C i i-th corner in an abutment intersection

Cn Math disk on a superinclined panel

CG wincing number coefficient for PIC integrals

[I.3]

[i.4]

[2.2]

[5.9.2]

[B.3]

[I.3]

[I.2]

[K.3]

[K.4]

IF.5]

[j.4]

[J .4]
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[c]

d

a

d

det

Dp

[D]

[D]

[DI]

e

el, e2, e 3, ei

e A , e D , e U , e L

E I E.
i

E, Ek

_E

compressibility metric matrix, compressi-

bility axis coordinates

Variants: (C, same as [C], [5.2])

(Co, [_o ], reference coord-
inates, [5.2])

(_, [#], scaled coordinates,

[E.3])

(C', [C'], local coordinates, [E.3])

prefix: differential (i.e., d_, JA, dS, etc.)

design direction

distance from a point to a line

Examples: d(_,E) = distance from _ to

edge E

d(_, Ti)= distance from _ to

edge segment T i

determinant

Domain of dependence for control point p

Full doublet panel influence matrix, with-

out origin shift. [Do ] (of. [J.6.6])
includes the origin shift.

A local coordinate metric matrix

A diagonal matrix associated with _nown

singularity parameters

internal energy per unit mass

natural unit vectors in RN

average, difference, upper and lower n.v

coefficients for the general boundary

condition

a network edge, the i-th network edge in

an abutment

a panel or subpanel edge

the image of a panel or subpanel edge

under a hyperbolic skew transformation

Energy added by incremental onset flow

[5.2]

if.3]

[E.3]

[5.7.3]

[2.2]

[H.I]

[F.3]

[1.4, J]

[J.5]
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f(_ ,p,T)

f ' fo' f-- ÷

f

g' gk

G

G

[G]

[G]

[G]

J

o!k).
13

h

h 2

h3

H i

w

H_ B, Hia 8

Body force per unit mass, newtons/kg

Equation of state

Lagrange interpolation functions of the

edge variable v, defined on an edge

A fundamental integral in the P[C calcu-

lation

Total force on the configuration

Generic vector field

Far field moments used in post processing

Compressible distance from a control point

projection to a panel edge

Generic vector field

a graph

Intermediate matrix used in constructing

the half panel doublet spline matrix

Transformation from Prandtl-Glauert scaled

coordinates to local coordinates

2x2 local compressible metric matrix, used

to define the pseudo inner product <.,.>

Kernel moments used to calculate

Intermediate quantity in calculation of Cij

height of the control point above the plane

of the panel, local coordinates

quadratic function fitting 6 data values

on a triangle

cubic function fitting 7 data values on a

triangle

hypothetical location of a control point

on the i-th network of an abutment or

abutment intersection

panel far field moments

[2.1]

[2.1]

[J._O]

[J .6]

[5.9]

lB.3]

#Z._, 0.2]

[J.7, J.8]

[B.3]

[F.5]

[1.3]

[E.3]

[J]

:J.9]

El.a,3]

[J.4]

[I.2]

[I.2]

[o]

[1.4, J.9]
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HK
J

Hh, H_

HLJ

HPINT S HPINT D
t

HPSPL S, HPSPL D

I

I, Ik

_(_), I(x)

I

J

J'Jk

Jm

J

J

J(_), J(×)

Jk

k

k

kD , kS

[K]

far field estimates of certain panel

integrals

Kernel moments for (I/R 3)

Mach hyperbola, before and after applica-

tion of an edge's skew transformation

_x2 matrix used for symmetrization of

potential _, velocity v, and boundary

conditions

half panel PIC integral matrices

half panel spline matrices

row index

edge function, edge function associated

with edge k

edge integrals of functions _, ×

rationalized form of Ik, edge function

column index

Jacobian area ratio, dS'/dS o

Mean panel jacobian area ratio dS_/dSo, m

hyperbolic paraboloidal panel jacobian matrix,

_(_,n)l_(s,t)

Panel function

Panel integrals of functions _, X

Edge contribution to panel integral

Coefficient of heat conductivity

subscript, superscript, index of summation

number of doublet and source singularity

parameters (global) in the neighborheod

of a panel

previous and next edge number on network

N at an abutment intersection

matrix describing the evaluation of u(s,t)

at seven points [HPSPL D calculation]

[J .9]

[J.9]

[J.5]

[K.3]

[J.1]

[1,3, J.l]

[J .7]

[J.7]

[J.8]

[E.3]

[J.9]

[1.3]

[J.a]

[J.7]

[J .6]

[2._]

[K]

[4.2]

[F.5]

[I.3]
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£

EL], L

L R

Li(Q)

[LSQ]

[LINV]

mI , mi

m2,i

mod

M2 , M2

.@

M

M , M£®

M, M

rationalized quantity used in evaluation

of I(X)

element of arc length

subscript, superscript, index of summation

lower triangular matrix factor

reference length

basis function for linear interpolation

on a triangle

pseudo inverse for a least squares problem

matrix giving an edge's line vortex contri-

bution to a panel influence coefficient

global basis functions for the doublet

distribution

coefficients of _i in the evaluation of

U(s,t)at M_

mod(i,j) = the remainder of i/j

edge midpoint common to half panel 2 and

half panel 4. M2 is the corresponding
point on the hyperbolic paraboloidal panel

total moment (about some specified point)

on the configuration (newton-meters)

freestream Mach number, local Mach number

midpoint of an edge

number of rows of panel corner points in

a network

matrix giving quadratic doublet coefficients

2x2x2 tensor giving cubic doublet coeffi-

cients

subpanel center

unit normal vector, pointing out of the

singularity surface, into the fluid

(components: nX, ny, nz)

[J.8]

lB.3]

[K]

[5.8, L]

COl

[I .2]

[Z.5]

[J.lO]

[3.3]

[I.3]

[I.3]

[5.9]

[2.3]

[K.2.3.2]

[5.1]

[J.6]

[J.6]

[I .3]

[3.2]
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nx, ny, nz

n_, nq

NES

NCPM1, NCPM2

P, P®

P
-_-- WP÷

P , P

Pi

ph

phh

P(,)

conormal vector, also denoted

edge normal, normalized with pseudo inner

product, <.,.>. (Components: n_, nn )

components of n , the normal to S

components of n, the 2-D edge normal in

!ocal coordinates

number of columns of panel corner points

in a network

number of singularity parameters AT in a
configuration, or in the principal-lmage

of the configuration [K]. Sometimes denotes

the number of unknown singularity parameters.

number of network edge segments in a

configuration

generic upper limit of a sum

moment matrices used in post processing

pressure, freestream pressure (newton/m 2)

field point, control point

points just below (p) and just above (p)

a control point

number of known singularity parameters

priority used in assignment of matching

conditions at an abutment intersection

size of the l-th partition in the block-

ing of the AIC matrix

phase function, ph(x,y) - Arg(x+iy)

hyperbolic phase function.

phh(x,y) = (I/2)log[(x+y)/(x-y)]

upper limit of integration in cylindrlcal

or hyperbolic cylindrical coordinates

field point or control point (see p)

vector of coordinates of the point P

(see p)

[5.2]

[J.5]

[5.2]

[J.5]

[5.1]

[3.33

[F.3]

[I.4]

[2.1]

[5.7.3]

IF.5]

[L.2]

[j .4]

[J.5]

[J.4, J.5]

[3.2]
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P

Pi

PAI

PIC

PSPLS, PSPLD

÷

q

q

qo' qs' qt' qst

q ,

q(s,t), qm(S, t)

Q

Q

_Q

Qo

Qi' Qi

• .ib S

Qi ' Qi

s

streamline parameterized Dy t

a point on the line emanating upstream

from a control point and piercing a panel

panel defining point, I _ i S 9

the location of an abutment intersection

panel influence coefficient matrix

source and doublet panel spllnes

heat generation (per unit mass) added to
fluid

source point or panel point

edge type indicator, -I for supersonic,

+I for subsonic edges

panel center and bilinear coefficients

for the hyperbolic paraboloidal panel

images of a source point or panel point
_+ _- _++ _+- _-+ _--

Also: q , q , q , q , q , q

hyperboiic paraboloidal (H-P) panel,

mean piane H-P paneI

source point or panel point

vector of coordinates of the point Q

p_neI point deviation from panei center.

aQ = q - Qo

panel center, expansion point for far

field influence coefficients

corners of a triangle, i = 1,2,3

triangle edge midpoints. Q_ is opposite

Qi

panel point, local coordinates

corner phase functions for evaluation of

the panel function J.

[5.9]

[J.3]

[5.5]

IF.5]

[5.6]

[1.33

[2.2]

[K]

[J.5]

[I.3]

[K]

[z.3]

[3.2]

[5.6.3]

[5.6.3]

[1.2]

[z.2]

[J.9]

[J.8]
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÷ Q

Q, Q , Q Q ffia panel, Q+ - principal image of a

panel, Q- ffireflected image of a panel

R, R(p,q)

panel type indicator, r - sign (n.n).

(÷I, subincllned; -I, superinclined)

gas constant, Joule/(kg OK)

compressible distance between p and q

control point recession vector

Ro compressible distance from the control

point to the panel center

R I, R2

R i R ÷ -, , R

RIJ R++, , R +- , etc.

R

AR

reflection matrices for the first and

second planes of symmetry

reflection matrices associated wlth

various images when one plane of symmetry

is present

reflection matrices associated

with various images when two planes of

symmetry are present

- _, vector from field point to source

point

AR _ R - R - change in R along an edge

R(Z) radius of a panel

Rx(a), Ry(a), Rz(a) rotation matrices of angle a about the
x, y and z axes

Rk(V) value of R on edge Ek as a function of
v, the edge variable

flow type indicator, sign(1 - M_)

S i , S I global basis function for the source
distribution

sk = ± I, sign of edge orientation relative
to an abutment's orientation

S, S first local coordinate before (s) and

after (s) the application of a hyper-

bolic skew

[K.5]

[5.2]

[2.1]

[5.2]

[G]

[4.2.2.2]

[K.2]

[K.3]

[K.4]

[J.3]

[J.3]

[E.3]

[J.4]

[3.1]

[3.3]

[B.3]

[J.5]
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a point on a network edge

vector pointing into the network interior

ds differential element of arclength

S,S _ first £soparametric coordinate on a hyper-

bolic paraboloidal panel

S

_S

the singularity surface across which Q and

Cn are allowed to jump

boundary of S

S I the component of S lying in the first

plane of symmetry

S2

s2

S ± ÷ - S i, S , S ,

the component of S lying in the second

plane of symmetry

components of S lying in the first or

second plane of symmetry (I or 2) and

in the principal (+) or reflected (-)

image

components of S lying away from the

symmetry plane and in the principal

(+) or reflected (-) image

S ij, S +÷, S÷-, etc. components of S lying away from

either symmetry plane and in the various

components of space, C÷+, C+-, etc.

dS o

dS"

element of surface area in reference

coordinates, Xo

element of surface area in local coordi-

nates, X'

S

S

a sphere surrounding an abutment inter-

section point, PAI

a skew sy_metrlc matrix used in construct-

ing [PSPLU].

Is] a hyperbolic skew used to build the

reference to local coordinate trans-

formation matrix

Is] Full source panel influence matrix, with-

out origin shift. [So ] (cf. [J.6.6])
includes the origin shift.

[F.3]

[F.5.2]

[_.4]

[1.3]

[3.2]

lB.3]

[K.3]

[K.4]

[K.4]

[K.3]

[K.4]

[E.3]

[E.3]

[F.5]

[1.3]

[E]

[J.6.4.3]
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S R

SP S , SP D

[SPSPL_],

[SPSPL_]

[SPINTS],

[SPINT D]

t

t

t

t

t_, t n

tA , tD

T

T i

T

T k

[T]

TS , TD

reference surface area

source and doublet spline vectors

source and doublet subpanel spline

matrices for i-th subpanel

source and doublet panel influence

integrals

time, seconds

edge parameter

vector tangent to surface

two-dimensional edge tangent

unit vector tangent to edge

components of _ , the two dimensional edge

tangent

second local coordinate on a panel, before (t)

and after (t) the application of a hyperbolic
skew

coefficients of the average and_difference of

the velocity in the standard boundary condition

temperature, degrees Kelvin

edge segment

a tree (graph theory concept)

subpanel k of a standard panel

matrix used for cubic _nterpolation in the
construction of [HPSPL _]

source and doublet PIC origin shift transfor-

mations

a 2x2x2 tensor of rank 3

the rearrangement of the entries of the

2x2x2 tensor T as a 4-vector

[5.5]

[J.1]

[2.1]

[F.6]

[E.I]

[J.4, J.5]

[1.4]

[J .5]

[J .5]

[5.6]

[2.1]

[F.3]

[F.5]

[I.2]

[1.3.2]

[J .6.6]

[J.6.4.2]

[J .6.4.2]
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Ti,j

(U.V.W)

^

U o

U, [U]

U®, U

U ,
O O,_

V, V.
1

^ ^ij
V, V , V

vS , vD

etc.

the transformation associated with stage

(i,j) of the out-of-core factorization

components of perturbation velocity in a

coordinate system whose x-axis is aligned

with the freestream or uniform onset flow

unit vector perpendicular to the panel normal

normal and the compressibility axis

an upper triangular matrix

uniform onset flow. U refers to the

uniform onset flow for solution index

total onset flow. _ij refers to solution
O._

index a and symmetry image (i,j)

incremental onset flow (user specified).

AU ij refers to solution index a and

symmetry image (i,j)

a generic function represented via Green's

third identity

v is the perturbation velocity vector

having components v i

Variant: $ij . velocity in symmetry

image (i,j)

Various symmetrized velocity fields

"+ ^S
V =V

V =V

_++ _SS
V =V

A__ AAA
V =Y

A-+ _AS
V =V

= symmetric part of v

I antisymmetric part of v

- v, symmetrized w.r.t, l-st and

2nd planes of symmetry

- symmetric w.r.t, l-st POS

antisymmetric w.r.t 2-nd POS

source induced component of velocity

(_S) and doublet induced component of

velocity (vD)

EL.2]

[2.3]

[5.2]

[5.8. L.2]

[L.I]

[L.I]

EL.I]

[3.2]

[2.3, K.3]

[K.3, K.4]

[B.3, J.I.1]
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4"*

vD
4"

regular part of vD , excluding the line
vortex part

lB.3]

v

_'O

_ 4"v
v_, _,

local edge coordinate

unit vector perpendicular to u and n,
o

used to construct the reference to local

coordinate transformation

basis vectors used to define a local

coordinate system for spline vector

computation

[j.4, J.5]

[5.2]

[I.l]

vij matrix entries of an elementary column

transformation matrix V
[L.2]

V

4"

V, V
1

4"

V

4" 4"

v (p,s)

4" 4.

V (p,m)
U

a region of space

total velocity, components of total velocity

freestream velocity

source velocity functional giving the source
4"

velocity at p induced by the source distri-
4"

bution s(q)

doublet velocity functional giving the
4"

doublet velocity at p induced by the

doublet distribution m(_)

[3.2]

[2.1]

[3.1, 5.4]

[K.4]

[K.4]

_Q± _Q-+ ±, , _Q
U

4" 4"Q 4"Q
VI, V VI VI

velocity functlonals associated with the [5.7, K.5]

principal (Q+) and reflected (Q-) image

of a panel

,u, 1,e, 1,u [5.7, K.3, K.5]

velocity functionals associated with panels

lying in the first plane of symmetry that

may be reflected in a second plane of

symmetry (Q±)

v2 _ _Q± _Q± [5.7, K.4, K.5]

,o 2,u 2,o 2'Uvelocity functionals associated with panels

lying in the second plane of symmetry

V total source velocity functional (includes [K.5]a
integrals over the full principal image of S)
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V
U

total doublet velocity functional

total velocity at P(t)

[K.5]

[5.9.5, P.2]

V x

V
X

total velocity in the compressibility axis
direction

total corrected velocity in the compressibility
axis direction

[5.9.3]

[5.9.3]

v An elementary transformation used in the

factorization of the AIC matrix

[L.2]

V c critical speed

[VZC], [VZC i] [VIC ij]

A velocity influence coefficient matrix

[VIC], and various symmetrizations of the

velocity influence coefficients

the velocity influence 3-vector correspond-

ing to symmetrized singularity parameter

_I or ij

[K.5]

W, W.
1

wU , wL , wA , wD

is the perturbation mass flux vector having

components w i

upper, lower, average and difference compo-

nents of perturbation mass flux

[5.4]

[5.4, H.I]

w i

W, W
1

W x

a weighting factor used in a least squares

fitting procedure

W is the total linearized mass flux vector

having components W i

x-component of total mass flux

total llnearized mass flux evaluated at

P(t)

[I.5]

[5.4]

[5.9.3]

[ 5.9.5, P.2]

WI , W2 , W3
basis vectors for skew coordinate trans-

formation calculation

[J.2]

W
Ct

far field vector panel integral

normal mass flux influence coefficient row

vector

[J.9]

position vector in R 3 [2.1]
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xi , x I, x2, x 3

(Xo Yo Zo)

(x,y,z)

(x,y,z)

(x',y',z')

X n

X

X o

X

X

X"

Ix]

Xk' Yk

I *

YO' Y' Y' Y

[Y]

Yk

Zo, Z, Z, Z

Z

Cartesian coordinates of _ in R 3 [2.1]

reference coordinates [5.2]

compressibility axis coordinates [2.3]

Prandtl-Glauert scaled coordinates [3.1]

local coordinates; several local coordinate [5.2]

systems are used in appendices I and J

edge normal distance

the x coordinate after application of a

hyperbolic skew

the reference coordinate system [E.O]

the compressibility axis coordinate system [E.0]

the Prandtl-Glauert scaled coordinate system [E.O]

a panel's local coordinate system [E.O]

a matrix to be computed by solving a system of [5.8]

linear equations

x and y arguments for the phase function [J.8]

(ph(x,y)), used in the calculation of the panel

function components Jk

the y coordinate after application of a hyper- [J.5]

bolic skew

see, respectively, xo, x, x, x" [2.3, 3.1, 5.2]

[5.8]

[J.8]

[2.3, 3.1, 5.2]

[J.8]

intermediate matrix in the process of solving

the AIC equation

see Xk

see, respectively, x , x, _, x"
0

argument for Sq, the edge integral primitive

T
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c&
C

c&

B

8

B
C

_n

B, 8ij
C{

Y

Y

LY4u ' _Y5u

r

r
C

6iJ
6ij'

A
i

E
ijk

Greek Symbols

angle of attack, radians

compressibility axis angle of attack, radlans

downstream parameter used in abutment inter-

section processing

solution index

compressibility scale factor, I I - M_ I I/2

angle of sideslip, radlans

compressibility axis angle of sideslip,

radians

edge normal compressibility factor

generic right hand side term (B) , right

hand side term associated with solution

index a, symmetry image (i,j)

ratio of specific heats of a gas

surface vorticity

row vectors associated with spline con-

struction

rotation matrix specified by the user

rotation matrix for the reference to com-

pressibllity coordinate transformation

quantity used in the calculation of recession

vectors

Kronecker deltas

i-th subpanel, i-1(1)8

user defined tolerance distance for edge

matching

small quantity whose higher powers

may be neglected

the permutation symbol

[H .2]

[5.2, E.0]

[F.5]

[L.O, L.I]

[3.1]

[H .2]

[5.2, E.0]

[5.9.4, 0.3]

[L.O, 5.1]

[2.4]

[N.5]

[Z.I.5]

[o.4]

[5.2]

[G.O]

[5.6]

[F.3]

[5.6.3 et. al. ]

lB.3]
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third coordinate of a source point, reference [5.2]
coordinates

third local coordinate of a source point [5.2]

second coordinate of a source point, reference
coordinates

[5.2]

p second local coordinate of a source point [5.2]

An k

B

change in n along edge k [I.4]

generic quantity to be matched by a [M.D., Sec. 5]

matching condition of the form _ s k ek = 0 ,

QIC influence coefficients associated with

a matched quantity e

[M.D., See. 5]

K'_ X. 47 for subsonic flow, 27 for supersonic flow [5.2]

quantity associated wlth a quadratic function

defined on an edge.

Alternatives: _58' _85' _AB

global singularity parameters (_, _i )

and the vector containing them (_)

global singularity parameters associated with

symmetry image (i), or (i,j)

+ _ S A SS etc.Alternatives: AI' A ' AI' AI' _I

[I.2]

[3.3, 5.7.4]

[K, L]

;i  lj. { ij}

AI , , ,

Ct '

Vectors of global singularity parameters

associated with various symmetry images

Symmetrized global singularity parameters

i
and vectors corresponding to _I' I ' '

_ij for solution index

[K, L]

[K, L]

EL]

A . .

i zj for solution index a (symmetrized singularity

vectors )

for the four images of the configuration.

Equivalent to A , A , _ , I , respectively

[L]

[M]
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S
_i ' 1=1, ... k S

D i-l kDk I , ....

global source parameters defining a panel's

source distribution. Each AS corresponds to
l

a column of BS

global doublet parameters defining a panel's

D
doublet distribution. Each I corresponds to

I

a column of Bu

[^] matrix containing singularity parameter vectors

to be determined by solving an AIC equation

A

U, u(q)

sweep angle for the leading edge of a wing

doublet strength, doublet distribution function

Uo,U_,Un,Ug_,U_n,_nn,U_,U_n,U_nn,Unn n

polynomial coefficients of u in local coordinates

^A -iA -Aj
_I' u2 ' _I

the function _ restricted to various symmetry

images (i), (i,j)
÷

Variants: u , p , etc.

i '

the functions u , Ij defined with respect

to points in the principal image

the function u restricted to panels lying

in the first or second plane of symmetry

Wl' u2' "'" _9 the value of u at nine canonical points on the

panel

u(_ , n )

_(s,t)

doublet distribution function referred to local

coordinates

the doublet distribution on a hyperbolic

paraboloidal panel (Isoparametric element)

defined in terms of the coordinates of

parameter space

_X,_' _y,e

^i "ij
_,U

coefficients of (Bu/Bx), (Bu/By) used for the

far field PSC computation

symmetrized doublet distributions

ul,5' u5,6' etc.
refers to the value of u at the mld-

Ul,5

point of the line connecting points I and

5 on the panel

[5.5.1]

[5.5.1]

[5.7.4]

[0.3]

[3.2]

[5.5]

[K.3, K.a]

[K.3, K,4]

[K.3, K.4]

[5.5]

[5.5]

[J.6]

[I.3.2]

[J .9]

[K.3, K.4]

[I.2]
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II_, 1.1O, Ia+

E,, E,

value of p at the beginning, middle and end

of some panel edge

A

panel conormal, v = B n (See n)

edge conormal, v - G n

first local coordinate of a source point

[J.lO]

[5.2]

[J.6]

[5.2]

first coordinate of a source point, reference

coordinates

[5.2]

w

the change in the value of _ along edge k

the ratio of the circumference to the diameter

of a circle

P

P®

P

density of the fluid, kg/m 3

density of fluid in freestream, kg/m 3

hyperbolic or circular radius of hyperbolic

or circular cylindrical coordinates

[2.1]

[5.9]

[j.4, J.5]

P' (Pl ' P2 )

Pi' Pi

o, a(_)

vector from control point projection to

source point, local coordinates

values of p at beginning and end of edge i

source strength, source distribution function

[j.4, J.5]

[j.4, J.5]

[3.2]

ao, o6 , on , a_, a_n, ann
polynomials coefficients of a in local coordinates

[5.5]

^ S - iS _2SJ5 1 , 5 2 ,

the function a restricted to various

symmetry images (i), (i,j)

+

Variants: a , a , etc.

i lj
the functions a , o defined with respect

to points in the principal image

the function a restricted to panels lying

in the first or second plane of symmetry

[K.3, K.4]

[K.3, K.4]

[K.3, K.4]

oi, 02, o3, 04, 59 the value of o at five canonical points
on a panel

[5.5]

5(_',n') source distribution function referred to local

coordinates

[5.5]

v
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A

ai, _ij

_, Z
m

1

ji

Tk

$, e(p)

eic;),eiJ ;)

e'ic;), e

eU , ¢ L , ¢ A , ¢ D

e

-- 4-

¢k' ¢k

0_, Lea j

¢q, ¢q(Z)

the two-vector:

symmetrlzed source distributions

summation symbol

panel (S), mean panel (Z)
m

surfaces involved in an abutment

2x2 matrix, Fa_ 0_] givingL°cn °n
quadratic variation of a((,n)

stress tensor, newtons/m 2

parameter for a line, _ E [0,I]

edge normalization parameter. In some
A A

contexts, _ I [ t , t ] I I/2= , in

_ I/2
others _ : J < t , t > I

indicator for sgn (ak)

perturbation potential function

¢ restricted to symmetry image (i) or (i,j)
+ -- +÷ +-

Variants: ¢ , ¢ , ¢ , ¢ , etc.

symmetrized perturbation potential

functions.

Variants: , , e , ¢ , , , etc.

upper surface, lower surface, average and

difference values of ¢

circular (or hyperbolic) phase

value of circular (or hyperbolic) phase

at the beginning and end of a sub panel

edge segment

set of basis functions of local variables

(&,n) defined on a panel.

ueaj : ul, _, n, _2/2, ... n3/6j

a form of the edge integral independent

of q, the edge type

[J .6]

[K.3, K.4]

[2._]

[1.4]

[B.3]

[J.6]

[2.1]

[z.4, K.I]

[J.7, J.lO]

[J.8]

[2.3]

[K.3, K.4]

[5.4]

[J.4, J.5]

[j.4, J.5]

[J .9]

[J.8]
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¢

¢®

© (_,s)
g

¢ (p,m)
U

_Q± ¢_±, cQ±

_I, ¢I Q0 ,U ¢I,_

Q

' ¢2,u'@2,o ¢2,a'

¢
o

i

@
u

i
L¢ICj L¢IC_

total potential

potential for onset flow

source potential functional giving the source

potential at _ induced by the source distri-

bution s(q)

[2.3]

doublet potential functional giving the doublet

potential at p induced by the doublet distri-

bution m(q)

[2.3]

[K.3]

[K.3]

potential functionals associated with the [5.7, K.5]

principal (Q+) and reflected (Q-) image

of a panel

Q cQ± ¢Q± [5 7 K 3, K.5]
¢1,0 1,O 1,p " ' "

potential functlonals associated with networks

and panels lying in the first plane of

symmetry that may be reflected in a

second plane of symmetry

Q Q± Q± [5.7 K.4, K.5]
¢2,_' ¢2,0 ' ¢2,_

potential functionals associated wlth

networks and panels lying in the

second plane of symmetry

total source potential functional (includes

integrals over the full principal image of S)

total doublet potential functional

a potential influence coefficient row vector

( ¢IC ) and the various symmetry conditions
of this

[K.5]

ij¢ICi, ¢IC , ¢IC I

X

X

c&

[K.5]

[5.7, K.5]

potential influence coefficients associated

with singularity parameters _I' _I'

hyperbolic angle

the function R(p,_) - [p-q, P-qJ"_.I/2

[K.5]

[J .5]

[J.6]

the fundamental kernel function, _ : I/R [J.6]

far field approximate integral associated

with ff _ _ d_ dn

[J.9]
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_t W
(Z

vectors describing strength and direction
of the rotational onset flows

[H.3, L.I]

__, WO, W+
integrals associated with line vortex

influence coefficient generation

[J.10]
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A

C

D

D

i,j,k,l

i

I

KP

L

NU

S

U

U

UP

V

x,y,z,_,n,_

_,8,7

0

1,2,3,4

I

2

2

Subscripts

average of upper and lower

denotes compressibility or refers to the compressibility
axis

difference of upper and lower (upper minus lower)

refers to quantities associated with u, the doublet

distribution

indices of vectors in R3, e.g., vi

index of a global singularity parameter, Ai

index of a global singularity parameter, e.g., AI

corresponding to known parameters

lower surface

non-updatable

refers to quantities associated with _, the source
distribution

upper surface

updatable

corresponding to unknown parameters

refers to constant volume quantities (cv)

denotes partial differentiation, e.g., Ux, Uy, Uz

a solution index

index subscripts

denotes reference coordinates

denotes images of real configuration (first image = input)

refers to first plane of symmetry

refers to a second order quantity, e.g., Cp, 2

refers to second plane of symmetry

refers to quantities associated with the far field
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A

D

(i)

i,j,k,l

I

S

S

T

-T

Superscripts

AA
denotes antisymmetric part, e.g, ¢

doublet, quantity pertaining to doublet strength

pertaining to i-th symmetrized matrix or vector,

i = 1,2,3,4 (equivalent to SS, AS, AA, SA respectively)

, H klsuperscripts in the index set {-I I}, e.g., H ij,

input, that is, defined by the user

source, quantity pertaining to source strength

AS
denotes symmetric part, e.g., ¢

matrix transpose

inverse of transpose (same as transpose of inverse)

denotes Prandtl Glauert scaled coordinate system, e.g.,

denotes a vector, e.g., v

denotes local coordinate system, e.g., X"

image value, e.g., p

finite part of integral

denotes vector modified by application of metric matrix

- Sj
denotes a partially symmetrized quantity, e.g., _I

denotes a fully symmetrlzed quantity

alias for +I in the index set (+I,-II; also denotes

symmetric part or principal image

alias for -I in the index set {+I,-I}; also denotes

antlsymmetrio part or reflected image
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V,V

V2

V
P

VQ

Vx

( ,

(

t

I._

<

U

f
ff

<<

)

.d

]

]lj

, ]

, ]p

, >

Other Symbols

denotes partial differentiation

boundary of a region

gradient operator

compressible gradient operator, see section B.I

= V.V - Laplace operator

gradient with respect to location of (control point) P

gradient with respect to location of (integration point) Q

gradient operator in two dimensions

curl operator

Euclidean inner product

denotes a column vector or a three-index tensor

dual compressible inner product, see equation (E.2.8)

denotes a row vector

denotes a matrix

(i,j) entry of the matrix

compressible inner product, see equation (E.2.4)

positive definite compressible inner product, see equation

(J .2.7)

pseudo-lnner product, see equation (J.6.44)

union of sets of points

intersection of sets of points

line integral

surface Integral

very much less than
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becQ

c.p.

s.p.

det

qualifier symbol, read "such that." For example,

the expression { x I f(x) - O} is read,

"the set of values x such that f(x) - 0."

refers to far field quantities, e.g., ¢,

vector cross product operation

denotes contraction of two matrices, defined by equation

(J.6.37)

qualifier symbols, read "such that." See remarks

concerning " i "

boundary condition

control point

singularity parameter

used as a prefix, the jump in a quantity across S

(e.g., Av = Vu-V L)

determinant

approxlmately equal to
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9.0 PAN AIR Engineering Glossary

This glossary defines the most commonly used engineering terms in the PAN AIR

Theory and User's Documents. In general, all specialized terms (that is,
terms whose meaning in the context of PAN AIR is different from their meaning

in common usage) are included, as are standard engineering terms which are

used in the PAN AIR engineering documents. Terms which relate to the com-

puting aspects of PAN AIR are defined in a separate glossary, the PAN AIR
computing glossary, which is contained in the maintenance document.

The format of the glossary is the following: Each term is followed by a list

of principal references and a definition. The references give the section

number where the item is discussed, preceded by a T for Theory Document, a U

for User's Document, and an S for Summary Document.
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A.O Fundamental Fluid Mechanics

To repeat our warning in section I, this document is not meant to be a
text in basic fluid mechanics (several basic references are listed in section
i). We will not discuss the derivations of the equations which lead to the
Prandtl-Glauert equation, nor will we discuss the assumptions of irrotational,
inviscid, steady, and isentropic flow which lead to the Prandtl-Glauert
equation. We will, however, briefly discuss the "small perturbation"
assumptions, since these assumptions pervade both the theory and usage of
panel methods, and hence determine the application and validity of the methods

to particular problems.
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A.I The Small Perturbation Assumptions

Recall from section 2.3 that we assumed

_I << IVl << a, (A.I.I)

To be precise, the transonic small perturbation equation is obtained by
assuming fin addition to irrotationa], invisc_d, isentropic flow) that terms
of order i_12/a 2 can be ignored. Recall that _(x,y,z) is th_
perturbation of the local velocity from a uniform freestream V_. Assumption
(A.I.I) holds under a wide variety of cases, including

a. a thin wing at small angle of attack (shown in figure A.1) at any
Mach number other than approximately i,

b. a blunt object at small Mach number (see figure A.2)
c. a static airplane configuration with engines on, sucking in air, with

local velocities in the inlet duct which are small compared to the
speed of sound:

Ivi = I¢I < .2a_ (A.I.2)

(see figure A.3).

In case (a), both I_T ] I_I and I_I / a_ are small. In case (b),
the same order as I_I, and so we are ignoring terms of size

I_i is of

tCi2/a2 : (.I)2 = .01 (A.1.3)

Similarly, in case (c), we ignore terms of size

+_2i/a2 : (.2)2= .04 (A.I.4)

which is still small with respect to one.
But now, let us reconsider case (c), with

IVl/a_ = .7 (A.I.5)

In that case, assumption (A.I.I) no longer holds, since we are ignoring terms
of order .72 = .49, which are not small compared to I.

Thus, the "engine-on" problem does not satisfy the small perturbation
transonic equation, let alone the Prandtl-Glauert equation, if the "local Mach
number" (iVl/a) is too large. This does not mean that PAN AIR has no use for
such a problem. Its use, however, is restricted to predicting qualitative
trends, rather than detailed pressure distributions. Note that as the forward
speed of the airplane increases, the perturbation velocity within the duct
decreases, and equation (A.I.I) is more nearly satisfied.

A.I-I



Now, let, us examine the small perturbation steady transonic equation
(assuming IV==l: I):

(I-M_) _xx + _yy + _zz = M=_2[II2 (y-I) (2u + I_12) v2_ +

(2u + u2) _xx + V2_xy + 2vW_lyz + w2 + W2_zz (A.I.6)

+ 2(l+u)(V@xy + W_xz)]

Since I_12 = u2 + v2 ÷ w2, all the terms on the right side of

(A.I.6) are quadratic or cubic expressions in the first or second derivatives

of (_, while the terms on the left hand side are linear expressions in the

derivatives of (_. So, formally, it is justifiable to drop all the terms on

the right, and say that to first order, the Prandtl-Glauert equation

(I-M_ 2) _xx + _yy + _zz = O (A.I.7)

holds (where the freestream direction is the x-direction).

But a formal elimination of all quadratic and cubic terms only has meaning

if the terms being ignored are in fact small, compared to the terms which are

being retained.

We can rewrite (A.1.6) as

[(I-M2_) + A] _xx + B_xy + C_xz

+ (1+D)_yy + E_y z + (1+F)_zz = O (A.I.8)

where

A = -M2_ [I/2(y-l) (2u+i_12)+(2u+u2)]

B = -2M_ (l+u)v

C = -2M2_ (l+u)w

D = -M_ [I/2(y-i) (2u+I_12)+v 2] (A.I.9_

E =-2M2_ vw

F =-M2_ [i/2(y-1)(2u+f_12+w2]

Now, (A.I.7) holds if the sum of all the ignored terms is small compared to

each of the retained terms, that is, if

A << I-M_

S = A + B + C + D + E + F <<1 (A.1.10)
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Adding the terms in (A.I.9)

S <_ M2 [3/2(y-l)(21ul +l_r2

+ 2u + u2 + 2 11 + ui (Ivl + lwl)

+ v 2 + 2 Ivwt + w2]

(A.1.11)

Now, since the absolute value of a sum is at most the sum of the absolute
values,

S<M 2 [3(y-l)lu i + 3/2 (y-l)I_l 2 + 21u I + u2

+ 21_I + 2!wl +2 luvl + 21vwl + v2 + 2ivwl + w2

(A.I.12)

NOW, since lul, Ivl, and lwi are < 171 and all products of these are < 1712,

we obtain

S < M_ [(3(y-1)+2+2+2)i_t+

(3/2(y-1)+I+2+2+I+2+I) fg'l2]

(A.I.13)

or S < M2_ [(3+3y) IVl+15/2+3/2y)f_]2] (A.I.14)

or S <M_ k(y)[i_f + i_i 2] (A.1.15)

where k(y) = max(3+3y,15/2 + 3/2y) (A.I.16)

depends only on the gas.

Thus, we see that (A.1.10) holds if

M_ k(y)[t_I+i_l 2] << I

and M2_ k(y)[19'i+f_I 2] << I-M2_

(since HAL < ISt).

For diatomic gases, y = 7/5, and thus k(y) = 9.6.

(A.I.17)

(A.1.18)

Recall from section 2.3 that IV_I = I; thus l_I is the size of the

perturbation velocity divided by the freestream speed.

For Mach numbers < _ (A.1.18) is the more restrictive equation, while

for M_ > v_, (A.1.17) is more restrictive. Equations (2.5.2) and (2.5.3) are

simplifications of (A.1.17) and (A.1.18), based on a scaling by a factor of

2k(y) of what we mean by "very much less than", and based on the assumption

i¢12 < i_l (A.I.19)
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Equation (A.I.19) holds in virtually all cases of aerodynamic interest,
since we have assumed that I___I : I, that is, we are not dealing with the
"engine-on" case, in which IV_I = M_= O.

From (A.I.17) and (A.I.18), we derive the principle that the more nearly
transonic or the more hypersonic the flow becomes, the smaller the

perturbations to the free stream must be. Small perturbations, in turn, mean

slender objects and small angles of attack. This does not mean, however, that

PAN AIR is of no use if the restrictions (A.1.17) or (A.I.18) are violated

locally. Experimentation has shown that, for instance, wings with rounded

leading edges can be successfully analyzed at Mach numbers such as .7, at

which (A.1.17) is thoroughly violated. This is true because the

Prandlt-Glauert equation is only violated in a small region of space, and the
quality of the solution in other areas is not affected. Further,

semi-empirical velocity correction formulas (see section 5.9) are available.

Pressures calculated from the correction velocity agree more accurately with

those determined by experiments. Thus a fairly accurate approximation to the

true flow properties can be obtained in this case despite the violation of the
assumptions behind the Prandtl-Glauert equation.
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Figure A.l - Thin Wing at small angle of attack
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Figure A.2 - Blunt object at small Mach number
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Figure A.3 - Small perturbation "engine-on" case
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B.O The Prandtl-Glauert Equation

In this appendix, we discuss some basic results concerning solutions of
the Prandtl-Glauert equation. We make no effort to prove results which are
proved in any of the standard references, but we will supply derivations of
results which are not available elsewhere.

The basic step in analyzing solutions _ (x,y,z) of the Prandtl-Glauert

equation is to convert it to the integral equation

_(x,y,z) : _ [-a Q) + u(Q)n • _(RI-)] dS (B.O.I)

SnDp

where SnDp is the intersection of the configuration surface S with the

domain of dependence Dp on the point P:(x,y,z),

Q

R2

S

B2

@(_u - _L) • B

unit surface normal

_u - _L

(_, n, ¢)

(_- x)2 + sB2(n-y) 2 + sB2(__z) 2

sign (I-M_)

J I-M2 I

27 if s = -1

47 if S = +1

and

I sB _/a_ t

a/an

(B.O.2)

The asterisk refers to the fact that for supersonic flow we only take the
"finite part" of the integral, a concept defined in section 3.4 of Ward (1.5),
and in section J.6.7 of this document.

Equation (B.O.I) is derived for subsonic flow in Ward, Chapter 2, and for
supersonic flow in Chapter 3. A more thorough derivation is given for M, : 0
in Kellogg (1.3), p. 221, and for M_> I in Ehlers, et ai.(4.9), sections 3.5
and 3.7.
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In this appendix, we discuss the concept of a boundary value problem, that
is, the combination of (B.O.I) with a set of boundary conditions. In section
B.I, we discuss boundary value problems for which existence and uniqueness of
a solution have been proved or disproved. In B.2, we discuss the role of
wakes in the formulation of a boundary value problem. And finally, in B.3, we
show that the gradient of (B.O.I), defining _(x,y,z), can be replaced by a
different expression which is more readily computable. All of the material in
this appendix is "background" material; none of it is reflected in the actual
PAN AIR computer code.

We emphasize that Pan Air actually solves the integral equation (B.O.1),

with boundary conditions imposed on the true configuration geometry (cf.,

(3.1.3)) while other panel methods solve the integral equation corresponding

to Laplace's equation with zero normal velocity boundary conditions applied on

the scaled geometry. These methods can be demonstrated to be equivalent in

subsonic flow (cf., Butter,reference B.1), and go under the general name
"Gothert's rule".

We note that the two versions of Gothert's rule are equivalent only in

subsonic flow. This is because the scaling (3.1.3) in subsonic flow yields an

"equivalent incompressible geometry", and at zero Mach number mass flux is
identical to velocity. In supersonic flow, on the other hand, application of

(3.1.3) yields an "equivalent geometry" corresponding to a Mach number of V_'_.

But at this Mach number, velocity and mass flux are not identical; rather, the

freestream components of perturbation velocity _nd mass flux have opposite

sign. Thus normal mass flux and normal velocity boundary conditions are
inherently different in supersonic flow.

In addition, some European panel methods use yet another method, referred
to as Gothert Rule 2, to account for compressibility effects in subsonic

flow. In this method, the Prandtl-Glauert equation is solved, with boundary

conditions of normal velocity (rather than normal mass flux) applied on the

true configuration. This method is not equivalent to either of the two

equivalent versions of Gothert's rule described above.
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B.1 Existence and Uniqueness

In this section, we give four examples of boundary value problems which
are well-posed (that is, for which there exists a unique solution), and two
examples of ill-posed boundary value problems. Finally, we discuss two
boundary value problems for which excellent numerical results have been
obtained, without any actual proof that the problem is well-posed.

The first well-posed problem is the subsonic exterior Neumann problem. A
Neumann problem is the specification of normal mass flux on the boundary of a
region R. If R is a infinite region with finite boundary as illustrated in
figure B.I or figure B.3, the boundary value problem is called "exterior"
since the boundary of R is the "outer" surface of S. The precise formulation
of the result (see p. 311 of Kellogg, 1.3) is: The specification of a
continuous distribution of _ • _ on the boundary S of an infinite region R
yields a unique distribution of potential _, whose value approaches zero at
infinity on R, satisfying the Prandtl-Glauert equation, for M_<I. Kellogg
only proves this result for M_ = O, but the coordinate scaling (3.1.3) (which
reduces the Prandtl-Glauert equation to Laplace's equation in the scaled
coordinates) allows one to prove the result for arbitrary subsonic Mach
numbers.

The second well-posed boundary value problem is the interior subsonic
Dirichlet problem (a Dirichlet problem is the specification of _ on a
surface). Again, this is shown to be well posed (see Kellogg, p. 3ii) for
M_ : O, and is formulated precisely as follows: Let R be a region of finite
volume (see figure B.2). Then the specification of a continuous distribution
of _ on the boundary S of R is a well-posed boundary value problem. Further,
if the specification of _ is a constant b, then _ is identically equal to b in
all of R.

The third well posed boundary value problem is discussed in Ward, 1.5,
section 4.13, and is formulated as follows. Let S be a finite smooth surface
(see figure B.3) which is everywhere inclined behind the Mach angle (such a
surface has A.B > O, and is called subinclined). The specification of a
continuous distribution of _.B on both sides of S defines a unique value of
in all of space for M_# I. For M_< 1, this is just a special case of the
first boundary value problem discussed above.

The fourth well-posed boundary value problem is illustrated in figure

B.4. There, S is a smooth superinclined surface (A.B < O, which automatically

_m_lies M,> 1). Then, the specification of continuous distributions of both
w.n and _ on the downstream side of S is a well posed boundary value problem,

and once again is discussed by Ward in section 3.2.

Now let us consider two ill-posed boundary value problems. The first is
the interior Neumann boundary value problem, that is, the specification of _.n

on the boundary of a region R of finite volume, as illustrated in figure B.5.
The proof that no unique solution exists is simp]e. Suppose a certain

function _(x,y) were a solution. Then, for any constant _o, _(x,Y,Z) + _o

is also a solution, since v_ o = 0 and thus the normal mass flux

(_. B = _._) is unchanged. Thus, there cannot exist a unique solution _,

and so the problem is ill-posed.
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A second exampleof an ill-posed boundary value problem is the specifi-
cation of _ or w.n on the upstream side of a superinclined surface. Consider,
for instance, the point P in figure B.4. According to the integral equation
(B.O.I), _(P) is an integral over SnDp. But the intersection of S with Dp,
the domainof dependenceof the point P, is empty. That is, there is no point
on S which influences P, since the domain of dependenceconsists of the
interior of a cone pointing upstream from P, as illustrated in figure B.6.

So, _(P) = O, regardless of the source or doublet distribution on S.

Further, this holds for all points P on the upstream side of S. So,

specifying _ = b or _.B = b on the upstream surface of S results in infinitely
many solutions if b = O, and no solutions if b : O. Thus, no matter what our

choice of b, upstream specification is an ill-posed boundary value problem.

This discussion of ill-posed and well-posed boundary value problems is of
some interest to the user of PAN AIR because of a basic principle. This

principle is that the use of a panel method to solve an ill-posed boundary

value problem invariably leads to a system of linear equations whose matrix is

singular. Even if the system of equations has infinitely many solutions, the

numerical equation solving techniques used by panel methods break down, and
none of the solutions can be found.

On the other hand, the lack of a proof that a particular boundary value

problem is well-posed should not be an impediment to attempting to find a

numerical solution. The prime examples of this are the successes achieved by

the "pilot code" in solving the exterior Neumann problem and interior
Dirichlet problem for subinclined surfaces in supersonic flow (see figures B.1

and B.2). Specific cases are described in Ehlers, et al., (4.9). A second

example is the specification of design boundary conditions, a subject which

will be discussed in more detail in Appendix C.

Summarizing, for a thick closed configuration such as that of figure B.2,
one is fairly safe (assuming that the surface is subinclined when M® >i) in

imposing the boundary conditions

(B.I.I)

which, as pointed out in section 5.4, is equivalent to

_L = O_
o : - V=;fi (B.I.2)

Here, the subscripts U and L refer to upper and lower surfaces. For thin

configurations such as that in figure B.3, the boundary conditions should be

(assuming the surface is subinclined again)

WU • _ : 0
(B.I.3)
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or, equivalently

_u _ : o

_:0
(B.I.4)

For a permeable surface inclined to the freestream, as shown in figure
B.7, the boundary conditions for subsonic flow should be

(B.I.5)

or equivalently

_L : 0

= - V_. _ + b

(B.I.6)

while for supersonic flow they should be

(B.I.7)
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B.2 Wakesand Modeling

Up to this point, we have implicitly assumedthat the surface S on which
non-zero source or doublet distributions are given represents a real phyical
object. But for a wide variety of problemsof physical interest, it does not
suffice to imposeboundary conditions of impermeability on the physically
existing configuration. The general problem of determining the surface S, and
what boundary conditions should be imposedthere, is called the modeling
problem, and will be discussed here briefly.

The first case of a non-physical surface S arises from one of the
hypotheses of Green's Theoremwhich we ignored whendiscussing the subject in
section 3.2. This hypothesis requires that the region V on which Q is defined
be "simply connected". That is, there must not be any closed path in V which
cannot be shrunk to a point within V. In figure B.8, we illustrate in cross
section a region V, whoseboundary S is the surface of a nacelle, which fails
to be simply connected. The imposition of boundary conditions of
impermeability on S once again results in an ill-posed boundary value problem.

The boundary value problem can be madewell-posed by the addition of a
surface S' which "blocks off" the inlet. The surface S' is not impermeable,
however; so the user specifies the total normal massflux b flowing through
the surface. The boundary conditions illustrated in figure B.7 only apply to
subsonic flow, though. For supersonic flow, upper surface normal massflux
must not be specified on the superinclined surface S'; instead, the boundary
condition

WL._ =b

¢_L: 0

(B.2.1)

should be imposed.

The second case in which the surface S includes non-phyical surfaces
arises not from theoretical but from empirical considerations. These
considerations arise from the fact that the assumption of zero viscosity is
invalid near the trailing edge of a wing. No matter how small the viscosity
of the fluid, the conditions at the trailing edge are considerably different
from those of the zero viscosity case. The difference is the following: at
zero viscosity, the velocity at the trailing edge of a wing becomes infinite,
w_ile at any non-zero viscosity, the velocity is bounded by a fixed number
which depends mostly on the wing geometry and Mach number, and is only weakly
dependent on the viscosity.

In order to reproduce this effect while using a program which ignores
viscous effects, the concept of a wake is introduced. A wake is a surface
across which the normal mass flux is continuous, while the potential and the
tangential velocity are not. Thus, source strength is zero on a wake, while
doublet strength u is non-zero, and the jump in tangential velocity is V_.
The actual physical situation, namely that the tangential velocity varies very
rapidly in a small region of space, is modeled quite well by this type of
surface.

B.2-1



In modeling a configuration, wakes are generally inserted in a roughly
streamwise direction emanating from the trailing edges of all "lifting

surfaces" such as wings, fins, etc. The exact location of the wake generally

is not very important. The boundary conditions imposed on the wake,

reflecting the physical situation, are generally (though not in PAN AIR):

(B.2.2)

The flow about lifting surfaces in subsonic flow is known to satisfy a
condition called the "Kutta condition", that is, the pressure jump across the

surface is zero along the trailing edge. The successful modeling of a
potential flow problem generally requires that the Kutta condition be
satisfied. In section D.I.1, we describe the boundary conditions that PAN AIR

imposes on wake networks. We also outline a justification that these boundary

conditions result in the Kutta condition being satisfied.

An illustration of the wake location for a typical wing-body configuration

is given in figure B.9. Note that no trailing edge of the wake is shown. In

true physics, the wake is dissipated by viscous effects. In terms of solving
the Prandtl-Glauert equation, the effect of the far regions of the wake on the

configuration is negligeable, and thus the wake can be terminated at any

finite point which is reasonably far from the physical configuration. The
division of the wake into "wake I" and "wake 2" networks will be discussed in

section D.I.2.

Several major exceptions exist to the assertions that a wake should

generally be positioned in a streamwise direction from the trailing edge of a

lifting surface, and that the exact position of the wake is generally not

important. One is the case of a "leading edge vortex", a phenomenon that
occurs at the leading edge of a highly swept wing at large angles of attack as

illustrated in figure B.IO. In that case, the wake tends to roll up (trailing
wakes also roll up, but at so much greater distance from the airplane as to be

ignored) as shown, and the exact position of the wake is important in

determining the aerodynamic behavior of the configuration. The use of a

potential flow program to analyze such a case involves an iterative
determination of the wake position, a problem similar to the design problem

discussed in Appendix C. Some success in obtaining numerical solutions of

this problem has been obtained by the program of Johnson, et al., (B.2).

Another case in which wake positioning is important is the case where the

wake from a wing passes near the tail of the airplane. Generally speaking,
whenever the flow leaving the trailing edge of a lifting surface passes near

another portion of the configuration (or the ground, if ground effect is being
studied), the location of the wake is important in analyzing the flow.
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B.3 Removalof Line Vortex Termsand the Line Source Integration by Parts

In order to imposeboundary conditions involving V¢_ (such as v.n = b),
we must evaluate the perturbation velocity at an arbitrary point. Differen-

tiating (B.O.1), we obtain

1 Vp_(x,y,z) : Vp_ : fI[ "°(Q)÷---g--
S_Dp

_(Q)_ . VQ(_) ] dS (B.3.1)

Putting the gradient within the integral, and writing it as Vp to emphasize
that we are differentiating in (x,y,z) coordinates, we write

÷ i * 1 (Q)Vp(_Q(1
v )._) ] dS= _ f[ [- o(Q)Vp( ) + ,

K

SnDp

(B.3.2)

Recalling that,

{ix}{sB211Vp = alay VQ = a/an

alaz a/a:

and

we have

R2 = ((- x)2 + sB2 {n-y)2 + s82[__ z)2

_Q(R) = (SB2(R_-x)

and similarly

sB2(n-y) sB2(:-z) sB2
' R ' R ) =R-

(_-x, ss2(n-y), sB2(_-z))
Rvp(R) = -

Further, by the chain rule,

VQ(R n) = nRn'l _Q(R)

= sB2n ( _ -x, n-Y, {-z) Rn-2

and similarly

Vp(R n) = - n ((-x, s82(n-y), SB2({-z)) Rn-2

(_-x,n-y,{-z)

(B.3.3)

(B.3.4)

(B.3.5)

(B.3.6)

(B.3.7)

(B.3.8)
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Thus, the integral expression (B.3.2) for v contains the term
given by:

se2 IVp Vq (l/R) = RT

v p Vq (I/R)

3sB2
I - _ SB2 (n-Y) (_-x, n-Y, _-z)

1 SB2 (E -z)

In subsonic flow (s=+l) this expression behaves like I/R3 as R + 0 while in

supersonic flow (s=-l) it behaves like I/R5 as R ÷ 0 for points (¢ , n,E)

lying near the Mach cone and away from (x,y,z):

( _x + s _/(n-y) 2 + ({-z)2 .

This strongly singular behavior of Vp Vq (l/R) causes substantlal numerical

difficulty in the subsonic case and, in the supersonic case causes the finite
part integral

S nDp

to be unbounded for piecewlse flat surfaces S. Historically in the

development of subsonic panel methods, this strongly singular behavior has
been used to approximately enforce doublet matching at network edges.
However, this approach was never very satisfactory in achieving doublet
matching and it was abandoned during the PAN AIR pilot code development when

it was realized that it was unworkable for supersonic flows.

In PAN AIR the difficulty of this singular behavior is resolved by
rming the line vortex integration by parts on the expression (B.3.2) for

, thereby separating _ int_ its regular part and its singular line vortex

part. The regular _art of v has the virtue that the singularities of its
integrand are much mess severe than those of equation (B.3.2) and further,

that the finite part is nicely bounded for virtually all piecewise flat
surfaces S. The singular llne vortex part of _ is then analytically removed

from the calculation by enforcing doublet matching conditions of the type

discussed in section 5.3 and appendix F.

A side benefit of the 11ne vortex removal arises when we consider the

evaluation of "far field" velocity influence coefficients. In this evaluation
procedure one is required to use a Taylor series expansion for an inverse

power of R. Without line vortex removal one would expand R"5 in a power

series; with llne vortex removal one expands R"3. Because the resulting power

series for R"3 converges more rapidly than the series for R-5, the far field

evaluation procedure is more accurate (for a given order of expansion) when
the llne vortex terms is removed.

Having given this statement of the fundamental problem, we now set out to
discuss its resolution via the line vortex integration by parts. In what

follows we will show that equation (B.3.2) implies that

v
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_'(x,y,z ) _ ff
SnDp S(IDp

(_ x VQ,) x _Q(_-) dS

(B.3.9)

T u x dl

_S

where aS is the boundary of the surface S.

Before giving the derivation of this result (cf. equations (B.3.19)

through (B.3.27)), we f_rst discuss its significance and practical
application. We will also shortly show why the line vortex integral (the last
term of (B.3.9)) can be ignored. As a matter of terminology, the second term

on the right of (B.3.9) is called the regular term of the doublet velocity,
while the third term is called the line vortex term.

Now, we perform the integrations in (B.3.9) one panel at a time. Let us

consider what is required for the line integrals to vanish. First, consider a
panel edge with no adjoining panel edge next to it, for instance, the edge AB

in figure B.11. Clearly, if _ identically equals zero on AB, the line
integral along AB vanishes. Second, consider two adjacent panels as shown in

figure B.12. As a convention, we define dl as being in the counterclockwise

direction when looking from "above". That is, dlxn lies in the plane of the

panel and points outward. Then if the doublet strength on the panel _1 is

ul(x,y,z), and on :_2 it is _2(x,y,z), and if _1 = _2 at every point
on the edge AB, we have

ff If
V^(1/R) x dl + _ V (I/R) x dl : 0

_lnABNDp V :_211ABnDp Q (B.3.10)

since the integrands Lave identical values with opposite sign due to the
opposite directions dl.

We can generalize (B.3.10) to the case where arbitrarily many panel edges
meet (see figure B.13 for an illustration of 3 panels meeting). Let

si= sign (dli.( B - A)) (B.3.11)

where dli is the counterclockwise direction on _i"

Then if n = number of panels, and

n

)_ si ui =0

i=1

on the entire edge AB, then

(B.3.12)

B.3-3



_ ui VQ( ) x dl i
i =1 Z_nA_lOp

=0

Equation (B.3.13) follows from the fact that

(B.3.13)

n __

ui dli = 0

i=1
(B.3.14)

at all points on AB, which in turn follows from (B.3.11) and (B.3.12). It

should be noted that if n = 1 or 2, (B.3.12) reduces to our previously

derived results. So, if (B.3.12) is satisfied along a particular intersection

of panel edges, the line integral in (B.3.9) can be ignored along that edge.

But now we must justify that (B.3.12) is physically reasonable. Consider

the three surfaces in figure B.13, illustrated in cross section in figure

B.14. Let PI' P2' and P3 be points a small distance apart, as i111ustrated

illustrated in figure B.14. Let us assume (and this is not a completely

trivial assumption) that # is continuous in each of the regions VI, V2, and

V3, and bounded by some fixed value in the general vicinity of the

intersection line. Writing #i for #(Pi ), it is then true that #i does not

change much if Pi is moved slightly. Thus, we can let Pi approach one of the

surfaces Zj without changing #i much. In particuiar, letting P1 and P2

approach Zl' we see that _1 " _2 _ _1" In fact, in the limit as P1 and P2

approach the intersection line,

#1 - #2 = _1

Similarly, in the limit as the Pi approach the intersection,

(B.3.15)

#3 - #2 = u2 (B.3.16)

#i - _3 = P3 (B.3.17)

Subtracting (B.3.15) from the sum of (B.3.16) and (B.3.17), we obtain

0 = - ,I + _2 + ,3 (B.3.18)

which is equivalent to equation (B.3.12).

The previous argument is generalizeable to an intersection of n surfaces.

The assumption that # be continuous off the surfaces is valid (and is in fact
required for the basic integral representation formula to hold), but the

requirement that _ be bounded in a neighborhood of the surface is not

necessarily valid. It is, however, physically reasonable, since an unbounded
potential produces an infinite velocity. So, we will make the assumption

within PAN AIR. The mechanism by which (B.3.12) is applied is described in

Appendix F. As a result of this assumption, the line vortex term in (B.3.9)
may be ignored.
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Wenowreturn to the proof of the relation (B.3.9). If we denote by vD
the part of _ (cf. equation (B.3.1)) that dependsonly upon the doublet
strength u, then we have

1

Srl Dp

.(Q) _ . _Q (I/R) dSQ (B.3.19)

If we write Stokes' theorem in the form

IoT - ss Jf ". F : (n dS x V ) . _ : (n . V x F)dS

aS S S

(B.3.20)

then it is also clearly true that

I'" II( dl x G = dS x V ) x G

aS S

Setting G = _ VQ (l/R) we obtain

_S S

(B.3.21)

S

+ _ u (_ dS x VQ) x (X}Q (l/R))

S
(B.3.22)

Now the integrand in the second term on the right can be expanded using the

standard formula for a vector triple product [(_x_)x_ = _(a'.c')- _(_._)] to

give

(n dSQ x VQ) x (VQ (l/R)) = u [dSQ (n. vQ) VQ (I/R)

- dSQ _ (VQ . VQ) (I/R)]

Using the fact that the kernel function (l/R) satisfies the Prandtl-Glauert

equation (cf. equation (5.4.9)),

VQ • VQ (l/R) : 0 (B.3.23)

we may simplify (B.3.22) to obtain
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assdT x [. @Q (I/R)] : _Ss (_ dS x VQ .) x _Q (I/R)

+ S_S u (n • VQ) VQ (I/R) dSQ
(B.3.24)

Using the fact that VQ (l/R) = - Vp (l/R), the second integral on the

right is clearly equal to

- Vp _ u(n • VQ) (I/R) dSQ
S

Solving for this quantity we obtain

Vp II u (_ • VQ) (l/R) dSQ = SS (n x VQ u) XVQ (l/R) dSQ

S S

aS

_Q (I/R) x dT

(B.3.25)

In the case of supersonic problems, this relation must be interpreted as being

true in a distributional sense, with all integrals taken to be finite part
integrals. The modified equation reads

•p II "  Q)(I/R)dS0 : SS
Sn Dp S N Dp

(n x VQ _) x VQ (l/R) dSQ

S g VQ (l/R) x _1

aSh D
P (B.3.26)

The expression on the left is clearly recognizable as [K _D (P)]' where _D(P)

was defined by (B.3.19). We find consequently that tD(P) may be split as
follows

_D(P) = (l/K) I_

Sn Dp

(_ x VQ .) x @q (Z/R) dSQ

+ (1/_) _[ , _Q (l/R) x dl (B.3.27)

aS n Dp
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It is also clear that the substitution of (B.3.27) into (B.3.2) yields the
splitting given by equation (B.3.9), completing our derivation of the line
vortex integration by parts.

If we assumethat the appropriate doublet matching is performed, so that
the line vortex term can be dropped, then wemaywrite the following formula

for T*(P), the regular part of _(P): (comparewith equation B.3.9)

v (P) = (iI.) _ o (Q)VQ (IIR) dSQ

SnDp

+ (11_) ;[ (n XVQ n) x_Q (IIR) dSQ

SnDp (B.3.28)

Now while the evaluation of T*(P) as given by (B.3.28) is a substantially

better conditioned process than the evaluation of G(P) as given by equation
(B.3.2), there still remains a mildly troublesome logarithmic singularity in

_*(P). This singularity can be isolated by a further integration by parts

called the llne source integration by parts. While it is not possible to

fully implement this formula in PAN AIR*, we do state and prove it because it

helps motivate the velocity jump matching condition used to enforce the Kutta
condition.

We begin our derivation of the line source integration by parts by stating
the Helmholtz relation for the velocity jump AT across a singularity
surface S. The formula reads**

AT = _ _l(n,v) + vt . (B.3.29)

where _, the surface conormal is given by

= B _ (B.3.30)

* Such an implementation would require a geometry system capable of handling

a continuous surface normal, _(Q), continuous source strength a(Q) and

continuously differential (C1) doublet strength, n(Q).

** A simple proof of the Helmholtz' relation (B.3.29) is accomplished as
follows. By virtue of the usual formula for calculating a vector triple

product we have,

A -4,
Vll = [(n xVll)x_ * _(_ .Vll)]/(n,v)

Evaluating this on the upper and lower surface of S, the singularity surface,

we form the difference and obtain (footnote continued on following page)
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and the tangential gradient operator Vt is given by

Vtf : (n xVf) x T/(n,_) (B.3.31)

Applying Stokes' theorem in the form (B.3.21) to the vector field G = BAd(I/R),
we obtain after using Leibniz' rule on the right hand side

f dTxIBm;(_IRI]:ff[_dSx_(_IRI]xB_;
BS S

+ _f (l/R) [(n dS xV) x BAli

S
(B.3.32)

Now the first integral appearing on the right hand side of this equation can
be shown to be related to _* (cf. (B.3.28)) by the formula

fF [adSxv(Z/RI]xS_;= _;*- _ (_;I_•_(Z/R1dS(B.3.33)
-/v

S S

To prove the formula (B.3.33), we simply expand the vector triple product

in the integrand appearing on the left to get,

[n xV(1/R)] x BaY = V(1/R) (n • Ba_)

- _ ( v (Z/R) . BA;)

It is easy to show from the formula for av, (B.3.29), that

• BAv = _ , av = o

and that

(B.3.34)

(B.3.35)

(footnote continued from previous page)

(v#)U - (V#)L : [(n xv(_ u - _L)} x _]l(n,_)

+ (_ .V(# u - #L))_I(_,_)

We recognize the left hand side as the jump in perturbation velocity, av,
while the doublet strength and source strength appear on the right hand side

in the forms (cf. equations (3.2.6) and (5.2.7)),

: _U " _L

o : (_ .V_)u- (T.V_)L

Using these facts, we obtain finally,

:_ = [(_ xv,) x _]I(_,_)+ a_l(n,_)

reproducing equation (B.3.29).

B.3-8



;xAT _- _xvt_ = _x v_

As a consequence of this second relation we find in addition

- n (V(1/R) . Ba_) = -n (_(I/R) . A_)

: (_x A_)x _ (I/R)

- A_ (n . V (i/R))

= (n x V.) x V (l/R) - A_ (n . V (I/R))

Substituting (B.3.35) and (B.3.37) into (B.3.34) we obtain

[n x V (I/R)] x BAT = _ V(I/R) + (_ xVu) x V (l/R)

- AT (n . _ (I/R))

(B.3.36)

(B.3.37)

(B.3.38)

Integrating this expression over S then yields

S S

fF AT _ ._ (I/R)dS

S

(B.3.39)

The first integral on the right is clearly equal to K_* as defined by

(B.3.28). This proves the validity of the formula (B.3.33).

We conclude our derivation by substituting (B.3.33) into (B.3.32) to obtain

dl x [BAv (I/R)] = K _* _

BS S

AC _ . V (l/R) dS

(_ dS xV) x BAT

A trivial rearrangement of terms then yields the "line source integration by

parts:"

_* = - (1/_) _S (_ xV)xR BA_ dS

S

(I/R) dS

S

+ (1/,) _ (dT x BA_) (I/R} (B.3.40)

_S

Note that the last term on the right,which we call a line source term,
isolates the logarithmically singular part of _*. The condition that must be

satisfied in order to drop this term is quite similar to equation (B.3.12),
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the analogous condition for dropping the line vortex term. This condition,
imposed on the velocity jumps agi is given

n

si avi = 0 (B.3.41)

i:l

We remark that this condition cannot generally be imposed in PAN AIR, even
along panel boundaries in the interior of a network. The fundamental reason

for this is that PAN AIR imposes on the functions _(Q), a(Q) and ,(Q) only the
fairly weak continuity requirements

C-1n(Q) c (S), the class of piecewise continuous functions

on S

o(Q) E c'l(s)

(B.3.42a)

(B.3.42b)

_(Q) ¢ c°(s), the class of continuous functions on S (B.3.42c)

whereas the satisfaction of condition (B.3.41) in the interior of a network
would require

_(Q) _ C°(S) (B.3.43a)

o(Q) _ C°(S) (B.3.43b)

u(Q) • CI(s), the class of continuously differentiable

functions (B.3.43c)

It is the first and last of these requirements (B.3.43a and B.3.43c) that would

be most difficult to satisfy, both demanding the services of a C1 geometry

system for the singularity surface S.

Even though it is not generally feasible to impose the velocity jump
matching condition (B.3.41) along all subsurface boundaries, it has

nevertheless been found useful to impose a condition derived from it along the
trailing edge of a lifting surface. This condition, sometimes called the

vorticity matching Kutta condition, has the form

÷ n

t . Y si AVi = 0 (B.3.44)

i=1

where the vector t lies in the plane of the wake attached to the lifting
surface and points downstream in the assumed direction of the convected

vorticity. In section (H.2.4) we will show how equation (B.3.44) enforces the

matching of upper and lower surface pressure coefficients (linear Cp rule) for

standard configurations. It is in the sense that equation (B.3.44) enforces

this matching of upper and lower surface values of Cp, linear that it is

appropriate to call it a "vorticity matching Kutta condition."

A few final remarks are appropriate concerning the line source integration

by parts. We begin by adding the line vortex term back in to equation (B.3.40)
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to obtain an expression for the perturbation velocity field, _ : Vp _:

(I/R) dS
S S

+ (I/K) (dl x Bav) (I/R) + (i/,) _ V0 (I/R) x dl
aS aS

(B.3.45)

First note that the terms on the first line bear a striking resemblance to the

source and doublet terms of the standard representation of _,

S S
-4P

In fact it can be shown that the jump in the conormal derivative of v,

a[(n.V)_] satisfies the condition

A [(n .V)_] : (_ xV)x BA_

so that the analogy between the two representation formulas is indeed quite
close. Of course we would rather expect this to be the case given the fact

that _ =Vp _ must also satisfy the Prandtl-Glauert equation. What is

somewhat surprising about equation (B.3.45) is the appearance of the singular
line vortex and line source terms on the second line. The line vortex term
must be added in to make _ irrotational for those doublet distributions that

do not satisfy the usual doublet matching conditions. Similarly, the line

source terms are required to preserve the conservation of mass condition

_. _': 0

for surface distributions of a_ that do not satisfy velocity jump matching
conditions of the form (B.3.41).
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B.4 Linear Sources and Quadratic Doublets

In this section we outline a justification for the use of a linear source
strength approximation and a quadratic doublet approximation. For simplicity,
we assume M_ = O, though the proof is readily extendable to all subsonic Mach
numbers. These results cannot be readily generalized to supersonic Mach
numbers, however.

Nevertheless, for both supersonic and subsonic flow, we can show that a
doublet distribution whose order is one higher than that of the source
distribution is reasonable. We do this by considering the jump _D in
velocity occuring on a surface. In section N.I, we find

° (B.4.t)

Thus the discontinuity in velocity has the same direct dependence on doublet
gradient as on source strength. In addition, we will see in section J.ll that
a discontinuity in doublet gradient induces the same singularities in
potential and velocity as a singularity in source strength.

For these reasons we conclude that the doublet gradient is the same order
of singularity as the source strength. It is thus reasonable to approximate
the source strength and the components of the doublet same order of
polynomial. Thus the doublet strength should be approximated by a polynomial
of one degree higher than the source strength.

We now consider the case of zero Mach number. We consider the
perturbation velocity resulting at a point P = 0 due to a source distribution

o(_,n) = _E] _ij _ini, i > O, j > 0 (B.4.2a)
i+j < n - -

or a doublet distribution

uij{inJ (B.4.2b)
u(_,n) : i+j < n

w

on the square region S of size 2c x 2¢ about P, illustrated in figure B.15.

Let us first consider the source distribution. By (B.3.1),

I Vp_sI -a(_,n) d_dn (B.4.3)_S(x'Y'Z) - 4x /(_-x) 2 + (n-y) 2 + (_-z)2

Thus,
1 EE: - _i" _i+1 nJ

_x (P) :-4--__C;f( (_ + n2)312
d_ dn (B.4.4)
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CE

I I/ -' _ij _in j+i
Vy(P) _c_c )({2+n2 3/2

d_dn (B.4.5)

and

lim I c// _ _ij _inJ(-z)
vz(P) : z>O _ ._- (_2+n2+z2)3/. 2 d_dn (B.4.6)

Now, let us consider (B.4.4) one term at a time; that is, we assume

_(_,n) : oij _inJ (B.4.7)

If (i÷j) is even, the integrand in (B.4.4) is an "odd" function in _ or n;

that is, its value at (_,n) is minus its value at (-{,n), or minus its value at

(_,-n), and thus the integral over S is zero. Similarly, if (i+j) is even,
the integral (B.4.5) corresponding to that term is zero. Finally, let us
consider the integral (B.4.6) for a single term.

We have

lim oijz cE _inJ
vz(P) : z_O _ I/ 3/2

-c-c ( _ 2+n2+z2)
d_dn (B.4.8)

C

NOW, I _ d_ :
0 (_2+n2+Z_)3/2 - (B.4.9)

(substituting u = _2+ n2 + z2 )

E2+n2+z 2 IE2+n2+z2$ (u -3/2) I/2 du : [ -u-I/_]

n2+ z2 I n2+ Z2

1 1

(n2+z2)1/2 (_2+ n2+ z2)I/2
(B.4.10)

When this function is integrated over n, the result is f(c,z) - log Izl where
f(c,z) is bounded as z_. Thus the limit in (B.4.8) is zero, provided i = 1.
Since ¢ is small, _inJ < J{I so the limit in (B.4.8) is zero whenever

i _ 1. Similarly, it is zero whenever j 2 1, so we see that

_f/ _i nJ
lim z d_dn 0 (B.4.11)
z_) J) =

-(-E (_2+n2+Z2)3/2

if i+j _ I, and in particular, whenever i+j is even and greater than zero.
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So, writing

i %ff
Cs(P)iJ = _ S

S

we have _ (P) = 0
ij

if i+j is even, and i+j > O.

oij_inJ d{dn

((_-x)2+(n-y)2+(_-z)2)i/2
(8.4.t2)

(B.4.13)

Let us now consider the velocity

v-"D (P)ij :

1 V ff u "4T P iJ_1_j n'_Q

S

I

[ (__x)2+ (n'_y) 2+(__z) 2]1/2

induced by a polynomial doublet distribution

_(_,n) = uij_in i

on the region in figure B.15.

d_dn (B.4.14)

(B.4.t5)

NOW,

and so _ .VQ = a/aC,

(B.4.16)

(8.4.17)

Now,
a i

a_ [ (__x)2+(n_y) 2+(__z) 2 ] 3/2

-(_-z)/[(C-x)2+(n-y)2+(_-z)2]3/2

and since _= O, x=y=O

lim 1 ff
v-_D(P)iJ= z,O _ uij S 3z{ ini (+{)[_2+n2+Z213/2 _+; d_dn

S [(2+n2+Z2] 312 1

(B.4.18)

(B.4.19)
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For the x and y componentsof _D(P)ij we see that if i+j is even then
the integrand is an odd function, so the integrals are zero. If i + j is odd
and greater than 1, then performing an integration similar to (B.4.9) shows
that the integrals in (B.4.19) are of the form f(¢,z) - log z where f(c,z) is
boundedas z_ O. Multiplying by z and taking the limit as z _ 0 we conclude
that

v_ (P)ij = v_ (P)ij = 0 (B.4.20)

if i ÷j >1.

The z componentof _D(P)ij behavessomewhatdifferently, due to the
presence of the second term. -Both terms vanish if at least one of i or j is
odd, by the usual odd function argument. In addition, the first term is zero
if i + j > 3 by the samereasoning as the last paragraph. The secondterm,

lim ,ij SI _inJ d_dn (B.4.21)
z_,O _ S (_2+n2+Z2) 3/2

does not necessarily vanish if both i and j are even. But it is of order c2

if i + j _ 4, and since it vanishes for i + j = 3, it seems reasonable to
approximate the local doublet distribution by a polynomial with i + j % 2.

=
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C.O The Design Problem

In the design problem the user attempts to obtain a configuration whose
shape is unknown, but is subject to certain constraints. For instance, a wing
may be required to have a certain planform, but its camber and thickness
distributions may be the subject of the design process. The constraints
involved in this case would be (I) that the surface be impermeable, and (2)
that particular pressure or tangential velocity distributions be required.

Now, specification of both normal and tangential flow on a surface is an
overspecification of boundary conditions, and thus in general there is no one
step solution to the design problem. The exception is called "linearized
design", in which the user is satisfied with a first order approximation to
the solution. This method is discussed in section C.I.

In section C.2, we discuss a somewhat more sophisticated procedure, which
we call sequential design. This is a non-automatic iterative procedure in
which a single loop in the iteration consists of:
(a) a potential flow analysis (for example, a boundary value

problem with impermeability boundary conditions) of the configuration at
hand,

(b) a comparison of the pressures computed in (a) with the
desired pressure distribution, leading to the specification of tangential
velocity boundary conditions,

(c) solution of the potential flow problem for the tangential
velocity boundary conditions, and computation of the normal flow through
the surface, and

(d) "relofting" of the configuration geometry, using the normal
flow data, in order to produce a more nearly impermeable surface.

This procedure can be executed in the first version of PAN AIR, though steps
(b) and (d) will have to be performed manually by the program user.

In section C.3, we briefly discuss a still more sophisticated design
method, which we simply call "iterative design". This method is distinguished
from sequential design in its relofting method.

Finally, in section C.4, we discuss stability problems occuring from the
discretization process. These problems generally result when a small
perturbation in a boundary condition generates a perturbation in the solution
which does not die out with distance. Since the discretization process always
results in some numerical error, stability problems can result in a totally
incorrect solution.

We do not discuss the imposition of "closure" boundary conditions in this
appendix, but rather discuss that subject in section H.2.
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C.I Linearized Design

The basic assumptionof linearized design is that

Cp= -2u (c.l.i)

where Cp is the pressure coefficient at a point, and u is a component of the
perturbation velocity

¢ (x,y,z) = (u,v,w) (C.1.2)

Again, we assume IV_I = I.
Equation (C.I.I) will be derived in Appendix N. Generally speaking, (C.I.I)
is valid only for thin configurations with little camber at small angles of
attack, such as the configuration in figure C.I.

Now, the program user wishes to specify a difference in pressure distri-

bution ACPs (x,y,z) on the configuration, where

aCp = Cp, upper - Cp, lower (c.I.3)

Noting that u = g._:=

(since l_i = i) we have

aCp = -2(_U-_L)'V_

(C.I.4)

: -2_ (¢u-Ct)• v_

: -_ .v® (c.i.5)

Thus, the boundary condition to impose at (x,y,z) is

(-2¢®). ¢, : ACps (x,y,z)
which is of the form

(C.I.6)

_D "@, : b (C.I.7)

(see (5.4.21) for the general boundary condition equation).

Now, the boundary value problem described by (C.I.7) is solved numerically, in
the course of which the total mass flux at the control points is evaluated.
The mass flux is used to reloft the surface as follows. The procedure we
describe is not incorporated in version 1.0 of PAN AIR.

The relofting takes place one network at a time (for a brief discussion of
networks and panels, see section 5.1). Two edges of the network are left
fixed or, if the geometry of the adjacent network has been relofted, these
edges are adjusted to close the gap. In figure C.2, these edges are edges I
and 4.
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The remainder of the network is relofted one panel corner point at a

time. This is done by alternately relofting columns and rows of corner
points. For instance, in the example of figure C.2, first point (2,2) is

relofted, then (3,2), etc., then (6,2), then (2,3), then (2,4), and then we
move one row and column inward, relofting (3,3),...,(6,3), and then (3,4), and

one final time we move one more row and column inward, and then the whole

network in figure C.2 has been relofted. Thus a point is relofted only after

all the points closer to the network origin (in an indicial sense) have been
relofted. We now describe the relofting procedure for a typical point.

The pqint P4(see figure C.3) is relofted to a point P_ as follows.

Let AP4= _4-_4. Then the user chooses a direction d for AP4; that is,
requires that

A_4: kd (C.I.8)

One then determines the value of k which minimizes W._', where B'is the normal
of the relofted panel. In Appendix D, we show that

6' _ (_3-_i) x (_4-_2)
I(_3-_i) x (_4-_2)I (C.I.9)

So, we can equally well minimize

(C.I.10)

where a is the denominator of (C.I.9).

Writing _4': _4 + kd (C.1.11)

we minimize If(k)l , where

which, being linear in k, is zero for

(C.I.12)

._ ..h

-W • (P3-PI) x (_4-_2)

x
(C.1.13)

T_is _s well defined p_oviding d has been chosen so that_it _s not parallel to

(_3- PI) and provided W is not in the plane spanned by (P3- _1) and d.

So, (C.I.11) defines P4°, and we may continue to the next corner point to be
relofted.

In the case of linearized design, we stop here, since we have the best
answer we can obtain with the linear pressure formula. The relofted

configuration is considered the surface whose distributions of pressure and
normal mass flux are the desired ones.

v
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C.2 Sequential Design

In sequential design, the first step is again to supply a guess at the
configuration which will yield the desired pressure distribution, and solve
the potential flow problem about that configuration with zero normal flow
boundary conditions. This results in a pressure distribution Cp (x,y,z).
Generally speaking, the second order or isentropic pressure formula would be
used to compute this pressure distribution. Now, barring remarkable
aerodynamic insight on the part of the user, this pressure distribution will

differ from his desired distribution Cpc(x,y,z) , but hopefully not by too

much. We also compute the preliminary perturbation velocity distribution
¢ (x,y,z) resulting from the potential flow solution.

Now, we "linearize" about our previous solution by making the assumption

(analogous to (C.I.I)) in that if CPs(X,y,z ) is close to Cp_(x,y,z), then

CPs(X,y,z) - Cpp(x,y,z) : -2V,.(CS(x,y,z) - Cp(x,y,z)) (C.2.1)

where CS is the unknown velocity distribution which produces the desired

pressure distribution CPs. Solving for the freestream component of CS,

_.¢S(x,y,z) = _.¢p(x,y,z) - 1/2(CPs-CPp) (C.2.2)

Considering the configuration in figure C.4 (in which Cp,unner = aCp
since Cp lower = 0), equation (C.2.2) shows that we apply _e boundary
conditio_

tD. _u = b (C.2.3)

since #u : CU - CL : _U (C.2.4)

where tD is the projection of V== to the surface

and b = _==. Cp(x,y,z) - i/2(CPs-CPp) (C.2.5)

Now, once the potential flow problem with the boundary conditions has been

solved, the relofting is performed just as described in section C.I. Then

an analysis case (that is, a potential flow problem with impermeability

boundary conditions) is run, and the new pressure and velocity distributions
are evaluated, and the next cycle of the procedure continues.

If all goes well, the procedure converges, resulting in a configuration of
reasonable shape, with the desired pressure distribution. Unfortunately, if
the initial guess does not yield a pressure distribution Cp (x,y,z) close to
Cp (x,y,z), the procedure may fail to converge.
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C.3 Iterative Design

The procedure we describe briefly in this section is much more accurate
and rapidly convergent than sequential design, but also considerably more
sophisticated, and not available in PAN AIR. It encompasses two features not
found in sequential design. The first one is full automation; the relofting
and the formulation of the boundary conditions are performed automatically by
the program. The second is a more sophisticated relofting method.

This relofting method involves "differentiated influence coefficients"
That is, once the potential flow solution has been performed, and the source

and doublet parameters are known, the matrices _¢(Pi) are computed for

all i and j, where Pi is the ith control point, and CPj is the jth panel
corner point. The matrix [_v/_CPi ] is a 3x3 matrix, one of which exists for
each pair of control point Pi andVc°rner point CPi, whose k,l entry is
_Vk/_CP I. Given these matrices, standard optimization techniques can be
used in order to generate a revised geometry for which ff W._' dS is

S
minimized, subject to user-input constraints such as leaving the planform area
the same.

We will not discuss this process further here, since PAN AIR does not make

use of differentiated influence coefficients, and thus does not perform

iterative design. A more detailed discussion of iterative design, for the

special case o_ leading edge vortices, is given in reference (B.2).
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C.4 Stability

The problem of stability arises from the inherent numerical error in the
discretization process, rather than from the theory of the Prandtl-Glauert

equation. It is the splining method (see section 5.5 for a discussion of

splines) in combination with the boundary conditions which is called stable or

unstable. Precisely, a spline is called unstable if the perturbation of a

single boundary condition results in a perturbation in the original solution

which does not die out with distance from the point at which the boundary
condition is located.

In checking for stability, we may make use of the fact that the sum of
solutions of the Prandtl-Glauert equation is again a solution. Thus, the

solution to any boundary value problem is a linear combination of individual

solutions of cases in which one boundary value is set equal to one and the
rest are set to zero. We thus check for stability by observing the

singularity distribution which occurs when one boundary value is set to one

and the rest to zero. The resulting singularity distribution should rapidly

dimimish in magnitude as the distance from the non-zero boundary condition
increases. We consider a spline more stable, the more rapidly the singularity
distribution diminishes.

The simplest way to illustrate stability is with two-dimensional

examples. Thus, a "network" of "panels" consists of a sequence of intervals.

For simplicity, all our splines will be doublet splines, though what we
discuss will be applicable to source splines as well.

In figure C.5, we illustrate a doublet spline with singularity parameters

and control points located at panel centers, and for which the doublet
strength on a panel is constant, and equal to the singularity parameter

value. In figure C.6, we illustrate the doublet distribution arising from the

boundary conditions u = 0 at all but one control point, u = I at the remaining
one. We see that the perturbation induced on the uniformly zero solution by

the single non-zero boundary value dies down extremely rapidly; in fact, the

perturbation is zero except on the single panel containing the non-zero
boundary condition. Thus this spline is very stable. But we know (see

Appendix B.4) that locally constant splines are insufficient, so we consider a

quadratic spline, as illustrated in figure C.7. Because of the rapid
variation a quadratic function may exhibit, control points and singularity

parameters are required at the network edges in order to define the

singularity strength adequately.

The spline is a piecewise quadratic one, where the quadratic variation is
constructed as follows. The value of, for instance, u(P) is determined by

finding the quadratic function f(x) which goes through Q2 and Q3 exactly,

and then goes through Q1 and Q4 in a least squares sense. Then _(P) is

given as f(P). The details concerning the method by which we obtain the row

vector S of length 4 such that

.(P) :
p(Q4) (C.4.1)

are given in Appendix 1.5.

C.4-1



Now, once we know u at every corner point on the network, the quadratic
distribution of u on an interval is that quadratic function which takes on the
computed values at the endpoints, and the singularity parameter value at the

panel center. Considering the interval in figure C.8, in the local
coordinates illustrated there, we have

u(x) : a+bx+cx 2 (C.4.1)

u(-1) : u(P) : a-b+c (C.4.2)

u(O) : u(Q) : a (C.4.3)

u(1) : u(P') : a+b+c (c.4.4)

So, subtracting (C.4.2) from (C.4.4),

2b : u(P') - u(P) (c.4.5)

while, adding these equations,

2a + 2c : u(P) + u(P') (C.4.6)

= 2c + 2u(Q) (C.4.7)

Thus (by (C.4.3)) we have values for a, b, and c, and so

u(x) : u(Q) + u(P')-u(P) ,(P)+u(P')-2u(Q)2 × + 2 x2 (C.4.8)

In figure C.9 , we illustrate the doublet distribution we obtain by setting

= I at one control point, and u = 0 at the others, given the spline just

described. Note that this spline is nearly as stable as that of figure C.6;
the disturbance dies down very quickly.

Further, this spline yields a doublet strength which is continuous across

panel edges, something which is very important.
But the same spline, with boundary conditions

_u
- 1 (C.4.q_

Bx

at the last control point, and

____u: 0 (C.4.10)
_x

at the others (except u = 0 at the first control point to insure uniqueness)
yields the doublet distribution (solving the boundary value problem
numerically) illustrated in figure C.IO, which compares unfavorably with the
identically zero doublet distribution obtained by replacing the right size of
(C.4.9) by zero.

But now, consider the doublet parameter and control point locations

illustrated in figure C.11. If we impose the boundary conditions (C.4.9) and

(C.4.10), we claim that the resulting doublet distribution is illustrated in
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figure C.12. While the doublet distribution in figure (C.lO) was obtained
numerically, that of figure (C.12) can be obtained theoretically in the
following manner.

Consider a distribution _(x) = a+bx+cx2 on the interval in figure C.8.
NOW,

_" (q) _a-T =T_(O) = b (C.4.1I)

and by (C.4.5)

b : u(P') - u(P) (C.4.12)

Thus,

au
.(P') : .(P) + 2b : .(P) + 2 3T (Q) (C.4.13)

So, applying (C.4.10) and (C.4.13) to figure C.12 with P=Po, P' = PI,

Q=Q1, we obtain

u(Pl) = 0 (C.4.14)

But now that we know P(PI), we apply (C.4.14) to the second intervals, and so

u(P2) : 0

We continue this way, obtaining

(C.4.15)

,(Pi) : O, i!6

u(p)7 : ,(P6 ) + 2 _-(xQ7)

au
u(P6) + 2_ (Q7) = 2

- 2

(C.4.16)

If we now obtain _(Qi) by least squaring to the 4 surrounding Pi, we see

,(Qi) : O, i S 5

"(Q6) : 0

u(Q7) : 1

and thus we obtain the doublet distribution of figure C.12.

(C.4.17)

(C.4.18)

(C.4.19)

So, comparing with figure C.10, we see that the imposition of doublet

derivative boundary conditions at panel centers requires a different spline
than the imposition of boundary conditions defining doublet strength. This

situation generalizes to three dimensions, and thus requires different splines

for design (that is, doublet gradient) boundary conditions than are used for
analysis (that is, normal mass flux) boundary conditions.
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D.O Geometry of Networks and Panels

This appendix will discuss the manner in which PAN AIR handles
configuration geometry. In section D.I, we will describe the different types
of "networks" by which a program user can describe a portion of the
configuration. We will also discuss modifications in the geometry generated
by the program under certain circumstances. In section D.2, we will discuss
basic panel geometry. In section D.3, we will discuss the geometric error
detection methods which discover geometric situations which could cause the
program to execute improperly or terminate abnormally.

D.O-I



v



D.I Networks

A network is an array (with, say, M rows and N columns) of points in space
which define a portion of the configuration geometry. In addition, source and
doublet distributions are defined on the network (that is, the network is a
"composite" network), with singularity parameter locations and spline methods
determined by the network's "source type" and "doublet type".

D.I.I Network Types

The possible source types are "analysis", "source design i," "source
design 2," and "null", while the doublet types are "analysis", "doublet
forward weighted," "design", "wake i", "wake 2", and "null". Source and
doublet analysis networks are used in conjunction with boundary conditions
defining impermeability. Design networks are used in conjunction with
"design" boundary conditions, that is, those which specify tangential
velocity. Note that a "doublet forward weighted" network is really a doublet
design network. A network of type "null" is used to denote that the source or
doublet strength is zero; one could equally well use an analysis network in
conjunction with the uniform boundary condition

_=0

or _:0

To model a wake, as described in section B.2, one would generally use a
doublet wake network in conjunction with a source null network. The boundary
conditions, which are only imposed at the wake leading edge, specify the
matching of doublet strength on that edge to the doublet strength at the
trailing edge of the adjacent wing network(s). In figures D.I through D.3, we
illustrate the singularity parameter locations corresponding to each of these
network types.

D.1.2 Wake Networks and the Kutta Condition

Two types of wake networks are available. In wake i networks, the doublet
strength is variable along the leading edge, and constant in the indicially
perpendicular direction. In wake 2 networks, the doublet strength is constant
over the entire network. In the example of figure B.9, the wake extending
behind the wing would generally be modeled with a wake i network, while the
portion of the wake extending back from the body would be modeled with a wake
2 network.

The two types of wake networks have distinct purposes. The wake i network
is PAN AIR's approach to satisfying the Kutta condition (see below), while the
purpose of the wake 2 network if to carry over the doublet strength from the
wing to the plane of symmetry.

The Kutta condition, which should hold at the trailing edge, is

Cp : o (D.Z.Z)

where Cp is the pressure coefficient. If the freestream direction is the x
directlon, and the freestream has unit magnitude, then (cf. (C.I.5)) for a
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thin wing, the linear expresssion for aCp is

aCp : -2 a___ (O.1 2)ax

Now, the boundary conditions on the wake insure doublet continuity from
the thin wing to the wake. In addition, it follows from section J.ll that the
zero normal mass flux boundary conditions along the trailing edge of the wing
insure the continuity of the x-component of the doublet gradient.

Now, the wake spline is such that the doublet strength is constant in the
streamwise direction, that is,

a_ : 0 (D.I.3)
ax wake

Since the normal mass flux boundary conditions insure matching of the doublet
x-derivative, we have, in light of (D.1.2),

!

_Cpl : 0 (D.1.4)
I trailing edge of wing

Thus for a thin wing, the use of a wake 1 network results in the

satisfaction of the Kutta condition, using the linear pressure coefficient

formula. It is therefore natural to use the wake i network to satisfy the

Kutta condition for a thick wing. This is done in PAN AIR, even in the
absence of a theoretical justification of its validity.

Wake 2 networks have a purpose which is not related to the Kutta

condition. In figure B.9, we show a wake 1 network emanating from the wing
trailing edge. Now, the body is not a lifting surface, and therefore one

would not in general expect a panel method to require a wake emanating from

the body. The wake 2 network is required in PAN AIR, however, because in its

absence the doublet matching boundry conditions on the wake i network would

drive the doublet strength to zero along its inboard edge.

Because the doublet strength on the wake is constant, the doublet gradient
A

is zero, and thus the surface vorticity, n x Vu, is zero. This corresponds to

the physics of the configuration; that is, the body "sheds" no vorticity.

D.1.3 Indexing

We now discuss the indexing system used internally in PAN AIR. The user

specifies an array [CP(I,J)] of panel corner points, where I, 1 < I < M, is

called the row index, and J, i < J < N, is called the column index. -The upper

surface is defined by an upward-pointing unit normal B whose direction is the

vector cross product (direction of increasing column index) x (direction of
increasing row index). In figure D.4, we illustrate a network with n pointing
up from the paper. The network edges are labeled in counterclockwise fashion

as shown, and each panel's corner points are similarly labelled in

counterclockwise fashion. The point CP(1,1) is called the origin of the
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network. Finally, a panel _ is given a row index and column index equal to
the row and column index of the point PI on

Singularity parameters are indexed by a distinct integer for each
parameter. For each index, the parameter type (source or doublet) and
location are stored, and, conversely, for each location on a network, the
program stores the indices of any singularity parameter located there.

D.I.4 Collapsing of Network Edges

Network edges are collapsed when a network of the type illustrated in

figure D.5 is defined by the user. The distance shown there is a user-input

"tolerance distance" (c). The short edge of the network in that figure is

collapsed as follows: the five panel corner points on that edge are each

replaced by the same new point whose coordinates are the averages of the

coordinates of the endpoints of the edge. Thus, the revised network has panel

corner points as illustrated in figure D.6. The array of points is still a

rectangular (MxN) array, except that now the same point occurs five times.

The reason for collapsing a network edge is that the existence of nearly

triangular panels (as opposed to exactly triangular panels) such as those in

figure D.4 causes nearly singular spline matrices, resulting in significant

numerical error. On the other hand, triangular networks (which necessarily
have triangular panels) cannot be excluded from consideration because the

natural paneling of many surfaces such as delta wings (see figure D.7)

requires the use of triangular networks.

A network edge is collapsed whenever the average panel edge length on the

network edge is less than the tolerance distance. If, however, the average

panel edge length exceeds ¢, yet one or more of the panel edges have length

less than ¢, the program terminates. The edge cannot be left uncollapsed

because some of the panels are too nearly triangular, it cannot be collapsed

because the user-input geometry would be excessively perturbed, and it cannot

be partially collapsed because of the indexing problems which would result

when singularity parameter locations are assigned.

D.1.5 Additional Network Processing

Additional processing is performed on the geometry of each network, but

will not be discussed here. This processing _ncludes labeling of all but one

singularity parameter on a collapsed network edge as "null", and storing data
concerning each network edge separately in preparation for the automatic

abutment search described in Appendix F.3. Since this data is associated with

computing questions rather than engineering questions, this processing will be
discussed in section 3 of the maintenance document.
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D.2 Basic Panel Geometry

In this section we describe some basic quantities concerning panel
geometry.

A panel is uniquely defined by its four corner points Pi, i=I,...,4, but
for convenience we define nine panel defining points as shown in figure D.8,
where P5,...,P8 are panel edge midpoints, and

I (_ + _ + _4) (D.2 i)_9 = 4 I P2 _3 +

Note that even though Pi, i:i,...,4, are arbitrary, Pj, j:5,...,9 lie
in a plane. The proof comes from noting that by definition an edge midpoint
is the average of the endpoints of the edge, and so

: ½ ÷

_6 : ½ (P'2 + P'3)

P7 : (P3 + P4)

#8 : ½ ÷

(D.2.2)

and so

I _ _(_5 + _7) : (_I + P2 + _3 + _4) : P9

i _ _ _ _ _ -_ _-_ (P6 + P8) = (P2 + P3 + P4 + i) = g (D.2.3)

Thus P5,...,P8 lie in the plane defined by the line connecting P5 and
P7, and the line connecting P6 and P8-

Thus P9 is the midpoint of the edge P5P7 as well as of the edge
P6P8, and so Ps,P9 and P7 lie on a line, as do P6,P9, and P8.
But a basic theorem in geometry states that there exists a plane containing
any two intersecting lines, and so P5,...,P9 lie in that plane, which is
called the panel's "average plane".

We define the panel normal 6 as the unit vector normal to the plane

containing P5,...,P9, a vector which is unique provided the plane is
unique, that is, provided the set P5,...,P9 contains at least 3 distinct

points. The vector n can be computed in a multitude of ways:

6 = • I_-_1 (D.2.4)

for any linearly independent pair of vectors _ and W lying in the plane.

Equation (D.2.4) holds because the cross product of_ two vectors is
perpendicular to each of them; the condition that V and _ be linearly
independent (i.e., non-parallel) insures that
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since

where e is the angle between _ and W.

denominator of (D.2.4) is non-zero.

In practice, PAN AIR defines

PIO = I/2 (P5 + 6)

11 = I/2 (P6 + PT)

P12 = I/2 (P7 + PS)

_13 = I/2 (_8 + _5)

(D.2.5)

l_l sin_ (D.2.6)

Further, [n4 = i as long as the

(D.2.7)

and _ : (P'Io-212) x (_11- _13)
[(PIo- PI2) x ((_iI- PI3)I (D.2.8)

which insures that _ points up out of the paper (see figure D.8). The

equation (D.2.8) is used in PAN AIR because that formulation would hold even

for "curved panels" (not included in version 1.0 of PAN AIR) for which

PS, ....P9 do not lie in a plane.

We now compute n by a different method, in order to obtain a result used

in section C.I. Applying (D.2.4),

-_ ..b

(P'5-i_7)x (P6-Ps)

fi = ](Ps-P7) x (P6-P8)I

and thus, substituting (D.2.2) into (D.2.9),

(D.2.9)

1/2(_I+P2-_3-_ 4) x II2(P2+P3-P4-P I)

_ = 1I/2(PI+P2-P3-P 4) x I/2(P2+P3-P'4-P1)I

The numerator of (D.2.10) is

: I/2 (_i-_3) x (P'2-_4)

(D.2.10)

(D.2.11)

(D.2.12)
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Substituting this into (D.2.10),

: (_I- _3) x (_2- _4)

i(Pl- P3) x (P2- P4)I

a result quoted in section C.1.

(D.2.13)

Now, PI,...,P4 need not lie in the plane containing P5,...,P9.

Thus, a panel contains 5 planar regions; the center region which contains four

triangular regions as illustrated in figure D.9, and 4 outer regions

containing one triangular region each. The triangular regions are called

subpanels, and so a panel contains 8 subpanels, which are labeled in figure
D.8.

Much of the geometric data for a panel is computed for each subpanel,

though this is occasionally redundant. These include: (1) a subpanel origin

and reference to local transformation describing a local subpanel coordinate

system (see Appendix E), (2) a subpanel unit normal vector and co-normal, (3)

the subpanel area, (4) unit edge tangent vectors for the subpanel edges along

with their "compressible" norm, (5) subpanel edge normals in local

coordinates, (6) a Jacobian factor relating subpanel area in global

coordinates to that in local coordinates, and (7) a flag indicating whether

the subpanel is subinclined or superinclined.

To obtain the unit normal to the subpanel illustrated in figure D,9, we

compute

(_j- _i) x (_k- _i) (D.2.141
l{l_j - Pi x Pk- Pi_l

where B is not computed if the denominator is less than 10-10 . In that

case, the subpanel area is set equal to zero, and no subpanel calculations are

performed. The area of the subpanel is (from geometry)

A : i/2 Igj- 1 k- sine (D.2.15)

Combining (D.2.6) and (D.2.15),

A= 112 I( j- x  i)i (D.2.16)

The unit edge tangents are

Pj- Pi

: [_r_-_i i (D.2.17)

etc. The compressible norm of t (see Appendix E for a discussion of this

norm) is (by definition)

It,t] : _.._._ M2_(_o. _c)2 (D.2.18)
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The subpanel conormal is defined in compressibility axis coordinates (in which
the compressibility direction c O = (I,0,0)) as

sB2nx
= _ ny (D.2.19)

\ n Z

since

: (ss2-1) (_o._)_o + A (D.2.20)

nx : _o._ (D.2.21)

Thus, B : B - M_(_o.B)a o (D.2.22)

The Jacobian factor J is given by

Area in reference coordinates (D.2.23)
J = Area in local coordinates

Its use will be discussed in Appendices I and J.

Finally, the sub-panel is "subinclined" if

B.B > 0 (D.2.24)

and "superinclined" if

_.B < 0 (D.2.25)

If _.B : 0 (D.2.26)

the subpanel is "Mach-inclined", and the program terminates for reasons which
will be discussed in Appendix E.

Some items of data computed for each panel are not concerned with just a
single subpanel. For instance, all the data computed for the subpanels is
also computed for the "projected panel", the projection of the panel to the
average plane. In addition, it is computed for the four "half panels", that
is, the triangles PIP2P4, P2P3PI, P3P4P2, P4PIP3 .

These data are needed to compute "intermediate field" influence coefficients,
in the computation of which the panel is approximated either by two half
panels or by the projected panel. These are used when measuring the influence
of the panel on a control point which is sufficiently far not to require the
8-subpanel representation of the panel, but not far enough to permit the far
field influence coefficient computation method (see Appendix J.2). All the
items are computed for the projected panel or half panels in the same manner
as for subpanels. Redundant data is not necessarily computed (e.g., the
projected panel is super- or sub-inclined whenever subpanels 5 through 8 are).

v_
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Finally, the program calculates, for each panel, its radius, its diameter,
and certain skewnessparameters. The radius is the distance from the center
to the farthest corner point and the diameter is the maximumdistance between
any two corner points. The skewnessparameters result from a non-orthogonal
transformation of coordinates after which

iol I°l{°IP9 = 0 , P8 = , P5 : I , _ : 0 ,k

0 0 k

> 0 (D.2.27)

We may see from figure D.8 that this is not the standard choice of x and y

axes, but it results from having derived the relevant formulas with the panel
in figure D.8 rotated by 1800 .

We use this coordinate system, which we write (x*,y*,z*) because the

interior region bounded by P5,...,P8 becomes a square, as illustrated in
figure D.IO. Note that in general (since most panels are not square), this is

not an orthogonal coordinate system. The numbers Cij, j=1,...,4, i=1,2, are
called skewness parameters since they are all zero f6r a panel which is a

parallelogram in the original coordinate system as

(_I- _9) : (_5- _9) + (_8- _9) (D.2.28)

for a parallelogram.

The doublet subpanel spline matrices are calculated in the (x*,y*,z*)

coordinate system, but rather than transform the panel coordinates, we compute

the matrices using the skewness parameters (see section 1.2 for details).

Computing the skewness parameters is fairly straightforward.

I + CII 1

_1 = 1 + C21

z

with (D.2.27), (D.2.28) we obtain

(_l-_g) : (1 + C11) (_8- _g)

Combining

(D.2.29)

z
+ (1 + C21) (_5- _9) + B IT (D.2.30)
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Taking the cross product on the left with (P8-P9), and dotting into n, we
obtain

{_- _9)x (_- _9)}'_: (_÷c_) o._
(_+c2_I{(_-_Ix(_-_I}._

+zk [(_8- _g) x 6]._

The final term is zero, and so

C21 = (Ps= P9) x (P5- Pg) "B

Similarly

{
-(Ps- P9) x (P5- P9) "f_

-1=

{(_- _9)x (P_-#9)}._: ((_÷c_)(_- _9)x (_s-_9)).

_i-_9)x(_s-_9_._ i
and thus Cll =

(P8- P9) x (P5- P9) "B

: _P8-P9)x (P5-Pg_'n

Examination of figure D.IO gives us

C12 = Cll

C22 = -C21

C13 = -Cli

C23 = -C21

C14 = -C11

C24 = C21

This concludes the discussion of basic panel geometric quantities.

(D.2.31)

(D.2.32)

(D.2.33)

(D.2.34)

(D.2.35)
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D.3 Error Checks

In this section, we summarize the basic checks performed by the program to
insure that the geometry of the configuration is admissible. These checks are
the following:

a. Check if the average panel edge length on a network edge exceeds the
tolerance _, while some panel edge length is less than c (violation is a
fatal error).

b. Check if two adjacent edges of network collapse. This is inadmissible
because the calculation of spline matrices would be impossible for panels
near both collapsed edges. See figure D.II for a network in which
adjacent edges are collapsed.

c. Check if a panel edge in the network interior has length less than ¢.
This is inadmissible because of logic problems which would occur in
calculating the spline matrices if the edge were collapsed, and numerical
inaccuracies occurring from nearly triangular panels.

d. Check the panel aspect ratio. This is the ratio of the furthest distance
from the panel center to its boundary over the smallest distance. Large
aspect ratios cause numerical error in spline and influence coefficient
calculation (this has only been verified experimentally). Aspect ratios
over 106 are forbidden and those over I00 result in a warning message.

e. A panel or subpanel is essentially Mach inclined.
If _. _ < I0 -_ this is a fatal error, and if < I/i0 a warning

message is printed.
f. The panel is seriously skewed. Warning messages are printed if the panel

is non-convex (l+ci1+ci2 < 0 for some i = i, .... , 4), nearly
non-convex (l+cil+Cl2 > 0), or triangular while having four distinct
vertices (l+cil+Ci2 _ 0).

g. A subpanel has zero area when projected to the average plane. If so, a
flag is set, no normal or conormal vector is calculated, the subpanel
splines are set to zero, etc.
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Figure D.1 - Locations of source singularity parameters
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Figure D.3 - Doublet wake singularity parameter locations
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Figure D.4 - Network and panel indexing
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Figure D.6 - Network with revised geometry

Figure D.7 - Panelling of delta wing
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P3 : (-(I+C13)'-(i+C23)'z)
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Figure D.IO - Definition of skewness parameters
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E.O Matrices and Coordinates

The material in this appendix is hardly reflected in the PANAIR code, but
rather provides background material on coordinate systems and
transformations. This material is referred to in the course of the influence
coefficient derivations of Appendix J. In addition, we derive (in section
E.3) the expression for the reference to local transformation (see (5.2.27))

[ ]
A = i [Co]Go I rs [Co]Go i 8 no T

I{_o,_o)iI/2 I , ^ ^ 1/2, B | l{no,no}l

(E.O.I)

and for the transformation between orthogonal coordinate systems (see (5.2.11))

I cos _ cos B -sin B sin _ cos B I]= cos _ sin B cos B sin a sin B

-sin _ O cos (E.O.2)

Because F is a transformation between two orthogonal coordinate systems, it

is in fact an orthogonal matrix. That is, its inverse is its transpose, and

for all vectors X,Y, the Euclidean inner product is invariant under

transformation by :

(FX, FY) : (X,Y) (E.O.3)

This arises from the fact that F is a rotation (see section E.3)

In our application, F will be the matrix relating reference coordinates

and the compressibility coordinate system, in which the x-axis is the

compressibility direction.

The matrix A is less well-behaved, however. This transformation is the product

A : GSF (E.O.4)

where we have

F S G

Xo -----X ------ X ----- X' (E.O.5)

Here, Xo is the reference coordinate system defined by the program user, X

is the compressibility coordinate system in which the freestream is in the
x-direction, X is a coordinate system in which the y-and z-axes have been

scaled according to (3.1.3), and X' is the local coordinate system in which
(5.2.19) holds.

While the matrices F and G are orthogonal, the scaling matrix S is not, and

so the product matrix A is not orthogonal either. The bulk of the complexity

of this appendix arises from this fact. In figure E.1, we illustrate a surface

S in the compressibility coordinate system X and its image S' in the local

coordinate system X'. We illustrate vectors1_'and B, tangent and normal to
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the surface S respectively, and their images _'and _ in the scaled coordinate
system X'

In section E.I, we consider the properties of vectors and their images under
an arbitrary transformation. The reader may find somebenefit in verifying

the results of E.I for a "typical" matrix A, such as a diagonal matrix which
is not the identity. In section E.2, we derive the properties of somespecial
inner products. In section E.3, we verify that the matrix (E.O.I) has all the
properties we require of a reference-to-local transformation. Wedo so, in
fact, without ever constructing the transformation G of (E.O.5).
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E°I Vectors and Dual Vectors

We consider here the effect of the coordinate transformation A = [aij ]

A: Xo----X' (E.I.I)

Ix11by which a position vector x o-_ = x 2 expressed in the coordinate

x3

system Xo, is transformed into an image vector _'=

Xl' _
x2'|, expressed in the
x3' j

coordinate system X'. This image vector represents the same physical quantity
(such as location) as the original vector, but in a different coordinate
system. It is a different vector only in the sense that its entries are
distinct from those of _.

The entries x i' of the image vector 7'
the formulas

are given by

3I i 123x I T. aij xj = A i

j:l (E.I.2)

where aij are the entries of the transformation matrix A. We shall
occasionally find it convenient to write this equation using the summation
convention for repeated indices that is x i' = a.. x- Examples of, ' . lJ .J"

other vectors which transform according to the ?ormula (E.I.2) include the
vector element of arc length, dl, and surface tangent vectors t:

dl i = aij dlj = i (E.I.3)

t i = aij tj = i (E.I.4)

Equation (E.1.4) may be interpreted to assert that wheat o i_a surface
tangent to some surface S at some point Yo in S, then t' : At o will be a
surface tangent vector to the image surface S'

S' : ' : _' = [A] _'o for some x o in S (E.I.5)

at the image point _'= [A] _. Unless [A] is an orthogonal matrix, however, we
need not expect that t' will be a unit vector even when t is. However, if _ =

is any unit vector, then we define the corresponding image unit vector by

_' = At/ IAtl (E.I.6)

Thus the transformation rule for unit vectors is somewhat more complicated
than the corresponding rule for vectors. In particular, the image of a unit
vector as scaled in (E.I.6) is a distinct vector from the original one. Here,
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and from now on, we use a ^ to denote a vector of unit length.

We now turn to a discussion of dual vectors. A dual vector is, by definition,

a real-valued linear function on the vector space. Whereas the typical vector

was the position vector Xo, the typical dual vector is the unit normal

vector no or gradient operator

9
= alay : alax 2

alaz alax 3
(E.1.7a)

It should be noted that tensor analysis works generally refer to vectors as
"contravariant vectors," and dual vectors as "covariant vectors." Both the

normal vector and the gradient operator are linear functions on the vector

space in a natural manner through the dot product

V • Y : (Yi)
i axi (E.1.7b)

no. _ : _ niYi
i (E.1.7c)

The transformation rules for dual vectors V-_o(such as 9and no) is

that the image_' in the coordinate system X' satisfies

:Co. (E.1.8a)

for every vector Y.

Now,

_',._, : _,T _', : -_,T[A]_" (E.l.8b)

while

V-_o_ : -_ _ : -V_[A-1 A]_ (E.1.8c)

Thus, for (E.l.8a) to hold, we require

_,T = -C_[A-1] : {[A-T]_} T

or

(E.l.8d)

-_' : [A-T]_ (E.l.8e)

where the superscript -T denotes the inverse of the transpose matrix, which is

the same as the transpose of the inverse.

Thus dual vectors transform by A-T, while ordinary vectors transform

(cf. (E.1.2)) by A. It should be noted that if A happens to be an orthogonal
matrix, A = A-_ and is length-preserving, and thus regular vectors, unit
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vectors, and dual vectors transform identically.

The gradient operator may also be applied to functions f of position x.
We see that if we define V' by

_/, f (_',) = a f(-_',) _ a f(Xo ) -, _,
xi' - _ x i xo = A-I x' (E.I.9)

we obtain

_f _ [A-l]kj x'. _f( V'f (x)) i - _x k _x i j - _x k [A-1]kj 6ij

_f [A-1]k : [A-l]k i _ f
ax k i _x k (E.1.10a)

where 6ij is the Kronecker delta:

aij = { i if i = j

l Oifi_j (E.l.lOb)

We thus obtain

V' : A-T V (E.I.II)

which is consistent with our transformation rule (E.l.8e) for dual vectors.

Next we see that, whenever wI and w2 are vectors in Xo then
wI x w2 is "almost" a dual vector in the sense that

w_ x w_ : (Aw I) x (Aw2) : (det A)A -T (w I x w2)
(E.I.12)

This equation is proved below. Thus, apart from the factor of det A, the
cross product of two vectors transforms in the same way as a dual vector. In
a similar vein, we note as well that the cross product of two dual vectors,
v I x v2, transforms very much like a vector

_{ x v 2 = (a -T _i) x (a -T _2) = (det A) -I a (v I x v2) (E.I.13)

It is appropriate at this time that we give brief proofs of the above
assertions. In addition, we will show that _dS, the surface unit normal times
the element of surface area, transform_ like an "almost" dual vector, (cf.
(E.I.12)).

A vector t that is tangent to some surface S at some point x may be
regarded as the tangent to some curve_(%), parametrized by _ and lying

compl_tely on S, as that curve passes through the point x. In other words,
when t is a tangent to S at x o, there exists a curve _(T) such that'(T)
lies in S, xo = _(To) and
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C(T =t
T = TO (E.l.14)

Given this specification of E, it is _asy to see how tangent vectors
transform. The image tangent vector t' will simply be the tangent to the
image curve _'(T) = A_(T) evaluated at the point

X-_o' =-_'(T ) : A-C(Z) = A_ . Thus

d = ° = A d _'(T)IT:TO : A-_ :-_'
dT dT d--T"

(E.I.15)

as asserted.

Next we prove equation (E.1.12) for vectors v and w.
B.3 that

;)r = CpqrVp WqX

where Cpqr is defined there. So,

Recall from section

(E.I.16)

( AT x A_ )r : Cpqr(Av-_p (Aw--_q

Multiplying by AT on the left,

Cpqr Api vi Aqj wj (E.1.17)

(AT (ATx Aw--_))s= [AT]s r (A_'x Aw_ r : Cpq r Api vi Aqj wj

But, generalizing the definition of determinant

det A = Cpqr Apl Aq2 Ar3

we see

¢ijs det A = Cpqr Api Aqj Ars

and thus substituting in (E.1.18),

(E.1.18)

(E.1.19)

(E.1.20)

(AT (A_"x Aw-_))s

and so

: _ijs (det A)v i wj = (det A)(_x w-_ s (E.1.21)

AT(A_ "x Aw--_: (det A) (?x (E.I.22)
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or

ATx A_ : (det A)[A T] (_ x _) (E.I.23)

which is equivalent to (E.I.12)

Next we examine the transformation law for unnormalized normal vectors n.

Such vectors are specified only up to an arbitrary multiplicative constant;
their principle characteristic is that they are perpendicular to all tangent
vectors. Thus, if _ and _2 are two linearly independent tangent
vectors, n is given by

n : _ (t I x t2) (E.I.24)

where : may be chosen arbitrarily non-zero.

Next, we note that the image _' of "_must be perpendicular to the images

t I , t 2 , of t I and t2; thus

Using equation (E.1.4) we find

(E.I.25)

-_' = a' At I x At 2 = _' (det A) A-T I x

(d A)[A T] -_= _ et - n

Q&I (E.I.26)

Choosing a' a
:

, we obtain the desired results.

Finally we note that _dS transforms as in equation (E.1.12). This

observation follows immediately from the definitions (see figure (E.2)

nodS = dl I x dl2

_'dS = dl 1 x dl 2

I

dl i : (Adl) i

Upon applying equation (E.1.12) we find that

(E.I.27)

_' dS' : (det A) A-T _dS (E.I.28)
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We conclude our discussion of vectors and dual vectors with the
observation that the Euclidean inner product of a vector w with a dual vector°

v Is invariant under transformation, that is

(_,w-_ : "_'T_ = "_'T[A-I A] _" : (A-T v-")TA_':'_"T_'

: (-C',_' )
(E.1.29)
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E.2 Metric Matrices, Dual Metrics and Inner Products

The introduction of metric and dual metric matrices is best motivated by a
careful consideration of the Prandtl-Glauert equation (3.0.1) (for the dual
metric) and the definition of the function R (5.2.14) (for the metric
matrix). First we define the metric matrix C.

Recall from section B.O that R2 is given in terms of a control point P
and a surface point Q in the compressibility coordinate system (x,y,z) by

R2 : (PI - Q1) 2 - sB2 (P2 - Q2) 2 - sB2 (P3 - Q3) 2
(E.2.1)

This relation may be written in matrix-vector form as

R2 : (__-_)T 0 sB 2
0 0 sB

(P - Q)
(E.2.2)

This equation motivates us to define the metric matrix C by

(E.2.3)

Corresponding to C, we define the compressible inner product [Wl, w2] of

two vectors w I , w2 by

[w-_1, w-_2] : W'_lT [C]_'2 = (_'i, [C]_) (E.2.4)

Turning now to the definition of the dual metric matrix B, we note that the
Prandtl-Glauert equation can be written (since sB 2 = i - M_ )

(Bl_x _IBy al_z) 1 _y _¢
I l_z

=0

(E.2.5)

In matrix vector form this reads

{_T [B] _I _ : 0 (E.2.6)

I

where [B] is defined by (cf. (5.2.5), where reference and compressibility
coordinates are assumed to be identical)

[B]
(E.2.7)
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Since the operator _ transforms like a dual vector (cf. (E.l.8e), _uation
(E.2.6) motivates us to define the dual compressible inner product{v-_l, v2}
of two dual vectors by

{v-_, v2} = v I [B] v 2 = , [B]v2) (E.2.8)

An important relationship between B and C is the identity

[B] [C] : sB 2 [I] (E.2.9)

When we investigate the transformation rules for [B] and [C] we will find that
this relationship is preserved under linear transformations.

Careful examination of equations (E.2.5) and (E.2.8) shows that we may
define modified vectors _ and modified dual vector _ by

= C_ (modified vector) (E.2.10)

= B_ (modified dual vector) (E.2.11)

With modified vectors defined in this fashion, it is easy to see that the
inner product relations (E.2.4) and (E.2.8) can be written

[ci, = (wl,

{Vl, v2} : (v 1, v2) : (v I, v2)

Two examples of modified dual vectors include the conormal,

(E.2.12)

(E.2.13)

: [B] n (E.2.14)

and the modified gradient operator, V , defined by (5.2.4).

We now examine the transformation rules for metrics and dual metrics.
When a coordinate transformation of the form (E.I.I) is performed, the metric
matrix C and dual metric matrix B in the new coordinate system X' are defined
by the invariance requirements that

4,[w-_'1, w2 ] : Wl T [C'] w2 = ' w2] (E.2.15)

"_ ,-_ : T [B'] v 2 :{v I , v 2} (E.2.16)
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whenever wi = A_i, v i = [A-T]9_i . For the metric matrix

C', (E.2.15) implied that, for arbitrary vectors _I' w'_2

= = c
(E.2.17)

Consequently we find that

C = AT C' A, C' = A-T C A-1 (E.2.18)

Similarly, equation (E.2.16) provides us with the transformation rule

B = A-I B' A-T, B' : ABAT (E.2.19)

It is now an easy matter to verify that the relationship (E.2.9) is preserved
under transformation; calculation gives

B' C' : (a B AT ) (AT C a-1) = A(B c)a-Z: a ( sB 2 I) a-I : sB 2 1
(E.2.20)

There is no a priori condition that determines how _ transforms, so we
make the reasonable requirement that

(_), = (_,)- (E.2.21)

Then

_' = (w')~ = C' w' : C' A w = [C' A C-I]_ (E.2.22)

From equation (E.2.18) we see that

C' A C-I : A-T (E.2.23)

so that

_, : A-T _ (E.2.24)

This shows that modified vectors are in fact dual vectors.

Similarly, one may show that modified dual vectors are vectors. That is,
assuming, for a dual vector _, that

(V)' = (v')~ (E.2.25)

then

_' = A _ (E.2.26)
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These observations provided us with an interesting interpretation of equations
(E.2.12) and (E.2.13): [_, _], which is the compressible product of the
vectors wI and w2, is the sameas the Euclidean inner product of the
vector wI and the dual vector w2 ; similarly {Vl, v2} , the dual
compressible inner _roduct of the dual vectors vI and v2 is the Euclidean
inner product of vI (a vector) and _22 (a dual vector). This
observation shows that the invariance properties (E.2.15) and (E.2.16) are
closely related to the invariance relation (E.I.29).
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E.3 Coordinate Transformations

Werecall from section E.O the reference coordinate system Xo, the
compressibility system X, the scaled system X, and the local system X'. In
this section, we will determine the properties required by the transformation
A: Xo > X', and then showthat the matrix (E.O.I) is the unique matrix with
these properties.

In general the x-axis of coordinate system Xo need not line up with the
free stream. Thus it is necessary to define a new coordinate system X in
which the x-axis is lined up with the free stream axis (that is the x-axis of
the Prandtl-Glauert equation (3.O.1)) . This is possible if the user provides
the compressibility direction by meansof a compressibility vector Co •

The PANAIR program user will specify the compressibility axis by giving an
angle of attack :c and a sideslip angle Bc as shownin fig. E.3. The
orientation of the compressibility axis is given by the unit vector (cf.
(5.2.12))

COSeC COSBc}So= l-sinBc

i sin :c cos Bc
(E.3.1)

A free stream oriented coordinate system X must be defined such that the
compressibility vector co lies along the x-axis of this new coordinate
system. The transformation from Xo to X may be characterized as an angle of
attack rotation of (- :c) about the Yo -axis followed by an angle of
sideslip rotation of (- Bc) about the resulting z axis.
Note that coordinates transform in the opposite manner from basis vectors.

Thus if we denote the transformation from Xo to X by Fc so that

Fc: Xo ----4.-X (E.3.2)

we have

Fc : Rz (-Sc) Ry(- :c)

n

cos Bc -sin Bc

= sin Bc

0

cos Bc

m

O COS mC

0 O i

i -sin :c 0
m

0 sin :c

COS m C

-COS mC COS Bc

COS _C sin Bc

-sin :C
n

-sin Bc

cos Bc

0

sin :c cos Bc-

sin :c sin Bc

cos mc (E.3.3)
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Here Ry and Rz denote rotations about the respective axes.

Thus the compressibility axis in coordinate system X is given by

o

0

which is the desired result.

(E.3.4)

In fact, if Fc is partitioned by rows, we see immediately that the first
row of Fc is simply _ while the remaining two rows are orthogonal to

co and to one another:
r

rc :

In fact, Fc is an orthogonal matrix; FcT Fc=l

(E.3.5)

A matrix of the form rc, transforming reference coordinates
orthogonally to another user-defined system, is used after the potential flow
solution has been obtained.

This axis system X* is defined by an angle of attack :* and an angle of
sideslip B*, with the transformation I"_: Xo x
defi ned by

r _

I!os _* cos B* -sin B* sin :* cos B* I

l

I

os _* sin B* cos B* sin :* sin B* I
I

sin a* 0 cos =* .]

(E.3.6)

The angles _* and B* are user-supplied, and describe the coordinate system in
which the user wishes PAN AIR to calculate forces or moments.

Before we consider the transformation from reference (Xo) to local (X')
coordinates, let us consider the transformations (see (E.2.18) and (E.2.19),

substituting c for A)

T

[Col : rc c Fc

T

[Bo] : Fc B Fc (E.3.7)
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The matrices Bo and Co have the sameproperties in reference coordinates
that B and C have in compressibility coordinates. That is, equations (E.2.2),
(E.2.4), and (E.2.8) hold for Bo and Co if the vectors in these equations
are written in reference coordinates.

Now, from (E.2.3) and (E.2.7)

[C] = sB2 1 + (l-sB 2) el fi T

[B] : I + (s82 - i) 51 el T

where ei is the ith column of the identity matrix I.

(E.3.8)

T
: I"c because I"c is orthogonal, andNow, since Pc-I

T
Pc :

by (E.3.5),

[C o ] : sB 2 1 + (l-sB 2) _o SoT

[Bo] = I + (sB 2 -I) Co _o T (E.3.9)

Let us now consider the properties we require of the transformation

A: Xo _ X' (E.3.10)

where X' is the local coordinate system for each subpanel.

The reasons for these requirements are given following (E.3.15).

First, recalling (5.2.19) through (5.2.22), we require, for points p and
q, that

R2 = (P'I - q'l) 2 + (P'2 - q'2) 2

+ (P'3 - q'3 )2 for subsonic flow

= (P'I - q'l) 2 - (P'2 - q'2) 2

- (P'3 - q'3) 2 for subinclined panels in supersonic flow

= -(P'I - q'z )2 - (P'2 - q'2) 2

+ (P'3 - q'3) 2 for superinclined panels. (E.3.11)

Second, we require that on the subpanel on which the X' coordinate system is
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defined,

z' : 0 (E.3.12)

Third, we require that the "upstream" direction be the x'< 0 direction for
subsonic flow or subinclined panels, (cf. (E.3.13)) and that the upstream
direction be preserved for superinclined panels. (cf. (E.3.14)). That is, if
the surface normal in reference coordinates is pointing into the flow, then so
should the surface normal in local coordinates, and similarly if the normal is
pointed with the flow. Precisely, we require

(_o, A-I el) > 0 (E.3.13)

in the former case, and

sign (_o, A-I e3) : sign (Co, no) (E.3.14)

in the latter case. The fourth requirement is

det A > 0 (E.3.15)

Before proving that these requirements are satisfied, let us discuss them
further. Equation (E.3.11) is necessary in order to obtain reasonable
formulas for the influence coefficients, that is, formulas which do not have
scaling coefficients all over. The requirement that the subpanel lie in a
coordinate plane makesthe integrals neededfor influence coefficient
calculation computable, the z' : 0 plane is chosen throughout in order to
permit uniform formulas for all three cases. The constraint on the upstream
direction makesthe notation for the derivation of the influence coefficient
formulas simpler. Finally, the requirement that A have positive determinant
insures that the local coordinate system will be a right-handed one.

In the remainder of this appendix, we will rigorously prove that the
matrix A in (E.O.I) satisfies the requirements. Wewill not, however, explain
where A camefrom, since we did not arrive at A through a rigorous procedure.

Recall that we claim that

I I I ^ 1

rs [Co] Vo ' ^B no
I/2 [Colao', B , l{no,_o} II/2

(E.3.16a)

satisfies the requirements (E.3.11-15), where

no = unit normal vector

: (% x ao)lJ% x aoj

r = sign {no, no}

Uo = v o x no (E.3.16b)
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The subscript o indicates these vectors are in reference coordinates.

If no is parallel to Co , Vo maybe chosen arbitrarily as any unit
vector perpendicular to them. Since uo and 9o are linearly independent
vectors orthogonal to no, the second requirement on A, (E.3.12) is
equivalent to

(A _o, e3) = 0

(A _o, e3) : 0

or (Uo, AT 53) : (_o, AT e3) = 0

or ATe3 : k no, k _ 0

(E.3.17)

(E.3.18)

(E.3.19)

But this just says that the third column of AT should be proportional to
no, which is satisfied by the matrix in (E.O.I).

Next, by definition,

R2 = (Pl - ql) 2 + sB2 (P2 - q2)2 + sB2 (P3 - q3)2

[i j: (_'__) T SB2 (__ q_

sB (E.3.20)

: (_o- q'_o)T [Fc T

= (by (E.2.18))

c rc]( o- %) (E.3.21)

(_o- q-_)T [Co] (_'o- q_o) (E.3.22)

On the other hand, we can unify (E.3.11) by noting that r = -1 if and only if
the panel is superinclined, and so (E.3.11) becomes

1
s l A (P_o - q-_)

rs] (E.3.23)
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Combining with (E.3.22), we obtain the requirement on [A]"

[r][A T] s [A] : [Co]
rs

Inverting (E.3.24)

(E.3.24)

[r 1A-I s A-T : [Co] -I
r

or

s : [A][Co] -I [AT]

rs

(E.3.25)

(E.3.26)

But, by (E.3.7), [Col -I : F_ [c-l]Fc

TEl]=F 1/sB2 Fc

c i/sB2

= I Bo

: (by E.3.9) i
SB7

Ill + ( i - I
SB_

Thus, we must show that

[_o, _oT]

(E.3.27)

(E.3.28)

(E.3.29)

(E.3.30)

[D] _ A Co-1 AT =

r s rs]

I [A AT]

sB2

+ (I-
sB2

) [A _o EoT AT]

(E.3.31)
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Now,

_ 1 ( i _o T [Co] T [Co] _o
[D]II l{no, no}l sB 2

+ (I-
sB2

-- ) 6o T [Co] T _o _o T [Co] 0o)

But from (E.3.9)

[C_ Co] = B4 [I] + 2 sB 2 (1 - sB 2) [t o _]

+ (I- SB2) 2 [_0 _ _0 _]

= B4 [I] + ( 2SB 2 - 2B4 + I - 2SB 2 + B4) [_0 _]

= B4 [I] + (I - B4) [_o _]

Ne xt,

[C_ _o _ Co] : [sB2 1S o _ sB 2 I]

+ [sB 2 1 _o _ (i - s82) _o CoT]

+ [ (i - sB 2) Co CoT Co CoT sB21]

+ [ (I - s82) Co CoT Co CoT (I - s82) Co CoT]

(E.3.32)

(E.3.33)

(E.3.34)

(E.3.35)

(E.3.36)

: 84 [Co CoT] + (sB2 - 84) [Co CoT]

+ (s8 2 - B4) [Co CoT] + (i - sB2)2 [Co CoT]

: [_o _oT]

(E.3.37)

(E.3.38)

So, UoT [Co T Co] Uo = 84 UoT Uo

+ (I - 84 ) u_ [ao c_] Oo

= B4 + (1 - 84 ) (0 o, ao) 2

and

_ [C_] [a o a_] [C o] Uo : (Uo, Co) 2

(E.3.39)

(E.3.40)

(E.3.41)
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So,

[D]II : I [ B4 + I-B4 (_o, Co) 2

l(8o,ao}l s_2 s_2

+ (I - i ) (Uo, Co)2]

[(sB 2 + (I - sB2) (Uo, _o) 2]

Now, for vectors A,B,C,

(A x .C = cijk Ai Bj Ck : cjk i Bj Ck Ai : (B × C)-A

Thus, applying (E.3.16b),

Go-Co : (_o x _o) - 60 : (_o x 6o)._ o

: (_o x _o)(_o ' _o) : _o x _o

Thus

_o._o = IBo x _oI : * sin

where _ is the angle between Bo and _o.

On the other hand by (E.3.9)

no, no : BoT Bo no : noT Bo

+ (sB2 - 1) (Bo _o) 2

i + (sB2 - I) (_o • Eo) 2 :

since (Bo , _o ) : cos e.

i + (sB2 - i) cos 2

(E.3.42)

(E.3.43)

(E.3.44)

(E.3.45)

(E.3.46)

(E.3.47)

(E.3.48)

sB2 + (1 - SB2) sin 2 e
So, Dll :

r (I + (sB2- I)'cos2o)

(since r {no, no} =l{no , no}l)

(E.3.49a)

(E.3.49b)

sB2 + (I - sB2) (I - cos2 e)

(i + (sB2 - I) cos2 _) r (E.3.50)
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: I + (I - SB2) ( - COS2 O) = r

(i + (SB2 - 1) Cos 2 o) r

Next, let us consider D22. By (E.3.31) and (E.O.1),

I r2 s2 (Co Vo) T Co Vo
D22 : _ B2

+ ( 1- I ) r 2 s 2
B_

(Co vo)T [Co CoT] Co VO

= 1 VoT CoT Co Vo + (i - 1 I VoT [Co T Eo
sB4 sB 2 O2

Now, a_ Go: 0

and applying (E.3.35) we therefore get

(E.3.51)

(E,3.52)

CoT Co] Vo

(E.3.53)

(E.3.54)

I GoT [Co T Co ] Go = I _o T Go = s
s (E.3.55)

Applying (E.3.38) we find that the second term of (E.3.53) vanishes, and thus

D22 : s (E.3.56)

Next (by (E.O.I) and (E.3.31)),

D33 _ B2 no T no + (I - 1 2) B2 no T Co CoT no
sB2 ]{_o,no}l sB l{no,no}l

Using (E.3.48)

(E.3.57)

D33 _ s + B2 (1 - IIsB 2) cos 2 o

l{no, no}l I(.no, no}l (E.3.58)

s + (B2 - s) cos2 o

[{50 , no}l (E.3.59)

(by (E.3.48) and (E.3.49a))
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s (i + (sB 2 - i) cos 2 o)

r (i + (sB 2- I) cos 2 _)
= rs

Next, we consider DI2 By (E.O.1) and (E.3.31),

(E.3.60)

DI 2 : rs (Co uo)T Co Go
sB31{no,no}II/2

+ I rs Co.uo [Co Co T] Co _o

I - sB 2 B I{no,no}II/2 (E.3.61)

^Apply_g^(E.3.35) and (E.3.38), we see that each term contains either
_ v o or u6 Vo, both of which are zero by (E.3.16b), and thus

D12 : 0 (E.3.62)

Next, DI3 =

B i GoT [Co T] no + (I - i ) _o T [CoT Co _o T] no

i{no, no}l sB 2 sB2 (E.3.63)

= (by (E.3.9))
v_

B I GoT sB2 no + l-sB2 GoT _o SoT no
1{no, no}I ss2 sB2

+ (I- i ) GoT sB2 ^ CoT no
Co

+ (1- i ) (I - sB 2) _o T Co
sB 2

: (by(E.3.16))

_:oT 6:06:oT_o

(E.3.64)
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B (0 + I - I)(uoT Co CoT no)
i(no, no}j sB2

+ (sB 2- I) (GoT 4o Co T Go ) + (2 - 1 - sB 2) (Go T Co Co T no)
sB2 (E.3.65)

: B . 0 = 0

i{no, no} 1 (E.3.66)

Finally, D23 can be expressed by (E.3.63), changing the factor in front to

rs and replacing Uo by Vo. But since we also have
l{no,no}ll/2 '

(by (E.3.16))

v_ no : 0 (E.3.67)

we can follow the steps (E.3.63-66) again to obtain

D23 = 0 (E.3.68)

Now, combining the fact that D is symmetric (see(E.3.31)) with (E.3.51),

(E.3.56), (E.3.60), (E.3.62), (E.3.66), and (E.3.68), we have

Ir ][D] : s
rs (E.3.69)

which we have shown is equivalent to (E.3.31) (see the argument from (E.3.20)
to (E.3.31)).

So, we have proved that R2 has the appropriate form in the X' system
(E.3.11), and earlier we showed that the subpanel lies in the z' = 0 plane.

To show that the upstream direction transforms correctly, we exhibit A-I
first. We claim

I ^ I I 2]

A-1 : r u° i Vo i Bo no
, I/2 l I,{no,no}i t B 0 B l{no,no}ll/

Verifying that [AA-1]= [I] is tedious, and uses the same sort of
arguments as evaluating D.

(E.3.70)

First,
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[AA-I]I I = r GoT CoT _Jo
i(no, no}_L

(by E.3.9)

(E.3.71)
V

r (sB2 UoT GO + (I - sB2) GoT Co CoT Uo)
1{no, no}l

: (by (E.3.46), (E.3.48), and (E.3.48a))

(E.3.72)

r

r (1 + (s82 - 1) cos 2 e

Next,

(sB 2 + (I - sB 2) sin 2 g) = I
(E.3.73)

[AA-I]22 = r2s VoT CoT Vo =
BE-

: (by (E.3.9))

(E.3.74).

S
(se2 Vo T Vo + (I - se2) _o T Co toT Vo)

: (by (E.3.16)) v_ Vo : I

Next,

(E.3.75)

(E.3.76)

[AA-I]33 = r noT Bo no
I( no,no}]

= (by definition)

(E.3.77)

r {no , no}

]{n O , n0} J

by (E.3.49a).

= 1

(E.3.78)
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Next,

rBl{_o ' _o}iI/2 [AA_ I]12 : IT cT Vo :

(by (E.3.9), since Co is its own transpose by (E.3.24))

(I - sB 2) _ Co E_ Vo + sB2 u_ Vo : 0

by (E.3.16).

Next, rBl{no, no}l [AA-I]I3 : G_ [C o Bo] no

But from (E.2.20) we see

Co Bo = sB 2 1

and thus by (E.3.16),

[AA-I]I 3 : 0

Next,

B2r2sl{_o, _o}II/2 [AA-I]23 : i T [C_ Bo] no

Once again applying (E.3.81) and (E.3.16), we obtain

[aa-l]23 = 0

Next,

sl{no, no}f112
[AA-I]21 : voT Co uo = 0

r2s

by (E.3.80).

Next,

r l{no, no}l

B

by (E.3.16).

Finally

rl{no, _o}11/2 [AA_I]32

by (E.3.16).

Thus we have shown that

[AA -I ] = I

[AA-I]31 : BoT GO : 0

= v 0 = 0

(E.3.79)

(E.3.80)

(E.3.81)

(E.3.82)

(E.3.83)

(E.3.84)

(E.3.85)

(E.3.86)

(E.3.87)

(E.3.88)
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Applying (E.3.70) when r = +i,

0 I{ao,_o} j 1/2

and so

(E.3.89)

0 J(_o,Bo}l 1/2

: no x Co > O

l(Bo,ao}li/2

This proves (E.3.13). Applying (E.3.70) when r : -I,

(E.3.90)

and so

-[Bo]n 0

BI{%,%}Iz/2 (E.3.91)

[A-1]IOI : _ coT [Bo] no_oT
{JI B J{no,no}jI/2

(by (E.3.9) and (E.3.48))

(E.3.92)

B l{_o,_o}JI12
(CoT no + isB2 -I) _o T Co CoT no)

(E.3.93)

(E,3.94)

which has the same sign as(_ o , Ro)since s = -1, thus proving (E.3.14).

Finally, we show that det A > O.

Applying (E.1.12) to GO and Vo,

AQo x A_o : (det A) [A-T] (Uo x Vo) : (det A) [A-T] no

(E.3.95)
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(by E.3.16).

Applying (E.3.70),

A-T no

I
r GO GO |

l{_o,_o}l i/2 I
r ^ ^

Vo • n o
B

r no T Bo no
B l{_o,Bo}i 112 (E.3.96)

1= 0

l{no,no} 11/2

Now, recalling from (E.3.79) that _ [CO] CIo = O, and applying

(E.3.16),

(E.3.97)

[A] Uo :

by (E.3.71-73).

UoT [Co] Uo

l{no , no}l I/2

0

0

rl{no , no}l I/2

(E.3.98)

Next, applying (E.3.16) and (E.3.79),

[A] 0o

0

rs VoT [Co T] Vo
T

0

by (E.3.74-76).

I 0
rB

to (E.3.99)
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So_

A A

Au x Av
0 0 o }0

(by (E.3.80)) = B2 [A-T] _o (E.3.100)

Substituting in (E.3.95), we see that

det A = B2 > 0 (E.3.101)

This concludes our proof that [A] satisfies (E.3.11-15).

A useful result relating to the area jacobian J for the reference to local

transformation matrix can be derived using the results of this section

combined with some results from the previous two sections, E.I and E.2. Using

the formula (E.1.28), we form the inner product of the vector B'dS' with

itself using the metric B'. We obtain:

(_'dS')T B'(_'dS') = (det A)2 (_odS) A-I B' A "T (_odS)

(E.3.102)

Now the matrix B' satisfies the equations (cf. (E.2.19) with slight

modifications to account for the rotation rc):

Bo = A"I B' A"T B' : A Bo AT (E.3.103)

Using the fact that det(A) = B2, equation (E.3.102) simplifies to read

^T ^
(dS,)2 (_,T B' _') = B4 (dS)2 no Bo no (E.3.104)

Now equation (E.3.31) defining the diagonal matrix D can be combined with the
result

[Bo] [CO] = s B2 I (E.3.105)

which is readily derivable from (E.3.9) to conclude that B' as given by
(E.3.103) satisfies:

[B'] : [A][Bo][A] T : [A] (s B2 [Co]-I)[A]T = s B2 [D]

[rs ]= B2 1
r

(E.3.106)
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Combining this with the fact that

{o}_'-- 0

I

(E.3.107)

and recalling the definition of the dual inner product, (E.2.13), we rewrite

equation (E.3.104) in the form

(dS') 2 (r B2) = B4 (dS) 2 I_o ' no} (E.3.108)

Taking absolute values and rearranging this slightly, we obtain the desired

result for the area jacobian:

area in reference coordinates

area in local coordinates

:  zE,l
Note also that by taking the sign of equation (E.3.108) we obtain,

r = sign {n O, So}
(E.3.110)

reproducing the third of equations (E.3.16b).
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F.O Edge Matching

In this appendix, we will discuss the process by which the program

performs "edge matching", that is, insures "continuity" of doublet strength.

In section F.I we will supply the theoretical background, summarizing section
B.3 and discussing a few points not mentioned there. In section F.2, we will

discuss the concept of abutments between networks, introducing some of the

terminology used within the program. In section F.3, we discuss the process

by which the program determines the list of abutments defined by the
user-input configuration. In section F.4, we describe the assignment of one

edge in the abutment to be the matching edge, and show how this assignment

insures doublet matching along the abutment. In section F.5, we discuss the

special techniques used by the program to process "abutment intersections",
points in space at which abutments meet. In section F.6, we discuss

"gap-filling panels," which are added by the program along abutments where

gaps between network edges exceed the user-input tolerance distance.

F.O-I





F.I Continuity Requirements

Recall equation (B.3.12), that along any panel edge we should have

n

E si ui = 0
i = I (F.I.1)

where n is the number of panel edges meeting, and si = _I is determined by
the direction of the panel normal. We supplied three distinct types of

justification for (F.I.1). First, it is physically reasonable. Second, it

has been experimentally shown to be necessary for the analysis of supersonic

flow. Third, (F.1.1) can be used to increase the efficiency of the program by

allowing the removal of the "line vortex terms."

The imposition of (F.I.1) is effected in one of three ways. Within the

interior of the network, it is effected by splines, discussed in Appendix I,

which impose the equation

ul - u2 = 0 (F.I.2)

along all panel edges. Note that therefore two networks must not meet except

along network edges; else, the value of n along the line of intersection would

be at least 3, while the spline methods assume n = 2. In figure F.I, we

illustrate such an impermissible intersection of networks. Along network

edges, boundary conditions (called edge matching boundary conditions) are used

to impose (F.1.2). The curve along which network edges meet is called an

abutment. If an abutment consists of only two network edges, the user may

specify it as a "smooth abutment", in which case a splining method (discussed

in Appendix I), is used in place of boundary conditions to impose (F.I.2).

This results in fewer boundary conditions, and thus reduces the size of the

system of equations to be solved.

The use of smooth abutments is restricted to networks which, together,
define a continuously smooth surface. If the surface defined by the networks

is not smooth, the doublet gradient at the intersection should in fact be

discontinuous; while the smooth abutment specification will make the gradient

approximately continuous, resulting in an erroneous solution. For the same
reason, a single network should never be used to describe a surface containing

a discontinuity of slope.

There is one case in which (F.1.1) does not hold. This case is that of a

leading edge vortex (see figure B.IO). The true physics of the situation is

that the vortex rolls up tighter and tighter (see figure F.2) until it

dissipates due to viscous effects. A potential flow program could only

simulate the roll-up of the wake by supplying a wake with infinitely many

turns in it. This not being practical, wake roll-up can be simulated by

replacing the "core" (the region where viscous effects predominate) by a "line

vortex" (see figure F.3). Along this network edge, the doublet strength is in
fact discontinuous; that is, it is non-zero on the wake, while it is zero in

the region of space surrounding the free edge of the wake, The discontinuity

of doublet strength means that when the influence of the wake on a control
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point is computed, the "line vortex terms" must be added in, that is

_s "R" (F.I.3)

v

must be computed. We describe the computation of this quantity in appendix J.

The mechanism by which the program user causes the line vortex term

(F.1.3) to be added into the influence coefficient matrix is the following.

He specifies "no doublet matching" for a particular network edge. The program

then insures that the boundary conditions imposed at the control points along

the edge are not those of doublet matching (that is, of the form (F.1.1)), and
furthermore adds in the line vortex contribution for each panel edge lying

along the network edge when measuring the influence of the panel on a control

point.
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F.2 Network Abutments

PANAIR deals with a numberof distinct data sets called abutments. There
are "pairwise abutments", "user-defined abutments", "empty space abutments",
and "program-generated abutments". The latter three types of abutments are
end products of the procedure which generates a list of all existing network
abutments. User-defined abutments are those described by the user, either in
order to indicate that they are smooth, or else because the user is not sure
that the "automatic abutment search" described in section F.3 will define that
abutment. Empty space abutments are those which describe a network edge or
portion thereof which does not lie in proximity to any other network edge.
Program-generated abutments (those which are neither user-defined nor empty
space abutments) are computedin a two step procedure. The first step is the
computation of pairwise abutments, each of which lists two network edges or
portions thereof which lie in proximity to one another. In the second step,
the program distills the list of pairwise abutments into a non-redundant list
of program-generated abutments. The latter procedure is described in some
detail in the Maintenance Document(see section 4-G), and will not be
discussed further here.
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F.3 Automatic Abutment Search

In this section we describe the procedure used to identify "pairwise

abutments." An edge segment S (the line connecting two adjacent boundary mesh
points) is said to form a pairwise abutment with a network edge E provided the
end points __ and _+ of S satisfy d(_, E) < _ where _ is some

user specified tolerance distance. Here, d_stance from a point _ to an edge
E is defined in the usua] way, d(_,E) = min d(_,e-_).

CcE

The practical implementation of this definition requires that one know how

to compute the distance from a point _ = s"_or s'_+ to an :dge E . Let

_dge E consist of edge segments Ti connecting points ti_ 1 and

ti, i = I, 2 .... n. Then d(C,E) is given by the formula

d(_,E) = min d(_,Ti) (F.3.1)
1<i<n

where the distance from a point to a line segment is given by

- <o
d( ,Ti): I -Til -?i,Ti-t7-I)>0

otherwise

(F.3.2)

Having clearly defined the concept of a pairwise abutment of an edge

segment with an edge, we now describe what is meant by a pairwise abutment of

an "edge portion" with an edge. First, by "edge portion" we mean a subset P

of some network edge consisting of conti_uous edge segments, Sk''"SI'"" __#_e"The edge portion P then, forms a pairwise abutment with E provided each of'

edge segments Sl does. If the situation illustrated in figure F.4 occurs,

several pairwise abutments of edge portions P, Q, R with edge E will be
defined. There are, however, limitations on the permissibility of

configurations of the form of figure F.4. These limitations are noted in the
User's Manual, sec. B.3.5.

Clearly the process of determining all pairwise abutments requires a large

amount of computation for a configuration with many networks. (The amount of

work is proportional to N_S where NES is the number of edge segments in

the configuration.) In PAN AIR this computational effort is reduced by

avoiding the computation of the distances d(_± E) whenever the edge of
which S is a segment is sufficiently far away from E that a pairwise

abutment is impossible.
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F.4 Doublet Matching Along Abutments

The purpose of doublet matching boundary conditions is to ensure that
equation (F.I.I) holds at every point along an abutment, even though a
boundary condition of this form is imposed at only a finite number of points.
In this section we discuss the enforcement of the doublet matching condition
at control points along the interior of the abutment while the enforcement of
doublet matching at the ends of an abutment is treated in section F.5.

The ability of a finite number of boundary conditions to cause doublet
matching along the full abutment depends directly on the splining techniques
used to define the doublet strength along network edges. We discuss this
subject in section L.I.2.5, but we will summarize here the results we derive
there.

Given any pair of network edges belonging to an abutment, we call the
first edge a refinement of the other if, at every point where a panel corner
is located on the second edge, a panel corner is also located on the first
edge. According to this definition, each network edge in figure F.5 is a
refinement of the other, while in figure F.6, edge 1 is a refinement of edge 2.

We show in section 1.1.2.5 that if an abutment contains edges El,..., En,
and some edge Ek is a refinement of each of the other (n-I) edges of the
abutment, then doublet matching can be forced to take place along the entire
abutment provided it occurs at the endpoints of the abutments, and at the
panel edge midpoints on edge Ek. In practice, precise doublet matching will
not occur because PAN AIR uses a "least squares" rather than a differentiable
edge spline (see section 1.1.2.5). The extent to which doublet matching fails
to occur is very small, and has been found experimentally to be negligible.

The program takes into consideration the above results when assigning one
edge of an abutment to be the "matching edge", that is, the edge at whose
panel edge midpoints doublet matching boundary conditions are imposed. Thus,
when no special considerations intervene, the edge with the densest paneling
is assigned to be the matching edge. Assuming that the program user has in
fact provided one edge in the abutment which is a refinement of all the other
edges, then that edge is clearly the most densely paneled edge, and so doublet
matching will occur.

Under certain circumstances, the program does not assign the most densely
paneled edge in the abutment as the matching edge. The first such case arises
from a matching edge of a doublet design or doublet wake network taking part
in the abutment.

Unlike doublet analysis networks, design and wake networks are asymmetric;
boundary conditions are only imposed along certain edges of these networks,
called matching edges, as illustrated in figures D.2 and D.3. When a matching
edge of a design or wake network belongs to an abutment, the program assigns
it to be the matching edge for the abutment, even if it is not the most
densely paneled edge. This is done mostly for convenience; the user is not
likely to know what boundary condition to impose at the control points along
the matching edge and so the program evades this dilemma by assigning doublet
matching boundary conditions there.
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The other circumstances under which the most densely paneled edge is not

chosen as the matching edge is illustrated in figure F.7. To be specific,
whenever the curve defined by an abutment is "supersonic" (that is, no point

on the edge is in the domain of dependence of any other point), then that

network edge which is a leading edge (that is, upstream of the remainder of

the network) is assigned as a matching edge.

The basis for this assignment is largely empirical. Experience with the

PAN AIR "pilot code" with the configuration shown in figure F.8a, illustrates

the need for imposing doublet matching on the leading supersonic edges of

networks in supersonic flow. When doublet matching was imposed along the

trailing edges of networks 1, 2, and 3, the solution was completely erratic,

while shifting the matching boundary conditions to the leading edges of
networks 4, 5, and 6 resulted in a solution which was physically reasonable.

The reasons for the numerical problems resulting from the assignment of

matching edges as shown in figure F.Sa are not precisely known. It is known,
however, that specification of normal mass flux in a two-dimensional,

linearized, planar, supersonic flow problem is equivalent to specification of
the doublet gradient. We may see this by combining equation (C.I.5), which

states that aCp is proportional to Bu/_x, with equations (11-1) and (11-3)

of reference F.1, which states that aCp is proportional to normal mass flux.

Thus for a two-dimensional configuration, the specification of zero normal

mass Flux at panel center points, in combination with doublet matching at the

trailing edge, is equivalent to the situation in figure C.10, with the

trailing edge boundary condition becoming specification of u. But this set of
boundary conditions, In conjuction with the doublet analysis spline, does not

have a unique solution. We see this by noting that the doublet distribution

Uo(X) shown in figure F.8b satisfies u = 0 at the leading and trailing
edges, and _u/_x = 0 at panel centers. Thus, if some solution u(x) exists

which satisfies the boundary conditions above, so does u(x) + : uo(X) for

all real numbers :. Thus it is not permissible to specify _ at the trailing

edge of a two-dimensional network on which normal mass flux is specified at

panel centers.

Of course, the configuration in figure F.8a is not a two-dimensional one.
Nevertheless, it seems to have enough resemblance to a two-dimensional

configuration that the imposition of doublet strength specification on the

trailing edge of networks 1, 2, and 3 is an unstable boundary condition

specification for the doublet analysis network spline in use on those networks.

Summarizing, PAN AIR selects the network edge to be used for doublet

matching along an abutment according to the following criteria:

(i) Matching edge of a doublet design network

(ii) Matching edge of a doublet wake network

(iii) If neither (i) nor (ii) occur, and the abutment is supersonic, the

leading edge of the most "downstream pointing" network is used.

(iv) If none of the above occur, the most densely panelled network edge
is selected for matching.
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Thus, to insure precise doublet matching, a program user must be sure, for
every abutment containing a matching edge of a doublet design or wake network,
that this edge is a refinement of all the other network edges. Similarly, if
the abutment contains a supersonic edge, the leading edge of the most
downstream pointing network must be a refinement of the others. Finally, in
all other cases, some edge must be a refinement of all the others (recall
that, if two edges have identical paneling, each is a refinement of the other).

If these rules are followed, the edge chosen by the program as the
matching edge will in fact always be the most densely paneled one, so precise
doublet matching will occur. This does not necessarily mean that minor
violations of the rules will be serious. For instance, in figure F.9
(ignoring the gap - filling panels for the moment), the edge of the network A
is not quite a refinement of the edge of network B. There is no reason to
believe, however, that the doublet discontinuities which result from the small
discrepancies in figure F.9 are significant.

Next we must discuss the complications introduced into the above procedure
by considerations of symmetry. Fortunately, these are few and simple. First,
we must recognize that either a]l of an abutment lies on a plane of symmetry
or else no portion of it lies on a plane of symmetry - an abutment cannot
partially abut a plane of symmetry. If a network edge lies on a plane of
symmetry along part of its length and then breaks away, PAN AIR will recognize
two abutments and place an extra control point at the network course grid
point at which the breakaway takes place.

Now when an abutment lies on a plane of symmetry, doublet matching along
that abutment takes place automatically whenever the potential is symmetric
with respect to that plane of symmetry. Consequently we find in PAN AIR that
abutment doublet matching conditions are imposed only on selected symmetry
conditions when the abutment lies on a plane of symmetry. These are given:

If an abutment lies on the 1st plane of symmetry, impose edge
matching on _AS _AA only.

0 If an abutment lies on the 2nd plane of symmetry, impose edge
matching on _SA _AA only.

If an abutment lies on both planes of symmetry impose edge matching
on _AA only.

(Remark: The various symmetrized potentials, _SS, _AS, etc., are defined
as follows. The superscripts S or A indicate whether the given function
is symmetric or antisymmetric in a particular plane of symmetry. The first
(second) superscript indicates the function's symmetry property with respect
to the first (second) plane of symmetry.)
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F.5 Abutment Intersections

Within the interior of an abutment, the equation

si _i = 0 (F.5.1)

can easily be imposed by assigning a particular edge as the matching edge, and

imposing (F.5.1) at the panel edge midpoints on this edge.

At abutment intersections, points where two or more abutments meet, (see

figure F.IO), the cholce of points at which to impose (F.5.1) becomes more

difficult. Only one matching boundary condition may be imposed at a network

corner point (since only one control point is located there), yet the corner

point lies at the end of two distinct abutments. We will say that a corner

point C is "assigned" to an abutment A if the boundary condition imposed at C

is doublet matching across A.

A second complication is the danger of overspeclfication. Consider the

example of the abutment intersection formed by four networks, illustrated in

figure F.IO. Let us define _i to be the doublet strength at the corner of

network N i at this Intersecti6n. In order to obtain doublet matching, we
require

Ul " u2 " u3 " _4 (F.5.2)

But these are only three equations. Thus, if we assign corner point C1 to

abutment A I, C2 to A2, and C3 to A 3, that is, impose the boundary conditions

and

u I - u2 at C I

u2 - u3 at C I

u3 - u4 at C 3

(F.5.3)

we have satisfied (F.5.2). If we were to assign corner point C4 to abutment

A4 in addition, the resulting boundary condition

u 4 = u I at C_ (F.5.4)

would be redundant, since it follows from (F.5.3). If a row of the AIC matrix

corresponding to (F.5._) were generated, the resulting matrix would therefore

be singular, since this row would be a linear combination of three rows

corresponding to (F.5.3).

Thus overspecification must be avoided if the program is to provide a

numerical solution to the potential flow problem. This is straightforward For

any reasonable example, but clearly the program must follow a well-defined

method which assigns corner points to abutments in such a manner that doublet

matching occurs at all abutments while no overspeclflcation occurs. As an

example, the abutment intersection in Figure F.11 may arise From a realistic
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airplane configuration, yet an automatic procedure assigning corner points to

abutments is not obvious. In this section, then, we will describe a graph

theoretic interpretation of this abutment intersection problem together with

the corresponding solution of this problem. This will be accomplished in two

phases. In section F.5.1 we will describe the graphical representation of an

abutment intersection in the "usual case" together wlth the corresponding

abutment assignment procedure. Following this, in section F.5.2 we will

outline those special features supported by PAN AIR that affect abutment

assignment together with the modifications to the basic assignment procedure

that enable PAN AIR to correctly implement those special features.

F.5.1 Graphical Representation of an Abutment Intersection

In figures F.tO, F.11 and F.12 we present diagrams for three examples of

abutment intersections. We will denote by PAI (the abutment intersection
point), the point at which the various abutments meet. The directed graph G

associated with the abutment intersection is constructed as follows.

Let a small sphere S be constructed with PAI as its center. The nodes of G
are to be identified with the points at which the various abutments pierce

S. The branches of O are to be identified with the lines on S along which the

various networks involved in the abutment intersection cut the surface of S.

An orientation (direction) for a branch/line is induced in a natural way by

the orientation of the network that generates it. To see how this is done,

let N be a network that is involved in the abutment intersection and let

LN (l N S) be the llne alone which N cuts S. Denote by N' the subsurface of

N that lies outside of S. Notice that the llne LN is part of the boundary of
N'. Now since N' is a subsurface of N, the orientation of N provides an

orientation for N'. An orientation for N' in turn provides an orientation

(that is, a direction of traversal) for the boundary of N'. This traversal

direction is, of course, the usual counterclockwise traversal of the boundary

when the network is viewed from above. If then, one traces the boundary of N'

in the traversal direction provided by its orientation, part of the trace will

move along the line LN in a unique direction. This direction is the

orientation of LN. If we denote the a_utment at the beginning of the line LN

by AN and the abutment at the end by AN then we say that the branch induced by
-- +

network N points from node/abutment AN to node/abutment AN .

The procedure given above generates a directed graph G lying on the sphere
S. Such a graph can be spread out on a plane simply by puncturing S at some

point that does not lie on the graph and then stretching the surface S, with

the graph G imbedded in it, out onto a plane.

The ._taphs generated by the abutment intersections of figures F.10, F.11

and F.12 are drawn in figure F.13.

An alternative (and consistent) interpretation of branch orientation is

possible if, as is usually the case, the abutment intersection point PAI

coincides wlth a corner point of network N lying at the last point of edge
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÷

kN and at the first point of edge kN(*). When this happens, we denote by
÷ ÷

AN the abutment in which edge kN participates and by AN the abutment in which kN

participates. Having done this, we say that branch/network N proceeds from
÷

node/abutment AN to node/abutment AN .

Once the directed graph representing an abutment intersection has been

constructed, it is quite an easy matter to write down all of the doublet

matching conditions of the form (F.5.1) associated with the abutments in the

abutment intersection. Given a node/abutment A, we compute the values s i

associated with the doublet matching condition according to the following

rules:

I +I if branch/network N i is directed away from A
si - -I if branch/network N i is directed toward A

0 if branch/network N I is not connected to A
(F.5.5)

Using these rules, together with the graphs provided by figure F.13, we obtain

the following sets of matching conditions

Figure F.IO

AI: + U1 - u2 - 0

A2: + u2 - u3 - 0

A3: + u3 - U4 - 0

A4: - Ul ÷ U4 - 0

Figure F.11

(F.5.6)

At: ÷ U] - U2 - u3 - O

A2: + _3 - U4 - U6 - O

A3: U4 + _5 - 0

A4 : ÷ U6 - U7 - 0

A5 : ÷ U2 - U5 - 0

A6: - Ul ÷ _7 - 0

(F.5.7)

÷

Remark: Usually it will happen that kN - k* where

k* - mod (kN, 4) ÷ I. However if edge k* is a collapsed

edge of network N, we will have kN - mod (k + I, 4) ÷ I.

_r
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Figure F.12

At: u I - u2 + u3 - 0

A2: _2 - O

A3: - u3 + u4 - 0

A4: - U 1 - U4 = O

(F.5.8)

(The reader is urged to verify the correctness of these matching conditions by

carefully re-examlning the original figures).

The matching conditions given above have been written down in a format such

that they can be readily re-expressed in the shorthand form

A(G) u = 0 (F.5.9)

where u is the vector of doublet values associated with the branches/networks

of the graph and A(G) is called the incidence matrix associated wlth a

directed graph G. For the three graphs given in figure F.13, the incidence

matrices are

FiB. F.13a
A(G) =

I I -I 0 0 1

0 I -I 0

0 0 I -I

-I 0 0 I

(F.5.10)

Fig. F.13b

A(G) =

I -I -I 0 0 0

0 0 I -I 0 -I
0 0 0 I I 0

0 0 0 0 0 I

0 I 0 0 -I 0

-I 0 0 0 0 0

m
0

0

0

-I

0

I

(F.5.11)

Fig. F.13c

A(G) -
I I -I I 0 1

0 I 0 0

0 0 -I I

-I 0 0 I
(F.5.12)
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Having expressed the doublet matching conditions at an abutment
intersection in terms of an incidence matrix A(G) for the directed graph G

describing the abutment intersection, we are now in a position to avail

ourselves of the many powerful results from graph theory. In fact, graph

theory not only provides theorems that yield much information about the

structure of abutment intersections, it also provides a number or powerful

algorithms that, when suitably tailored, generate the doublet-matching

boundary condition assignments required by PAN AIR. The standard reference

for all graph theoretical results quoted in this appendix will be ref. F.2, N.

Dec, "Graph Theory with Applications to Engineering and Computer Science."

Throughout the remainder of this appendix, it is assumed that the reader has

at least a nodding familiarity with the elements of graph theory.

The first result from graph theory that we shall need is given (el.

THEOREMS 7-2 and'9-6, ref. F.2)

Theorem* Let G be a connected directed graph containing n nodes and having

incidence matrix A(G). Then rank(A(G))=n-I. Furthermore, any set of

n-1 rows selected from A(G) Is a linearly independent set.

This result can be extended to directed graphs G that are not connected by

observing that any such graph can be written as the union of connected

components. Thus, for a graph G with k components, we write

k

G = U G (F.5.13)
i

i=I

The theorem can now be applied individually to each component OI. In fact,
whenever G is not connected, PAN AIR performs doublet-matching assignments by

treating separately each component G i of G. Consequently, to simplify the
discussion, we shall always assume in what follows that the graph G associated

with an abutment intersection is a connected graph.

We now turn to the problem of assigning doublet matching conditions (nodes)

to replace user specified boundary conditions at control points lying on a

network (branch) involved in the abutment intersection. At this point we

treat just the simple "usual case" characterized by the following conditions:

(i) the graph G associated with the abutment intersection is

connected,

(ii) each branch/network in the graph has a doublet distribution,

For the reader familiar with electrical circuit theory, this result is

equivalent to the result that for a connected circuit with n nodes, the

Kirchoff current law provides n relations, any n-l of whloh are linearly

independent.
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(iii) each branch/network in the graph has a control point available

for use as a doublet matching control point whose hypothetical

location is essentially coincident with the abutment intersection

point PAI"

When these assumptions are made, the following procedure ensures that n-1

abutment matching conditions are selected to replace user specified boundary
conditions on n-1 networks

A.I Form a spanning tree T G. T must contain all of G's nodes but have

no loops. (Remark: By a theorem of graph theory, T will contain
(n-l) branches.)

A.2 Select any node of G(T) and label it as the _round node.

A.3 Defoliate T by removing one branch at a time until all (n-l) branches

have been removed. Algebraically, this is accomplished by

constructing a sequence of trees T = Tn _ Tn_ I _ ... _ T I where Ti is

obtained from TI+ I by finding a node of degree I in Tj+ I (not the _
ground node), aBd removing that node and the single bPanch to which

it is attached. As this is done, the doublet matching condition

associated with the node is assigned to replace a user boundary

condition on the network associated with the branch.

In figure F.14 we illustrate the application of this procedure to the graph

given by figure F.13b.

F.5.2 Modifications to the Abutment Assisnment Procedure

The many special features supported by PAN AIR, especially those features

associated with symmetry, add considerable complication to the basic algorithm

for performing doublet matching at abutment intersections. In addition to

symmetry, the most significant complicating features are,

(i) an edge of a network may be marked "no doublet edge matching" by the

user,

(ii) a network's corner control point may be a "non-matching corner point"

in the sense that there is no boundary condition (i.e., AIC row)

associated with the corner control point that might be replaced with

a doublet matching condition.

This presentation of our response to these complications will consist of three

parts. First, we will describe some of the general considerations that must

be taken account of. Second, we will outline the numerous ways by which

symmetry, "no-doublet edge matching" and "non-matching corner points" affect

the properties of networks, corner control points, user boundary conditions,

edges, abutments and abutment intersections. Third we will describe the

algorithm employed by PAN AIR that produces a consistent set of doublet

matching assignments while satisfying the constraints imposed by PAN AIR's

special program features.
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General Considerations

In addressing the problem of symmetry, we adopt the fundamental point of

view of formulating separately the boundary value problems for the various

symmetric and antisymmetric parts of the perturbation potential. Thus, when

two planes of geometric symmetry are present, our symmetrized potentiais

(_SS _AS, _AA, _SA, see appendix K for definitions) will generally be

required and a separate boundary value problem will be formulated for each.

If an abutment intersection lies away from any plane of symmetry, doublet

matching assignments will be the same for all symmetry conditions and indeed

will be the same as if no symmetry were present at all. On the other hand, if

the abutment intersection point lles on a plane of symmetry, doublet matching

assignments will be _erformed separately for each symmetry condition and it

becomes important to know the fiollowing facts about the abutment intersection:

o which plane(s) of symmetry the abutment intersection point lies on,

o which plane(s) of symmetry the individual abutments lie on,

o which (if any) plane of symmetry an individual network may lle in.

(N.B. A network is said to lie in a plane of symmetry if all its

points lie on the plane of symmetry so that the network normal is

parallel to the plane of symmetry normal. See appendix H.I.2 for

more detail.)

The first of these facts must be known in order to determine which planes of

symmetry are active, in the following sense: the first (second) plane of

symmetry is said to be active if PAI lles on the first (second) plane of

symmetry and the symmetry condition under consideration is either "¢SS or

A¢SA (for the second plane of symmetry: -¢SS or AcAS). This information is

important for two reasons. First, for an abutment lying on an active plane of

symmetry, doublet matching is automatically satisfied by virtue of the

symmetry properties of the symmetrized potentials. Consequently, a doublet

matching condition is never explicitly imposed for an abutment lying on an

active plane of symmetry. Second, the doublet distribution on a network

lying in an active plane of symmetry is identically zero so that such

networks do not participate at all in the assignment of doublet matching

conditions.

Other Significant Considerations

Here we outline the ways in which the properties of networks, corner

control points, etc. are modified by PAN AIR program features. In addition we

will discuss briefly the mechanisms by which modifications take place.
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Properties of Networks

A network may lie in a plane of symmetry. A network will lie in a

plane of symmetry if (i) the user explicitly informs PAN AIR of this

fact in the proEram input, or (ii) by examination of the network's

mesh points PAN AIR determines that all points on the network are

closer than the geometric tolerance distance to a plane of symmetry.

o The program user will assign to each network one of the following

network doublet types:

Doublet Analysis (DA)

Doublet Design I (DDI)

Doublt Forward Weighted (DFW)

Doublet Wake I (DWI)

Doublet Wake 2 (DW2)

No Doublet (NOD)

MatchinE Condition

Default

Edges 1,4

Edge 1
Corner 1

Only those networks not marked "no doublet" are of in'crest when one

is analyzing doublet matching at an abutment intersection. In the

discussions that follow, it will be assumed that the matching edges

and corners for the various network types are given by the list of

defaults given above.

If a network's doublet type is not "no doublet", the user may

specify the doublet value at all control points. Even if this

specification is u - O, such networks are treated differently from

"no doublet" networks in the sense that these networks are always

involved in doublet matching alone abutments and at abutment

intersections. In particular, the abutment intersection processin E

may replace a specified doublet boundary condition with a doublet

matching condition. As a consequence, the doublet strenEth may be

sliEhtly nonzero near the boundary of a network for which the user

has specified u = O.

Properties of Corner Control Points

o A corner control point may be a "matching corner point" in the sense

that no user specified boundary condition is available to generate an

AIC row that has been reserved for the control point. Thus, the

control point must have a doublet matching condition assigned to

it. A "matchinE corner point" is any corner control point of the

following types:

(i) any corner control point lying on the matching edge of a DWI

network. This includes corners I and 2 as well as any extra

control points along the matching edge.

(ii) the matching corner control point of a DW2 network
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o

o

(iii) any corner control point lying on edges ] and 4, the

"doublet matching" edges, of a DDI network.

A corner control point may be a "no matching corner point" in the

sense that no AIC row has been reserved for any boundary condition

associated with that control point. Control points of this type

include:

(i) corner points 3 and 4 of DWI networks

(ii) corner points 2, 3 and 4 of DW2 networks

(iii) corner point 3 of DDI networks

(iv) any extra control point on an edge that is marked with

either "no doublet edge matching" (a user specification) or

"non-matching edge" (edges 2, 3 and 4 of DWI networks; all

edges of DW2 networks and edges 2 and 3 of DDI networks

(v) a regular corner control point (that is, one that has an AIC

row reserved for it) for which both adjacent edges are

marked "no doublet edge matching."

A corner control point is said to 11e on a plane of symmetry If Its

hypothetlcal 1ocatlon lies on a plane of symmetry. It Is possible

for a control point to lie on two planes of symmetry.

A corner control point is said to lie in a plane of symmetry if it

lies on a plane of symmetry and, in addition, the panel normal at the

control point is parallel to the plane of symmetry's normal. (In PAN

AIR, the only control points that lle in a plane of symmetry are the

control points on networks that themselves lie in a plane of

symmetry.)

A corner control point always has associated with it two abutment

ends. (Note: In the code of the program DQG, the initial end of an

abutment is denoted by (+I) (Abutment index) while the terminal end

of an abutment is denoted by (-1) (Abutment index).) The orientation

of the network provides an ordering for these abutment ends, e.g.

<At, A2> , where A I and A2 are abutment end indices. In figure F.15

we illustrate the anomalous situation in which A I = A 2. In

intersection, such a situation gives rise to a self-loop, which is

subsequently ignored during the tree construction process. This is

possible because the network's spllnes impose doublet matching at

such an abutment end point.

The single corner control point at the end of a smooth abutment has

associated with it two non-smooth abutments as illustrated in figure

F.16.
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Properties of User BoundaryConditions

Whena doublet matching condition is assigned to a network lying in

an inactive plane of symmetry, the doublet matching condition will

replace the user specified antisymmetric boundary condition. An

antisymmetric boundary condition has the general form

A

aA(w.n) A + cD U + tD.VU = b (F.5.14)

(Note: A doublet network lying in a plane of symmetry must be

assigned an antisymmetric boundary condition of the form given

above.)

Properties of Edges

o A network edge may be marked "no doublet edge matching" by the

program user. When this is done, the network's doublet strength

along that edge will not participate in any doublet matching

conditions for the abutment(s) in which that edge is involved.

o A network edge may be marked "closure edge" by the user. If in

addition the user has specified that the closure boundary condition

override doublet matching, the network's control points will not be

used for doublet matching along the interior of the closure edge. It

is generally permissible for control points at the ends of a closure

edge to be used for doublet matching.

o Certain network edges are implicitly marked "matching edge" by PAN

AIR. These include:

(i) Edge I of a DWI network

(ii) Edges I and 4 of a DDI network

Certain network edges are implicitly marked "non-matching edge" by

PAN AIR. These include:

(i) Edges 2, 3 and 4 of a DWI network

(ii) All edges of a DW2 network

(iii) Edges 2 and 3 of a DDI network

o Every portion of a network edge is involved in exactly one abutment.

Properties of Abutments

Abutments involving any interior edge of a network are forbidden.

The initial end of an abutment may participate in an abutment

intersection with the terminal end of an abutment. (Figure F.17
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illustrates how this situation can arise for a tube panelled as one

network.) Since doublet matching must, in general, be imposed at

both ends of an abutment it is necessary to distinguish the initial

and final ends of an abutment during abutment intersection

analysis. As noted above, the scheme used by PAN AIR labels the

initial end with (+I) (abutment index) and the terminal end wlth (-I)

(abutment index).

o An abutment may lie on 0, I or 2 planes of symmetry. If any portion

of an abutment lies on a plane of symmetry, the whole of the abutment

lies on that plane of symmetry. If an abutment lles on an active

plane of symmetry, doublet matching along that abutment is

automatically satisifed by virtue of the symmetry properties of the
A

symmetrized potentials eli . Thus, doublet matching conditions are

never enforced for an abutment lying on an active plane of symmetry.

o Smooth abutments do not explicitly enter into the analysis of an

abutment intersection.

Properties of Abutment Intersections

o An abutment intersection may lie on 0, I or 2 planes of symmetry.

Selection of Matching Conditions

We now describe the process by which doublet matching assignments are made

while carefully taking into account the considerations outlined above.

The basle procedure for performing doublet matching will remain essentially

the same as the tree defoliatlon procedure outlined at the end of section

F.5.1. The complete procedure, however, will be significantly more complex at

each stage of processing. A summary of the stages of the complete procedure

is given -

B.I Construct the graph G containing just those branches corresponding to

networks whose type is not "no doublet" and do not lie in an active

plane of symmetry. During this construction process, some

relabelling of nodes may be performed to account for the "no doublet

edge matching" feature. In addition, branches associated with

control points that cannot accept a matching condition (e.g. corners

3 and 4 of a DWI network) are excluded from G.
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B.2
k

Form a spanning tree for G, T _-G. If G has k components (G = U Gi), T
k i=I

will have k components, T = U T. (*). In contrast with the earlier
i

i-I

algorithm, T is not an arbitrary spanning tree of G, but rather is

constructed with careful regard for the properties of the

neworks/branches of G.

B.3 Without first selecting a ground node, each component tree T i is

defoliated, the removal of each branch providing an association of a

node with a branch. At the end of this process, there will be left

one node that is not associated with any branch, and this node

becomes the ground node for the tree.

B.4 Finally, the assignments are examined to determine if the requisite

doublet matching conditions have in fact been associated with

eligible branches. In addition, it is verified that all of those

branches that must receive a doublet matching condition have in fact

done so.

Several remarks about this algorithm are appropriate before proceeding with

its detailed exposition. First, steps B.I and B.4 are essentially

deterministic given the specification of the problem. Steps B.2 and B.3, on

the other hand are substantially heuristic, step B.2 being ambiguous with

regard to the choice of spanning tree and step B.3 being ambiguous with regard

to the defollation strategy. Although the detailed exposition of the

algorithm will resolve most of these ambiguities, the solutions presented

should not be regarded as unique. They are, nevertheless, very good.

B.I The detailed description of an abutment intersection includes the

following information

Symmetry condition, ¢ SS, ;AS, ;AA or ;SA. [ISYM]**

A description of the plane(s) of symmetry that the abutment

intersection point lies on. [LABT]

Note, however, that if some component Gi of G contains only one node, all

of its branches being self loops, then T i - ¢. In practice, self loops

cause no special difficulty for the doublet matching problem simply because

the doublet strength on a network that generates a self loop "matches

itself."

** The expressions given in brackets are corresponding FORTRAN variable names

for elements of the calling sequence to subroutine ABTINT (PALIB).
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For each network/control point/branch N involved in the abutment intersection,
the following information is given.

The abutment ends in which N participates at PAI are given in

positive sequence <AI, A2>. The two edge segmentsof N that are

involved in the abutments At, A2 are denoted EI, E2 respectively.

Because of the requirement that A I and A2 be given in positive

sequence, an oriented traversal of the boundary of N would encounter

edge segment EI followed immediately by edge segment E2. [IPQSEG]

o

o

"No doublet edge matching" information is given for each edge segment

E i. [NDMSEG]

Let t i denote unit vectors drawn along edge segments E i, pointing

" IT be theaway from PAl" Let s - (tI + _2)/ I+ _21 and co

"compressibility axis downstream parameter" s is defined by

A

- s . c (F.5.15)
o

This parameter is given for each branch. [CSEG]

o Each branch is classified as follows [KSEG]:

O, no doublet network.

2, doublet network, but no corner control point is available to

enforce doublet matching.

3, doublet network with regular corner control point, but at least

one of the edges E i is marked "no doublet edge matching."

4, doublet network with regular corner control point.

5, doublet network with "matching" corner control point

o The plane of symmetry in whlch N lies, if any, is given. [LSEG]

For each abutment-end/node involved in the abutment intersection, the

following information is given

o The global abutment-end index [IPNOD]

a flag indicating which planes of symmetry the abutment end lies on

[LNOD]

Given the information outlined above, the graph G is constructed in three

stages. First, a graph G (I) is constructed using all those branches in
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classes 2, 3, 4 and 5. Second, a graph G (2) is constructed from G (I) by

examining each branch of G (I) for "no doublet edge matching" marks on either

end of the branch. If such a mark is found, the corresponding branch-end is

detached from the node to which it is attached and a new node is created.

Third, a graph G (3) is constructed from G (2) by deleting all branches in class

2 and all branches (i.e., control points) lying in an active plane of

symmetry. The resulting graph G (3) is the graph G that we seek.

Once the graph G - G (3) has been constructed, all of the nodes in the

problem (that is all of the nodes of G(2)), are divided into three types:

Node type

"preferred ground node"

[MNOD - -I]

Characterization

an extra _e created during the construc-
tion of G_"

not a

"preferred ground node"

[MNOD - O]

"automatic node"

[MNOD - +13

an ordinary abutment for which matching

must be performed

a node appearing iO G (2) but not in G (3).

These nodes of G (z) are characterized by

the fact that the only branches attached to

them are in class 2. Doublet matching is

assumed to occur "automatically" at such nodes.

The node type determines whether or not the corresponding matching condition

must be imposed. Basically, matching is imposed only for nodes that are not

"preferred ground nodes" (i.e., MNOD - 0).

The last node type, the "automatic node" can arise quite naturally when a

configuration includes compound wakes. To see this, consider figure F.]O with

all networks taken to be DWI networks for which edge I is the matching edge.

When this happens, the node corresponding to abutment AI will be an "automatic

node" since both C I - (network NI, corner 3) and C2 - (network N2, corner _)
are "no matching corner points." In this particular instance, it is easy to

see that matching alone abutment AI is already taken care of by a doublet

matching condition imposed at some point upstream of the abutment

intersection. In practice PAN AIR assumes that this is generally the case and

that doublet matching conditions at "automatic nodes" need not be explicitly

imposed.

Having classified the nodes of the problem, the number of required matching
conditions is computed:

Number of required matching conditions - NRE Q

- max (N_I+No+NI-I, No÷NI)
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where

N_I

No

N I

= number of "preferred ground nodes"

- number of "not preferred ground nodes"

= number of "automatic nodes."

This number is used at the end of processing to determine whether or not the

assignment procedure was successful. The test is passed if

N I + NAC T _ NREQ

where NAC T denotes the actual number of matching conditions assigned.

B.2 Without loss of generality, we may suppose that the graph generated in

step B.I is connected. If in fact G is not connected, we simply perform steps

B.2, B.3 and B.4 separately on each of G's components.

Any given connected graph will, in general, possess many spanning trees and

the problem of determining all of the spanning trees of a particular graph is

very difficult (cf. ref. F.2, p. 280). The problem of determining a

particular spanning tree is fairly simple, however, and the standard algorithm

is given in (ref. F.2, pp 277-279). Basically this algorithm proceeds by

considering in some order, each branch of the graph as a candidate for

membership in the spanning tree. If a branch causes a closed loop, it is

rejected, and if it does not cause a closed loop it is accepted.

It is clear that the spanning tree resulting from this procedure depends

crucially upon the order in which branches are examined. In PAN AIR, branches

are considered in order of decreasing priority in accordance with the

following priority scheme:

3 + _12

p = 4 + _12

5

class 3 branches

class 4 branches

class 5 branches

(F.5.16)

Thus, branches with the highest values of p are considered first for potential

memebership in the spanning tree. Here, s is the "compressibility axis

downstream parameter" defined above by equation (F.5.15).

B.3 In this step of the algorithm, we must select a defoliation scheme for

the spanning tree T. If T has n nodes, then there are precisely n distinct

defoliation schemes that assign nodes to branches, one corresponding to each

choice of ground node in subalgorithm A.3 of section F.5.1. Thus, one

possibility that suggests itself is to examine each of the n possible

defoliation schemes and determine which one provides the most suitable set of
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assignments. It turns out that such a complex procedure is not necessary and
that a fairly straightforward modification of subalgorithm A.3 generates a
suitable choice of ground node without an exhaustive search(*).

The modified defoliation algorithm proceeds as follows. As before, we set
Tn = T and define a sequenceof trees Tn _Tn_ 1 _ ... _T] such that Tj is

obtained from Tj+ I by identifying in Tj+ I a node of degree I and removing that

node and the single branch to which it is attached. If there is more than one

node of degree I available, the choice is made by means of the following

prioritization scheme based upon node type ("preferred ground node" or not)

and branch class (3,4 or 5):

Branch Class

Node TTpe 3 or 4 5
[KB = O] [KB = +I]

"preferred ground node"

[MNOD - -I]

not

"preferred ground node"

[MNOD - 0]

2

3

Priority classes for removing a node/branch combination

Given this prloritization scheme, the node/branch combination in the

highest priority class is selected for defoliation. In the event that there

is more than one node/branch combination in the highest priority class, the

one with the lowest value of p (see eqn. (F.5.16) above) is selected if the

node is a "preferred ground node" while the highest value of p (of. equation

F.5.16) is selected if the node is not a "preferred ground node."

B.4 The algorithm described above will have achieved a successful set of

doublet matching assignments provided the following conditions are satisfied

(i) all "matching corner point" branches (branch class 5) are

included in the spanning tree T.

(ii) a "preferred ground node" is never assigned to a class 5 branch

(i.e., priority class I is never selected.)

(iii) the ground node actually selected for a tree T is a "preferred

ground node," if any appear in T.

(,)

Note that a completely exhaustive examination of all possible matching assign-

ments possible for a connected graph G would involve (n . s) separate cases,

where n is the number of nodes in G and s is the number of spanning trees.
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F.6 Gap-Filling Panels

Whenever a gap whose size is greater than the user-specified tolerance

distance occurs between portions of two or more network edges which form an
abutment, gap-filling panels are defined. The placement of gap-filling panels

is illustrated for an abutment containing two network edges in figure F.9.

We now briefly outline the process by which gap-filling panels are

constructed, first considering the case of two network edges. First, each

edge in the abutment is "parametrized." That is, each panel corner point on

the edge is assigned a real number t between 0 and I inclusive, where t is the
ratio of two distances. The first distance is the sum of the lengths of the

panel edges between the starting point of the abutment and the panel corner
point in question, while the second distance is the sum of the lengths of all

the panel edges on a network edge. Thus t represents the proportion of the
entire edge length which one has traveled in proceding from the start of the

abutment to the panel corner point in question. In figure F.9, each panel

corner point is given a value t.

Now, suppose the distinct values of t which occur for the two network

edges are to, t1,..., tn , where

0 = to < tI <...< tn = 1 (F.6.1)

In the example of figure F.9, n = 9, since there are 11 panel corner points
other than the initial points, and the values t = .80 and t = 1.0 occur twice.

Now, up to n gap-filling panels may be constructed to fill the gap in the

abutment. For each integer i, i < i < n, the quadrilateral region with corner

points lying on the two network edges, with respective parameter values t =

ti i and t = ti is examined. If ti is not the parameter value of a
co_ner point (for instance, .30 is not the parameter value of any cornerpoint

on network A in figure F.9), linear interpolation between corner points is

used to find the point on the panel edge with that parameter value. If three

or more of the four edges of this quadrilateral region have length greater

than the user-specified tolerance distance c, a gap-filling panel is defined.

Thus, for the abutment in figure F.6, no gap-filling panels would be

defined, since the gap size is uniformly smaller than _, and so all potential

gap-filling panels have two edges of length less than c. On the other hand,

if, in figure F.9, ¢ were approximately .05 times the abutment length, seven

gap-filling panels would be defined, while two potential ones would be

discarded because two edges of the panels would be too short. The reason that

very small gap-filling panels are never defined is that numerical difficulties
could occur in measuring the influence of these panels on control points. It

is not known at this time under which circumstances the resulting doublet

discontinuity might be significant.

Next, we address the question of how to define the doublet strength on the

gap-filling panels so that doublet continuity is attained. The edge splines
constructed in appendix I assure that, if one edge is a refinement of the

other, then the doublet strength matches at points on the two network edges

with the same parameter value t. Thus we want the doublet strength to be

constant on the panel along the direction perpendicular to the direction of
the abutment.
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Weillustrate this in figure F.18 The four corner points of the panel
l I

are Pi and Pi+ 1 on edge A and Pi and Pi+ 1 on edge B. We then
define M i as the midpoint of the segment Pi Pi+1, and M i' similarly.

Then, since Pi, Pi+1, and Mi each has the same parameter value as its
primed counterpart, it also has the same doublet strength, namely u, ui+l,

or uT respectively. Thus, we have defined u at six of the nine panel

defining points, and we define u at the remaining three panel defining points
in the natural way.

This defines u uniquely on the whole panel (see section 5.5). Further, it

insures continuity of , on the whole edge Pi Pi+l and the whole edge

P Pi+l, since these two gap-filling panel edges are subsets of
ordinary panel edges. Thus the doublet strength on the network edges is

defined by a single quadratic function in one variable, and therefore agrees

with the doublet strength on the gap-filling panel edge everywhere, since it

agrees at three points.

Finally we must consider the case of three or more network edges meeting

in an abutment, as illustrated in cross-section in figure F.19. There,

network Eo is the most densely paneled network edge, and so, if the user has

followed the paneling rules, it is a refinement of edges El and E2. We
construct gap-filling panels as illustrated in order to fill the gap in the
abutment.

It still remains to be decided how to define the doublet strength on the

gap filling panels. We want the doublet strength to be continuous across

edges EI and E2, while at Eo we want

Uo - u(1) - u(2) = 0 (F.6.2)

where ,('i) is the doublet strength on the gap-filling panel spanning the gap
from Eo tO Ei. On the other hand, the doublet edge splines and matching
boundary conditions insure

.o - .1 - u2 = 0 (F.6.3)

where _i is the doublet strength on edge Ei. Thus the specification

"(I) : "i

u(2) : "2 (F.6.4)

insures doublet continuity (in the form (F.I.I)) everywhere.

Thus the general procedure used by Pan Air for gap-filling panels in
abutments with three or more network edges is:

a. choose the most densely paneled edge (which should be a refinement of

all the other network edges),

b. define gap-filling panels in the gap between the finest edge Eo

and each other edge Ei, just as if this were an abutment with only

two edges, and
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c. define the doublet strength on the gap-filling panels to be equal to
the doublet strength on the edge Ei.

Note that this procedure works even if there are only two edges in the
abutment. Further, it insures that the equation

_E]si ,i = 0 (F.6.5)

is imposed along all network edges.
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Figure F.1 - Impermissible network intersection

(in cross-section)
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Figure F.2- Leading edge vortex (in cross-section)
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Figure F.3 - Simulation of a vortex core

by a line vortex
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Figure F.4 - Multiple pairwise abutments involving

the same edges
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Figure F.6 - Edge 1 is a refinement of edge 2
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Figure F.11 - An abutment intersection with 6 abutments
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Figure F.12 - Another abutment intersection with 4 abutments
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Figure F.13a

Figure F.13b

N2

Figure F.13c

Figure F.13- Directed graphs corresponding to three abutment
intersections
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Figure F.14 Defoliation and matching condition assignment

for the graph of Figure F.13b
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Figure F.16 An extra control point at the end of a smooth abutment.
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G.O Control Point Locations

In figure G.1 we illustrate the possible location of points on a network,
called control points, at which boundary conditions are defined. These
locations are independent of the source type or doublet type of the network;

however, we will see in Appendix H that meaningful boundary conditions are not
necessarily imposed at all control points (for instance, on wake networks,

boundary conditions are only imposed along one edge).

Note that controls points are illustrated as being located near, but not

directly on, midpoints of panel edges lying on network edges. This is due to
the disastrous results which would occur from attempting to measure the

velocity or potential at a control point that lies directly on a panel edge

(see section J.11_. Later in this section we describe the procedure used to

recede control points from the panel edge.

When a network edge is divided into distinct portions belonging to

separate abutments, as illustrated in figure G.2, an extra control point, in

addition to those in figure G.1, is defined. The same data are computed for

these control points as for ordinary control points.

In order to determine its location, a control point is placed in one of

three categories: Panel center control points, edge midpoint control points,

and panel corner control points. The latter two categories are only defined

along the network perimeter. The control point is defined by prescribing a

"hypothetical location" (the center point, edge midpoint, or corner point at

which the control point would ideally be located), and a "recession vector"

which describes the extent to which the control point is receded into a

subpanel from its hypothetical location.

The size of the "recession vector" has been determined experimentally.

Basically, it has been chosen as small as possible without causing severe

numerical error. We refer to figure G.3 in defining the recession vectors.

There, we show an edge control point as P5 and a corner point at P1 ; for
control points at other points or edge midpoints the procedure is identical.

Panel center control points are only receded very slightly from the center

point P9 since the doublet distribution is differentiable and the source
distribution is continuous at P9 ; as a result (see section J.11) the

potential and velocity induced by the singularity distributions are very well

behaved at P9- It is still necessary to recede the control point slightly,
however, because influence coefficients can not be computed for a point lying

directly on a sub-panel edge, because the calculations yield singular results

there. So, we choose the recession vector to be

R = (P8 - P9) + (P7 - P9)
zoo (G.O.I)
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Edgecontrol points are receded considerably further becauseof the
discontinuities in doublet derivative, surface slope, and source strength
which occur at network edges. Thus, for the control point located at P5, we
define its recession vector to be

IP8 - P-51 + I_9 - _51 IP8 - P_51+ IP_ -_51

where

min

a = I i0 IP9 - P51

(G.O.2)

,

1/10 otherwise

(G.O.3)

(_ Th: recession vector _ bisects the angle between the vectors (_8 - _5) and
Pa, - _). If 6 were unity, the head of the recession_vector_R__ emanating from

polnt I_5 would lie on the line segment joining points P8 and Pg" If edge i

is collapsed as in figure G.4, then a is taken to be a tenth. _The recession

vector K would also be used for any control points located at PI and P2 in
this case. If edge 1 is not collapsed, then 6 will be at most a tenth and

possibly less, if the panel is skewed. The recession vectors for other edge
midpoint control p_int_ are defined analogously, control points whose hypothetical

locations are P6, P7, P8 being withdrawn, respectively, into triangles 6, 7,
and 8.

For the corner control point located at P1 which does not lie on a collapsed
edge the recession vector is

(G.O.4)

This particular construction provides the recession vector _ with

properties similar to the edge control point recession vector in (G.O.2).

Note that the recession vector in (G.O.4) lies in subpanel 1. The recession
vectors for other corner control points are handled in a similar fashion.

Some geometric quantities in addition to location and hypothetical

location are computed by the program for each control point. One of these is

the subpanel on which the control point actually lies. This is needed later

(see section J.8) to insure that an average potential and velocity are

computed correctly in measuring the influence that the sub-panel on which the

control point lies exerts on the control point.

-_m,1
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Also, for each edge or corner control point at which a matching boundary
condition is imposed, a set of "extra hypothetical locations" and their
associated sign is computed. These arise from the matching boundary condition
(see section F.I)

_E]si ui : 0 (G.O.5)

where the _i are the values of doublet strength on different networks.

In figure G.5, we illustrate an abutment containing three network edges.
Although the control point is receded from the edge, the matching boundary
condition involves singularity strengths at the edge; in this example (G.O.5)
becomes

s i ,(Hi) = 0 (G.O.6)

i =0

where Ho is the (default) hypothetical location of the control point, while

HI and H2 are extra hypothetical locations.

In Appendix F we indicate how the signs si are computed; here we
describe the computation of the extra hypothetical locations. Hypothetical

locations are computed one abutment at a time by parametrizing the abutment

(see section F.4), a process that assigns to each panel corner point or edge
midpoint P on that portion of a network edge belonging to an abutment a real

number t(P) between 0 and 1.

In figure G.6, we illustrate an abutment with two network edges. Given

the control point and default hypothetical location Ho , we compute the

extra hypothetical location H1 as follows. Parametrization of the abutment

gives us t(Ho), and also assigns a value t to every panel corner point and
edge midpoint on the edge of network 1.

By interpolation between these points, we find HI as the point satisfying

t(H1) = t(Ho) (G.Q.7)

In addition to the coordinates of the extra hypothetical locations, the

program determines the panel and subpanel on which each extra hypothetical

location lies, so that the doublet strength can be computed there later.

Our discussion of matching boundary conditions has assumed we are dealing

with doublet matching. In the case of a source matching boundary condition
(which may occur on the edge of a source design network)

_E]si oi = 0 (G.O.8)

and extra hypothetical locations and signs are computed as before.
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There are two final pieces of geometric data, associated with control
points, which we have not yet discussed. Theseare the normal and conormal of
the subpanel on which the control point lies. The normal is needed in
post-processing to compute velocity from the potential and the normal mass
flux (see Appendix N), while the conormal _ is neededto compute the normal
massflux from the velocity influence coefficient matrix by the formula

The computation of the normal is described in section D.2, while
(G.O.9)

n : [Bo] n (G.O.IO)

where

[Bo] : I + (sB2 - i) Co _T (G.O.11)

by equation (E.3.9).
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H.O Boundary Conditions and Onset Flows

In this appendix, we describe the processing of the user-input boundary

condition data by the program. The program is not (with one exception)
concerned with the nature of the boundary value problem defined by the user

(that is, whether or not it is well posed). Under certain circumstances,
however, user-specified boundary conditions are over-ridden by the program.

In section H.1, we discuss the standard boundary condition equation,

aA WA " _ ÷ CA CA + _A " VA

(H.O.I)

+ aD o + cD u + tD • Vu = b

and describe how the program computes the coefficients of the left hand side

of the equation. In section H.2, we discuss program overrides of the
user-specified boundary conditions. In section H.3, we discuss the

computation of the right hand side of (H.O.I) via onset flows.
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H.I Standard Forms for Boundary Conditions

H.I.1 Reduction of User Specified Boundary Conditions to Standard Form

The program user usually defines two boundary conditions at each control

point. Generally this is done on a network-wide basis (especially in defining
the left hand side of (H.O.1)), but it may be done on a point-by-point basis.

The User's Manual (section 3) explains how to define the boundary condition

coefficients; for standard cases it is done automatically by the program. In

any case, the user-input boundary condition can be much more general than

(H.O.I); it can be of the form (though almost all coefficients would generally
be zero);

au wu .._ * c * . vU * e vu .

+ a wL . _ * c #L + . vL * e vL •

+ aI wA . n + c + . vA + e _A

DI "_*e v D . n=b

(H.I.1)

Here, the subscripts U, L, A, D refer to upper, lower, average, and

difference, while the superscript I specifies that these are user-input

quantities.

Letting X stand for any of the quantities _, _, or _, we have, by

definition,

XA = ½ (XU + XL)

XD = XU - XL

(H.1.2)

Inverting (H.I.2) we have

XU = XA + ½ XD

XL = XA - _ XD

(H.I.3)

Thus, aU Xu * aL XL = (aU * aL) XA * ½ (aU - aL ) XD (H.1.4)

where _U and aL are any real numbers.

Substituting (H.1.4) into (H.1.1), we have
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(4+a_+4'_,_+(c_+c_.cl,,,

.k(_+_+_, _+(e_+e_+el'_,

(_4 ½a_+4'°

(H.I.5)

Here, we have used the facts that o = wD . n and w = _D" So we have replaced

upper and lower flow quantities in (H.I.1) with average and difference
quantities. But in order to put the equation in the non-redundant form

(H.0.1), we still have to eliminate the normal velocity terms which may be
selected by a program user in place of normal mass flux.

Now, we have already shown (see 5.4.16a) that

(H.I.6)

where n is the co-normal. Now, assuming

.B_o (H.1.7)

(n . n = 0 is the case of a forbidden "Mach-inclined" panel), we have the

identity

_ I B + _ (H.I.8)

_._

where

Now

= B _ _1 B (H.I.g)
B.B

A

n ._
. ; --I -_ = 0 (H.I.10)

n , n

and so _ is in fact a tangent vector or zero.

Thus, by (H.I.8),

v • n - 1 v'. B + _. v = _1 ; . n + _' . _ (H.1 11).
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v

Substituting (H.I.11) into (H.I.5), we obtain

(aul + aLl + aAl +--̂ I (euI + eL
n .B

WA ^I + eAI)) .n

+ (CuI ÷ CLI + CAI) _A

+ + + eAl " _A+ (_UI + ELI _A I + (euI eLI )_)

i
+ (½aul - _- aLl + aDl + __ euI I I eDI^1 ( __Fe L + ))

n .B

i + CD I)+ (_ CuI - _ CLI

I )T) .v.:b
I_L I +-_D I (½ _ _eLI + eDI+ (½ _U I - _ + euI

(H.I.12)

Thus, (H.I.5) is of the form (H.O.1), with

aA = au I + aLl + aAI + ^ i (euI + eLI + eAI )
n .

cA = CuI + CLI + CA I

tA = tu I + tLI + tA I + (euI + eLI + eAI ) (B 1 B)
8.B

aD : ½ aul- _ aLl + aDI + _ ! B (½ euI - ½ eLI + eDI)

I
_D =7_U I - ½_L I + _D I + (½ eu I " ½ eLI + eDI) (_ 1 B)

(H.I.13)

H.1.2 Classification of Control Points

The correct implementation of symmetry in PAN AIR requires that the

boundary condition processing in overlays 3 and 4 of DQG recognize some
distinctions concerning a control polnt's position relative to a plane of

symmetry. These distinctions, to be defined presently, are that a control

point lie:

o Away from a plane of symmetry

o On a plane of symmetry

o In a plane of symmetry
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In appendix K we show that when a configuration has two planes of synwnetry,

these two planes of symmetry are characterized by the specification

Pi: { I po):o} (HI141

: i-th plane of symmetry

Here, Po is any point lying on the intersection of the two planes of symmetry
A

while n i denotes the unit normals for symmetry plane Pi" The unit normals
A A

nI, n2 satisfy the conditions

A A

nI • n2 = 0

A A

ni . co = 0

A

where co is the compressibility axis.

With this notation developed, we can now define our concepts. Let p be
the position vector for the hypothetical location of a control point and let n

be the unit normal to the singularity surface at _. Then p is said to lie

away from any plane of symmetry if p e Pi' that Is, if

(away) (P- Po' ) o

Next, p is said to lie on Pi if p _ Pi' that is,

(_ on Pi ) (P- P'o' _i) = 0

(H.1.15)

(H.I.16)

Notice that it is possibleJor _ to lie on two planes of symmetry.. Finally,

is said to lie inPi if p ¢ Pi and in addition fiis parallel to fii" Thus

(_ in Pi ) (P - Po' ni ) = 0, (n, ni ) = i (H.1.17)

Because of the extra condition that _ be parallel to _i' it is impossible for a
control point to lie in two planes of symmetry.

In practice these distinctions are modified slightly. In the actual

implementation of PAN AIR, the only control points that are recognized as
lying in a plane of symmetry are those control points in a network such that

the who--Tenetwork lies in a plane of symmetry. If a control point does not

lie in a plane of symmetry, the only way by which it will be recognized as

lying-on a plane of sy_try is if (i) it is a network edge control point and,

(il) t_ network edge abuts a plane of s)nmetry. Of course If the network

edge abuts both planes of symmetry, the control point will be recognized as

lying on both planes of symmetry. Finally, if a control point is not found to

lie either on or in a plane of symmetry by these tests, it is said to lie away
from the planes of sy_try.

H.1.3 Boundary Condition Symmetry Types for Networks Lyln_ in a Plane of
Symmetry

When a user has specified that a configuration has a plane of symmetry,

PAN AIR assumes that the boundary condition to be imposed at p' the image of a
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control point _ has the form, (compare with equation (H.0.1))

aA_A(_'I.RI_ ÷ cA_A(_'_+ VA(_ "RItA
. = b I÷ aD a (_') + cD p (_') + V _ (_') RI _D

A

where R1 denotes the usual reflection matrix defined by the normal nI to the

plane of symmetry, (cf. Dahlquist, Bjorck, ref. H.1, p. 2127

(H.I.18)

T
RI = I - 2 nl nl "

Now when a control point lies in the plane of symmetry, so that _ is identical

with p', the concept of an image control point breaks down and we find that
different side conditions must be imposed upon the boundary conditions in

order to decompose the original boundary value problem into its symmetric and

antisymmetric parts. In appendix K it is shown that a doublet network lying

in a plane of symmetry must have an anti symmetric boundary condition of the
form:

Antisymmetric Boundary Condition

aA wA (_) • ^n+ cD _ (_) + V_ (p} • -_tD = b (H.1.19)

while a source network lying in a plane of symmetry must have a symmetric

boundary condition of the form:

Symmetric Boundary Condition

(H.I.20)

These restrictions on the form of boundary conditions for networks lying in a

plane of symmetry should be regarded as the proper extension of the
restriction (H.1.18) imposed upon boundary conditions at image control points.
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H.2 Boundary Condition Overrides and Boundary Condition Selection

We discuss here all of the considerations that lead to the selection of
the appropriate boundary conditions to be imposed at a control point. Two
basicproblems must be addressed.

First, the specification of a boundary condition on the upstream surface

of a superinclined panel leads to an ill-posed boundary value problem.

Consequently, if by user error or inadvertence this situation should occur,

the user specified boundary conditions will be modified by PAN AIR in a

prescribed fashion so as to eliminate the difficulty. This modification
process, to be described presently, is quite straightforward.

Second, at some control points more boundary conditions may be available

for use than are actually required.

This situation may arise in two possible ways:

(I) On _ composite network, one typically specifies two boundary

conditions at every control point. However, there are always some

control points (typically on the boundary of the network) which

require only one boundary condition.

(ii) PAN AIR is capable of internally generating boundary conditions that

take priority over all user specified boundary conditions. These

internally generated boundary conditions include the following

Degenerate boundary conditions of the form ;A = O or _S = O for

networks lying in a plane of symmetry

o Doublet matching conditions

Velocity jump matching conditions (also known as the vorticity

matching Kutta condition)

o Closure condi tions

o Source matching conditions

The problem to be addressed, then, is to determine which boundary conditions

are to be imposed when more than enough are available. Any response to this

problem must address separately the different cases indicated by figure H.I.

Thus we must distinguish whether a control point is interior to, on the edge

of, or on the corner of a network. Additionally, we must distinguish the
cases for which the control point lies away from, on or in a plane of

symmetry. Finally, we remark that whenever a control point lies on or in a

plane of symmetry, boundary condition assignments must be done separately for
each symmetry condition. The reason for this last requirement is that

whenever a control point lies on a plane of symmetry, there is the possibility

that a degenerate boundary condition is being imposed nearby, and this fact
can crucially affect the assignment of matching conditions, depending upon the

symmetry condition.

The approach that PAN AIR uses to resolve the dilemma of too many boundary

conditions is to define a boundary condition hierarchy. Thus, by defining a
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prioritization of the available boundary conditions, PAN AIR is able to select

the top one or two in accordance with its needs. This particular resolution

of the dilemma should not be regarded as the only possible or even the only

reasonable resolution. In fact, we shall see that it is not even adequate and
requires some modification when the control point lies in a plane of
symmetry. Alternative approaches that could also be used include:

(i) The boundary conditions required by PAN AIR could be tagged "source

type" or "doublet type," the basic idea being that "source type"
boundary conditions are applied at source boundary condition points

while "doublet type" conditions are applied at doublet boundary
condition points (see figures D.1, D.2, D.3). In addition, the DQG

generated boundary conditions could also be typed in this way. For
example, we would define

^S
Degenerate doublet, _ = O,

^A
Degenerate source, o = O,

Doublet type

Source type

Doublet Matching Doublet type

Source Matching Source type

Velocity Jump Matching Doublet type

Closure Doublet type (if "no doublet

ma tchi ng" )

Source type (if "no source
matching" )

Finally, the two user specified boundary conditions would be typed,
one "source type" and the other "doublet type" (this is the tricky

part). Then, during boundary condition assignment, a "doublet type"
DQG boundary condition would replace a "doublet type" user boundary

condition while a "source type" DQG boundary condition would replace

a "source type" user boundary condition.

For this scheme to work, we would have to ensure that a "doublet

type" ("source type") DQG boundary condition never be requested

unless a "doublet type" ("source type") boundary condition is
actually needed at that point. In addition, for class 4 and class 5

boundary conditions, it would almost certainly be necessary to

require that the user specify the singularity type of each of his
boundary conditions.

(il) The program could proceed just as it does now in terms of

prioritizing internally generated boundary conditions, but impose

upon the user the requirement that he assign boundary condition

priorities to the boundary conditions that he provides. (Section
H.2.7 summarizes PAN AIR's current prioritization of internally

generated boundary conditions.)
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H.2.1 Superinclined Panel Override

In describing the program override which occurs on superinclined panels,
that is, those for which

A

n • _ < 0 (H.2.1)

we will assume for convenience that the "upper" surface of the panel is the

"upstream" surface, that is, that

A A

n . c < 0 (H.2.2)
0

A

where co is the compressibility vector.

This assumption is not made within the program, of course, but is merely

used here to simplify the discussion. Under this assumption, any upper

surface specification is ill-posed, or very nearly so. Nevertheless, such a

boundary condition could accidentally occur if a panel significantly inclined

to the freestream becomes superlnclined as the Mach number is increased.

We say that an upper surface condition has been specified if all the

coefficients of XL's are zero, where XL is defined in (H.I.3), and X stands

for _ . _, _, or _. Using (H.I.3), we see that

XA - i/2 XD = XL (H.Z.3)

Now, an upper surface boundary specification has occurred if

aL = 0

cL = 0

and tL = 0 (H.2.4a)

that is, if aA = 2 aD

cA = 2 cD

and = 2 (H.2.4b)

Whenever (H.2.4) occurs, the boundary condition (H.O.1) is replaced by the
revised boundary condition

^wL = n - 1/2 _ = 0 (H.2.5)

or, if this boundary condition has already been specified as the other

boundary condition at the control point, (H.O.1) is replaced by

_L = 0 (H.2.6)
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Finally, if the boundary condition (H.O.I) is
a = b (H.2.7)

the program assumes this to be an indirect upper surface boundary condition

associated with interior perturbation stagnation, and thus replaces this with

either the boundary condition (H.2.5) or (H.2.6) as appropriate.

Once this override of the user specified boundary conditions has been

performed, PAN AIR proceeds with its analysis treating the new boundary

conditions exactly as if they had been directly specified by the user.

H.2.2 Boundary Condition Selection

The selection process for boundary conditions consists of four stages:

(I) The number of nontrlvlal boundary conditions to be imposed at a

control point is determined. Denote this number by NNTBC. (If the

control point lies in a plane of symmetry, these boundary conditions
must also be classified as to symmetry type, symmetric or anti-

symmetric (cf. section H.1.3). In this case, two numbers are
S A

determined, NNTBC and NNTBC , the number of symmetric and antisymmetric

boundary conditions to be imposed.) Figures D.1, D.Z and D.3 describe

the locations of nontrivial boundary conditions for the various network

types.

(ii) The internally generated boundary conditions to be imposed at a

control point are determined. If the control point lies on or in a

plane of symmetry, both the number and nature of these boundary
conditions may vary from one symmetry condition to another. (For

control points lying in a plane of symmetry, these conditions are

classified as to symmetry type.)

(iii) The user boundary conditions associated with a control point are

determined and then ranked in a hierarchy. (Again, if the control

point lies in a plane of symmetry, these boundary conditions must be

classified as to symmetry type.)

(iv) Finally a list of all available boundary conditions is constructed.

The internally generated boundary conditions are ranked according to

the prioritlzation

I, Degenerate boundary condition

2. Doublet matching/velocity jump matching

3. Closure

4. Source matching

Following these, the list of user specified boundary conditions

developed in part (iii) is appended. Then, the first NNTBC boundary

conditions (cf. part (i)) are selected for imposition at the control

r
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point. If the combined ltst contains fewer than NNTBC boundary

conditions, the program terminates with an error message.

(If the control point lies in a plane of symmetry, two lists must be

prepared, one containing symmetric boundary conditions and the other

containing antisymmetric boundary conditions. Letting NNTBc,S NNTBcA

denote respectively the number of symmetric and antisymmetric boundary

conditions to be imposed,_ we select NNTBcS boundary conditions from

the symmetric list and _N_TBc boundary conditions from the anti-

symmetric list. If an insufficient number of boundary conditions of

the correct symmetry type is available, the program terminates with an

error message. )

When a control point lies away from any plane of symmetry, the above procedure
is carried out only once, since the boundary conditions to be imposed are

independent of symmetry condition. However, whenever a control point lles on

or in a plane of symmetry, the procedure must be repeated for each symmetry
condition.

In the remainder of this subsection (H.2.2), we discuss in detail part (1)

of the above procedure. Part (ii) is covered in three sections, (H.2.3) on

degenerate boundaryconditions, (H.2.4) on source and doublet matching

conditions and (H.2.5) on closure boundary conditions. Part (ili), the user
boundary condition hierarchy, is discussed in section (H.2.6). Part (!v) is

discussed in section (H.2.7) where it is shown that there will never be more

than two internally generated boundary conditions imposed on a composite
network, and never more than one on a source alone or doublet alone network.

Let us now consider the method by which the program determines NNTBC, the

number of nontrivial boundary conditions to impose at a control point. Here,
the underlying principle is that the number of boundary conditions must equal

the number of singularity parameters. But this principle has already been
built into the definitions of the various network types, as illustrated by the

balance between x's and o's In figures D.I, D.2, and D.3.

S and A by
Consider then the following procedure. Define NNTBC NNTBC

S ( I if the control point location is a boundary condition

= 1 location for the network's source typeNNTBC 0 otherwise (H.2.8a)

A _ I if the control point location is a boundary condition

= _ location for the network's doublet type
NNTBC 0 otherwise (H.2.8b)

For the purposes of this computation, the boundary condition location points

are given by figure H.2 for source networks and figure H.3 for doublet

networks. The total number of nontrivial boundary conditions is the sum of

these two counts,
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S
NNTBC = NNTBC + N_TBC. (H.2.9)

Notice that this procedure also provides us with the numbers NNTBcS and NNTBcA

of symmetric and antisymmetric boundary conditions to be imposed at control
points lying in a plane of symmetry.

If a control point is an "extra" control point, the procedure given above

A by:must be modified slightly. Here we set NNTBCS = 0 always, and define NNTBC

(extra control point case)

NA
NTBC

H.2.3

1

0

if the extra control point lies on a doublet analysis

or doublet forward weighted network or else on a
matching edge of a doublet wake 1 or doublet design
network

otherwise, or if the extra control point appears on an

edge marked "no doublet edge matching"
(H.2.10)

Degenerate Boundary Conditions

If a control point lies in a plane of symmetry, then for each symmetry

condition a degenerate boundary condition may be imposed by PAN AIR. The form

and type of the various degenerate boundary conditions is given in figure H.4a,

for configurations with one plane of symmetry and in figure H.4b for

configurations with two planes of sjnnmetry. In addition to giving the actual
form of the degenerate boundary conditions, these figures also give the

symmetr_ type, in the sense defined in section H.I.3. The reason this is
necessary_that when a control point lies in a plane of symmetry, one must

construct two boundary condition hierarchies, one for syn_netric and another

for anti symmetric type boundary conditions (cf. the boundary condition

selection procedure described in section (H.2.2)).

To be specific consider the case of a composite network lying in a plane of
symmetry, the whole configuration having just one plane of symmetry. We

suppose that the user specified boundary conditions are:

bCl: o = bI (symmetric type)

A

bc2: WA • n = 0 (antisymmetric type)

The formulation of boundary value problems for symmetry conditions* _S and _A

then leads to the following hierarchies. (We ignore here any matching or
closure boundary conditions.) The formulation procedure that leads to these

hierarchies is discussed in appendix K.3.

The symmetric and antisjnnmetric parts of the potential, )S and _A, are

defined by equation (K.3.22). When we treat the formulation of the

integral equation for _S (rasp.)A) we say that we are dealing with the _S

(resp. _A) symmetry condition. These concepts extend to the case of two

planes of symmetry in the obvious way. See eqn. (K.4.22) for _SS, etc.
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_S

b.c. hierarchy for

b.c.'s of symmetric type

symmetric part of bc1:

^S
o = bI

b.c. hierarchy for

b.c.'s of symmetr!c type

^AA o a = 0 (degenerate)

antisymmetric part of bc1:

0=0

b.c. hierarchy for

b.c.'s of antisymmetric type.

^S
o _ = 0 (degenerate)

o symmetric part of bc2:0 = 0

b.c. hierarchy for

b.c.'s of antisymmetric type

0 antisymmetric part of bc2:

A . --O:

Thus, setting up the two hierarchies definitely avoids the imposition of a

trivial condition of the form (0 = r.h.s.), which would in turn generate an

identically zero row in the AIC matrix. If one did not set up the two

hierarchies, the usual selection process would lead to the boundary conditions:

_S: ^S _A: ^A (_A ^= O, 0 = 0 a = O, . n) = 0

These selections, which include the singular boundary condition 0 = O, are to

be contrasted with the boundary conditions actually selected:

o = , w = O; o = O, • n) = 0

This example also serves to illustrate the distinction between symmetry

condition, which Is a property of _S and th_A and the symmetry_of a
boundary condition. Thus, in this case, symmetric'part of_potential

_S has both a symmetric (_S = bl ) and an antisymmetric (_S = O) boundary

condition imposed upon it.

H.2.4 Doublet Match.lng, Velocity Jump Matching and Source Matching Boundary

Conditions

Each abutment (cf. appendix F) in the configuration will have associated

with it a doublet matching boundary condition of the form (cf. eqn. (F.5.1))

si _i = 0 (H.2.11a)

Here, the sum ranges over those networks involved in the abutment and _i is
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the doublet strength on the l-th network. The coefficients si = • I or 0 are

obtained by comparing the orientation of the abutment with the intrinslc
orientation of the edge on the i-th network.

si
+i

ml _ l

0

if the edge on the l-th network is aligned with
the abutment's orientation

if the edge on the l-th network Is opposed to the
abutment's orientation

If the edge on the l-th network is marked "no

doublet edge matching."

In general, thls matching condition may be asslgned to any network involved in
the abutment for which the doublet edge type Is nelther "null" nor "no doublet

edge matchlng." The procedure by whlch a network receives a matching boundary
condition Is treated in detail In appendices F.4 and F.5. In appendix F.4, we
have described the procedure by which a network is selected to recelve the

doublet matchlng condition along the interior of the abutment. Having made
the selection, condition (H.2.11a) is Imposed at each edge mldpolnt control
point of the selected network. In appendix F.5 we have described the

procedure by whlch matching condltlon asslgnments are performed at an abutment
Intersectlon. One flnds, in general, that when n abutments come together at

an abutment Intersection (n-l) of the doublet matching conditions are assigned
to appropriate corner control points.

Velocity jump matching conditions may be imposed along a network edge
abuttlng the leading edge of a OWl wake network. These boundary conditions
have the form:

where sI are the same as for the doublet matching conditions, t is a vector

pointing downstream along the wake and the velocity Jump _I on the l-th

network of the abutment is glven by the Helmholtz relatlon (cf. eqns.
(B.3.2g-31)),

-_ A A ..

a v 1" o n/{n._) + Vtw (H.2.12a)

V t _ = (_xV_)x_/(;.;) (H.2.12b)

The velocity jump condition (H.2.11b), which Is also called the vorticity

matching condition, helps impose the Kutta condition in the neighborhood of
the abutment (cf. appendix B). This condition Is imposed only on the Interlor

of an abutment and only on some network other than the network that performs
doublet matching for the abutment. Because of thls restriction, no conflict

can occur between doublet matching and velocity jump matching. For thls

reason, there Is no problem with assigning velocity jump matchlng the same
posltlon as doublet matching in any boundary condition hierarchies that we
construct.

When t is chosen to point downstream along a wake, parallel to the

compressibility axis, the condition (H.2.11b) implies the matching of upper and

lower surface pressure coefficients (linear Cp rule) for both a thick and a

thin trailing edge. We illustrate these facts wlth two examples.
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Consider first the thln trailing edge configuration illustrated by figure
H.Sa. Assuming_ to be parallel to the compressibility axis _o' we find that
(H.2.11b) implies

^ " ^ _wlco . a Vwake- co . a ng= 0

Nowon the wing surface,

a V_wing= iV{6)u - iV{6)L

while on the wake surface,

A ^ .._

a _wake = [o n/in.v) + vt P]wake

Since o = 0 on the wake, we find

A _W A A ._co . a ake = Co " Vt _ = Co " [(_ x V w)x_]/(n.v)

" " [v, - B (7.

A

=C 0 • V W

A ^

since Co.n = O. But because the doublet spllnes are constructed so that

will be constant in the streamwlse direction along the wake, _o " v _ = _.I/p -_0.

^ V.This implies co . a ake = 0. Consequently we flnd

A _'W A A= co . a ing = Co " (V)6)u " Co " iv{6)L

i _lln + ½clln= " ) {;p,U p,L

since the formula for linear pressure coefficient is just

lin ^
Cp = -2c o .re

Thls gives us the result we require, that upper and lower surface linear

pressure coefficients match.

The case of a thick trailing edge Is handled essentlally the same way.
Consider the case of figure H.Sb. The matching condition (H.2.11b) becomes,

in light of the Helmholtz relation, (eqn. H.2.12)

. { (+I) [ou _u/(n u, _u ) + Vt _u]

(-I) [oL _L/(_L, _L ) + V t _L]

(-i) [ V t _w ] } = 0
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Again, becauseof the construction of the wake spllnes, (constant streamwlse),
we have

A

" Vt Pw Co " Vt _w ; 0

Because of the stagnation condition _ = 0 in the interior of the airfoil, we
have

°u Ru/(nu' _1 + Vt "u = (V_lu

aL nL/(nL ' _L ) + Vt PL " (V#)L

" A A

Since t points in the downstream direction Co, we observe that (t .v) . (co .v )

Putting all these results together, we obtain

(+1) Co " (V_)u + (-1) _o " (v_)L = 0

which clearly implies,

1,nU = l'p,L

as we wished to prove.

Source matching conditions, which are much less important than doublet
matching conditions, may be imposed along an abutment and have the form

sI oI = 0 (H.2.13)

This expression is interpretted very much the same as (H.2.11a) with the

understanding that ai denotes the source strength on the i-th network. Since

source matching can only be imposed along a source matching edge of a design
network, relatively few abutments have these conditions imposed. Usually,

only one of bhe network edges involved In an abutment is a source matching
edge, so that it is clear which network should receive the source matching
condition. If two or more edges in an abutment are designated source matching
edges, then a selection process is performed that is quite similar to the

process performed for doublet matching.

It is pertinent to remark that source matching along an abutment involving

three or more edges is highly questionable in ligh_ of the definition of a as
the jump in the normal component of the mass flux w. In fact, source matching
makes sense onlya_ those abutments at which just two networks join
smoothly with a continuous surface normal. Considerations of this sort lead

to the further conclusion that the only abutment Intersection at which one can

reasonably expect to impose source matching conditions are those of the form
illustrated by figure H.6, for which the graph is either a ring or a partial

ring. (See section F.5 for a full discussion of the construction of the graph
associated with an abutment intersection.) Selecting matching assignments for

graphs/abutment intersections of this form is quite a simple task and is
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accomplishedvery muchthe same way as doublet matching is accomplished.

The procedures outlined above work quite well as long as the abutment
along which matching is to be enforced lies away from any plane of symmetry.

If an abutment lles on a plane of symmetry, special procedures (fully
described in appendix F) must be followed in order to obtain correct matching

condition assignments. If a network lying in a plane of symmetry should be
assigned a matching boundary condition, the-n"it is important that we know the

symmetry type (in the sense of section H.I.3) of the matching condition. This
is necessary in order that the matching condition be entered into the correct

hierarchy. The symmetry types of the various matching conditions are given:

(1) Doublet matching is of antlsymmetric type, and may only be imposed on

an abutment lying on a plane of sy_try for sjnnmetryconditions _ij

antisymmetric with respect to that plane of symmetry.

(il) When velocity Jump matching is imposed along an abutment lying on a
plane of symmetry, a symmetry type will be defined for it only if the

vector t (in equation (H.2.11b)) is either parallel to orAperpendlcular
to n, the plane of symmetry normal. If t is parallel to B, AV

matching will have symmetric type; if _ is perpendicular to _, (very

much more the usual case) a_ matching will have antisymmetric type.

If neither of these conditions holds the basic problomcannot be

decoupled into symmetric and antlsymmetrlc parts, and a fatal error
results.

(iii) Source matching is of symmetric type, and may only be imposed on an

abutment lying on a plane of symmetry for symmetry conditions _lj

symmetric with respect to that plane of symmetry.

H.2.5 Closure Boundary Conditions

Closure boundary conditions arise when one particular edge of a source or
a doublet design network (SDI, SD2, DD[, DFW) is designated as a "closure

edge" by the program user. Then, for each edge midpoint control point on the
closure edge, the boundary condition

C (aA WA " n + aD _) dS = b 1H.2.141

is imposed, where C is the row or column of panels headed by that control

point, as illustrated in figure H./. The coefficients aA, aD, and b are

user-supplied, and once again can be redundantly defined in terms of upper,

lower, average, and difference terms. We will explain (H.2.14) by means of a
simple example.

In figure H.8, we illustrate a thick wing on the upper surface of which we

desire a specified pressure distribution (see Appendix C for a discussion of

the design process). Now, after solving the potential flow problem and
relofting the surface, we obtain a relofted surface, whose trailing edge may
or may not coincide wlth the unchanged trailing edge of the lower surface.

The closure boundary condition can be used to insure that the trailing edges

H.2-11



coincide after reloftlng, that is, that the airfoil "closes."

But now, suppose the boundary condition

B Wu" n dl = 0
A

(H.2.15)

is satisfied, where A and B are shown In figure H.8. Then clearly a mass flux
streamline originating on the wlng upper surface at A will end up at B. It

can not end up "above" B, since then a streamline starting slightly below A
would end up slightly above B, and thus the integral of the mass flux through
the surface would be non-zero (see figure H.9).

Now, a wlng Is a 3-dlmenslonal object, and thus, In order to insure that

any streamline originating at the leading edge of the design network will
arrive at the trailing edge of the design network, equation (H.2.15) must be

imposed on a dense set of integration contours originating at the leading
edge, and following the wlng surface in a streamwlse direction to the trailing
edge. Then the relofted surface, which is required to be impermeable, must

necessarily be the surface defined by the streamlines originating at the
leading edge and ending at the trailing edge. So, the imposition of (H.2.15)

on a dense set of integration lines would insure that the trailing edge of the
relofted surface agrees with the trailing edge of the design network.

Now, a panel method being a dtscrettzatton method, we do not impose
(H.Z.15) at a dense set of lines, but instead on a set of narrow
two-dimensional surfaces aligned streamwtse, namely, rows or columns of
panels. Thus we impose the boundary condition

C

Now, _'U" _® + WU (H.2.17)

--+ A .ap A

wU . n = wA . n + I/Z o (H.Z.18)

and _L = 0 (H.2.19)

because of the perturbation stagnation boundary conditions (JL = 0). Thus
(H.2,16) can be written

/[ (o +_® . _) dS-- 0

C
(H.2.20)

or

YY ^o dS , b , - V® . ndS (H.2.21)
C C

which Is of the form (H.2.14), wlth ao = 1, aA = O. The more general form of

(H.2.14) is available for program users solving non-standard problems.
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In order that there not be an excessive number of Internally generated
boundary conditions, the user is required to specify whether closure overrides

a source matching or a doublet matching boundary condition. Thus, if the user
specifies that closure override doublet matching on a particular network edge,
then none of the edge midpoint control points on that network's edge will be

used for doublet matching. Notice however that this override feature has no
effect on corner control points, since closure boundary conditions are not

imposed atsu--suc_-points.Consequently, this override requirement does not
introduce any extra complication into the treatment of abutment

intersections. (Remark: There is some danger that specifying that closure

override doublet matching could result In doublet matching not being imposed
on some abutment, a potentially disastrous event. Usually, however there will

be some network available to accept the abut_nt's matching condition.)

If a design network happens to lie in a plane of symmetry, then its
closure boundary condition cannot have t-lTegeneral form (H.2.14). Rather it
must have either the form

II -antlsymmetric type, aA wA . _ dS = b (H.2.221
overrides doublet matching C

or else the form

symmetric type, ff aD o dS = b (H.2.23)
overrides source matching C

If the closure condition has the first form, (H.2.22), then it must override

the doublet matching condition. If on the other hand it has the second form,
(H.2.23), then it must override the source matching condition.

This completes our discussion of closure boundary conditions at this
time. In section K.I.3 we describe the manner in which equation (H.2.14) is

transformed into a linear equation involving the singularity parameters.

H.2.6 User Boundary Condition Hierarchy

In this section we describe the hierarchical ranking of the user specified

boundary conditions. As observed in section H.2.2, the reason this ranking Is
necessary is that there are sometimes more boundary conditions available at a
control point than are actually needed. When this happens, a hierarchical
list of all available boundary conditions is constructed and the required

number of boundary conditions Is selected from the top of the llst.

In PAN AIR, the hierarchical ranking of user boundary conditions was

motivated by the following considerations:

(a) potential and doublet strength are quadratically varying, whlle

source strength and velocity are linearly varying; therefore the
former should be specified rather than the latter, since quadratic

functions are not amenable to extrapolation, but need to be "pinned
down" at network edges.

(b) tangential velocity boundary conditions are less stable than normal

velocity ones, therefore the latter should be specified, given a
choice, and
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(c) there are fewer source parameters than doublet parameters on a
network, in general, so specifying source strength (especially on
network edges) risks overspeclftcatton and a singular AIC matrix.

Based on these considerations, stx categories of user boundary conditions
are identified by a hierarchy ranking as indicated by figure H.IO. In the
second part of figure H.IO we present a ]ogtcal chart of the 6 boundary
condition categories that clearly indicates two facts: (t) the categories are
mutually exclusive and (tt) every nontrtvial boundary condition falls into
some category. This chart also indicates that category 1 and 4 boundary
conditions should not be specified on a "null doublet _ network while category
6 boundary conditions should not be specified on a "null-source" network. If
these considerations are violated, it is very likely that a singular AIC
matrix will result.

If a control point lies in a plane of symmetry, we must further categorize

the user boundary condition_ccordlng to symmetry _pe, in the sense of

section H.1.3. In figure H.11, we present an augmen--t_-6verslon of figure H.IO

that indicates the symmetry types of the various terms of the general boundary
condition equation (H.O.I) together with the extra restrictions imposed when a

control point lies in a plane of symmetry. Again, it is easy to see that the

boundary condition categories are disjoint and complete provided the given

boundary conditions are of purely symmetric or antls_nametric in type. We
emphasize again here that the user must provide symmetric boundary conditions

for a source network and antlsymmetric boundary conditions for a doublet

network, whenever the network lies in a plane of symmetry. The justification

of these restrictions is given near the end of appendix K.3.

In concluding this discussion, we remark that the definitions and ranking

of the boundary condition categories cannot be rigorously Justified. Rather,

the boundary condition hierarchy is a heuristic construct, based upon example

and the general considerations outlined at the beginning of this section.

H.2.7 The Complete Boundary Condition Hierarchy

We are now in a position to describe the construction of the complete

boundary condition hierarchy. In describing this construction, we will treat

in a case by case fashion the 8 cases indicated by figure (H.I). In addition,

for each case we will show that all of the internally generated boundary

conditions selected by PAN AIR are actually imposed.

Interior Control Point, away from any plane of symmetry

In this instance, PAN AIR will not produce any internally generated
boundary conditions so that the boundary condition hierarchy contains just the

user specified boundary conditions, ranked in the order described in section
H .2.6.
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Edge Control Point, away from any plane of symmetry

The internally generated boundary conditions that can be imposed along an

edge include doublet matching, closure and source matching*. However, because

the program requires that the user specify for closure to override either

source or doublet matching, there will never be more than two internally
generated boundary conditions. The various hierarchies that can arise when

closure is imposed are indicated below

Composite Composite Source Doublet

Network, Network, Alone, Alone,
Closure Closure Closure Closure

Overrides Overrides Overrides Overrides

_-matchin_ o-matchin_ o-matchin_ _-matchin_

Closure [_ matching] Closure Closure

[o matching] Closure user b.c.'s user b.c.'s

user b.c.'s user b.c.'s

(H.2.24)

Symbols appearing in brackets indicate that a boundary condition of this form

may or may not appear. The number of required boundary conditions, NNTBC, is

selected from the top of the appropriate boundary condition hierarchy. Note
that user boundary conditions are entered into the hierarchy in the order

described in section H.2.6 and illustrated by figures H.IO and H.11.

If closure is not a consideration along the edge, the various hierarchies

that are possible are as follows:

Composite Network Source Alone Doublet A1 one

[, matching] [o matching] [_ matching]

[o matching] user b.c.'s user b.c.'s

user b.c.'s (H.2.25)

Corner Control Point, away from any plane of s_rmmetry

Here, the boundary condition hierarchies that can arise are the same as

for an edge control point at which closure is not imposed (cf. (H.2.25) above).

PAN AIR can also generate a velocity jump matching condition at an edge

control point. Such a condition is entered into any boundary condition
hierarchy in the same position that a doublet matching condition would be
entered, Because it plays the same role in a boundary condition hierarchy
as that played by doublet matching, an expltcit discussion of the velocity
jump matching condition is unnecessary.
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Edge Control Point, on a plane of symmetry

When a control point lies on a plane of symmetry, the boundary condition

hierarchy must be constructed separately for each symmetry condition (e.g.
^S

, _A etc.). Aside from this extra little complication, these control points

are no different from edge control points away from a plane of symmetry, the
possible hierarchies being given by (H.2.24) and (H.2.25). Of course it will

generally happen that a different hierarchy is constructed for each symmetry

condition. As a simple example, consider an edge control point on a doublet
alone network. It is entirely possible that the two hierarchies shown below
would be constructed:

_S hierarchy _A hierarchy

user b.c.'s , matchin 9
user b.c.'s

Here, doublet matching would never be imposed on _S since doublet matching

is automatically satisfied for any abutment lying on an active plane of

symmetry. (Remark: Notice that a single hierarchy is constructed for each

symmetry condition. When we treat control points lying in a plane of

symmetry, we will have, for each symmetry condition _S or _A, both an IS] and
an [A] hierarchy.)

Corner Control Point, on a plane of symmetry

The boundary condition hierarchies that can arise for a control point on a

plane of symmetry are the same as for a corner control point away from any
plane of symmetry, and are given by (H.2.25). Of course, a separate hierarchy
must be constructed for each symmetry condition.

We now address the issue of a control point lying in a plane of symmetry.
Our actual discussion will treat only the case of one p--Faneof symmetry, so

that only two symmetry conditions, _S and _A need be considered. The exten-
J

sion of our procedures to a situation with two planes of symmetry is fairly

straightforward in principle, but intricate in implementation. In order to

illustrate the basic principle, consider the case of a control point lying in
the second plane of symmetry. In this case, we assign boundary conditions to

symmetry conditions _SS and _AS in essentially the same way as we assign

boundary conditions to _S for problems with just one plane of symmetry.

Similarly, _SA and _AA are to be handled very much the same as _A is handled

for problems with one plane of symmetry.

In the discussions thal follow, we distinguish the symmetric and

antisymmetric user specified boundary conditions by the notations bcS and

bcA. The symmetric part of bc S is denoted bc_ while the antisymmetric part of

is denoted bc_. One can also form bc_ and bc),bcA with the obvious

definitions. However, boundary conditions of this form are singular boundary
conditions in the sense that they generate a zero row in the AIC matrix.

v
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Finally we remark that when a control point lies in a plane of symmetry,

two hierarchies are constructed for each symmetry condition, one with symmetry

type [S] from which NNTBcS conditions are selected, and another of symmetry

[A] from which _JN_BC conditions are selected.type

Interior Control Point, in a plane of symmetry

Here, the only possible internally generated boundary conditions are just

those degenerate ones summarized by figure H.4, neither matching nor closure

being imposed at the interior of a network. Consequently we obtain the

following boundary condition hierarchies:

_S hierarchies, interior control point in a plane of symm).tr_

Composite Doublet Source
Network Alone Alone

IS] CA] [A] IS]

bc)  S=o  S-o bc) (H.2.26)

_A hierarchies, interior control point in a plane of symmetry

Compos ite Doublet Source

Network Alone Alone

IS]

"A
o : 0

...(_eA...

[A] [A] [S]

bc bc a = 0 (H.2.27)

Notice that the singular boundary conditions bc) and bc_c are always outranked

by an appropriate degenerate boundary condition.

Edge control point, in a plane of s_mmetr_

Here we have the possibility that closure may be imposed along the edge.

Since closure may take either of the two forms (H.2.22) or (H.2.23), we must

address both possibilities. In addition, we must treat the case in which no

closure condition is imposed along the edge. For the cases in which closure

is present, the various possible hierarchies are summarized by fig. H.12. If

closure is not present, the possible hierarchies are given by fig. H.13.
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Corner control point, in a plane of. sj_metr.y

In this case, the only possible internally generated boundary conditions
are the degenerate ones summarized by figure H,4 and source anddoublet
matching, The hierarchies that can arise are the same as for an edge control
point when closure is absent and are summarized in fig, H.13,

A careful perusal of (H.2.26), (H.2.27) and figures (H.12) and (H.13)

leads to the observation that when a control point lies in a plane of

symmetry, no boundary condition hierarchy contains more than one internally

generated boundary condition. Consequently, an internally generated boundary
condition will always be imposed provided an AIC row exists for the associated

control point and symmetry type.
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H.3 Onset Flows

Equation (H.O.1) is the most general possible equation in _ and its
derivatives, but it is often inconvenient for the user to evaluate the scalar

b on the right hand side of (H.O.I). The most common example arises from the
boundary condition

Wu'_ = 0 (H.3.1)

where W is total mass flux. Since

W = w + V_ (H.3.2)

equation (H.3.1) becomes

Wu.n = - V_'n = b (H.3.3)

The scalar b could, of course, be computed by the user at every control point,

but much labor is saved by having the program do so.

Similarly, consider the tangential velocity boundary condition

t'_u. V-_ : B (where B is user-specified), (H.3.4)

which becomes

tu'v u = B - V_'t U (H.3.5)

Finally, suppose a program user wishes to define total internal

stagnation, as opposed to perturbation stagnation. The boundary conditions to

be imposed should therefore indirectly (that is by specifying potential)

specify

WL = 0 (H.3.6)

Thus, we specify

_L : O (H.3.7)

where _is defined by

W =V_

on the surface, as illustrated in figure H.14.

Note that _ _ ¢ , where V =V_

Now, we prove that up to a constant, (H.3.8) requires that

(H.3.8)

(H.3.9)
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We now prove (H.3.9).

[v., x] = z
J

: (by (E.2.4))

We use reference coordinates.

[Bo] ij a [V=o , x]
axj

By (5.2.4)

(H.3.1Oa)

[Bo] ij a ( {_=o} [Co] "_
j,k,m axj k km Xm)

Noting that V_ and [Co] are independent of xj, while

(H.3.1Ob)

(Xm) : ajm
axj

(the Kronecker delta), we have

IT., x] :

(H.3.11a)

[Bo]ij {V=o} k [Co]km
j ,k,m

[Bo]ij [Co]kj {V®}k

ajm

(H.3.11b)

Now, applying (E.2.9) to Bo and Co, and noting by (E.3.9) that Co is its
own transpose,

(H.3.12a)

Thus,

(sT " (x)) -"I [V_ , x] + + =V_ + V+ = W

which implies (H.3.9).

So, the boundary condition (H.3.7) is equivalent to

(H.3.12b)

@L (x) - -I [_=o ,-_]
sB2 (H.3.13)

The right hand side quantities of equations (H.3.3), (H.3.5), and (H.3.13) are
automatically computed in PAN AIR for user convenience. But, in fact, PAN AIR
offers more general right hand side options which have a rather empirical
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justification for existence. These options arise from the introduction of an

"onset flow" O"o with the assumption

W = Uo + w (H.3.15)

Now, there is nothing empirical about (H.3.15) unless we make the assumption

Uo _ V (H.3.16)

where V== is the uniform freestream, aligned with the compressibility

direction to.

Even so, at 14ach zero, the boundary condition

(H.3.17)

.4b

combined wit_(H.3.15), where Uo is a uniform vector field U== which is not
parallel to V== (see figure H.15) is still theoretically valid, since the

Prandtl-Glauert equation reduces to Laplace's equation, and therefore has no

preferred direction.

Now, at non-zero Mach number, it is still possible for the s_all
perturbation assumptions to be satisfied if Uo is very close to ,==
everywere. The most common application of this is to simulate flow conditions

at multlple angles of attack which only differ slightly by varying the uniform

onset flow without _ryin_ the compressibility direction co. The advantage
is that as long as ,== = co is not varied, the same AIC matrix may be used
each time, thus saving on computation time.

If the perturbation to the freestream defined by the onset flow is small,

it need not be uniform. Consider the case of a propeller slipstream (see

figure H.16). The action of the propellers causes an increased flow which

does not arise from the solution of Prandtl-Glauert equation. Thus the

appropriate boundary condition to impose is (H.3.17) where

W = V® + AUI + w (H.3.18)

and aUi is the "local incremental onset flow", in this case the incremental
flow due to the action of the propellers. Once again, we can putWin the

form (H.3.15) by setting

Uo = Vo= + aUi (H.3.1g)

As a third example, we consider a case in which the onset flow is not a

small perturbation of the freestream, but is so in the neighborhood of the

configuration. Consider the case of an airplane undergoing a small rolling
motion of magnitude I=-=Iin a "right handed" rotation about an axis with

direction _" through a point Po (see figure H.17).

Computation of the magnitude l_'Ifrom a particular roll rate (in radians per

unit time) is discussed in section 7 of the User's Manual. This is an

unsteady phenomenon, but we simulate it (calling the flow "quasi-steady") by

defining an onset flow

Uo (p) = U==+ _x (P - Po) (H.3.20)
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where P is the control point, and imposing the boundary condition.

_._ : -U'_o._ (H.3.21)

Note that Uo is unbounded as I P - PoJ becomes large, and thus a
rotational onset flow is never a "small perturbation" in all of space, no
matter how small the rotation rate. Thus no theoretical justification for the
use of rotational onset flows exists, and so rotational onset flows must be
used with extreme caution. The use of a rotational onset flow is generally
valid, however, if the perturbation it induces is small in the neighborhood of
the configuration, and may be used to estimate aerodynamic derivatives due to
steady roll, pitch, and yaw rates.

PAN AIR provides fo_ all these right hand side boundary condition options

by permitting an arbitrary linear combination of the options described. Thus,
in general, the user may define an arbitrary onset flow at a control point P by

Uo (P) = U_+ aUi(P) + _ x (P - ) (H.3.22)

where the user defines U_ , a Ui , m, and Po. The vector U_ is defined
by a magnitude J_,J , an angle of attack a and angle of sideslip B, such
that (compare with (E.3.1))

u.= lu.l
COS _ COS 6 t-sin B

sin : cos B
(H.2.23)

The vector _(P) is specified by the user on a control point by control point

basis either as a vector in reference coordinates, or by specifying a

magnitude Ul, and angles =l, and Bl (l stands for local) such that

U1 = U= + Ui : U1

I cos _I cos B1 }

-sin B1

sin aI cos B1 (H.3.24)

Now, the general right hand side expression which may be defined by a user
for a boundary condition is

b(P) : b0 - bn U%.n --_T'Uo b_ [U= , P]

sB2 (H.3.25)

where bo, bn, t'_Tand b_ are user-defined quantities. We mention in

passing that various default options are available to define the standard

H.3-4



combinations which occur. These options are described in the PAN AIR User's
Manual.

This concludes our discussion of boundary conditions for the present. In

appendix K, we present a detailed description of how boundary conditions are

transformed into AIC constraints. In particular, the many complications

caused by symmetry considerations are thoroughly discussed.
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Away from

P-O-S

Interior

(no internally

generated boundary

conditions)

Edge

[Abutment interiors]

match I A-_ match

closure

0 match

Corner

Abutment intersections]

match All
Symmetry

o match
Conditions

Identical

On P-O-S

In P-O-S
o g.

U match l_match

closure

o match

Ss $_A

Deg.,[A] Deg. O IS]

!ss oo:b[s]SSw R
0 match IS] lJ match [A]

match

o match

S ^_ _CA

Deg. _[A] Deg.o[S]

o match[S] _Jmatch[A]

Each

Symmetry

Condition

Handled

Separately

Remark 1

Remark 2

Remark 3

Remark 4

For each case, the DQG boundary conditions that may occur for that

case are listed. For control points lying in a plane of symmetry,

the symmetry type (in the sense of sec. H.1.3) for these boundary

conditions is given in brackets (e.g IS] or [A])

For control points lying on or in a plane of syn,lnetry.,selection

must be done separately for each symmetry condition (_S or q_A)

No more than two DQG boundary conditions will ever be requested

since closure must always override either source matching or

doublet matching

I)eg,+Oegenerate boundary condition of the fom_S-O oraA-O,
See ftgure H;4 and appendix K.3 for more detail.

Figure H.1 - Summary of the separate cases that must be handled during

boundary condition selection
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a) Source analysis
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b) Source design/1
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directions of
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X X

matching or closure edge
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Figure H.2 - Boundary condition locations for source networks
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a. Doublet analysis/Doublet forward weighted
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X X
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Figure H.3 - Boundary condition locations for doublet networks
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d. Doublet analysis network with smooth abutment
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X X

X X

X

X

d
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X X X:

X X

X X
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X

smooth abutment

e. Doublet design
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X X
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Figure H.3 - Concluded
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Symmetry
Condition: S A

Degenerate
Boundary
Condition

Symmetrytype of
the degenerate
boundary condition
(cf. sec. (H.I.3))

_S = 0

antisymmetric

^A(7 : 0

symmetric

Figure H.4a- Degenerate boundary conditions for configurations

with one plane of symmetry
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Control point lies in first plane of symmetry

Symmetry

Condition: SS cAS _AA $ SA

Degenerate

Boundary

Condition

Symmetry

Type

_SS : O

antisymmetric

_AS: 0

symmetric

_I AA = 0

symmetric

_SA : 0

antisymmetric

Control point lies in second plane of symmetry

Symmetry

^ASCondition: SS _AA _SA

Degenerate

Boundary

Condition

Symmetry

Type

ASS
: 0

antisymmetric

_AS : 0

antisymmetric

_AA: 0

symmetric

_SA : 0

symmetric

Figure H.4b - Degenerate boundary conditions for configurations

with two planes of symmetry
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Figure H.5a - The velocity jump matching condition at a thin trailing edge

(Vorticity matching)
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Figure H,5b - The velocity jump matching condition at a thick trailing edge

(Vorticity matching)
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Abutment Intersection Conflquratlons

NI

N4 _ N3

N2

V

Associated Graphs ( cf. appendix F.5)

Figure H.6 - Types of abutment intersections at which source
matching is a reasonable boundary condition

Notation: Ak " Abutment k

Nj - Network j
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Figure H.9 - Pattern of streamlines on imposition of

a closure boundary condition
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Boundary
Condition
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Ranking

I

2

3

4

5

6
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Restriction

c D • O, all others : 0

cA * O, aA = "_A = 0

aA,O, tA=O

_D " O, aA = CA :-_A : aD = 0

tA*O

aD • O, aA = cA =-_A = 0

Example

_=b

(_A: b
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? ? ? v' O 0
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? indicates the item is allowed to be zero o_ nonzero

Figure H.IO - User boundary condition hierarchy
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indicates the item is allowed to be zero or nonzero

/ indicates the item must be nonzero

IS] indicates a term or boundary condition of symmetric type

A] indicates a term or boundary condition of antisymmetric type

Figure H.11 - User boundary condition hierarchy for control

points lying in a plane of symmetry
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(a) Case: Closure condition of the form (H.2.22)

Note - this closure condition is of type FA], and must

override doublet matching along the edge.

The network must have a non-null doublet type

S hierarchies

Composite Network Doublet alone

[0 match] _S : 0 _S : 0

A hierarchies

Composite Network Doublet alone

is]
_A = 0 closure

Figure H.12 - Possible boundary condition hierarchies for an edge control

point in a plane of symmetry, closure is present
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(b) Case" Closure condition of the form (H.2.23)
r _

Note - this closure condition is of type IS], and must

override source matching along the edge.

The network must have a non-null source type

S hierarchies

Composite Network Source alone

Is] [_] [_]
A Sclosure _ = 0 closure

.s

_A hierarchies

Composite Network Source alone

[_] [_] is]
_A : 0 _ match o = 0

Figure H.12 - Continued
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_S hierarchies

Composite Network Source alone Doublet alone

[o match] _S= 0 [a match] _S = 0

_c_ -_o_- _c_ -"_-
a

_A hierarchies

Composite Network Source alone Doublet alone

oA: 0 [U match] oA : 0 [U match]

-_- _c_ -_- _c_

Figure H.13 - Boundary condition hierarchies for edge and corner control

points in a plane of symmetry (no closure)
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Figure H.14 - Total internal stagnation

V, = freestream aligned with compressibility vector

U_ = uniform onset flow

Figure H.15 - Onset flow, not parallel to compressibility direction
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Figure H.16 - Propeller slipstream

C

onset flow

l 1 1

Figure H.17 - Airplane undergoing small rolling motion
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1.0 Singularity Splines

Singularity splines define the source and doublet distributions on the
entire configuration in terms of the source and doublet singularity
Darameters. These distributions are defined by a collection of matrices.
First, the source and doublet distributions on a subpanel (recall from section
5.5 that a panel is partitioned into eight subpanels) are each defined by a
"subpanel spline matrix" (denoted, respectively, SPSPLS and SPSPLD) in
terms of five "panel source parameters" and nine "panel doublet parameters."
Thus there are eight of each of these matrices associated with each panel.

Next, the panel source and doublet parameters are defined by "outer spline
matrices" (denoted, respectively, by BS and BD) in terms of singularity

parameters located in the neighborhood of the panel. Each panel has
associated with it a continuous doublet spline matrix, a continuous source
spline matrix and, possibly, a discontinuous source spline matrix.

The subpanel spline matrices are defined by equation (5.5.7). That is,

[SPSPLS] 3x5 relates the three coefficients Oo, o_, o n (which define a

linear source distribution on the subpanel) to the five panel source

parameters (that is, the source strengths at the five points on the panel

illustrated in figure l.la). Similarly, [SPSPLD] 6x9 relates the. six

, (which define a quadratic doublet distributiononcoefficients uo ..., _nn

the subpanel) to the nine panel doublet parameters (whose locations are

illustrated in figure I.iD).

The outer spline matrices are defined by equation (5.5.8). That is,
[B S] defines the five panel source parameters in terms of the neighboring
source singularity parameters (generally nine in number), while [B D] defines
the panel doublet parameters in terms of the neighboring doublet parameters
(generally 21 in number).

The subpanel and outer spline matrices are used in the influence
coefficient calculations. The subpanel spline matrices are first used in
order to compute "panel influence coefficient" (PIC) matrices (see sections
4.4.2 and J.l), and the PIC matrices are multiplied by the outer spline
matrices to obtain potential and velocity influence coefficient matrices
([¢IC] and [VIC]) which give the perturbation potential and velocity at a
point, in terms of all singularity parameters, due to all the panels in the
configuration (see sections 4.2.3 and 5.9.1).

In section I.I we discuss the construction of outer spline matrices.

While their construction is simple in principle, based on a least square
procedure, in practice it is quite involved because there are many special

cases. In particular, a special "edge spline" is used near network edges,
which, in conjunction with the doublet matching boundary conditions discussed

in Appendix F, results in precise matching of doublet strength along network

edges. In section 1.2 we describe the construction of subpanel spline
matrices.
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In section 1.3 we discuss full panel and half panel spline matrices.
These matrices define source and doublet distributions specified by single
polynomials over the whole panel or half the panel, respectively, also in
terms of the panel singularity parameters. The distributions are rough
approximatiens to the 8 subpanel distributions defined by the subpanel
splines. They are used in "intermediate field" influence coefficient
calculation.

Next, in section 1.4, we discuss "far field moments", matrices describing
integrals of the singularity strength over a panel in terms of the panel
singularity parameters. The matrices are used in far field influence

coefficient calculation. Finally, in section 1.5, we discuss the theory of
the least squares procedure.

We now briefly discuss the reasoning behind the subpanel and outer spline
construction techniques. First (cf. section C.3), we require the spline to be
stable: the disturbance in the singularity distribution caused by a
perturbation of a boundary condition should die off quickly.

Second, the source spline should be linearly accurate and the doublet
spline quadratically accurate. That is, if the source parameters are defined
by a linear function, the source distribution defined by the spline matrices
should be exactly that linear function. An analogous property should hold for
the doublet splines. The justification for using a linear source and
quadratic doublet distribution is given in section B.5.

Third, the spline must be local in nature. That is, the singularity
distribution on a panel must depend on a reasonably small number of
singularity parameters. This is due to the storage problems which would occur
otherwise. That is, too much core and disk storage would otherwise be
required for each panel.

Fourth, the doublet strength should be continuous (see section B.4). It
would be preferable to have continuously differentiable doublet strength,
continuous source strength and smooth geometry as well, since these conditions
would permit a further integration by parts of the influence coefficient
integrals, reducing their singularity. Unfortunately, these goals are not
achievable without an unacceptable increase in the cost of evaluation of

influence coefficient integrals. Moreover, while it is a fairly
straightforward matter to achieve a continuous source distribution, it has
been found that without smooth geometry, continuous source splines induce
significant errors in the total source strength on a network, seriously
degrading the accuracy of the aerodynamic influence coefficient matrix.

Finally, the entries of the PIC matrices, which are defined as sums of
integrals, should be computable in closed form. That is, numerical
integration should not be required for the evaluation of the integrals. The
reason for this requirement is one of simplicity. The integrands in
(5.6.9-10) are far too singular to be integrated numerically as they stand.
It might be possible to partition the integral into a regular part, integrable
numerically, and singular part, integrable in closed form, but such a method
has not yet been developed.
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It is the avoidance of numerical integration, in combination with the
maintenance of geometric continuity, that causes muchof the complexity of the
spline construction. Geometric continuity between panels can be maintained
either by breaking up a panel into flat subpanels, or by defining a single
curved panel. The integrals over the curved panel are not computable in
closed form in supersonic flow, however.

Onceone has decided to use flat subpanels, a minimumof five planar
regions (those of figure 5.2) is mandated to achieve geometric continuity
while avoiding any kink in the surface near a panel center control point. The
use of eight subpanels has been chosen because it offers a convenient method
of defining a continuous doublet distribution, while not requiring polynomials
of degree greater than two. An explicit polynomial distribution has been
chosen rather than a parametric distribution because the integration in
parametric coordinates can not be performed in closed form.
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1.1 Outer Splines

There are two basic methods that are used for the construction of outer
splines, corresponding to the cases in which the resulting singularity
distribution is required to be continuous, or is not. In PAN AIR, a
continuous outer spline is constructed for the doublet distribution while both
tyDes of outer soline are constructed for the source distribution. The
discontinuous source spline is used in the computation of influence
coefficients and the evaluation of boundary conditions while the continuous
source spline is used just in the post processing modules. (It was originally
intended that the continuous source spline be used for all purposes. However
its inability to conserve total source strength led to the introduction of
discontinuous source splines in the solution portion of the code. Because the
post-processing modules had built into them the assumption that source
strength is single valued, the continuous source splines were retained for
these essentially less demanding functions.)

The construction of continuous outer splines is a two step process. In
the first step, row vectors SPS and SPD (called "spline vectors") are

formulated for grid points as i11ustrated in Figure l.lc for some typical
cases. These row vectors define the source or doublet strength at each
enriched grid point in the network as a linear combination of surrounqing
singularity parameter values. In the second step, matrices [B S] and [B D]
are constructed for each panel, giving the source or doublet strength at the
appropriate grid points on the panel (panel singularity values) as linear
combinations of values of singularity parameters in the neighborhood Of the
panel.

Thus the matrices [B S] have five rows while the [B D] have nine rows,
since the source strength is defined at five p_ints on a panel (the panel
source parameter locations) by row vectors SP_ , while the doublet strength
is defined at nine points by row vectors SPD (see Figure I.i). The number
of columns in a matrix B is variable: it equals the total number of
distinct singularity parameters on which the panel source or doublet
parameters depend. The matrices B are assembled from the required row vectors
SP in a fairly straightforward manner described in the maintenance manual (see
the Dreface of SUBROUTINE VECUNM of the DQG module). Briefly, first row
vectors SP are computed for every grid point in the configuration (except that
row vectors SPS are not needed for panel source parameter locations) and
stored on disk. Then, when the spline quantities for a single panel are being
computed, the five (or nine) row vectors for each of the panel source
(or doublet) singularity parameter are fetched from the disk. These row
vectors are then amalgamated into a single matrix BS (or BD) by VECUNM.

In this section the discussion of continuous outer spline computation will

simply describe the computation of individual row vectors SPS or SPD. The

basic principle is simple. For source splines, the source strength at a grid

point is fit in a linearly accurate manner to as few surrounding source

parameters as possible while for doublet splines we do the same in a

quadratically accurate manner. But while the basic principle is simple,

implementation is complex because of a myriad of special cases which do not

fit the general rules.
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The construction of a discontinuous source outer spline matrix is also
Derformed in two steDs. First, a linear function of the form Oo+_ _+_nn
is obtained by performing a least squares fitting procedure that fo_ma11_uses
the values of the alobal source parameters in the neighborhood of the panel.
(Here, the variables _ and n are local coordinates on the mean panel.)
Second, this linear function is evaluated at the five panel source parameter
locations, each evaluation generating a row of the source spline matrix, BS.

1.1.1 Source SDlines for Analysis Networks

I.I.I.L Source Spline Vectors for Continuous Splines

Computing the row vector describing the source strength at the center of a
panel in an analysis network is particularly simple, since a source
singularity parameter is located there. Thus the source strength is just the
singularity parameter value; that is,

_9 : x_ = LIj x_ (l.l.la)

or LSPS] = LIJ (I.i.1b)

the row vector of length i with unit value.

1.1.1.2 Neighboring Singularity Parameters

Next, to find the source strength at a panel corner, we perform a
"bilinear fit" (a process to be described below) to the four surrounding
source parameter values. In Figure 1.2, we show the variety of cases which
may occur in the course of determining the four neighboring source parameter
locations. In the "standard" case (A), the four source parameters are the
obvious adjacent ones. In cases (B) and (C), the network edge precludes the
existence of some of the obvious choices, and neighboring parameters must be
obtained by reaching toward the interior of the network. The logic used for
points B or C, however, when extended to D, results in a large number of
neighboring source parameters. To keep storage to a minimum, we choose (in a
fairly arbitrary manner) from this set of points, those points which are as
far as possible in index from the uncollapsed edges of the network.

1.1.1.3 Computation of a Local Coordinate System

Next we compute the source strength at a panel corner in terms of the four
surrounding singularity parameter values, once we have in fact located these
four parameters. The first step is to form a local coordinate system whose
( 6, n) plane is the one in which the source strength is to vary linearly.
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The four singularity parameter locations determine (generally
non-orthogonal) bas]s vectors vE and vn, connecting pairs of panel edge
midpoints, for this coordinate _ystem as follows. Let Po be the grid point
at which we wish to find the source strength. Then for any point P on the
network, we want to be able to determine coordinates _(P), n(P), _ (P), such
that

{_-_o) : _(P) v'_ + n (P)_n + _(P)_ (I.1.2)

The I_, n, _) coordinates used here (in section 1.1) are not related to the X'
coordinate system (also denoted ( g, n, _) at times) used in Appendix E and
sect._ion1.2. Here, v_. is a vector perpendicular to the plane spannedby v"_
and v_. Such a vector is, of course, a multiple of vr x vn, but a simple
dimensional argument showsthat ]f v_ is to be independent of the sca e of
coordinates (that is, if _ is to be doubled whenevery point coordinate in
the network is doubled), wemust have

V E V n
V_ = X

NOW, to find the functions which define _, n, and _, let us first take the
cross product of (1.1.2) with v_ on the left, and then the dot product with

v_. Next, we tak_ the cross, product with _., on the right, and then take the
dot product with v_. Since

v_ x _ = 0 = vn x

v_ • v_ : 0 : v n. v_

x _ ) .v_ = 0 = (v_ x vn). v_

we obtai n

v_ x (P- Po) : n (P) (v_ x vn)

(P - Po) • : z;(p) (v_.

1.1.4)

(I.z.5)

Dotting the first two equations with _'_ , we have

v_ x (P - Po)" = n (P) x v n) . v:

Thus, _(p) : (P'- P"o) x ;n.v"_ _(p)

I;_ " 1312X V n

{r •

(I.1.7)
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1.1.1.4 The Bilinear Fit at Panel Corner Points

Now, let PI ..... P4 be the four source parameter locations for any of
the cases illustrated in figure 1.2, and let _Sl : o(Pi) denote these

source singularity parameters. Then these four values of source strength

define _ "Dilinear" function in _ and n, that is, a function

_(_' _) = °O + _i _ + _2 n + o3_n (i.1.8)

(where the symbol oo as used in section I.i has a different meaning than in

section 5 or the remainder of Appendix I), which takes on exactly these four

values. The function a ( [, n) is defined by the fitting condition

• S-

xs
2

xS
3

_S
• 4

-i {(Pl) n(Pl) {(P1)n(PI-

_1 C(P 4) n(P 4) _(P4)n(P 4)

oO

oi

_2

_3

[BL] o]

of

OC

}
(I.i.9)

and thus

_0

oi

1 02
|

ia3

: [BL] -I

• C" •

S

)'2

' S

;_2

S

_4 (I.i.10)

The points PI,...,P4 are not coplanar in general, and thus computing

o(_,n) by (I.I.I0) in terms of surrounding source parameters, ignores the

-component of the parameter locations; in other words, we project the

parameter locations to the plane defined by _v_. and _n" This is justifiable

v
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in view of the fact that a reasonable numberof panels should be used in
defining a geometric surface, and thus the distortions due to curvature can be

neglected locally.

Now, by (1.1.7), _(Po) =

a(Po) = °o

Thus by (1.1.10),

_(Po) : _o = L1 0 0

n(Po) : O, and thus by (1.1.8),

O] [BL] -I

(I.i.ii

(1.1.12

Setting

LSPS] = [I 0 0 O] [BL] -I (1.1.13

we see that

o(Po) : LSPS]

(1.1.14)

Note that LSP_ is just the first row of [BL] -I. Now, by (1.1.14),
SPS is just the row vector we seek; namely, it gives the value of source
strength at the point Po as a linear combination of four neighboring
singularity parameters. A spline vector may similarly be constructed for
every panel corner point in the network, whereupon matrices BS may be
computed for each panel as discussed at the beginning of section I.i.

This concludes the discussion of continuous source spline construction for
source analysis networks. Two special cases, networks with only one row or
column, and networks with only one panel, are discussed in the maintenance
document (see section 4-1.4 and SUBROUTINE ONDFIT of the DQG module).

1.1.1.5 Discontinuous Source Analysis Splines

The construction of a panel's discontinuous source analysis spline,

required for computation of influence coefficients, is achieved by solving for

coefficients Oo, _, o n of the weighted linear least squares problem
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min G

ao,a_. ,a n =

where the quadratic form G is defined by

n xS
+ °k _ + °n _ _ )]2G = _ [wi(o ° i i ]

i=i

Here w I denotes a weight and _ is a global source parameter at some point _i

in the neighborhood of the panel. The coordinates (Ei, hi) are obtained
by performing a length preserving projection of _i onto the panel's mean
plane followed by a transformation of this projected point into the mean plane
coordinate system. Passing over for the present the selection of wi and

_§ we observe that the minimization problem we have posed has a solution of
I'

the form

I°nl

+
A

r

A_

w A_

.r

n

Here, we have used the conventional notation A+ to denote a matrix
pseudo-inverse. Now, letting (_k, _k), k = i,...,5 denote mean plane
coordinates of the projection* of the five panel source parameter locations
onto the mean plane, we may evaluate the five panel source parameters by

Ok : oo + o_ _k + On _k

This evaluation process induces an expression for ak in terms of _,
providing a definition for [BS], the source outer spline,

° I

o2

o 5

i

I

i

i

_2 _2 ] A+|

I.

- i

_S

[B s]: X

* This projection is performed in scaled coordinates•
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We now return to the problem of selection of weights and global source
parameters to be used in the fitting process. In Figure 1.3 we illustrate
the variety of cases which may arise when identifying the neighboring source
parameters to be used in spline construction. For any given panel, the

parameters _§ are selected as indicated.
1

w i = I I
I0000 if xS lies on the panel

The choice of a very large weight for the panel's own source parameter is
crucial in that it is this condition that causes total source strength for the
panel to be correct to sufficient accuracy.

The weights w i are chosen as follows:

if x§ does not lie on the panel for which BS is
bein_ computed

The foregoing procedure will fail to provide enough data points if the

network in which the _anel lies has only one row or column of panels. When
this happens, points Pi are selected as indicated in Figure 1.4. The value

of _# used for points _i that are not global source parameter points is just

the value of source strength at the panel center.

1.1.2 Doublet Spline Vectors for Analysis Networks, Doublet Forward
Weighted Splines

Doublet spline vectors SPD are more complex to compute for a variety of
reasons. First, the requirement of quadratic accuracy forces the doublet
strenqth at a grid point to depend on a greater number of singularity
parameters than the source strength. Second, to insure doublet continuity
across network edges on non-smooth abutments (along which boundary conditions
specifying the matching of doublet strength are imposed), we require that the
doublet strength at any point on a network edge depend only on the singularity
parameters located on the network edge. The example of a thin wing with a
curved planform illustrates the need for this requirement (cf. Figure 1.5).
The doublet strength is zero at the singularity parameter locations on the
free network edge. If the doublet strength at a panel corner point on the
edge depended on singularity parameters in the interior, it could not be zero,
independent of conditions in the network interior, as we wish it to be. But
by insisting that it only depend on edge parameters, we insure that it is zero.

A third cause of increased complexity in determining doublet spline row
vectors is the introduction of "smooth abutments." These are abutments
consisting of portions of two distinct network edges, along which splines
rather than boundary conditions are used to enforce continuity of doublet
strength.

For grid points which do not lie on a network edge, obtaining the row
vector SPD which describes the doublet strength at each grid point in terms
of surrounding singularity parameters is a two step process. First, the set
of surrounding singularity parameters is determined. Second, the doublet
strength at the grid point is determined in a quadratically accurate manner in
terms of the neighboring singularity parameters.
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Doublet forward weighted (DFW)spline vectors are calculated in the same
manner as the doublet analysis spline vectors. The only difference being
weighting factors used in the least squares fit. A description of the
different weighting schemeis given in section 1.1.2.4.

1.1.2.1 The @uadratic Least Squares Fit for Panel Corners or Panel EdgeMidpoints

This quadratically accurate procedure is somewhatmore complex than the
bilinear fit employed for source splines. While there is generally a Dilinear
function which exactly fits values at four points (unless three of the four lie on
a line, which is unlikely if they are panel centers), a quadratic function is less
well behaved. There is a unique quadratic through six points, unless these points
all lie on two lines. With very regular paneling, however, it is quite likely
that six center points chosen as neighbors of a grid point will, in fact, lie on
two lines. Thus, the procedure we choose for the quadratic fit is a "least
squares" procedure.

That is, we choose an excessive number of neighboring singularity parameters,
and find the quadratic function which takes on the values of the closest

singularity parameters exactly, while taking on the the values of the remaining
singularity parameters in a "least squares" sense. The row vector SPD for the
grid point is determined by the value the fitting function takes on at the grid
point, expressed as a linear combination of the neighboring singularity parameter
values.

We now describe this least squares procedure more precisely. Let

(x_, i = l,...,k) be the singularity parameters (in the neighborhood

of the selected grid point) to which we fit the quadratic function exactly.

Let (xD i : k + I, k+m) be the remaining neighboring singularity
i, ...,

parameters. Let XDl be located at (_i' hi, :i ), where the

computation of these coordinates will be discussed shortly. Once again,

however, this is not the local (_, n, _) coordinate system denoted X' in

Appendix E.

A =

Let A be the matrix

I _I nl i12 n

2
1 {k nk 112 _k Ck nk 1/2 n_

B

This is the matrix for which any function

f(L, n) = fl ÷ f2{ + f3 n + 1/2 f4 L 2 + f5 {n + 1/2 f6 n2

(1.1.15)

(1.1.16)
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taking on the values

f( _i' hi) = IDi i = I,..., k (I.1.17)

satisfies
, D TM

rfl _I

= D
[A]kX6 f2 x2

q

D
f6 . I k • (1.1.18)

Now, whenever k < 6 as it will be in the current applications, equation
(I.1.18) does not fully specify the coefficients of f. The coefficients are

completely specified by requiring the minimization of

k+m

2 [f (t ni ) _ >. D]2wi i' i

i=k+1 (I.I.19)

where wi is a "weight", to be discussed shortly, which depends on the
relative locations of the singularity parameter and the grid point.

If we write

[A1]mx6 =
I i r.k+ 1 nk+l 1/2 &2 1

k+l &k+ink+l i/2n_+

i 'k+m nk+ m i12 ,k2+m 'k+mnk+m i/2nk2+m ]

(z.I.2O)

equation (1.1.19) becomes

I = _ wi 2 _ (A'i-k s)fs _ 1i D 2
i=k+l s=l ' (I.I.21)

The method by which we minimize (1.1.21), subject to the exact conditions
(1.1.18), is called a "constrained least squares" procedure, and is discussed
in section 1.5. The result of performing this procedure is a (6 x (k+m))
matrix LSQ such that

1.1-9



I }
• = [LSQ] _D
f6 k+m (I,i._2)

Now, we will construct our (_, n, _) coordinate system such that at the grid
point Po we have

_(Po) = 0

n(P o) = 0 (1.I.23)

Thus,

f(Po ) : fl
xlD 1

LLSQI , -] "

xDk+J (I.i.24)

But we required the row vector SPD to define the value at Po of the
quadratic function f which satisfied (I.I.18) while minimizing (I.1.21), and
thus

LSP D] = LLSQI,.] (I.i.25)

that is, SPD is the first row vector of the matrix LSQ defined by the
constrained least squares procedure.

In describing the construction of SPD for a grid point in a network
interior, we have deferred the discussion of three items. These are the
determination of the set of neighboring singularity parameters, their
(_, n, _) coordinates, and the corresponding weights wi. We will discuss
them in order as follows.

1.1.2.2 Neighboring Points for Least Squares Fit

Figure !.6a illustrates the location of neighboring singularity parameters
for grid points which do not lie near a network edge. Note that, since a
singularity parameter is located at each panel center, the spline vector
SPD for a panel center point is (like the spline vector SPm) a vector of
length i with a unit entry.

Now, if the grid point (panel corner or edge midpoint) lies near (but not
on) a network edge, the set of neighbors must include singularity parameters
on the network edge. Actually, we fit a quadratic function to neighboring
grid points, where these grid point need only be singularity parameter
locations when they are in the interior of the network. The value of doublet
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strength at those grid points which lie on the network edge depends in turn on
a small numberof singularity parameters located on the network edge. This is
a procedure which is defined in detail in the maintenance document (see
section 4-I).

Figure 1.6b illustrates the neighboring points we use for the quadratic
fit to obtain a spline vector for a grid point which lies near (but not on) a
network edge which does not belong to a smooth abutment. Recall that only one
singularity parameter is located on a collapsed edge of a network.

Figure :.6c illustrates the set of neighboring points when the grid point
in question lies near a smooth abutment. In this case, we see that the set of
"neighboring points" may lie in two distinct networks. This is because the
singularity parameters on the network edges on the smooth abutment (though not
at the corner points at the ends of the abutment) have been removed for
reasons of economy. The neighboring points in the same network as the point
Po are chosen in the usual manner (see Figure :.6a) while those in the
adjacent network are chosen as illustrated. The precise method by which the
latter points are picked is described in the maintenance document (section
4-1.2.1.2).

1.1.2.3 Construction of a Local Coordinate System

Next we discuss the construction of a (_, n, 4) coordinate system. This
system is similar but not identical to that of section 1.1.1.3, and totally
distinct from the X' coordinate system X' of Appendix E or section 1,2.2.5.
First, we construct basis vectors?r and _n as illustrated in Figure 1.7
That is, v". and _ span pails of enriched grid points adjacent to the base
point Po" _Next, _e define v by (1.1.3). Then, analogously to (1.1.17), we
define

X V n

_"(p) = (P - Po) •vl;

(1.1.26)

The bars indicate that these are preliminary coordinate values which will
be adjusted to account for surface curvature. Consider a cylindrical surface,
as illustrated in Figure 1.8 If we use the coordinates _ and n above, we are
essentially projecting the surface down to the tangent plane at the point

Po" When the surface is highly curved, this makes the points A and D appear
to be closer to Po than they really are, since we are dealing with their
projected images A' and D'. The points B' and C' are also closer to the grid
point than B and C, but not in the same proportion.

We rectify this by scaling the _ and n coordinates of a point according to
its height above the tangent plane. We define a scaling factor

A(P) : [ _'(p)2 + "_(p)2 + _(p)2]

i(p)2 +-_(p)2 (I.i.27)
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Thenwe define

_(P

n(P

: A(P) I(P)

: A(P) _(P) (i.i.28)

This coordinate scaling assures that the contribution of distant points is
more accurately measured. Note that the denominator of A(P) is non-zero
provided P # Po

1.1.2.4 Weights for the Least Squares Fit

Next we consider the weights wi for the least squares procedure.
In order to provide stability, we would like to fit more closely to nearby
singularity parameters than further ones. This is done in part by fitting the
quadratic function exactly t_ the nearest parameters, as illustrated by Figure
1.6.

A second consideration in determining weights is the desire to give
heavier weights in supersonic flow to points which are upstream of the grid
point than to those which are downstream. This weighting has been found
experimentally to reduce instabilities which arise at high Mach numbers. In
recognition of these requirements, we set wi = w(P) where

w(P) = i + kM=:(l - _o" ( P - Po)! P - Po )

(1 + 2 kM_) (1.1.29)

The constant k is set to zero in subsonic flow in view of the lack of a

preferred upstream direction. That is, the compressibility direction c o may
be replaced by -c o without changing the solution to the equation. In
supersonic flow, k has been chosen by experiment, and has order of magnitude I.

Since the dot product of unit vectors lies between -I and i, the numerator
of (1.1.29) lies between i and (I + 2k M®). Thus the ratio of weight
(neglecting the effect of distance) at a directly upstream point to that at a
directly downstream point is 1 + 2k M_ . For M_ = 3, and k = i (the
provisional choice for k), this ratio is 7.

The weights for the doublet forward weighted splines are obtained from
equation 1.1.29 by setting k = i and M_ : 2. Thus, the simple expedient of
changing the weights in a least squares fit transforms a doublet analysis
spline into a doublet design spline (DFW).

1.1.2.5 Edge Splines for Non-Smooth Abutments

Finally we consider grid points (panel corner points or edge midpoints)

lying on a network edge. A network edge is divided into distinct portions
belonging to different abutments. A doublet parameter is located at the grid
points which form the endpoints of the portion of the edge belonging to the
abutment (if such an endpoint is not a network corner point, the doublet
parameter is an "extra" singularity parameter (see figure 5.13)). Doublet
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parameters are also located at the panel edge midpoints unless the abutment is
a smooth one, in which case the parameters are removed (doublet parameters
located at abutment endpoints are retained for simplicity).

We discuss first the case of a non-smooth abutment. In that case, the

value of doublet strength at a grid point depends only on singularity
parameters located on the network edge.

Consider the abutment illustrated in Figure 1.9a, with one network edge
panelled more finely than the other and with a panel corner on the more finely
paneled network located wherever the more coarsely paneled network edge has a
panel corner. The goal is to find a splining method such that the imposition
of doublet matching boundary conditions of some or all of the control points
on the edge results in the exact matching of doublet strength on the whole
edge.

Experimentation with least-squares-type splines shows that they cannot
satisfy the above considerations. Let us consider, on the other hand, a
differentiable spline. Let the edge be divided into n intervals, as
illustrated in Figure 1.9b. It is reasonable to ask how many differentiable
functions exist, defined by a single quadratic on each of the n intervals.
Now, there are 3n linearly independent quadratic functions altogether (since a
quadratic function on an interval has 3 coefficients), and requiring
continuity at P2,..',Pn_I yields (n-l) constraints on the set of
functions, while requlrlng continuity of derivative at these points provides
(n-i) additional constraints. Thus, there are (n+2) linearly independent
piecewise quadratic functions with continuous derivatives.

But this is equal to the number of control points on the edge, and so
there is a unique differentiable function which takes on a prescribed set of
(n + 2) values at the midpoints of the intervals and the endpoints of the edge.

We can apply this result to the situation illustrated by Figure !.9a The
doublet distribution on the edge i will consist of some differentiable
function defined by a single quadratic on each interval of edge i. If we now
impose doublet matching boundary conditions at the control points of edge 2,
we obtain on edge 2 the unique differentiable doublet distribution defined as
a single quadratic on each interval of edge 2, which agrees with the doublet
distribution on edge i at the specified points. But, since every interval of
edge 2 is a subset of a corresponding interval on edge i, the doublet
distribution on edge I satisfies the above criterion too. So, since the
distribution is unique, the doublet distributions on edge i and edge 2 are
identical.

Summarizing, we have shown that if edges I and 2 form an abutment, and the
paneling on edge 2 is a "refinement" of the paneling on edge i (that is, every
corner point of edge I is also a corner point on edge 2, though edge 2 may
have additional corner points), then the imposition of doublet matching at the
control points of edge 2 results in exact matching of doublet strength along
the entire abutment. Generalizing, if several network edges meet in an
abutment, and one edge is a refinement of each of the other edges, then the
imposition of doublet matching boundary conditions on that edge forces the
alternating sum of the doublet strengths to zero:

_E_si ui = 0 (1.1.30)
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where si = ÷ I.

Unfortunately, the differentiable edge spline, while leading to doublet
continuity under a greater variety of circumstances, does not permit forward
weighting in supersonic flow. As a result, the differentiable edge spline is
insufficiently stable and cannot be used in Pan Air. This fact was determined
fairly late in the development of Pan Air, and thus a discussion of the
differentiable edge spline has been included in this document.

The sDline which is actually implemented in Pan Air is a one dimension
quadratic least squares fit. Consider, for instance, a network edge as
illustrated in figure 1.9b. The points PI,..., Pn+_, and Mi,
i=l,...,n, are s_ngularity parameter locations, ana the doublet strength
there is defined to be equal to the value of the singularity located there.
Thus the doublet sDline vector SPD for each of these points is a unit vector
of length one, as it is for panel center points in a doublet analysis network.

Next, the doublet strength at the points Pi, i:2,...,n-1, is obtained by
a constrained least squares analgous to that described in section 1.1.2.1, but
in one dimension. That is, the quadratic function f(t) (t a variable defining
distance along the network edge) is found such that

D
f(Mk) : u(Mk) : Xk k = i,i+l (l.i.31a)

D
and f(Mr) : u(Mr) : _r r : i-l, i+2 (l.l.31b)

in a least squares sense.

Then the row vector SPD which defines u(Pi) in terms of the singularity
D k= i-i ... i÷2) is such thatparameters (Xk, , , ,

u(Pi : f(Pi ) (1.i.31c)

Wenow discuss the differentiable edge spline which is not implemented in
PanAir. First we must compute the spline matrices which correspond to this
differentiable piecewise quadratic distribution. It can be shownnumerically
that such a function, if it has a non-zero value at one panel center, and is
zero at all other panel centers and the endpoints of the edge, is never
identically zero. Rather, it behaves as illustrated in Figure I.I0;
oscillating with an amplitude which diminishes rapidly but never reaches
zero. Thus, the spline is stable under doublet specification boundary
conditions; however, it is not local, since the doublet strength on an
interval depends weakly on the doublet strength at a panel center far away.

In order to avoid storing lengthy spline vectors, we must redefine our
doublet parameters to make the spline local. That is, a doublet parameter on
a network edge will not have as its value the doublet strength at its
location. For this purpose, consider the interval [-i, I] on which we
define the quadratic function
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NOW,

_(x) = a + bx + cx 2

_(-i

du

dx

= a-b+c

= a+b+c

-i) = b - 2c

([,1.32a)

(I.i.32b)

du i)
dx

Thus,

= b +2c

u(-l) + du (-I) : a - c : u(1) - d, (i)
dx dx

(1.1.33)

(1.1.34)

Generalizing (1.1.34) to the interval [Pi, Pi+1] in Figure l.gb, we
have

u(Pi) + i12 u(Pi) (Pi+l - Pi)

: _(Pi+1) + 1/2 u(Pi+1) (Pi - Pi+1) (i.i.35)

We thus define

1

D
u(Pi) + I/2V,(Pi) • (?i+I - p'i)

i : l,...,n

D
x i : u(P i), i = O, n+l

(1.1.36)

(1.1.37)

Now, by (1.1.35)

• - )l-I = _(Pi ) + 1/2 _(Pi ) -i i

i = 2,..., n+l (1.1.38)

Combining (1.1.40) and (1.1.42), and noting that _u is continuous, we have

1.1-15



(Pi - Pi-l) _iD + (pi+ 1 _ pi ) xi_1D

du

(Pi - Pi-i ) u(Pi) + I/2 d--_--(Pi) (Pi+ I - Pi) (Pi - Pi-i )

du (+ (Pi+ I - Pi ) u(Pi) + 1/2 a---_-Pi) (Pi - Pi-i ) (Pi+l - Pi )

(I.i.39)

Thus,

_(Pi)

÷

[_i - _i-1t + _i÷z - _it '

I_'i+1- gi I
- + - (I.I.40)

This defines the spline vector for Pi as computed with the differentiable
edge spline, which is not implemented in Pan Air.

Now, we wish to evaluate u(Mi) , i=1,...,n.
u(x) on [-1, i] defined by (1.1.31).

Then

.(-I) = a - b + c

u(1) : a + b + c

Again consider a function

So,

u(-l) + du (-i) : a - c
dx

u(O) = a =

i14 ,(-i) + I14 u(1) + i12 [,(-I) +

Applying this to Figure !.9b, we see

du

dx
(-1)]

(1.1.41)

(1.1.42)

u(M i ) = i14 .(Pi ) + I14 u(Ui+l) + i12 _Dl

1_.o._n (1.1.43)
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This defines the spline vector for Mi.

Equations (1.1.37), (1.1.41), and (1.1.43) together describe u at grid
points which lie on a network edge belonging to a non-smooth abutment as
linear combinations of neighboring singularity parameters on the edge. We
again point out that this procedure is not implemented in Pan Air.

1.1.2.6 Edge Splines for Smooth Abutments

We now describe the computation of spline vectors for grid points lying on
smooth abutments. Once again, to obtain matching of doublet strength we
require that one network be paneled as a refinement of the other, as in the
example of Figure !.9a. Then, spline vectors for grid points on the more
coarsely paneled edge are computed first, followed by spline vectors for grid
points on the more finely paneled edge.

Spline vectors for grid points on the coarser edge are also computed by a
constrained least squares procedure, even though again the "neighboring
points" lie in two networks. Figure l.llashows some representative examples
which illustrate the procedure for choosing the set of neighboring points.
The method is described precisely in the Maintenance Document (see Appendix I
of section 4).

Now, continuity of doublet stength along a smooth abutment is insured by
requiring the doublet strength at a grid point on the more finely paneled
network to be identical (as a linear combination of surrounding singularity
parameters) to that at the "corresponding" point on the coarsely paneled
network. We determine the corresponding point by "parametrizing" the
abutment, that is, assigning to each grid point a real number t, 0 < t < i,
which specifies the proportion of the total abutment length that the grid
point is distant from the starting point of the abutment. This procedure is
discussed in more detail in the maintenance document (see SUBROUTINE PRMEDG of
the DQG module).

Figure!.11b illustrates the parametrization of an abutment. Now, some
grid point P'i on the fine network will have parameter value t' i, where

tj < t' i < tj+ I (1.1.44)

for some integer j, that is, the corresponding point on the coarse network is
not a grid point. But, u must vary quadratically on the panel edge, so we can
obtain u(P'i) as a linear combination of ,(Pj), "(Pj+I), and "(Pj+2)"

Now, it follows from (1.1.31-32) that on an interval [-i, 1],

,(x) = a + bx + cx 2 =

,(0) + (I/2.(i) + 1/2 u(-l))x

+ [1/2 ,(i) + 1/2 ,(-1) - ,(O)]x 2 (1.1.45)
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Wecan apply this to the interval in Figure l.llcby making the
transformation

x' = t - tj
t]+ 2 - tj

x = 2x' - i

(I.i.46)

2t - tj+ 2 - tj

tj+ 2 - tj (I.i.47)

Equation (1.1.46) maps the interval in Figure 1.11cto [0, i], which in
turn is mapped to [-i, i] by (1.1.47).

Substituting (1.1.47) in (1.1.45), we obtain

2t - tj÷ 2 - tj
u(t) = u(Pj+ I) + [i/2 "(Pj+2) - 1/2 u(Pj)]

tj+ 2 - tj

p ]2+ [I/2 u(Pj+2) + 1/2 u(Pj) - u(Pj+l)] t - tj+ 2 - tj
 j+7- %

Setting t = t'i, we have _(Pi) as a linear combination of _(Pj),
u(Pj+l), and _(Pj+2):

(1.1.48)

u(P'i) : (-1/2 + 1/2 T 2) .(Pj)

+ (I -T2) u(Pj+I) + (i/2 + 1/2 T 2) P(Pj+2) (I.i.49)

where T = 2 t' i - tj÷ 2 - tj

tj+ 2 - tj (1.1.50)

This concludes our discussion of spline vector construction for doublet
analysis networks. We have now discussed the computation of doublet spline
vectors for all enriched grid points in a doublet analysis network. In
practice, these vectors are all computed and stored on a disk. Then, within a
loop over panels, the spline vectors corresponding to the nine panel defining
points are retrieved from the disk, and merged into an outer spline matrix
BD by VECUNM.
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1.1.3 Doublet Spline Vectors for WakeNetworks

Singularity parameter locations for doublet wake networks are illustrated
in Figure D.3. In addition, if the edge of the wake I networks on which
singularity parameters are located forms part of more than one abutment, an
extra singularity parameter is located at the abutment endpoints lying in the
interior of the edge.

The purpose of a doublet wake i network is to model a wake surface on
which the doublet strength is constant in the streamwise direction. Thus,
spline vectors for grid points are constructed as follows. First, spline
vectors are constructed for each grid point on the edge containing singularity
parameters, just as though the edge were part of a non-smooth abutment of an
analysis network (it should be noted in passing that smooth abutments are only
permitted between analysis networks). Then, the spline vector constructed for
a particular grid point on the edge is also used for every grid point lying in
the column or row of points emanating in an indicially perpendicular direction
from the edge. This produces a doublet strength which is constant in one
indicial direction, as desired. In general this direction is the direction of
increasing row index, though this program default may be overridden by the
user. See section 7, record N12, of the User's Manual.

Doublet wake 2 networks are used to define a constant strength doublet
sheet, whose strength is the value of the one singularity parameter in the
network. Thus, the identical spline vector is constructed for every grid
point on the network; namely the row vector of length one with unit entry.

1.1.4 Source Splines for Design Networks

1.1.4.1 Source Design 1

Only one type of source outer spline, a continuous one, is used for source
design i networks. Singularity locations for source design networks are given
by Figure D.I. Since a source parameter is located at every panel corner, the
spline vectors for these grid points are just unit vectors of length i.
Spline vectors for panel centers are also straightforward to compute:

SPS : LI/4 i/4 1/4 1/4] (1.1.51)

That is, the source strength at a panel center is defined as the average
of the source strengths at all the panel corners.

1.1.4.2 Source Design 2, Discontinuous Source Splines

For source design 2 networks source parameters are located at those edge

midpoints on edges parallel to the matching edge. To reduce the complexities
of splines PAN AIR imposes two restrictions on source design 2 networks: They

may not have collapsed edges and they may not have just one column or one row

of panels.
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The discontinuous source spline for a source design 2 network, used for
influence coefficient computation and boundary condition evaluation, is
computedby meansof a three stage process. First, spline vectors are
computedfor the panel centers and for those panel edge midpoints that are not
source parameter locations. (See figure D.ic for an illustration of the
source parameter location on a source design 2 network.) Second, the five
source values on the panel, (the panel center and four edge midpoint values)

+ O _ + Oare fitted to obtain a source distribution function of the form o° _ n

Third, this distribution is evaluated at the five panel source parameter locations.

This process can be summarized by the equation

,_I TM

A

_2
A

°3 ,

A

_4

A

i i

i _2 _2

I _3 _3

I _4 _4

i 0 0

I i

EA"](3x5)

I

i 0 0 0

0 1 0 0

* * 0 0

I i 0 0

0 0 x I

0 0 x 2

0 0 x 3

• , X4

0 0 >'5

>'6

Here, each stage of the process is represented by a matrix.

The first stage of this process requires further explanation. First the
source strength at the panel center is taken to be the average of the two
global source parameters that lie on the boundary of the panel. Next, the
extra panel edge midpoint source strengths are obtained by means of a bilinear
fit of neighboring global source parameter data, as illustrated in figure
!.12. The bilinear fit performed here is essentially the same as the bilinear
fit described in sections 1.1.1.3 and 1.1.1.4 in connection with continuous

source analysis splines.

1.1.4.3 Source Design 2, Continuous Source Splines

The continuous source spline for a source design 2 network, used by PAN
AIR's post processing modules for pressure, force and moment calculations, is
generated by computing spline vectors for the panel center and corners.
Taking the source strength at the panel center to be the average of the
panel's two global source parameters, we have

SPS : _12 i/2j

The panel corner spline vectors are obtained by means of the usual sort of
bilinear fit using global source parameter data as indicated by figure 1.13.
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1.1.5 Doublet Splines for Design Networks

Figure D.2 shows the location of singularity parameters on a doublet
design network. For grid points in the interior of the network, spline
vectors are computedby fitting to neighboring points, as illustrated in
Figure 1.14a For grid points on the "matching edges" (which have singularity
parameters located at the panel edge midpoints), the doublet analysis eage
spline of section 1.1.2.5 is used.

The only unusual aspect of doublet design splines is the edge spline for
non-matching edges. The doublet parameters are located at panel corners along
these edges (rather than panel edge midpoints) for stability, since the
boundary conditions in the vicinity of non-matching edges tend to be doublet
gradient boundary conditions. For nonmatching edges, as for matching edges, a
differentiable edge spline and a least squares edge spline are available,
though once again the least squares spline is implemented in PanAir. The
least squares spline is similar to that for matching edges, except that now it
is at panel edge midpoints that the doublet strength is defined by least
squaring to the four surrounding edge doublet parameters, while at panel
corners the doublet strength is defined by a unit spline vector.

Wenow discuss the construction of the differentiable edge spline. Let

_i D be the value of the doublet parameter located as a panel corner Pi as
illustrated in Figure 1.14b Wedefine a row vector LYiJ, 0 # i _ n (n the
numberof panel corners on the network edge) of lengt_ n-as follows. We
define Yo and Yn to be row vectors with the entries I in the first entry
and the nth entry, respectively, and otherwise zero. For i < i < n - i, we
obtain Yi by performing a one-dimensional least squares fit to the 4 (or 3,
if i=I or n-I) neighboring singularity parameters on the edge.

Thus, at each edge midpoint, and at the endpoints of the edge, a row
vector Yi is defined. This is analagous to the situation for the
differentiable doublet analysis edge spline. Wenow obtain _ at corner points
and edge midpoints by using the doublet analysis edge spline, but in terms of
the Yi rather than the singularity parameters.

For example, we have, analagously to (1.1.40),

,(P5) I_6 - _51 _. ].y4j(_i
I - ÷l 's- p41

D}
LY5]

(1.1.52)

This concludes our discussion of spline vector construction. Details of
the construction are contained in the Maintenance Document (section 4-1.2.3).
We note that the "RESERVE" spline discussed there is in fact the least squares

edge spline implemented in Pan Air.
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1.2 Subpanel Splines

The subpanel spline matrices define the coefficients of the source and

doublet distributions on a subpanel in terms of the panel singularity

parameters. The panel singularity parameters consist of the source strengths

at five points, oI, o2, o3, 04, 09 and doublet strengths at nine points "i' u2'

""u9' the numbering of the various points on the panel being illustrated by

figure 1.15. The relation of these panel singularity parameters to the global

singularity parameters has been treated in depth in section 1.1. In this
section we show how the panel parameters define the source and doublet

distributions on the panel• Specifically, we will describe the construction

of matrices SPSPL_ and SPSPL_ such that the singularity distributions

restricted to subpanel Tk are given by the expressions

Tk

(1, _, n) [SPSPL_]

"o I •

°2 I
' e 3

o 4 -

.OgJ

(1.2.1)

Tk

(1,(, n, {2/2, {n, n2/2) [SPSPL D] u2i

_9

(I.2.2)

where ({,n) are local coordinates on the subpanel Tk (cf. appendix E).

1.2.1 Basis Functions for Interpolation on Triangles

We lay some groundwork for our discussion by describing the construction

of the basis functions for polynomial interpolation on a triangle.

Consider triangle T for which the coordinates of the corners Qi are denoted

(_i' hi)' i = 1,2,3. Any linear function f defined on this triangle is

completely specified by its values f(Qi ) at the three corners, and can be

expressed in terms of these values by the formula

f(Q) : f(Q1 ) LI(Q) + f(Q2 ) L2(Q) + f(Q3 ) L3(Q) (1.2.3)

1.2-i



where Li(Q) denotes a linear function of ((,n) taking on the value I at Q = Qi
and zero at the other two corners. If, for a given index i, we define j and k
by the condition that (i,j,k) be a positive permutation of the integers
(1,2,3), (cf. figure 1.16), then Li(Q) can be explicitly defined by the
expression

m

Li(Q) = det _j

_k

m

n

_k

m

1

1

I

a

det

B i

_i ni 1

j nj i

k nk 1

(1.2.4)

= et _j nj + _det + n det det

_k nk nk i _k

: a i + hi{ + cin

I

i _i ni

i _j nj

i _k nk

with the obvious definitions to be given for the coefficients ai bi ci. It is

an easy matter to check that these functions are linear in ( and n and further,

that they satisfy the interpolation conditions (cf. figure 1.17),

Li(Q i) = i Li(Q j) : Li(Q k) : 0 (1.2.5)

The linear basis functions Li(Q) can be used to construct quadratic basis

function Bi(Q) and B_(Q) that are used to represent quadratic functions

defined on T. To see how this is done, let Q_ denote the midpoint of the edge

lying opposite the corner point Q_ (cf. figure 1.18). Then any quadratic
function g(Q) defined on T can be'expressed in terms of the corner values

g(Qi ) and the midpoint values g(Q_) by the formula

3

g(Q) = :E] [g(Qi ) Bi(Q) + g(Qi) B_(Q)] (1.2.6)

i=I

!

Here the quadratic basis functions Bi and Bi are defined in terms of the

functions Li by

Bi = (2 Li - 1) Li (I.2.7a)

!

Bi = 4 LjL k
(i,j,k) : positive permutation

of (1,2,3)
(1.2.7b)

In order to verify the validity of (I.2.6) it is necessary to establish the

interpolation conditions
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Bi(Qi) = 1 Bi(Qj) : 0 Bi(Qk) : 0 Bi(Q _) : 0

B_(Q_)I = I

(1.2.8a)

I I I

B_(Qj) = 0 Bi(o_) = 0 Bi(Ql) = 0
(1.2.8b)

These conditions in turn follow eas(ly from the interpolation conditions
(I.2.5) together with the observations that

I

Li(Q ;) : 0 Li(Q j) = Li(Q _) : 1/2 (I.2.9)

The verification is straightforward and is left to the reader.

We conclude our discussion of interpolation on triangles by constructing a

cubic polynomial on T interpolating data at seven points, Qi' Qi and the
triangle midpoint M,

I
M =_ (QI + Q2 + Q3 ) (I.2.10)

While this problem does not have a unique solution, the solution we present

has certain virtues of symmetry. Given values of a function h(Q) at these

seven points, we first construct a quadratic function h2(Q) defined by

3

h2(Q) =

i=1

[h(Qi) Bi(Q) + h(Q_)B_(Q)] (I.2.11)

and then patch it up to obtain the required cubic polynomial on T by defining

h3(Q) = h2(Q) + (h(M) - h2(M)) C(Q) (1.2.12)

where C(Q) is a cubic polynomial in ((,n) defined by

C(Q) = 27 LI(Q) L2(Q) L3(Q). (1.2.13)

It is a straightforward matter to verify that

C(M) = I C(Q i) = O, C(Q}) = O. (1.2.14)

We find as a consequence that:

h3(Q i) = h2(Qi) + (h(M) - h2(M)) C(Q i)

= h(Q i) + (h(M)) - h2(M)) . 0 = h(Q i)

h3(Q _) = h2(Q _} + (h(M) - h2(M)) C(Q_)

I

= h(Qi) + (h(M) - h2(M)) . 0 = h(Q_)

h3(M) = h2(M) + (h(M) - h2(M)) C(M) = h(M)
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thus verifying that h3(Q) satisfies the required conditions.

1.2.2 Source Subpanel Splines

Given the results of the previous section concerning interpolation on a

triangle, it should be clear that all that is needed to define a linear source

distribution on the triangular subpanel Tk is to relate the values of o at the

corners of Tk to the panel's source parameters. An examination of figure

(I.15) immediately shows that the only subpanel corners at which we still need

to define the source strength are panel points 5, 6, 7 and 8. These values
are defined in terms of the panel source parameters by performing linear

interpolation along each edge of the panel using the values of o at the panel

corners. This procedure leads to the definitions

1
05 = _ (°I + o2)

1
o6 = _ (o2 + o3)

1
o7 = _ (o3 + o4)

(I.2.15)

i
o8 :_ (o4 + a1)

Given these relations we have defined a at every subpanel corner in terms of

oI 02 03 04 09 and consequently, by virtue of equations (I.2.3) and

(I.2.4), we have defined the distribution of o on each subpanel.

To illustrate the actual construction of the subpanel spline matrix SPSPL_,

we consider the special case of subpanel 3. Referring again to figure 1.15,

we observe that the corners of subpanel 3 are P3' P7 and P6" Making the
identifications

P3 = QI ' local coordinates ((I nl)

P7 = Q2 ' local coordinates ((2 n2)

P6 = Q3 ' local coordinates ((3 n3)

and writing out the basis function Li(Q) in the form (cf. (I.2.4))

[aiILi(Q) = ai + bi( + Cin = (1,(, n) bi (I.2.16)

ci

we observe that o(Q) is given by
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o(Q) = o(Q 1) LI(Q) + o(Q2) L2(Q) + o(Q3) L3(Q)

= a(P 3) LI(Q) + o(P 7) L2(Q) + o(P6) L3(Q)

i ½: 03 LI(Q) + _(o 3 + a4) L2(Q) + (o2 + o3) L3(Q)

o(Q) : (1, _, n)

(0, 21- L2(Q) , LI(Q)+ ½ (L2(Q)+ L3(Q)), ½ L2(Q), O)

w

0

0

0

1
½a 3 a1+½(a2+a3 ) _- a2 0

½ b3 bl+½(b2+b3 ) ½ b2 0

½ c3 c1+½(c2+c 3 ) ½ c2 0

aI

_2

a3

a4

_9

"a I "

02

, a3

04

W,(I9 .

(I•2.17)

(I.2.18)

The source subpanel spline matrix [SPSPL_] is then identified with the matrix

appearing in the right hand side of this expression•

1.2.3 Doublet Subpanel Splines

We now discuss the construction of the doublet subpanel splines matrix

[SPSPL_] (cf. equation (I.2.2)) that relates the coefficients of a subpanel's

quadratic doublet distribution to the panel's panel doublet parameters,

(_i' i=1,2,...9). In view of the results of section 1.2.1 concerning quadratic

interpolation on a triangle, it should be clear that all that is needed to

completely specify the quadratic doublet distribution u on

subpanel Tk is to give its values at the corners and the edge midpoints of Tk

(cf. equation (I.2.6) with the substitution g + _). The relation of

• to the six doublet values _(Qi ) u(Q]) is givencoefficients _o _ un "" _nn

explicitly by the following equation which is obtained by combining (I.2.6)

and (I.2.7) with the representation for Li(Q) given by (I.2.4):
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0

U_n

Uqq

FB] • .(Q1 )]

u(Q2 )

u(Q 3 )

P(Q{) ]

(1.2.19)

Here the matrix [B] is given by

[B]

m

2a_-a 1

4albl-b I

: 4alCl-C I

4blC I

1

i

2a_-a 2 2a_-a 3 4a2a 3 4a3a I 4ala 2

4a2b2-b 2 4a3b3-b3 4(a2b3+a3b 2) 4(a3b1+alb3 ) 4(alb2+a261 )

4a2c2-c 2 4a3c3-c 3 4(a2c3+a3c2 ) ¢(a3cl+alc 3) 4(alc2+a2c1 )

4b_ 4b_ 8b2b 3 8b3b I 8b Ib2

4b2c 2 4b3c 3 4(b2c3+b3c2) 4(b3c1+blC3 ) 4(blc2+b2c1 )

4c_ 4c_ 8c2c 3 8c3c I 8ClC 2

(1.2.20)

The relation of the six doublet values u(Qi), _(Q_) to the nine doublet

parameters involves the consideration of a number of special cases and is some-

times quite complicated. In figure 1.19 we have drawn a typical panel with all

of its subpanel corners Qi denoted by e, and subpanel edge midpoints Q} denoted

by the various symbols o, 0, x . The problem of defining _(Qi ), _(Qi )

then reduced to the problem of defining u at these 25 points on the panel.
The definition of _ at these points takes up the remainder of this section,

the discussion being divided into the following parts:

(i) considerations of continuity, leading to the definition of u at

points marked with o and _ ,

(ii) the definition of the "xquantity" associated with a subpanel edge,

(iii) the computation of the four nontrivial x quantities x85, x56, x67

and x78 leading to the definition of _ at the points marked with x.

Of course it should be fairly clear from an examination of figure 1.19 that the

subpanel corner points marked with • are also the location of the panel

doublet parameters. Thus the definition of u at these nine points is an
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entirely trivial matter.

1.2.3.1 Considerations of Continuity

PAN AIR imposes the condition that doublet strength be continuous from

panel to panel as well as continuous within a pane] in order that the line

vortex term be dropped from the expression for perturbation velocity. We now

consider what consequences this requirement imposes upon the doublet distri-

bution along edge i (consisting of points PI' P5' P2 ) of the panel diagrammed
in figure 1.19.

First, observe that continuity at the points PI' P5 and P2 requires that

the doublet outer spline matrix BD give the same value for u at these points

whether they are considered as lying on the panel diagrammed or on its

neighbor below. This requirement is satisfied by the actual construction

process of BD (see section 1.1) in which doublet values at fine grid points

(points marked • in figure I.lg) are related to global doublet parameters
without consideration of which panel they are associated with. Now if

continuity of _ at points PI' PS' P2 is to imply the continuity of u all along

the edge, then the distribution of _ along the edge must be determined by its
values at these three points. An edge distribution of _ satisfying this

requirement is provided by a quadratic distribution of _ along the edge. If

edge 1 is parameterized by a variable t E [-1, 1] with the correspondences

t = -1 +-_ P1

t=O "-+P5

t = +1 _-+ P2

than a suitable quadratic distribution is provided by the expression

u I = ul[t(t-l)/2] + u5 [l't2] + _2[t(t+l)/2] (1.2.21)
I edge 1

By setting t = -1/2 (resp. 1/2) in this expression, we can compute u at the

subpanel edge midpoint (QI + Q5 )/2 (resp. (Q5+ Q2)/2). we obtain

_15 : _((QI+Q5 )/2) = Ul (3/8) ÷ u5 (3/4) + _2 (-I/8)
(I.2.22a)

_52 = u((Qs+Q2 )/2) = _i (-I/8) + u5(3/4) + u2 (3/8)
(1.2.22b)

By repeating this process for the other edges, we can define the doublet

strength at all the points marked with (o) in figure 1.19.

Similar considerations of the requirement that _ be continuous from the

top half to the bottom half of the panel lead us to define u along the line

(P8' P9' P6 ) by a similar quadratic expression,
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j = u8[t(t-1)/2] + ,9[l-t 2] + u6[t(t+l)/2 ]

(Ps,Pg,P6)
(1.2.23)

As before we can compute _ at the subpanel edge midpoints along the line

(PS' P9' P6 )" We obtain,

"89 = _((P8 ÷ P9 )/2)

"96 = "((P9 ÷ P6 )/2)

= u8(3/8) + u9(3/4) + u6(-I/8)

= _8(-i/8) + u9(3/4) + u6(3/8)

(I.2.24a)

(1.2.24b)

By repeating this process on the |ine (P5' P9' P7 )' we can define the doublet

strength at all the points marked with (0) in figure 1.19.

1.2.3.2 The Definition of "Kappa" Quantities

We begin our discussion of the computation of u at the points marked x in

figure 1.19 by defining a quantity "AB associated with a quadratic function

defined on a line AB:

_AB = " ÷ (i/2)Vu(A) . (B-A) (I.2.25)

If the line AB is parameterized by a variable

P(t) = [(1-t)/2] A + [(l+t)/2]B

t_[-1,1] by the expression

(I.2.26)

then the quadratic function u(P(t)) is given by

u(P(t)) = _(A) [t(t-1)/2] + _(M) [1-t2] + u(B) It(t+1)/2]

where M denotes the midpoint, (A+B)/2. Note that

(I.2.27)

d-t u(P(t))= V u(P(t)) . (dP/dt)= Vu(P(t)) .

-@. -_

Setting t=-l, we find that, since P(-1) = A,

(1.2.28)

(1/2) Vu(A) (B-A) d (P(t))
• = -_-_ _

t=-i

= -_-
(I.2.29)

Substituting this result into (I.2.25) we obtain

_AB = 2 ,(M) -_ (,(A) + ,(B))
(I.2.30)

1.2-8



An entirely similar calculation shows that

BA :

Notice that if

gi yen by

,(B) + (I/2) Vu(B) . (A-B) : "AB (I.2.31)

AB' u(_) and u(B) are all known, then _(M) is immediately

-_ 1 +1_ ½ +u(M) = _ [ KAB 2 _(_) + u(B)] (1.2.32)

Since all that remains to be computed are the values of u at the four

points marked x in figure 1.15, we only need to compute the values of

associated with the line segments P8P5 , PsP6 , P6P7 , P7P8 . In describing this

computation, we will treat in detail the calculation of one of these

quantities (K85) and then simply quote the results for the other three.

1.2.3.3 Computation of the Nontrivial Kappa Quantities

The computation of the kappa quantities is most easily described if we
introduce a skewed coordinate system for the mean panel. This coordinate

system is essentially similar to the skewed coordinate systems described in

section 1.1. We define this coordinate system as follows.

Let Ps' Pt and Pst be defined by

Ps : + - " 3 ) (1.2.33)

(1.2.34)

1 _ _ _ + -_ _ _4)Pst = IF (PI P2 P3

and let N be the cross product of Ps and Pt:

: Fsx t

Note that the panel center Pg satisfies

(1.2.35)

(I.2.36)

i (FI +F2+ 63+F4)69 - 4

We define the skewed coordinates P' of a point P by the equation

(I.2.37)

-Hw

p,
NxPs

Since PI : P9 + Ps + t + Pst' we find that

(1.2.38)
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I + cI ]

{ = i + c2 (I.2.39)

c3

where skewness parameters c1, c2, c3 are defined

(1.2.40a)

c2 : N x Ps " Pst/ _I 2 (I.2.40b)

c3 : N . _stllNl 312 (I.2.40c)

In an entirely similar fashion we find

[] [ ] ]-i cI -I + cI F 1 - cI

_ i - c2 _ : -I +c2 _'4= , , = I-I - c2

c3 c3 L c3
(5.2.39)

Relations of the form P5 = P9 ÷ P
lead to the results

t

[o]P5 = 0

(1.2.40)

P_ : 0
0

Figure 1.20 is a diagram of the panel in this local coordinate system as it

appears viewed from above.

Projecting the panel onto the s-t plane, we are now ready to describe the

observe that V'_ can be computed at point _computation of
KSB.

First we

provided we know the two directional derivatives:

v_
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(P1 - P2) " V'.(P_) : 2(I+Cl. c2) • V .( )

(P_- P_). V'u(P_)= 2(0. 1). V',(P_)
(1.2.41)

Each of these quantities is easily computed using the fact that _ is a

quadratic along the lines (P{ P_ P_) and (P_ P_ P_). We obtain

I I I

(PI - P2 ) " V .(P_) = uI "2 (I.2.42)

(P_ - P;) • V',(P_) : 3u 5 - 4, 9 + "7

Solving the equation

2 V',(P_) :

L 0 1 3u5_4.9+,7

(I.2.43)

for
V',(P;) we obtain

I ° ]1 1 1

V',(P_) : _ [ g "i - g "2 " c2( US - 2"9 + "7 ) ]

3 1
Z "5 - 2"9 + _ "7

(1.2.44)

Forming T58 using the definition

: _5 + ½ (1, -1) V'. (P_) (1.2.45)

we obtain

+ 1 (,i_,2)
_58 = "5 4(i+c 1)

(1+c2+ci) _2,9+½ )
2(i+c I) (_ "5 "7

- 4(i+cl ) Ul-_2 + "5 (i'3c2+cl)

+ "9 4(1+ci+c2) - "7(1+c1+c2 ) }

(1.2.46)

A similar calculation based upon the directional derivative formulae
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- • (%) : 2 ÷ ) V'_ (P_)

= Ul " u4

( - ) . v'_ (P_) : 2 (I,o) v_ (P_)

: 3_8 - 4_9 + u6
(I.2.47 )

leads to the formula for V'_(P_)

I __i_8 i

: 3 _ u9 + 2 u6

i

L_[½_I-_4- Cl (_ _8 -
21_9 + ½ _6)]1

(1.2.48)

Defining the quantity _85 by

= - V'_ (P_)

= u8 + 1 (-I, 1) V'u(P_) (1.2.49)

we obtain after some manipulation

i {_85 = 4(I+c 2) Ul - "4 + (1 - 3cI + c2) "8

_9 4(1 + cI + c2) - u6 (I + cI + c2) }

(1.2.50)

Now, clearly, the definition we use for K58 should be some weighted

average of the two values we have calculated. Further, if (1+c1) or (1+c2)

is zero, one of the values of x58 goes to infinity, indicating the

impossibility of providing a continuous doublet gradient on that occasion

(this situation occurs whenever the panel is triangular). Thus, our weighted

average should be such that zero weight is given to an infinite value of _58"
The simplest such weighted average is given below:

I + cI I + c2

_58 = 2 + cI + c2 _58 + 2 + cI + c2 _85
(1.2.51)

Upon substituting (1.2.46) and (I.2.50) into (I.2.51), we obtain the formula

for K58.
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K58 i I2 uI + (i-3c2+ci)u5 - _2
4(2+Ci+C 2)

(I-3ci+c2)_ 8 + 8(1+Ci+C2)_ 9 (1+cI÷c2)_ 6

_u4 _ (1+Ci+C2)_7 + 0 _3}

Similar formulae for the other three values of

K56

are given by

i { 2 _2 + (1-3ci-c2) u6 - u3
= 4(2+ci_c2 )

(i+3c2+cl) "5 + 8(i+ci-c2) _9 - (I+ci-c2) _7

- _i - (1+ci-c2) _8 + 0 _4}

i

K67 = 4(2_c1_c2 )
2 "3 + (I+3c2-ci) _7 - _4

(1+3ci-c2) u6 + 8(1-Cl-C2) _9 - (I-ci"c2) u8

-"2 - (1-ci-c2)_5 + Oul}

(1.2.52)

(1.2.53)

(I.2.54)

78 I I 2 _4 + (1+3ci+c2) _8 - _i
4(2-c1+c 2 }

(i-ci-3c2) _7 + 8(I-ci+c2) "9 - (I-ci+c2) _5

-_3 - (i-ci+c2)_6 + 0"2}

(I.2.55)
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Io3 Full Panel and Half Panel Splines

Measuring the influence of a panel consisting of eight separate subpanels

is quite costly in terms of computing effort. Consequently, this procedure is

used just for those panels lying very near to a control point. For panels

lying somewhat further away from a control point, two "intermediate field"

procedures are available for estimating the influence of a panel. In the

simplest of these procedures, the "quasi-far field" method, the panel is

replaced by its mean plane projection, the source distribution is approximated

by a single linear function and the doublet distribution is approximated by a

single quadratic functio_ defined on the mean panel surface. Somewhat more

comp!icated than this is the "quasi-near field" approach, which divides the
paneJ into two triangular half panels, approximating the source distribution
with a linear function and the doublet distribution with a cubic function on

each half panel. It is important to realize that while the more complicated
quasi near field procedure does maintain continuity of doublet strength, the

quasi far field procedure does not. Thus, in supersonic flow, the quasi far

field procedure is never used unless the panel lies well inside the control

point's domain of dependence, (i.e., the Mach cone emanating upstream from the

control point). The quasi-far field's replacement of the exact doublet

distribution with a discontinuous approximation is safe, then, provided the

panel lies well inside the domain of dependence. For, when this condition

holds, small changes in the doublet distribution produce small changes in the

values of # and _ at the control point. This last fact follows from the

well-boundedness of (l/R) and V(1/R) at points sufficiently far away from

the boundary of the Mach cone.

1.3.1 Full Panel Spline Matrices

The full panel spline matrices, denoted PSPL S and PSPLD are used in

the evaluation of far field (cf. appendix J.9) as well as quasi-far field

panel influence coefficients. These spline matrices give the coefficients of
a linear source distribution o(_,n) and a quadratic distribution _({,n) in

terms of the panel's singularity parameters, that is, the 5 panel source

parameters and 9 panel doublet parameters that help define o(Q) and u(Q) on

the panel. Thus we have o and u approximated by

o(_,n) _ o0 + a_ + on n (1.3.1)

_(_,n) z _o * _( f + _n n

i _2 . u_ _n * 1 n2 (1.3.2)

where the polynomial coefficients are given by
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Ia°Ia_

a I

n J

[PSPL s ]

,o I

°2

°3

o4

• (Tg .,

(1.3.3)

no
q

_n
[PSPL D]

u2

u8

u 9

(1.3.4)

The ((,n) coordinates used in these equations are the first two components of

the average panel local coordinate system defined by equation (E.O.1), using

the panel center as the origin and taking B to be the normal to the average

plane. In what follows we will use the notation (_i' ni)' i=1, ... , 9 to

denote the local coordinates for the nine standard points on the panel at
which panel doublet parameters are located•

The source panel spline matrix PSPL S is constructed by a constrained least

squares procedure in which we enforce the constraint

a(@ 9, n9) = o9 (1.3.5)

while minimizing with respect to oo, o( and o the expression
n

4

[o0 + a6 6i + a ni - oi ]2n (1.3.6)
i=1

Since the panel center is the origin of the local coordinate system, (69, n9) =
(0, O) and equation (I.3.5) implies that

a9 = 0(69 , n9) = o (0,0) = a0 (1.3.7)

Thus a0 : Og and the problem of minimizing the expression (I.3.6) can be

reformulated as:
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4
min _ [a( _i ÷ a ni - (a i - a9)l 2n

i=l
(_(, en

(1.3.8)

The normal equations for this problem read

4

S
i=1

-l

_2 4
i )1 _i hi' - a_ ,

i=i I

m q

_i ni _ ni , an.
i=I I

J

4

i=1

4 4

i:l i:l

4 4

ni ai - o9
i=I i:l

ni

(1.3.9)

Because the panel center P9 = iIF(PI+ + + P¢) is the origin of the local

4 4

coordinate system, we have that _ _i = _ ni = O. Using this fact to

i=i i=i

simplify the right hand side of (I.3.9), we may write the following expression

for PSPLS.

II0 0

[PSPL S] = 0 C-1

0

where C is the coefficient matrix of (1.3.9):

0 0 0 0 i

_1 _2 _3 _4 0

nI n2 n3 n4 0

C =

4

I

i=1

4

i=1

_i ni

4

i=I

4
2
ni

i:1

(1.3.10)

(1.3.11)

The construction of the doublet panel spline matrix PSPL D is accomplished

by rather different means. In order to explain the process, it is necessary

to introduce the isoparametric representation of a panel.

The isoparametric representation of a panel consists of a mapping _(s,t)

from the standard square I:
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I = ((s,t) I -1 < s,t < 1}

: [-1,1] x [-1,1] (I.3.12)

onto the approximate panel H. The mapping _(s,t) that defines the approximate

panel H is constructed by performing bilinear interpolation on I using the
data (cf. figure 1.21)

q(1,1) = P1

=

:

The resulting mapping is given explicitly by

q(s,t) _ (1+s)(1+t)_41 + (l's_ (1+t)+P2

(I.3.13)

+ (1-s)(1"t)P34- + (l+s)(1-t)_4 "4 (1.3.14)

Writing this as a polynomial in (s,t) yields

¢(s,t>o_o+qss+_tt+q+_t-st (1.3.15)

where the coefficients are given by

qs
qt

qst

1
iF

1 1 1

1 -1 -1

I I -1

I -1 1

m

1 P2

-1 P3

-1 P4

{1.3.16)

Note that qo = P9' the panel center. The parameter space I and the mapping

_(s,t) up to the approximate panel H are illustrated by fig. 1.21.

The approximate panel H lies quite close to the actual panel and has

precisely the same boundary. In point of fact, the approximate panel H was

actually considered for use as the standard panel in PAN AIR. It was

discarded however on the grounds that its use makes it impossible to evaluate

panel influence integrals in closed form. Since these integrals are in fact
nonconvergent finite part integrals in the case of supersonic flow, closed

form evaluation is quite essential. In spite of this drawback, the

approximate panel H frequently does provide a useful theoretical framework for
constructing approximate doublet distributions.
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The most natural choice of a doublet distribution on H is provided by
performing biquadratic interpolation on I using doublet data associated with
corresponding points on H. This process results in the doublet distribution
on I given by

1.3.17)

In order to transform this expression into a doublet distribution on H, we use
the mapping _(s,t) from I to H to give us

u(_(s,t)) = _(s,t) (I.3.18)

This distribution agrees exactly with the PAN AIR doublet distribution on the

boundary of the panel and on the lines (P6' Pg' P8 )' (P5' P9' P*7)"

Now the panel doublet spline PSPLD is to be used to compute a doublet

distribution on the mean panel. This distribution is defined by

_M(qM(s,t)) = ;(s,t) (1.3.19)

where _(s,t) denotes the usual sort of mapping from I to the mean pane] HM,

expressed in mean panel local coordinates. The approximate doublet
distribution used for quasi far field computatiohs Is now obtained by

computing a second order Taylor series for the function _M defined by

(I.3.19). This computation requires that we compute _M(O,O) and various

partial derivatives of _M at ({,n) = (0,0).

In order to compute these derivatives, we need first to express the

mapping qM(s,t) in the following form:

=

s 6s + t 6t + st 6st

s ns + t nt + st nst

0

m

n(s,t)

0
m

(I.3.20)

Here, the third component is identically zero because q_(s,t) is a mapping for

the mean panel. We will also need an expression giving the function _(s,t) as

a linear combination of the panel doublet parameters _i" This expression,

which is derived from equation (I.3.17) by identifying the coefficients of ui

as basis functions #i(s,t), has the form
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g
_(s,t) = 7 "i _i(s't)

i=1

(1.3.21)

The functions j6i(s,t) are defined in the obvious way; for example, by

comparing (I.3.21) to (I.3.17) we readily see that

_5(s,t) = (1-s2) [t(t+l)/2] (I.3.22)

Combining (I.3.19), (1.3.20) and (I.3.21) we write

_M (6(s,t), n(S,t)) =

9

Pi _I(s't)
i=1

(1.3.23)

Setting s=t=O, we obtain

9

"M (0,0) = _] "i _i (0'0) = u9 #9(0'0) = "9 (I.3.24)
i=I

Differentiating (I.3.23) with respect to (s,t) and setting s:t=O, we obtain

the following implicit relation for (a/a(, a/an) _M I o

(aUM/_( , aUx/an) o
6s 6t ] g .a#i )#i

= _ "i {_-T-,TI-)
ns nt i=1

If we denote by J the Jacobian matrix appearing on the left,

ns nt

we obtain the following relation for the gradient of UM:

s=t=O

(1.3.25)

(1.3.26 )

i:l

If we differentiate (I,3,23) with respect to (s,t) twice and set s=t=O, we
obtain

v
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I ]Ia'M1MIin2MII t]6s ns _Mla6 @

(t nt Jo ns nt

(ss 6st + a_MiBn
+ aWM/a(

6st 6tt Lnst nttJ

i=I

(I.3.28)

Since a2 6 /as 2 = a26 /at 2 : 0, and similarly for n(S,t), we may rearrange

and simplify this expression to obtain

/au M a_M nstlJ_ T [_ i] I: "\TT- 6st + _ 0 J"

9 j-T #i #i
+ _ "i ,st ,st

i=I i,st )6i,tt

I. I .

(1.3.29)

Now the doublet panel spline matrix [PSPLD] expresses the various

coefficients pM(O,O), a_M/a6 , ... a_M/an 2 as linear combinations of the panel

doublet parameters. Combining equations (I.3.24), (I.3.27) and (I.3.29), we

can explicitly write out a formula for the i-th column of PSP_ :

#i(o,o)
. • • • • • • • • • • • ¢ • • • • • • • • • • • • • •

j-r [-a_i/atJo

• • • • • • • • • • • • • • • • • • • • • • • • • • •

- I ( 6st'nst )J'T iFslIItills12 + (Ai)^ 12

o LS22 (Ai)22

(1.3.30
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Here, 2x2 matrices S and Ai are defined by

S = j-T [01 ol] j-i (1.3.31)

j-T FB2¢i/as2 a2#i/as atI j-1 (I 3.32)
Ai L

a2#i/as at B2_i/Bt2 ]0

1.3.2 Half Panel Splime Matrices

Although the quasi-near field procedure for computing the influence of a
panel is somewhat more complicated than the quasi-far field procedure, the

half panel spline matrices [HPsPLS], [HPSPLD] associated with the quasl-near

field procedure are somewhat easier to compute than were [PSPL S] and [PsPLD].

We begin our discussion of their computation by stating clearly what they do.

Given a quadrilateral panel with corner points (PI' P2' P3' P4)'_we begin

by dividing it into two triangular subpanels. If the distance from P1 to P3

is less than the distance from P2 to P4' we perform the division (see f_g.
1.22a)

-_ -4- -+ --_

d(P 1, P3 ) < d(P2, P4 ) : T2 = (P2' P3' PI )

T4 = (P4' PI' P3) (1.3.33)

while if the opposite condition holds, we perform the division (see fig. 1.18b)

d(P2' P4 ) <-d(Pl' P3 ) : TI = (PI' P2' P4 )

T3 = (P3' P4' P2 ) (1.3.341

Having divided the panel into two triangles, we address the problem of

computing the coefficients for a linear source and a cubic doublet
distribution on each trlangular subpane1.

If we denote these distributions by a((,n) and u(_,n) respectlvely, the

variables (_,n) being local coordinates associated with the triangular half

panel under consideration, then our task is to compute half panel spllne
matrices such that

1.3-8



I!°l=

P

nn

_nnn

[HPSPL S]

"o.l 7
I

o'2 ,
i

0' 3 '

_4

= CHPSPLD] "2

q

:

_8:

(1.3.35)

(1.3.36)

with functions a(_,n) and u(_,n) then being given by

a(6,n) = ao + a(6 + % n (1.3.37)

.(t ,n) : "o + _6 + Unn

+ ½ p_ 62 + _n + 1 n2

1 63 + 1 62n + 1 1
3

n
nnn

(1.3.38)

The computation of the source half panel splines is especially easy. To

illustrate the procedure, let the triangular half panel under consideration be

T4 of (I.3.33), (P4' PI' P3 )" Using the formula (I.2.3) for linear interpola-

tion on these points, together with the identification of points

P4 = QI'

PI = Q2'

P3 = Q3'

local coordinates (61 , nI)

local coordinates (62, n2)

local coordinates (63 , n3)

then the source distribution on triangle (P4' PI' P3 ) is given by

(1.3.39)

o.(6,n) = o.4 LI(Q) + °1L2(Q) + o3 L3(Q)

Using the explicit formula for Li(Q) given by (1.2.4),

the function o((,n) can be written out,

(Li = ai + bi( + ci n),

1.3-9



a(_,n) = j,_, nj
l a 0 a3 aI 0 1

b2 0 b3 bI 0

c2 0 c3 cI 0

a1

a3

a 3 ,

a4

a 9

(I.3.41)

The matrix appearing on the right)land÷sid_ of (I.3.41) is the source half

panel spline matrix for triangle (P4' PI' P3 ):

_ ÷ ÷ S la2 0 a3 al 0 1.

T4 = (P4' PI' P3) : [HPSPL ] = b2 0 b3 bI 0

c2 0 c3 cI 0 J

(1.3.42)

The procedure to be followed for any other triangular half panel should now be
apparent from this example.

Turning now to the problem of computing the doublet half panel splines, we

again consider the special case of triangle T4 = (P4' PI' P3 )" Referring to

figure 1.22a, observe that if the value of _ were known at the seven points

(P4' Pl' P3' M2' P7' PS' C4)' then a cubic distribution of doublet strength

could be readily constructed using the interpolation formula given by

equations (I.2.11) and (I.2.12). Now of these _even p_ints, flve are

locations of panel doublet parameters and two (M2 and C4) are not. Thus, if

we can manage to express _(M2) and p(C4) in terms of the panel doublet

parameters by expressions of the form

9

u(M2) = i=1_ m2'i Pi (1.3.43)

v

9

_(C4) = _ c4,i ui (1.3.44)
i=1

then we will immediately be able to write down an expression for _(O) on
9

T4 = (P4' PI' P2 ) as a linear combination of {Ul}i=l. This is done as

follows. Combining equations (I.2.11) and (I.2.12) while making the identifi-
cations
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= I =

P1 = Q2 =

P3 = 3 =

C4 = M

(1.3.45)

we obtain after some manipulation

3
u(Q) = I

i=I

3
+ .

I
i=l

u(Q;) [Bi(Q) - B_(M) C(O)]

+ _(M) C(Q) (I.3.46)

that is,

u(Q) = u4 [BI(Q) - BI(M) C{Q)]

+ uI [B2(Q} - B2(M) C(Q}]

÷ u3 [B3(Q) - B3(M) C(Q)]

i=1

÷.8 - BI( )

÷ c4,i "i C(Q)

i:l

(1.3.47)

This last equation yields an expression for the doublet half panel spline

matrix as follows. Let [G] be a matrix containing the polynomial coefficients

of the basis functions Bi, B_, C. We express this fact algebraically by the
equation

I I

LBI , B2, B3, B;, B2, B3, Cj =

2
= L1, I, _, , In,

in2 3 [G]IOx7
ooo p J

(1.3.48)
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Now using the facts that

Bi(M) = -1/9

B_(M) = 419

we can write ,(Q) as given by (I.3.47) in the form

,(Q) = LI, 6, n, .-. n3 [G] lOx7 [T]7x7 [K]7x9

(1.3.49)

(1.3.50)

"2

m

u9

(1.3.51)

where [T] accounts for the stray multiples of C(Q) appearing in (I.3.47):

J

1

1

I

[T] 7x7 :

1 I 1 -4 -4

m

I

-4 1

i

and [K] expresses the seven required values of , in terms of

[K] 7x9 =

-,.T
e4

+T

eI

T
e3

m2,1 m2,2 • . . m2, 9

+T
e8

c4,1 c4,2 • . . c4, 9

(I.3.52)

9

i=l

(1.3.53)

v

1.3-12



Here, the notation ek denotes the k-th natural unit vector in R9. The doublet

half panel spline matrix for the triangle T4 = (P4' PI' P3 ) is now given by

[HPSPL_] lOx9 : [G]10x7 [T]7x7 [K]7x9 (1.3.54)

that is, it is just the matrix sandwiched between the two vectors in equation

(1.3.51).

All that remains to be done now, is to describe the computation of the

coefficients (m2,il and (c4,1} appearing in equations (1.3.43) and

(I.3.44). These coefficients are computed with the help of the isoparametric
representation of a panel (cf. equation (I.3.14)) together with the doublet

distribution _(s,t) on the canonical square I given by equation (I.3.17) or

(I.3.21). We describe the procedure for computing (m2,i} , the procedure for

computing (c4,i} being essentially the same.

Now the computation of (_2,i} is essentially equivalent to the problem

of computing u(M2 ) or, since M2 may not actually lie on the panel, of

computing u(M2)where _ is the point on the panel lying closest to M_2. If,

instead of finding M2, we find the point M2 on the approximate panel H that is

closest to M2:

M2 = q(s , t ) (1.3.55)

then we may estimate _(M 2) as _(s , t ). Here (s , t ) are the s-t coordinates

of the point M2eH that solves the minimization problem

m,. if
QcH

= min IM2 - q(s,t)I (1.3.56)
(s,t)_l

Given these coordinates (s , t ) for the point M cH nearest to M2, we take

u(M2) = u(M2). Combining this choice with equation (I.3.18) and (I.3.21)

yields:

_( ) = u ) = u(_(s , t 11 --_(s , t )

"i _i (s , t )
i=i

(1.3.57)
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Comparingthis last result to equation (I.3.43) leads immediately to the
formula for the coefficients m2,I :

m2,i = _i(s , t ) . (1.3.58)

It should nowbe clear how the coefficients c4,i are computed: Onesimply

finds the s-t coordinates of the point C4 ¢ H nearest to C4 and then performs
the evaluation

= s,t)c4, i = gli(s , t ) where C4 _( . (I 3.59)
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1.4 Panel MomentMatrices

A numberof panel momentmatrices are computedin PANAIR for use in the
far field evaluation of panel influence coefficients (see section J.9) and for
certain post-processing functions (see section 0.2). In this section we
define these panel momentsand describe their computation. Far field moments
are treated in section 1.4.1, post-processing momentsare treated in section
1.4.2 and finally, in section 1.4.3, the computation of the basic flat panel
momentsis described. These basic flat panel momentsare defined by the
expression

= f/ _i nj d( dn 0 _ i+j _ N (I.4.1)
cij

Here, (:,n) are local coordinates on the surface of a fiat panel % . We

will find it convenient in our discussion of far field and post-processing
moments to assume that flat panel moments of the form (I.4.1) can be readily

computed, given the corner points of _ in local coordinates.

1.4.1 Far Field Moments

The panel moments used in the evaluation of far field panel influences are

now described. We begin by noting that the far field PIC procedure estimates

a panel influence by implementing the following approximations:

(i) The panel is replaced by its mean panel.

(ii)

(iii)

Singularity distributions o and _ are replaced by their quasi-far

field approximations (see section 1.3.2).

The kernel functions (I/R) and V (I/R) are replaced by Taylor series

approximations of degree 0 (monopole), 1 (dipole) or 2 (quadrupole).

The analysis of these approximations is carried out in detail in appendix J.9.

At this point we are merely concerned with describing the computation of the
far field moments that are defined by that analysis.

Toward this end, let the mean panel expressed in its local coordinates

((,n) be denoted by _m" We define a collection of basis functions _((,n),

defined on %m' as follows

_ : [I, (, n, _2/2, _n, n2/2, (3/6 , _2n/2, _n2/2, n3/6]
(1.4.2)

Thus, for example _8((,n) = _2n/2. Using the alternate notation for ( and n:

Pl = 6 (1.4.3)

P2 = n

we define the far field moments as follows (for motivation of these

definitions, examine the coefficients appearing in equations (J.g.42-43)):
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s II
HuB = _ #_ _B d_ dn 1 < _ < 10

% m 1<B<6

(I.4.4)

HiaB : _s Pi #a _B d( dn I _< i _< 2

I 1<_<6
m _

1 <B <3

(1.4.5)

In writing down these definitions, we have used the usual symbols s and _ to
denote the following:

_I subsonic flow, M® < 1s = (1.4.6)
-1 supersonic flow, M. > 1

K = I 4T subsonic flow, M® < I (1.4.7)
l 2x supersonic flow, M® > 1

A quick examination of the definitions (I.4.4-5) together with a look at the

definitions of #_, (I.4.2) and Pi' (I.4.3) shows that the integrals in

equations (I.4.4-5) are all of the form

_ (constant) (i nj d( dn , 0 _< i+j _< 5

% m

These, of course, are just integrals of the form Cij (see equation (I.4.1))

which we will discuss in section 1.4.3.

1.4.2 Post Processin_ Panel Moments

A number of the post processing options in PAN AIR require the evaluation
of panel integrals of the following form:

panel

panel

II
panel

f dS

f dS

(Q - P9 } f dS

panel

(Q - P9 ) x f dS
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Here, f is a function specified at the nine panel doublet parameter locations
and extended to the whole panel with the doublet inner splines. The vector

panel's unit normal, Pg is the panel center and Q is a position vectoris the

on the surface of the panel. If we denote by f the vector of the nine

specified values of f our goal is to compute matrices having the following
properties

sB__B_ f dS = LFFM j

panel

/(

panel

panel

f dS = [NCPM1]3x9

(1.4.9)

(1.4.10)

f
panel

dS = [NCPM2]3x9 (1.4.11)

We begin our discussion of the computation of these matrices by addressing the

computation of FFM_I, as this allows us to introduce most of the notation we

will need to handle the others.

D

We start the analysis of [FFM 1] by breaking up the integral appearing on

the left hand side of (I.4.9) into integrals over the 8 triangular subpanels,

Tk:

2 8sB____ f ndS= _ sB__22 f ndS (1.4.12)

panel k=1 K
Tk

Now on each triangular subpanel, the function f is given by a formula
analogous to equation (I.2.2):

2: (i, _, n, T' (n, _r-) CSPSPL ]

Tk

= _T [SPSPL_] F (1.4.13)

where we have introduced the notation _T for the row vector of basis functions

on Tk:
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_T = (i, _, n, _2/2, (n, n2/2) (1.4.14)

Now a slight modification of equation (E.I.28) enables us to write (ndS) in

terms of n'dS' = n'd( dn. This expression reads

Tk

= (I/det(A)) AT n' dS'

_ (i/_ 2 ) AT (1.4.15)

Substituting (I.4.13)'and (I.4.15) into (I.4.12) yields then

ss2

K

f dS : Z ( )Ak [SPSPL)]F d.
panel k=l Tk

(1.4.16)

Identifying the coefficient of f in this expression as the matrix [FFM_], we
obtain after some simplification

[FFMD] s _ Ak _T d6dn [SPSPLD]

k=l Tk
(1.4.17)

In order to carry out a similar procedure for equation (I.4.8), we must

introduce the area Jacoblan Jk for the reference to local coordinate

transformation on subpanel Tk. This quantity is given by equation (E.3.109).
Applying that formula to the case under consideration, we have

Jk = dS/dS' = I/[B ) (nk,nk} I 1/2] (1.4.18)

Using this quantity to transform area integrals over Tk from reference to

local coordinates, we obtain for the left hand side member of (1.4.8):

s_ f dS = _ _ (_T [SPSPL ] g) (Jk d6 dn)
K K

panel i=I
Tk

}] sB2 Jk

k=1

(1.4.19)
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Clearly, the row vector LFFMDojmust be given by

D 2 8
LFFM°J _ s_ _ Jk

k=l

(1.4.20)

The computation of [NCPMI], associated with equation (I.4.10) proceeds in

a similar fashion. Here however we must introduce some more specific notation

to describe the transformation from the reference coordinate system to

subpanel Tk'S local coordinate system. Letting Po,k denote the origin of this

coordinate system in reference coordinates, the local coordinates Q° of a point

Q are given

Q' = Ak (Q - Po,k ) (1.4.21)

Note that Q'P9 can be expressed

Q " P9 = Q - Po,k + Po,k " P9

: A_I (q' . p,9,k ) (1.4.22)

where

P9,k : Ak (P9 - Po,k) (I.4.23)

Transforming the various pieces of equation (1.4.10) into panel local
coordinates, we obtain

I 8
k=1

panel Tk

do}g,kl dr

(1.4.24)

The expression in curly brackets on the right is the matrix [NCPMI]:

8 E[NCPM 1] = _i Jk AkI _f

k=l Tk (_,__9,k) #T dr dn] [SPSPL_]
(1.4.25)

Note that the integrals are readily reducible to the form of the Cij
integrals, (I.4.1):
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Tk Tk

Oa d_ dn

P' d_ dn = #a d( dn9,k Ca ,k

Tk Tk

Weconclude our discussion by evaluating (1.4.11) to express the matrix
[NCPM2] in elementary terms. Proceeding as before, we find

fS (_-_9)x _ f dS

panel

8
1

7
k=1

Tk

= - _ _ A X

k=l AklIS f _, +, _T d_ dn I [SPSPL_ f

(Q -Pg,k ) ÷

LTk (1.4.26)

Identifying the coefficient matrix as [NCPM2], we have

[NCPM2] = " _ 7 A x
k=l

LTk (1.4.27)

1.4.3 Evaluation of Elementary Flat Panel Moments

The evaluation of the elementary flat panel moments Cij defined by

equation (I.4.1) is now addressed. We begin by applying Gauss' theorem in the
plane to obtain

ISCij = d_ dn = TT_-F _ i nj(_ ) d_ dn

I S #i+1 nj= _ _( ds (I.4.28)

a_

Breaking the boundary integral up into a sum of integrals over the individual

edges Ek of B_ , we obtain
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I _ _i÷1 J ds (I.4.29)Cij = _ _ n( n
k

Ek

Let edge Ek be parameterized by a variable • ¢ [0,1] so that along the edge,

and n are given by

(1.4.30)

n = nk + (ank) • 0 < • < I

Note that the unit tangent t, the unit normal n and the element of arclength

ds are given by.

Ank

= [a(_ + An ]1/2 (1.4.32)

L-Aek

. 2_1/2 d_ds = [a6 + ankJ

Combining the first component of (1.4.32) with (1.4.33) gives for n

n( ds = ank d_

Substituting this into (I.4.29)yields for Cij

Ank {I (I+I nj d_
Cij = _ TTr

J
k 0

Evidently we need to be able to compute edge integrals of the form

G(k) {I _i j= n df

ij JO

edge Ek

Once this has been done, we will be able to compute Cij from

(1.4.33)

ds:

(1.4.34)

(1.4.35)

(1.4.36)
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Ank c(k)
Cij = :E_ _ _i+l,j (1.4.37)

Turning now to the problem of computing the integrals G(k)
the superscript k and write ij ' we suppress

1

= _ (i J dr 0 < i+j < N+I (I 4.38)Gij n

0

with _(_) and n(T) given by

0

n = no + (an),

(1.4.39)

The entries of G can be computed quite effectively by a simple recursive

procedure. We begin by defining some auxiliary integrals Hij:

I

Hij = fO _i nj d, O< i+j < N+I
(I.4.40)

These are easy to compute. The entries of column j=O are trivial:

Hio = 1/(i+I) (1.4.41)

and the entries of subsequent columns can be computed by the recursion

I

Hij" = _0 ,i nJ-1 (no + An.,) d,

= no Hi.j_ I + an Hi+l,j_ I 0 < i < N÷I-j
(1.4.42)

The integrals Hij can then be transformed into the integrals Gij by performing

a similar procedure for each column of the array H. The recursion formula
reads

_1 k-1 i-k njI _k i-k nJ dr = _ (60 + (A_)_) • dr

0 0

_o (k-1 i-k J dr + A(= q

0

\

i-k÷l j )f n dr

/

(I.4.43}
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A simple A1gol-llke procedure implementing these ideas is outlined below. The
only feature of especial interest is the fact that the recursion in the third

segment is run backward so that the procedure can be performed in place.

Algorithm for evaluating edge integrals Gij (cf. equation (I.4.38))

<Initialization: Equation (1.4.41)>

for i = 0(i) N+I do

Gio = I/(i+1)

end i

<Recursion for n: Equation (I.4.4Z)>

for j = 1(I) N+I do

for i = 0(I) N+I-j do

Gij = no Gi,j_ 1 + An Gi+1,j_ 1

end i

end j

<Double recursion for ( : Equation (I.4.43)>

for j = 0(1) N do

for k = I(i) N+I-j

for i = N+I-j (-1) k <Recursion is run backward>

Gij _ _o GI-I,j ÷ A_ Gij
end i

end k

end j
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1.5 Constrained Least Squares

1.5.1 Definition of the Problem

[n this section we discuss the solution to the following rather general

problem, called the constrained least squares problem. Let A be a jxn matrix,
0 < j < n, of rank j. Let A' be a kxn matrix, j + k > n. Let _, _', and _ be
vectors of length j, k, and k, respectively. Then we wish to find the nx(j+k)
matrix LSQ such that the vector _ satisfying

[A]jxn _nxl = _ (1.5.1)

while minimizing

k n

J = _ wi 2 (
i =I s=l

Ais' x s - b'i)2
(1.5.2)

is given by

= [LSQ]nx(j +k)
(1.5.3)

1.5.2 Elimination of the Weights

Now, first we simplify (I.5.2) by noting that if we define a (kxk) matrix

[w]:

[W]ij = aij wi (1.5.4)

then

J __

k

= 11

i=l

k n

(_
i=i s=I

k

z (
j:l

k n

: s (z
i =i s =i

where

[A]

b =

wi Ais' xs - wi bi')2

n

Wij A'js
s=l

xs - Wij bj')]2

Ais Xs - bi)2

: [W] [A']

IN] b'

(I.5.5)

(1.5.6)
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1.5.3 The Caseof NoExact Constraints

First, wewill consider the minimization of J in (I.5.5) in the special
case whenj=O; that is, whenthere are no exact constraints on x of the form

(I.5.1). Now, the quantity j is a quadratic function in the variables (Xs) ,
and since it is a non-negative function, we see that it is minimized for that

vector x for which all first derivatives of the expression with respect to the

xs's are zero. That is, minimization of (I.5.5) is equivalent to the
requirement

k n

a _ ( 11 Ais xs - bi)2 : 0

3xI i=I s=1

l = I....,n

(1.5.7)

ax 1

NOW

k

Z

i=I

n

( 11 Ais Xs - bi) 2
s=1

k n

11 2( 11
i=I s=1

Ais Xs _ bi) a

axI

n

11

S=l

Ais Xs

(1.5.8)

k n

11 ( s
i :i s=l

Ais Xs - bi) Ail

([.5.9)

k

Ail (A_ - _)i : 2(AT A _ - AT 5')I : 0

i=1 (1.5.10)

or

Since (I.5.10) holds for each value of l,l = 1,....n, we have

[AT A]_ : [AT]

: [[AT _]-1 AT]

(1.5.11)

(1.5.12)
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Comparing to (1.5.3) and (1.5.6), and recalling j=O, we get

[LSQ] : [A 'T WT WA']-I [A,T WT] [W] (1.5.13)

Within the PAN AIR code, equation (1.5.11) is solved without actually
forming [A T A] and invertin 9 it The method actually used there, which
involves factorization of [AT Ai into a product of lower triangular and
upper triangular matrices, is more efficient and more precise than the method
indicated by (1.5.13).

1.5.4 Reduction of the General Case

Next, let us assume j > O, so that there are non-trivial exact constraints
of the form (I.5.1). Since A has rank j, its columns can be rearranged
(that is "pivoting" performed) so that the first j columns of the revised
matrix A& are linearly independent, and thus

[A*] : JAIl jxj I AI 2 jx(n-j)] (I.5.14)
I

Here, the relationship between A* and A is that

[a*]jxn : [a]jxn [p]nxn (1.5.15a)

where [P] is a product of matrices which are the identity except for one
non-zero off-diagonal term (for any real number a, adding a times column i to
column j is performed by multiplying on the right by the matrix with l's on
the diagonal, the value a in the (i,j) position, and O's elsewhere; its
inverse has -a in the (i,j) position).

That is, a typical matrix P is

m ._ I l °I0 I

0 0 i

O a 0 i (I.5.15b)

p-I

I o]O 0 I

O -a 0 I (1.5.15c)

So, (1.5.1) becomes

= [A*] [p]-l_ = , ]jxn p-i nxl[AIz,AI2 ( 2) : b
(1.5.16)
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Writing

p-l_
{ _ljxl }_2(n-j)xl [.5.17)

we have

JAIl AI2 ] { R'I }
C2 ([.5.18)

while we also want to minimize

[A21 A22] { _i}
(I.5.19)

where

[A2_ xj A2_ x(n-j)] = [A]kXn [p-l]nxn
(1.5.20)

Now, since the j columns of All are independent, All is invertible,
and thus, by (I.5.18),

[All] x I : -[AI2 ] x2 + b (1.5.21)

or

_l(Jxl )
: JAIl-I] jxj _ [A12 ] jx(n-j) _2(n-J) xl + _(jxl) (1.5.22)

Substituting (1.5.22) into (1.5.19), we want to minimize

I[A21] _I + [A22] _2 - _'I 2 :

-[A21]kxj [Al_1]jxj [A12]Jx(n-J) _2(n-j)xl

+[A21]kxj [A_]jxj _(jxl) _ _,(kxl) + [A22]_ 2

(I.5.23)

_.== wr

But this is just a least squares problem with no exact constraints, that
is, it requires the minimization of

I [A°] _2 - _oI 2 (1.5.24)
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where

[Ao]kx(n-J)

and

= -[A21]kxj [A_] jxj [AI2 ]jx(n-j) + [A22]
(1.5.25)

jxj

(kxj) [AI_ ]kxZ = _[A2 I]
o

_(jxl) + _,(kxl)

(1.5.26)

This minimization procedure is described by equations (1.5.5-12), and
results in a matrix LSQ° such that

_2 (n-j)xl : [LSQ°](n-J) xk _o (kxl) (1.5.27)

Combining (1.5.22), (1.5.26), and (I.5.27_, we _'.haveobtained _I and
_2, and as linear combinations of entries of 5 and Thus, we have shown
in principle how the constrained least square problem is solved.
Considerations of efficiency cause complexities which will not be discussed
here.
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J.O Panel Influence Coefficient Calculation

- J.1 Introduction and Notation

In this appendix we discuss the construction of a panel influence

coefficient matrix (PIC). Two such matrices (one corresponding to the source

distribution on the panel, the other to the doublet distribution) are defined

for every pair of panel and control point. Thus, for this entire appendix, we

will assume we are dealing with a single panel and a single control point. We
will see that as the location of the control point with respect to the panel

changes, the method used to compute the PIC matrices may vary.

The multiplicity of methods is necessary for efficiency: the "near field"

method, which is always accurate, is too expensive always to be used, while

the less expensive intermediate and far field methods are not always

accurate. In this appendix, we will discuss the various n_thods and when to

use each, and will examine the behavior of the entries of the PIC matrices in

certain limiting circumstances.

J.i.1 Definitions

Given a panel _ and a control point P, we define matrices PIC S and

PIC D as follows. Let ol,..., 04, a9 be the five panel source

_arameters, _1,.", u9 the nine panel doublet parameters. Let _s and
vs be the perturbation potential and velocity which the source distribution

on the panel defined by oi,..., o9 induce at the control point, that is,
(see (B.O.I) and (B.3.9))

_s : - 1 _ o(Q)(_) dS
-'_-_nDp

(J.i.1)

,,5:- 1-- ii o(Q)
_.fiDp

Then we define PIC s by the equation

(J.l.3)

Next, let _D be the perturbation potential, and _'D the regular part of the

perturbation velocity, which the doublet distribution on the panel defined by

_1'"" "g induce at the control point. That is (again, see (B.O.I) and

(B.3.9)),
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I Sf [p(Q) n .%}(1)]dS (J.l.4)_O- K
_nop

1
(_ x VQ p) x _(1) dS (J 1.5)vD = -_-

TflDp

Then we define [PIC D] by the equation

- - : [PICD] 4x9 (J.1.6)

vo J P9

In the actual operation of the program, fewer than 4 rows of the PIC

matrices may be computed for reasons of efficiency. This subject is discussed

in the Maintenance Document (see section 5-D and the preface of SUBROUTINE

CONBLKof the MAG module); in this appendix, we will always consider the full
(4-row) matrix.

Finally, let VD, i be the line vortex component of the velocity that the

doublet distribution defined by Pl,..., _9, restricted to the ith edge of
the panel, induces at the control point. That is,

* I _ p VO(1) x dl (J 1 7)vo'i= T " "
ith edge of R

Dp

Then we define matrices [LINVi] by

vo, i : [LINVi ] 3x9 (J.1.8)

u9

The computation of the matrix [LINVi] is not available in version 3.0 of Pan
Air.

J.1.2 Summary

J.1.2.1 Near Field Versus Far Field

The first step in computation of the PIC matrices is to determine which
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method should be used to compute them. In the near field method, the
integration required to evaluate the PIC matrices is performed analytically
over each of the eight subpanels. The resultant PIC matrices satisfy (J.l.3)
and (J.l.6) "exactly" that is, with no error other than that due to roundoff
in arithmetic calculations.

The near field method involves considerable computation, however, and thus
its use is reserved for the cases where the other methods are inaccurate.
Generally speaking, the farther (using a compressible distance metric) the
control point lies from the panel, the more accurate the intermediate field
and far field methods become. The algorithms summarized below, and described
in detail in section J.2, are purely empirical, and thus subject to
modification in time.

The first step is to determine if the panel center is in the domain of

dependence of the control point. A far field PIC is never computed unless

this holds, in which case we require in addition that the distance from the

panel center to the control point is at least five times the panel radius,

where all distances are measured by means of a compressible inner product.

If the far field test fails, an intermediate field test, described in

section J.2, is performed. If the test is successful, an intermediate field

PIC is computed. In computing such a PIC, the 8-segment panel and the

singularity distribution on it are approximated, while the influences defined

by these approximations are determined analytically.

J.1.2.2 The Domain of Dependence

In supersonic flow, the domain of dependence of a control point P is
limited to the forward Mach cone from P, as illustrated in figure J.l. The
panel _ illustrated there is outside Dp, and thus has zero influence on P.

For subinclined panels, we will see in section J.3 that S lies outside
Dp whenever all four edges do. For superinclined panels, this does not
hold, as illustrated in figure J.2. The test performed on a superinclined
panel to determine if it intersects Dp is also described in section J.3.

J.I.2.3 Near Field and Intermediate Field PIC Calculation

The principal step in computing a near field PIC matrix is the
¢

computation, for each subpanel, of "sub-panel integral" matrices SPINT_ and
SPINT_ such that

_s

_s/an'

a sl3

[SPINT s ] I°°}
oq (J.i.9)
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_D

a_D/a _'

a_D/an' [SPINT D]

_o "_

!

I

Unn (J.l.lO)

where _s and _D are the perturbation potentials induced respectively by

the linear source distribution defined by oo, a_, and on , and the
quadratic doublet distribution defined by uo,..., Unn.

Equations (J.I.9) and (J.l.lO) define a perturbation velocity in local
(_, n , _') coordinates. It is easy tO show ( cf., equation E.I.II) that!

a_/ax o"

a_laY o

o_/_z o
[a_i 1

a{'

[AoT] a¢lan' (J.1.11)

where Ao is the matrix sending reference coordinates to local coordinates:

[Ao] YO :

Z o

Finally, recall the definitions of subpanel splines from section 1.2.

(j.1.12)

i

}
O.0 i i

• m

o6 = [SPSPL s] , , '

On °4 i

. o9]

(J.I.13)

'UO •

I

I

l

: [SPSPL D]

i

! l
)

I

• _gJ

(J.i.14)
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Then, we may combine (J.l.3), (J.1.9), (J.l.ll), and (J.i.13) to obtain

8 s s

[PICS] 4x5 : _ [Ai]4x4 [SPINTi] 4x3 [SPSPLi] 3x5

i=1

where the subscript i refers to the ith subpanel, and

(J.i.15)

I 0 0 O]

Oi

i Ai T[Ai]: O,
Oi (J.1.16a)

Similarly, for the 2-region intermediate field method, we have a corresponding

equation

2

[PiC s] 4x5 = _1

i:l

[Ai] 4x4 [HPINT?] 4x6 [HPSPL_] 6x5 (J.1.16b)

where i ranges over two "half panels," the half panel integral matrix HPINT s
defines the influence of the half panel on the control point, and the half
panel spline matrix HPSPLs, defined in section 1.3, gives a quadratic source
distribution in terms of the five panel source parameters.

Finally, the one region intermediate field procedure approximates the
panel by its projection to an average plane. In this procedure,

[PiC s] 4x5 : [_] 4x4 [PINT s ] 4x3 [PSPL s] 3x5 (j.i.17)

where PINT s ("panel integral") defines the influence of the projected
panel on the control point, and [PSPL s] defines a source distribution on the
projected panel in terms of the panel singularity parameters.

Equations corresponding to (J.i.15-17) hold for the doublet distribution
as well. Thus the computation of PIC matrices by near field or intermediate
field methods has been discussed, except for the computation of the subpanel,

half panel, and panel integral matrices.

This is a rather complex subject and is discussed in full detail in
section J.6. In that section the influence [S o] of a quadratic source
distribution over a polygonal region and the influence [D o ] of a cubic
doublet distribution over a polygonal region are computed in terms of certain
fundamental integrals we call "edge functions" and "panel functions". These
edge and panel functions are computed in section J.7, though the formulas
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derived there do not consider numerical instabilities which may occur during
the compuation. These numerical instabilities are avoided by means of
rationalization formulas discussed in section J.8.

J.I.2.4 Far Field PIC's

Recall from (B.O.1) that the denominator in the fundamental integral is

I/R, where in compressibility coordinates

R2 = (_-x) 2 + sB2(n_y)2 + sB2(_-z)2

where the control point P = (x,y,z), and the point of integration

Q : ({, n, _).

(J.I.18)

Recalling from section E.2 the inner product

['_,y-"] : x T [Co] Y (J.I.19)

where in compressibility coordinates,

[co] :
(J.1.20)

we see that

R2 : [-__ Q, P - Q] (J.i.21)

Letting QO be the panel center,

we have

AQ : Qo - Q

Ro = P - Qo

÷ ÷

(J.1.22a)

(J.l.22b)

Now, the expression R-N, N = 1 or 3, occurs in the fundamental integrals,

and the basis for the far field method is the equation

R-N = [Ro + A-Q, Ro + AQ] -N/2

= ([R o, Ro] + 2[R o, aQ] + [_Q, _Q])-N/2 (J.I.23)

-_ -_ -" "_ -N/2
-_ -_ [Ro, aQ] [aQ, AQJ ) (J.i.24)
[Ro, Ro] -N/2 (I + 2 [iTO' R'o]+ [R_o,R_o]
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The factor [R o, Ro]-N/2 is independent of Q and may thus be taken out of
the integral, while the remaining factor may be expressed by a power series in
AQ for which we ignore any terms of cubic or higher order.

We will show in section J.9 that the integrations (J.l.l) and (J.l.2) can

then be performed as a sum of multiplication of matrices, one whose entries

are computed from Ro, and one whose entries are integrals of powers of AQ,
which, since they are independent of P, may be performed in advance (and thus

need not be repeated for each control point).

J.I.3 Integration Techniques

The computation of the entries of the subpanel integral matrices [SPINT]

(cf., J.1.9-10) involves considerable detail (see sections J.4 through J.6).

At this time, however, we will give a brief outline of the process described
in those sections.

In sections J.4 and J.5 we establish, respectively, special cylindrical

and hyperbolic coordinate system, the former for use in subsonic flow or with

superinclined panels, the latter for use with subinclined panels in supersonic

flow. The coordinate systems have two advantages. First, the kernel I/R of

the integrals (J.1.1-2) has a very simple form (cf., J.6.59). Second, the

limits of integration may also be expressed conveniently (cf., (J.4.62) and

(J.5.107)). In section J.6, we first express the entries of a subpanel
integral matrix in terms of fundamental integrals (a, a, etc., cf., (J.6.152)

and (J.6.164)). We then use the results of sections J.4 and J.5 to evaluate

these integrals.

It is worth noting, however, that there exist other ways of computing the

entries of the subpanel integral matrices. While all these methods are

equivalent in that, if correct, they yield the same real numbers for the

influence of a particular subpanel on a particular control point, they may

have quite different structures. We now briefly summarize three alternate
methods.

One such method (for zero Mach number) is described in Appendix D.2 of

reference J.l. There, the entries of the subpanel integral matrices are given

in terms of fundamental integrals, some of which are singular even when the
control point is away from the pane|. It can be shown that the singular

integrals always cancel, however, and thus the entries of the subpanel

integral matrix are finite.

A second approach is given in Appendix D.5 of reference J.l. Here, an

additional integration by parts is performed, with the result that the entries

of the subpanel integral matrices are computed exclusively as combinations of

non-singular integrals. Of all published methods for PIC computation, this
one most closely resembles that of section J.6. The fundamental integrals

are also similar, with H(1,1,3) in reference J.1 being a multiple of the

integral a (cf., (J.6.165)). In fact, the computation of H(1,1,3), which uses

cylindrical coordinates as well, closely parallels the computation of a.

A third approach to PIC computation is contained in Reference 4.9 (Ehlers,

et.al.). There, rectilinear coordinates are used in evaluation of the

integrals. The resulting formulas appear totally different from those of
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section J.6 because the entries of the subpanel integral matrices are
expressed in terms of different (and also non-singular) fundamental
integrals. The verification that the entries of the subpanel integral
matrices as computed in reference 4.9 are in fact identical to the entries as
computed in section J.6 is a major one,

J.l.4 Notation

The discussion of PIC computation is lengthy, and many terms are defined

and then not used again until much later. The most frequently used terms are

listed in figure J.3 for convenient reference. All vectors and matrices are
in reference coordinates unless otherwise specified, except that those marked

with a prime are in local coordinates unless otherwise specified.
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J.2 Distance Algorithm

In this section we discuss the algorithms we use to determine whether to
compute a far field, a one region intermediate field, a two region
intermediate field, or a near field PIC. First, we consider the requirements
for performing a far field PIC.

J.2.1 The Far Field Criterion

Consider equation (J.1.24).
have

In order to ignore cubic terms in aQ, we must

[R o, AQ] << [R o, Ro] (J.2.1)

To determine a condition on Ro for which (J.2.1) holds, we digress into the
realm of linear algebra.

Let ( , )p be a positive definite inner product (not necessarily the

standard Euclidean inner product); that is,

(_, X)p > 0 (J.2.2)

if x is non-zero. Let

IX'Ip : (_,X_ p (J.2.3)

Then we have the triangle inequality (see, for instance, page 11 of
reference J.2):

IXIp + P -> + YIP (J.2.4)

Squaring (J.2.4),

(X,X)p + 2(X,Y)p + (Y,Y)p < (X,X)p + 2 pIY p + (Y,Y)p (J.2.5)

or

(T, p < JXJp (J.2.6)

(j.2.7)

(J.2.8)

(J.2.9)

a relation called the Cauchy-Schwartz inequality.

We generalize (J.2.6) for the specific positive definite inner product

[X,Y] p : [Col Y

where CO is the positive definite matrix

CO = B2I + (i - _2) to c_

Then one can show (though we will not do so) that

[X, Y] < IXIp IYIp = XT CO X) T Co y)
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Substituting Ro for X and AQ or Ro for Y, we get

(J.2.10)

and

[Ro, Ro] < o P (J.2.11)

Then consider the requirement

IRolp lael P <<

If (J.2.12) holds, we obtain

[Ro, aQ] < lRolP

[Ro, Ro]

p << [Ro, Ro]

(J.2.12)

(J.2.13)

Thus, imposing (J.2.12), or the equivalent condition

IA_JP << [R°'R°]
IRolP

(J.2.14)

we insure that the condition (J.2.1) holds and we may perform a far field PIC
computation.

Now, the condition (J.2.14) must hold for all points Q on the panei, that

is, defining the "compressible panel radius"

CR(_) : max IQ - QolP
Q in_ (J.2.15)

we must have

k CR(_) : [R°' R°] (j.2.16)
JRoJp

where k is a "large" number.

Now, as the panel radius gets smaller and smaller compared to the
"distance" from the control point to the panel center, we may neglect first
the quadratic terms and finally neglect even the linear terms in AQ in the
expansion (J.I.24). The corresponding far field computations are ca]led
dipole and monopole computations respectively, with the retention of quadratic
terms in AQ (but not higher ones) called the quadrupole computation.

In practice, we perform a monopole computation if the factor k in (J.2.16)

exceeds 24, a dipole computation for 8 < k < 24, a quadrupole computation for

5 < k < 8, and a one region intermediate field computation if 2 < k < 5.

These _re empirical results not justifiable by a rigorous error anal_sis.
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J.2.2 The Intermediate Field Criterion

As noted above, we perform a one-region intermediate field PIC computation
when the constant k in (J.2.16) exceeds 2. We now discuss the circumstances

under which we perform a two region intermediate field calculation, and if so,
which pair of half panels we use.

Consider the panel approximations illustrated in figure J.4. The outer
edges of the approximate panel coincide with the outer edges of the true

panel; therefore our approximation preserves surface continuity. Furthermore,

the doublet strength on the half panels, computed in section 1.3, is identical

to that of the exact panel on the panel edges; therefore doublet continuity is

preserved. Thus we may perform a two region intermediate field PIC

computation even though the control point is fairly close to the panel.

We require two criteria to hold before permitting a two region intermediate

field computation. The first is that the constant k in (J.2.16) exceeds 1.2.

Essentially, this means the "distance" from the control point to the panel

center must exceed 1.2 panel radii; in particular, the control point does not

lie on the panel.

To define the second criterion, let us recall some definitions from

appendix I. We construct a special panel-wide local coordinate system similar

to that constructed in section I.i, but we use different notation to avoid

confusion with the coordinates (_, n, _) which occur in this appendix.

Let

W1 = P8 - P9

W2 = P5 - P9 (J.2.17)

Now, analogously to (I.I.3), let

W3:
W1 x W2

,wS1112
(J.2.18)

Next, for any control point P, analogously to (I.1.7), let
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Xl(P) :
((P - P9) x W2). W3

x 312

_2(P) =
(WI x (P- P9))' W3

x"21312

(P - P9) • W3

Also, recall from section P.2 the "skewness parameters"

(J.2.19)

((PI - P9) x W2). n
C11 = -i

(W1 x W2) n

x #9)I.
C21 - (_1 'x W'2)" B

-1

These parameters are zero if the pane] is a parallelogram.

Now, we perform a two region intermediate field PIC if

(J.2.20)

3

£ xi(P) 2

i=I

> (1 + IC111)2 + (1 + IC121) 2

(J.2.21)

For a square panel, this permits a two region intermediate field PIC to be

performed unless the control point lies in the sphere, about the panel center,

whose radius is the panel radius (see figure J.5). For skewed panels, the

presence of C11 and C12 in (J.2.21) insures that the control point is
further from the panel.

Finally, the choice of diagonal along which the panel is sliced into two

half panels is chosen as follows: the value i, 1 _ i _ 4, for which

[P - Pi, P - Pi] is minimized, is computed.

Then, the panel is split in two along the diagonal which does not lie on Pi,

that is, the diagonal with endpoints P(i+1) (mod 4) and P(i+3) (mod 4). An

example of splitting a panel is shown in figure J.6. Note there that since
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PI lies closest to P in hyperbolic distance, the panel _ is split along the
diagonal connecting P2 and P4.

In closing this section, we note that whenever we fail to compute a far

field or intermediate field PIC, we compute a near field PIC. In the course

of this computation, we may determine that the panel has no influence on the

control point if the flow is supersonic, a subject we will discuss in the next
section.
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J.3 Supersonic Influence Test

In order to compute the influence of a subpanel on a control point P in
supersonic flow, one must know

(a) whether the subpane] intersects Dp,

(b) if so, which of its edges intersect Dp, and

(c) which of its corners lie in Dp.

Rather than compute this data one subpanel at a time, the program takes
several short cuts, which, if results are successful, give much or all of this
data for a minimum of computation. First, a simple test is performed to check
if the panel lies outside Dp (this test does not find all panels lying
outside Dp, but does eliminate many of them). Second, a test which
identifies panels lying wholly within Dp is performed. Finally, for panels
which are identified neither as lying outside Dp or wholly within Dp, the
influence test must be performed one subpanel at a time.

J.3.1 Definition of Dp

Given a control point P, we define Dp as the points Q, lying in the
upstream pointing Mach cone from P. The condition that Q lie upstream from P
is given by

(_- Q)" Co _ 0 (J.3.1)

The condition that _ lie in either the upstream or downstream Mach cone from
is given by

[P - Q, P - Q] > 0 (J.3.2)

A point Q satisfying both (J.3.1) and (J.3.2) lies in Dp.

J.3.2 A Zero Influence Test

In this section, we determine the minimum distance d(Q, aDp) from a

point Q to the boundary BDp of the domain of independence of P. We use this
as follows. Let R(_) be the true radius (as opposed to compressible radius)

of the panel:

R (_) : max JP9- PiJ (J.3.3)

i<i<4
Q

Then if P9 does not lie in Dp, and

d(P 9, aDp) > R (_) (J.3.4)

no point on _ can lie in Dp, and thus _ is wholly outside Dp and so its
influence on P is zero.
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The computation of d(Q, a Dp) is performed in the following manner.

This distance is most easily computed in a coordinate system _ centered at the

control point P, aligned with the compressibility vector co and oriented
such that Q-P lies in the _-_ plane with positive y coordinate, where the

axis is orthogonal to co, as illustrated in figure J.7.

Now, in this coordinate system, the Mach cone is defined by the lines

= •
(J.3.5)

since points on that line satisfy

_2 + sB2 }2 = 0 (J.3.6)

The line perpendicular to that defined by (J.3.5), passing through the origin,
is

= B_ (J.3.7)

and thus the line through Q perpendicular to the Mach line closer to Q is

-Yo : B(x- _o) (J.3.8)

Thus the point on a Dp lying closest to Q is the point (x,y) lying on
the lines

- Yo : B(x - _o) (J.3.9)

= -X

B

Substituting (J.3.10) in (J.3.9),

-__x+ Yo : B(x- X'o) (J.3.11)
B

or

x : B o-go

and so

B + 1/B (J.3.12)

y _ _ -s ÷
S2+1 (J.3.13)
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Then,

d(Q, _ Dp)

So, d(Q, B Dp) 2

:{(x-Xo)2÷ _yo)2 (J.3.14)

(B2 + I)

- Xo)2 + ( -BXo + _0 - yo) 2

B2+1

[B2 Xo- B _7o -(B 2 + I) Xo]2 +
i

(82 + i)2

(J.3.15)

(-B xo - B2 70) 2

(J.3.16)

(82 + 1)2

1 + B2 Xo2

(82 + 1)2

(-xo - B Yo) 2 + I

(82 + 1)2

+ 2 (i + B2) (_o + B Yo) 2

(82 + 1)2

(-8Xo- 82 yo)2
(j.3.17)

+ (I + 82 ) (B2 70) 2

(82 + I)2

: (_o + 8 70) 2

1+82

So, d(Q, B Dp) =

(J.3.18)

(J.3.19)

Xo + 870

1 + 82 (J.3.20)

This formula holds as long as the nearest point on a Dp to Q is found by

dropping a perpendicular to the Mach line, that is whenever (see figure J.7)

Yo > 8 _o (j.3.21)

Otherwise, the nearest point on Dp to Q is P, that is,

d(Q, a Dp) : J'P-'QJ (J.3.22)
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Finally, we compute Xo and Yo as follows. First, since the x-axis is
aligned with c o ,

: (e- 5)

Next, since there is no coordinate scaling, we want

(J.3.23)

2÷ 2 = 15- 2 (J.3.24)

or

Then, summarizing, d(Q, a Dp) is computed as

d(Q, _ Dp) 2 = (Xo + B yo)21(1 + B2)

d(Q, a Dp) 2 = IQ - _I 2

J.3.3 Panels Wholly within the Mach Cone

(J.3.25)

Yo > B xo
m

;o <

(J.3.26)

Just as a panel whose center lies further from _ Dp than the panel
radius has no influence on the control point if its center lies outside Dp,

it analagously lies wholly within Dp if its center does. That is, if Po

lies in Dp, and

d(P9, _Dp) > R (_) (j.3.27)

then E lies within Dp.

J.3.4 The Influence Test for a Subpanel

Finally, let us assume that the panel passes none of the simple tests
described above. For each subpanel (or half panel or projected panel, in the

case of intermediate field computations) we must determine which corners lie

in Dp, which edges intersect Dp, and whether the region as a whole

intersects Dp.

The corners of a subpanel are tested one at a time to see if they satisfy

(J.3.1) and (J.3.2). If all corners do, then the entire subpanel lies in

Dp. This follows from the fact that Dp is a "convex" region. A convex
region is one such that the line segment joining any two points in the region

also lies in the region. Thus if all vertices of a subpanel lie in Dp, then

any point on an edge lies in Dp. Thus, since any point in the interior of

the subpanel lies on some line segment joining points on edges, every point on

the subpanel lies in Dp. Next, if one vertex of an edge lies in Dp and
another does not, it is clear that both the edge and the subpanel lie

partially within Dp.
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J.3.4.1 The Point of Closest Approach

Let us assume neither vertex of an edge lies in Dp. Then we determine
whether the edge intersects Dp as follows.

First, suppose the edge is a "subsonic edge." That is, let t o be a unit

vector parallel to the edge. Then defining

T = [to, to] (J.3.28)

we call the edge subsonic if T > O, supersonic if T< O, and sonic if T : 0
(see figure J.8). A subsonic edge is inclined to the compressibility
direction at less than the Mach angle; thus every point on the edge is in the
domain of dependence of the most downstream point. So, if the most upstream
point lies outside Dp, the entire edge does. In particular, if both
vertices of a subsonic edge lie outside Dp, the entire edge does.

For a supersonic edge, this property does not hold, as illustrated in
figure J.8. Thus, for a supersonic edge whose vertices lie outside Dp, we
must check if the "point of closest approach" on the edge lies in Dp. If
not, then the entire edge lies outside Dp.

What we mean by the point of closest approach is that point R, on the
line containing the edge which lies closest to the line through P parallel to

A

the compressibility direction co , as illustrated in figure J.9. We find
R, as follows. Let

AR = R+ - R- (J.3.29)

where R+ and R- are the vertices of the edge.

Now, let us write

R : _R- + (1 _) R+ R+- = - _AR (0.3.30)

for an arbitrary point on the line.

Then, the projection of R to the line parallel to Co containing P is

+ co c_ (R- P)

and so the square of the distance from R to that line is

(J.3.31)

d2 = IR - P - Co (R - P) 2

= (R - P)-(R - P) - (Co'(R - 2

(J.3.32)

(J.3.33)

: (by (J.3.30))

(R+ - :AR - P) (R+ - :AR - P)

- (Co.(R+ - _aR - p))2

(j.3.34)
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Now, d2 is minimized by setting

d (d 2) : 0 = 2(R + - eaR - P).(-aR)
de

-2 (Co.(R + - eAR - P)) (-c O . AR)

: [2(AR" AR) - 2 (Co "AR)2 e

(c-2 (R + - P)'AR + 2(c o - P))" o'aR)

So, d2 is minimized for

(J.3.35)

(J.3.36)

v

e = e :
--_ _ _ (_ "_ .._ ^(R - P).AR - o" (R - P ))(c o • AR)

(a'R'_) - (Co" _)2
(J.3.37)

Thus, the point R, on the line containing the edge which is the point of
closest approach is

R, : e, R + (1 - %) R (J.3.38)

Thus if R+ and R- both lie outside Dp, we compute %. If
0 < e, < 1, the point of closest approach lies in the interior of the

edge, and we thus test if R, lies in Dp. If it does not, the entire edge
lies outside Dp.

For reasons of efficiency, the program actually computes

e. =
(Co x aR). (co x (-_+ -_))

(J.3.39)

The equivalence of (J.3.37) and (J.3.39) is easily seen in compressibility
coordinates, where

Then,

f1}Co : 0

0
(J.3.40)

Co" aR: (a'_)x (J.3.41)

and so the denominator of (J.3.37) is

(_)y2 + (_)z 2 (J.3.42)

J.3-6



On the other hand

c o x aR = -aR z

aRy

and so the expression (J.3.42) defines the denominator of (J.3.39).

Next,

(co x a-R)'(Co x (R-% --_)1 :

(J.3.43)

r

0

-(R+ - P)z

(R+- P)y

aRy (R + - P)y + ARz (R + - P)z

aR'(R + - P) - (c O ' AR) (Co.('_ + - P))

(J.3.44)

(j.3.45)

(J,3.46)

and thus the numerators of (J.3.37) and (J.3.39) are equal.

J.3.4.2 The Winding Number Test

Finally, let us assume that none of the edges of the subpanel intersect
Dp. Then if the panel is subinclined, we can see from figure J.lO that the
entire panel lies outside Dp, while for supersonic panels this does not hold.

Thus in this case we compute the point P,, on the plane containing the
subpanel, which is the intersection of the line through P parallel to c o
with the plane of subpanel. It is clear that if P, lies in the interior of
the subpanel, the subpanel intersects Dp, while if it lies in the exterior
of the subpanel, the subpanel lies wholly outside Dp.

Now, we can write

P* = P + B Co (J.3.47)

and since P, lies on the subpanel,

(P* - Pi) " no = 0

where n o is the subpanel normal and Pi is a vertex.

in (J.3.47),

(P* - Pi)" no + B(Co" no) : 0

(J.3.48)

Substituting (J.3.48)

(J.3.49)
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or

(Pi - P)-noB =

_o" _o (J.3.50)

Now, if P_ lies in the subpanel, the angles formed by Pi, R_, and

Pi(mod 3) + I are all of the same sign. That is, P, is inside the subpanel

if and only if

((P_ -P_) x (Pi(mod 3)+i- P_))'no (J.3.51)

has the same sign for i = 1,2,3.

J.3.4.3 Half Panels and Projected Panels

Everything we have said about subpanels holds equally well for half
panels, since they are also triangular regions. It also holds equally well
for projected panels, used in the one region intermediate field computation,
provided the projected panel is convex. When the panel is not convex, there
is a small risk that the influence will be calculated erroneously. FQr this
reason, the program checks for non-convex panels and warns the user of their
existence.
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J.4 Cylindrical Coordinates

};'nDp ,(_',

where (see section E.3)

Whenthe integrals (J.1.1), (J.I.2), (J.l.4) and (J.I.5) are transformed
to local coordinates, they becomeintegrals of the general form

n f(R') dE dn'
n' (J.4.1)

R'2 : r(_' - x') 2 + S(n' - y,)2 + rs (_' - z') 2 (J.4.2)

Whenrs = I (this covers both the case of subsonic flow and of superinclined
panels), these integrals are very naturally evaluated using cylindrical
coordinates. In section J.4, we derive basic results which are necessary to
perform these integrations. The case of rs : -_I (subinclined panels in
supersonic flow) is best handled by hyperbolic coordinates discussed in
section J.5.

J.4.1 FundamentalResults

Recall from section E.3 that in the local coordinate system, the flow is
in the x' direction for subsonic flow and in the *z' direction for
superinclined panels. Thus Dp is all space for subsonic flow, and (writing
P : (x',y',z') in local coordinates)

Dp : ({', n', _') (_' - z')2 _ ( , _ x')2 _ (n

and (_'- z') sign (Co" no) < 0

(where no is the subpanel normal) for superinclined panels.
(J.4.3) as

[ I{(Op : (_', n', _') {' - x') 2 + (n' - y,)2 < _ sign (Co. no)( _'

, _y,)2 >0

(j.4.3)

We can rewrite

-z')}
(J.4.4)

Because both the function R' and the domain of dependence Dp exhibit
circular symmetry with respect to the point (x', y'), we will find it
convenient to use cylindrical coordinates centered at (x', y') to perform the
required integrations. In addition, because the boundary of the panel
image _' is composed of straight lines (the edges), local coordinate systems
having axes perpendicular and parallel to the edges also arise naturally.

We should note here that our results will hold for any planar region
which is convex. This, of course, includes subpanels and half panels, though
not necessarily projected panels (see section J.3.4.3).
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J.4.2 The MachDisk

Since C' is a constant on the surface of integration _' (see section

E.3), the region of integration _' N Dp may equally well be taken to be
_'N Ch where Ch the "Mach disk" is defined by

Ch : {(_', n') I (_'-x,)2+ (n, _y,)2 < "hl (J.4.5)
J

where

= I +==ifs = 1

!sign (no" Co)h if s = -I

where

(J.4.6)

: z' - _' (J.4.7)

The region of integration _' N Ch for a typical panel image _' is shown in

Figure J.12. Note that since both _' and Ch are convex, so is
s'n Ch.

A careful examination of figure J.12 reveals that the boundary of _'NC h
denoted a(_' N Ch) is composed of both curved and straight line segments.
Furthermore _(_' N Ch) has sharp corners in two possible instances,

(i) Whenever a corner of Z' lies inside Ch.

(ii) Whenever an edge _' intersects the boundary of Ch.

We will develop a scheme for numbering the _, Ek, corner points Pk'
,

and phases of corner points _k of the region _'n Ch. At the outset of

this discussion, we distinguish three separate cases

Ca) _'N Ch is empty

(b) _.nCh = Ch (that is, Ch c _')

(c) E'NC h is a proper subset of Ch

Case (a) is of absolutely no consequence since _' N Ch is null and all
integrals over it are zero.

J.4.3 The Case of the Mach Disk Lying within the Panel

v

Case (b) is handled in the following fashion (see fig. J.13). In the

first place, no edges are defined when _'N Ch = Ch. Next, some point

(_ ', n') lying on the boundary of Ch is chosen at random and _ =

(sI ,t1) is defined by
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o = (_' - x', n' - Y') (J.4.8)

-_ _i ±,Next, pl± -_-, P2 , @2- are defined by

Pl- = Pl = P2- = P

@I- : _I + : ph (Sl, tl)

_2- = _I+ + 2_

Here, ph is the "phase function" in two real variables

ph(x,y) = arg (x + iy)

(J.4.9)

(J.4.10)

where arg is the complex argument function. Precisely, for any two real

numbers x and y, one of them non-zero, the equations

-_ < ph (x,y) <

cos (ph (x,y)) = x / /{ x2 + yZ }

sin (ph (x,y)) : y / j{ x 2 + y2 } (J.4.11)

uniquely define ph(x,y). It should be noted in passing that ph(x,y)-equals
the FORTRAN function ATAN2(y,x).

With these definitions, it is clear that the integral J defined by

J _._ _' dn _,

_h 2 - (_' - x') 2 - (n' - y,)2

may equally well be computed by the expression

(J.4.13)

J : d@ +

-
(where Ch c_') and

¢2- 1 I hl

_I+ o

: I I), since

pdpd_ = d{' dn' (j.4.14)

J.4.4 Arbitrary Intersection of the Mach Disk with the Panel

We now take up the difficult and interesting case (c), when

_'n ch ¢ ch. For this discussion, the reader is referred back to Fig.

12. Starting with any edge of £' that has some points lying inside Ch, we
note this edge E1 and begin proceeding around the boundary of _'flCh in a
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counterclockwise (positive) fashion. As we traverse B(S'nCh), we will move
along straight and possibly curved pieces of boundary. The straight pieces of
boundary are named El, E2,... , En as they are encountered. Here, n is
the number of edges of _' that have some points lying inside Ch (see Fig.
J.14).

J.4.4.1 Corner Points

Having described the edge naming convention, the corner points Pk are

defined by

Pk- : (_', n') -(x' , y') (J.4.15)

lower edge

of Ek

The components of pk are denoted (Sk, t*k) as follows

(s , tk) : Pk (J.4.16)

Also, the special corner point-_n+ 1 is defined

J.4.4.2

P n+1 = P 1 (J.4.17)

The Phase Function

by
Finally, the phases of the corner points, _, are defined recursively

_I- : ph (Sl-, tl-)

÷

Pk

_k* : _k- * _ d_

Pk- (j.4.18)

Great care must be taken here because of the problem of "phase wrap."
That is, the phase function is discontinuous on a closed path in the x'-y'
plane which does not contain the origin. Thus in the former case (that of the
second or third illustration in figure J.14) _ is almost 2_ greater

than _1, while in the latter case the increment of 2, does not occur.
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Next we compute

d_ : a___ds + a___dt
as at

Now, since, up to an additive constant,

: ph(s,t) : arg(s+it)

: Im log(s+it)

(where Im is the imaginary part), we have

(J.4.19)

(J.4.20)

a.__ : Im ___._log (s+it) : Im (__L_1 )

as as s+it

: Im (s-it .) : -t

s2+t 2 s2+t 2

Similarly,

(J.4.21)

____ : Im (i) = Im (is -t ,) : s
at s+it s2+t 2 s2+t 2

Combining these results, we have

(J.4.22)

d_ = sdt - tds =

s2+t 2

(by definition of _)

(?x
o2

The integrals in (J.4.18) are straightforward to evaluate.

figure J.15) the angle _ between ok and ok satisfies

÷ ÷

(p k X Ok)z : Ok pk sin

-__ + +

pk.p k : ok ok cos

(J.4.23)

Since (see

(J.4.24a)
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we have (by J.4.11)

p-k+1

+

P k

Ph(o-k • O+k+l, (O-k x O+k)z)

NOW, geometric reasoning shows that in this case,

+

(Ok x Ok) z > 0

(J.4.24b)

(J.4.25)

and thus 0 < _ < _.

+

On the other hand, the angle _' betweeen o k and Ok+ 1 may exceed

(see figure d.15), and must be correctly evaluated in view of phase wrap,

and thus

p k+1 ph( -_ _ _
_' : S d_ : P+k'P-k+l ' (P+k x O-k+l)z)

+

p k (j.4.26)

where ph is defined by

ph (x,y) : ph (x,y) + 2_n

A

0 < ph (x,y) < 27

n = Oorl (j.4.27)

W_th phases _k defined in this fashion, the phase of a point p on the

boundary of _' n ch, defined by

oI

d@ : @1 + Ph(Pl " _' (Pl x-_)z )

is a continuous function for all points on the boundary satisfying

_(Ok) = Ok k = l,...,n

(J.4.28)

(J.4.29)
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Because of phase wrap, it may happen that _-n+1 # _-I but rather

_-n+l = _-i + 2_. If this happens, it indicates that the center of

our coordinate system (x',y') lies inside _'. Defining the center indicator

Ce by

I I if (x', y') ¢ _'
Ce I 0 otherwise (J.4.30)

we observe that

J.4.4.3

_-n+l = _-I ÷ 2, Ce

Edges and the Mach Disk

(J.4.31)

The discussion given above provides a very precise definition of the

phases _k once the corner points are known; however, the determination of

the edges Ek and the corner points Pk will require some more detail

which we now provide.

An edge Ek of the region _' n Ch must be either part of, or all ofan
edge E of _'. Thus given an edge E of _', we seek to answer the question of
when an edge E of _' is also an edge Ek of E' n Ch. Toward answering this
question, we assume that the upper or lower endpoints of the edge E are given
by (see figure J.15)

Edge E's lower endpoint = (x',y') + p-

Edge E's upper endpoint = (x',y') + _+ (J.4.32)

Thus p-(p+) describes the vector from (x',y') to the lower (upper) end point
of E. (The upper and lower endpoints of E may be assumed known because they
are essential to the definition of _'). The components of p_* are denoted

(s*,t*), i.e.,

(s*, t*) = p* (J.4.33)

It should be noted that the designations "lower" and "upper" are designations

associated with the orientation of S'; as one traverses _ ' in a postive

(counterclockwise) fashion, one moves along edges from their lower to their

upper end.

J.4.4.4 Edge Tangents and Normals

Next, we define the edge tangent t by

t : n(p+ - p-) (J.4.34)
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where n denotes the normalization operation

n(x) - x

In component notation, t may be written

t : (t_, tn)

We use this representation to define the edge outer normal _ by

n = (tn, -t_ ) = (n_, nn)

Clearly, n and t so defined satisfy the conditions

Normalization Conditions l-_I : (t_+ tn2)l/2 : i

(J.4.35)

(J.4.36)

(J.4.37)

Orthogonality

: (n_2 + nn2)1/2 : I (J.4.38)

n. t = n_ t_ + nn t n : 0 (J.4.39)

Cross Product (n x t)_ = n_ t n - nn t_ = 1 (J.4.40)

As a consequence of (J.4.38-40), the vector pair (n,t) (in that order)
comprises a right handed basis for (u,v) space as shown in Fig. J.16.

The (s,t) system illustrated there has been previously introduced and is
given by

p : (s,t) : (_'- x', n'- Y')

The coordinate functions u,v are defined by

u : n .p

(J.4.41)

v = t. p (J.4.42)

E ]{} {}or ; s: s
t_ tn t t

Since A is orthogonal,

(J.4.43)

A-I = AT

and so

p = S =

t {}[-]{ }AT u : t n t¢ u t_ t n
v t_ t n v (J.4.44)
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or

p = un + vt (J.4.45)

For points lying on the edge E, we note that

-_IE = p- + s t (J.4.46)

where s denotes arc length along E. Taking the dot product of (J.4.46) with n

and taking account of (J.4.39), we find

)n .p = n. p- (J.4.47

that is, the expression n p is a constant along the edge E; this observation

motivates the definition of a, the edge distance

a = n. PiE = n .p- = n. p+ (J.4.48)

We may now express the vectors _* in the new coordinate system as follows.

Using (j.4.45) we have

p* = (n. p*) n + (t. p*) t (j.4.49)

Now, defining v* by

v* = p*" t .(J.4.50)

we find by (J.4.48) that (as illustrated in figure J.16)

p* = an + v* t (J.4.51)

Equation (J.4.51) describes the endpoints of the edge E; for points interior

to the edge E we have

PiE = an + vt (J.4.52)

where

v = p.t

The representation (j.4.52) now provides us with the information necessary to

answer the question posed earlier (when is an edge E of _' also an edge

of _'n Ch). To see how this is done, we refer to figure J.17. First we
note that what we are really trying to determine is if any points interior to

E are also interior to Ch. In particular, if eitherp_- or p-'$lies inside

_h the answer is YES. On the, other hand, for all points_in Ch, I_I

h. Since the smalTes-t that IPlIE can become is lai (seeequationJJ.4.52)),
we see that if lal > h then the answer is NO. Now if lp+l> h, Ip-J > _

and lal < h, we must still determine whether-'-or not E passes through Ch
without either of its endpoints actually lying inside. This will happen

provided v- < 0 _ v÷ . Otherwise, E will not pass through Ch. Thus we
have determined in all circumstances whether E intersects Ch. These can be

summarized by the following algorithm.
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Algorithm: (Does an edge E have any points in Ch)

lal > h ::_ NO

lal < _ :

Io+l < h or I p-I < _ _ YES

> h and I_'-I >

0 in [v-, v+] _ YES

0 not in Iv-, v+]_NO

Once we have made the determination that an edge E has points inside Ch,
we must assign it a number k (for Ek) and define the end points p_ for

Ek •

If we define the critical value of v c by

v c : Vh 2 - a2

then p_ are determined by the procedure

(j.4.54)

Pk- : P- if < h

an - v c t iflp- I >

Ok = o if_+l <

an + Vct iflo+I > h (j.4.55)

j.4.4.5 The Function P(_)

We have now given complete procedures for the specification of Ek,

Pk' _k" Before we can evaluate the integrals (j.4.1), we must

define a function P(_) (see Figure J.18) that describes the upper limit of

integration from (x',y') to the boundary of _' n Ch. P(_) is defined as

follows:

P(_) : { lhr if _k < _ < _k+l
pk(_) if _k < _ < _+

- - k

where on each edge Ek, Pk(_), is the distance from (x',y') to Ek

Pk(_) : #a2k + Vk(_)2

(j.4.56)

(J.4.57)
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In equation (J.4.57), Vk(_) denotes the local edge coordinate v, evaluated
on the edge Ek and expressed as a function of _. Although we will never use
it explicitly, we record it here for the sake of completeness

Vk(_) = ak tan (_ - _ + ph(ak, v_)) (J.4.58)

With all these definitions available, it is now a fairly simple matter to

write down the integrals (J.4.1) using polar coordinates. For the sake of

concreteness, we evaluate the integral J

J : S5 d_' d n '

}:' n Ch
h2 - (_' - x')2 _ (n' - y,)2

Converting to polar coordinates centered at (x',y'), we have

(J.4.59)

d{' dn' : pdpd_ (J.4.60)

(_' - x') 2 + (n' - y,)2 = p2 (J.4.61)

so that (see Figure J.lg for limits of integration)

: SS pdpd_

11.'flCh V h2- p2

n (_k + Pk(_) _+i lhl )
d_ _" pdp + S d_ _ pdp

(J.4.62)

Evaluating the inner integrals in (J.4.62), we note

P

pdp _ __

0 _ p2

Pk

:- h2Vh  -p2÷ lhl

o (J.4.63)
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so that

n _k +

: _ (S
k:l _k-

n _k +

h S (S
k=l _k

_k+l -

d_ (lhl- _/h2- Pk(_) 2 )+ j"

_k +

de +

_k+l- h _k+

S d_)- _ S
_k + k=l _k-

d_ h2 Pk(_) 2

n _k +

lhl (_n+Z- - $i-) - _ S

k=l _k-

d_Vh2 - Pk(_) 2

(J,4.64)

Now equation (J.4.23) for d_ may be combined with the representation (J.4.45)

for p to yield

p2d_ : (_ x _p){ :

(un + vt) x (n du + tdv)

= udv - vdu (J.4.65)

Now if we agree to restrict-_ to the edge Ek, we find u = const.
= ak, du = O, and for d_,

d_ : udv _ ak dv

p2 ak2 + v2

Substituting this into (J.4.64) and noting that when ¢ : _, v = v_,

(at the points p_) we obtain

(J,4.66)

+
n vk

a = lhl 2x Ce - T. S

k=l vk-

where we have used Pk( _)2 =

ak dv _h2 _ ak2 _ v2

ak2 + v2

a_ + v2 on edge Ek. The integral

on the right may be evaluated by elementary means to yield

(J.4.67)

J : 2,,C, lh I -
n +

[h ph (ak Rk (v), hv) + ak ph(v, Rk(v))]vk

k=l Vk- (J.4.68)
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where

Rk (v) : _2 _ ak - V 2

This integral is verified in section J.7.1.4, where it is identified as "I(X)."
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J.5 Hyperbolic Coordinates

Having examined the geometry of the circle in such gruesome detail we now
do the same for the hyperbola. The motivation for this exercise stems from a
desire to develop effective tools to deal with integrals of the following form
arising from application of the transformations described in section (E.3) for
subinclined panels:

$$ I°({'")} f(R)d{'d.'
_'nDp [p({, n) (J.5.1)

where

R : (_' - x') 2 - (n' - y,)2 _ (_, _ z,)2

Dp : {P' : (_', n', _') I (_ ' - x') S- (n' - y,)2 + (_, _ z,)2}

(J.5.2)

and £ ' is some convex region lying in the (_',n') plane with oriented normal

_' = (0,0,1). The points in _' are described by (_',n',_') in the coordinate
system X', with _' constant.

J.5.1 Fundamental Results

As before, Dp denotes the domain of dependence described in the panel

local coordinate system X'

Because the geometry of the hyperbola is much less intuitive than that of
the circle, our discussion will have to rely rather heavily upon algebraic
arguments. We will, however, try to parallel the discussion of section (J.4)
as closely as possible.

We begin our discussion of (J.5.1) with a trivial change of variables.

Variables s and t are defined by (see Fig. J.20)

S = _' - X'

t : n' - Y' (J.5.4)

and the constant h is defined by

h = z' - C' (J.5.5)

Using these new variables, the integral (J.5.1) can be written

a(x' + s, y' + t)}
,(x' + s,y' + t)

f(R)dsdt
(J.5.6)
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where the panel

region

Using the new variables, the distance function R is

_' is of course translated, and Hh denotes the hyperbolic

(J.5.7)

R = _s 2 - t2 - h2 (J.5.8)

Having made this transformation of variables, we now remark that both the

function R and the region Hh exhibit hyperbolic symmetry with respect to the
origin (of the s-t coordinate system). By this we mean that if s,t are
defined by

,Al
(J.5.ga)

where

A =

(J.5.gb)

and a2 - b2 = i

and Hh, _ by

then

a>O

: #_2 _ _2 _ h2

(J.5.9c)

(J.5.10)

= R

and AHh = Hh (J.5.11)

that is to say, both the function R and the region Hh are invariant in form

with respect to transformations of the type (J.5.9).)We will use this factvery heavily in the treatment of the _ntegra]s (J.5.1 .

A careful examination of the region of integration _'N Hh (see fig.
J.20) reveals that its boundary is composed of both straight and curved

segments. If the boundary of _'N Hh is traversed in a positive

(counterclockwise) fashion, the straight segments of boundary are named EI,
E2..., En (see fig. J.21), in the order they are encountered. Here, n is

the numbers of edges of Z' having some points lying inside Hh;the position
of the lower end of edge Ek is denoted _k while the upper end is denoted

a+k . The s-t coordinates of _+k are denoted (S'k, t±k), that is
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÷ + ÷

pk = (s k , t k )

= lower end of edge Ek

= upper end of edge Ek (J.5.12)

Next, we introduc_the hyperbolic coordinate system for the region

(s,t) I s < - It_of the s-t plane. For a point _ = (s,t) lying in this
region, hyperbolic phase ¢ and hyperbolic radius p are defined by the
requirement that

Here,

We define

and defining

{i}:{ iiiiii}(J.5.13)

cosh x : (ex + e-X)/2

sinh x : (ex - e-x)/2 (j.5.14)

p = Vs 2 - t2
, .(J.5.15)

tanh x = sinh x

cosh x (J.5.16)

and

tanh -I x = y such that tanh y

we obtain

= tanh -1 (t/s)

Solving (J.5.17),

= x (J.15.17a)

(J.5.17b)

e_ - e-_ : t

e_ + e-_ s

or s(e_ - e-@) : t(e _ + e-_)

or (s - t)e_ : (s + t)_

(J.5.18)

(J.S.19)

(J.5.20)
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p_ s+tor e _ =
s-t

or O = 1/2 log (s+t_
\s-t/

i i

In particular, the hyperbolic phase of the points Pk is denoted Ok:

(J.5.21)

(J.5.22)

Ok*

(J.5.23)

It is well to notice that not nearly as much care is required in the

definition of hyperbolic phase as was required in the definition of circular

phase in sec. J.4. The reason for this simplicity is that phase wrap simply

does not occur when one is dealing with hyperbolic phase.

Having defined the edges Ek, corner points p_, and corner
O_ of the region Z'N Hh we now dev--1"_-moredeeply into t'hep-_obe-'_'em--_f

determining which edges E of Z' are also edges of _'N Hh. Thus, given an

oriented edge E with lower end point p- and upper end point p+, we seek to

determine if E has any points lying inside Hh; if it does, E, or part of E

will be an edge Ek of Z'N Hh. In addition, we will also want to
determine the point (or points) at which E enters or exits the regionH h.

In order to answer these questions precisely, we need to define a number

of new concepts. These include:

(i)

(ii)

A pseudo inner product

The edge tangent

< 9 >

(iii) The edge normal _, and conormal

(iv) The edge distance a, and edge variable v, and

(v) Differential arc length, ds, along an edge.

The pseudo inner product on two vectors, denoted < , > is defined by

the expression

< a, b > = -a_ b_ + an b n

For points _ lying inside Hh, we have

< B', _ > = -s 2 + t 2 _£ -h 2

(J.5.24)

(J.5.25)

an inequality that follows directly from the specification (J.5.7) of Hh.

This inequality, combined with the condition that s be negative, provides a

very useful characterization of those points lying inside Hh:

p ¢ Hh if and only if s < 0 and <B', _> < -h 2 (J.5.26)
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The usefulness of this inner product stems from the fact that it is invariant
with respect to hyperbolic transformations of the form (J.5.9). Thus, if
and _ are vectors of length two, and _ and _ are defined by

: A] , a2 _ b2 : i (J.5.27)

then

< _,_ > = < _, ._ > (J.5.28)

The edge tangent t to an edge E, with lower end point _- and upper end
point _+, is defined by the expression

t : (t{, tn) : _+ - _-

< _+- _-, _+-_- > (J.5.29)

We have chosen the normalization for t given by (j.5.29) because this
particular normalization is invariant with respect to hyperbolic
transformations of the form (J.5.9). With _defined by (J.5.29), we can give
the corresponding edge tangent T' in the coordinate system X'; we have,

(J.5.30)

Recall from (J.3.28) the definition of subsonic and supersonic edges. The
inner product [ , ], defined by

[_, _] : _T[Co] _ (J.5.31)

in reference coordinates, is given in X' coordinates by

[_', _'] : _'[c']_' (J.5.32)

where, from section E.3,

EclIs]
rs (J.5.33)

Note that in this section, we have r = I and s= -I (subincTined panel in

supersonic flow). Thus, E is a subsonic edge if any only if

[?', ?'] >o (J.5.34)

L.
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if and only if

t 2_ > o

if and only if

>] < o

Similarly, E is a supersonic edge when

> o

(J.5.35)

(J.5.36)

(J.5.37)

We will not treat themNote that (J.5.29) is undefined for sonic edges.

explicitly in this section; later we will deal with them by a limiting process.

Since the definition (J.5.29) of t ensures that

we obtain the normalization conditions on t

_t_2 2 = -i (J.5.38)(subsonic edges) < t, _ > : + t n

(supersonic edges) < _, _ > = +1 (J.5.39)

Next, the edge normal _ and conormal _ are defined by

: nn -t_ (J.5.40)

v : nn -t{ (J.5.41)

It is well to note that _as defined by (J.5.40) is an outward edge normal to
edge E. That _ is normal (i.e. perpendicular) to edge E follows from the
computation

_._ = tn t_ + (-t_tn) = 0 (J.5.42)

and that it points outward follows from the computation (see figure 5.22)

(_ x _)_ = n_ tn - nn t_ = t_ + t_2 > 0 (J.5.43)

Note that _ x _ points out of the page (its _ component is positive).

Finally we note that for any vector _, the following relationship holds by

virtue of the definition (J.5.41) of _.

J.5-6



_. _ = < _, _ > (J.5.44)

The edge distance a and the edge variable v are defined by

: _ (J.5.45)a _.B' = < v, _ >

v = < _, _ > (J.5.46)

where _ is any point on the edge E (see figure J.16 or J.18). The number a,

of course, is independent of which point along the edge E is used to compute

it.

Note that the vectors _ and _ are linearly independent (i.e.,

nonparallel). This fact follows from the computation

x _)_ = _ tn - _n t_ : -tn2 + t_2 = ± I (J.5.47)

by (J.5.38-39). Thus, the position vector _ can be expressed as a linear
combination of _ and

= rl _ + r2 _ (J.5.48)

Using the normalization conditions

< _, _ > = -(t_ 2 - tn2 )

< _, _ > = _v_2 + _n = -tn + t_ 2

and the orthogonality condition

: : o

we can solve for r I and r 2 in terms of a and v,
product of (J.5.48) with v gives

a : < _, _ > : rl< 4, _ > : r1(t_2 - tR)

while doing the same thing with t yields

(J.5.4ga)

(J.5.49b)

(J.5.49c)

Taking the pseudo inner

(J.5.50a)

= < _, _ > : r2< _, _ > : -r2(t_2_ t2n) (J.5.50b)

Substituting these expressions back into (J.5.48) and taking account of the

fact that t_2 - t2n = ,1 we obtain

= (t_2 - tn2) (a _ - v _) (J.5.51a)

or, using (J.5.38-39)

= a _ - v _ (subsonic edge) (J.5.51b)

: -a _ + v _ (supersonic edge) (J.5.51c)
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Equations (J.5.50-51) now enable us to relate the differential of the edge
variable, dv, to the differential arc length, ds. Differential arc length ds
is defined by

ds =

t-'_1 (J.5.52)

Using (J.5.50-51) we then find

ds = -Ii ldv (subsonic edge)

: I ldv (supersonic edge) (J.5.53)

Thus, v decreases along subsonic edges and increases along supersonic edges.

With the machinery developed above, we are now in a position to determine

which edges E intersect the region Hh. In doing this, we will treat the
cases of subsonic and supersonic edges separately. First, we treat the

subsonic edge.

J.5.2 Subsonic Edges

For E a subsonic edge with tangent _ defined by (j.5.29), we define an

edge coordinate transformation of the type (J.5.9)

(J.5.54)

where

[t_ -tn]
A :

-tn t{

The matrix A defined by (J.5.55) maps the region Hh into itself and

preserves the pseudo-inner product < , > . The coordinate functions _,

may be easily expressed using the pseudo inner product as follows

: S_ (t{ p{ - tn on ) : -s_ < _, _ >

: S{ (-t n p_ + t_ Pn) : -s{ (_, 2) = -s{ < _, _ >

(J.5.55)

(J.5.56)

Thus, for points _ lying on the edge E, the _ and _ coordinates are given

= -VS_

: -a s_ : cons. (J.5.57)

so that the image of E under A, denoted E, is a line parallel to the s axis,

as shown in figure J.23.
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Note that for the edge E in figure J.23,

(J.5.58)

and thus

: -a > 0 (J.5.59)

A careful examination of Figure J.23 reveals that it is a fairly easy matter

to determine if an edge i_age_E has any points lying inside

Hh = _, _)I _ < (t_ + hZ)il_ Since E is parallel to the s axis and

since_uch lines can intersect the boundary of Hh at most once, E will have

points lying inside Hh if and only if one of the image end points, _- or _+,

lies inside Hh. Furthermore, the point _c at which the edge E either

enters or exits Hh is given.

{ cl
_c = _c J : (J.5.60)

+i and a point of entry if
The point _c will be a point of exit if s{ =

s_ : -I.

Now since the transformation A is invertible, the above remarks about the

image edge E can yield similar statements about the original edge E. In doing
this, we must relate the position vector _to its image coordinates. This is

done by combining (J.5.57) into (J.5.51a) to obtain

= a _- v _ : s_ (-_ _ + _ _) (J.5.61)

With this connection established we can now state an algorithm for determining

if a subsonic edge E intersects the region Hh.

ALGORITHM: Does a subsonic edge E with lower and upper endpoints E_- and p-_

intersect Hh. If it does, compute Pk and

Pk appropriately.

Assume -t_ 2 + t2 : -1 (subsonic)

p-CH h and p+¢H h --I, NO

p-_H h or p+EH h --_ YES (J.5.62)

Case s = +1 (Edge E leaves H )

Pk = Pc

Pk : P- (J.5.63)
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Case s =-i (Edge E enters Hh)

+ .a,,

ok = p+

Pk = PC (J.5.64)

where, using (J.5.60) and (J.5.61),

: a _- s _ Ch2 + a2 (0.5.65)

We complete our discussion of subsonic edges by developing the relation
between the differential of the edge variable, dv, and the differential of
hyperbolic phase, d_.

We define the angle of hyperbolic rotation X by

X = tanh -I (tn) = phh (It{l,s{tn)
t{ (J.5.66)

where "hyperbolic phase" phh is defined by (see J.5.22-23))

phh (x,y)= tanh-I (Z)=_ I log I_____y)x 2 (J.5.67)

Then, the matrix A defined by (J.5.55) is given by

A ___

cosh X -sinhXJ
sinh X cosh X (J.5.68)

Substituting this expression and the expression (J.5.13) for
(J.5.54) yields for _: _ =

into

L-sinhX coshX sinh sinh (_,X) (J.5.69)

Now, for points lying on the edge E, equation (J.5.57) gives the values for
the s-t coordinates, combining this result with (J.5.69) yields

-s_aj -p sinh (_-X)J (J.5.70)
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Solving equation (j.5.70) for _ and p now gives

p = _v 2 - a2

= tanh -1 (a/v) + X

We can differentiate the second of these quantities to obtain d_.

develop two differentiation formulas which will be of use.

The first of these is

(J.5.71)

First, we

d___ ph (x(t), y(t)) :
dt

d__ tan-1 (y(t_) :

dt x(t)

(after some algebra)

(J.5.72)

xdy-ydx

dt dt

x2 + y2

The second of these is

.(j.5.73)

d__ phh (x(t), y(t)) =
dt

d I log (x+Y)

dt 2 x-y

2 x+y

d

: xdy-y dx
dt dt

x2 _ y2

Applying (J.5.76) to (J.5.71), and noting that a is a constant,

(j.5.74)

(J.5.75)

(J.5.76)

: -a d_zv
dv dv

v2 _ a2 (J.5.77)
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and thus

d_ - a dv

a2 - v 2 (J.5.78)

A quantity that will be useful in our computation of the integrals (J.5.1) is

the value of v along an edge Ek. Taking the ratio of the two equations
contained in (J.5.70) yields

v : Vk(_) : a :
tanh I_ -X) (J.5.79)

(by definition)

a coth (_ -X)

This completes our study of subsonic edges.

of supersonic edges.

J.5.3 Supersonic Edges

We now turn to the treatment

For E a supersonic edge with tangent t defined by (J.5.29), we define an

edge coordinate transformation of the type (J.5.9)

(J.5.80)

where

A = sn
(J.5.81)

s n = sign (tn)

That the matrix A so defined is a hyperbolic transformation of the form

(2J.5.9},follows from the normalization condition for _, (J.5.39),

tn - t_ = 1.
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For a given point _, it is a trivial matter to compute the corresponding _-_
coordinate functions. Doing this, and using the pseudo-inner product, we find

: Sn(t n p_ - t_ Dn) : s n _. _ : Sn<_ , _>

= Sn(-t _ D_ + tn pq) = Sn<_ , _> (J.5.82)

Taking account of the definitions of a and v (j.5.45-46) we then find that,
for points _ on E,

= s a = cons.
n

: s n v (J.5.83)

Thus E, the image of E, is a line parallel to the t-axis as shown in fig. J.24.

Note that for the edge illustrated there,

S = -I
n

a : _._ > 0 (J.5.84)

and thus

: s n a < 0 (J.8.85)

A careful examination of fig. J.24 reveals that__the image edge E can have
points lying inside Hh even when neither endpoint, p_ nor _'- lies inside

Hh. In particular, this can happen when the _ coordinate of the line E
satisfies _ _ - lhl and the t coordinate function has opposite signs when it

is evaluated at the two endpeints of E. In light of equation (J.5.83) this
criterion can be written

n Hh is not empty if

= o n a < - lhl and __ _+ = v_ v+< 0

where v, are defined

v, = <_, _*> (J.5.87)

Having determined whether or not E intersects Hh, we now seek to
determine the point of entry or exit of the edge E. Any such entry or exit
point must lie on the boundary of Hh, that is its _-_ coordinates must
satisfy

_2 _ _2 = h2 (J.5.88)

Invoking the conditions (J.5.83) for points on E, this implies

a2 _ v2 = h2

or

Ivl = v c = _/a 2 - h2 (J.5.89)
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where the above equation defines Vc, the critical value of the edge
variable. Since the variable v increases along supersonic edges, (by virtue
of (J.5.53) we have in general

v_ < v+ (J.5.90)

Now if an edge _ that intersects Hh is such that _- ¢ Hh, then we must
have

v_ < -v c (J.5.91)

and the v-coordinate of point of entry equal to -v

Similarly, if E n Hh # 0 but #+¢ Hh, we have

v+ > v c (J.5.92)

and the v-coordinate of point of exit equal to vc.

As in the case of subsonic edges, we may transform these observations
about supersonic edges back into the s-t coordinate system by using the
identity (J.5.51)

_' = -a _ + v _ = -s n E _+ s n # _ (J.5.93)

We summarize our observations with the following algorithm.

ALGORITHM: Does a supersonic edge E with lower and upper endpoints

_- and _+ intersect Hh.

_+

Pk appropriately.

Assume -t C + t 2 +1
n

If it does, compute _k and

Determination if EflH # 0

_- ¢ Hh or _+ ¢ Hh YES

p- E Hh and p+ ¢ Hh

s a < -lhl and v v+ < 0 . _ YES

otherwise: NO

J.5-14



Determination of Endpoints: If the result of the above performance is YES, do

the following

if 6'- c Hh then _k : _-

else Pk : -a_- Vcl_

4+

if _+ _ Hh then Pk : _+

else Pk = -a_ + Vct

We complete our discussion of supersonic edges by deriving the

relationship between d@ and dv. Proceeding as before, we now define X by

X : tanh-I (S) : phh(It.l,
tn

With this definition of X , the matrix A of (J.5.81) can be written

A .: _cosh -sinh 1

sinh coshJ

(J.5.94)

(J.5.95)

Proceeding as before, we obtain the following relation analagous to (J.5.70).

sinh(_-X) (J.5.96)

(J.5.97)

Solving for p and {_then yields

p = _/a2 _ v2

= tanh -I (v/a) +X

Differentiating the second of these equations yields (by (J.5.74-76))

d_ = adv

a2 - v 2 (J.5.98_

a relation identical to (J.5.78). Finally, we note that along the edge Ek,
v is given as a function of hyperbolic phase by

v : Vk(_ ) : ak tanh (_ -X) (J.5.99)

This completes our study of supersonic edges.
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J.5.4 Computation of the Integrals

Weconclude our discussion of the geometry of the hyperbola by using our
plethora of newly defined quantities to evaluate the integral J

J = II ds dt

_'n Hh R (J.5.1oo)

A suitably intricate region of integration, Z' N Hh, is diagrammed in
figures J.25a and J.25b. In these figures, the cross-hatched regions make

positive contributions to the integral while shaded regions make negative

contributions. In Figures J.25 this corresponds to the fact that d_ > 0 along
edges 1,2,3 and 4 while d_ < 0 on edge 5.

Transforming the integral (J.5.100) to hyperbolic polar coordinates (cf.

(J.5.13)), we see that the Jacobian B(s,t)/B(p, _) of the transformation is
given by

 Is,tl Fcosh,osioh:]a(o, _) L-sinh _ -o cosh (J.5.101)

The determinant of this jacobian is easily computed

det (@(s, t) )
(o,

= p

since

(J.5.102)

cosh 2 _ - sinh 2 _ = 1 (J.5.103)

so that the element of area is given by

ds dt = p dp d_ (J.5.104)

The function R, given by (J.5.8), may be represented in polar coordinates by

R = Vp2 _ h2 (J.5.105)

Substituting (J.5.104-i05) into (J.5.100) yields for J

J = II p dp d_

_,NHh p2 _ h2 (J.5.106)
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Nowusing the definitions given above it is easy to see that J can be
evaluated as follows

n _k + Pk (_)

O = _ f d_ f _ dp

k=1 @_ 0 Vp2 _ h2

where, using (J.5.71) and (J.5.97), Pk (_) is given by

Pk(_) :

subsonic edges

supersonic edges

and, from (J.5.79) and (J.5.99), Vk(Q) is given by

Vk(Q) = I ak coth (_ -X) subsonic edges

ak tanh (Q -X) supersonic edges

Performing the inner integral in (J.5.107) yields for J

(j.5.107)

(J.5.1o8)

n _k+

J : _ f d_ _Pk(_) 2 - h2
k=l _k- (j.5.110)

Transforming each of the integrals in (J.5.110) into an edge integral with

respect to the edge variable v, we have

d_ adv

a2 - v 2 (j.5.111)

and

÷

n v k
d : _ f ak dv Rk(V )

k=l v k- ak 2 _ v 2 (J.5.112)
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where Rk(v) is defined

2_a2_h 2
f

Rk(v) : _k2 - h2 : I
_/a2_v2_h 2

(subsonic edges)

(supersonic edges)

(J.5.113)

and v_ are defined by the obvious relations

v_ : < , t k > (J.5.114)

Now the integral J" aRdv/(a 2 - v 2) can be evaluated by elementary means.

Doing this, one obtains (see the integrals J(X) in section J.7.1)

f Rk ak dv
ak 2 - v 2

= -h ph(a k Rk, hv) - ak tanh-l(Rklv ) (subsonic case)

= -h ph(a k Rk, hv) -a k ph(v, Rk) (supersonic case)

(J.5.115)

Thus, using hyperbolic coordinates, it is a fairly easy matter to evaluate the
integrals of type (J.5.1).
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J.6 The Panel Integral Matrices

In this section, we calculate matrices [So] and [Do] which define the
perturbation potential and velocity induced at a control point by a
quadraticly varying source strength or a cubicly varying doublet strength on a
convex, planar, polygonal region . These are (4x6) and (4xlO) matrices
respectively, defined by the equations

{i°l: [So]
nn

and

(J.6.Z)

[ }v0 Ii°l
nn

(J.6.2)

Here, the perturbation velocity Cs' induced by the source strength and the
regular part of C_'of the perturbation velocity induced by the doublet
strength are expressed in a local (_', n', _') coordinate system (see. section
E.3) with the property that _ lies in the plane _' : O, and the compressible
distance R from the control point P to the point of integration Q is written

R2 : [P-Q , P-Q] = r(_'-x') 2 + s(n,_y,)2 + rs(¢'_z')2

(J.6.3)

There in local coordinates

: (x', y', z')

: (_', n', _ ') (J.6.4)

Now, the values of v s, v D, and R are independent of the origin
of the local coordinate system. The coefficients Oo, Onn,... , uo,
Unqn of the source and doublet polynomials are not, however (after'ai_, _o
ana _o are the source and doublet strengths at the origin). We define S and
D to be the matrices for which (J.6.1) and (J.6.2) hold if the origin of the
(_' n', _') coordinate system is the point (x',y',O), that is, the projection
of P to the plane containing Z . This control point - dependent coordinate

system origin is useful for computation of the panel integral matrix. In
section J.6.6 we compute the matrices So and Do which result from shifting
the origin back to the standard one which is independent of the control point
location.
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J.6.1 Preliminaries

J.6.1.1 Transformation Rules

Consider the reference to local transformation,

A: Xo---*X' (J.6.5)

Wenow review the transformation properties of various quantities
(see section E.3). Wehave

_' : [A] R

where (J.6.6)

(J.6.7)

where

_" dS' (det A) [A-T] _ dS

and dS' = 1 dS
J

where

dS' = d_'dn'

and J is the area Jacobian (the ratio of area in reference
coordinates to area in local coordinates). Next,

[B'] = sB2 Ir s 1 = A B°ATr

J.6.8)

(J.6.9)

(0.6.10)

c [rsJ: co -'r
(J.6.11)
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a/ax'}
_'= B'_ = [B'] 1_/_y' =

[_l_z'

A_
(J.6.12)

We also define _Q and _ as gradient operators with respect to
the location of the integration point Q whose local coordinates are

(_',n',_'). We define

_, : _Q,(I_) : [A] _o
R (j.6.13a)

where

J.6.1.2 Transformation of the Integrals

Now, recall from (B.O.I) that

I II a(Q) ds
_s = --

K T.'fl Dp R

: _ J_ II o(_', n')dS'

Z'FI Dp R

= J Cs'

(j.6.13b)

(j.6.14a)

(j.6.14b)

(J.6.14c)

where

Cs'

Next,

_D :

i fJ" o(_', _')d_' d.'
Z'flDp R

Z [[ . a._(t_)_s
Z 'rl Dp R

1

K det A

// o,I{ATOQ dn'

T.'n Dp R

(j.6.14d)

(J.6.15a)

(j.6.15b)

.(_', n') (_. _) d_' dn'
(J.6.15c)
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Now, by (E.3.90)

det A : 132 (J.6.16a)

and so, letting

we have

_D = 1 ff _(_, _,) _,. _,
J< E,n Dp

Note that

I

B2
[B'] : s [C']

and so we can also write

_' : s[C'] 9'Q (1)
R

Next, applying (B.3.9),

Cs = _P @s : [AT]_P ' _s = J[ AT] Cs'

(J.6.16b)

(J.6.16c)

(J.6.17)

(J.6.18)

(J.6.20)

where

Cs' = _P' _s' =

K }]'n Dp

_c T,,n Dp

Finally,

V'D*' = _ _Q u) X_'Q ( ) (:IS

}:'nDp

(J.6.21)

(J.6.22)

(J.6.23)
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Applying the transformation rule for cross products (E.I.12) to

_O*' = i__ ff [( I_.__ CAT] _, dS') x (AT_'Q ,)] x (A -I _')

K _'FI Dp B2

we obtain

¢D*' : i__ det (A T )
K

ff (A-I( 1._____' dS' X_Q' u)) x (A -I G')

E'nDp B2

:_ t_ FAT] _ (@Qx K)x ___ ds'
_'FIDp B2

= [ AT] CD'*

(J.6.24)

(J.6.25)

(J.6.26)

(J.6.27)

where

CD'* = _ 1 ff C_'Q
K }':'nDp

, x _') x _' dS'

(j.6.28)

J.6.1.3 Singularity Strength Coefficients

In Section d.6, we compute the quantities _s, _O, Vs and
VD, in terms of the coefficients describing the source and doublet
strength on the panel. We now introduce some notation to describe the
variation in singularity strength.

Let

(J.6.29)

(j.6.30)

[s] _nn_J
(J.6.31)

[M] (J.6.32)
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and let 711be the 2x2x2 tensor

_,,°,2

U_nn Unnn

Then,

(J.6.33)

(J,6.34)

a(_', n') : ao + _T _ + i/2 [}1] : [6 _,T] (J.6.35)

V

where

(J.6.36)

and where for matrices A and B

[A] • [B] : _E]Aij Bij (J.6.37)
ij

Similarly

_({', n') : uo + cT B + 112 [M]: [B BT]

+ 1/6 _E] _k_ijk Pi Pj Pk (J.6.38)
i,j,k

J.6.1.4 Uniform Formulas for Local Variables

Recall from sections J.4 and J.5 that we introduced certain expressions
depending on an edge Eh. These are the radius vector

(J.6.39)

(this is consistent with Section J.6.1.3 if the local coordinate system is

centered at the control point) with "magnitude" p satisfying

p2 : ({' - x') 2 + rs(n' - y,)2 (J.6.40)
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the height h above the panel

h = z' - {' (J.6.41)

the edge tangent

k = Pk - _k- (J.6.42)

where _ are the endpoints of Ek Fl Dp, the normalized edge tangent

_k : tn = Tk/i < , _'k> I I/2 = tk /T (J.6.43)

where tk is a unit edge tangent, and for vectors a,b we define <_, _> by

<_, 5> = rs a{ b_ + an bn (J.6.44)

the edge normal

_k

.(j.6.45)

the edge distance

ak = _k" _ (j.6.46)

and the distance along the edge

.=L

v k = <tk, _> (j.6.47)

In addition, we define the edge type indicator

qk : sign Itk, tk] = rt_ 2 + st_ = s <_k, _k >

which is 1 for subsonic edges, -1 for supersonic edges, the

edge conormal

(j.6.48)

v k : [G]_ k (J.6.49)

where

[G] [rs] (J.6.50)
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and the edge cotangent

_k = [G]_k (J.6.51)

In terms of these definitions we have, combining (j.4.51),

(J.5.50), (J.5.51), and (J.6.49),

_k = qk r ak v k + ak s vk tk (J.6.52)

From (J.6.44) and (J.6.49) we have

<_k, _k > : rs t 2 + t_ 2 : rs<_k, _k > J.6.53)

From (J.4.46) and (J.5.53) we obtain the differential of arc length

ds = sq I{kl dv (J.6.54)

Next,
<_k, _k > : <_k, _k > = t_2 + rSt2n

t'k _k= rs< , > = rssq = rq (J.6.55)

Further,

(rs)<_k, _k > = < > : 0

-t( ) tn (J.6.56)

Thus, by (J.6.52)

<_k' _k > = a2k <_k, _k > + V2k <_k, _k >

= rq k a2k + sq k v2 k (J.6.57)

So,

Finally,

p2k

r2

, = + v2rs<_k _k> sqk a2k rqk k

r((', x') 2 + s(n' - y,)2 + rs(_' - z') 2

rp2 + rsh 2 =

rsqk a2k + qk V2k + rsh2

(J.6.58)

(J.6.59)

The above results will be used extensively in the following sections.
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J.6.1.5 Differentiation Formulas

Nowwe introduce

R (J.6.60)

Manyof our formulas will be terms of _; an interested reader maycompute the
equations which would result if I/R were replaced by a different expression
such as the Helmholtz kernel eimR /R.

We now derive some integration and differentiation formulas concerning 'Q
which will be useful. First,

a@ = a aR

a_' aR a_' J.6.61)

(by (J.6.41) and (J.6.59))

(-rsh)
aR R J.6.62)

Similarly,

a_ a_ aR

ap aR ap J.6.63)

By (J.6.59),

2RdR = 2rp dp (J.6.64)

and so

aS
ap

Thus,

aS
a_'

Next, defining

_ rp aS

R aR {J.6.65)

-sh aS

o ao (J.6.66)

[G]

/an' (J.6.67)
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(J.6.39-40) yield

V2,Q(O2)= 2rs_

or

 2,0 (o) :
p

Thus,

q'2,Q (@): rs_____ _@lao
O

and

I S h _

a_
p : : -rh v2, Q

a_' p ap

Finally, let us introduce

R

X(R) = S _ _(R) d_
0

(J.6.68)

(J.6.69)

(J.6.70a)

(J.6.70b)

(J.6.71)

L

Then

aX : aX aR = R (r___) : rp_
ao _R ap R

This concludes our derivation of preliminary integral formulas.

(J.6.72)

J.6.2 Source Potential and Velocity

I I

In this section we compute the matrix S defining _s and v s in
terms of certain fundamental expressions.

J.6.2.I Source Potential

From (J.6.18),

_'s = -I_ J'S a(_', n') d_' dn'

K £'rlDp

: (by (J.6.35))

_ IK, (J'J'Oo dS' + J'J'@T@ dS, + l_j. []_] : [_,@T] dS')

(J.6.73)

(J.6.74)
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Here we have used the fact that the coordinate system is centered on the
projection of the control point to the panel, and thus

_' - x' 1

= p

I I
n - Y (J.6.75)

So,

I

_s

(J.6.76)

Using (J.6.69) and (J.6.72),

$I_* ds': SS_ (o,)ds'
}i' }1'

=SS(rs_2, Q, p)rraX) =

}1'

Is 2,Q' dS' = s _X ds
}1, _}1' i_f

(J.6.77)

(J.6.78)

Equation (J.6.78) is obtained by using the two-dimensional version of

Gauss' theorem; if f is any function on a planar region ,

S_f dS : n f ds

}1 B}1' I_'l (J.6.79)

Applying [G] to (J.6.79), and noting that

_ : I_I (J,6.80}

we obtain

S e_' f dS : j" _ f ds
}1 a_' I_I

Finally, using (J.6.69) and (J.6.72),

(J.6.81)

~, BX _,
_2 X = -- _2 p : s$ p

Bp (J.6.82)

and thus

SS _ _T_ dS' = sSS_ v2'Tx ds

}1' _'

(J.6.83)
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Combining (J.6.76-78) and (0.6.83), we obtain

Cs : _o(- 1_ dS')
K

+ _T(_ s S _X ds )

+ [_]: [-s-L- SS
2K

J.6.2.2 Tangential Source Velocity

Now, from (J.6.22) and (J.6.35)

, I/I_s K:- o(_', n') '_
T.'

dS'

where

'Q = a/an' :
a/a¢' a/a(,

dS']

(0.6.84)

(J.6.85)

(J.6.86)

So,

v's,_,o : E °e'2,Q_dS'

Applying (J.6.35)

V _ °O

s,_,n : T Z'

K T_'

)--:
i,j

i ( SS Pi PJ_2,Q )k_ dS') [Z]ij
2K Z'

Now, applying (J.6.79)

f ds

(J.6.87)

(J.6.88)

(J.6.89)

=
v
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To compute the second term of (J.6.86), we extend (J.6.79) to
a product fg of functions to obtain

ff _(fg) dS = SS_ ÷ g_f)dS
Z' _'

= fg ds
aE' (J.6.91)

We thus obtain the general two dimensional integration by parts formula

SSf a_ ds = S _ _s-SS_afds
fg _ (J.6.92)

For later use, note that applying the definitions of_2,$72, p, and [G]
(equations (J.6.67), (J.6.36), and (J.6.50))

IS f_2 g_s : S fg _ d_-_9_ ds
s' as' I_'I s' (j.6.93)

Now, applying (J.6.92)

!

SS_72, Q (_'_TdS, :

S _ _ _T_ _IS_[_] _s,
(J.6.94)

since

_-T ['oo]V2, Q p =
1

= I
(J.6.95)

Substituting (J.6.89) and (J.6.94) in (J.6.88),

(s --_'s$;_' : J- n _ oo
K a_'

+ _ _ i (_, @ dS')
aS'

+ }1 I--L(_S oi Pj _'2Q@) dS' [S]ij
i,j 2wc S'

J.6.2.3 Normal Source Velocity

Finally

V's, _, =
K S' _'

dS' =

(j.6.96)

(J.6.97)
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(using J.6.66)

-sh ff i a_

K _, p _p

(by J.6.35)

sh _ _T a-sh fS i a_ dS') _o _ _

I sh fl _T 2@ dS'] : [_]

Now, by (J.6.70), (J.6.7g) and multiplication by [G]

a_____dS' : I rs_2,Q'* ds
_o all'

: rs a_' _ vi_-_T ds

Next, by (J.6.70)

// ft
[p B,T] i B--_ dS' : rs JJC_'2,Q ) sT dS'

= (using the integration by parts formula (J.6.93))

rs f _ _T ds - rs SS _7_,Q _T dS'

= rs i _ _Tds - rs iS
BE' _ _' @ [G] dS'

since

I

_2,Q _T: {rs j 3'

dS'

J.6.98)

J.6.99)

J.6.100)

J.6.101)

(J.6.102)

(J.6.103)

(J.6.104)

(J.6.105)
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Combining (J.6.99-i04), we have

t aS
-sh SS p Tp dS')a 0

rh S _ _T ds
- -_-aS' I%-#F _

+ [Z_. rh _,$o_T ds-_ a J--_T]: [_;]

[_e ms') [G] [S]

J.6.3 Doublet Potential and Velocity

(j.6.106)

J.6.3.1 Doublet Potential

From (J.6.10) and (J.6.18)

s u_ 'T [C']_QS dS'_D'- ,: (j.6.107)

: (applying (j.6.7) and (J.6.11))

r SI aS dS'
(j.6.108)

= (applying (J.6.66))

ft I aS-rsh J.l u dS' =
(j.6.109)

-rsh ( ff i aS dS') ,0
_, p ap

-rsh ff _ T a___ dS'j
WC L _., p ap

-rsh ff -_T aS dS'] : [M]
[_, p ap

-rsh _E] {_, 1 a__ dS,}-F_.ijk6_c ijk Pi Pj Pk -_ ap (j.6.110)

The first three integrals are identical to those arising in the evaluation of

_S,_, and thus we need only consider the fourth integral.
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Now, using (J.6.70)

Pi Pj Pk p _ dS' :
S'

rs If Pi Pj (_2,Q)k _ dS'
S'

Now, substituting equations (J.6.100), (J.6.103), and (j.6.111) in
(J.6.11), we obtain

ff i a__rsh

_ _ _ ( _' _ _ dS') u0

h f _T
- L _ a_' _ dsj C

[ , _ j_Tds] : [M]

h if
+_( _dS') [G] : [M]

E'

h ,_j, (_f PiPj-'_ i "k (_2,Q) k _dS' )_ttij k

J.6.3.2 Tangential Doublet Velocity

Combining J.6.7), (J.6.18), and (J.6.28), we have

:__,ss ,o (i)} <K E' a.laC') x x aqJla{'aq_landS

I

(J.6.111)

(J.6,114)

:-! ff [-_._o_, x _,/_o: dS'

(J.6.115)

I+ -r(apla{')(agl_') 1

_ _i fJ -r(aplan')(a_la_')-
r,'

la_lan')(a*lan'Irs ap/a¢')(a /a_;'

dS'
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In particular

_,* r ff (_2 ,Q_ ) _
VD = _ E' a_---T

dS'

Applying (J.6.38) and (J.6.66)

_,_ -rsh ff I a_

VD,_,n - _ _' p @p

+ _V2,Q i,j,k

= (applying (J.6.90))

, rsh II 1 a_
rsh ffl a_ dS )_ _ [M] _ dS'

-_ ( £' P _P _ E' P

f.fl

--6_i,jrsh_ (Z_,P _p PiPj dS') (_ll,,i,j+_i,.,j+-r_i,j,.)

(J.6.116)

(J.6.117)

(j.6.118)

(J.6.119)

Inspection of (J.6.33) and (J.6.34) shows that

]q_z,i.j =_]i,l,j =_i,j,Z

and similarly for]Q_2,i,j, and thus

:3_. i,j-rn, i j +hi j +_i j,. ,

(J.6.120)

(j.6.121)
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Now, substituting (J.6.100), (J.6.103), and (J.6.121) in (J.6.119), we obtain

rsh SS i a_ dS'
_O,c,',n''_ = - T S' 5 a-_

- _ [M] _ , _ ds - _ i.j aZ' []_-_T]i,j ds .,i,j

h (_I_ dS') _E] [G]i j+ 2--_- i,j (J.6.122)

J.6.3.3 Normal Doublet Velocity

By (J.6.116),

..,. 1 o/
vO'_' = _ Z'

(_',Qm )ds'
(J.6.123)

Applying (j.6.38) and (J.6.70)

-"* EII e ,Q,j
VD'_' = - _ i,j E'

(pi_i)

I _ fj'x_,Q, k (p i pj ) [Mij ]
- 2-_- i,j,k E'

I _E] ff_,Q,1 (PiPjPk)
- 6 ijkl S'

rspl B_ dS'
(_l_ijk) p _p

(j.6.124)

Applying (j.2.90)

VD._, : __ Ei (_,J p _ dS').i

- rs _E] II (aikPjPk +
ijk E'

i _
_ijpipk)p_p dS' [M]ij

rs _E] lidS' (ailPjPk
- 7 ijkl S'

+ _jlPiPk + aklPiPj)'D_ijk
Pl am

p @p

(O.6.125)
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Using the definition of the delta function,

,, rs _ (SIPi a_
_D,C :-T i _, _-a-_ dS') ui

___ I aO
rs _E] II PiPj p _p dS' [M]i j
K ij S'

rs Z: fS oiojok I
- T_ ijk _:, p T_ dS'_iJ k (J.6.126)

Substituting (J.6.70) into (J.6.126),

VD'_ : - # i Z' i
dS' _i

-_i _ SS Pi (_."2,Q)j _ dS' [M]ij
K ij _,

_ 1 _ S$ PiPj ($72,Q) k dS' CZ_L)ijk
2< ijk }1, (J_6.127)

Applying (J.6.81), (J.6.93), and (J.6.104-i05),

,, i S _T _ dS'
VD'z :-_ a_' IC--T

ds :[M]_ I_ [ S_'T iv:T ]

+ i_ ff _ dS' [G] : [M]
K

I _E] .0" PiPj
i,j,k _,

C_2,Q) k _ dS' (_)ijk
(J.6.128)

J.6.4 Reduction to Fundamental Integrals

In this section, we will see that the entries of the matrices S and D,
describing source and doublet potential and velocity, are all combinations of
a small number of fundamental integrals.
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J.6.4.1 Definition of the Integrals

Wedefine the integrals as follows.

- sh JJ I B_
a dS'

K }],p Do

dS'

-_ -s f _X ds
b- K @_, i-_

[B] - _c , _ _ ( CdS') [I]

where I is the identity matrix.

s ('r _._., T

[F] : _ _, PV2, Q

Finally, let H be the 2x2x2 tensor

1 II (_2:Q)k_ dS'
Hijk : _ _, PiPj

J.6.4.2 Source Potential and Velocity

Applying the above to (J.6.84), we see

_S' = b°o + _T__ 1/2 IF] : [Z]

(J.6.129)

(J.6.130)

(J.6.131)

(J.6.132)

(J.6.133)

(J.6.134)

(J.6.135)

(J.6.136)

From (J.6.96) we get

i
_'S,_',n': °0 _ + [B]B' +

since

ij [ I_G. ,I
1

Hijl ]Zij (J.6.137)

(J.6.138)
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Finally, (J.6.106) yields

vs, _ = a _0 - rh (Ga) T _'

-rh
[GB] • [_] (J.6.139)

With a few simple definitions, we can write down the matrix IS] such that

_S a_

_'s,_', n' : IS] o_
, _

Vs,c" I o_,_J

(J.6.140)

First, for a (2x2) matrix [A], let _A_3 be the row vector of length 3:

LAj3 = LAII (AI2 + A21) A22J (J.6.141)

For a (2x2x2) tensor {T} , let LTj 4 be the row vector of length 4:

LTj4 = LTIII (TII2 + TI21 + T211) (T122 + T212 + T22 I) T222_

and let [Tk] (k = i or 2) be the 2x2 matrix

[Tk]ij : (T)ij k

(.J.6. 142 )

(J.6.143)

We easily see that if [A] is a 2x2 matrix,

(j.6.144)

Thus, from (J.6.136)

i _Fj3_'S = bao + _T_ _
(j.6.145)

and by (J.6.139)

_'s,_' : a°o - rh[G] _T_,

- 3 °_n

Onn

(J.6.146)
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Finally, we note that

G11 Hijl = rS[Hl]
l

while

G21 Hijl = [H2]
l

Thus,

_E] GII Hij I Zij
ijl

while

._. G21 Hijl ij
lJ

= rS,Hl_

= ,H2, 3

(J.6.147)

(J.6.148)

(J.6.149)

(J.6.150)

Applying (J.6.149-150)

s,{' : °°_
_'S,n'

+[B]_

+ _ LH2j 3
Onn

Substituting

[S] :

(J.6.145-146) and (J.6.151) into (J.6.140),

I 2 3

-_ I _ I -'I_-_ -
rs

B T H]_ 3

1
I _" LH2j 3

_. a _hr(G'_)T I -rh :GBj 3

(J.6.151)

(J.6.152)
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J.6.4.3 Doublet Potential and Velocity

Applying (J.6.129-135) to (J.6.114), we see that

h [GB] : [M]@0= ra uO - h (G_)T _ -

-_h _ Hijk_ijk
6 ijk (J.6.153)

Next, from (j.6,122), we obtain

h _ [GB]ij_.,i,j= ra I_ - h[M] (G_) - _ ij (J.6.154)

Finally, from (J.6.128),

7'*
D,_.= - (Ga)T _- [GB] : [M]

i

_ - Z Hijk_ij k
2 i,j,k

Now, recalling the definition (j.6.33-34) off'h, we see that if T is a

2x2x2 tensor,

ijk
TijkT_ijk = LTj4

P_n_

• Pnqq

(j.6.155)

(J.6.156)

where J=4 is defined by (J.6.142).

Now, applying (J.6.156) and the doublet equivalent of (J.6.144) to (J.6.153),

we have

_'D = rauo - h (G_)T

-h :GBj _H_4

"nn.J "_nn

P_nn J (J.6.157)
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Next, expanding (J.6.154) into two equations,

9"D,__ = ra u_ - h Z Mij (Ga)i
J

h

- _ ._. [gB]ij _l,i,j
ij

= (using the definitions (J.6.32-34) of M and _)

ra _- h(G_') T /._ J__F_GB_3i._ _
/_nn

Similarly,

h S [GB]ij_2ij
_'D,n' : ra Un - h 3_. M2j (G_)j -_ ij

(J.6.158)

J.6.159)

(J.6.160)

J
v

= ra Un - h -L _ 3

_nnn

(J.6.161)

Finally, applying (J.6.156) and the doublet equivalent of (J.6.144) to
(J.6.155),

O,_' : - (Ga')T# - LGB,3 u

l_nnJ

i Hj 4 l"_{n L
(J.6.162)

So, we can now write down the matrix [D] such that

,o,_'_,,, = [D]

VD, '_

_0

..'-J

_nrln (J.6.163)

. i
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From (j.6.157), (J.6.159), (J.6.161), and (J.6.162), we have

i 2 3 4

ra -h (G_) T

0 ra[l]

0 - (G_) T

-h (G_) T r 0

I

0 1 _h (G_) T

-_GBj 3

[D]4X10 =

I

-Z 3
I

I

h LGBjOI -_- 3
i

(J.6.164)

J.6.5 The Fundamental Integrals in Terms of Panel and Edge Functions

The seven fundamental integrals which define the entries of the matrices
[S] and [D] can themselves be reduced to simpler expressions. The only
integrals involved in these expression are a single "panel function" and one
"edge function" for each edge of the region.

J.6.5.1 Computation of a.

By (J.6.129),

sh _ 1 _
a _I_

dS'
(J.6.165)

Thus, for subsonic flow and superinclined panels

_k + Pk(_)

sh _E] 5 d_ _" pdp a_a = _ m
,c edges _k 0 P _)P (J.6.166)

by (J.4.56-57) and (J.4.60).

Note that this integral is always finite unless the control point lies on
the panel edge.
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NOW,

Pk(_) a_ dp _(Pk(_)) - _(0)

0

1
: @(Pk(_)) - (J.6.167)

#
v

Thus,

a : - Tedges @ de

sh (_ 2." Ce)--k- ]E

where Ce is defined by (J.4.30).

J.6.168)

For subinclined panels,

sh SS 1 a@ dS'
a _ _

K _, p ap
= (cf.(J.5.104))

_ Pk(_)
_ s_._ S d_ S _2do

K k ap
_k- lhl (J.6.169)

Unlike the integral J.6.166, we will see shortly that this integral is in fact
infinite. We have

[ ]PkI,l
a : --E ¢->0 _)_ Vh 2 + (:2 (J.6.170a)

sh _ S d_- lim I d_: - T k:l c->0 _ -_"

(J.6.170b)

We now evaluate the first term of this integral, which is the "finite

part". We discard the second term, or "infinite part", for reasons discussed

in section J.6.7. Thus, setting Co = 0 for subinclined panels, we always have

a: s, S 2.,-_ -T6T c®]
_E (J.6.171)
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Setting

and

we have

4-

_k

Jk (@): _" d_

J = Z hJk(@) - 2_ sign(h) Ce
k

(J.6.172)

(J.6.173)

(J.6.174)

The function J is called the panel function.

J.6.5.2 Computation of b.

By (J.6.130),

-1 SSb: K dS'

Z' (J.6.175)

Thus

_k + Pk(_)

1 S S d($ S _pd_
b = -K'k

_k- Ihl

Now, by (J.6.72)

Ip$ dp = rX = rR

(j.6.176)

(J.6.177)

and thus for subsonic flow or superinclined panels

_k+

r S S
b- _ k

_k-

d_ (R - Ihl)

_k+-r
Rd¢ - 2_lhl Co ]

_k-

(J.6.178)

(j.6.179)
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since R = lhl when p = 0 and thus

Pk(_)

f pdp = r(R-lhj)
Jhl

(J.6.180)

=

For subinclined panels, R = 0 when p = lhl, and thus

-r Z Ck+
b : _ k _" Rd_

Ck-
(J.6.181)

Thus b is defined in all cases by (J.6.179) by setting Co = 0 for subinclined
panels.

J.6.5.3 Computation of a.

By (J.6.131),

a :- _ B,_ In_ ds

Applying (J.6.54), and noting from (J.6.45) that I_I = Jn_, we have

f
I

_"e _ sq_-_:_ k_ e

+

dv = --s Z -, Vk
I< k nk qk .f @ dv

Vk -

Defining

+
Vk

Ik : $ dv
Vk -

we have

-_ s T.
a :_ k _k qk Ik

.=_

J.6.5.4 Computation of b.

By (J.6.132),

-_ -s
_c

f -1

aT.' _X _ : -_- T.k _k qk

+
Vk

I
Vk -

Rdv

(J.6.182)

(J.6.183)

(J.6.184)

(J.6.185)

(J.6.186)
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= (by (J.6.54))

-s _ _sqxdv _ -i
-_" _E' K

E
k _k qk

÷
Vk

i
v k -

Rdv

(J.6.189)

Integrating by parts,

IRdv = Rv - fv

where (by J.6.59)

2R @R : 2qv
BV

(j.6.190)

(j.6.191)

Thus

Vk + Vk+

5 Rdv : [Rv]

v k - v k-

+
Vk

- $
Vk-

2dv

= (once again applying (j.6.59))

[Rv]
Vk Vk+

- $
vk- vk-

R2- rsqkak 2- rsh 2
dv

(J.6.192)

(j.6.193)

Collecting terms,

v k Vk+ Vk+
2 _" Rdv = [Rv] + S rsqk ak2R

rsh 2+

v k - v k- v k-

Substituting (J.6.184) and (j.6.194) in (J.6.189)

-I _ A(Rv) rs S 2b : _ k _k qk - 2-K k _k (ak + qkh2) Ik

where, for any quantity f, we define

af : f(vk +) - f(vk)

dv

(j.6.194)

(J.6.195)

(J.6.196)

J.6.5.5 Computation of B

By (J.6.130) and (J.6.133),

[B] : b [I] + I i _ _T
a_' _ @ ds (j.6.197)
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Applying (J.6.52) and (J.6.54)

[B]:b[I] +Zz
_<k

÷
Vk

f
Vk -

_k $ (qkrak_k T + qk sv

By (J.6.191),

DR
-qv_

_v

_k T) qk s dv

(J.6.198

(J.6.199

and thus

[B] = b[l] + r_ nk ak _k TKk

÷
Vk

f
Vk -

I
_dv + _ _kqk _k _k TAR (J.6.200

: (using (J.6.184))

b[l] + rs T.k _k ak "_kT Ik + KklT. qk _k _k T AR (J.6.201

J.6.5.6 Computation of F

By (J.6.134),

s I_ _-_,T
IF] =-_, _' _2,Q X ds

(J.6.202)

= (using J.6.93)

,_ fv-_T-Xds - _ X _2,Q

: (applying (J.6.52) and (J.6.54))

(J.6.203)

÷
Vk

sZ

vk-

(qk r ak _k + qk SVk tk) _k T X s qk dv - _ ( X dS') [G]

(J.6.204)

fF
We first compute _C× dS'.

We compute the integral using either circular cylindrical or hyperbolic

cylindrical coordinates. In the derivation that follows, we assume that

lhl > 0 so that we need not concern ourselves with the problem that hyperbolic

phase becomes unbound on the lines (_'- x') = _ (n' - y'). The upper
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limit of integration with respect to p is Pk (_); the lower limit is O, lhl
or 0 in accordance with whether s = +I, rs = -I, or r = -I. We write then,

_k +
SSX dS' _ rR3=k J"

_k-

P(_)

p = 0 or Ihl

(J.6.205)

z Sk
_k- P = 0 or Ihl

(J.6.206)

{ }r Z _ d_ R3 - lhl3
: _ k or (J.6.207)

_k- R3

Now the sum over k in equation (J.6.207) is over all segments of the boundary

of S, BE , both straight and curved segments. On curved segments R = 0 so

that we may write

_k +

, r _E] _" R3 d_- lh_3 • 2_ Co (J.6.208)
SS XdS = _ edges k _k-

We now examine integrals of the form SR 3 d_. Transforming this integral

into an integral with respect to v, the intrinsic edge variable, we find

(using (J.4.66), (J.5.78), and (J.5.98)) that

_+ V + V +

adv R3 adv
S R3 d_ = S a2 + rsv 2 : S a2 + rsv 2
_- V- V-

R [qrs (a 2 + rsv 2) + rsh 2]

(J.6.209)

Defining

--_ 2
g =

= aqrs

v + V+
adv

Rdv + rsh 2 _ a2 + rsv2
V- V-

R __

aqrs

V + V + V +

dv + rsh2 S
S Rdv + rsh 2 [aqrs S R
V- V- V-

ra2 + rqh2, and SRdv : I (X) : ½ [Rv + sqg 2 I (4)]

adv

(a2 + rsv2)R ]

(J.6.210)

(J.6.211)
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where (see J.6.194)

and

I dvR--= I (¢)

adv do j(@)I Ta 2 + rsv2)'_ = _-- =

(J.6.212)

(J.6.213)

v

we find that

_+

S R3d_ : [aqrs I (X) + (aqrs) rsh 2 I(@) + h4 J (@)] (J.6.214)

Substituting this expression into (J.6.208) and recalling the definition
(J.6.173) of the panel function J we find

Sf r h3X ds : _ ( J + Z aqrs)k
(J.6.215)

Recalling the computed values (J.6.179) and (J.6.181) of b, the integral
dS can be written

_SX -Kb
dS = _ (h 2 (T) + rs }] aq I (X)

+
V

)
V-

(J.6.216)

II -rs 2or × dS : Th b + aq I(X)

Applying (J.6.212) and (J.6.194)

÷
V

V_

Iv ½I(X) : S Rdv : A(Rv) + _" rsqa2 + rsh2
R

V- V- V-

dv

(J.6.217)

(J.6.218a)

by (J.6.212).

I a(Rv) + ½ (rsqa 2 + rsh 2) I(_):

V'F

V_

(J.6.218b)

Recalling the definition (J.6.184) of I k we have

-rs, - 3 b +g ak qk a(Rv) +g ak qk (rs qk ak 2 + rsh2)Ik
(J.6.219)
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We now consider the other terms in (j.6.204).

We have

+ +
v k Vk

/ vXdv= /
Vk- Vk-

Rvdv = (J.6.220)

(by (J.6.191))

aR aR
IR(qR _T ) dv = q l R2 Tv dv : _ a (R3) (J.6.221)

Substituting (j.6.194), (J.6.219), and (J.6.221) in (J.6.204)

s _T (a(Rv) + (rsqk a_ + rsh 2) Ikl
IF] = _ k_ qk rak _k sqk t J

+ s_ -s [G] (:-_k _k qk_k _kT qk (39"_ (R3)) _ h21< b + 1_ Sk ak qk A (Rv)

+ 6 akqk (rqk ak2 + rh2) Ik) (j.6.222)

J.6.5.7 Computation of H.

Recalling the definition (J.6.135)

i II pj k@ ds
Hijk - _ _, Pi (_7'2,Q) '

we apply (J.6.93) to obtain

41 I fS (_2 (p pj)dS'1 f Pi Pj ]-_T @ ds - £, @ ' iHijl = _a_' _ ,Q)I

Now,

!

(_72,Q)1 (pi pj) : pi [G]lj + [G]li pj

Combining (J.6.77-78) with (J.6.132), we see

Eo, dS'

(J.6.223)

(J.6.224)

(J.6.225)

(J.6.226)
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and thus

i _,[ ~'- _ _ ($72,Q) k (o i pj) dS' :

i
SS_ ( Pi [G]k + [G]ki Pj)- _ j
E'

: [G]kj _i + [G]ki bj

dS'

(J.6.227)

We now consider the first term of (J.6.224).

By (J.6.52) and (J.6.54)

S oi pj _I
BE' _ _ ds :

S (qrav i + qsvt i) (qravj + qsvtj) _I sq _ dv
BE'

: _ ak2 (_k)i (_k)j (_k)l sqk
k

4-

Vk

S
Vk-

dv

+ E rsa k (_k)i (_k)j (_k)l
k

+
Vk

sqf dv

(J.6.228)

÷
Vk

({_k)i (_k)j (_k)l sq

vk-

Now by (J.6.191)

BR qv qv_
@V - R =

Thus

+
Vk
S
Vk-

= qk AR

v 2 dv (J.6.229)

(J.6.230)

(J.6.231)
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and

÷ ÷
Vk Vk

_R
.F _ v2 dv : S qk
v k - v k -

= (applying (J.6.194))

qk (vR)- ½qk (vR)

v dv

÷

Vk rsqk ak2 + rsh2 dv
f R

Vk-

(J.6.232)

(J.6.233)

i a(vR) qk: _ qk - _ (rsqk ak2 + rsh2) Ik (j.6.234)

where we have used the definition (J.6.184) of I k. Applying the latter
definition, along with (j.6.231) and (j.6.234) to (J.6.229), we define

fi
Pi_j _ ds =Hijl = _ _S'

_ ak 2 (_k)i (_k)j (_k)l qk Ik
k

+ r_ ak (_k)i (]_k)j (_k) l aR_(k

(_k)i (_k)j (_k) 1
I A(vR) - )(rsq k ak 2 + rsh 2) I k

Substituting (J.6.227) and (J.6.235) in (J.6.224)

Hijk : Hijk + [G]kj _i + [G]ki _j

(J.6.235)

(J.6.236)

This concludes the reduction of fundamental integrals to the edge and
panel functions.

J.6.6 The Origin Shift

The computation of the entries of the matrices IS] and [D] has been based
on the assumption that the local (_', n') coordinate system is centered on the
projection (x', y') of the control point to the plane of the panel. In

practice, however, we require the matrices [So] and [Do] corresponding to

a (_o', no') coordinate system centered on a fixed point (0, O) on the
panel.
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That is, S and D were defined in terms of coefficients oo, o4, "'',

"' defining a source distribution and doubl
onn) _0 ) _) " ) _nn

e{

distribution

, , 1 ,_y, 2_(_o, no): °o + "'" +_onn (no )

I I

.( o , no ) =.o +.C (_o'- x') + I (no' - y,)3
"'" + 6 _qq_

The matrices So and Do are defined in terms of coefficients

ao°, "", ann°,lUO°, "", Un_n defining the samesource and doub et distributions by

o({o',no'): oo° + o¢O{o' + ... + _ anqO nO '2

, , , I ,3
U(_O ' no ) : _00 + u_O _0 + ''" + _ Unn°n no

Then, while IS] and [D] are defined by (J.6.1-2), [SO] and [Do]

are defined by

Cs'l [So] "
a rlrtOJ

{:°1: ,°o,t'°°ot
VD '* _"nnnJ

(J.6.237)

J.6.238)

(J.6.239)

(J.6.240)

To obtain [So] and [Do] from [S] and [D], we must compute the matrices

[Ts]6X6 and [TD]IOxIO such that

: [Ts]

o q oqR

i = [TD]

(j.6.241)

(j.6.242)
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for then, combining (J.6.1-2) with (J.6.239-242), we have

[So] = Is] ITs]

[D o ] : [D] [To]

(J.6.243)

(J.6.244)

Thus we need to compute ITs] and [TD] , or, in particular TD,
since [Ts] is just the upper left (6x6) corner of [TD]. So, we rewrite
the second equation in (J.6.238) as

u(_o', no') : ,o 0 + u_ 0 (Co' - x' + x') + ,n O (no'-Y' + Y')

+ ½ ,[o ((o'- x' + x,)2+ ...

+i
6 Unn0 (no' - Y' + Y')3

Now, we equate the coefficients of (_o' - x') i (no' - Y')J, i + j < 3,
in (J.6.237) and (J.6.245) to obtain

0 uo = uO0 + x' + unOy ' + 1.C_ x'2 + ... I y,3

: ox,+
+ u_F_,° x'y' + 1 U_n 0 y,2

uq + 0 x' + 0 y, + ½ u o x,2: "no _n _nn _n

0

_ :_0 + u_O x' + u_n y'

u_ n : p_.n0 + u_ 0 X' + ,_n 0 Y'

"nn : Unn0 + U_nR X' + UnnR Y'

(J.6.245)

(J.6.246a)

(J.6.246b)

(J.6.246c)

(J.6.246d)

(J.6.246e)

(J.6.246f)
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i +j=3

0
Pqqq = _qrln (J.6.246g)

Comparing (J.6.242) with (J.6.246), we see that the latter equation defines

the entries of TD :

[T0] =

b

x, ,, o x,,,
o I I

10110 x, ,, i o ½_,2 x,y,

--T i LI 0 0 x' y' 0

0 i 0 0 x' y'
0 0 i I 0 0 x'

I
° I ° l

-- Y----T

o I o
0

0

0
0

y'

1 0 0 0

I 0 i 0 0

I 0 0 1 0

I 0 0 0 1

J.6.247)

Introducing

(J.6.248)

and recalling the notation (J.6.141-142) which defines row vectors from

tensors, and defining D as the 2x2x2 tensor

oij k : di dj dk
(J.6.249)
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we have TD :

4

0

3

3

I

I o

0

_T 0

I

_T
L_

4

1 i
-6 LI)J 4

4
_ddT I 0

3 I

I

-4--
_T 0 0

0 _T 0

o o _T

(J.6.250)

Similarly, TS is just the quadratic

F -
I -_ T I 0

T S = 0 I I---_

o o I i

)ortion of T :

(J.6.251)
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Combining (J.6.152), (J.6.243) and (J.6.251) we get [So] =

b +

_' a_ T + B

ZLF

I ,

I-,

a a_ T - hr (G_)T

I
a Ld-_Tj 3 - hr L[G] [adT]j 3

rh
-T LG%3

(J.6.252)

Combining (J.6.164), (J.6.244) and (J.6.247), [Do] :

0

ra rad-'T - h (G_)T

ra I

ra L_d_Tj 3 -

h ,[G] [-_T]_ 3

h
-_- _GBj 3

rad T - _ (G_) T 0

0 I raB_T - h (G_)T

h
ra ,D_4 - _ L(G_)i djdk, 4

h LHJ- _ L[GB]ijjdk 4 - _" 4

ra L_q] 3 I
0

h LGBj
h L(Ga) _T 3 -_ 3

ra :_(_Tj 3
0

h LGBj

I
- _ _(G_)i dj dkj4

I uHj- L[GB]ij dkj 4 - _- 4

(J.6.253)

J.6-40



J.6.7 Finite Parts of Integrals

In section J.6.5.1 we evaluated the integral

a - -sh II 1 B_ dS'

_'nDp P BP (J.6.254)

for Z' a subinclined panel. In doing so, we discarded a term, leaving the
justification for discarding that term to this section.

We will show in section J.6.7.4 that the term we discard is in fact zero

if we only consider the "finite part" of the integral (J.6.254). The finite
part of an integral is a concept we define in section J.6.7.1, and for which
we cite certain well-known properties in section J.6.7.2. Next, in section
J.6.7.3, we review the manipulations of integrals we have performed prior to
Appendix J and conclude that they are still valid if we consider only the
finite parts of various integrals. We then note in section J.6.7.4 that we
really want to compute only the finite part of (J.6.254), and thus we properly
discarded the extra term which appeared in section J.6.5.1.

J.6.7.1 Definition of a Finite Part

Let f be a function on a surface S (though our definition will have an
obvious extension to functions on a line or in a volume of space) of finite

area. Let Sc be the set of points in S which are distance greater than ¢
from any point on S at which f is infinite, where c > O. Then we define

lim If f dS (J.6.255)ff f dS : E)O
S S¢

and we call the integral on the left side of (J.6.255) the finite part of
the integral of f over S. We call

Ill ds- iS f ds
S S

(J.6.256)

the infinite part of the integral whenever it is non-zero.

J.6.7.2 Properties of a Finite Part

Several important properties of ordinary integrals of bounded functions
also hold for finite parts of integrals. First, the standard integration by
parts theorems in several variables (the divergence theorem, Stokes' Theorem,
Green's Theorem) hold for finite parts of integrals.

Second, differentiation with respect to a parameter on which f depends may

be moved under the integral. That is, if f is a function of t,

a ,_'S f dS : _ dS
_t S S

(J.6.257)
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These results are discussed in the paper of Robinson (reference J.3).

J.6.7.3 Finite Parts and the Integral Equation

In section B.O, we quoted the fundamental integral equation (B.O.I),

_r

i J'_"-_ +u_ • _(_) dS (J.6.258)_=_ R
SnDp

But thereafter, we treated this integral as though it were an ordinary

integral rather than a finite part integral. In particular, we applied
Stokes' Theorem and took the gradient operator under the integral equation to

obtain (B.3.31)

SnDp
[-o _ ( ) + (n x XTQ,) x _( )] dS

+ i _'S ,_TQ (1) x d-_
wcSf_Dp

(J.6.259)

The derivation of (J.6,259) from (J.6.258) is only justifiable, however, in

light of the results we quote in section J.6.7.2.

J.6.7.4 Finite Parts and PIC Computation

Now, in appendix J, we have consistently ignored the fact that we really

were interested only in the finite parts of the integrals which defined.
Until section J.6.5.1, where we attempted actually to evaluate such an

integral, this caused no problem. In that section, however, we obtained an
infinite term because we failed to evaluate only the finite part of the

integral (J.6.254). That is, we should compute

a -_

_r

J'J"
Z'(IDpp _o

sh ]im j'j" 1 a_ dS'

K c>O _'c P ap
(J.6.260)
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where _ is a polygonal region, entirely within Dp, which approaches _'nDp

as _ goes to zero (cf., figure J.26)

Then, if E'¢ has Kc edges, by (J.6.169-170), we have

lim -sh _¢ _k+ _k+a = -- - •
c_O K k=l _" _d_- 5 ¢I d_ (J.6 261)

_k- _k-

_k+
Iim 1 '_.¢- 5

= c)O K k=l
_k-

@k+
lim 1 _
¢_0 _ k=1 _ de

_k-

(J.6.262)

But it follows from section J.5 (cf. (J.5.22), along with figure J.20, which

shows that (s+t)/(s-t) > O) that _ is a smooth function on Dp, and bounded

on _ . In particular, _ is single-valued. Thus by the funda_ntal theorem
of calculus

Kc _k +
S = = o iJ.6.263)

and thus the second term of (J.6.262) is zero, and thus should be neglected,
as we do in section J.6.5.1.

J.6.7.5 Summary of Finite Part Integrals

We now briefly summarize the role of finite parts of integrals in

influence coefficient computation. First, we state the fundamental integral

equation (B.O.1), which involves the finite part of a surface integral, and

whose validity we do not prove, but is discussed in Ward (reference 1.5) and

in more detail in Ehlers, et. al. (reference 4.9). Second, we derive (B.3.31)

from (B.O.I), a derivation which is only valid because of the properties

(whose validity we also do not prove) of finite parts of integrals cited in

section J.6.7.2. Third, for reasons of clarity, we leave the finite parts

symbol off many integrals in appendix J. Fourth, we see that a term which

appears in section J.6.5.1 must be discarded, since we only require the finite

part of the integral which is being evaluated. In section J.7 we will see

that the remaining term in this expression can be evaluated in closed form.
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J.7 Edge and Panel Functions

In section J.7.1, we compute the edge function

÷
Vk

Ik(_) - _ _ dv

vk-

(J.7.1)

and the function

_k+

Jk (_) = S

_k-

_d_

where the panel function J is given by (cf. (J.6.173))

J =_ h Jk ($) - 2x sign (h) Ce

We also compute integrals I(X) and J(X) used in sections J.4 - J.6

(cf.(J.4.68), (J.5.115), (j.6.212))

÷

Vk

Ik(X) : _" Rk dv

vk-

(J.7.2)

(J.7.3)

(j.7.4)

J.7.1

Vk + _k +
Rak

Ok(X) : S _ dv =
Vk- _k-

Rd¢

Expressions for Edge and Panel Functions

(J.7.5)

J.7.1.1 Subsonic Flow

Since the flow is subsonic, r = s = qk = 1, and (J.6.58-59) become

pk2 = ak2 + Vk2 (j.7.6)

R2 = ak 2 + Vk 2 + h 2 (J.7.7)

By (J.4.66) we have

÷

Vk ak dv

Jk (_) : S ak 2 + Vk2
v k -
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÷
Vk

--f
Vk -

Rk(ak 2 + Vk2) dv
(J.7.8)

We now exhibit without derivation the functions which are the indefinite
integrals I(@), J(@), I(X), J(X). The integrations can be verified by
differentiating the functions with respect to v, while noting (J.7.6-7).
differentiations are tedious but straightforward.

The

We find

: ]T-: -log (J.7.9)

a dv = 1
J(_) = S R(a2+v2') _ ph (hv,aR)

(J.7.10)

I(X) : SRdv = ½ (vR + (a2 + h2)I(_)) (J.7.11)

J(X) : S a2R+dVv2 : h2 j(_) + al(_)
(J.7.12)

Clearly

Ik(_) : I (_) (Rk+, Vk+) - I (_) (Rk-, Vk-) (J.7.13)

Similarly, evaluation at both endpoints of the intersection of the panel edge
and the domain of dependence gives us the remaining definite integrals.

J.7.1.2 Subsonic Edges of Subinclined Panels in Supersonic FLow

Now (J.6.58-59) become

p2 = v 2 _ a2 (J.7.14)

R2 = v 2 _ a2 _ h2 (J.7.15)

since s = -1, r = +I, q = + i. Also, we have

+

Vk akR

ak(_) = S v_ dv
Vk- ak 2-

(J.7.16)
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J.7.1.3

and

The indefinite integrals now become

I(_) = S dv 1 (v+r)-_ :_ loggz-g

adv i

J(_) =_a _ _ v2)R = -_ ph (hv, aR)

I(X) = S Rdv = ½(vR - (a2 + h2) I(_))

aR dv - h2 J(¢) - aI(_)
J(X) = _a2__ v :

Supersonic Edges of Subinclined Panels

Now r = +I, s = -1 = q, so

_2 = a2 _ v2

R2 = a2 _ h2 _ v2

÷

Vk akRd v
Jk (_)= .r

a '2 _ v2
Vk- k

The indefinite integrals become

dv --ph (v,R)I(_) = S R

J(_) :S(a-2adVv2)R :

1
-_- ph (hv,aR)

I(X) :SRdv : ½ (vR + (a2- h2) I(_))

aRdv : - h2 J(@) + al(@)
J(X) : _a2 _ v2

J.7.1.4 Superinclined Panels

Now r = s = q = -I, and

p2 = a2 + v2

R2 = h2 _ a2 _ v2

(J.7.17)

(J.7.18)

(J.7.19)

(J.7.20)

(J.7.21)

(J.7.22)

(J.7.23)

(J.7.24)

(J.7.25)

(J.7.26)

(J.7.27)

(J.7.28)

(J.7.29)
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and

Jk(_) :

÷

Vk

S
Vk-

akdv

(ak2 + v2)R

The indefinite integrals become

I(_) = _"dvIT- = -ph(hv,R)

(J.7.30)

(J.7.31)

adv 1 ph(hv aR)
J(_) = S R(a2 + v2 ) = _ ,

I(X) = SRdv = ½ (vR -(a 2 -h2) I(_))

aR dv h2 J(_) - al(_)
J(X) = Sa2 + v2 -

J.7.1.5 Uniform Formulas

We unify the results of section J.7.1 for Ik(_) and Jk(_).

IR+v I+Ik(_) : lOg_l_-_TjI_

1 rv+R_L +
l°g _v_-TR-II_

-ph (hv,R)

s=l

s =-1, q=l

q=-I

(J.7.32)

(J.7.33)

(J.7.34)

We obtai n

(J.7.35)

_i I÷Jk(_) : _ ph(hv,aR) _ (J.7.36)

where evaluation occurs at the two endpoints of the intersection of the edge

and the domain of dependence.

J.7.2 Computation of Edge and Panel Function Arguments in Reference
Coordi nates

In this section, we compute h, v, a, and

_rsq a2 + rsh 2g

in reference coordinates. These quantities are computed in reference
coordinates in PAN AIR to minimize numerical error.

(J.7.37)
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J.7.2.1 Computation of h

By (J.6.41)

h : z' - E' : • A (P - QO) (J.7.38)

where QOis any point on the panel, such as the panel center, and A is the
reference to local transformation.

Thus

h : LO0 b [A] (P - QO) (J.7.39)

= S A3j (P - QO)j (J.7.40)
j=l

Applying (E.O.I)

h : {no,_-_o} no • (P - Qo)

J.7.2.2 Computation of v

By (J.6.47)

-_ -_ -_k T [G]-_v = <tk, p> = p

where G, tk, and o are defined in section J.6.1.4.

(J.7.41)

(j.7.42)

Now, define a 3-vector

(J.7.43)

Next, we note from (E.3.24) that

[r]s : [A -T] Co [A -I]
rs

(j.7.44)
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So

V -_ rs O]_k T 0 1 p

= t,T [rs

I

S
(J.7.45)

_-st 'T s A (Q - P)

rs

(J.7.46)

-_ A-T -_= st' [ ] Co (Q _ p) (J.7.47)

= s [A t', Q - P] (J.7.48)

: s IA-I-_'I [to, Q - P] (j.7.49)

where t o is the unit edge tangent, P is the field point, and Q lies on the
edge.

Noting (J.6.42-43), we see that

.=_

-_' At (J.7 50)
t = 1

I<A?,A'_>I_-

where t is any tangent vector in reference coordinates. Thus we define

i
I

_ I<Ato,A_o>l_

lToTAT Atol_ : IToTCTol_

i

: I[_o,£o]I _ (J.7.51)

where we have chosen a unit tangent vector to"

Then

$v :_ [£o,T-T] (j.7.52)

V
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J.7.2.3 Computation of a

The edge distance ak is (cf (J.6.46))

ak = nk Ok

where

Note that

n = -t_

t' x n' : Io}n x 0 =

I

(J.7.53)

(J.7.54)

(j.7.55)

Thus

a _- t' x (Q'-P')

i

• (Q'- P') x t'
I

(J.7.56)

:{i}.x (J.7.57)

: (cf. (E.I.12)) det A A-T ((Q - P) x to)

1 T

(J.7.58)

: (cf (E.3.59))

det A

T

det A -1 _
- T (A',3) " ((Q - P) x to)

r [ Bo no " ((Q - P) x to)

B J{no,no}12

(j.7.59)

(j.7.60)
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Finally, applying (E.3.90) to obtain det A,

a : r B ^ -_ -_1 { no' (Q - P) x o}

T I {no, no}l_"

(J.7.61)

J.7.2.4 Computation of g

Applying (J.6.59)

g2 = sq (R2 - qv2) (J.7.62)

= _q( [_ - _, C- ;] - _ [£o,_ - T]2) (J.7.63)

Now we use the following identity, which we prove shortly. For arbitrary

vectors a and b, and a matrix C,

(a x-_)T [c-l] (_'x b) : det (C-1)(_ T Ca) _T Cb') - (-_TCb)2) (j.7.64)

We apply (j.7.64) to (J.7.63) with

a=Q-P

p,

-_ to -_
b- -t

T

[c] : [Col (J.7.65)

Since (cf. E.2.9))

Co_ 1 I
- sB_ Bo

(J.7.66)

we get (by J.7.64)

I - P) x t, (Q - P) x
sB2

([Q'- p, Q - P] [t,t] - [Q - P, t]) 2 (J.7.67)

: (cf. (j.7.51))

s g2
(j.7.68)

Here we use the fact (cf. (j.7.51))

ItO, to] = q T2 (J.7.6g)
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Thus

g2 : x T' -

We now need only to prove (J.7.64)

We prove in general, for vectors, -a, c, d, and a..matrix C:

(_'x'_)T C (c x d) :

(det C) [ (_TC-lc-_ (b'bTc-l_) - (_'Tc-I_) _TC-Ic) ]

Now, by (E.I.23)

[C] (c x d) = (det C) (C -I'_) x (C -I d)

(J.7.70)

(J.7.71)

(J.7.72)

Thus
(_'x-_) T EC] (_x _) =

(det C) (a x b) . (C -I c x C-I d)

Now, using the notation of section B.3, for vectors a, b, e, f,

(a x b) (e x f) :._. (cij k aibj) (Cmnkemfn)
ljmn

Now, recalling (B.3.31):

(a x b) x c : -(b • c) a ÷ (a • c) b

(J.7.73)

(J.7.74)

(J.7.75}

we convert to _ notation and obtain

( (axb) x k=

Z cij k (Cmni am bn) cj : (J.7.76)
ijmn

c)a k + (a • c) bk :-(b

_ _(bn Cn) ak + Za m c m bk : (J.7.7"7)
n m

- Z ajn akm ambnCj + _ ajmakn ambncj
jnm jmn (J.7.78)

where 6 is the Kronecker delta (zero unless the two subscripts are equal, in

which case it equals one).
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Now, noting that _ijk = _jki, (J.7.76-78) yield

Cjki_mn i = ajm_kn - ajn6km
i

(J.7.79)

Applying (J.7.79) to (J.7.74)

(a x b) • (e x f) : Z
ijmn

Cijk ¢mnk aibjemfn
(J.7.80)

= ._ (aim6jn - ainajm) ai bj em fn
Ijmn

: • e) (b • f)- (a • f) (b • "e) (J.7.81)

Substituting (J.7.80-81) into (j.7.73)

x T C (c x d) =

(det C)

(a'_Tc-1 -_) (_T C-1 c)/

which is (J.7.64) with C-1 replacing C.

(J.7.82)
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J.8 Rationalization Formulas

The computation of the edge and panel functions has been described in

section J.7. These formulas are not always computationally stable. In this

section we describe the actual formulas we use to compute the edge and panel
functions.

J.8.1 Edge Functions

In this section we will discuss the computation of the quantites

V +

I =_ I(,)
V-

aR = R_- R J__

(J.8.1)

(J.8.2)

where

½ Iv+
K : _ (qaR - (v+ + v_) I(_) ) (J.8.3)

V-

1

:lifo, I:o31_

q : sign [to, o]

(J.8.4)

(J.8.5)

½  v+R1log_v-RI

l(qj) [-ph(V,R)

r:p-Q

q:+l

q=-i (J.8.6)

(J.8.7)

I

R : [_, _]_ (J.8.8)

and r+, v+ denote the values of r and v at the upper and lower end points

of EnDp, where E is the edge in question. We use a a to denote the
difference of a value at the endpoints, and a bar to denote the average.

The procedure used to evaluate these edge functions is as follows.

In section J.8.1.1, we will discuss edges for which

T2 > 10-4 (J.8.9)
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We will call these non-sonic edges, and will distinguish four cases. We will
first consider the case where at most one endpoint of the edge lies in the

interior of Dp, dividing this into the regular case of a supersonic edge or
R < .95v, and-a special case of a subsonic edge and R > .95v. We will also

con-sider the case of both endpoints lying within the interior of Dp. This
is divided into a regular case and a special case in which v changes sign

(v_ < 0 < v+) and g2 << i.

In section J.8.1.2 we will discuss nearly sonic edges, for which

i0-i0 iT 2! I0-4 (J.8.1o)

Here the regular case is

q = 1

or sign (R+R_ + v+v_) = I (j.8.11)

In section J.8.13, we will consider essentially sonic edges, for which

T 2 < 10-10 (J.8.12)

J.8.1.1 Non-Sonic Edges

We will calculate

i: _ i(_)iv - ) (J.8.13)

and

I _ RI (J.8.14)AR = R r+ r_

When an edge intersects the Mach cone, it is possible to compute these
functions without actually evaluating the point of intersection. We have

R IMach cone = 0 (J.8.15)

(subsonic)

I($)Iv+,Mach cone

I< >IvMc =o

=0

q = +1

(J.8.16)

(supersonic)

I(_)I v+, M.C. : 0

I($) Iv_, M.C. = 0

q = -I

(J.8.17)
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Thus, whenonly one endpoint of the edge E lies inside the Machcone, (we
are now treating the case of supersonic flow), we need compute only one
elementary transcendental function. For a subsonic edge, we would then compute

v+R: log (q = +i) (J.8.18)

while for a supersonic edge we would have

l(_)Iv = -ph(v,R) (q : -I) (J.8.19)

If we recall equation (J.7.62) we obtain

R2 = qv2 + sqg2 =
v _ g2
g2 _ v2

(q = +1, s = -i)

(q : -1, s : -1)

(J.8.20)

we see that some difficulties may arise in the evaluation of I(@)l v for

subsonic edges when g2 is very small, for then R : v and the log function

in equation (J.8.18) blows up. Thus, for the very special case in which

(a) one end of ENDp lies on the Mach cone (E subsonic) and (b) g2 is very
small, the following procedure should be used

I v+R
I  Jlv' ": Iog

= log (v+R) - ½ log(g 2) (v >0)

i log(g2) _ log (R + v ): (v < O) (J.8.21)

= sign(v) (Iog(Ivl + R) - ½ log g2 (J.8.22)

where g should be computed by the relation (see Section J.7.2.4)

g2 B2 _ ^ _ ^
: _ { roX to , r0 x to} (J.8.23)

The initial test for small g can be made by asking whether R > .951vI. If

this test is satisfied, g2 is small and the special procedure outlined by

equation (J.8.22) should be used.

This completes the discussion of what must be done when one endpoint of

ENDp lies on the Mach cone. We now turn our attention to the case in which
both endpoints lie inside the Mach cone. We begin this discussion by deriving

V+

some expressions for I(_)I that are generally valid; that is, they do not
V_

depend upon the assumption that both endpoints of EADp lie inside the Mach
cone.
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Using equation (J.8.6), we have, for subsonic edges

i v÷ 1 v+RlV+
I(_) v_ = _ l°g v--ZR v_

(J.8.24a)

V _

1 log
2

(v+v_ - R+R_) + (R+v_ - v_R+)

(v+v_ - R+R_) - (R+v_ - R_v+)

1 l+z
= _- log

(J.8.24b)

where z is defined by

Z z
(J.8.25)

The definition (J.8.25) for z may be arranged somewhat by using equation

(J.8.20) to obtain

R2 = v2 + sg2 (J.8.26)

Then

Z

R+v_ ÷ R_v+

R+v_ + R_v+
(J.8.27a)

R+2v_2 _ R_2v+2

R+v+(v_ 2 - R_ 2) + R_v_(v+2"" R+2)
(j.8.27b)

v+2 _ v_2

= R+v+ + R_v_
(J.8.27c)

In a precisly analogous fashion, we have for supersonic edges

i V+ I V+ V+I(_) = -ph(v,R) = - [_- ph(R,v)] v
V_ V_ -

(J.8.28)

= ph(R+,v+) - ph(R_,v_)

= ph(R+R_ + v+v_, v+R_ - v_R+)

= ph(a, _)

(J.8.29)

(j.8.30)
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where in this case we define _ and z by

o = sign (R+R_ + v+v_) (J.8.31)

~ v+R_ - v_R+

z = R+R_ + v+v_ (J.8.32)

As before, the definition of _ may be rearranged somewhat with the help of

equation (J.8.20). Doing this, we find

R+v_ + R_v+

= z R+v_ + R_v+ = (J.8.33)

v+2 - v_2

: R+v+ + R_v_ = z (J.8.34)

Thus, _ = z and we can drop the tilde.

I l+z

log
V+

I(_) I =
v_ ph(_, _Z)

where

v+2 _ v_2

z : R+v+ + R_v_

: sign(R+R_ + v+v_)

Summarizing, we have found,

q = +i

q : -1 (J.8.35)

(v+ - v_)(v+ + v_)
--" R+_+ +_R_v_

(J.8.36)

V÷

Equation (J.8.35) will permit stable and accurate evaluation of I(_) I
V_

all instances with the exception that when g2 is small, q = +i, and v

changes sign along the edge, some additional care must be taken. We now

describe the procedure to be used in this case.

in

Since v changes sign along the edge, the flow must be subsonic.

Consequently, equation (J.8.20) gives us

R2 = v2 + g2 (J.8.37)

Next, we note that the function I(@) may be written

v+R 1 R+v_ + iI(_) : log v-R - _ log (- R-v' (J.8.38)
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R+vConcentrating on the function log _ , we find

1 R+v
log R-_ = log g - log (R-v) (J.S.39)

Evaluating I(_) at the two limits and noting that since v_v+ < O, we must

have v_ < 0 < v+, we get

v+ R+v_ - ( log iTZ_-jv
I(_) = ( log _Jv+

V_

= (log (R+ + v+) - log g) - (log g - log (R_ - v_))

= log ((R+ + v+)(R_ + v_ )) -2 log g

(J.8.40)

or

i v+ (R+ + v+)(R_ v_ ) s = I, q = II(_) = log (J.8.41)
v_ g2 v_ < 0 < v+

With g2 computed from equation (J.8.23), equation (J.8.41) may be used for

i v+ whenever g is small, q = +i, and v changes signthe evaluation of I(_) v_
along the edge.

This completes our discussion of non-sonic edges.

J.8.1.2 Nearly Sonic Edges

The very fact that we are discussing nearly sonic edges ensures us that

the flow itself is supersonic, that is, s = -I. Thus, equation (J.8.20)

gives us
f

R2 = J v2 _ g2 q = +1

[g2 _ v2 q = -1
(J.8.42)

Also, we know that on subsonic edges, v cannot change sign. Note also that in

the evaluation procedure for AIC's for nearly sonic edges, the expression AR

is not needed. However, as we will shortly see, it will be necessary to

compute _± for nearly sonic edges (recall that'± are the values of_-_at the

first and last points of EnDp).
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The basic idea of the evaluation procedure for nearly sonic edges is to

} v+use equation (J.8.35) for I(_) v and at the same time notice two facts: (a) z

wi}l almost always be quite small-and (b) on supersonic edges, we will almost
always have a : +i. The first of these two observations follows from the
calculation

(v+- v_)(v÷+ v_) _ qsAso_
z = R+v+ + R_v_ = _ = _ (J.8.43)

where the definition of v, v = Tv, and (cf.(J.6.54))

Av : TqS(aSo) (J.8.44)

have been used. Because of the presence of the coefficient T in equation

(J.8.43), we may expect that z is of order T, and consequently that it is
small. The second of these two observations follows from the fact that if a

is to be equal to -1, v must change sign along the edge. Consequently, the

edge and control point must be arranged as shown in figure J.27, where the
angle 6 = T /2 is very small. (Recall that an edge is said to be nearly

sonic only if T< .01. This implies a < .00005) Invoking our two assumptions,

and expanding equation J.8.35) in a maclaurin series, we obtain

i V+i(,) :
V_

E z2J + I

j=O 2j + i q = +i

Z (-1)J z2J + i
j=0 2-J_-+--I-- q = -I,o = +1,Izl< 1

V+ 0= (Qz2)j q = -I

I(O) l = z I: _ o : +1
v_ j=O I zl < 1 (J.8.45)

We may now use this expression to obtain stable and accurate expressions for

I, K. We begin by defining the function @q(Z) such that

V+

I(_) I : z (1 + Z2_q(Z)) (J.8.46)
V_

Evidently, for IZl < 1 and _ = +1, _q has the expansion

_q(Z) : q _ (qz2)j-I
j=l j--'2"3_ i'- (J.8.47)

J.8-7



Substituting^th_ expression (J.8.46) into (J.8.1) and (J.8.3) yields the
results for I, K

= T-_ (i + z 2 6q(Z))

= (T--_- (q AR - Vz)) - I2 z3) _q(Z)

We now show how to evaluate the three expressions

Now

First,

qZ 1 _ z3

T ' _- (qaR - vz), T-_

qz (aR) 2 RaR EaR

--Rv--R v-: _i (R+v+ + R_v_) - _ (R+ + R_)(v÷v_)

(J.8.48)

(J.8.49)

(J.8.50)

(J.8.51)

(J.8.52)

Thus
RaR

qz =

T T(_.TARAv)

aR

-G + T1 (sq T2 aSo)aR/R

(J.8,53)

since

Next,

sq T2 AsO = av

(I/z) (qaR - _z) = (I/T2)(qAR - _ _ ) :
2Rv

(J.8.54)

(J.8.55)

T_ [2_ aR - ;a(R2)] = T [2R'v aR - 2;R aR] (J.8.56)
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:
T RV

1 (AR)2 I
= is aSo _ =_[ Rv v

(J.8.58)

Finally,

vz3 (J.8.59)T_ : q T_ (T_)s

where (qzlT) is given by (J.8.53). In deriving these equations, we have used
(J.8.54) and the definition of _.

To summarize our procedure then, I and K are to be evaluated using

equations (J.8.48-49) for all subsonic edges and for supersonic edges when

a = +I. When Izl < .3, say, the series (J.8.47) should be used to evaluate

_q; however for larger Izl, one should use

i l+z
log ir_-i - z q = +i

_q(Z) : z3 izl > .3
(J.8.60a)

_q(Z) = ph(1,z) - z q = -I
z3 IZl > .3 (J.8.60b)

where now, Fortran library routines should be used for the evaluations. The

expression z should be computed by
Q

^

qS6so v
z = T---m--- (J.8.61)

R9

We know in particular that this approach works for supersonic edges even when

izl > 1 provide only that a = +I. This is because, as long as a = +I,

V+I(9) = ph(1,z) = z(l+z 2 _q(Z)) (J.8.62)
V_
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Consequently, we are done except for the case of supersonic, nearly sonic

edges for which

o : sign(R+R_ + v+v_) : -1 (J.8.63)

In this case, both I and K are quite close to an actual singularity of

strength (l/T). Consequently, we will only show how the quantities TI, TK can

be stably evaluated. The first of these is trivial. Using (J.8.1) and

(J.8.35),

A iv÷TI : q I(_) : -ph(-l, -z) (J.8.64)
V_

where z may again be computed from (J.8.61). For _K, we have, using (J.8.2)

and (j.8.35),

T K,= q (-_) ;- _ ph(-1, -z) (J.8.65)

We now conclude our discussion with a prescription of what is to be

done in and case of edges that can only be regarded as truly sonic,

2 0.T < 10-I

J.8.1.3 Essentially Sonic Edges

In this case, the only reasonable thing to do is to evaluate the limits, ^

as T)O of the functions I, AR, K. aR is trivial to compute, but both I and K

require great care. We begin with equations (j.8.48-49) and evaluate the

following expressions in the limit as T_O :

qz 1 vz 3
T ' _ (qaR - vz), T ' z, _q(Z)

(J.8.66)

First, equation (J.8.53) gives us

lim qz aR= _ (j.8.67)
T,O T V

Next, from (J.8.58)

and

lim RG : R v (J.8.68)
T_,0
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we obtain

SaSo (aR)2 1 (A_R_lim l(qaR - _z) - 4 - = -
%,0 T2 R v (_)z

Again, equation (J.8.59) combinedwith (J.8.67) yields

_z3
lim = q _ (AR/ _)3

lim
Finally, equation (J.8.67) implies that T+0 z = 0 SOthat

lim _q(Z) : _q(O) : q/3
T,0

Combining all these results, we find

iI_:o : _m _ : _R/_

and

" lim (T!_(qAR _ vz) vKIT:0: T_0 - _ _q(Z))

(J.8.69)

(J.8.70)

(J.8.71)

(J.8.72)

sas o (AR)2 - 3 (J.8.73)

Now

(SASo)(_): q_vTT=
T

_a(v 2) = ½ AR2 = RAR (j.8.74)

so that

i RAR (AR)2 v AR 3
il,:o = _ --C _ (-_)

= T (_)2
(J.8.75)
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J.8.2 Panel Function Computation

The panel function J is defined by

J = -sign(h) J'

j, : 2_Co +
edges

ph(Ihl v, akR) I

Vk+

vk-

(J.8.76)

where C_

I if (x', y') c _'n Dp' and rs = +I
0 otherwise (J.8.77)

In section J.8.2.1 we compute a "standard rationalization" which is valid

even for a panel with sonic edges. In section J.8.2.2 we consider the special
case

g2 << 1 (j.8.78)

In section J.8.2.3 we consider a point on the panel.

J.8.2.1 The Standard Rationalization

Defining h' : lhJ

we have

J' = _ph(h'Vk +, akR+) - (, sign ak - ph(-h'Vk', akR-))

(J.8.79)

+ 2_Co :

(ph(h'Vk +, akRk +) + ph(-h'Vk- , akRk-)) - , _sign ak - 2_Ce

Z
k corners

+ 2_,Co

m

(ph(h,vk +, akRk+) + ph(-h'Vk+l, ak+lRk+l)) - _ _sign ak

(J.8.8o)

We now define

m

Qk = ph(h'Vk +, akRk +) + Ph(-h'Vk+l, ak+lRk+l ) (J.8.81)
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Then, using the sum of angles formulas,

I (_h2Vk+V_+1 _ akak+iR2 )
cos Qk = _kRk+l

1 (h,R(ak+iVk + _ akv_+1 ))
sin Qk = _kRk+1

We then define

Qk = Ph(-h2vk+Vk+l - akak+l R2, h'R(ak+IVk + - akVk+1))

(J.8.82)

(J.8.83)

We now investigate the sign of ak+ I Vk+ - ak Vk+ 1 •

definition, (cf. Section J.6.1.4)

a = _tn - nt{

v = rs_t_ + n tn

First, by

(J.8.84)

Thus

ak+iVk + - akv_+ I : (_tn - nt_)(rs_t_ + ntn)

: _2(rs _nt - rs tn_) + n(-rs_t_ + tntn + rst_ - tni n)

+ n2(-'-t(_tn+ t{_n)

: (rs_2 + n2) (t{_n -_ctn)

: rso2(gkx t +t)c

(J.8.85)

(J.8.86)

(J.8.87)

Now since the region is convex,

(tk x tk+l) _ > 0

Thus

sign(ak+ I Vk+ - ak V_+l)= rs

We first consider the case of rs = i.

Careful consideration of the range of Qk, Qk and ak shows

J' = _Qk - 2_ - _ sign ak + 2_Ce

= ZQk - _ + 2_ + K
k

(j.8.88)

(J.8.8g)

(J.8.90)
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where mk = 1 if ak < 0 and ak÷ 1 < 0 , zero otherwise, and

K = _ _ - 2_ - _ 2_mk - _ _ sign ak + 2_Co
k k k

Let Tk = i if ak > 0

Tk : 0 if ak < 0

(J.8.91)

(J.8.92)

Then

sign ak = 2Tk - i

mk = (1-Tk)(1-Tk+l)

C@ = _Tk (J.8.93)

and
K : _ [. - 2_(I - Tk)(l - Tk+ 1) - _(2T k- i)] + 2x(Ce - 1)

k

= Z2x(l-T k) Tk+ I + 2.(Ce - I)
k

(J.8.94)

or

K = _ (1 - Tk) Tk+ 1 + xTk - 1 (J.8.95)
k

It follows by a careful analysis from the convexity of the polygonal region
that K : 0.

Next, we assume rs = -i.
By definition, C_ : 0.

Defining Ik = I if ak > 0

Qk = Qk + 2xlk

and ak+ I > 0 , it follows that

(J.8.96)

Thus
J' : _Qk + 2_Ik - _ sign ak

: (Qk + _) - 2_ + K (J.8.97)

So,

K = 2_ - _]_+ _2_ Ik - _ _sign ak (J.8.98)
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Or

= I -Z: +_]?k ?k+l - _-Zi(2%k - I)

= i + Z:Tk(Tk+ I - I) = 0 (J.8.99)

Thus in general

J' = _ QR + rs(2_ - _ _) (J.8.100)
corners edges

Now, Qk =

So,

ph(-h2vk+Vk+1 - akak+iR2, h'Rrsp 2 (t-_kX'_k+l)_) (J.8.101)

J : -sign(h) J' :

- sign(h)rs( 2x - Z x + _ ph(-h2Vk+Vk+l - akak+l R2 lhl Rp2(tk x tk+l){))E

(J.8.102)

We now define

Then

Xk = _h 2 VkVk+ 1 - akak+l R2

Yk :lhIRp2(tk x tk+l) _ (j.8.103)

2 ÷ --
Xk = -h VkVk+ 1 - akak+l(rSh2 + rp 2) (J.8.104)

NOW,

Vk+Vk_1 + rs akak+ I : (rs_t_ + ntn)(rs{_ _ + n_n)

+ rs(_t n - nt_)(_ n - n_) (J.8.105)

: _2(t_t_ + rstntn) + _2(tnt n + rst_t_)

+ rs Cn<tnt-_ + _nt_ - t6n - _t n) (J.8.106)
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So,

= p2(t + rst n) = p2rs <t-_, tk+l> (J.8.107)

Xk = -h2p2rs <t-_k,tk+l> - akak+lrp 2 (J.8.108)

Thus

J = -sign(h)rs(2= - _ _ + _ ph(Xk,k+ I, Yk,k+l))
E C

(J.8.109)

where

Xk,k+ I = -h2rs <t'_k,t-_k+l> _ rakak+ 1

Yk,k+l = R h (t k x tk+l) g (j.8.110)

Using the results of Sections J.7.2.1 and J.7.2.2 we find for Xk+ 1

Co! :xk,k+1= - l{_o,_--C,i/2r [tk, tk+1]

rI' ,)''o'XI{ ao,ao}11/ {no' - -_0,k}
{no,{(6o - Xo) x to,k+l}

(J.8.111)

_B2

no,no
[(no, Xo- {o) 2 [to,k, to,k+l]

+ { no, (60 - Xo) x to,k} {no, (E__)- xo) x to,k+1}

_B2

= {Bo,Bo _' Go
(J.8.112)

We will now simplify the expression Go (j.8.112).

(J.7.64) with

-_ _ _ _o xo_ T_a:c=no, = - x

C-I = Bo

Employing the identity

(J.8.113)
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we find

Go : (no, X'_o- _,o) 2 [ ,k, to,k+1]

+ (noTBono) (( - Xo) x to,k) T Bo ((_o - Xo) x to,k+ 1)

-( oxC(Co-xol T
BO-I

det Bo-I
(no x ((Co - Xo) x to,k+l))

(J.8.114)

Now (cf. (B.3.31))

no x ((CO - Xo) x to,k) = (_o - Xo) (no, to,k) - to,k (no, _o - Xo)

: (_o- Co, no) to,k (J.8.115)

Similarly

no x ((_o - Xo) x to,k+ I : o -_o, no) To,k

Using the results (cf. Appendix E)

CoB o = sB21

det Bo = B2

(J.8.116)

(J.8.117)

we find

8o-i

det Bo-1
= CO

Consequently, we find for Go

Go = (no, _o - _o) 2 [to,k, to,k+l]

+ {no, no} ((_o - Xo) x to,k) T

- (no, X-_o- _'_o)(to,kT C to,k+ I)

Bo ((_o - _'o) x t-_o,k+l)

-Co)

The first and last terms cancel and we are left with

Go : {no, no} ((Co - Xo) x to, k) Bo ((_o - Xo) x to,k+ 1)

Substituting this result into equation (J.8.108) we find

Xk,k+l : -rB 2 ((_o-_--_Xo) x to, k) Bo ((_o - Xo) x to,k+1)

(J.8.118)

(J.8.119)

(J.8.120)

(J.8.121)
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Turning now to Yk,k+l, we find

Yk,k+l = R lh(tk x tk+l) I (J.8.122)

The expression inside the absolute value sign can be written

h(t k x tk+l) = (z' - _')(tk x tk+l)

= (x' ) • (tk x tk+l) (J.8.123)

Transforming this expression into the reference coordinate system we find

h(_ x _k+l) = (A(xo - (o)) • (Ato,k x Ato,k+1)

= (_o-_'o) T AT( det A)A -T (to,k x to,k+1) =

B2 (_o -_o) " (to,k x to,k+1) (J.8.124)

Thus for Yk,k+1 we have

(J.8.125)

UBon comparing equations (J.8.121) and (J.8.125) we see that the factor
8 /Tk Tk+ 1 can be extracted from each of them and that we can write

ph(Xk,k+l, Yk,k+1) : Ph(_k,k+l, _k,k+1) (J.8.126)

V

where

Xk,k+l = - {(_o - Xo) x to,k, (_o - Xo) x to,k+ 1

 k,k+1: R l( o-70, x  o,k÷l)l (J.8.127)

Thus we obtain the standard rationalization

J : -sign(h) rs(2_ - _ , + _ ph(_k,k+ I, _k,k+l))
edges corners (J.8.128)

J.8.2.2 A Special Rationalization

In equation (J.8.128) the summation extends over the straight edges of _'
and over the corners of _' internal to Dp °. When h_O, the form

(J.8.128) may not be sufficiently stable for accurate evaluation if on any

edge ak : O. The precise situation in which resolvable difficulties can

arise is when gk2 = r(qkh2 + ak2) : 0 and the panel is subinclined
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?

(r = +1). Although it can happen that g_ = 0 for some edge on a

superinclined panel (see figure J.28) the difficulties associated with

evaluating the panel function for this configuration are quite unavoidable and

the standard rationalization must be regarded as optimal. To illustrate this

difficulty, we point out that for the configuration shown, the value of lhl
decreases down to the inner circle.

Having identified the situation g2 = 0 as a source of difficulty, we now

show how this problem may be resolved (when it is resolvable). Thus we define

the procedure to be used for evaluating J'.

First, if r = -1

or r = 1, s = -1 and g_ > 10-4 max(a 2 + h2, D_2)

on all subsonic or nearly sonic edges

or r = 1, s = +1, and g2 > 10-4 D_2 (J.8.129)

(where DE is the panel diameter) we use the standard rationalization.

Otherwise, we calculate J' by

J' = 2xCe + _ Qk
edges

(J.8.130)

where (cf.(J.8.81)

÷

Qk = ph(lhl v, aR)Ivk

Vk -

We now describve stable methods for computing Ce and Qk.

Since either the flow is subsonic or Co = O, the most direct way of

getting Co is by the formula

1 if {n, (Qk - _) x tk} > 0 for all kCo = 0 otherwise
(J.8.133)

The topologic_ _ justification of the procedure defined above stems from

the following observation. As one traverses the boundary of a convex

polygonal region, proceeding in a positive fashion, any point inside the

region always lies to the left of the extension of the edge. Thus the edge

distance ak is always positive.
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Wenow provide a detailed prescription for the computation of Qk. This
description will consist of two parts.

(i) Evaluation of ph(lhlv, aR) whenR = 0 together with the evaluation of
Qk on edges that intersect the Machcone, and

(ii) Evaluation of Qk whenboth end points of edge k lie inside the
domainof dependenceDp.

It is a fairly straightforward matter to showthat the value of v at the
point at which an edge enters the domainof dependencesatisfies the inequality

Vk- IR=O < 0 (J.8.134)

Similarly, when an edge leaves Dp, v_ satisfies the inequality

Vk+IR:O > 0 (J.8.135)

These inequalities can in fact be verified by a careful study of the special

cases in figure J.29.

As a consequence of these observations, we see that

, ak : sign(ak)_ph(lhl v_ R)I R=O
(J.8.136)

and

ph (lhl v_, akR)IR:O
= 0 (J.8.137)

If just the lower endpoint of the edge intersects Dp, Qk is given by

Qk : ph(lhl v_, ak RE) - _ sign ak (J.8.138)

If just the upper endpoint intersects Dp we have

Qk = -ph(lhl v_, akR_) (J.8.139)

Finally if both endpoints intersect Dp

Qk = -7 sign ak
(J.8.140)
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Wenowdevelop a rationalization for Qkwhen
Evaluating (J.8.128) we have

Qk : Ph(lhl v, ak R)Ivk+'
vk-

+

Rk , O, R_ _ O.

ph(lhl Vk+, ak Rk +) - ph(lhl Vk-, ak Rk-)

= Qk + 2xn n an integer (J.8.141)

where Qk is defined by

Qk = ph(h2vk+Vk - + ak2Rk+Rk -, Ihl ak(Rk+Vk - - Rk-Vk+)) (J.8.142)

In order that we might determine n, we investigate the sign of Rk+Vk - - Rk-Vk +.

÷

+ Vk

Vk- Vk d(_) (J.8.143)Rk+Vk - - Rk-Vk + : Rk+Rk-(o--_-3_o-_-T): -Rk+Rk - S
_K "K

Vk-

Now R2 = sqg 2 + qv2, hence,

I _3 =_ (J.8.144)d (_F) = _" - RO

Consequently

÷ _ -- ÷

sign(RkV k - RkVk) = -sq k (J.8.145)

Thus
-sqk sign(ak) Qk ¢ (o,_) (J.8.146)

Now an inspection of equation (J.8.138) shows that Qk _(0,,).

Consequently we see that no phase wrap is possible, and that n = 0 and

Qk : Q'k (j.8.147)

Multiplying both arguments of Qk by (Rk+Vk- + Rk-Vk+), we find that

Qk = Qk = ph(X,Y) (J.8.148)
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Now,

aX = Rk÷Vk+(h2Vk -2 + ak2Rk -2) + Rk-Vk-(h2Vk +2 + ak2Rk +2)

Y = lhf ak sign(Rk+Vk - + Rk-Vk+)(sqg2)(Vk-2Vk +2)

sign(R+v - + R-v +) = -sq sign((R+v-) 2 - (R-v+) 2)

= -sq(sq) sign(v -2 - v+2)

= sign(v +2 _ v-2)

= sign(v + + v-)

(J.8.149)

(J.8.150)

v

Consequently, Y is given by

Y = -ak lhi g2 iA(R2)I (J.8.151)

Next, we examine X. First, note that

h2v 2 + a2R 2 = (h2 + qa2)(v 2 + rsa 2) = rqg2(v 2 + rsh 2)

= rg2(qv 2 + rsq) = rg2(R 2 - rsh 2) (_.8.152)

Consequently aX =

(Rk+Vk+(Rk-2 - rsh 2) + Rk-Vk-(Rk +2 _ rsh2)) rg2 (J.8.153)

Comparing (J.8.152) and (J.8.153) we see that they contain a common factor of
g_. We remove this common factor to obtain the rationalized expression

for Qk

Qk = -Ph(a[Rk + Vk+(Rk -2 - rsh2) + Rk- Vk-(Rk +2 - rsh2)]' Taklhila(R2)l )

(J.8.154)

This is the basic formula we use to compute Qk for subsequent substitution

into equation (J.8.130) for J'. The arguments for the expression (J.8.154)

may be computed in the obvious fashion using the relations found in Section

(J.7.2).

We can now evaluate J' if lhi = O. In doing this, we use the following

formula for J' (cf. J.8.109-110)

J' = rs C2_ - _ _ + _ Ph(-h2rs <tk, tk+l> - rakak+l, lhl Rk+tk • tk+l))
E c

(J.8.155)
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Setting lhl = 0 we find

I

J'l : rs(2_ - _ x + S ph(-rakak+ I, 0+)) (J.8.156)
h =0 E c

Since ak > 0 for all k, we then obtain

J' I : rs(2, - 7 _ + (l+r______DZ ,) (J.8.157)
h=O E 2 C

We can now examine the three special cases described by Figure J.30. First,
consider s = 1. Then r = +I and the number of corners in the domain of

dependence equals the number of edges (=n, say). Thus

and

_ = n_, _ _ = n_
E c

J' l h :0 : 2_ (j.8.158)

Next, suppose rs : -i. Then r = +1, s = -1 and the number of straight edges

of D° exceeds the number of interior corners by I. Hence

_ = (m ÷ I)
E

, = mr (J.8.159)
C

and

J'l =h =0 -_

Finally, suppose r = -I.
or corners. Hence

J I,:o: 2_

Here, r :-I, s = -I and

Summarizing, for a Field point lying on the panel

[2_rs if rs = I
J'l

h =0 =l_rs if rs = -1

(J.8.160)

D' has no straight edges

(j.8.161)

(J.8.16Z)

In general we write

J'l : _(rs + 3)h =0
(J.8.163)
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Of additional interest is the jump in J and the average value of J.
order that we might define the jump in J we must define it by

lim -_
[J] = ¢,0 + [J(P + cn) - J(P - cn)]

The average value, (J)Av, is the average of these two quantities.
s = I. Here

[J] = -2_ - (2.) = -4.

(J)Av : ½(-2, + 2,) = 0

Next, consider rs = -1. Here

[J] : 2_

(J)Av = 0

In

(J.8.164)

First let

(J.8.165)

(J.8.166)

Finally let r = -i. Here we must proceed very carefully.
recall that a panel may influence a point only when

sign(h) sign(n,c o) : I

First we must

(J.8.167)

Next, w
(_Fmust compute the sign of h for field points lying just above thepanel + on) and for points just below the panel. Now

sign(h(P + on)) : + I (J.8.168)

Thus,

[J] =Z. sign(n,c o)

(J)Av: x sign(n,Co) (J.8.169)
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J.9 Far Field PIC's

As noted earlier in appendix 1.4, the far field estimation of a panel

influence is calculated by implementing the following approximations:

(i) The panel is replaced by its mean panel

(ii) Singularity distributions a and u are replaced by their quasi far

field approximations (see section 1.3.1)

(iii) The kernel functions (I/R) and V(I/R) are replaced by Taylor series

approximations of degree 0 (monpole), I (dipole) or 2 (quadrupole).

In this section we carry out the analysis of these approximations as they

relate to the computation of the integrals defined by equations (J.1.1},
(J.l.2), (J.1.4), (J.i.5).

We begin this analysis by noting that the far field evaluation procedure

is used only when the panel _ (and its mean plane approximation _m) is

completely contained within the domain of dependence, DD. In fact, all
points of % are required to be some distance away fro_ the boundary of

Dp. As a consequence, we find that for all cases of interest,

n Dp = _ (far field evaluation condition)

_m n Dp = _m iJ.9.1)

The local coordinate system associated with the mean panel is defined by the

panel center _9' and the mean panel normal nm, which determines the reference

to local transformation matrix Am by means of equation (E.O.I). This transfor-

mation gives the local coordinates Q' of a point Q by the formula

Q' : Am (Q - P9) (J.9.2)

The area Jacobian Jm for this transformation is given by (E.3.109), (with

appropriate modifications) by

Jm : II[BI {nm' _m } 1112] (J .g.3)

Using the basis functions _ defined by

[_ ] : [1, _, n, _2/2, _n, n2/2] (J.9.4)
C_

we write the mean panel singularity approximations (I.3.1) and (I.3.2) in the
form

3

o = _ oQ _ (_, n) (J.9.5)
_:I
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6

" = _ uB _IB ((' n) (J.9.6)
B=I

If we now substitute all these results into the defining relations for _s' _s

given by (J.1.1-2), replacing integrals over _ with integrals over
we obtain the fo]lowing approximations m

3

1 (_)_s "-- -_ _( _ o # )

_=I
IEm

(Jm d{ dn) (J.9.7)

3

Vs -- _ ( Z o _) ( VQ ) (Jm d_ dn)

ct=l

I_m

(J .9.8)

The corresponding transformations for _D' VD requires the use of the identity
(cf• (E.1.28))

_' dS' = s2 A"T nm^ dS,

and the identity

= B V = B AT v'

The crucial calculation for the treatment of #D reads

1

nm dS . V = B-_ (AT n' dS') . B AT V'

1 AT _, dS'
nm dS = B-_

(J.9.9)

(J.9.10)

I B, dS (A B AT ) V' s _'dS' D V'

(J.9.11)

where D = diag (r, s, rs) (see equation (E.3.31)). In deriving the last

result we have used the identity (E.3.106), modified for the present context,

that

A B AT = sB2 D (J.9.12)

Substituting (J.9.11) into the definition of _D' (j.1.4), and taking account
of our earlier observations yields:

6

_D =- _ ( _ _S ) (_' dS'
B 1 B

%m

(j •9.13)

J .9-2



The crucial calculation for the treatment of _'D reads

1 T , AT AT ,
(rimdS xV_) x Vf = (B-_zA n' dS x V'u) x B V f

1 AT 'u AT '[(_' dS' xV ) x A B V f]
B

= s AT [(n' dS' x V'_) x D V'f]

(J.9.14)

Here we have used twice the standard identity for the transformation of a

cross product (cf. equation (E.1.12)):

G_ x Gy : det(G) G-T (_ x 2)

as well as the_result (J.9.12). Substituting (J.9.14) into (j.I.5) as usual

we obtain for VD:

flvD = _ __ (n' dS' x V'_) x D V' (_) (J.g.15)

_m

Having implemented the first two approximations set forth in our list at

the beginning of this section, we now simplify our expression a bit and

identify some common integrals before proceeding further. We begin this

simplification process by examining in somewhat greater detail the form of our

integrals in the local coordinate system for _m"

In panel local coordinates, the metric matrix C ° is defined by equation
(E.2.18) to be

C' = A°T C A-1

By taking the inverse of equation (E.3.31) and recognizing that the matrix D

is its own inverse, we conclude that

I r
C° = (C' -i = D = s

rs
(J.9.16)

Letting _' denote the local coordinate representation of the control point P,

P' = Am (P - P9 ) (J.9.17)

we find that the kernel function (l/R) has the following representation in
local coordinates
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1/R = 1/ [Q, _ p,, , _ ,]1/2

: i/[(_' - _,)T C (_' - _,)]I/2

Introducing the following notation for the components of Q' and P',

(J.g.18)

[]Q' = 11 (J.9.19)

(J.9.20)

we obtain for the kernel

(l/R) : I/ [ r (_- x)2 + s (n - y)2 + rs ({- z)2 ]1/2

(J.9.21)

Rather than compute

On the mean panel _ , _ = 0 and we obtain
m

v'(1/R), we prefer to work with the quantity D v' (l/R).

Ix - _ ] /R3
D V' (I/R) I : Y - n (j_9.22)

I
{ :0 z

We now write out the formulas for 6s and _s that we require:

3
Jm H d _ dn

_=I Im

(J.9.23)

Jm AT 0 o
_'s : -Z _

(I=1

The formula for
S

result

V = AT V' = ATD (D V')

Upon examining these equations we are led to define the integrals

_ --_ n d_ dn

_m
(j .9.24)

follows from (j.9.8) by using (J.9.22) together with the

_a and W: by

s _ # _d_ dn (J.9.25)

_m
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WI'_ s #_ Y - n d( dn
Wa = W2'_ = _ R-_

W3,_ £m z

(J.9.26)

The reason for including the factor (s/z) will become apparent when we

consider+the case of the doublet influence coefficients. Using the quantities

_a and Wa, we can rewrite _s and vs as

3

_s = -SJm ]El a_ _ (J.9.27)

_=1

_s = SJm ATD _E_ o w_ (J.9.28)

_=1

The corresponding equation for _D is obtained by using the fact that

n= (J,9.29)

and substituting (J.9.22) into (J.9.13) to obtain

6

S

_D = -
Z"B _8 _ d_ dn

v

The required equation for V_D is obtained by first recognizing that the

integrand in equation (j.9.15) can be written

(_' x V',) x D V' (i/R)

u_ z/R 3

= un z/R3

-,( (x-_)/R 3 " U
n

(y-n)/R 3

(J.9.30)

(J.9.31)

C'-- 7
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Differentiating the relation (J.g.6) for u yields

3

"_ = "2 #I + "4 ¢2 + "5 #3 = _ "x,_ ¢_

_=i

(J.9.32)

3

"n : _3 #i + _5 #2 + "6 #3 : _ "y,a _a (J.9.33)

ct:l

with the obvious definitions for "x,_ and ,y, . Substituting these expressions

into (J.g.31) and the result of that back into (J.9.I_) yields after some
manipulation and taking account of the definition of

= AT ]"X,a W3,a

"y,_ W3,_

""x,_ WI,_ -"y,a W2,a
a=l

(J.9.34)

We have now reduced the problem of computing the approximate influence

coefficients for #s' _s' #D and _D down to the evaluation of the integrals

_a and W= defined by (J.9.25) and (J.9.26). We will now focus our attention

on the computation of these quantities bringing into play our final
approximation technique, the Taylor expansion of the kernel functions about
the panel center.

Letting Ro denoted the value of R at the panel center, the origin of the

local coordinate system, we observe (cf. J.9.21)

Ro = [rx2 + sy2 + rsz2] I/2 (J.9.35)

We may expand (l/R) in a Taylor series about the point Q' = 0 and obtain on
the surface of _ (4=0):

m

J .9-6

(l/R) - (I/Ro )

+ (rx/R3o) ÷ n (sy/R_)

13rs )n2 s)3 T- -3Ro Ro
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The corresponding expansion for the kernel D V'(1/R) reads,

I Ix_,]D V'(1/R) = Y - n /R3

{:0 z

+ 3rx( + 3sYn
5

Ro

+ _1 15(x2( 2 + 2rsxRT yn(+ y2n2) - 3(r(2+Sn2)R5 }
O O

_[,]{,.3rx5" sY }(J.9.37)
Monopole, dipole and quadrupole expansions are obtained by using the

approximations (J.g.36) and (J.9.37) retaining respectively terms that are

constant, linear and quadratic with respect to _ and n. These expansions can

be written in terms of the basis functions #_ defined by (J.9.4) by the
equations

1,3 or 6

(I/R) = _ _j K
j=l Gj (J.9.38)

D V'(I/R) _ _] _j Hj - _ #j Hj

j:1 j:1
(J.9.39)

K K
where kernel moments G_ and H- are defined by

d J

[G_] [1_ rx sy 3x2 r 3rsxy= ' _-_J'_-_J' - _-_J'T,
Ro Ro Ro RoT Ro Ro

3y2 s

_T - R-_o]Ra

(J.g.4o)

[H K]J : [I__, 3rx 3sy 15x 2 3r 15rsxy 15y 2 3s
RoT, .T'_ Ro_' Ro--_--,R--_-o"_ lRo Ro

(J.9.41)

In equation (J.9.39), a monopole expansion is obtained by taking the upper

limit of the first sum to be i and ignoring the second sum. The dipole
(quadrupole) expansions are obtained by taking 3 (resp. 6) terms in the first

sum and 1 (resp. 3) terms in the_second sum. Substituting these expansions

into the definitions of _a and W , we obtain
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J
+ J"S _oL I_j d_ dn j.

I, m

(J.9.42)

= s

J _m
#e, tSj d,_ dn } HK'.I

I+]- '_" n

j o
_I _j d{ dn } HK.J

(J.9.43)

These equations motivate the definitions of the panel moments given previously

by equations (I.4.4) and (1.4.5). Using these panel moments, _ and Wa can
be expressed

K
_'a = _ Haj Gj

J

x HI:j

K K
Wa = Y _ Haj Hj - _ 2_j Hj

z j j

(J.9.44)

(J.9.45)

Note that in the second term of this expression for W , the sum over j is

null for the monopole case and extends to 1 (resp. 3) for the dipole (resp.

quadruple) case.

We can now summarize our results and at the same time provide a fairly

concise procedure for computing far field influences. First we define Ha and

R. by
la

1,3 or 6 K (J.9.46)
Ha = _ Haj Hj

j=l

0,I or 3 _ K i : 1,2 (J.9.47)
Hia : _ Hi_j Hj

j=l
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Using these we can write for W::

- xH

yH

zH
c&

HI:

H2:

Consequently we obtain for our various panel influences

3

_S = "SJm _ o_ _I'_

_=1

(J.9.48)

(J.9.49)

V
s

3

sjm ATD _ a

a=l

xH - HI_

zH

(J.9.50)

6

_D : Z "B zHB

B=I

(J.9.51)

VD : AT _ _x,a

_=1

D

zH

0

m

0

zH

_ H2a-YHa

(j.9.52)
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J.lO Line Vortex PIC's

The line vortex term of the velocity is given by (cf.(B.3.55))

u _(_) x _l (J.lO.1)

Differentiating in compressibility coordinates yields

_(1) = _sB2 (__ _) /R3 (J.lO.2)

and thus

* -s62 I u _

VD - K _SNDp _ (Qo - _o) x dl
(J.10.3)

In general, the doublet strength is assumed to be continuous everywhere,

and thus the line vortex contribution to the velocity cancels and may be

ignored. In addition, evaluation of this integral is not possible in

supersonic flow without additional assumptions.

In subsonic flow, however, the inclusion of a "line vortex" corresponding

to a discontinuity in doublet strength may be meaningful (see Appendix B).

The option is not available in version 1.0 of Pan Air, but the theory is

included here as background material. In this section, we compute the 3x3

matrix which gives _ in terms of _ , uo, and _+, the values of
doublet strength at the initial poiSt, center point, and endpoint of a line

segment, such as a panel edge.

J.lO.l Computation of vD

Now along a straight segment of a_ o, we have

_Xo : to dso (J.10.4)

where to denotes the unit edge tangent in reference coordinates and dso

denotes the element of arc length. Also, as one moves along such an edge, the

point of integration Qo varies according to the rule

Thus

Qo = o + s
o (J.lO.5)

RI _ dso_( ) x d_xo = -sB 2 II (Qo (o1 _o) x i'D R-_ (J.lO.6)
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Substituting this into equation (J.10.3) we obtain the line vortex velocity

due to a straight segment of edge E

* -sB2 (Qo (0) - Po) x to} S " dsO
VD = _ E R_

This equation motivates us to define the integral

= I _ dsO

E R--_---

(J.I0.7)

(J.10.8)

so that _D is given by

-"* -sB2 ((Qo(°) - _o) x to)
vD -

(J.I0.9)

Thus CD is a constant vector times the integral m. We evaluate m by
applying a coo_rdinate transformation from the reference system Xo to a local

coordinate system X' such that in X', the element of arc length along the edge

image is ds' = sqdx' Our new coordinate system is defined by

edge
the transformations

F E A
X _ X _ X_ X' (J.10.10)
0

The transformation F is discussed in Appendix E. The coordinates X are

compressibility coordinates, while E is a scaling transformation,

[']E= e
B

(J.lO.ll)

We define

a _._ i [io o1
0 0 -tzl= "ty/:J

(J.10.12)

where

: E F _o

:2 = Ex2 + _y2

(J.10.13)

Before proceeding further, we note in passing that when to is chosen to have
the normalization

[to, to] : q : _1 (J.i0.14)
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then t, t, and t', defined by

t= F o

_=E'_

"_'= _, _

retain this normalization

[_,_]x= It,t]_: [_',_']x'= q

Because of this nice property, we will assume that _o has the

normalization (J.i0.14). We can now prove the two identities

dsO = It'olds'

ds' = sq dx'

The first identity is proved by the calculation

(ds')2= (_,ds') • (:C'ds')= (_x')• (_x')

= (_ r _'Xo). (At r d"xo)=

(A-E r :co dso) (_ r _co dSo) =

(dso) 2 IA7 r _-oI2

NOW since to = _o/I_oI , we find

(ds')2 = (dso)2 I_ r _ol 2/1_ol2
: (d_o)z It,lZ/Itol z

where we have used equation (J.10.15) to notice that

_' = AE F to = A t

m

The quantity A t is readily computed:

At

I[_, "t]ll/2 S_x 2 + _y2 + _z 2}
O

0

= sq_/I[_,_]1

(J.i0.15)

(J.lO.16)

(J.10.17)

(J.10.1B)

(J.10.19)

(J.10.20)

(J.i0.21)

(J.IO.22)

(J.I0.23)
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Invoking the normalization condition (J.10.16) we then find that

t' --X _ : sq , IX El : 1 (J.I0.24)

using this in equations (J.I0.21-22) then yields the required identity

I_oI ds' = dso (J.10.25)

=

The second identity (J.10.18) can be proved by noticing that

:c' - it,I - t':sq (J.i0.26)

The identity d_' = t'ds' then provides the desired result as follows

dy'| : d_' : t'ds' : ds'
dz 'J

(J.10.27)

It should be noted that the ratio of arc elements, I_oI (cf.(J.10.17), is

closely related to the quantity T defined by

T2 : l[to, to]i (J.i0.28)

To see this relationship note that

to to (J.i0.29)

t o : l[:Co ' :Co]l I/2 - %

Taking norms and remembering that Itol = 1, we find

I (J.lO 30)I ol : T

The next piece of information we will need is the form of the function R
in the coordinate system X'. Using the fact that in _, R2 is given by

R2 = (__ x)2 + s(n - y)2 + s({- z) 2 (J.I0.31)

one may then use the definition (J.I0.12) of A to compute R2 in X'

quickly finds that

R2 : q(_' - x') 2 + sq(n' - y,)2 + s(_' - z') 2

One

(J.i0.32)
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If we now define the edge variable v and the edge parameter g by

V = _ I - X I

sqg2 -- sq(n' -y,)2 + s(_' - z') 2

(J.10.33)

(J.i0.34)

one quickly obtains the necessary expression for R2

R2 = qv2 + sq g2 (J.i0.35)

We may now write the integral m in the concise form

I oIds' sq.j" .dv= S u - (J.i0.36)

E R3 T E _qv 2+ sqg 23

Now on a given edge E, u is assumed to be a quadratic function, completely

determined by its values at the lower and upper endpoints v_ and v+ and
at the midpoint vD = i/2 (v_ + v+). The corresponding values of u are

denoted u_, u+, uo. As a function of v, u may be written

. : .(v) : ._ f_ (v) + "0 fo (V) + .+ f+ (v)

= _- "0 "+_ f_
fo
f+

(J.i0.37)

where the functions f are defined

f_ (V) =
(v - Vo)(V- v+)
(v_- Vo)'(v_- v+)

fo (v) :
(v - v_)(v- v+)

IVo- v_')'(Vo-'v+)

(v-v_)(v-v o)
f+ (v) : _v+ - V_)(v+ - Vo)

(J.10.38)

If we introduce the basis functions _o (v), _1 (v), _2 (v) by the
definitions

AV : V÷ - V_ (J.I0.39)

¢o (v): i
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V - V 0
_l(V) =--I_

av

(v - Vo)2

_2(v) = I (av)2 i
T

we see that the f functions can be written

fo = 0 - #I

I _2
f+ _r _.J

(J.i0.40)

(J.lO.al)

Substituting (J.10.40) into (J.10.36) and thence into (J.10.35) we obtain for

_" -_- _o dv

= = t_.-.o.tj T
1 I _2

= _-_'op*.j

-)" =o

0 - =i

I =2
L_ (J.10.42)

where =i are defined by

=i = sq y _idv
T E _ (J.i0.43)

The functions =i can be computed by repeated integration by parts. In doing

this, we treat the general case of a quadratic basis function _. We
consider then

0 dv

=(_) - ? I _(qv2 + sqg2 3

(J.10.44)

U = _ dV =
dv

v2 + sqg 2 3

V

dU = ¢'(v)dv V = sq_gR (J.10.45)
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Thus
V÷

I

S  Vlv_ (J.I0.46)

Again integrating by parts, let

v dv
U : _b'(v) dV :--R_

dU = _'(v) dv V : qR (J.I0.47)

Thus,

sq _
m(_) : sq-_g [ - _'qR + q_'

Rdv]

V÷

V_

(J.10.48)

Now, note that

d " qv 2 R2 sqg 2-_-(vR_ = R + R +- -
T- Rav" "

= 2R - sqg2
R

(J.I0.49)

Consequently

SRdv:½[vR÷sqg2SdvIR]

and we obtain for m(_).

V÷

re(Q)_ _qqg_Sq[_-_- Q_R + _ (vR + sqg21(_))] v_

(J.iO.5O)

(j.i0.51)

where, of course, I(_) is given by

111 v+R-ph(v,R)

q=+l

q=-i
(j.10.52)
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We now apply the formula (J.lO.50) to the evaluation of mi, i = O, 1, 2.

iV+ V+ V
First m° --sq-_-_-g_ v_ sqg_

v

R_v+ - R+v_
= sqg: - R+R_

R_v+ + R+v_

R_v+ + R+v_

sq/T sqg2( v+2 - v-2)

= _ R_R_(R_v+ + R+v_

(J.I0.53)

(J.I0.54)

= sq 2av vo (J.I0.55)
I R+R_(R_v+ + R+v/)

where

Vo = ½(v_ + v+) (J.I0.56)

In per_frming this evaluation, we have taken special care that the possibility
that g_= 0 not cause any difficulty.

Next, we consider ml, which corresponds to

¢1(v_) : -I

¢1(v+) = +1

_1' = -2/av (J.10.57)

Using equation (J.10.50) we find

V+ V_ A2__v_I = [R-_++ ___ - (R+ - R_)]
(J.10.58)

AFter considerable manipulation, one then finds

ml = - _ [a( )]2 s (J.10.59)

TX TI T

where the overscore denotes the average value of the quantity at the lower and

upper endpoints. Finally we compute m2, which corresponds to

_2(v+) = _2(v_) = 0

4
_2'(v+) = -_2'(v-) = a'-v

8

- (Av) 
(J.I0.60)
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Applying equation (J.10.50), we find

Now

sq [-_ (R÷+R_)÷_ (_(vR)÷ sqg2_I)]_2 - (sqg2)

[-av(R+ + R_) + a(vR) + sqg 2 all

- av(R+ + 9-) + A(vR) = TaR +Rav - 2AvR

= FAR - AvR = v R+ - v+r_

sqg2(v_2 - v+2)

- v_R+ + v+R_

(J.I0.61)

(J.I0.62)

(J.I0.63)

Consequently

4s a(v 2)

_2 : (av)_ [al - v_R+ + v+R_ ] (J.10.64)

This may be written

4s al
m2 - [ ] (J.10.65)

av av R+R_ - (v-TR)

As in the case of mo and ml' we have found a form that is perfectly well

behaved in the limit g2: O. Of course, the expression al must be

calculated in a stable manner. This problem has already been considered in
Section J.8.1.
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J.ll Singular Behavior of Integrals

In this section we will examine the behavior of the perturbation potential

and velocity induced by a discontinuous source strength, a discontinuous

doublet strength, or a discontinuous doublet gradient. It can be seen that no

generality is lost by examining the potential and velocity induced by various
non-zero source and doublet distributions on the triangular region in figure
J.31.

We will consider the cases of discontinuous singluarity strength or

gradient across edges in subsonic flow, and subsonic, supersonic, or nearly

sonic edges in supersonic flow. The case of ¢ = O, Mm= 0 will be of

sufficient generality in subsonic flow. For supersonic flow, the cases of

subsonic and supersonic edges may be treated by considering edge 3, and E a

small positive or negative real number. Finally, the compressibility
direction may always be taken to be the x-direction, except when considering

the case of a superinclined panel. Thus with the exception of this last case,

the reference to local transformation (cf.(E.O.1)) is the identity.

In the sections which follow, we will first compute the potential and

velocity induced by the three discontinuities in singularity strength or

gradient in terms of edge and panel functions. We will then evaluate the

computed expressions for each of the flow regimes. We will borrow heavily
from the notation of Section J.6, especially J.6.1.4 and J.6.5.

J.11.1 Discontinuous Source Strength

The source strength may be discontinuous across a panel edge in such a
fashion that the discontinuity retains the same magnitude along the entire

edge, in which case the tangential derivative of source strength is
continuous. On the other hand, the magnitude may vary, in which case the

tangential derivative is discontinuous. The two representative cases are the

constant source strength

_l(x,y) : 1 (J.11.1)

and the linearly varying strength

o2(x,Y) = x L y (J.ii.2)

We will now consider the potential and velocity induced by aI and a2.
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We recall the definition of [S o ]

aX

ayy (J.11.3)

and note that therefore

_vsJdue to 0

Ol
(J.11.4)

{;slVsJ due to

a2
I}= [Sol -_

0
0 (J.11.5)

Applying (J.6.25), we have

(J.ll.6)

and

VsJ 2 : _2_1 + B21 - _2_2 - B22

L_I - hr (G_)I - _2 + hr (G_)2
(J.ll.7)

where a, b, _, _, and B are the fundamental integrals of Section J.6.5, and

{xo1a' = Po' = yo'J (J.11.8)

the local coordinate value of the field point.
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Wefirst consider the potential and velocity induced by the source
distribution _I.

Wehave (cf. J.6.17g)

_k+

b-r (_ Rd_ - 2_ JhJ Ce)

: (cf(J.7.5))

-r E Jk(X)
K k

: (cf(J.7.3), (J.7.12), (J.7.27), (J.7.34))

-sh j _ s
_ Z akqklk

where (cf(J.7.3))

J : _ h Jk(_) - 2x sign(h) Ce
k

is the panel function and Ik is the edge function. Ik and Jk are
defined by (J.7.1) and (J.7.2) respectively.

Next, we have (cf(J.6.174))

(J.ll.9)

(J.11.10)

(J.ll.ll)

(J.11.12)

(J.11.13)

and (cf(J.6.185))

s E _kqklk_:_k (J.ii.14)

Thus we have

-sh s
_s,1 = b - _ J - _ EakqkI k

(¢s,l) x,y : _ : _ nkqklk

-s
(Vs,1) z = a = -_-J

(J.ll.15)

(J.11.16)

(j.11.17)

J.11-3



Next we consider the potential and velocity induced by the second source
distribution. Wehave (cf(J.6.195))

-1 _ rs E _k(ak2 + qkh2) I k= _ _kqk a(Rv) - -_- k (J.ll.18)

w

Thus

@s,2 : I_I - _2 + b(_1 - _2) :

-_ (_k,l - _k,2) qk a(Rv) rs- _ (_k,1 - _k,2) (ak2 + qkh2) Ik

+ @s,1 (Xo' - Yo') (J.11.19)

Next, by (J.6.201)

[B] : b I + rs11 _kak_k T Ik + 1_ Z qk_k_kTaR
wc k Kk

(j.11.20)

Thus

Vs,2,x : al(dI - a'2) + Bll - BI2 :

_s,l,x (Xo' -Yo') ÷ _s,1 +

Similarly,

rs 11_k i ak(_k,2 -gk,1) Ik +
K k '

1_}1 qk _k,l(_k,l - _k,2) AR
<k

 s,2,y:x2( l- #2)+ B21- B22

(J.11.22)

(J.11.23)

: Cs,l,y(Xo' - Yo') - _s,1

+ r__s_s11_k 2 ak(_k I - _k,2) Ik
wc k '

+ 1-11 qk_k,2(_k, I _ _k,2) aR
Kk

(J.11.24)

Finally,

_s,2,z = a(_l - d_2) - hr((G_)l - (G_)2) (J.11.25)
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Now,
G_ : _ (J.11.26)

and so

¢S,2,z : Cs,l,z(Xo' - Yo')

hrs z (_k I - _k,2) qklk (J.ii.27)wc k '

J.11.2 Discontinuous Doublet Strength

A complete discussion of the potential and velocity induced by a

discontinuous doublet strength would require consideration of a varying
doublet distribution as well as a constant one, in parallel with the

discussion on discontinuous source strength. This process would be lengthy,

however, and not contribute any additional insight, and so will be neglected.

We thus consider a panel with constant doublet strength _ = 1 only.

J.11.2.1 Doublet Potential

We have

IxlO

_D : [Do]I,.

(J.11.28)

where Do is given by (J.6.253), and _o = 1, while all other coefficients
are zero.

Thus

-rs j (J.ll 29)_D : ra :--_-

_ -rsK (_ h J(¢) - sign(h) CO)
(J.11.30)

J.11.2.2 Doublet Velocity

To compute the velocity indeuced by a discontinuous doublet strength, we
must use the results of Section J.lO. We consider (J.10.41) in light of the

fact that u = 1 on the entire panel. Thus

Pl = .o = u+ = 1

k
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and

{°o}= L1 0 0j _I = _O

_2

(J.ll.31)

(J.ii.32)

Combining (J.lO.9) and (J.11.32)

_D_edge -sB2 = ==T ((Qo - Po) x to) _o (J.11.33)

where Qo is any point on the edge. From (J.10.52),

I v+ v_

= (F+- E ) (J.11.34)

and thus

CD*edge = _-s132 (R-_+v+_ R-__)v-
(Qo - _o) x _o (J.11.35)

J.11.3 Discontinuities in Doublet Gradient

Since a discontinuity in the tangential derivative of doublet gradient

produces a doublet discontinuity of the type we are neglecting to consider, we

need only consider a discontinuity in the normal derivative of the doublet

gradient across a panel edge. It is clearly not possible to find a panel with

a quadratic doublet distribution which has zero doublet strength on its
perimeter without being identically the zero distribution. Thus we look at

the effect of a discontinuous doublet gradient across a single edge of the

panel. We must later consider the possibility that some of the singular
behavior of the induced potential or velocity is artificial, resulting from

the isolation of a single edge. That is, the contribution from a neighboring

panel may cancel the contribution from this panel edge.

We thus assume that the coordinate system is translated so that it lies on

the kth edge of our triangular region, k = 1, 2, 3, and that the doublet

strength on the panel is given by

.k (Q) : Q "

where

nk = T_k (J.11.36)

and _k is the outward pointing edge normal normalized by (J.6.43) and
(J.6.45). Thus u = 0 on the kth edge, whi_e the normal derivatrive of u jumps

by 1 on the edge.
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Thus, applying (J.6.240) and (J.6.253), the potential and velocity induced

by Uk is

J

ra I
___L

0 1

J

2

rad T - h (G_)T -

ra I

I__

i

0 l-(G_) T

(J.11.37)

We now recall that reference and local coordinates are identical. Thus

(cf(J.6.3g) and (J.6.46))

ak = " _k = - T (J.11.38)

and (cf(J.6.44), (J.6.49-50), and (J.6.55))

(G _k)" _k : _k " _k : qkrT (J.11.39)

Thus,
: ra _T _k - h (G_) T _k

: -ra Ta k - h (G_) T _k (J.11.40)

Thus, by (J.11.13-14), and (J.11.39) the contribution due to the kth edge is

_k - rshTK Jkak rshTK Ik (j.11.41)

Next,

(J.11.42)

Thus

-rs Jk _kCk,x,y :
(J.11.43)

while

Vk,z =T-rs ik (J.Ii.44)

This concludes our reduction to fundamental integrals of the potential and

velocity due to discontinuous singularity strength or gradient. We now

consider the behavior of the panel function J.
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J.11.4 Singularities of the Panel Function

The panel function J is defined by (J.11.12) where (cf Section J.7)

-i I+Jk(_) :--FT ph(hr,aR) (J.ii.45)
w

We also have (cf.J.8.105-106)

J = -sign(h)rs 2= -

where

Xk,k+ 1 = -h2rs

S w + _ ph(Xk k+l, Yk k+l)
edges corners ' '

<tk, tk+l > - rakak+l

(J.11.46)

Yk,k+l : Rlhl I' k x tk+ll (J.11.47)

J.11.4.1 The Plane h = 0

We see that a possible region of discontinuity for J is the plane h = O.

On this plane,

Xk,k+ 1 = -rakak+ 1

Yk,k+l = 0 (J.11.48)

Thus J is not readily defined on the h = 0 plane whenever a = 0 for some edge,

that is, whenever the field point lies on the line containing the edge. In

addition, on all Mach lines downstreasm from the panel corners, the number of

edges or number of corners in DD may change, and thus J may experience a
jump. In figure J.32, we illustrate potential lines of discontinuity for the

expression

J+ : lim J = -rs(2_ - _ + _ ph(-rakak+ 1, 0+))
h_O÷ E c

(J.11.4g)

These lines include some which are upstream of the panel and thus apply only
in subsonic flow.

We now claim that J+ has a constant value on the exterior of the panel

and a (perhaps different) constant value on the interior of the panel. This

assertion may be proved by careful examination of the behavior of J+ in the

vicinity of a Mach line or a panel edge extension. In any region which does

not contain such a line, the number of corners and edges in Dp is a
constant, while in addition akak+ 1 never changes sign, and thus J+ is a
constant.
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Now, careful examination of figure J.32 makes it clear how J÷ changes
whenan extension of a panel edge (though not part of the panel edge) is
crossed. If the panel is superinclined it has no influence on the field point
since h = O. If the flow is subsonic, ak changes sign, for someedge Ek,
while all the ai, i = k, have unchangedsign. Thus ak_lak and
akak+1 both change sign, and so two of the phase functions change in
value, one from zero to ,, the other from x to zero. Thus J+ remains
unchanged.

Next, when the extension of the edge Ek of a subinclined panel in
supersonic flow is crossed, then either both the (k-l) and kth corners lie in
Dpor neither does. In the former case, the value of J÷ remains unchanged
for the samereasons as in subsonic flow. In the latter case, none of terms
of J changes, since the summationover corners includes only those in Dp.

Next we consider the behavior of J÷ as Mach lines are crossed. Here we
need only consider subinclined panel in supersonic flow, since for
superinclined panels the Machcones from panel corners intersect the h = 0
plane only at the corner itself. Careful consideration of figure J.33 yields
the following conclusions.

First, suppose sign (akak+l) = +1. Then as the field point P moves

such that the kth corner moves into Dp, the numberof edges intersecting

Dp increases by one. On the other hand, if sign (akak+l) : -i, then as

the kth corner moves into Dp, the numberof edges intersecting Dp

increases by zero (if the panel already intersected Dp) or by two (if the

panel did not previously intersect Dp).

Thus in the first case, as the corner enters Dp, the sum in (J.11.49)
over edges decreases by • while the sumover corners increases by _, and so J
remains constant. In the second case (Figure J.33b) the sumover edges is
unchanged, but -rakak+1 > O, and so the sumover corners is changed by

ph(1, 0+) = 0 (J.11.50)

In the third case, J+ is zero when the corner is outside Do since by

convexity, the entire panel is outside Dp (note that (J.11_49) is not valid

when the entire panel is outside Dp). Now, when the corner enters Dp,
J+ becomes

J+ = -rs(2_ - _ _ + _ ph(1,0)) = 0
E I corner (J.ll.51}

Thus in all cases, J+ remains constant across Mach lines, even if the

point Po lies on the panel. In addition, J÷ remain constant across panel

extensions. Thus in supersonic flow, J÷ = 0 whenever Po is outside the

panel, since it is zero for a point Po for which the panel lies outside
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Dp. On the other hand, if Po lies inside the panel, akak+ 1 is always
positive, and so in both supersonic or subsonic flow we have

J+ = -2_rs (J.ii.52)

by choosing Po such that the same number of edges and corners lie in Dp.

Finally, considering a point Po outside the panel in subsonic flow, we

see that as Po crosses from being inside the panel to outside, sign

(akak+ 1) changes from +1 to -1 for exactly two corners, and so -rsJ+
decreases by 2= from its value inside the panel of 2_.

Summarizing,

J+ = -2_rs

J+ = 0

Po inside panel

Po outside panel

(J.11.53)

We may go through the same arguments for J_,

J_= lim J = rs(2_ - }i-_ + 11ph(_rakak+1, 0+)
h,O- E c

= -J+ (J.11.54)

. =
V

But now, the panel lies outside Dp for a superinclined panel, and thus

J_ = 2xrs

r = +I, or

Po inside panel

J_ = 0

r = -i, or

Po outside panel
(J.11.55)

We thus see that J is continuous on the h = 0 plane except on the panel

itself, where J experiences a discontinuity

J+ - J_ = _(r + 3)s (J.ii.56)

J.11.4.2 Discontinuities Due to Ce

Let us recall our original definition of J (cf(J.11.12) and (J.11.45))

J = _ hJk(_) - 2, sign(h) Co (J.11.57a)
k
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where

Jk(_) = _ ph(hv,aR) I + (J.11.57b)

We now wish to investigate whether the discontinuity in Cereflects a true
discontinuity in J. To do so, we consider the formulation (J.11.46-47) of J.

Note that we need only consider subsonic flow and superinclined panels. We

also assume h = O, and that we are not directly above a corner of the panel.

Thus v_ < 0 < v+.

Now consider Figure J.34. If the point P is moved so that it lies
0 +

above the panel, crossing edge 1, then aI changes sign, while h, vI -,

and R1 ÷ remain essentially unchanged. If RI ÷- - > O, we have

ph(hv I _, alRl) = ph(sign(hv_), 0_-) (J.11.58)

If we first consider the case of h = O, aI > 0 we have

ph(hvl,alR I) = ph(l,O +) - ph(-l,O +) = -, (J.11.59)

If h : O, aI < O, we have

I"ph(hv l, alR 1) = ph(1,O-) - ph(-1,O-) = _ (J. 11.60)

Thus as P moves from being not above the panel (a > O) to being above
it (a < 0_,

ph(hv, AIRI)I_

jumps by 2_. In general, by considering h < O, we find

J1(_)outer - Jl(_)inner = 2_ sign(h) (J.11.61)

On the other hand, when we consider any other edge, we find that the small

change in point location has no effect on Jk(). That is,

Jk(_)outer - Jk(_)inner : 0

if k m i (J.11.62)

If we combine (J.11.56) with (J.11.61-62), we find

Jouter - Jinner = 0 (J.11.63)

Thus under the assumptions v, @ O, R > O, the function J has no

discontinuity where Ce does.
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These are not regions of discontinuity either, however. The lines

v, = 0 cannot be regions where a jump of 2x occurs, since jumps in a
function can only occur across a surface. The problem of R = 0 may be handles

by redefining Jk:

Jk(_) : lim ph(hv+, akR)
R>R+

- lim ph(hv-, akR) (J.11.64)
R,R"

Summarizing, we find _hat the discontinuity in Co is exactly matched by a
corresponding discontinuity in Jk(_)-

J.11.4.3 Discontinuities in Jk(_)

Wenote that the function

f(x,y) = ph(x,y) (J.11.65)

may be discontinuous if

or

x<O and y:O

x= 0 and y= 0 (J.11.66)

We have already noted that if h m O, a discontinuity in Jk(_) due to ak
changing sign is matched by a corresponding discontinuity in Co, provided that

PO lies directly above the panel. We now consider the case where ak

changes sign, while PO is not directly above the panel. Then defining

aJk = (Jklak> O) - (Jkl ak<O) (J.11.67)

aJk = ph(hv +, 0+) - ph(hv-, 0+)

- (ph(hv+, 0-) - ph(hv-, 0-)) (J.11.68)

= ph(hv +, 0+) - ph(hv +, 0-)

- (ph(hv-, 0+) - ph(hv-, 0-)) (J.11.69)
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Defining
÷ +

s-= 0 if hv- > 0

= 1 if hv + < 0 (J.ll.70)

aJ k = 2_s + - 2xs- (J.ii.71)

since

ph(-l,O +) - ph(-1,0-) : 2x (j.11.72)

But, looking at the point PO' in figures J.34 and J.35, with subsonic

flow in figure J.34, we see that if ak changes sign and PO does not lie
directly above the panel, then v+ and v- have the same sign. Thus s÷ =

s-, and so

aJ k : 0 (J.11.73)

So, we conclude that if a = O, h = O, then J is a continuous function.

Thus we can assume that aR has constant sign (since R > O) as PO moves
slightly, though perhaps with changing magnitude. Since we need only consider
the case

v+ = 0

R _ 0

lal > 0
Ihl > 0 (j.11.74)

Now, by (J.6.59),

R2 = rsqa 2 + qv2 + rsh 2 >0 (J.11.75)

Thus (J.11.74)can only be satisfied if

rsqa 2 + rsh 2 = 0 (J.11.76)

that is, if

sign(rsq) = sign(rs) (J.11.77)

But this is equivalent to

q=-i (J.11.78)
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Thus we need only look at a supersonic edge, as illustrated in figure J.36.
For POas located there,

Jk = Ph(hv+, aR+) - ph(hv- , aR-)

= ph(hv+, aR+) - ph(hv-, O) (J.11.79)

= ph(hv+, aR+) - xs- (J.ll.80)

But as PO is moved slightly, aR may range over small numbers of constant
sign, while hv+ ranges over small number of constant sign. More precisely,

for any real number ¢ > O, and any real number x, -w < x < _ , there exists a

point P such that

IP-PoI<
and

ph(hv+(P), aR+(P)) = x (J.11.81)

This, by definition, means that the phase function is discontinuous at

PO. Since s- is a constant which is not dependent on the precise location
of PO, the function Jk is in fact discontinuous at PO"

Finally, let us consider the behavior of the phase function in the

neighborhood of PO" Then if the edge intersects Dp,

-hJ k = ph(hv, aR)J +

Since

= lim (ph(hv +, aR) - ph(hv-, aR))
R,O +

v-<O<v +

(J.11.82)

(J.11.83)

we have (considering the four separate cases for sign h and sign a)

-hJ k = -_ sign(h) sign(a) (J.11.84)

On the other hand, if the edge does not intersect Dp, Jk is zero.

J.11.4.4 Summary of Panel Function Behavior

We now summarize the results we have obtained concerning the panel

function. We find that J experiences a simple jump discontinuity of magnitude

J+ - J_ = ,(r+3) s (J.11.85)
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across the panel. In addition, J experiences a jump

J+ - J_ = -x sign(h) sign(a k) (J.11 .S6)

across a portion of the boundary "Machwedge" emanating downstreamfrom any
supersonic edge. Weillustrate such a Machwedge in cross-section in figure
J.37a, where the plane of the paper is a plane downstreamfrom the edge and
perpendicular to the flow direction. If the panel is subinclined, it is a
plane of constant ak, while if superinclined, it is a plane of constant h.
In figure J.37b, we illustrate a Machwedge in three dimensions.

Finally, there are certain lines in space along which J takes infinitely
manyvalues over a range of 2x as a point on the line is approached from
different directions. These lines are the panel edges and the lines emanating
from a supersonic panel edge along which v = 0 and R : 0 (see figure J.37a).

J.11.5 Singularities of the Edge Function

By (J.7.35)

÷

Ik< l:½logR÷vI ifqk:+IR v _

÷= -ph(v,R) if qk = -1
- (J.11.87)

J.11.5.1 Supersonic Edges

We first consider the behavior of the edge function for a supersonic

edge. Defining

i i

Ik =-ph(v , R±)

we see that Ik * is continuous if v* = O, since if v* < 0 and R± = O,

Ik* = -lim ph(v± ,R) = -ph(-1,0) = -_
R,O +

But by (J.6.59), for supersonic edges,

R2 = r(a 2 - h2) - v2

(J.II.88)

(J.11.89)

(J.11.90)
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Thus
R=v=O

lal = lhl (J.ll.91)

We therefore see that Ik is discontinuous along the lines defined by the

intersection of the Mach cones with the planes v_ = 0 (cf. figure J.37), the

same lines along which Jk is discontinuous.

Even when PO approaches the panel edge (except at its endpoints), Ik

is continuous provided the limit is taken such that the edge intersects Dp.
For then

¢=0

(j.11.92)

Thus Ik =

÷

-ph(v,R)] =-ph(I{l, 0+) + Ph(-l¢l, 0+)

= _ {J,ii.93)

regardless of the direction from which the point approaches the edge, unless

the edge is approached so that it does not lie in Dp, in which case the
limit is zero.

J.11.5.2 Subsonic Edges

By (J.11.87) we see that Ik is continuous unless

IR*I = Iv*l

or R.2 - v.2 = 0 (J.11.94)

By (J.6.sg) we have, since r = q - I,

R2 = v2 + s(a2 + h2) (j.zl.gs)

Thus Ik may be singular when

]R .2 - v.2 I= ]s(a2 + h2)l = 92 = 0 (J.11.96)

that is, whenever the field point PQ lies on the line containing the panel

edge. Now, if PO lies on an extenslon of the edge, v+ and v- have the
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same sign, and are non-zero. Applying the rationalization (J.8.35-36)

I 1+z
I k : _ log (T-_)

(v+- v_)(v++ v_)
Z =

R+v+ + R_v_

(J.11.g7)

v+2 - v_2

(v+ 2 + v_2) sign(v+)

we see that Izl <'I. Thus I k is a continuous function in this case.

(J.11.98)

Next, suppose PO lies very near the panel edge. If the flow is
supersonic, thfs means R- = O, and thus by {J.8.27)

v+2 _ v_2

z = "'R+v+

As long as the point is away from the edge, v+ < R+ , v_ > O, and so

Izi< 1 , making Ik continuous. But as PO approaches the edge, v+

approaches R+ , v_ approaches zero, and solztapproaches I. Thus Ik
becomes infinite as the point approaches the panel edge.

(J.Ii.99)

For subsonic flow, if PO approaches the panel edge, v changes sign along
the edge and we thus use the rationalization (J.8.40-41))

(R++ v+)(R_+ Iv_f)

Ik = log g2 (J.11.100)

The denominator is non-zero, and thus we see that is both subsonic and

supersonic flow, the edge function Ik becomes logarithmically infinite when
the field point approaches the edge.

J.11.5.3 Subsonic Nearly Sonic Edges

The same arguments used for subsonic edges show that the only potential

singularity occurs when v = R, that is, when the point Po is on the line

extending the subsonic edge. This situation is illustrated in figure J.38.

Defining a unit edge tangent

Q+ - Q_

to--IC÷÷
(j.11.i01)
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we see that

--ITs-
^ A _ID

= l_'* -_012 [to, to] = T2 Pol2

while

v, : [to, Q± - PO] : Q* - PO = R,

Applying (J.11.97-98)

i _I + z_
Ik = _ log _T-_--_J

where

Z

IQ_+- POI2 -I_- - P012

IQ+ - Pol2 + IQ- - Pol2

(so + aS)2 _ So2

(sO + As)2 + So2

where we have used the notation of figure J.38.

(J.Ii.i02)

(J.11.i03)

(J.11.104)

(J.11.1o5)

So,

I 2s°as + as2 IIzl- 2So 2 + 2Soa s + as2 <
(J.11.106)

whenever so > O. But as so approaches zero, z approaches 1. In fact

lim Ik 1 lim log 1 + z
%,0 = _ %,0

2SoaS + as2

log - 2So2 + 2SoaS + as_ (J.11.107)

1 lim log
: _ So_

2(2So 2 + 2SoaS o + as2)

2So 2
(J.11.108)

I lim log as2
= _ So_

(J.11.109)

Thus as P approaches the endpoint of the edge, Ik becomes logarithmically

infinite. Otherwise, however, Ik is continuous.
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J.ii.5.4 Supersonic Nearly Sonic Edges

We have seen that v = R only when the point Po lies on the line

containing the edge. But a supersonic edge has the property that no point on

the edge lies in the domain of dependence of any point on the line containing

the edge. Thus, if v = R, the edge does not influence Po- Thus Ik is

continuous everywhere except along the edge itself.

J.11.5.5 Essentially Sonic Edges

Combining (J.8.13) and (J.8.72), we see that for essentially sonic edges

Ik(_) = lim qT_ : lim qTA___R_R (J.11.110)

NOW,

T I 2

_- Cl++G_ -v++v_

2T

(J.ll.lll)

But v can not change sign for an essentially sonic edge, in fact, both v+

and v_ will be very large numbers (of order l/T) of the same sign, unless

Po lies very near to the edge itself. We thus find that Ik is not only
continuous, but of order T, everywhere except at the edge.

J.11.6 Singularities in Subsonic Flow

In this section, we consider the effect of a continuous source strength,

doublet strength, or doublet gradient on the potential or velocity in subsonic
flow. We illustrate the distances h,v,a,g and R for subsonic flow in Figure

J.39.

J.11.6.1 Discontinuous Source Strength

We see by (J.11.15) that the potential due to a panel with source strength
1 is

-sh j s_s,1 - K - _ _akqkl k (J.ii.112)

But by Section J.11.4.4, J is continuous in subsonic flow except for a

jump by 4_ across the panel Thus hJ is continuous everywhere in subsonic

flow except near the panel edge, where

Ik = log rc°nstant)
g2

(J.11.113)

= constant - 2 log Igl
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But g2 = a2 + h2

or Igl _ lal (J.11.114)

and thus akl k is continuous and bounded everywhere. We thus see that in

subsonic flow the potential due to a constant strength source panel is
continuous everywhere.

Next we consider the velocity due to the constant source distribution. By
(J.11.6)

(J.ll.l15)

where

1 _-kla:_ k

-S
a =--_- J (J:11.116)

We thus see that the component of the source velocity perpendicular to the

edge becomes logarithmically infinite as we approach the panel edge.

That is,

Vs,x,y = bounded terms - n-_klog(g)

as Po approaches the kth panel edge.

(J.11.117)

In addition, the z-component of velocity jumps as the panel is crossed,

which is to be expected in light of the definition of source strength as the

jump in normal mass flux (or normal velocity at Mach zero).

We will leave consideration of the varying source distribution

(cf.(J.11.5)) to the reader_ We do note, however, that no new discontinuities

or singularities appear.

J.11.6.2 Discontinuous Doublet Strength

By (J.11.29) the potential induced by a constant strength doublet panel in
subsonic flow is

1
_D = ra = _ J (J.11.118)
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This function is continuous in subsonic flow except for a jump across the
panel, which is to be expected since the doublet strength is defined as the
jump in potential.

Next, the line vortex term of the doublet velocity is given by
(cf.(J.II.35))

-_ . -B2 v+ v_ -_ -_
VD,edge=_ (-_- -I_) (Qo - Po) x to

Thus in subsonic flow this velocity is continuous whenever g = O.
the rationalization (J.10.54) for the case g = O,

. _B2 av(v+ + v_)
VD,edge ='K-T- R+R_(R_v+ + R+v_ (Qo - Po) x _:o

we see that if

R_v+ + R+v_ # 0

(J.ll.l19)

Applying

(J.11.120)

(J.11.121)

the velocity is again well-behaved, since (J.11.120) cannot occur whenever

R+ or R_ is zero. But if g = 0

R_ 2 = v_2

R+2 = v+2 (J.11.122)

and so

R_v+ + R+v_ = 0

R+ = v+

-R_ : v_ (J.11.123)

That is, v+ and v_ have opposite sign unless one of them is zero. Thus,

the point Po lies on the panel edge. So, the velocity is well-behaved for
all points which do not lie on the panel edge.

We now consider the limiting value of the velocity as Po approaches the
panel edge. By (J.11.122)

V+ V_

= 2 (J.Ii.124)
R+ R_

except perhaps at the endpoints of the edge.

I/Qo- Pol x I-- g
Further, it is easy to see that

(J.11.125)
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and thus
v

. 2B2
lim vD _

Po,edge Kg
(J.ii.126)

That is, the velocity has a magnitude proportional to the inverse of the

distance from the point to the edge.

J.11.6.3 Discontinuous Doublet Gradient

We have seen that the potential due to a discontinuity in the normal

component of doublet gradient is (cf(J.11.41))

-rshT ak rshl
_k = _ Jk + K Ik (J.11.127)

Examination of section J.11.4 shows that the panel function contribution to

the potential is continuous except on the panel surface. On the other hand,

(J.11.100) describes the edge function behavior in subsonic flow. We thus see

that the potential becomes infinite in the neighborhood of a panel edge, and
is proportional to the logarithm of the distance from the edge.

J.11.7 Discontinuous Source Strength in Supersonic Flow

J.11.7.1 Source Potential

We recall from (J.11.15) that the potential due to a constant source

panel is

-sh s _ Ik_s - _ J - _ akqk (j.11.12B)

An examination of the results of Sections J.11.4 and J.11.5 show that hJ and

are continuous with several exceptions. One exception for J is that if the

kth edge is supersonic, and a = h, R, = v, = O, Jk may take on any
value (cf. Section J.11.4.3). Also, if R+ = 0 = R_, h : a , then Jk

undergoes a jump across the"Mach wedge" located there. On the other hand
(cf. Section J.11.5.1) I has discontinuiutes at the same locations.

Consideration of (J.11.82) and (J.11.88) shows that if h = a

-h Jk = -sign(h) sign(a) Ik (J.11.129)

Thus

-sh sak
(hJk) + _ Ik = 0 (J.11.130)
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when lhl : lal. So, while Jk and Ik are discontinuous away from the
panel, the sum _s is continuous everywhere except on the panel.

J.11.7.2 Source Velocity

By (J.11.16-17)

V s =

nkqklk

-_.sj
_C

(J.11.131)

Thus the z-component of the velocity is always finite, though it is

discontinuous on the panel and on the Mach wedges emanating from supersonic

edges. On the other hand, by Section J.11.5, the tangential component of

becomes logarithmically infinite as the point Po approaches a subsonic or

sonic edge and is discontinuous as Po approaches a supersonic edge.

Now, for nearly sonic edges, Ik remains bounded but non-zero. Since
nk = _k/T is of order l/T, the velocity in a very small region (that is,

along the extension of the edge) is of order I/T. This is not a singularity

since for any particular nearly sonic edge the resulting velocity is bounded.

Finally, for essentially sonic edges, the edge function is of order T

everywhere except at the edge, and thus the source velocity remains bounded.

J.11.8 Discontinuous Doublet Strength in Supersonic Flow

By (J.11.29-30), the potential due to a panel with unit doublet strength is

_D : -rs j (J.11.132)
K

Thus the singularities of the doublet potential are exactly those of the
pane] function. That is (cf Section J.11.4.4) the potential has a jump across

the panel, snd across the Mach wedge emanating from any supersonic edge, and

is discontinuous with multiple limiting values at panel edges and the lines
R+ = v+ = O.

v
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Next, we consider the doublet velocity. By (J.II.35)

-_. _sB2 v+ v -_ -_ ^
VD : _ (_-_+- _-_-) (Qo - Po) x t o (J.ii.133)

we state here without proof that a "finite part" of the doublet velocity
line vortex term maybe computedas

. -s82 -_ _ ^
VD,finite =_ (Qo - Po) x t o •

edge vertices
in Dp

v )_- sign(vertex)

(J.11.134)

Using (J.11.134), it is straightforward to show that v is bounded over any

region of space which does not include the Mach cone emanationg downstream
from the vertices of the edge. In the vicinity of these cones, v Is of order

(l/R).

J.11.9 Discontinuous Doublet Gradient in Supersonic Flow

By (J.11.41), a discontinuous doublet gradient along an edge yields a

potential

hrs T_ . - rsh Tlk
_k = _ ak°k K (J.Ii.135)

It can easily be seen that this function is continuous along panel edges,

since h and ak are zero there. In addition, the discontinuities of Jk and

Ik on the surface lhl = lal cancel (cf(J.11.129)). Thus the potential due
to a discontinuity in doublet gradient is continuous away from the panel.

Next (cf(J.11.43)),

-rs
Vk,x,y =--_-Jknk (J.11.136)

and so is discontinuous on the Mach wedge emanating from a supersonic panel

edge. Finally (cf(J.11.44))

-rs TI (J.11.137)
Vk, z - K k

and so the normal velocity is logarithmically infinite in the neighborhood of

subsonic edges, and discontinuous on the Mach wedge emanating from a

supersonic edge.
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Figure J.l- Domain of dependence
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[Co]

Notation

unit compressibilty vector

metric matrix

Co = sB21 + (1-sB 2) _o LoT

positive definite metric matrix

7o : B21 + (I_B2) Co^ ^coT

v

Dp

[eo]

domain of dependence

dual metric matrix

^ ^ T
Bo = I + (sB2-1) co co

P

Q

Qo

control point or field point

point or panel, point of integration

panel center

Qi' i=1,...,9 panel defining points

[,]

(,I

_o

to

Ao

Ai

compressible inner product,

corresponding to [CO]

dual inner product, corresponding to [Bo]

subpanel unit normal vector

unit edge tangent

reference to local transformation

reference to local transformation for ith region

Figure J.3-Notation used frequently in Appendix J
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Figure J.4 - Two region approximations to panel
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Figure J.5-Region in which intermediate field PIC is not performed
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Figure J.6-Splitting a panel into half panels
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Figure d.8 - Subsonic and supersonic edges
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Figure J.12 - Region of integration,S'q Ch for a typical subpanel

j.12-7



_;',n')

(X',y')

-----}i'

+ ' Qk+ when Ch c_'Figure J.13- Pk-

v

I
"__EI _PI-
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Figure J.16 - Coordinate systems in the ({',n') plane

J.12-9



(a)

JaJ> h (no)

(b)

I_-I < h , li_+l < h (yes)

(c)

•4- -l-

li_-I < h (yes)

(d)

Io_-I < H (yes) lal < h (yes)

and Oc [v-, v+]

(f)

lal < H (no)

and 0¢[v-,v+]

Figure J.17 - Determining if an edge of _' is an edge of Z'n Ch
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Figure J.19 - Region of integration for superinclined panel
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Figure J.22 - A region _' with edge E, oriented

tangent _ and outward edge normal _.

~ _~ = k2_."

s2 t2 __

P_

Figure J.23 - An edge E and its image E in the _ -

coordinate system (subsonic edge)
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Figure J.24 - An edge E and its image E in the _-t

coordinate system (supersonic edge)
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Figure J.25a - Region of integration for subinclined panel
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Figure J.25b - Region of integration for subinclined panel
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boundary of Dp

Figure J.26 - Polygon _'E approximating Z'NDp
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Figure J.28 - An example of a superinclined panel

with g2 = h2_a 2 = 0
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Figure J.29 - Evaluating v on the boundary of Dp : the
various special cases
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Figure J.30 - The value of J' for some special configurations
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Figure J.32 - Potential lines of discontinuity in J
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Figure J.34 - A point lies on the extension of an edge

(subsonic flow)
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p ,
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b. superinclined panel

Figure J.35 - A point lies on the extension of an edge
(supersonic flow)
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Figure J.36 - Edge barely intersects Dp
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; edge k e+
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R- = 0 V- = 0 Jk = 0 V+ = 0

Figure J.37a - The Mach wedge in cross-section
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Figure J.37b - Mach wedge behind supersonic panel edge
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Figure J.38 - Subsonic nearly sonic edge
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Note: P - Q is perpendicular to the plane of _.

Figure J.39 - The distances h, v, a, g, and R in subsonic flow
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K.O AIC Matrix Assembly

The process by which a boundary condition is transformed into a row of an
AIC matrix was discussed briefly in section 5.7.1. Here, we discuss those

details of the AIC assembly process omitted from section 5.7.1. Initially, we

will study this process when no symmetry exists in the problem. Having done

this, we will then study the problem formulation in the presence of first one,

and then two planes of symmetry. When we do treat the symmetry cases, we will

first pose the problem as though it had no planes of symmetry, and then use

the symmetry side conditions to formulate a boundary value problem for each of

the various symmetric and antisymmetric parts of the perturbation potential,

_. For example, when one plane of symmetry is present, we will obtain a

boundary value problem for each of the two potential functions, _S the

symmetric part of the _ and _A the antisymmetric part of _. When one plane of

^A
symmetry is present, PAN AIR obtains and solves matrix equations for _S and _ .

This approach of formulating a separate boundary value problem for each

symmetry condition turns out to be quite fruitful when we address the problem
of enforcing doublet matching at abutments and abutment intersections. In

particular, when an abutment or abutment intersection lies on a plane of

symmetry, doublet matching will usually be performed differently for each

symmetry condition.

Having given the overall plan of the analysis, the individual sections of

this appendix are now briefly summarized.

In section K.1, the generation of rows of the AIC matrix is discussed

under the assumption that no planes of symmetry are present in the

configuration. In particular, the construction of a row of the AIC matrix is

described in detail for three forms of boundary conditions: (i) general

boundary conditions of the form (5.6.1) (including singularity specification

boundary conditions), (ii) matching boundary conditions of the type discussed

in detail in appendix F and in appendix (H.2.4), and (iii) closure boundary
conditions of the form (5.7.3).

Next, the concepts of symmetry are introduced in section K.2 where the

constraints on the admissable planes of symmetry are derived.

For the case of one plane of symmetry, section K.3 then defines the

symmetrized potential functions _S and _A, investigates their properties and the

form that general boundary conditions take when imposed on these functions.

Using the ideas developed in this section, the same analysis is repeated for

configurations with two planes of symmetry in section K.4.

Much of the analysis of sections K.3 and K.4 is then combined, refined and

summarized in section K.5. In this section, explicit detailed instructions

are provided for the evaluation of potential and velocity influence
coefficients when symmetry is present.

In section K.6 the generation of rows of the AIC matrices for the various

symmetry conditions is described in terms of the symmetrized influence
coefficients described in section K.5. As in section K.I, we describe the

construction of an AIC row for general, matching and closure boundary
conditions.
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Finally, in section K.7, the implementation of the IC update capability in
the construction of the AIC matrix is discussed. This capability permits a
user to change the geometry of a portion of a configuration and then analyze
the modified configuration without recomputing the entire influence
coefficient matrix.
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K.I Generation of AIC's in the Absenceof SjnBmetry

K.1.1 Transformation of a General Boundary Condition into an AIC Row
(No Symmetry)

We now describe the process by which a general boundary condition of the
form (5.6.1) is transformed into an equation which can then be entered as a

single row into the AIC matrix. Recalling the boundary condition equation

(5.6.1), imposed at a point _, we write,

[ aA n + + + aD _ + cD u + tD " Vu] _ = b (K.I.1)
P

where the coefficients aA, CA, tA, aD, CD, _D, b are assumed to be

known. A single equation to be imposed upon the global singularity parameters

_I is obtained by combining the basis function representations of o and

(cf. (3.3.1) and (3.3.2))

N

a(p) : }_ Sl(_) xI (K.I.2)
I=1

N

,(_) : _ mi(_) x (K 1.3)
I=I I

together with the integral representations of _(_) and _(p') (cf. (5.2.8) and

(B.3.9) with the line vortex term removed)

_(_) : (1/K)SS [-oC_)/R + u(q) n¢q) • Vq(i/R)] dSq (K.1.4)

SNDp

 cg):(1/ 1 ff
SN Dp

a(q) Vq (I/R) dSq
(K.1.5)

+ (l/K) ff [(_ dSq) x Vu] x Vq(1/R)

SNDp

and then substituting these representations into equation (K.1.1).

results from this process the aerodynamic influence equation

There

where

N

AIC I xI = b
I=1

AICI _ ^ _A + t_A " _A I= aA WA, I . n + cA .I

+ aD si(P) + cD ml(P) + tD • Vpmi(P)

(K.I.6)

(K.1.7)
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and,

_A,I(P) :

_A,I (P) =

_A (5) =,I

average potential induced at _ by a source distribution si(_)

and a doublet distribution mi(_) (K.I.8)

average velocity induced at p _ a source distribution si(_)
and a doublet distribution mi( (K.1.9)

Bo_A,I(p) (cf. equation (5.4.10)). (K.1.10)

Thus, _A,I(_) is obtained by performing the substitutions o(_)_Sl(_) ,

u(q) _ mI(q) in equation (K.1.4) while _A,I(p) is obtained by performing these

same substitutions in equation (K.1.5). The evaluation of integrals of the
form (K.1.4) and (K.I.5) when o(_) and u(q) are polynomial functions of the

local coordinates on S has already been treated in exhaustive detail in

appendix J. Since si(_) and mi(_) are explicitly known functions of this

type, the evaluation of #A,I(_) and gA,i(_) clearly presents no difficulty.

Turning now to the terms si(P) , mi(_) and tD " V mi(_) appearing on the

second line of equation (K.1.7), we readily see that

, lx3 3x5 { _}5xlsl(P) : LI, _', n j [SPSPL s] B (K.I.11)

mi(-p) L 1, _' , _,2/2 _' ': , II , _ q , _l212 ix6[s s ,D]6xg{8 }gx1
(K.1.12)

where:

(_' n') are the local coordinates of the control point _ on the subpanel
in which it lies

[SPSPL S] is the source subpanel spline matrix for the panel in which _ lies

is the column of the source outer spline matrix BS corresponding

to xI" (Zero, if no such column exists)

[SPSPL D] is the doublet subpanel spline matrix for the panel in which _ lie_

is the column of the doublet outer spline matrix BD corresponding

to _I" (Zero, if no such column exists)

The evaluation of tD • V mi(_) presents somewhat more difficulty.

First of all, since the _unctioB mi(_) is only defined for points _ in the
singularity surface S, we must first be sure that this expression is well
defined.

K .I-2



To see that this is so for p _ S, recall that for an arbitrary function f(-_),

the directional derivative (tD " vf)) _ satisfies the relation

(tD " v f) _ = [(d/dT) f(E(_))] (K.I.13)
T : 0

whenever _(_) is some curve lying in S and satisfying

_'(o) = p (K.1.14a)

(dc'/d_)o : tD (K.1.14b}

Thus, for tD . Vmi(p) to be well defined, we merely need to observe that the

function mi(_(_) ) is well defined by virtue of the fact that _(_) lies on S, on

which mI is well defined. In order to obtain an explicit formula for

_D "Vml (_.)we must now introduce the local coordinate system for the panel in

which _ lies (cf. equation (5.2.23) with the origin shift q-'oincluded):

_': A(_-_o)

)T.For points q lying on the subpanel, _' has the form (6' 'n , 0 Thus, since
_(_) lies on the subpanel for • in some neighborhood of • = O, we have

A(_(_) -N o) : _(_)

0

Moreover, given the local coordinates of a point _,

(K.1.12); thus
mI is given by equation

mi(_(_)) : L1 _(_) n(_)
_2(T)12 _(_)n(_)

[SPSPLD]6xg{B_} 9xI

n2(_)/2j lx6 x

Differentiating this and evaluating at _=0, we find

d d_ dn
[_-Tmi(_(_))]0 : [(_T)0, (_'g)0, [! i o _(o) n(o) i]o] o i o _(o) n()

0 0 0 0

D 9xl
[SPsPLD] 6x9 IBI}

Now (6(0), n(O), O) and (d/d_) (_(_), n(_), 0)o can be readily evaluated:

(o) = A(_(0)-_o ) = A (_- _o)= _'
0 0
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while

I d _!d T]
d_ d : (d/dr) [ A(_'(r)-_o) ] : A(dc'/dT)o : AtD

0

Consequently we find,

d
_'g ml (c'(_)) o = tD " VmI(P)

 TAT[ 00]= 0 1 0 (' n' [SPSPL D]
0 0 0 0 0

as asserted in equation (5.7.1).

(K.I.15)

K.1.2 Transformation of a Matching Boundary Condition into an AIC Row
(No Symmetry)

In the absence of a plane of symmetry, the conversion of a doublet

matching boundary condition (cf. equation (F.5.1) or (H.2.11a))

Sk Pk = 0 (K.I.16)
k

into a row of aerodynamic influence coefficients is straightforward in light

of the explicit representation of _ provided by equations (K.1.3) and

(K.I.12). To see this suppose that Uk is the evaluation of _(_) at point Pk'
!

and that (_'k' nk) are the local coordinates of p in the panel in which it

lies. Combining (K.1.3) and (K.I.12) we then obtain

v

N

, , 2/2J D D_k : _(Pk ) = _ 1_ nk 6_2/2 _n k n_ [SPSPL ] I Bk,l } _I
I=I L

(K.I.17)

Here, [SPSPL_] is the doublet subpanel spline matrix for the subpanel in which

Pk lles" while {Bk,ID) is the column corresponding to _I in the doublet outer
I

spline matrix of Pk s panel. Combining (K.1.16) with (K.I.17) leads to an
equation

N

:_ AIC I xI
I:I

: 0 (K.I.18)

where
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k
(K.I.19)

(Remark: The actual determination of the form of the matching conditions,
i.e., the values of sk and Pk, is fully discussed in appendix F).

The conversion of a source matching condition into an AIC row is performed
in essentially the sameway. Here, the representation of o provided by
equations (K.1.2) and (K.I.11) allows us to transform the source matching
condition (cf. equation (H.2.13)) into an AIC equation of the form (K.I.18).
The result reads,

s ok _ AICI _I : 0 (K.I.20)k k : I

where the matrix entries AICI are given by

k L ' J
(K.I.21)

The conversion of the velocity jump matching condition into an AIC row is

slightly more complicated. Combining the basic matching condition (H.2.11b) with
the formulas for the velocity jumps avk given by the Helmholtz relation (see

equation (H.2.12)), we obtain after some manipulation,

0 = _] sk t . avk
k

sk ÷ }
k k

(K.I.22)

Upon using the representations (K.I.2) and (K.1.3) for a and _, together with

the evaluation formulae (K.I.11) for si(_k) and (K.I.15) for the tangential

derivative of mi(P), this becomes an AIC equation of the form (K.I.18) with the AIC

row entries given by the formula

k

sk....ATIOlOk °1 I1+ _ [Ak((Vkxt}xnk)] 0 0 i 0 _ nk [SPSPL ] B ,I
k (nk " ;k ) 0 0 0 0 0 0

(K.1.23)
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K.I.3 Transformation of a Closure Boundary Condition into an AIC Row
{No Symmetry)

The closure boundary condition (see equation (5.7.3) or (H.2.14)) may be

imposed in place of a source or doublet matching boundary condition at the

control points on a matching edge of a source or doublet design network. The

boundary condition is

(aA wA-n + aD o) dS = b (K.I.24)

column

or row

where the column or row of panels is that one which is headed by the edge control

point.

The row vector which defines the above integral in terms of the singularity

parameters is computed by approximating the average normal mass flux and source

strength on a panel by their values at the panel center. That is, we estimate

(aA wA'n + aD o) dS = ]_
panels

+ aD oi--) =
Pk

= _ Ak aA nk Bo [VICk] + aD LI' _k nk J
panels

(K.1.25)

Here Ak is the area of the k-th panel, VIC k is the VIC matrix for Pk' the

center control point of the panel (see below for a complete definition),

I

(#k' nk) are the local coordinates of Pk' [SPSPLS] the source subpanel spline

matrix for the subpanel in which Pk lies, and B_ the 5xN matrix (N the total

number of singularity parameters) which is the extension of the panel's outer

spline matrix from 9 columns to N columns. Thus the row of the AIC matrix
corresponding to the closure boundary condition is given by the row vector

multiplying x on the right side of (K.1,25). The 3xN VIC matrix VIC k is

defined in terms of the velocity influence coefficients of equation (K.I.9) by

[VICk] = [;A I (Pk) ; I = 1, ... , N] (K.I.26)
I
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K.2 Symmetry

Having discussed the process of AIC construction in the absence of
considerations of symmetry, we must now address the problem of AIC construc-
tion when symmetryis present. Muchof our discussion will consist of careful
definitions of symmetric and antisymmetric parts of the perturbation potential,
_. Oncethese definitions have been carefully laid out and the appropriate
representation formulae obtained (i.e., formulae analogous to (K.I.4) and
(K.I.5) for the various symmetry conditions of _), it will be a relatively
straightforward matter to derive the form of boundary conditions when symmetry
is present. In the process of analyzing what is to be done when symmetry is
present, we will find that the most intricate technical questions arise from
the treatment of boundary conditions on the plane of symmetry. BecausePAN
AIR performs control point recession, the only control points that actually
lie on a plane of symmetry are those that lie in a plane of symmetryin the
sense defined in section (H.I.2).

K.2.1 Admissible Planes of Symmetry

The basic principle of symmetry is that for each point _ on the configura-

tion of networks and panels, there is also an image point p' lying on the

configuration of networks and panels. The point P' is the reflection of p in

some plane containing the point Po and having normal n (cf. figure K.1)

- = - 2 ST) (K.2.1)

that is,

p' = p - 2 _ (n, p - 50) (K.2.2)

If we assume that the plane of reflection defined by Po and _ contains the

origin of the coordinate system (i.e., (_, 0 - Po) = 0), then we obtain

P' = P - 2_(n,_) = (I - 2 _ _T}_ (K.2.3}

If this reflection in a plane of symmetry is to be of any use, the

compressible length of a vector must be invariant with respect to reflection.

Thus, we require that

[5', 5'] : [p, p] (K.2.4)

where [.,.] denotes the compressible inner product of section (E.2).

the reflection matrix [R] by

[R] = I - 2 n _T

Defining

(K.2.5)

notice that [R] satisfies

[R] : [R]T : [R]-1 (K.2.6)
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and that p" is given terms of p and [R] by

-_' = [R] _ (K.2.7)

Nowthe invariance condition (K.2.4) can be written

[Co] : : :

: _T [R]T [Col [R]

If this condition is to hold for all vectors p', we must require that

[Co] : [R]T [CO] [R]

or equivalently, since [R] [R]T = [R]T [R] = I,

[R] [CO] : [Co] [R].

Substituting the definition of [R], equation (K.2.5), into this yields

[R] [CO] : (I - 2 _ _T) [Co] : [Co] _ (2 _ _T) [Co]

= [CO] [R] = [CO] (I - 2 n _T) = [Co] _ [Co] (2 _ _T)

Thus, we find

_T [Co] : [Co] _ _T

Substituting formula (E.3.9) for [CO] then yields, in a similar manner, the
identity

^ ^ AT ^
(I-sB 2) (n,cO) In Co - Co _T] = 0

This relation will hold and _ will be admissable as a normal to a plane of

symmetry provided one of the following three conditions is satisfied:

(i) i - sB2 = 0 <=> M= = 0 (incompressible flow) (K.2.8a)

or (ii) (n, _o) : 0 (_ is perpendicular to _o ) (K.2.8b)

or

A

symmetry, we next characterize a pair of vectors nI, n2 that are taken to be

normals to two planes of symmetry. Defining [RI] and [R2] by

A T A A A A A

(iii) [_ Co _ Co _T] = O <=> n = * cO <:> (n,co) = ± I (K.2.8c)

Having obtained a characterization for the normal^to a single plane of

[Ri ^ T i = 1,2 (K.2.9)] = I - 2 ni ni

^ A

it is easy to see that both nI and n2 must satisfy one of the restrictions

(K.2.8) if the compressible length of a vector is to be invariant with respect

to reflection in each plane of symmetry. In addition to these conditions, we
also require that the reflection of _ in both planes yield a unique point,
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independent of the order in which the two reflections are performed.
for arbitrary p we require that (see figure K.2 for a geometric
interpretation),

[R I] [R 2] P : [R 2] [R I]

which implies

[R I] [R 2] : [R 2] [RI].

Thus,

Substituting the definitions (K.2.9) into this expression yields, after some
manipulation, the condition

^ ^ ^ _2T ^ ^ T(nI, n2) [nI - n2 nI ] = 0

which holds provided

(i) (nl' n2 ) = 0 (nl and _2 are orthogonal)

or (ii) ^ ^nl : _ n2 <:> (hi' n2 ) : _i.

The second of these conditions corresponds to two identica_ planes of symmetry;

consequently we ignore it. Summarizing our results then, nI and n2 are

admissable normals for a pair of planes of symmetry provided

(i) (_i' _2 ) = 0 (K.2.1Oa)

and (ii) either M= = 0 or (ni' _o ) = O, ±1 (K.2.1Ob)

In practice, the program requires that somewhat more stringent conditions be

satisfied, regardless of Mach number. These conditions are:

(i) (nl, n2 ) : 0 } Two planes of (K.2.11a)

(ii) (_i, Co) : 0 i : 1,2 I symmetry (K.2.11b)

^

Similarly, for just one plane of symmetry the program requires that n satisfy

(n, Co ) = 0 (one plane of symmetry) (K.2.12)

In what follows, we will assume that whichever of these conditions is
appropriate, is in fact satisfied.

Reflecting a moment on the significance of the restrictions (K.2.11) and

(K.2.12), we see that if there are two planes of symmetry, they must be

perpendicular to one another and that the compressibility axis must be

perpendicular to any plane of symmetry normal. This second restriction
implies that when PAN AIR is used to compute a potential flow solution for a

symmetric configuration with nonzero sideslip in the onset flow, the

compressibility axis will not be aligned with the onset flow. Thus an
additional approximation is implicitly performed in the treatment of

nonsymmetric flows about symmetric configurations. Note however that for

incompressible flows (M= = 0), no approximation is made.
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K.3 Problem Formulation for OnePlane of Symmetry

In figure K.3 we illustrate a configuration with a single plane of symmetry
with normal nl" The singularity surface S on which sources and doublets are

defined is decomposed into three parts: S÷, the principal image, lying in the

interior of the region C+ = {p I (5, nl ) > 0 }; S-, the reflected image of S+

lying in the interior of the region C "=(p I (P,_I) < 0}; and S1 that part of

S lying on the plane of symmetry C1 = (_ I(_,_ I) = 0}. The singularity distribu-

tions on S+ (S-) are denoted _+, u* (o-, _-). In contrast to this, the source

^Aand doublet distributions on SI are denoted _ and Ul respectively. The reasons

for these conventions are that the potentials induced by _ and _i' given by

S

Sln DP

(K.3.1)

S1F1Dp

are respectively symmetric and antisymmetric functions in the sense that

¢l,a (RIP) : ¢i,o (_) (K.3.3)

_I (RlP)= -_1 (P) (K.3.4)

We will prove the two identities (K.3.3) and (K.3.4) in the course of our discussion.

The perturbation potential induced by all of the singularity distributions

, ^So , u , oI and is given by the formula

i E {+i,-ii sin Dp

+ Z (I/K) ff i(_) _(_) . _q (I/R(_,q) dSq

i ¢ I+i,-I) Sin Dp

Slft DP

ASm_I

ol_qj (I/R(p,_)) dSq

^A Vq

(K.3.5)
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Notice that we use the set I+l, -ii as an index set for the summation.
This will be the usual index set in all the expressions that follow, so that
we will frequently write ( Z ) with the implicit convention that i is to take

i (+1) *
on the values +I, -I. Notice also that _ and a refer to the same function -

because the index set is just (+1, -1} , it is only necessary to specify the

sign of a particular superscript•

Our next task will be to introduce the definitions that will enable us to

express the integrals in equation (K.3.5) as integrals over the regions S+ and

S 1. First, we define Ri the reflection matrix that maps Si into S+} •

÷

R = I

^ a

R" = I - 2 nlnT (K.3.6)1

Next, observe that the functions oi, _i

, S+Thus we define _i(5) 5 ¢ by

are defined only for points 5 ¢ Si-

_i(5) : ai(RiS) q" c S+ (K.3.7)

Notice as well that the unit normal in Si is related to the unit normal in S+

by the relation,

(Riq) : Ri _ (q) 5 _ S+ (K.3.8)

Next observe that the invariance relation for the compressible inner product

gives us

R2 (p', Riq) = [p- Ri q, P- Ri q] : [Ri (Rip- 5), Ri (Ri P- 5)]

: [Ri _ - _, Ri _- _] : R2 (Ri _, q) (K.3.9)

Using these relations, one has

i -i (Ri (K.3.10)

R(_,_) : R(Ri_, Ri_) Si Ri +, s )
(K.3.11)

dS(q) = dS(Riq) (K.3.12)

i, (q)= (RI_)

_(Ri_) • Ri(_ss2)(_._)/R3(_,_)

(K.3.13)

v
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= _(Ri_).(-sB2)(Ri_ . Ri_)/R3(R p, Riq)

: [_(u')" Vu (1/R(_'_)] I (_ : Ri _), (_ = Ri q)

(K.3.14)

Thus the expression (K.3.5) may be rewritten

_(p) = Z - (i/_) Sf _i(_)(I/R(Ri_._))dS

i S+ n Dp q

i S+FIDp

_q (I/R(Ri_,_)) dSq

S1n Dp q

+ (Zl.)_ ^A
_i (q)

S1n Dp

_(q) • v (I/R(_,_)) dSq

(K.3.15)

If we define operators

relations:

• l,a(_,o) and ¢l,u(_,_) by the

, (_,oI---(_/,III o(_
+

S nDp

i/R(p,q) dSq
(K.3.16)

S+FI Dp

G(_)
• Vq (I/R(_,_)) dSq

(K.3.17)

i_0

l,IJ

(_,o):-(_/.)fS o(_)
S1n Dp

1/R(_,_) dSq

$1 n Dp

(K.3.18)

(K.3.19)

then _(_) can be written in shorthand form as
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_(P) : _ (Ca (Ri_'' _i) + ¢ (Ri _, _i) }
i u

+ ¢1 (P' _1S) + ¢I (5, _I A) (K.3.20)
,0 ,LI

We now have the machinery necessary to define the symmetric and antisymmetric

part of 16. Letting Hlj be the 2x2 matrix

[..HH.-]i];il
H"+ H-- I -i

we define _i(_) by

(K.3.21)

_i(_) = _ Hij _ (RJp'). (K.3.22)

J

With functions _i so defined, we remark that _+ is called the symmetric part of

AS _"and is frequently denoted _ , while is called the antisymmetric part of
^A

and is frequently denoted # . The symmetry relations satisfied by _i may be

compactly summarized by the expression

_i (Rj_) : HiJ _i(_) (no summation) (K.3.23)

The proof of (K.3.23) depends upon two easily proved facts:

RiRj = R(i'j) (K.3.24)

Hi(j'k) = Hij Hik (K.3.25)

Using these facts we write

#i (Rj _)= _ Hil #(Rl(RJp-_)= _ Hil _(RI.J_.)

l l

Let k = l.j; then as l range over (+1, -I} , so does k, independent of the

value of j. Notice also since j2 = I, l = j.k. Thus changing the index of

summation to k we find

_i (Rj _) = _1 Hi(j.k) 16(Rk_) = _ HiJ H ik #(Rk_)

k k

= HiJ _ Hik _(Rk_) = HiJ _i (_)

k

This proves the assertion of equation (K.3.23).
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• A °

If functions _I and _I are defined by

_i(_.) : _] HiJ oj(_) : _ HiJ j(Rj_)

J J

S ÷(_ c ) (K.3.26)

_i(_) : S Hij _J(p) : S Hij ,J(RJP) (K.3.27)

J J

then we will show that equation (K.3.20) implies the following analogous

representation

• " " ° ' )%i

_l(_) : )T H13¢ (RJ_, Gi) + HIJ ¢ (RJ_, u )

j _ u

+ 2 i+ ¢I (P'_I s) + 2 ai- ¢i (5, _1A) (K.3.28)

Here, 6ij

otherwise.

facts:

• °

denotes the usual sort of Kronecker delta, 6lj = i if i=j and 0

The proof of this assertion follows directly from the following

. ^i
_] HiJ ¢ (RJRk P, #k)=_ Hil ¢ (Rl_-, o ) (K.3.29)
j,k o l o

-k il R1Hij ¢ (RJRk _, u ) : _ H ¢ ( _, ) (K.3.30)
j,k _ 1 u

I HiJ (RJp, _1 s) 2 6i+¢I,a 1s)j ¢1,a : (5, _ (K.3.31)

I
J HiJ ¢I (RJ_, _iA) : 2 ai-¢1 (P'_IA) (K.3.32)

which we now prove. Equation (K.3.29) is established by the following argument.

_, Hi(l'k) ¢ (Rl_, -Gk)I HiJ_ (Rj Rk_., _k) : 1 k
j,k a

: _] Hil _ Hik_ (Rl_,-_ k)

l k o

: I Hil ¢ (Rl_,- I Hik _k)

l a k
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_-_ Hil_ (Rl_,_i)
l o

Equation (K.3.30) is established in an identical fashion. Equations (K.3.31)

and (K.3.32) follow fairly readily from the standard symmetry relations

(K.3.33)

ml,,(RlP,,) = _¢I, (_,_) (K.3.34)

which we now prove.

_I,a(RIP'°) = -(i/z)_ o(q) I/R(RI_,5)dSq

SI n Dp

Now by the invariance condition (K.2.4) applied to RI we have

R2(RlP,q) = [RIP - q, RlP- q] = [P - Rlq, P - RI q]

For the first we have, using the definition (K.3.18),

(K.3.35)

= R2(_, Rlq)

For q _ S1, Rlq = q so that we obtain

R2(Rlp,q) = R2(p,q) (q E SI)

Substituting this into the expression (K.3.35), we find

•I,o(RI ,o) dSq
S1 F_Dp

(K.3.36)

and we are done.

(K.3.1g)

:¢i,o(5,o)

Turning now to equation (K.3.34) we find, using the definition

¢i, (RIP)= (1/_) _ u(q)_(q)T

S1 n Dp

Now, for q"¢ S1

(I/R(RI_,_)) = .sB 2 q-RIP

q R3(RI_,_)

Vq(1/R(RI_,_) ) dSq

= .ss 2 Rl(q-p)/R3(p,q)

= R1 Vq(i/R(_,_)) (K.3.37)
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Now for networks lying in the plane of symmetry, _(_) = :nl, _ = * I, so that

^ ^T AT ^ AT ^T
n(q)T R1 = _ nI RI : _ nI (I - 2 nI nI ) : -_ nI

: _ _(_)T (_ _ SI )

Using all these observations, we find

(K.3.38)

(RI_,,) : (IIK)fl ,(q) n{q) R1

S1 n Dp

Vq (llR(_,q)) dSq

S1 n Op ÷ q
(note the minus sign)

and we are done.

We have derived all of the representation and symmetry results that we

require for the potential and must now state and prove the implied

representation and symmetry results for _(_) = Vp 6(p)

With the understanding the line vortex velocity singularities are always
to be removed, one finds after some manipulation that v(p) is given

= Vp :
i

Ri[_ (Ri_, _i) + _ (Ri_, Gi)]

+ (_,_ V , (p',_lA)Vl,o Is) + I (K.3.39)

where the operators V , Vl,a, Vl,u
are defined

o

S+N D
P

Vp(1/R(_,q)) dSq
(K.3.40)

(_,,) = (i/_) I_ (n(q)dSq x Vq _) x Vq(i/RC_,q))

S+FI D
P

(K.3.41)

( z,lfl o( I
,(7

S1 n Dp
Vp(I/R(_,_)) dS

(K.3.42)

(p',(_) (1/-) IS (_(-_)dSq xVl ,U

S1n Dp

Vq,) x _q(1/R(_,_))

(K.3.43)
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Notice that V and V are not defined as the gradients of _ and _1 in that

the line vortex singularity has been removed. Nevertheless for all practical

purposes V and Vl behave like the gradients of ¢ and ¢1 " Formal

differentiation of the definition (K.3.22) for _I leads to the following defini-
A °

tion for v1(p):

^j " .
v (5) = _] HIJ Rj _ (RJp) (K.3.44)

J

The symmetry relation analogous to (K.3.23) is given

_i(RJ_) = HiJRJ_i(5) (no summation) (K.3.45)

and is proved just as easily -

^i Hil Hi(J k)R(J.k)_ (v (RJ_) = _ RI_(RIRJp) = _ • Rk_)

l k

= HiJR j _ HikRk_(Rkp) = HiJRJ_i(_)

k

The representation result analogous to (K.3.28) is given

A ° " " " "

v1(p) : _] HiJRJ[va(RJ_,_I) + V (RJ_,_l)]
j u

Vl _ ^ S) + 2 6i _ p,_l A+ 2 ai+ ,a(p,a I _VI,_ ( ) (K.3.46)

The first two parts of this identity are generated in the obvious way from the

corresponding terms in equation (K.3.39) while the last two parts follow from
the symmetry relations

Vl,a(R1 _'a) : RI _l,a (p,o) {K.3.47)

VI (RlP'_) = -R1 Vl (P'P) (K.3.48)

The proof of (K.3.47) is trivial in view of the symmetry relation for ¢1,o'

(K.3.33) and the definition of VI (K.3.42). The proof of (K.3.48) offers

somewhat greater challenges; using (K.3.37) we find,

V1,.(R1_,_) = (1/,)_ (_(_)dSq x vp) x _q (1/R(RI_,_))

S1 n Dp

= (I/K) ff (_(_)dSq x V_) x RI

S1 [IDp

Vq (i/R(p',_))
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: (I/.)(det RI) RI'T/s CRI(_(-_)dS q x vu)] x _q (I/R(_,_))

SiftDP

Now RiT = RI, det RI : -1 and on the surface SI lying on the plane of symmetry,

A ^ ^ T ^
Rl(n x Vu) = (I - 2 nI nI ) n x V u

^ A A A

: n x V. - 2 n 1 (n 1 • n × V.)

:nx Vu
A

since for points _ c SI, n(q) : _nI. Consequently

(RlP,,) = (i/.)(-1) RI SY(n(_)dSq xV,)x _q(1/R(_,_))

S1FlDp

and we are done.

We have now derived all of the machinery necessary to perform the

symmetrization of boundary conditions. In symmetrizing the boundary

conditions, we treat first the case of a control point not lying in the plane
of symmetry and then the case of a control point lyingTn-the plane of
symmetry. (Note: A control point _ is said to lie in litreplane of symmetry

provided (i) RI _ = _ and (ii_ n(p) = *n1. See appen---6ix(H.1.2) for a

detailed discussion of control point classification.)

÷

Symmetrization for _ ¢ S

S+Let _ _ be a control point not lying in the plane of symmetry; then

R1 p ¢ S- is the image of _ in the plane of symmetry. Using the notation developed

earlier in this section, we can write the boundary conditions at _ and RI_ with a
single formula:

bcj :
( aAnT(p)B o + _AT) RJ(_(RJp'))A + CA(#(RJ_)) A

+ aA _J(RJp) + cD uJ(RJP) + _DTR j v v "J(_)J _ : RJ_"

= bj

(K.3.4g)

Notice that we require the scalar coefficients of the boundary condition to be

identical for both the control point _ and its image Rl_While the vector

coefficients are reflected by RI. Multiplying equation (K.3.49) by Hij, summing

over j and taking account of the definitions (K.3.22) of _i, (K.3.44) of _i

together with relations (K.3.26) and (K.3.27) for _i and _i, yields, after some
manipulation,
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• ^T,--,_ ^i,_, ^i
bc1: (a A n _pl_ o + -tAT)(v _PJ)A ÷ CA(¢ (P))A

+ aA _i(_) + CD _i(_) ÷ _DT Vp _i(_) = _ HiJ bj
J

(K.3.50)

Symmetrization for p E SI, n(p) parallel to nl

When a control point lies in a plane of symmetry, very special care must
be used in order to achieve the desired symmetrization. Part of the problem

is caused by the fact that we do not really have enough boundary conditions to

fully determine the source and doublet parameters associated with both _S and

^A
. Thus, the user specified boundary conditions must be supplemented by

special, program supplied, degenerate boundary conditions. We begin our
treatment of symmetrization for control points in the plane of symmetry by

deriving the form of these special degenerate boundary conditions.

Let _ _ SI be a control point lying in the plane of symmetry and let _ be the

normal to S1 at p where _ = ±nl" Let _S and _A be respectively the symmetric and

antisymmetric part of _ as defined above. Then the following jump conditions
^A

hold for _S and d •

^ _ lim ^ _ _ _SE #S(p) ] = [_S(p + c_) (_ - ¢_)] = 0 (K.3.51)

¢_ 0

E B _AI_ 01= lim [_.v _A (_ + _) _ _ "V _A(_ _ ¢_)] : 0

c _0

The first of these relations follows from the argument,

(K.3.52)

÷ = (RI(_ + ¢_)) : _S (RI-_ + _ R1 _)

=

In this sequence of equalities, the first equality follows from the general

symmetry condition (K.3.23) with i = +I, j = -_ while the third equality

follows from the facts RiP = _ (_ ¢ SI) and R1n = -_ (B = *nl).

Relation (K.3.52) is proved by first noticing that the relation (K.3.23)

with i = -1, j = -1, implies,

Applying

_A (RI_) = __A(_).

Vq to this, we obtain,

^ ._,

R1 V _A(RIq) = - V _A (_)
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A A

Letting _ = _ ÷ En, we see as before that Rlq" = _ - cn so that

Multiplying by _T and recalling that _TR 1 = __T, we get

^T v_A (__ ¢_) ._T v_A (_ + El)-n

Equation (K.3.52) now follows immediately.

As a consequence of these jump conditions, we are led to the conclusion that

the doublet strength associated with _S and the source strength associated with

_A are both zero for points _ _ SI. Thus, we write

_1S(_) = 0 (P E S1) (K.3.53)

_IA(_) = 0 (_ _ SI) (K.3.54)

These then are the degenerate boundary conditions to be imposed on, respectively,

the symmetric and antisymmetric problems.

Turning now to the symmetrization of a regular aerodynamic boundary condition

imposed at _ _ SI, we use the relations

A --_ ^A -'_
_(_) = (_S(p) + 16 (p)),

_(_) = ½ (_S(_) + _A(_))

(K.3.55)

(K.3.56)

(which follow directly from the definitions (K.3.22) and (K.3.44)) to obtain

(aARTBo + _T)(½)(_S(_) + _A(_))A + CA(½)(_S(_ ) + _A(_)) A

(K.3.57)

^A
+ aA _IS(_) + cD _iA(p) + _DT Vu I = b

where we have used the fact that the source and doublet distributions on SI are

denoted _1S and _iA. Considerable simplification is obtained by recognizing the

following average value formulae

( A( IIA:o (K.3.58)

vA(p)) A = 0 (K.3.59)(tAT ^ -.

(BTBo S(5))A: 0 (K.3.60)

K .3-11



^A
Of these formulae, the first is an obvious consequence of the asymmetry of # , the

second i_ an easy consequence of the symmetry relation (K.3.45) and the identity

R1 tA = tA, and the third is a consequence of (K.3.45) together with the identi-
^ A A ^ A A _ A

ties Bon = n (since n = *nI and (nl, co) = 0), R1n = -n. Using the relations

(K.3.58), (K.3.59), (K.3.60), the boundary condition (K.3.57) becomes,

I
aA _T Bo(_A(_)) A + CD _(_) + _ V_l A

* _'1tAT (_S (P))A + ½ CA(_S (P))A+ aD _1S(_) = b (K.3.61)

A notable feature of this equation is the fact that the coefficient (1/2)

appears in three of the terms, that is, those terms that are computed from IC

integrals. [This minor nuisance could be avoided if we were to change the
definition (K.3.22) to

_i._, = (½) _ HiJIpJ _ (RJp)

J

and similarly for (K.3.44). However, we choose to leave things as they are.]

Without further additional assumptions, it is impossible to do any more about

symmetrizing a boundary condition in a plane of symmetry_ However, a careful

examination of (K.3.61) reveals that if either (aA, cD, tD) = 0 or (aD, cA, _A ) O,

then equation (K.3.61) becomes a condition on just the symmetric or just the

antisymmetric part of _. Thus we are led to the definitions:

Symmetric boundary condition. A boundary condition on a plane of symmetry is

said to be a symmetric boundary condition if (aA, CD, tD ) = O. From (K.3.61)

we observe that a symmetric boundary condition imposes upon _S the condition

v

1 _AT(_S(p))A + ½ CA(_S(_))A+ aD _ (_) b (K.3.62)

The associated boundary condition (of symmetric type) to be imposed upon _A is the

degenerate boundary condition (cf.(K.3.54))

GIA( ): 0

Anti symmetric boundary condition. A boundary condition on a pl_ane of symmetry

is said to be an antisymmetric boundary condition if (aD, cA , tA) = O. From

(K.3.61) we observe that an antisymmetric boundary condition imposes upon _A

the condition

aA _T BO (_A(p.))A + CD ulA(_) + _D T v_IA b (K.3.63)
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e associated boundary condition (of antisy_wnetric type) to be imposeduponis the degenerate boundary condition (cf. (K.3.53))

= o

We find, then, that the boundary value problem for _S can be fully decoupled

from the boundary value problem for _A only if the user specifies a synmmtric

boundary condition on a source network and an antisymmetric boundary condition
on a doublet network for any network lying in the plane of symmetry. This

condition should be regarded as the natural extension of the condition that

boundary conditions on opposite sides of the plane of symmetry be connected
with one another as indicated by (K.3.49).

Having performed the analysis to this level of detail, we can now make

fairly precise statements about the efficiency gains that can be achieved when

a plane of geometric sjnnmetry is present.

First, even if no special conditions are imposed upon the boundary

conditions, the cost of computing influence coefficients can be cut in half.

This efficiency gain is achieved because it is not necessary to compute the

influences of any image panels on the control points, a fact which is clearly
indicated by equation (K.3.20). [Note: The evaluation of influence

coefficients associated with ¢o(p,o-) requires no extra effort over the

evaluation ¢o(_, _+)].

Second, if special symmetry conditions are imposed on the form of the

boundary conditions (equation (K.3.4g) and the symmetric/antisymmetric

properties on the plane of symmetry), then it is possible to reduce the matrix

solution cost by a factor of 4 by solving two AIC matrices of size N rather
than one AIC matrix of size 2N.

Third, if there is partial geometric symmetry together with partial

boundary condition symmetry, some efficiency gains are possible provided one

is willing to develop quite complex influence coefficient generation and
linear equation codes.

In the PAN AIR program, the decision has been made to implement geometric

symmetry for only that case which yields the greatest efficiency gains, that
is the case in which the boundary conditions satisfy the symmetry constraints

(K.3.49) away from the plane of symmetry and (K.3.62), (K.3.63) in the plane

of symmetry. Thus, when it is appropriate, we obtain the efficiency gains
described in the second of the three situations described above.
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K.4 Problem Formulation for TwoPlanes of Symmetry

In this section, we extend the results of the previous section to the case
in which the configuration has two planes of geometric symmetry. In figure
K.4 we illustrate such a configuration where the unit normals to the planes of
symmetry are denote nl and n2 and these normals satisfy the usual conditions
(cf. equation (K.2.11))

A A A A

nl.n2 : nl.c o = n2.c o : 0

The singularity surface S on which sources and doublets are defined is
decomposed in eight parts as follows

• •
÷+ +÷ ÷_ -. A ^

SIJ: S : S fl C , C = { P I (p,n I) > 0, (p,n 2) > 0 } (K.4.1)

-+ _+ C -÷ _ ^ ^S = S N C , = { P I (p,nI) < 0, (p,n2) > 0 }

s÷-= s n c÷- c+-= ( I > o 2)<o }

--_ A -* A

S-" = S n C'-, C'- = { p I (p,nI) < 0, (p,n2) < 0 }

SlJ" $I+ = S F1Cl+, CI+ = {P I (-P,nl) = 0, (_,_2) > 0 } (K.4.2)

--* A A

SI = S FlCl- , CI- : {-P I (p,nI) : 0, (p,n2) < 0 }

s2i: $2+ : S n c2÷' c2+ : { P [ (P'_I) > o, (p,_2) : 0 } (K.4.3)

-- A a

S2- : S N C2-, C2 : { P I (_,nI) < O, (p,n2) : 0 }

Allowing the symmetry superscripts i,j to range over the index set (+I, -1},

ij , j Sj _IAJwe denote the singularity distributions on Sij by o , Ij on SI by _1 '
i _iS _iA

and on S2 by o2 ' u2 " The tilde written above the singularity distributions

on the planes of symmetry is intended to indicate that these functions are

already partially symmetrized. The perturbation potential induced by these

singularity distributions is given by the formula (compare with (K.3.5)),

i,j Sijn Dp

+ (IIK) _ fr
JJ

J

SlJ n DP

[_ ij(_)/R(_,_) + ij(_) _.Vq(1/R(_,q))] dSq

[-_J(_)/R(_,_) +-_;J(q)_" Vq (i/R(p,q))] dSq

(continued on following page)
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•(I/,)z fS ÷ •

i $2i(1Dp

(IIR(_,_))] dS
q

(K.4.4)

Proceeding as before, we now define a family of reflection matrices Rij that

allow us to express all of the integrals appearing in (K.4.4) as integrals

over the principal images of the various singluarity surfaces, S+÷ $1 ÷ and $2 ÷! •

+÷

R = I

"T
R-+ : R1 = I - 2_ I n I

R+- = R2 : I - 2 _2 _2T

R-o = RI R2

These reflections have the properties that

(Rij) = (Rij)T = (RiJ) -I

(K.4.5)

(K.4.6)

RiJ Rkl = R(i.k)(j.l) (K.4.7)

and also that

q" c C++ -_ RiJ_ ¢ Cij

E Cij ÷ RiJ_ _ C++
(K•4.8)

Using these reflectors, we define some auxiliary singularity distributions on

the principal image of the configuration by

• °

ij Rijq) } (K.4.9)o (_)= _ij(

c Sij

ij (K.4.10)
(q) = _iJ(RiJ_)

_SJol(_) : _ISJ(R'J_) 1

I
_1Aj(q) = _1Aj(R+j_)

q ¢ SlJ

(K.4.11)

(K.4.12)

_2iS(q) : _2iS(Ri÷q) 1

J
_2iA(_) = _2iA(Ri+_)

(K.4.13)

¢ $2 i
(K.4.14)
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These auxiliary singularity distributions, together with the following
integral operators (compare with equations (K.3.16) - (K.3.19)),

¢o(_,_): -(iI.)f_ _(_)IR(7,_)dSq

S++FI D
P

(K.4.15)

,,I.+
S nD

P

(K.4.16)

÷

S 1 13 Dp

(K.4.17)

÷

S1 n Dp

(K.4.18)

÷

S2 N Dp

(K.4.19)

+

S2 fl Dp

allow us to write _(p) in the shorthand form

16(_) : S [* (RIjp, _ij) +. (RiJ_, _ij)]

i,j _

÷
÷j_ • ÷j_ .

(R p, °1Sj) + *I (R p, _IAJ)]

(K.4.20)

i+_ iS_ i+_ "
+ _ ['2 (R p, _2 ' + ¢2,u (R p' _2 IA)] (K.4.211

1 ,o

Our next definition will be of the various symmetric and antisymmetric parts of

#. Using the 2x2 matrix [Hij] = I - i as before, we define _ij by

_ij(_,) : _ Hik Hjl 16(Rkl_) (K.4.22)

k,l
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A, °

The four functions _lj possess the following symmetry properties and alternative
names :

1st pos 2nd pos alias

2÷+ symme tric symme tric _SS

_-÷ antisymmetric symmetric _AS

_+- symme tric an tisymme tri c _SA

2-" antisymmetric anti symmetric _AA

These symmetry conditions may be stated concisely as

_iJ(Rkl_-) : Hik HJl _ij(_) (no summation) (K.4.23)

The proof of (K.4.23) follows quite readily from the definition of _ij by using

the identities (K.3.25) and (K.4.7). The calculation goes as follows

_iJ(Rkl_) = _ Him Hjn

m,n

(Rmn Rkl P)

: )1 Him Hjn _ (R(m'k)(n'l)_)

m,n

= )1 Hi(p'k) HJ(q.l) _ (RPqp)

P,q

= Hik Hjl )i Hip Hjq 16 (RPq_")

P,q

= Hik HJl _ij(5)

The representation (K.4.21) induces an analogous representation for _ij.

In order to state this representation, we need to define symmetrized
singularity distributions as follows.

^ij(_) : _ Hik HJl _kl(_) : )1 Hik HJl kl (Rkl_)

o k,l k,l o (K.4.24)

^ij Hik HJl _kl Hik HJl kl(P) : _ (5) : )1 _ (Rklp)
k,l k,1 (K.4.25)
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A

olSj(P) : Z HJl _1SI(5) : _]
1 1

Hjl _i sl (R+I_)

(K.4.26)

cIAj(p") : __ Hjl _IAI(_): __ Hjl _1Al (R+I_)
I I

(K.4.27)

_2iS(_) = _ Hlk _kS(_) =
k k

Hik _2ks (Rk+_)

(K.4.28)

_2iA(p) : Z Hik _2kA(_) = _ Hik _2kA (Rk+_)
k k

(K.4.29)

The required representation of _ij is then given (compare with equation

(K.3.28)),

,.kl_ ij I_ ij
_ij (_) : _ H ik Hjl [¢{K p, _ ) + • (Rk p, _ )]

k,l _ u

A

+ 2_i+ _I HJl _1,o (R+Ip" _1sj) + 2 i-_]l Hjl
^ Aj)_i (R+Ip' _i

• ^ ._k+-. ^ iA)
+ 26J+ Zk Hike2'° (Rk+p' _2 is) + 26i- Zk Hik¢2'_ {K P' _2

(K.4.30)

For the most part, the proof of this representation is a straightforward

computation. To illustrate the method of proof, we simply prove the identity

corresponding to the fourth term on the right:

Hik HJl _l.u (R+q Rkl _' _'1Aq) = 2_i- _]I Hjl _i., (R+Ip' _IAJ)
k,l,q

Since R+q Rkl = Rk(q -l) , the expression on the left is equal to:

L.H.S. : Hik HJ(n.q) ¢ (Rkn_, :_IAq)
i,_

k,n,q

Hik HJn¢l (Rknp' _ Hjq _Aq)
k,n ,u q

Hjn (_ Hik (Rkn5 _IAJ))
n k _1,_ '
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is antisymmetric in the first plane of symmetry, that is,Now ¢I, u

¢l,u (R-np"u) = - ¢i,u
+n-.

(R p, u) (K.4.31)

Consequently, we have

{oHik¢l (Rknp'_l A3) = ^ Aj)
k ,u 2 ¢I (R+np' Ul

Thus the left hand side is equal to:

i=+i

i =-I

.+n-- ^ Aj
L.H.S = _ HJn (2_1-)¢1 (K p, u 1 )

n

and we are done. The validation of the remaining parts of the identity requires

the use of the symmetry relations

+n-,

¢I,_ (R'np' o) : + ¢i,o (R p, _)
(K.4.32)

(Rm-p"_) :- ¢2,,
m÷-,

(R p, _) (K.4.33)

¢2 (Rm-_'°) = ¢2 (Rm÷p, o) (K.4.34)

Just as we found in the case of one plane of symmetry, all of the relations

we have found so far have counterpart relations for velocities. The first of

these relations, the representation of _(p*) in terms of singularity

.... _ISj UlAj o2iS _2 iA is givendistributions _13 _13, _, II ' J

_(_) : _ RiJ [_o(RiJ_, _ij) +'_ (RiJ_, _ij)]
i,j

• ÷j+ Aj
+j_ sj (R p, _Z )]+ _ R÷j [VI (R p, _1 ) + VI,,

J

" _ iS) Ri÷-" 2iA(R1+p, _ + V ( P, _ )]+ _ Ri+ [V2,o 2,_
i 2 (K.4.35)

where operators Vo, V_ etc. are defined by

V2,ol Sf Vp
÷ ÷

(S +÷, S1 , S2 )N Dp (K.4.36)
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(V,' VI., V2,u)(P'u) = (I/K)ff(_(_)dSq x V,) x _q
++ ÷ ÷

(S ,S I, S2 ) A Dp

The symmetrized velocities, _ij(_), defined by

^ij Hik HJl Rklv (_)= _ _(RKI_)

k,l

satisfy the symmetry relations

(K.4.37)

(K.4.38)

_ij (Rkl_.)= Hik HJl Rkl G (Rkl_) (K.4.39)

The representation formula for _ij that corresponds to the representation

(K.4.30) for _ij is given by the formula

_ij(_.) : _ Hik HJl Rk] [7 (Rklp, _ij) + _ (R kl_, _ij)]

k,l o u

÷
+l-. _lSJ i AjZ Hjl R+l z2ai+ V (R p, ) + 2a -V'I,,l I, (R+Ip' _i )]

Hik Rk+ [2aJ + V (Rk+_ p, u2 ]k 2,o P' _I IS) +2_j" V2,u (Rk+_ ^ iA)

(K.4.40)

The proof of this representation formula is a fairly straightforward matter,

given the symmetry formulae for VI , VI , , :

VI _ (RIP' o) : RI Vl (p,o) (K.4.41)
, m(_

VI,, (RIP'U):-RI VI,, (P'") (K.4.42)

V2,_ (R2P'_) : R2 V2,a (P'_) (K.4.43)

V2., R2V2., (K.4.44)

Symmetrization for _ _ S++

S ÷÷Let p _ be a control point not lying in any plane of symmetry. The
i'__

four images of _ are given by R 3p and the boundary conditions at these points
are required to have the form
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bckl
(aA _T(p)B o + TAT) Rkl (v'(Rklp))A + cA (16 (Rkl_)) A

÷ aA akl(Rklp) + CD _ u Rkl :
P (K.4.45)

As before, the scalar coefficients are independent of image while the vector

coefficients for the various images are related to the vector coefficients for

the principal image by way of the reflection transformations Rij. Multiplying

equation (K.4.45) by Hik Hjl and summing over k and l, yields, after the

appropriate simplifications are made,

^ ^ij _
bclJ (aA nT(p)Bo ÷ TA T) (vij(P))A + CA (¢ (_J)A

^ij(-_) v_lj'" _ Hik HJl bklaA ij(_) + CD , + tDT =
÷

k,l

y_

Symmetrization for p ¢ S1+, _(_) parallel to nI

(K.4.46)

Just as we found in the case of one plane of symmetry, special degenerate

boundary conditions must be imposed in order for the problem to be solvable.

For a control point _ lying in the first plane of symmetry, these conditions
are

^ AS ^ AA
aI = 01 = 0 (K.4.47)

^ SS ^ SA
_1 = _1 = 0 (K.4.48)

For controla point p s $1+, the boundary conditions at p and at its image point

R p can be written together as

bClI (aA nT(p)B 0 + _A T) R+l (_(R+I_))A + cA (_(R+Ip)) A

+ aD _I S1 (R+I_) + cD _iA1 (R+I_) + _D T R+Iv  IAII = b1
R+l_

(K.4.4g)

Because this equation represents only two boundary conditions it is not possible

to fully symmetrize it. However, we can multiply by Hjl and sum over l to obtain

a partial symmetrization. Using equations (K.4.26) and (K.4.27) to simplify

the terms involving the singularity distributions, we obtain

K.4-8



(aA _T(p)B o + TAT ) ( Z Hjl R+l _ (R+I_)) A
l

c A (_ Hjl _ (R+Ip)) A
l

iSj IAj DT iAj+ aD _ + c D _ + _ . V_ = Z Hjl bl
]

(K.4.50)

Now if we multiply (K.4.22) by H

(note: Y HTM Hik = 2 6mk),
i

im and sum over i, we obtain

Him _ij : 2 Z Hjl _ (Rml_)
i 1

Setting m = +i, we obtain

_Sj + _Aj : 2 _] Hjl _ (R+I_) (K.4.51)

l

In a similar fashion, multiplying (K.4.38) by Him and summing over i, yields,
for m : +1,

_Sj + _Aj : 2 _ Hjl R+I _ (R+Ip) (K.4.52)

l

Thus, we obtain for the partially symmetrized boundary condition

(aA_T(_IBo_iAT_½ (;SJ(_l÷_AJ(_I)A÷cA (½1(_Sj(_)÷_(_iA

_iSJ ^ Aj+ aA + CA _1 + tD V_I Aj : _] Hjl bl" (K.4.53)
1

The symmetry properties of _ij and _ij provide the following simplifications

(compare with (K.3.58), (K.3.59), (K.3.60)):

(_AJ (-p))A : 0 (K.4.54)

vAj(5))A : o (K.4.SS)(_AT ^

(C_T Bo vSj(p))A-" : 0

Thus we obtain finally

(K.4.56)
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_1AJ(5) _DT ^ Aj1 (_Aj + c + V _i2- aA _T Bo (P))A D

+ ½ tAT (GSj(p)) A ÷ ½ CA (_Sj(_)) A + aD _Sj(_) = Hjl bl
1

(K.4.57)

Here again, we find it necessary to insist that a boundary condition be either
purely symmetric, on a source network, or purely antisymmetric, on a doublet
network. Thus, given a purely symmetric boundary condition, the
constraints that should be imposed on the various _iJ's are given:

Symmetric boundary conditions in first plane of symmetry

SS and SA: ½_AT(;SJ(_A+½_A(_SJ(_A+_D_)J(_=Z
l

^Aj
AS and AA: oI = 0

Hjl bl

(K.4.58)

(K.4.59)

For a purely antisymmetric boundary condition, the constraints have the form:

Anti symmetric boundary conditions in first plane of symmetry

AS and AA:aA½ _TB ° (_AJ(_))A + cD _1 _iAj

SS and SA: ^Sj
uI : 0

Hjl bl

l

(K.4.60)

(K.4.61)

v
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K.5 Evaluation of ¢IC's and VIC's whenSymmetryis Present

Wenowconsider the evaluation of potential and velocity influence
coefficients when symmetry is present. Our goal is to provide representations
of the form

• N i ^ij ¢IciJ {_ij} (K.5.1)_lj(_) = _ _IC j xI : : j
1:i

N V-_Ij _ij [VIC ij] I_ ij} (K.5.2)viJ(r)_ = _ I =
I=1

for the various symmetric parts of _ and v, where _ij denotes the vector

of singularity parameters associated with the (i,j) symmetry condition. An

additional goal will be to provide procedures for the evaluation of _IC's and

VIC's that involve a minimum amount of special case logic. Toward this latter

goal, we initiate our investigations by developing somewhat more symmetric

formulae for the quantities _i ^i ij ij, v , _ and _ than the formulae (K.3.28),

(K.3.46) (K.4.30), (K.4.40).

K.5.1 One Plane of Symmetry

It turns out that when the problem has one plane of symmetry, _i and
;i as given by (K.3.28) and (K.3.46) can also be expressed by the somewhat

more symmetrical formulae

_i(_) = _ [HiJ ¢ (Rj_, Gi) + HiJ ¢ (Rj_, _i)]

j _

+ Z [HiJ ¢1 (RJP' G i
j ,o I ) + H_j ¢l,u

i
(RJP' _I )]

(K.5.3)

^i
v (5):

J
HiJ Rj [_ (Rj_, _i) + V (RJp, _i)]

i
+ Z HiJ RJ [Vl,o (RJP' °1i)^ + VI,, (RJP' _1 )]

J (K.5.4)

The proof of these formulae is fairly straightforward once one notices that the

degenerate boundary conditions (K.3.53) and (K.3.54) which state that
^S ^A
uI = oI = 0 imply that

i+^S ^i
6 oI = oI (K.5.5)

i-^A ^i
6 _I = _1 (K.5.6)
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Consequently we find (working backward) that

(i) _; Hij ¢I a(Rj_' _) = T
j , j

i+ AS
Hij ¢l,o(RJ_, _ oI)

= ai+ [2 ¢i (P' _ S)],a i
(K.5.7)

(using equation (K.3.31))

(ii) S Hij

J
(RJp", _1i) : __

J
HiJ ¢i,, (Rj_'' 6i- _1A)

- ^ A)]i (P' "1: ¢ [2 ¢i,_
(K.5.8)

(using equation (K.3.32))

(iii) _ HiJ RJ _1 (RJP' i i÷ HiJ Rj (Rj_, ^ S
j ,a _i ): _ Z Vl,a al )]J

i+ sIS (RI_,_IS)]= _ [VI (P' ) + R1 Vl,a
iO

i÷ ,_IS)= 6 (2) Vl, ° (_ (K.5.9)

(using equation (K.3.47))

- : (# A)(iv) _] HiJ RJ V1 (RJP'_Ii) ai- _ HiJ RJ V'I,,
j ,_ j

: i- [Vl (P'_I A) " RI Vl (RIP CIA)]

: ai- (2) V1, (-p,_1A)

(using equation (K.3.48))

(K.5.10)

Recall that from their definitions, _i and _i are defined only for p ¢ S÷.

If we now choose to extend their definition to points _ e S1 by the obvious
specifications

^i J _ i
a I = al (K.5.11)

S1
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hi I ^ i

I : _i (K.5.12)
S1

and then define operators , _ , V , V by
o _ o I_

(7,0): +z
,0

(K.5.13)

* (P,.) = ¢ (P',u) + _I (_'") (K.5.14)

*(5, : Vz,o) _ (_,o)+ (_,o) (K.5Z5)
o o o

V (_,_) = V (p,u) + VI (_,u) (K.5.16)

then we are simply left with the compact formulae

= * * Gi_i(_) _] Hij [ _ (RJ_, oi) + ¢ (RJ_, )] (K.5.17)

j °

^i HiJ Rj * _ ;i _ *v (p)= Z [_ (RJp, ) + V (RJp,_1)] (K.5.Z8)

j _

We can now describe the computation of potential and velocity influence

coefficients. Recalling the representations (K.I.2) and (K.1.3) for o and _ in

the absence of symmetry, we observe that Gi and ;i have the representation in

terms of spline basis functions and singularity parameters,

N
^ i

o^i (_) = _ sI (_) xI (K.5.19)
I=1

N ^i
hi_ (_) : :_ mi(_) XI (K.5.20)

I=1

Upon substituting these representations into the formulae for _i and _i we
obtain

• N i ^ i L¢ICij .-.(_i}_i(_) = :_ _ICI Xl =
(K.5.21)

I=1

N
^i --- i ^i "
v (p')= :_ VICI Xl = [vIci] (_I} (K.5.22)

I=1
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where

_r _r

¢ICI i : Zj Hij [ _ (RJP, sI) + ¢, (RJ-P, m I)] (K.5.23)

• _ _ _ _ j_

i : S Hlj Rj [V (RJ_, sI) + V (R p, ml)]
VICI j o _ (K.5.24)

Having derived these formulae for potential and velocity influence

coefficients, we are still not finished. Rather, we must investigate in some
detail the correct interpretation of these expressions when the evaluation

point _ lies on S÷ or SI. The case of p E S1 is especially difficult
because of the fact that a network that is recognized as lying in a plane of

symmetry may in fact lie some small distance away. The proper interpretation
of the formula (K.5.23) and (K.5.24) which we now describe will consist of

specific instructions for the evaluation of the integrals that arise.

First we treat the case in which _ lies in S+, away from the plane of

symmetry. If we write the integral operator ¢* as a sum of integrals over
÷ 0

the constituent panels Q of S1 and S , then we have

: , (K.S.25)
0 ÷

Q ¢ SI U S

where Q has the obvious definition
0

Q

QnDp

i/R(p,_) dSq (K.5.26)

Clearly, the integral operators ¢ , V ,and V have precisely analogous
o Q Q Q

decompositions involving panel integral operators ¢ , V and V . Given these

decompositions, the interpretation of the influence coefficient expressions is now
summarized.

Algorithm A÷ (Rj _ ÷: Evaluation of • Q _, s), etc., when p ¢ S

+ Q (5,s)j = +1, R = I: ¢

Use the average value of • Q(_,s) for points

above and below Q. o

Proceed naively: ¢ Q (F,s) is regular (has no jumps)
0

for _ in a neighborhood of p. (By "proceeding naively,"

we mean that no special care is required to evaluate the

PIC's in order to avoid ambiguities associated with jumps

in the PIC integrals across the singularity surface.)
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j =-1, R- = R : Q
1 _o (RIP, s}

Proceed naively: _ Q (F,s) is regular (has no jumps)

for _ in a neighborhood of RIP. Thus we evaluate

• Q (R1_,s)

, S+Thus when p _ , the only special care required is that average value

integrals (above and below the panel Q) be used whenever the control point

lies directly on Q. This is done because the general form of a boundary

condition, (K.1.1), specifically imposes a condition on the average values of

potential, velocity and mass flux, _A' _A and WA" With this interpretation of

what is to be done with integrals over the panel in which p lies, equations

(K.5.23) and (K.5.24) provide a precisely accuratedescription of the actual
IC computations performed by PAN AIR for the case p _ S+.

The case in which p lies in SI, that portion of the configuration on the
plane of symmetry, is somewhat more difficult. The rules we actually use for

the evaluation of influence coefficients are motivated by two requirements:

(i) The evaluation procedure must be consistent with the program control

structures implicit in a "naive" interpretation of equations (K.5.23)

and CK.5.24)

(ii) The evaluation should yield influence coefficients that possess the

basic symmetry properties for _ _ SI

a)

b) (K.5.27)

^ Gs (5): o
c) nI •

(compare these with equations (K.3.58), (K.3.59), (K.3.60))

The actual rules for the interpretation of (K.5.23) and (K.5.24) are now given

in terms of instructions for the evaluation of _Q.

Algorithm AI: Evaluation of .Q_ (RJ_, s} etc., when-_ ¢ SI

÷ Q
j = + 1, R = I: ¢ (_,s)

Use the average value of _o(p,s) for points p above and
below Q.

Proceed naively
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j : -i, R- : RI: _Qo (RIP'S)

Use the average value of _Q (_,s) for points _ above and

below Q. Note that we use _ and not RI _.

Use cQ(g,s)
0

Thus, _e.proceed much the same as we proceded before except that the control
point p is never actually reflected in the plane of symmetry, even if it does
not lie exactly on the plane of symmetry. It is also important to note that
the same influence coefficients are generated for j = +1 and j = -1.

Consequently we find that when _ E S1

v

¢IC) : _ H+j [¢o(P,Sl) + ¢ (P,ml) ]
J

2 [_ (p',sI) + • (p,m I) ] (K.5.28)

• IC A = 0

_'C : (I + R1) [V (p,s I) + V (_,ml)]

(K.5.29)

v

^ AT, -,.* --, _*
= 2 (I - nlnlJ [Ve(p,s I) + V (_,ml)] (K.5.30)

A AT : _*= 2 nlnl [V (_,s I) + V (_,ml)] (K.5.31)

These results verify that the influence coefficients exhibit the basic

symmetry properties of equation (K.5.27).

It is interesting to compare the formulae (K.5.28) through (K.5.31) with

what one would obtain from a straightforward application of equations (K.3.28)

and (K.3.46). This comparison is summarized in figure K.5. The differences

between the two methods are of three types: (i) some extra integrals over S1
appear in the expansions of equations (K.5.28) - (K.5.31), (ii) some of the

S+
integrals over are different (e.g., _a (P'Sl) replaces ¢ (RI_ sI) and

0 s

(iii) there are some very definite differences in form for the remaining

integrals over S1.
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The first type of differences are of no consequence in view of the restric-
^i ^A ^S

tions on _I implied by the degenerate boundary conditions, oI = O, uI = O.

These restrictions read:

sI Sl _ 0 --- xI = 0 = O) (K.5.32)

/ 0 -" _I = 0 ( : O)
ml $1 (K.5.33)

The terms appearing in figure (K.5) which can be neglected because of these
considerations have been lightly crossed out with an arrow ( --- ).

The differences of the second type have the forms

• (_,s I) - _o(Rl_,S I)

¢ (_,m I) - ¢ (RIP,m)

R -V(RI ,sl)]

Rl[_(_,m I) - _'_(RlP,ml)]

These differences will all be negligible by virtue of the fact that ¢ (_,Sl),

¢_(_,ml), etc. are continuous function of p for _ in the neighborhood of the

plane of symmetry. This continuity, coupled with the bound

I P - R1 51 _ 2 (geometric tolerance distance)

ensures that all the differences of the second type are small.

The third type of differences have the forms

^ ^ 71,- 2 nlnl T o (P'Sl)

^ ^ T) _1 (P'ml)- 2 (I - nln I ,_

These differences wil] be identically zero provided both SI and _ lie

exactly on the plane of symmetry. If S1 deviates slightly from the plane of
symmetry, these differences will still be small provided _ lies on SI and

average value integrals are systematically used.

Thus the method of calculating IC's described in this section can be

expected to yield very similar results to the method of section K.3. We

choose to use the algorithm AI because it permits much simpler program
structure and at the same time it enforces the symmetry conditions (K.5.27).
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K.5.2 Two planes of Symmetry

In this section, we devise influence coefficient evaluation procedures for

the case of two planes of symmetry. We begin this task by transforming
o,

^IJ
equations (K.4.30) and (K.4.40) for _ij, v into the following symmetrical

forms:

" : ^ij Rkl_, ij_lj Z Hik Hjl C ¢ (Rklp, o ) + ¢ ( _ )

k,l o

Rkl_, ij ^+ _I,o ( _i ) + ¢I,_ (Rkl_' _iij)

(Rklp' _2ij) + _2 (Rkl_' _2ij)]
,IJ

(K.5.34)

^ijV

k,1
Hik HJl Rkl [_(Rkl_, _ij) + _ (Rkl_, _ij)

• °

^ ij) + _ (Rkl-_ _11J)* Vl,o (Rklp' al l,u '

+ V2,_ (Rkl-_' _2ij) + V2,u (Rkl_, _2ij)]

(K.5.35)

The proof of equation (K.5.34) depends upon identities of the form

Hik HJl ¢i,o
k,l

^ ,o(R+l ^ Sj)(Rkl_, Ol ij) = 2 i+ _ HJl ¢i P' al
l

Hik HJl _1
k,l '_

(Rkl_, _1 ij) = 2 6i" _ Hjl
l

i, (R+l_',_lAj)

(K.5.37)

which follow easily from the observations

^ ij i+ ^ Sj. ^ij i- ^
o I = a °I ' _I : _ _i

^ ij " ^ iS. ^ ij 6j- 2iAa2 : 6J+ °2 ' "2 =
(K.5.37)

together with symmetry relations

v
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+l_
_1 (R-lp'a) = _l (R p, a)

iG pG

¢i (R-Ip, u) = -¢1 (R+Ip' _)

¢2,a (Rk'p", a) = (Rk+p, a)
_2,a

¢2,u (Rk-_' _) = -¢2,u (Rk+_*' _)

Equation (K.5.35) is proved in very much the same way as the formula (K.5.4)

for _I, using the relations (K.5.37) together with the symmetry relations (K.4.41)

- (K.4.44) for the operators V_,a" V_,_

Our expressions for _ij, _ij can be compressed even further if we extend the

definitions of $ij and _ij in the obvious sort of way:

_ij f ^ ij ^ij I ^ ijS = o u = u (K.5.38)

If we then define ¢ , 4) etc by

4) =4) + ¢ +¢
a a l,a 2,0

+ 4) +4)2

* _ -" V_2V =V +V 1 +(7 (7 _(7 j(7

-" * -" V2V = V +V1 +

we obtain finally

• = * ^ij * ^ij_lj _ Hik Hjl [4) (Rklp, o ) + 4) (Rklp, , )]

k,l a _.

= -- ^ij _* Rkl ^ij
_ij _ Hik Hjl Rkl [Va* (Rkl_, (7) + V ( _, u )]

k,l

(K.5.39)

(K.5.40)
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As before, much care must be exercised in the evaluation of these expressions.
++ ÷

Three separate cases must be treated: (i) p ¢ S , (ii) _ c S1 and (iii) _ ¢ $2 +.

The first case, _ E S++ in which p lies away from either plane of symmetry
is fairly straightforward. 'The only special care that must be taken is in the

evaluation of panel integrals of the form 4_Q (Rklp,a), 4_Q(Rklp,u), etc., when

_ Q and k = l = +1. (We are using here the natural decomposition of 4_ into
o

panel integrals, viz., 4_a = )_ caQ.) For this particular case,

++ + ÷

Q c S U S1 U S2

cQ, Q v-+Q andcare must be taken that the average value of the pane] integrals

vQ be computed.

÷

The second case, p ( $1, in which _ lies on the first plane of symmetry is

handled essentially the same as the case of one plane of symmetry. Our description

of it, however will be somewhat different. First, observe that if S1 truly lies

on the first plane of symmetry and _(Sl, then Rkl _ = R+l_. Using this relation
in (K.5.39) and (K.5.40) we find,

(_ _ Sl+)

_ij(_) : _ Hik HJl [4_* (R+l_, _ij) + ¢* (R+l_, _ij)]
k,l o

(K.5.41)

CciJ(_) : Z Hik HJl Rkl [_* (R+I-_, _ij) +-_* (R+I_, _ij)]
k,l o

(K.5.42)

Here again the evaluation of 4_Q (R+l _, o) Q (R+lp, _), etc. must be

handled carefully when _ c Q and l = +I. Thus when _ _ Q_S1, average value

integrals must be used for both the principal image condition (k = +1, l = +I)
and its reflection in the first plane of symmetry (k = -I, l = +1). When

equations (K.5.41) and (K.5.42) are used in this way to generate IC's when

p _ S1, the following important symmetry properties are preserved even if SI

does not lie precisely on the first plane of symmetry:

a) _Aj(_) = 0

V

_ll_iT ^"b) (I - ) vAJ(5) = 0
PES 1

C) GIT _Sj(_) = 0 (K.5.43)
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The third case, _ e $2+, in which _ lies on the second plane of symmetry is

virtually identical to the second case. The point _ satisfies the relation

Rkl _ = Rk÷ _ and the expressions for _ij and _ij read

_ij(_) = _ Hik HJl [¢* (Rk+_, _ij) + ¢* (Rk+_,, _ij)] (K.5.44)

k,l o

_ij(-_) = _ Hik Hjl Rkl [7* k+-, _ij -* * ij(R p, ) + V (Rk+_, _ )] (K.5.45)

k,l _

Summarizing our treatment of the case of two planes of symmetry, we observe

that influence coefficients are computed as follows:

-_ +÷

Case p e S : Use (K.5.39), (K.5.40),

-_ ÷

Case p e SI Use (K.5.41), (K.5.42),

.__ ÷

Case p _ S2 Use (K.5.44), (K.5.45).
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K.6 Generation of AIC's when Symmetry is Present

In this section we discuss the construction of rows of the AIC matrix when

symmet_ is present. Given the influence coefficients whose computation was

described in the previous section, the construction of AIC's in the presence
of symmet_ is very much the same as in the absence of symmetry. The only

essential difference occurs when a control _ lies in a plane of symmetry.

When this happens, the contributions of the integral influence coefficients

(e.g. _IC ,VlC I) to anAIC row mustbe multiplied by (I/2) beforethe

corresponding contributions are included in an AIC row. This factor of (1/2)

appears clearly in equation (K.3.61), the general form of a bounda_ condition

on a plane of symmetry. As we noted when equation (K.3.61) was first derived,

these anomalous factors of (1/2) appear because the symmetric and

antisymmetric parts of _ are defined by

J

rather than

• 1

Hij # (RJp)

Hij 16(RJp)
J

Of course if one were to change the technique of symmetrization to this second

form, one would have to investigate very carefully its impact on the form of

matching conditions at a plane of symmetry as well as the interpretation of

singularity distributions on the plane of symmetry.

The actual discussion of AIC construction will consist of four parts.
These include -

o General Boundary Conditions

o Matching Boundary Conditions

o Closure Boundary Conditions

o Degenerate Boundary Conditions

In the discussions that follow, we will freely use the symbols ¢IC I, VICI,

ICI, VlC , etc., to refer to the potential and velocity influence

coefficients associated with a particular basis function, sI or mi.* Formulae

for these influence coefficients are summarized on the following page. These

expressions reflect all of the special precautions required to ensure that the

various symmetrized potentials and velocities have the correct properties when

evaluated on the plane of symmetry.

* For any given singularity parameter _I' only one of the functions sI, mI
will be not identically zero.
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No plane of symmetry

ICI : _o

---- 7VIC =
I a

I plane of symmetry

k

PcS 1

Ic',:
k

v_ii : _i
k

2 Planes of Symmetry

¢ S++

_- Z
4_ICllJ k,l

÷

PcS I

_icilj :

÷

PcS 2

Summary of IC formulae

(_,s I) + 4_u(p,mI)

(p,s I) + _ (p,m I)
U

* (Rk_,sl) + ¢*Hik [ _a

Hik Rk [-_* (Rk_,sl) + V*

(Rkp,m I ) ]

k--.
(R P,ml)]

* (5,Sl)+ ®*Hik [ _o P

Hik Rk [-_* (_,s I) + V

(P,ml)]

(_,ml)]

k,l

Hik Hjl [_* (Rkl_,sl) ÷
* (Rkl_,ml)]

Hik Hjl Rkl [7* (Rklp.sl) + _* (Rklp,ml) ]

* (R+l_,s) + ¢*
Hik HJl [_a I

k,l

Hik HJl Rkl [_* (R+l_,sl) + V
o P

k,l

(R+l_,ml) ]

(R+l_,ml) ]

. * (Rk+_'.ml)]Hik Hjl [_ (Rk+p',sl) +
o

k,l
-+.

Hik HJl Rkl [_* (Rk+_,s) + V (RR+p, ml )]
o I u

k,l
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K.6.1 General Boundary Conditions

When one plane of symmetry is present and the control point _ lies away

from the plane of symmetry, the general symmetrized boundary condition

(K.3.50) induces the symmetrized AIC equations

N iI^i HiJ bjAIC x I =
1:1 j

where AIC i
I are given

AICil = (a A _T Bo ÷ _AT) _-_i + c A .iCil

+ aD sI(P) + CD ml (P) + _D _ mI (_')

S ÷(p ¢ )

(K.6.1)

(K.6.2)

If the control point p lies in the plane of symmetry, then a general

boundary condition will induce an AIC equation only if the symmetry type of

boundary condition and AIC equation agree, For example, the symmetric

boundary condition (cf. (H.1.20))

t_A . vA(P) ÷ cA _A(_) + aD _1S (_) = b

is equivalent to the symmetrized boundary condition (cf. (K.3.62))

(1/2) tAT (_S(p)) A ÷ (1/2) cA _S (_) + aD _iS (_) = b

which in turn induces the AIC equation for _S,

N

:£ AIC x : b

I=1

AIC_ is given bywhere

D sI(P)

(K.6.3)

(K.6.4)

(K.6.5)

(K.6.6)

On the other hand, an antisymmetric boundary condition (cf. (H.1.19))

AT

aA n Bo (_(P))A + CD _iA(_) + tD "v C1A = b

is equivalent to the symmetrized boundary condition (cf. (K.3.63))

^T 1A( ^ = b(i/2) aA n Bo (vA(p)) A + cD _̂ p) + tD • V _iA

(K.6.7)

(K.6.8)

which induces the AIC equation for _A,

N

I_ AIC Xl = b
I=l

(K.6.9)
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where

AIcA : (1/2)a A _iT BO _'C_ ÷ CD ml (_)+ _D. _ mI(_" )
(K.6.10)

When two planes of symmetry are present, equation (K.4.46) provides us

with the symmetrization of a general boundary condition away from either plane
of symmetry. Using it, one obtains the symmetrized AIC equations

where

N

2 AICiJl ^iJ_l: _ Hik HJl bkl
1:1 k,l

AlclJ : (a A _T Bo + _A T) V-_ij . CA _icilJ

(K.6.11)

+ aD sI(P) + CD mI(P) + _D " Vp mI(_) (K.6.12)

If a control point _ lies in the first plane of symmetry, then symmetric

boundary conditions at p and at R2_ can be written concisely as

-" = blaD _Isl (R+Ip') + CA (#(R+lp))A + tA " (v(R+Ip))A (K.6.13)

These conditions can be symmetrized to give (cf. K.4.58)

aD _i sj (p) + (1/2) cA (¢S3(p)) A + (I/2)tA . (_SJ(_))A = _ Hjl b1
l

(K.6.14)

which in turn yields the two AIC equations

N S _J T Hjl bl:_ AICLJ :
I=i l

where

(K.6.15)

(K.6.16)

Similarly, an antisymmetric boundary condition on the first plane of symmetry
yields the AIC equations (cf. K.4.60)

N

2 AIC Aj _J : _] Hjl bI (K.6.17)
I=1 l

where

The treatment of control points lying in the second plane of symmetry is
essentially the same.

J
v
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K.6.2 Matching Boundary Conditions

In this section, we examine the imposition of matching conditions when a

configuration possesses some symmetry. Our discussion will concentrate on

doublet matching, source matching being handled in an essentially similar
fashion. Notice however that the concept of source matching along an abutment

involving more than two networks is not really sound, since even the idea of a
continuous surface normal is ill-defined in the neighborhood of such an

abutment(*). For this reason, we prefer to deal with the concept of doublet

matching, which has a thoroughly sound theoretical basis.

Our discussion will consist of two major parts. First, we will

investigate the forms that doublet matching takes when symmetry is present.

In the second part, we will show how these matching conditions induce AIC
constraint relations.

K.6.2.1 The Form of Doublet Matchin_ Conditions

If an abutment lies away from any plane of symmetry, doublet matching

along the abutment and its images can be expressed by (cf. eqn. (H.2.11a) or

(F.5.1))

sk u_ (Ri_) = 0 i El+l,-1}
k

if the configuration has one plane of symmetry, and by

sk _J (Rijp) = 0 i,j EI+I,-I}
k

if the configuration has two planes of symmetry. These conditions can be

symmetrized in the obvious fashion to yield the symmetrized matching
conditions,

one plane of ^i
symmetry _ Sk Uk (_) = 0 (K.6.19a)

k

two planes of ^ij
symmetry _ Sk _k (P) = 0 (K.6.19b)

k

^i
Uk(_)_ denotes the evaluation of __'_i(p}on the k-th network of the abutment,Here

^i
being defined by (cf. (K.3.27)) _i(_) = _ HiJ u3(RJ_).

J

(*) Recall that source strength_is defined, for incompressible flow, by

o = (_._) ÷ (n.v_ -. If v is continuous, o will not likely be
continuous unless n Is continuous. In any event, the whole issue of

source matching is not of much consequence since it can only arise when

(a) one uses design networks and (b) one specifies that closure override
doublet matching (not recommended).
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If an abutment lies on a plane of synwnetry, four separate cases,

illustrated by figure K.6, must be analyzed. These are

(a) there is just one plane of symmetry

(b) the abutment lies on the first of two planes of symmetry

(c) the abutment lies on the second of two planes of symmetry

(d) the abutment lies on the intersection of two planes of symmetry

We study each of these cases in turn.

In fig. K.6a, we illustrate the case of just one plane of symmetry. Six

networks are involved in the abutment, Na and Nd in the plane of symmetry and
÷ ÷

Nb , N_, Nc, Nc, the images of Nb and Nc. In line with our convention of

denoting the doublet strength on S1 by _iA, we denote the doublet strengths on

a d b ^A ^A " "
networks Na n Nd y Ul,a and Pl,d" The doublet matching condition for this

abutment is, clearly,

^A + + ^A

"l,a " Ub + _c - _l,d "Pc + Pb: 0

Rearranging, we write

+ + ^A
^A_l,a" (Ub - _b ) + (_c - Uc) " _l,d = 0

÷ ^A +
Recognizing (Ub - Ub) as ub and (uc

^A
pc) as Uc' this yields

^A ^A ^A ^A
_l,a " Ub + Pc " _l,d = 0 (K.6.20)

a matching condition involving just the antisymmetric doublet strengths.

There are no symmetric doublet matching conditions at a plane of symmetry.

This can be clearly seen in fig. K.7 for which one can see that the doublet
matching condition reduces to the trivial condition, 0 = O.

In fig. K.6b, we i11ustrate the case of an abutment lying on the first

plane of symmetry when two planes of symmetry are present in the problem.

doublet matching conditions on the abutment and its image read

The

~At ++ ++ .+ .+

_l,a + Ub - Uc + Pc - _b : 0

÷_ ÷ .... --

~A- + _b " Uc + Pc - Ub = 0Ul,a

V

Adding and subtracting these two conditions, and taking account of the

^AS ~A+ ~A- AAA _A+ ~A-
= + _1 ' _1 = Pl " _ we obtainrelations "l,a _l,a ,a ,a ,a 1,a '

=
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^AS ^AS ^AS

"l,a + Ub - uc : 0

^AA ^AA _A

_l,a + Ub - _c = 0

(K.6.21)

Notice that when the abutment lies in the first plane of symmetry, both of the

doublet matching conditions are antisymmetric with respect to the first plane

of symmetry.

The case of an abutment lying in the second plane of symmetry, illustrated

by fig. K.6c, is handled in essentially the same way as the previous case.

The resulting doublet matching conditions,

_S ^SA^SA + A + _c = 0U2,a

^AA _AA
^AJ_ + Ub + _c : 0P2,a

are both antisymmetric with respect to the second plane of symmetry.

(K.6.22)

When an abutment lies on the intersection of both planes of symmetry, as

illustrated by fig. K.6d, there is only one doublet matching condition.

Referring to fig. K.6d, it is easy to see that for this example the matching
condition reads

++ +.... + _÷A _-A = 0
_._+ _A- + " _b + _b " _b + _2,cUl,a - Ul,a Ub " P2,c

Recognizing the various antisymmetric/antisymmetric parts, this simplifies to

read

^AA + _ + _2 = 0 (K.6.23)_l,a ,c

Notice that this condition is anti symmetric with respect to both planes of

symmetry.

A careful perusal of equation (K.6.20), (K.6.21), (K.6.22) and (K.6.23)

leads to the following general conclusions.

(i) if an abutment lies on a plane of symmetry, the matching conditions

imposed for that abutment are anti symmetric with respect to the plane

of symmetry

(ii) the doublet matching conditions have the same form as the doublet

matching conditions for just the principal image of the
+

configuration, S U S1 when one plane of symmetry is present and

S++ U $1+ U $2+ when two are present.

Consequently we find that equations (K.6.19) capture the correct form of the
doublet matching conditions even when the abutment lies on a plane of symmetry.
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K.6.2.2 The Imposition of Doublet Matching Conditions

We now study the imposition of the doublet matching conditions, (K.6.19).
In order to simp]ify the discussion, we treat only the case of one plane of

symmetry where the matching conditions are given by (K.6.1ga).

We begin by observing that the basic problem to be addressed is the
^i.-, ^i

problem of expressing _k_pj in terms of the global singularity parameters _I"

Here ^i denotes the restriction of _i to Nk, the k-th network of the abutment, uk

Following the notation of section (K.I.1), we observe that

• N I ^ i
_k1(_) : _ mi(P) xI (K.6.24)

1:1 J Nk

I denotes the restriction of the global basis function mIHere, mINk

network Nk. It may be written

I | ! ! I Imi(P) Nk LI _ n _ 2/2 _'n n 2/2j [SPSPL ]

where

to the

(K.6.25)

(E I ' gn)

[SPSPL D]

BDk,I}

are the local coordinates of the matching point _ in the subpanel

in which it lies,

is the doublet subpanel spline for the subpanel in which p lies,

in network Nk

D
is the column of the doublet outer spline matrix [Bk] correspond-

ing to _I and associated with the panel of Nk in which _ lies.

With this understanding of how one computes mll Nk, it is easy to see that

a matching condition of the form (K.6.19a) induces AIC constraint relations of
the form

where

N ^i

AIC I _ = 0
I=i I

(K.6.26)

AIC =
I k

(K.6.27)
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K.6.2.3 Source Matchin 9 (Design Cases Only)

When symmetry is present, the enforcement of the symmetrized source

matching conditions is handled in essentially the same way as the doublet

matching conditions discussed in the previous section. Away from any planes of

symmetry the symmetrized matching conditions read (compare with equations
(K.6.19))

^i _) 0 (K.6.28a)One plane of _ sk Ok( =
symmetry k

Two planes of _ sk _J(p) = 0 (K.6.28b)
symmetry k

If the source matching abutment lies on a plane of symmetry, the source

matching conditions are still of this form, but are imposed only on

symmetrized potentials _i (or _ij) that are symmetric with respect to the plane

of symmetry containing the abutment. If the source matching condition is to

be imposed at a control point lying in the plane of symmetry, it must replace
the user boundary condition of symme_ic type (in the sense of section
(H.I.3)).

In any event, the source matching boundary conditions can be transformed

into AIC constraint relations of the form (K.6.26) with numbers AIC I given by

the same formula, equation (K.1.21) that we obtained for the case of no

symmetry at all. The only modification that is required in our interpretation

of equation (K.1.21) is that the summation over k be restricted to networks

lying in the principal image of the configuration.

K.6.2.4 Velocity Jump Matching

The symmetrization of the velocity jump matching conditions is now

described. In order to simplify the discussion, we restrict outselves to
configurations with just one plane of symmetry. The extension of the results

to configurations with two planes of symmetry is straightforward.

When the abutment lies away from any plane of symmetry, we obtain the

usual results (compare with equation (K.I.22))

Sk ( _i (t.n)l(n._)_^ A _ + ((_X_)X_). vli/(n.v)}^ _ k : 0
k

(K.6.29)

This relation can now be transformed into an AIC equation for each symmetry

condition in the usual way with equation (K.1.23) giving the formula for the

AIC row entries for all symmetry conditions.

When the abutment lies on a plane of symmetry, the situation is

significantly more complicated than anything we have treated up to this

point. Consider figure K.8, which gives an edge-on view of an abutment lying

on a plane of symmetry. For this situation the expression 2 skav k can be

written, using the notation of figure K.8,
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_;Sk AV"k (+1) [_+ _+I ^ _ +]. = (n,v)+ + Vt_

(-I) [o" _-/(_,_).+ vt_-]

^A](-I) [_ nl/(_,;) I + x/t_1

^ " A"

Using the relations (K.3.26) and (K.3.27) relating oJ, _J to oJ, uJ,
we obtain

+

0

I i (GsP+ = _ + cA)
P

(K.6.30)

(K.6.31a)

0 i (_s ;A) (K.6.31b)

i i I. + )
(K.6.32a)

- I 1 (_S _A) (K.6.32b)
, P = _- - RI_

Applying vt to these last two equations and recognizing that V t behaves
just like the regular gradient operator, we obtain

+I 1 ;s _A I (K.6.33a)Vt _ _.+ = _r ( Vt + Vt ) -+
P P

I 1 ,,,s _A)[Vt _" _ = _- RI ( Vt u - vt RI-_- (K.6.33b)
P

Substituting relations (K.6.31) and (K.6.33) into (K.6.30) and recognizing

that the evaluation point _ of equation (K.6.30) satisfies RIP = p, and that
A+ A_

n = RI n , we obtain

½ _ + vt ;S]Z sk a vk = (+I) {I RI ) [_S B+/{B.;)+

(-1) (I - RI) [_ n11(n,v) 1]

(+1) ½ (I + RI) [_A _+/(_,;)+ + vt _A]

(K.6.34)
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Now the reflector matrix RI satisfies the relations

^ A1 ^ T
g (I - R1) = n 1 n I = projection in direction of n I

A A

(I + RI) = I - nI niT = projection orthogonal to nl

Using these relations, we can write the following decomposition of

into symmetric and antisymmetric parts,

sk a_k = ( F. sk a_'k)S + (

where we define

S (hI niT( F. sk a_k) = ^ )

Sk a_'k)A (K.6.35)

{(+1) [is + vt

A

(-1) [_is nl/(n,v)l] }

( _ sk a_k )A = (I - nl _IT) { (+I) [hA n+/(n'_)+ + Vt _A]

(-i) [ V t _1A] }
(K.6.36)

Now in section (K.4) we found that it is necessary that boundary conditions on

the plane of symmetry be either purely symmetric or purely antisymmetric in

order for the symmetric and antisymmetric problems to decouple. In terms of

the velocity jump matching condition

. Z sk a_ k : 0

this clearly requires that either

or

(i) _" nl nlT = 0

^ AT) = 0(ii) _ . (I - nln 1

In the first instance we obtain the antisymmetric matching condition:

t nI 0 : t'. {(+I) [_A ^+-* . ^ : n /(_,-_)+ + V t _A]

(-1) [ V t _1A] } : 0 (K.6.37a)

while in the second instance we obtain the symmetric matching condition
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^ ^T
• (I - nI nI ) = O: I(+ l s + vt

(-1) [_iS _11(_,_)1] } = 0 (K.6.37b)

The first of these conditions represents the usual case in which the network

lying in the plane of symmetry is a wake network, as illustrated in figure

K.8. The form of the symmetrized matching conditions (K.6.37) is the same as

the usual form (K.6.29) with the following restrictions

(i) the sum over k in equation (K.6.29) must be interpretted as being

just a sum over those networks in the principal image of the

configuration, S+ U SI

(ii) the symmetrized singularity distributions in the plane of symmetry
^ A ^S

satisfy the usual degenerate boundary conditions, oI = O, _1 = O.

K.6.3 Closure Boundary Conditions

We now study the generation of a closure AIC equation for those problems

possessing symmetry. Two basic cases must be treated, (i) the case in which

the control point lies away from any plane of symmetry and (ii) the case in

which the control point lies in a plane of symmetry. For the second case, two

subcases exist, corresponding to the situations in which the closure condition
is of symmetric type or of antisymmetric type. In the discussion that

follows, we describe in detail only those problems having one plane of

symmetry. The extension to problems with two planes of symmetry is fairly
obvious and its treatment is summarized with only cursory discussion.

When a closure control point lies away from the plane o_f symmetry, the
closure boundary condition at _ and at the image point R- p may be concisely

summarized by (compare with (K.1.24))

f; [aA _T RJBo_ (Rj_) + aD oj(Rj_)] dSq = bj (K.6.38)

column or row of

panels in image S+

÷

Notice that we perform our integration on the principal image S , so that the

integration space is the same for both boundary conditions. Multiplying this

by Hij and summing over j yields

^T. ^i " =
ff [aA n _ov (q) + aD _l(q)]dSq Z HiJb j (K.6.39)

J
column or row of +
panels in image S

To obtain this result, we have used the definition (K.3.26) of _i and the

• RjBo BoRJ.definition (K.3.44) of _I together with the fact
j

K .6-12



Proceeding now as in section K.I.3, we approximate the integral on the left by
evaluating the integrands at the panel centers of the particular row or
column, multiplying these values by the panel area, and forming the sum. One
obtains the approximate equation

,^T_ ^i I ^i,-_ , iJbJ_] Ak [aA(Pk) {n tioV ) + aD(_k) o IpkJ] = _] H

k -PR J

This immediately provides the AIC constraint equations

(K.6.40)

where

N iI ^i _ HiJbj (K.6.41)AIC xI =
I=i j

Ak[ A( kl^T
(n Bo )IPk

+ aD(Pk)SI(Pk)]AIC_ =
k

network that itself lies in the plane-of symmetry.

closure condition may have either the form

(K.6.42)

If a closure control point lies in the plane of symmetry, it must lie on a
When this happens, the

symmetric _
closure
condition column or

row in S 1

or else the form

aD _IA(_) dSq = b
(K.6.43)

antisymmetric JJ[[ aA _T Bo _(_)dSq = b (K.6.44)
closure
condition column or

row in SI

A symmetric closure condition of the form (K.6.43) clearly provides the

symmetric AIC constraint equation

where

N

I=1

(K.6.45)

AIC) = _ Ak aD(_k) Sl (_k) (K.6.46)
k

The antisymmetric closure condition, (K.6.44), is a bit trickier and requires

the use of the general identity (cf. eqn. (K.3.56))

_(_) = ½ (vS(q) + vA(q))
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together with the observation that for _ ¢ SI, _T Bo iS (_) = 0 (cf. eqn.

(K.3.60)). These two observations imply that (K.6.44) is equivalent to

I_ aA _T Bo (½)_A (_)dSq = b

col umn or

row in S1

This clearly provides the antisymmetric AIC constraint equation

N

A ^A)6 AIC xT = b
I=I

where

(K.6.47)

(K.6.48)

^AIC_ = _ Ak aA(_k ) (nTBo(_) (K.6.49)
k -+

Notice the appearance of the factor of (1/2) as a coefficient of the integral

influence coefficient _o

We now turn to the case of two planes of symmetry. If the closure control

point lies away from both planes of symmetry, then the four image closure
conditions

column or row of ++
panels in image S

[aA _T Rkl Bo _ (Rkl_) + aD okl(Rkl_)] dSq

= bkl

yield, upon symmetrization, the four AIC constrain equations

(K.6.50)

N i ^ij Hik HJl bkl:6 AICJ Xl = _

I=1 k,l

(K.6.51)

where AIC_ j are given by

AIC_j =

panels k
Ak[aA( k) Sov iJ>IFk+ aD(_k)si(Pk)]

(K.6.S2)

If a closure control point _ lies in the first plane of symmetry, then the

closure boundary conditions at p and its image R+- p will have either the

syn_netrlc forms
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column or row of
÷

panels in S1

or the antisymmetric forms

S1 = b1
aD _1 (R+lq) dSq (K.6.53)

_J = blaA _T R+l Bo _ (R÷I_) dSq

column or row of
÷

panels in S1

(K.6.54)

The pair of equations {K.6.53) induces the pair of AIC constraint equations,

bI=

I=I l

where the AIC's are given by

AIC_J = _ Ak aD(P k) sI (Pk)
k

The pair of equations (K.6.54), on the other hand, induces the pair of AIC

constraint equations,

(K.6.55)

(K.6.56)

N

I=1 l

where the AIC's are given by

Aj I
AIC I = _ _] Ak aA (Pk)

k

Hjl bI (K.6.57)

BoVT AJ] (K.6.SS)
I

Notice that here, as in the case of one plane of symmetry, that the integral

influence coefficients are modified by a factor of (i/2).

K.6.4 Degenerate Boundary Conditions

In this section, we discuss the AIC constraint equations induced by

degenerate boundary conditions.

Recall from sections (K.3) and (K.4) that when a control point lies in a

plane of symmetry it may receive some degenerate boundary conditions. These

conditions, which have the various forms
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(Degenerate Source
Condition in a Plane
of Symmetry)

( Degenerate Source
Conditions in first
Plane of Symmetry)

^A
01 = 0

^ AS
aI = 0

^ AA
oI = 0

(K.6.59a)

(K.6.Sgb)

(Degenerate Source
Conditions in Second
Plane of Symmetry)

^ SA
_2

^ AA
o2

=0

=0

(K.6.59c)

(Degenerate Doublet
Condition in a
Plane of Symmetry)

AS =0 (K.6.59d)

(Degenerate Doublet
Conditions in First
Plane of Symmetry)

^ SS
Ul = 0

^SA:O
(K.6.59e)

(Degenerate Doublet
Conditions in Second
Plane of Symmetry)

^ SS
_2 = 0

_2AS = 0
(K.6.59f)

The implementation of these conditions is fairly obvious, given the
representation formulae for source and doublet distributions,

^i N ^ i
a (p) : _ sI(P) _I

I=1

(K.6.60a)

^ij N ^
o (p): )6 si(P) Xlij

I=1

(K.6.60b)

N ^i
_i(p) = )6 mI(_ ) Xl

I=1
(K.6.61a)

^ij N ij
(p) = )6 mI(P) _I

I=I

(K.6.61b)

In fact, for most control points p at which these conditions are to be

imposed, only one of the basis functions sI or m I will be nonzero. Thus the

conditions _iA(p) = 0 or _iS(p) = 0 will usually reduce to either
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sK(P) _KA : 0 (K.6.62)

or

mK(P) _KS = 0 (K.6.63)

When this happens, one has the choice of characterizing the boundary condition

as a "singularity specification" boundary condition, in which case it induces
a row in the AIC matrix, or as a "known singularity" boundary condition which

does not induce a row in the AIC matrix. To determine the characterization,

we must employ the general principal that the AIC matrix must have the same

size for all symmetry conditions. In practice, this means that we must

examine the boundary condition which the degenerate boundary condition

replaces. If the boundary condition that gets replaced is a "null" or "known

singularity" boundary condition, the corresponding degenerate boundary
condition must be either "null" or "known singularity." If, on the other

hand, the boundary condition that gets replaced is "general," "singularity

specification," "closure" or "matching," the corresponding degenerate boundary
condition must be a "singularity specification."
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K.7 The IC Update Capability

The purpose of the influence coefficient update capability is to permit a

program user to make changes in the geometry (or, occasionally, the left hand

side of the boundary condition equation (5.6.1) of a portion of a configura-

tion), and to solve the resulting potential flow problem more economically by

making use of the previous solution.

The program user specifies certain networks as "updatable," that is,

subject to future modification, when specifying the original potential flow

problem. The program then identifies each control point and each singularity

parameter as either "updatable" or "non-updatable," and resequences them so

that the updatable ones occur last. The resulting AIC matrix can then be

[AIC] =

parti tioned

- I

AICNu I AICu, 1
I
I
1

I AICuAICu,2 I ,3
I

D

(K.7.1)

When the modified flow problem is solved, the matrix AICNu remains

unchanged, and need not be recomputed. Only the matrices AICu, i i = 1, 2, 3,

defining the influence of the updatable portion of the configuration, and the
influence on the updatable portion, need to be computed. Thus, if r is the

fraction of the configuration which is non-updatable, a proportion of the AIC

computation of size r2 is saved.

The imposition of doublet matching causes the specification of updatable

control points and singularity parameters to be non-trivial. Clearly every
control point and singularity parameter on an updatable network is itself

updatable. In addition, though, control points on an edge of a non-updatable
network which abuts an updatable network must be made updatable. This arises

from the possibility that the abutment in question may change by the addition,
deletion, or change in panel density, of the updatable network. As a result,

the boundary conditions on the edge of the non-updatable network may change

from matching to a standard aerodynamic boundary condition (5.6.1) or vice

versa.

In addition, the modification of the updatable network may cause the

definition or deletion of extra singularity parameters on the edge of the

non-updatable network (see figure K.9). Thus the edge spline on this edge may

change, and so the singularity parameters on this edge must be specified as

updatabl e.
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-- Plane of symmetry

A

n

Po

_,-_-2_[_.(_-_o)]

Figure K.1 - Reflection of point (_) in a plane of symmetry
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First plane

of symmetry

2nd image

A^T
-_(2) = (I - nln I )_

_(3) : (I - _l_iT)p-_4)

^ ^ T,-_(2)= (I - n2n 2 )

3rd image

P

Principal image

(Input configuration)

A

I n2 Second plane

of symmetry

4th image

v

Figure K.2 - Reflections of a point _ in 2 planes of symmetry

(Asummes "_ ^ -_ ^Po.nl = Po.n2 = 0)

K.8-2



S

A_

n

c

,(I ,_

Plane of symmetry

- +_A

n 1

S 1
^A
l.l 1

A÷
n

S = S+US1 US-

S+ 0 + l_+

Figure K.3 - A configuratlon with one plane of geometric symmetry
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First plane
of symmetry

-+ +÷

a

Second plane

of symmetry

v

Figure K.4 - A configuration with two planes of geometric symmetry
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(a)

(b)

^A

- I IJl'a + A A + -

IJ b IJ b IJ1, a (IJ b - IJb)

or

^A ^A AA
IJC U c IJl,a- IJ b + _I c

IJl, d

(U+ _Uc) ^Ac - Ul,d

A
_l,d = 0

~ A+
l_l,a

I_++
b

_AJ +j " +j •
1,a + (IJb - lab j) - (IJc -IJc J) : 0

-+ IJ++#c
c Symmetrizing with Hj_,

__ ÷--

Uc _ uc _A_L AA_. AA_1,a + lab - IJc = 0

Ub _b-

5A-
1,a

= 0

v

(C) _+

IJ c

IJ c

-+

llb

2,a

U b

++
++

lab #c
_2,a

+- +-

l_ b I_c

_iA i+ i-) + (U_+ i-) = 02,1 + (l_ b - IJb - IJc

Symmetrizing with Hki

_kA + _kA _kA
2,a b + c = 0

Figure K.6 - Four cases of an abutment lying on a plane of symmetry
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(d)

~ A+
I_I ,a

b+>_ _;+

_A-
1,a

+4- 4-- --

+(_b - _lb + I'lbb

-A )=~+A - _ 0
+ (IJ2,c 2,c

Simplifying,

AA A AA A AA
l,a + I_b + P2,c =0

Figure K.6 - Continued
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Figure K.7 - Doublet matching for _S at a plane of symmetry
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a
o.S _A

1'

Wake

Abutment lying in

the plane of symmetry

S+

^ _+_ _ Upper surface

aRes e i,
_ " _ _1,,- o._Ce

S

Antisymmetric

Matching:
^A

(-I)[Vt_I] :0

Symmetric

Matching:

(n,u)+ + _/tu ]

(-1) [AS ^ ^(71 nI / (n,_--")1]
=0

Figure K.8 - Velocity jump matching on a network lying on a plane of symmetry
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Non-updateable
network

Updateable network

• Extra singularity parameter
x Extra control point

Figure K.9 - Extra singularity parameter and control point
dependent on existence of updateable network
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L.O The Constraint Matrix

In this section we describe the theory underlying the activities of the

programs RMS and RHS in the PAN AIR system. The basic function of this pair

of programs is to organize and execute the calculation of the symmetrized
A . .

singularity vectors l 13 that satisfy AIC constraint equations of the form (we

assume two planes of symmetry)

In this equation the pair of indices (i,j) corresponds to one of four possible

symmetry conditions (cf. the definition of _ij in appendix K.4) whi£e the

index a is a solution index. That is, m is associated with a particular

choice of onset flow. The four major topics associated with the treatment of

equation (L.O.I) are listed below:

(I) The calculation of the matrix [AICIJ]. This calculation process must

deal with the complexities introduced by considerations of symmetry,

by configuration updatability and by the distinction between "known"

and "unknown" singularity parameters.

(2) The calculation of the constraint vectors { } •

(3) The solution of the linear system of equations, (L.O.I).

(4) The desymmetrization of the vectors _ij to obtain the singularity

vectors _ij associated with symmetry image (i,j) and the onset flow
a

with index a.

Of these four topics, the first has been treated in Section 5.7 and in much

more detail, in appendix K. In particular, the details of symmetry were

discussed in sections K.2 through K.6 while configuration updatability was

discussed in section K.7. The exploitation of the computational efficiencies

associated with the distinction between known and unknown singularity

parameters was discussed in section 5.7. See especially equation (5.7.12).

The remaining three topics are discussed in the following three subsections of

this appendix.
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L.I Calculation of Constraint Vectors

In Section H.3 we have discussed in detail the automatic options for the

calculation of the onset flow. In general, the onset flow defines all of the

non-zero entries of the constraint vector _ij. In the case where there is no

configuration symmetry and only one onset flow (solution) is specified, an

entry of the constraint vector has the form (cf. eqn. (H.3.25))

A b

" - b 0 .n- bT 0 _ --_P[0=,5] (,._.I)
- b(p) = bo n o o" T sB2

A

where b o, bn, bT, tT and bp are user specified, U® is the uniform onset flow

and U is the total onset flow
o

- ( -U + +,,,x - )
Uo o - o

(L.I .2)

with aU, u and Pc also being specified by the user. For a configuration that

has configuration symmetry as well as multiple onset flows, we need to

define 8 ij the entry in the constraint vector associated with onset flow

and control point image 6 ij. Using the notation of appendix K.2 and K.3 for

R ij we write

.... _ij n - bT Ui3 (p ).R tTS_j = blJ(p_ ) = bo,: - On _iJo,s(_iJ).RiJ " +o,:' _ij iJ _

b

• _ij]_ _2_P[u
sB2

where bo,_, bn, bT, tT and bp are user specified as before, U,,s

uniform onset flow for solution _ and 0ij is given by
o,_

(L.I.3)

is the

6 _ " 6ij +oij (ij) = _ +Aoij (ij) + c_ x ( - po ) (L.I.4)

.. BiJ
Here again, U ,_' A_ Ij_ and _a are user specified. Having computed _ , the

corresponding entry A_B_jof the constraint vector "'b_j is computed according to

the rules developed in sections K.3 and K.6. For a control point that does

not lie in any plane of symmetry we have (of. equation (K.6.11) with

appropriate modifications)
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_lj = Z Z Hik Hj£ Bk£ (L.].5)

For control points lying in a plane of symmetry the situation is more

complicated and is summarized by the two tables below. Notice that for a

control point lying in the first (resp. second) plane of symmetry, the false

image quantities 8-£ (resp. 8k-) are neither needed nor used.

Symmetry

Condition

(i,j)

(+I,+I) (S,S)

(-I,+I) (A,S)

(-I,-I) (A,A)

(+i,-i) (S,A)

Boundary Condition

of Symmetric

Boundary Condition

of Antisymmetric

Type [S] Type [A]

Z H+£B+£

£

[ H+£ 8+£

[ H -£ B+£

£

0

0

Table L-I: Control point lies in Ist plane of symmetry:

Evaluation of _ij
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Symmetry
Condition

(i,j)

(+1,+1) (S,S)

(-1,+1) (A,S)

(-I,-I) (A,A)

(+1,-1) (S,A)

Boundery Condition

of Symmetry

type [S]

H+k8 k+

k

Z H-k Bk+
cI

k

Boundary Condition

of Antisymmetric

Type [A]

k÷

[ H-k Be
k

Z H+k Bk+

k

Table L-2: Control point lies in 2nd plane of symmetry:

Evaluation of _ij

For configurations with just one plane of symmetry the corresponding table is

substantially simpler and is given as follows:

Symmetry

Condition

(i)

(+1)(S)

(-I)(A)

Boundary Condition

of Symmetric

Type [S]

Boundary Condition

of Antlsymmetric

Type [A]

÷

B 0

÷

o 8a

Table L-3: Control point lies in a plane or symmetry:

Calculation of _i when there Is one plane of symmetry

The zeros appearing in all of these three tables are just the zero values that

appear on the right hand side of a degenerate boundary condition.
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L.2 The Solution of a Linear System of Equations

The process by which PAN AIR solves a linear system of equations of the

form (L.O.I) will be more clearly explained if we suppress the indices (i,j)

and a and consider the standard linear system of the form

A x-- b (L.2.1)

where A is an NxN AIC matrix, x is a singularity vector and b is a constraint

vector• Now since most problems of aerodynamic interest result in the matrix

A being too large to fit in the main memory of the computer, it was found

necessary to develop an out of core linear equation solver for PAN AIR. The

basic operation of this solver proceeds as follows.

First the matrix A is divided up into rectangular blocks as follows:

A l

A11 A12 • . . A1n

A21 A22 • . . A2n

Anl An2 • . . Ann

(L.2.2)

where the rectangular components of A are of the form

block (i,j) of A - Aij = Pi x pj matrix
(L.2.3)

Here the matrix partition dimensions ''|piIn satisfy
isl

n

i=I
Pi " N, the dimension of A

(L.2.4)

Having partitioned A as shown by (L.2.2), one can conceptually

describe the operation of the PAN AIR solver as performing a sequence of

transformations of the form listed below with the result that matrix

A (nn) is lower triangular. (The calculation of the transformation

matrices Tij is described below in detail by equations (L.2.13-18).)
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A (1'1) = A T1 1
p

A(1, 2) = A(1,1)T1,2

A(1, n) . A(1.n-1)Tl,n

A(2, 2) = A (1,n)T2, 2

A(2,3) . A(2,2)T2,3

A(2,n) = A(2,n-I)T2, n

......... _ g

A(n-l,n-1) = A(n-2,n)Tn_1
en-_

A(n-_,n) = A(n-l,n-1)Tn_l,n l

A(n,n) = A(n-l,n)Tn,n
}

transformations TI, j
j - I, ... n

transformations T2, j

transformations Tn_1, j

Tn,n

(L.2.5)

It is worth emphasizing here that the transformations Tij are NxN matrices,

and not submatrices of any larger matrix T. If we aggregate the relations of

(L.2.5) together and denote the lower triangular matrix A (n,n) by L, we obtain

L = A(T11 T12 ... TIn)(T22 T23 ... T2n)...(Tn_1,n_1 Tn_1,n)(Tnn)

(L.2.6)
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Wenote in passing that the intermediate matrix A(i'j) has the partially upper
triangular structure:

(i,j)
A

L
X
X

X
X
X

X

O • • 0

L 0

X L 0 . . . 0 . 0

X X . L 0 0 0 0 0

X X . . X L 0 0 X X

X X . . X × X X X X

• • • • •

• • • • • •

xx.. xxx  x

column block j j+1

}+row block i

(L.2.7)

The operation

A (i'j÷1) = A (i'j) T (L.2.8)
l,j+1

will then serve to introduce zeros into block (i,j+1) of A (i,j÷1). An

alternative and convenient way of viewing the sequence of transformations

{L.2.5) is expressed with the help of the replacement symbol (÷) by the pidgin

Algol,

for i = I, 2, ... n

for j = i, i+l, ... n

A + A Tij [A . Tij replaces A]

end j

end i (L.2.9)

Before proceeding further with the discussion of the operations of (L.2.5)

we briefly describe how the transformation process expressed by (L.2.6) allows

us to solve (L.2.1). Letting y satisfy,

L y = b (L.2.10)

observe that x defined by

.p -p

x = (T11 TI2...T1n)(T22...T2n)...(Tn_I,n_I Tn_1,n)(Tnn)Y

(L.2.11)
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satisfies

A_ = A[(TII...Tnn)9 ] = [A(r1,...Tnn)] 9 = L

= b
(L.2.12)

Returning now to the process described by (L.2.9), we observe that Tij

must introduce zeros into block (i,j) of the working array A. (Notice that

here and throughout the rest of this section we use the notation A to denote

the current contents of a working array. This working array is further

partitioned as indicated by (L.2.2)). The transformation Tij consists of a

product of interchanges and elementary transformations of the form

Tij " (PIUI)(P2U2) "'" (PPi Upl)" (L.2.13)

The pivot matrix Pk is either the identity matrix or else it is used to

interchange column k in the i-th block of columns with column qk in the Jth

block of columns, where qk is defined by the condition

: max ). I
[case (i-j)]J(Ail)k,qk I k &$pi J(Aii ,£

(L.2.14a)

max

[case (i-j)] I (Aij)k,qk I : l_£$pj I (Aij)k, £ J
(L.2.14b)

The matrix Uk is an elementary column transformation designed to introduce

zeros into row k of block (i,j) of A. It is given as follows

Case i=j

Uk (for Tii) -
(1)

(i)

I

o

I

Vk
I
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where

Vk =

I

1 ink+ 1

1

. - (Aii)k,_/(Aii)k,km_

Case i ,j

ink+2 ... m
Pi

Uk (for Tij) =

1

= k+1 .... , Pi

(i) (j)

I

<i)

(j)

where

L 10

VK = Vk,l Vk,2 "'" Vk,p * row k

0

I Vk

I

row k

I

Vk, _ = -(Aij)k_/(Aii)kk _. : 1,...pj (5.2.16)

The selection of the pivot matrices Pk deserves further comment. In order

to best maintain numerical stability it would be desirable to choose Pk

according to the classical pivoting strategy
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Pk "

r
I

\

I if I (Aii)kk I > I (Aij)k,qk I

interchange of column k of column block i with column qk of

column block j if the inequality does not hold
(5.2.17)

In the case that i,J, such a stringent pivoting strategy is not necessary and

could significantly increase the I-O costs associated with the solution

process. In order to keep the I-O costs down while still preserving numerical

stability, the following "threshold pivoting strategy" is used when (i,j):

Pk "
if I (Aii)kk I > u I (Aij)k,qkl

interchange of column k of column block i with column qk of

column block j if the Inequallty does not hold
(L.2.18)

In PAN AIR the parameter u that controls pivoting has been set equal to (.2).

Now while the foregoing discussion is an accurate presentation of the

mathematics underlying PAN AIR's out-of-core solution package, it is somewhat

incomplete in that the question of algorithmic organization has not been fully

addressed. We now remedy that deficiency.

In the algorithm to be given presently we use the notation

(Akl,Akj) Tij : [Apply Tij in row block k]
(L.2.19)

to indicate that the effect of transformation Tij upon block row k is to be

computed. This is a natural notation since Tij acts on block column (i) and

block column (j). In a similar spirit we use the notation

(Aki) Tii : [Apply Tii to block row k] (L.2.20)

to indicate that Til is to be applied in block row k to the subarray Aki.

Given this statement of notation, we can now state the reduction algorithm.
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Algorithm: Out-of-Core Factorization of A

k = I, 2, ... n do

<Part A: Perform Crout Style eliminations>

Perform the following indicated transformations

l(Ak l,Akk)Tik}k-1 j( , )Tt, k-1t=1 Aki Ak,k*1 k+1}i'l "'"

{(AR+ I i,Ak+1,k)Tik }k-1, 1=I

for

}k-1
{(Ak+2,i'Ak+2,k)Tik i=1

• • t

(for k=l, do nothing)

{(An, I An,k)Tlk }k-I' 1=1

<Part B: Generate New Factors, Apply Tkk >

Form Tkj , j=k,k+1,...,n while performing the following
transformations

(Akk)Tkk (Ak,k'Ak,k+1)Tk,k+ I

Apply TK_ in

(Ak+1,k)Tkk

block column k

(Ak+2,k)Tkk

(An,k)Tkk

end k

(AR,R'AR,n)Tk, n
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A few remarks are in order concerning this algorithm.
perform a set of transformations of the form

k-1
[(kki.Akq)Tlq}l=l

the algorithm proceeds as follows

ReadAkq

for i = I,..., k-I do

Read Aki

Read Tlq

Perform (Aki, Akq)Tiq

Conditional write Akl

[If Tiq involves any interblock interchanges, the

array Aki has been modified and must be

rewritten]

end i

write Akq

This particular organization is very effective at minimizing disk I-0.

similar fashion, the sequence of operations

is implemented via the following sequence of operations:

Read Apk

for i = I,...,k-I do

Read Api

Read Tik

Perform (Apl, Apk)Tik

Conditional write Api

end i

When in part A we

(L.2.21)

In a

(L.2.22)

Write Apk
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The volume of I-O performed by this algorithm when it is carefully coded
satisfies the following bounds, where we assumethat all n partition
dimensions Pi are equal size: (Pi = b).

3 n (n2+6n+2)b 2 < [number of words of] _ n(n 2 n+½)b 2" disk input-output

(L.2.23)

Since the total dimension of the matrix A is given by

dim(A) = N = n . b

we see that A has N2 = n2b 2 elements. Thus, the total I-O volume lies roughly

between 2n/3 and n times the volume of I-O required to read the matrix A. It

should be noted the lower bound in (L.2.23) is attained if __n°interblock

pivotting is performed (as would happen if we set _- 0 in (L.2.18)) while the

upper bound is attained if Interblock pivotting is performed by every

transformation TIj, i-j.

The skeptical reader may perhaps doubt that this out-of-core factorizatlon

algorithm actually generates and applies the transformations Tij in such an

order that the mathematical development presented earlier is correctly

realized. To help convince such suspicious individuals I have provided in

figure L.1 a complete list of all the transformation processes, in the order

they are performed, for the case n=5. In figure L.2 is provided a diagram

indicating the precise stage of the algorithm at which Tij is applied to an

appropriate pair of arrays (Akl, Akj). The careful reader will study these

figures, meditate a while, and, after a day or two of quiet obsession, will

convince himself that the algorithm really does work. I leave it at that: a

complete proof of the algorithm_ correctness is beyond my endurance, and

probably beyond the endurance of the reader as well.
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L.3 Desymmetrization of Singularity Parameters

In this section we describe and comment upon the process of desymmetrizing
A • •

the singularity parameters {l_3}that are obtained by solving equation

(L.O.I). Suppressing, for the purpose of this discussion, the solution index

a, we rewrite equation (L.O.I) for the case of just one plane of symmetry as

^ ,

[AICi] {_} . {_i} (L.3.1)

-i
Denoting the J-th entry of {_i} by Ij we observe from equations (K.3.26)

and (K.3.27) that this symmetrized singularity parameter must be related to
+

the corresponding principal image singularity parameter lj and the reflected

singularity parameter _ by the relationimage

lj'i. [ Hik AjK (5.3.2)
k

This relation is trivial to invert (see equation (K.3.21), the definition of

Hik). Doing this, we find

Aji = (½) [ Hik _j^k (L.3.3)
k

÷

Nowitisclearthatthesingularityveotors and mustdetermine
respectively singularity distributions on S + (the principal image) and S- (the

reflected image) of the configuration.

These distributions are given explicitly by the formulas (compare with

equations (3.3.1-2))

N

e (?) - Z Aj sj(p) p e S
J=1

(L.3.4a)

N

(p)- Z _j sj(R1v) c so

J=1

(L.3.4b)

N
+ 4, -_ -) ÷

U (P) = Z Aj mj(p) p e S
J=1

(L.3.Sa)

- _ j mj(R ÷ ÷ -U (P) " Z A ip) p ¢ S
J=1

(L.3.5b)
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What is not immediately clear is how the singularity distributions are

determined on $I, that part of the configuration lying on the plane of

symmetry. While it is clear that equations (L.3.4a) and (L.3.4b) can be

evaluated at points p £ S I , it turns out that when this is done, we obtain

(I/2) of the correct values for the singularity strengths.

To demonstrate this result, we begin by recalling the development of

section K.3 that states that for networks lying on the plane of symmetry,

"S
o (restricted to the plane of symmetry) = o I (L.3.6)

^A
(restricted to" the plane of symmetry) = _I (L.3.7)

and (cf. equations (K.3.53) and (K.3.54))

^ A
o - 0 (L.3.8)

I

S 0 (L.3.9)

Consequently we find that when J is an index of a source parameter lying on S I

we obtain from equation (L.3.3) the result,

÷

source parameter Xj on S I x

_S AA]- (½) [Aj + _j

^S
- (½) _j (using (L.3.8))

(L.3.10)

A
÷

where rj is the location of Xj on S I. A very similar calculation shows that

for doublet parameters lying on $I, we obtain (using (L.3.9)) the result -

÷ ½ _A )
doublet parameter Aj on S I = ( ) _I (_J (L.3.11)
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A close inspection of equations (L.3.10) and (L.3.11) together with equations

(L.3.6-7) shows that the functions a (_) and u (P) (defined by (L.3.4-5)) will

yield (I/2) of the correct value of the source and doublet strength when

evaluated at p £ S I. This is the general result we seek that tells us how to

interpret the result of the desymmetrizing relation (L.3.3).

The case of two planes of symmetry is not much more difficult. In place of

the relation (L.3.2) we have (compare with (K.4.22))

k

As before, this is trivial to invert. This time we obtain,

k

Defining the singularity distributions a

images by the equations

(L.3.13)

ij(_) for the various symmetry

N

ij Z ,]Jsj(Rij sij
J=]

(L.3.14)

N

J=1

we are again confronted with the problem of interpretting these relations for

points lying on the planes of symmetry. By means of the same sort of argument

as we used in the case of one plane of symmetry, we obtain the following
results

+J I
o (_) - _ o (evaluated at p ¢ sIJ)

+J _ I * j
(p) -._ _ (evaluated at p ¢ S I )

i+ * I * i
0 (p) = _ 0 (evaluated at p ¢ S 2 )

i+ (_) 1 S2 i)U " _ U (evaluated at _ (L.3.16)

As a general rule, then, we find that for networks lying on a plane of

symmetry, the values of the singularity distributions obtained by using the
functions
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or

+j u+j_ i+ i+a , _a ,_

should be doubled in order to obtain the singularity strengths on such

networks. This action is in fact performed by PAN AIR.

v
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AI :k-1, part A:

BI:R-I, part B:

(At I)TI I

(A21)T11

(A31)TI I

(AQI)T11

(A51)T11

A2:k=2, part A:

(A21 PA22)T12

(A31 ,A32)T1 2

(A41 _A42)T12

(A51 ,A52)T12

no-o_

Form T_j, j:I(I)5; then apply TII in column I

(AII,AI2)T12 (AI1,AI3)T13 (A11 ,A1a)T14 (At 1 ,AI5)T15

Perform elimination in block row 2_ block column 2

(A21,A23)T13 (A21,A24)T14 (A21,A25)T15

B2:k-2, part B: Form T21 j - 2(I)5; then apply T22 in column 2

(A22)T22

(A32)T22

(Aa2)T22

(A52)T22

A3:k-3, part A:

(A22,A23)T23 (A22,A24)T24 (A22,A25)T25

Perform elimination in block row 3, block column 3

(A32,A33)T23] _(A32,A3_)T2 A32,A35)T25

(A41,A43)T131
(A42,A43)T23)

{A51'A53)T13}
(A52,A53)T23

Figure L.I Order of Transformation Application for the

case n-5 (page I of 2)
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B3:k'3, part B:

A4:k=4, part A:

Form T3j , j-3(I)5; then apply T33 in column 3

(A33,A34)T34 (A33,A35)T35(A33)T33

(A43)T33

(A53)T33

Perform elimination in block column 4, block row 4

B4:k-4, part B:

(A41'A44)T141 I(A41'A45)T151
(A43,A44)T34j [(A43,A45)T35J

(As_ 'A54)T24 _(A52,A511

(A53.A54)T34)

Form T44, T4_; then apply T44 in column 4

(A4_,A45)T45

A5:k-5, part A:

B5:R-5, part B: Form T55

(A44)T44

(A54)T44

Perform elimination on A55

A51,A55)TI 5

(A52,A55)T25

(A53,A55)T35

(A54,A55)T45

(A55)T55

Figure L.I Order of Transformation Application for the

case n-5 (Page 2 of 2)
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R..-_'. B1

P .... BI

P .... B1

P .... B1
P .... BI

Symbols

R - item read

T1 2

AP._. Sl

CP... A2

CP... A2

CP... A2

CP... A2

T22

...om

.R... B2

.P... B2

.P... B2

.P... B2

W - item written

A - item is available

in memory

P - item is both read

and written

C - item is read, and

written if interblock

T13

A.K'T..B1
C.P.. A2

C.R.. A3

C.R.. A3

C.R.. A3

T23

.eooo

.AP.. B2

.CW.. A3

.CW.. A3

.WW.. A3

T33

.l..o

..o_B

..R.. B3

•.P.. B3

•.P.. B3

T14

A..--_. BI

C..P. A2

C..R. A3

C..R. A4

C..R. A4

T24

ololg

.A.P. B2

.c.w. A3

.C.A. A4

.C.A. A"

.oiol

eolle

..AP. B3

..CW. A4

(..CW. A4 )

transfers have occurred ///J

This indicates that the operation

A53,A54!T34 is performed
urlng stage A4 of the algorithm.

At the end of this step, A54 is

written out and A53 is written
out if any inter-block transfers

have happened.

T44

loo.,

col..

...R. B4

...P. B4

T1 5

W..-_ B1

C...P A2

C...R A3

C...R A4

C...R A5

T25

.col.

.W..P B2

.C..W A3

.C,.A A4

.C..A A5

T35

I. i. !

• • _oo

..W.P B3

•.C.W A4

.,C.A A5

T45

Iolmo

.omoo

o•ooo

...WP B4

...CW A5

T55

oo...

oo_..

..eot

*oo..

.... P B5

Figure L,2 Diagram Describing the Application of TIj

to Various Subarrays of the Working Array

A - [Aij ; i,j - I(I )5]
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M.O Computation of the Minimal Data Set

It is desirable that the solution of the potential flow problem (that is,
the combination of the Prandtl-Glauert equation with a set of boundary
conditions) be distilled into the smallest possible amount of data, yet still
be readily convertible to data of aerodynamic interest. This smallest amount
of data is called the minimal data set, and consists of the average potential
and normal component of mass flux, source strength, and doub}et strength at
each control point and each grid point on the configuration. Each of these
items exists for each solution, that is, for each column _i of the solution
matrix [A] (cf. (L.O.I)). In our discussion here, we will assume we are
dealing with only one solution, even though the program deals with blocks of
solutions.

Under certain circumstances, an additional vector is added to the minimal
data set. This vector is the average velocity, as computed from the velocity
influence coefficient matrix. This occurs when the standard spline method of
velocity computation (called the "boundary condition method" for simplicity;
see section B.4.1 of the User's Manual), which computes the velocity from the
potential and normal mass flux, is of insufficient accuracy for the purposes
of the program user.
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M.1 Recovery of the Singularity Parameters

The recovery of the singularity parameters for the various symmetry images
of the configuration (i.e., S÷+, S-+, S+- and S--) has been treated in

detail in section L.3. In this section we merely restate those results using

the notation and terminology used by MDG and the post processing modules of
PAN AIR.

In MDG, the various symmetry conditions are denoted by the names listed in
the tables below.

Case: i plane of symmetry

_S = 1st symmetry condition,

_A = 2nd symmetry condition,

S+ = S(I) = ist image

S- = S(2) = 2nd image

Case: 2 planes of symmetry

_SS = 1st symmetry condition

_AS = 2nd symmetry condition

_AA = 3rd symmetry condition

_SA = 4th symmetry condition

+÷ S(I)S = = 1st image

S"+ = S (2) = 2nd image

S-- = S(3) = 3rd image

S+- = S(4) = 4th image

Having listed these correspondences, we can give the singularity parameter

vectors _(k) for the two (or possibly four) images of the configuration. In

terms of quantities xj and _ defined in section L.3. We have:

Case: 1 plane of symmetry

1st image _ -_(i} J ½= _ : [_ ] : (_s÷_A)

2nd image -_ = _(2) = [_j] = ½ (_S + _A)

Case: 2 planes of symmetry

Ist image _ : _(1) : [_j+] = _ (_SS + _AS + _#_ + _SA)

2nd image _ = _(2)

3rd image _ = _(3)

4th image _ = _(4)

=[_j÷]=_(iss__AS._ ÷_SA1

_AS + _AA _ _SA)

:[_j-]:_(_ss+_AS__ __sA1
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Given the vectors _(k), the singularity strengths can be directly
evaluated on the various images of the configuration. This process is
completely straightforward unless a network lies on a plane of symmetry. The
following tables summarizethe treatment of that situation for the various
cases that arise. Notice that the straightforward procedure generates (i/2)
of the singularity strengths for networks lying on a plane of symmetry. This
result is more fully explained in appendix L.3.

Notation

P1 (P2) = first (second) plane of symmetry

N1 (N2) = a network lying on the first (second) plane of symmetry

+ +

N1 (N2) = same.as N1 (N2). (Principal images).

N_ (N_) = the reflection NI (N2) in the second (first) plane of symmetry.

(Reflected images).

Case: i plane of symmetry

N1 : Use _(1), obtain a/2 and u/2

Case: 2 planes of symmetry

+ _(1)
N1 : Use , obtain o/2 and _/2

Ni : Use 7 (4), obtain o/2 and p/2

+ + i)
N2 : Use _( , obtain 0/2 and p/2

N2 : Use _(2), obtain 0/2 and u/2
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M.2 Singularity Strength Calculation

Obtaining the source and doublet strength at a control point or grid point
P, with local :oordinates (_',n'), from the vector of singularity parameters,
has in fact already been described. If the source and doublet subpanel spline
and outer spline matrices for the subpanel and panel on which the control
point lies are SPSPLS, SPSPLD, BS, and BD respectively, then by
(5.6.2) and (K.3.II)

o (P) = tl _' n'] [SPSPL S] [B S]

and

u(P) = LI _' n' I/2 _'2 _'n' 112 n'2] [SPSPL D] [B D]

(M.2.1)

(M.2.2)

S D
Here, _i and xi are the source and doublet parameters in the

neighborhood of the panel, and are entries of _.
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M.3 Computation of Potential and Normal Mass Flux

Three approaches to the computation of potential and normal mass flux at
control points are described in section 5.9, One is the multiplication of the

influence coefficient matrices by the vector of singularity parameters (cf.

(5.9.1)). The second makes use of the boundary conditions to obtain _A from
u and _A • _ from o. For instance, suppose the boundary conditions

are imposed.

_L = 0 (M.3.1)

o = -V_ • n (M.3.2)

The specification of (M.3.1) insures perturbation stagnation in the
configuration interior. Thus

So,

_L = O (M.3.3)

V_L • _ : wL_ . _ : 0 (M.3.4)

Combining (M.3.2) and (M.3.4),

wA • n : I/2 (wu . n + wL • n) = I12 _u" _

: I/2 (w'_-_ -_ =- wL. _) I/2 _ (M.3.5)

Similarly,

_A = i/2 u (M.3.6)

Thus both average normal mass flux and average potential may be obtained
directly from the singularity strength.

We note that (M.3.6) follows directly from (M.3.1), while (M.3.5) only
holds when both (M.3.1) and (M.3.2) are imposed. The average normal mass flux
can however be computed directly from the boundary conditions in other
circumstances as well. For instance, if the boundary condition

_u" _ = b (M.3.7)

is imposed, then it follows from the definitions of source strength and
average normal mass flux that

wA. n = 1/2 (w u. n + wL. n) = wu. n - 1/2 (W-_u• n -_L.n)

= b - i/2 _ (M.3.8)

Once average potential and normal mass flux have been computed at control
points, they may be computed at grid points by a splining method virtually
identical to the method used to construct the doublet spline vector SPD

which defines the doublet strength at a grid point as a linear combination of
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surrounding doublet parameters. The spline vector SPD consists of a row of
an outer spline matrix BD (cf., section I I!_ That is, if P is one of thenine "panel defining points", then the spii.= vector SPD corresponding to P
is defined by

lxk
(P) = LspDj

x_ k _ 12

D
where the _i are the doublet parameters located in the neighborhood of
the grid point.

(M.3.9)

Similarly, a "potential spline" row vector LSP PJ

L_ A (p) _A(p). _j = LSPP (lxk)]

is computed such that

(_. _)lTkx2

(_'A B)kJ

(M.3.10)

where _i and (_. n)i are average potential and normal mass flux at the
neighboring control points, rather than singularity parameter locations. The
row vector SPP is computed by the same least squares method as the row
vector SPD, but the choice of the set of surrounding control points is
slightly different from the choice of surrounding singularity parameters, as
illustrated in figure M.I.

In particular, the potential at grid points on a network edge depends on
control points in the interior of the network. An "edge spline" can not be
used because the edge control points are receded from the network edge, while
singularity parameters are not.

Whenever the program computes the velocity at control points by the
influence coefficient method, the same potential spline vectors may be used to
define an average velocity vector at each grid point P by

{_A (P)} T= LspPj (lxk) • I_: 1 ,T I (kx3)

[_VA:k j TJ (M.3.11)

where V-_A,i is the average velocity, computed by the influence coefficient
method, at the ith control point in the neighborhood of P.
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Figure M.1 - Neighboring control points for potential spline computation
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N.O Surface and Wake Flow Properties

With the construction of the minimal data set, the potential flow solution
is complete. The items in the minimial data set, however, are not generally
of great aerodynamic interest. Of more interest are the velocity and pressure
at points in the configuration. In section N.I, the computation of velocity
from the elements of the minimal data set is discussed. In section N.2 the
computation of pressure from velocity is discussed. In section N.3, two
semi-empirical velocity correction formulas are discussed. These are of use
where the magnitude of the total velocity is significantly less than
freestream. In section N.4, the effect of a non-uniform onset flow on
pressure coefficient formulas is considered. Finally, in section N.5, we
define the additional quantities computed by PAN AIR at points on the
configuration surface.
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N.I Velocity Computation

The splining method defines a distribution of potential on the
configuration surface, with this distribution being defined by a single
quadratic function on each subpanel. This distribution, whendifferentiated,
defines the tangential componentof the velocity. On the other hand, the
normal mass flux, equal to the conormal componentof the velocity, is also
known. Fromthese two components, we may reconstruct the entire velocity
vector.

First, assume the distribution of potential on a subpanel is given by

n') (N.I.I)

where (_',n') are the subpanel local coordinates, and the subscript
emphasizes that this is a distribution on the configuration surface.

Now, applying (K.3.15)

a_s/aXo : _s : [AT ] _(_slan'

a_slazo a_sla_'

[A T]

(N.I.2)

where A (cf., equations (E.O.I) and (E.I.1)) sends reference coordinates to
local coordinates.

of
Next, the tangential component of the velocity v is clearly equal to that
_ ; that is; for any tangent ,vector _,

t.v: t.V_ (N.I.3)

On the other hand,

• V : W. (N.1.4)

where _ is the conormal to the surface.

Since any two linearly independent tangent vectors, along with _, form a
set of three independent vectors, there is a unique vector v which satisifes
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(N.1.4), and also (N.I.3) for all tangent vectors t. Now,consider the
expression

v_ = (_ _/T - _ (_ _/T _ . _. _

where (_ _)T is the tangential component of the gradient of the potential.

We see that for any tangent vector _,

t • vo = t • (V @)T (N.I.6)

and that

.Vo:w.n

Thus, vo satisfies (N.I.3-4) and so

V = V 0

(N.I.7)

(N.I.8)

Equations (N.I.5) and (N.1.8) apply equally well to average and difference

velocity. That is, applying (N.I.2),

rAT -_,VA : - ] _ _a - _ " {AT V'_A} n + wa " _
_ _ • _ (N.l.8a)

VD : [AT] _'u - n " {AT _ ' u} _ + a

. _ _ _ (N.l.8b)

where

_7' = Bl@n'

0

We note from (E.3.70) that _ is a multiple of A-1 {o}0

i

(N.I.9)

Thus

_.(a T V') = (A_). V'

iolii  ,ii= 0 . IB '2 = 0

O&
(N.I.IO)
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where a is somereal number.
Substituting (N.I.IO) in (N.I.9)

AT _ wA• n ^vA = (_'_A) + n
_._ (N.l.lla)

-- AT(_,,) ^VD : + a n (M.l.llb)

We have thus decomposed the average and difference velocity at a surface point

into tangential and normal components. In addition, we see that they can be
computed from the "minimal data set" consisting of _A, WA n, a, and _.

Finally, upper surface and lower surface velocities may be computed from

average and difference quantities:

v U = vA + I12 v D

(N.I.12)
v L = v A - 1/2 v D
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N.2 Pressure Formulas

In this section, we assume the existence of a uniform freestream velocity
V_ , aligned with the x-direction of the compressibility coordinate system,
and a perturbation velocity at a point P:

/u/= V

W (N.2.1)

In this section, we derive the pressure coefficient Cp at P under a variety

of simplifying assumptions, thus obtaining a collection of pressure
coefficient formulas.

The assumption that the freestream and compressibility directions are
identical is a necessary one in order to derive the results of this section
(except when the Mach number is zero). In practice, however, Pan Air does not
require these directions to be identical. If the user chooses the "uniform
onset flow method" of pressure computation, then all the equations of this
section are applied with V_ replaces by the uniform onset flow U_ defined in

Appendix H, and with the compressibility coordinate system replaced by a

"wind-axis system" whose x-axis is parallel to U_ .

In addition, Pan Air makes available a "total onset flow" method of
pressure computation. This will be discussed in section N.4.

N.2.1 Preliminary Results

First, let us define the pressure coefficient as

Cp
p-p.

I/2 p== IV-I 2 (N.2.2)

where p is pressure and p is density. In order to compute Cp from velocity,
we need some basic results which hold for "one-dimensional" flows from
Liepmann and Roshko (Ref. 1.4). A precise definition of one-dimensional flows
is given there on p. 39. A tube of streamlines in a uniform fluid flow in
three dimensional space, perturbed by an object of finite size, is such a flow.

The results we use are:

(a) Bernoulli's equation (2.18b in Liepmann and Roshko)

Ivl 2
÷ I dP : constant

2 p (N.2.3)
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where the path of integration is a streamline, and V is velocity at a point,

(b) The integrated form of Bernoulli's equation for a perfect gas (see p. 55
of Liepmann and Roshko):

Y P + I/2 I_12: Y P_ + 1/2 Ig®l2
y - I p y - I o== (N.2.4)

where y is the ratio of specific heats (7/5 for a diatomic gas), and

(c) an expression for the local speed of sound (equation 2.23)

a2 = Y P

p (N.2.5)

We also define the local Mach number

M =
171
a (N.2.6)

Finally, for isentropic flow in a perfect gas (cf., Liepmann and Roshko, 2.21a)

N.2.2

P_ (N.2.7)

Constant Density Flow

If the density p may be assumed to be a constant p_ (for instance, for an

incompressible fluid or at zero Mach number), then (N.2.3) reduces to

Ivl 2 + p : Iv_l 2 + p_

2 p:= 2 p_ (N.2.8)

Solving for P,

P : I/2_ (IT®I 2_ ITI2) + p== (N.2.9)

and so, by (N.2.2),

Cp = 1

(N.2.10)
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N.2.3 Compressible Flow

We first apply (N.2.7) to (N.2.4) in order to eliminate
equation. It follows from (N.2.7) that

p from the

Thus

-I

_-i = % -I (____) y (N.2.11)

y-I y-i

and so (N.2.4) becomes

y-i

Y
(N.2.12)

2 y-I

1/2 IV l + Y P 2 P_ = Y

Next, we apply (N.2.5-6) to the freestream to obtain

Thus

a:=2 = Y _ = -_==_ (N.2.14)

I12 IT.i 2
2

Substituting this into (N._.2),

(N.2.15)

Cp : 2 (p_p=,) : 2
yM_ y_

- i)
(N.2.16)
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The quantity P/_ maybe calculated by rearranging (N.2.13):

y-I

/p___) y = 1 - ,12 (1_'12- I¢®12) (,_-_1).,

= (substituting (N.2.15))

%
P_ (N.2.17)

Thus

2_ ,,-I M.. I¢I 2 - I_'®I2
2 i_.i 2 (N.2.18)

P [i ( I¢12= - -1). ( y-___ll) . M_2 ]

P® I¢®12 2

Substituting this expression in (N.2.16),

(N.2.19)

v

Y__
2 y-1

Cp : 2 [I + y-1 (1- I_I2 ) Moo ]

_ 2 I_,1 2
-1

(N.2.20)

This is often called the isentropic pressure coefficient formula. In section
N.2.5, we will consider certain simplifying assumptions, and the behavior of
the pressure coefficient formula under these assumptions.

N.2.4 Limitations of the Formula

Under certain circumstances the velocity computed by the potential flow
solution is so unrealistic that the resulting pressure coefficient is
meaningless. One such case is a velocity for which the corresponding pressure
coefficient is more negative than the "vacuum pressure." A second case is
that of a local flow exceeding the speed of sound while the freestream flow is
subsonic.
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N.2.4.1 The VacuumPressure Coefficient

The isentropic pressure coefficient may only be evaluated if the

expression in (N.2.20) which is raised to the power y/(y- I) is non-negative.
Thus the isentropic pressure coefficient reaches its minimum, or vacuum, value

when this expression equals zero. So, we write

-2
Cp,va c = 2

y M_ (N.2.21)

is attained is therefore given by
The velocity Vm for which Cp,va c

+ _-__£(I- ITml2) M_ : o
2 I_.l 2

Solving,

(N.2.22)

ITml2 : 1 + 2
2

i_l 2 (y-l) M_

Thus the speed

(N.2.23)

Vm = I_®I [i + 2 ] 1/22
(y-l)M== (N.2.24)

is called the maximum speed, since for any speed in excess of Vm the vacuum

pressure is exceeded.

N.2.4.2 The Critical SpeeGL

In subsonic flow, if the magnitude of the velocity exceeds the local

speed of sound, the Prandtl-Glauert equation is clearly invalid. Thus a

program user may be interested to know if the "critical speed," that is, the

local speed of sound, has been exceeded.

To compute the local speed of sound, we substitute (N.2.11) in (N.2.5) to
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obtain

-I

a2 = yp_l . (p) y
p® (N.2.25)

y-I

y( P ) Y

: (applying (N.2.5))

(N.2.26)

y-! 2
(_P) Y • a®

(N.2.27)

Thus by (N.2.19)

a2 : i - (y-l) M_ (I_'I 2 - 1)
a_ _ T l_'_ 2 (N.2.28)

So,

v

so ITI2 : ITI2I" . I_12 . a_, 2
a2 I_l 2 a. 2 a2

I_12 ,_,
[I+ _-_!I. _

2
(i- I-CI2 )] IT®I2

IT®I_ (N.2.29)

Defining the local Mach number

M1
a (N.2.30)

we see that the speed attains its critical value Vc if the local Mach number
is I, or if
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(Vc)2 M®2 : [I

Solving,

+ y-I

i_®l 2 (N.2.31)

(Vc)2

Iv.I 2
y-I +

y+l

Applying (N.2.24),

2
2

(y+l)M_ (N.2.32)

Vc = ( y-I )I/2 Vm
y+l (N.2.33)

The Pan Air user may request the program to compute the critical and maximum
speeds, and the corresponding pressure coefficients.

N.2.4.3 Pressure Coefficient at the Critical Speed

Substituting (N.2.32) in (N.2.20) yields, after some algebraic
manipulation, the value of the isentropic pressure coefficient at the critical

speed. It is

y-1

2 [ 2 + y-I _] -iCp, c =
yM2 y+l y+l (N. 2.34)

N.2.5 The Isentropic Formula under Simplifying Assumptions

For complete generality, we have avoided the assumption that l_l

Thus we can write, in compressibility coordinates,

V I I_l ÷ u)V

W

=I.

(N.2.35)

(N.2.36)
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Thus cp is a function of u, v, and w, the componentsof the perturbation
velocity. Wenow look at (N.2.20) under a variety of small perturbation
assumptions.

N.2.5.1 SecondOrder Theory

First, let us makethe assumption that cubic and higher order terms in u,
v, and w may be ignored. This is called second order theory.

According to the binomial theorem,

Y
y-I

(I + c) : I + Y • c + 1/2 ( y ) . ¢2

y-1 y-1

+ cubic and higher terms in ¢ (N.2.37)

We will substitute (N.2.37) in (N.2.20) with

2 I_l 2 (N.2.38)

y-1 (i- ( i_'o:l+ u) 2 + v2 + w2) M_

2 IV,_ i 2 (N.2.39)

y-1 • M_ ( -2u _ u2 + v2 + w2 )

2 I -I I-C-I2 (,.2.4oi

We see that, neglecting cubic and higher order terms

c2 : (y-l) 2 M_u 2

I_ I 2 (N.2.41)
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and

y-1

(I+E) = 1 + _ M_ (-2u _ (I-M_)u 2 + v 2 w2)

2 Iv-I I 12

So, neglecting cubic and higher order terms in (N.2.20),

(N.2.42)

2Cp :

yM

((I + _) y-i _ I) : -2u _ (I- M_ )u 2 + v 2 + w2

(N.2.43)

= (alternatively) I_ I_[2 +M_ u2

2 I_,.,I2 (N.Z.44)

This is the second order pressure coefficient formula.

Now we consider the evaluation of a number of other quantities under the
assumption of neglect of cubic and higher terms. First, we see that (N.2.28)
remains unchanged under the assumption, and so (N.2.29) still holds. That is,
the local Mach number is still

M1 = V t_=

-¢12ILl [1 + (y-I) Moo (1 - _ )] 112

2 IV'ool 2 (N.2.45)

Similarly, equation (N.2.24) for the maximum speed Vm and equation (N.2.33)
for the critical speed still hold. To obtain cp c, the pressure coefficient
at the critical speed, it does not suffice to substitute (_.2_32) in
(N.2.44). In addition, a second order expression for u211Vool_ at the

sonic speed must be computed.

Noting that I_ I2 : I + 2u

2

+ second order terms (N.2.46)
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and substituting in (N.2.32), we see that at the critical speed

I + 2u + higher terms = y-___.1 + 2

Thus to second order

(N.2.47)

u2 : I/4 [ y-1 ÷ 2 _ I]2

(N.2.48)

at the critical speed. Substituting (N.2.32) and (N.2.48) in (N.2.44) we

obtain a second order expression for the critical pressure coefficient

Cp,c = I - y-1 _ 2 + i [M, 2 _ 2 + 1 ]
----7-

y+1 (y+1) M2 (y+1) 2 Moo (N.2.49)

1 (2y + M_ _ (2y + 1)

(y2 + I) M_ (N.2.50)

N.2.5.2 The Second Order Theory under Additional Assumptions

It may under certain circumstances be of interest to calculate the

pressure coefficient under the additional assumption that the freestream Mach

number is nearly zero, and thus terms with coefficient M may be neglected.
Combining this and the second order assumption yields the "reduced second

order" pressure formula (cf., (N.2.44))

v

Cp = 1 - Ivl 2

I ,1 2 (N.2.51)

Note that this is equivalent to the constant density or incompressible

pressure formula (N.2.10). Further, if the Mach number is zero, they are both

equivalent to the second order pressure formula. Finally, the reader may

verify that, in the limit as Mach number approaches zero, the isentropic
pressure formula (N.2.20) becomes equivalent to (N.2.51) also.

Another possible simplifying assumption is that the configuration is

sufficiently slender that quadratic expressions in u may be ignored. This

results in the slender body pressure formula:

Cp = -2u _ v2 + w2

I ,1 IT®I2 (N.2.52)
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Finally, one may neglect all quadratic expressions in components of the
perturbation, and thus obtain the linear pressure formula

Cp = -2u

The local Mach number, the critical speed, and the pressure coefficient at
the critical speed may be computed under each of these simplifying
assumptions. The validity of these expressions is questionable, since the
existence of a point at which the local Mach number equals I is evidence that
the particular assumption is not valid.
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N.3 Velocity Corrections

The empirical observation on which the two velocity corrections are based

is that the linearized mass flux computed by a panel method under some

circumstances more accurately represents the true mass flux than the computed
velocity represents the true velocity. Thus a corrected velocity 7' may be

calculated from the computed mass flux by the equations below.

V' : Wx
x (N.3.1a)

V'y : Wy (N.3.1b)

or by

V'z : Wz (N.3.1c)

-=_

P V' = W

pc= (N.3.2)

That is, to arrive at the first velocity correction formula,the exact

relation for isentropic flow

o V : W

p_ (N.3.3)

is applied to obtain a corrected value of the freestream or x-component of

velocity. To arrive at the second velocity correction formula, equation
(N.3.3) is used to obtain a corrected velocity vector which is a multiple of
the mass flux vector.

N.3.1 The First Velocity Correction

This velocity correction is only applied, and in fact is only well-defined

if the local flow is slower than freestream, that is, if

u = v V_ < 0

/N.3.4)

In that case, (N.3.1) is applied.
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Now, substituting (N.2.7) in (N.2.19) we see that

i

l_ l _I: [I + (y__l) M_ (i - )]
o_ z 2 (N.3.5)

Thus (N.3.1a) becomes

I

y-1
Wx : [i + (y-___l_l)M_ . (I - I-_'I 2 )] V' x

2 I_12 (N36)

It follows easily from (N.3.6) that Wx is a monotonic function of Vx,
That is, as Vx increases, so does Wx. Thus a simple iterative method
(Newton's method) is available for numerically computing V' x as a function
of Wx while V'y and V' z are obtained from (N.3.1).

N.3.2 The Second Velocity Correction

Under the second correction, the corrected velocity is some multiple of
the mass flux. This correction is divided into two cases.

In the first case, we assume the local flow is again slower than
freestream; that is, that (N.3.4) holds. Then (N.3.2) is applied, but using
the linear density relationship

= I + (sB 2- 1) v V_

o_ IT.I2 (N.3.7)

To see that (N.3.7) follows from (N.3.5) to first order, we apply the binomial
theorem to (N.3.5), to obtain

= 1 - M ( V 2 - 1) + higher terms

oo 2 I_l 2

= 1 - ( 2 v.V:: ) + higher terms

iT.12
and then (N.3.7) follows from the definition sB2 = 1 - M_.

(N.3.8)
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Thus for slower than freestream flow, the correction which is applied is

V'= W
I + (sB 2- i) _ . V_

(,39)

That i sIn the second case, the local flow is faster than freestream.

..b. ..b.

: v.V® .> 0

IC.l 2 (N.3.10)

Under these circumstances, the magnitude of the velocity is left unchanged,
while its direction is changed so that it is proportional to the mass flux.
That is

V' = W
I_I (N.3.11)

where V is the uncorrected velocity computed by the program.
This concludes our discussion of the velocity corrections.
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N,4 Onset Flow Calculations

Wenowconsider the effect of a non-uniform onset flow on the pressure
formulas. That is, we assumethat the velocity is

V : v + U_ + aV (N.4.1)

where aV is the "incremental onset flow" and includes both rotational onset
flow and a local incremental onset flow. In the notation of appendix H,

aV = U0 - U:o (N.4.2)

Our final equations will be based on a numberof simplifying assumptions,
which will be discussed as they comeup. The first assumption is that

L_ : V:o (N.4.2b)

That is, the uniform onset flow must be aligned with the compressibility
direction for our formulas to hold. For the remainder of this section, we
will assumethat (N.4.2b) hol_s. Whenthe pressures a_e computedby the
program, however, the vector Um is used in place of V:: whether or not
(N.4.2b) holds. Thus if the program user violates (N.4.2b), the resulting
presssures may not be correct, nor does any correct method for computing the
effect of the incremental onset flow on the pressures exist. A user may
violate (N.4.2b) by setting _ _ _c, B _ BC(see section (B.2.2) of the
User's Manual for definitions of these quantities).

N.4.1 Bernoulli's Equation

Wenow need to revise Bernoulli's equation (N.2.4) to account for the
incremental onset flow a-_. Both (N.2.3) and its integrated form (N.2.4) state
that __hetotal energy per unit mass (kinetic energy in the form
1/2 IV::I2 plus potential energy yp/((y - 1)9) is constant at any point on
a streamline. Thus to correct (N.2.4) to account for the incremental onset
flow wemust add to the right hand side the energy per unit mass aE added to
the system by the incremental onset flow:

(N.4.3)

Now, this added energy speeds up the fluid at infinity. Writing AV_
the incremental onset flow along the streamline infinitely far from the
configuration, we have

for

= -'12 (N.4.4)I12 I 2 + AE I12 IV=: + aV
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Thus

aE : V==' aV_ + z/212_I 2 (N.4.5)

At present there is no mechanism for the program user to specify either
AE or , equivalently, a-_ . For many problems involving onset flow, it will be
quite reasonable to make the assumption

aV_ _ aV (N.4.6)

This is especially true if the control point at which the incremental onset
flow is defined lies far from the source of the added energy. An example

would be the analysis of an airplane flying in the onset flow generated by a

second airplane. On the other hand, (N.4.6) would be highly inaccurate for a

control point on an airplane wing directly behind the propeller.

Nevertheless, at present, the program assumes that (N.4.6) holds.
is, it computes AE by

That

2 .AE : 2V_ aV + laVl 2 (N.4.7)

We may now recompute all the equations in section N.2 using (N.4.3) in

place of (N.2.4). Following the algebra of section N.2, (N.2.17) becomes

y-z

(__Lp) Y __ ._= i - Z/2 ( I vl 2 _ IV.I 2 _ 2AE) (y-i) .
P® y P.

(N.4.8)

v

N.4.2 Pressure Formulas

Similarly (N.2.20) becomes

Cp , isentropic 2 . [i + y-i .(i- I712 - 2 aE )M_

2 i? l 22
yM_

The vacuum pressure is still given by

_I._

y-1

] -1

(N.4.9)

Cp,vac = -2
2

Y_ (N.4.10)

N.4-2



but now (N.2.22) becomes

I + y-1 (I - (Vm)2 - 2AE

2 i_,! 2

and (N.2.24) becomes

= 0

(N.4.11)

Vm : IV.I [I + 2
(y-l)M2

Next, (N.2.29) becomes

1/2

2aE ]

I_®I_ (N.4.12)

MI2: ITI2 = ITI2
a2 I-_®I_ i

Moo 2

+ (y-l)Moo 2 (i- IvI2 -2AE )

2 i_.i2

(N.4.13)

•.__ Setting M1 = 1, the critical velocity becomes

Vc _ y-I + 2 + y-I

I_I 2 y+l (_+I)M_ 2 y+l

or (from (N.4.12))
(N.4.14)

Vc = (Y-__L)Vm
y+l

(N.4.15)

Now, substituting (N.4.14) into (N.4.9),

Cp,c : 2 [ 2 + y-i M_

yM:_ 2 y+l y+l

(I + 2AE

I -I 2

Y
y-1

)] - I

(N.4.16)
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N.4.3 Simplifying Assumptions

Next, we may apply second order theory to (N.4.9), and thus we obtain

Cp,2nd order : z - I_'12 + 2 AE + M_ (u + aU) 2

I_'®12 I_,12 I_'.1_
(N.4.17a)

where AU is the x-compon.ent of aV.

Applying equation (N.4.5-6), we then obtain

Cp,2nd = 1 - I_I2 + 2au + _ + M_ . u2
[v®l2 _ IT-I 2 -T-CI-2

(N.4.17b)

Note from equation (N.4.5) that AE is the sum of a first order and a second

order quantity. Thus if 2AE is user-specified, it is no longer clear how to

evaluate a second order expression for the pressure coefficient. One possible

solution may be to use the user-specified value of 2AE only for the

computation of the isentropic pressure coefficient formula. We will not

address this problem at the present time; rather, we will assume that (N.4.6)
holds.

Now, to obtain a second order expression for Cp,c, we first note
that by (N.4.1)

ITI 2 : I-_12+I_1 2 + 1_12 + 2_. _-_ + 2v. v_ + 2 _v . v_

(N.4.18)

Thus I_'l 2 :

I_12 + 2u + 2aE +

I_1 2 I_l
second order terms

Substituting into (N.4.14) we see that at the critical speed

(N.4.19)

I + 2u + 2 AE : y-__!1 + 2 + y-I (2AE,)

I_'®1 IT.I 2 _+_ (_+_).2 _+_I_12

+ second order terms

(N.4.20)
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or

2u

I_I_

or

: 2 (1 + 2AE ) + 2

+ 2nd order terms

(N.4.21)

u2 _ I (I + 2AE _ I )2

I_12

at the critical speed, to second order.

Substituting (N.4.14) and (N.4.22) into (N.4.17)

i 2(y + Ho_) • (1 + 2AECp,c,2nd order =
(_+_)2 I_®12

(N.4.22)

- M_ 2 _ (2y+I))

M2

(N.4.23)

Further simplifying assumptions may be applied to (N.4.17). The "reduced

second order" or small Mach number assumption yields

Cp = 1 -I;I 2- 2_E

We note from (N.4.18) that

(N.4.24)

i--_1

i - IVl 2 - 2AE : -2u _ 2"_-av + -'ITI2

I_12 I_1 I_12
I I

and thus the slender body assumption, applied to (N.4.17b), yields

(N.4,25)

Cp = -2u _ 2(vav + waw)+ v 2 + w2

I_1 I;-I 2 {, _2_)
where we again make use of (N.4.5-6), and Av and Aw are y and z-components
of _.

Finally, the linear assumption yields

Cp = -2u

(N.4.27)
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N.4.4 Velocity Corrections

In the presence of an onset flow, (N.3.6) becomes

i

y-1
Wx : [i + (Y-]')M2 (I- I_'12 + 2AE )] V'

iv.i= i .1 = x
and is used to solve for V'
(N.3.8) becomes

x to obtain the first velocity correction.

(N.4.28)

Also,

: I + M_ (1 - I_I 2 + _2AE ) + higher terms

% 2 I_.I 2 [-_2 (N.4.29)

Applying (N.4.19),

D = I - M2 u + higher terms

IT--I (, 4.3o>
and thus (N.3.7) still holds. Thus equations (N.3.9) and (N.3.11), which
define the second velocity correction, remain valid in the presence of an
incremental onset flow.

This concludes our discussion of the computation of pressure coefficients
in the presence of an onset flow.

It should always be remembered, however, that the presence of an onset
flow violates the basic assumptions from which the Prandtl-Glauert equation
was derived. In addition, the inability of the user to specify 2.AE means
that even if the potential flow solution represents the true flow well, the
effect of the onset flow on the pressure may be incorrectly calculated.

V
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N.5 Associated Data

The PAN AIR program user has a large number of options available to
instruct the program in calculating flow properties at a point on the
configuration surface. We discuss here the effect that certain of these

options have. Some options, such as choosing a value for y other than 7/5,

are implemented in such an obvious manner that they require no discussion.

Some options, such as the choice of velocity corrections, have already been
discussed in detail.

One user option is a reference speed Ur for pressure calculations. This

speed is then used in place of I_I whenever that quantity occurs in pressure

computation formulas. This speed must be specified in the rare case that
I_I is zero, that is, when there is no freestream. Otherwise the

appearance of I_I in the denominator of various expressions will cause the

program to terminate. The value the user chooses for Ur depends very

heavily on the physics of the problem, and will not be discussed in this
document.

Another user option is the "computation option for pressures." The user
may choose to compute pressure using the uniform onset flow U== , in which

case, the formulas of the previous sections are applied with _ substituted

for T_ . Second, he may choose to co__mputepressures using the

compressibility vector, in which case V== is replaced by Ur co where Ur
is the reference speed for pressure calculation defined above. In both of

these case_, the incremental onset flow is assumed to be zero, that is, the
vector AV is set to zero for all the equations in section N.4. Finally, if

the user requests that _he loca_l onset flow be used to calculate pressures,
then _ is replaced by U_ and AV is included in all equations in section N.4.
No guidelines are given to the user on the appropriate option to use, since
under practically all circumstances, the uniform onset flow option, which is
the default, is appropriate.

Next, the user may request the co_putationof the angle between the
surface vorticity y and the velocity V, where y is defined by

y : x v. (N.5.1)

(see section 5.6 following equation (5.6.11)). The program also prints the

components of _ in reference coordinates.
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0.0 Forces and Moments

In this appendix we describe the computation of forces and moments in the
PAN AIR system. In section 0.i we comment briefly on the defining equations.
In section 0.2 we describe the method by which PAN AIR performs the required
integration. In section 0.3, we discuss edge forces, which must be calculated
separately because the true potential flow solution for velocity at a subsonic
edge of a thin configuration is infinite, while that calculated by a panel
method is finite. In section 0.4 we compute the properties of force and
moment vectors under a coordinate transformation.
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0. i Basic Formulas

A force is defined as a time rate of change of momentum. Ward
(reference 1.5, equation 4.6.3) shows that for potential flow, equation
(5.9.9) holds. PAN AIR actually computes a coefficient of force defined
analagously to the pressure coefficient (cf., (N.2.2)):

CF : -_1_!__.ff [ V{pV.n) + Cp n]dS

SR 1/2 _ IV::I 2 (0.i.i)

where SR is a user-specified "reference area" available for normalization of
the force coefficient.

Applying the relation (N.3.3) between velocity and mass flux, we have, for
either the upper or lower surface of a network,

CF : - l_j__ j'f[ 2V(W.n) + Cp n]dS

SR iT.12 (0.1.2)

We note that the first term, called the "momentum transfer" term, is zero
for impermeable surfaces. This term makes a contribution to the force on the
surface, however, when the normal mass flux is non-zero. Note that the net
force on a network of panels is the difference between upper and lower surface
forces. Thus the net force on a fully permeable nacelle face is zero, though
both the upper and lower surface forces are non-zero. The momentum transfer
term is only computed in Pan Air when requested by the user.

The coefficient of moment c M is similarly derived from (5.9.10) and is
defined by

CM = -_1 SS [ { Q - Ro} x V _" + {Q - Ro} x n]dS

LR I '®i2 (oi.3)

Here LR is a user-specified reference length, Q is a point of integration
and Ro is the point about which the moment is calculated. Once again the
first term is the momentum transfer term. If the surface is impermeable, this
term makes no contribution to the angular force exerted by the fluid on the
body.
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0.2 Integration Procedure

The integrand in (0.1.2) may be evaluated from the velocity (see Appendix

N). The velocity, in turn, may be computed at any point on the configuration

by the splining methods (see section N.I). In fact, a velocity distribution

may be computed on each subpanel, and so it is theoretically possible to

integrate this distribution exactly over the entire configuration to obtain
the resulting force distribution. In fact, the integrals are precomputed (in

the DQG module) for an arbitrary piecewise quadratic pressure distribution, so
that the integral over a panel may be obtained by the CDP module during

post-processing by matrix multiplications.

This procedure makes use of the far field moments already required for far
field influence coefficient calculation. Recall from section 1.4.2 the row
vector FFMD and the matrix FFMD defined by

o 1

sB2 SS u dS ="FFMDj_cl " 0 {i I]
9 (o.2.1)

sB2 SS G _ dS :[FFMD]3X9K_ i {u.l}
(0.2.2)

But now, if we assume that the pressure varies in a piecewise quadratic

manner (as u does) on each panel we may apply (0.2.2). This is actually a

fairly reasonable assumption. Since we approximate the doublet strength by a

quadratic function and the source strength by a linear function, (N.1.11b)

shows that the velocity is of linear accuracy. Thus by (N.2.43) and

(N.2.51-53), the second order, reduced second order, slender body, and linear

pressure coefficient formulas can be adequately represented by quadratically

varying fuctions. Further, the small perturbation assumptions on which the

Prandtl-Glauert equation is based insure that differences between the

isentropic and the second order formula should be negligeable anyway.

So, we may compute the pressure coefficient Cp,q at the nine panel
defining points, and obtain

sB2 }'_" Cp _ dS : [FFM D] C"'p
K ZI i (0.2.3)

where Cp is the vector of length 9 whose qth entry is Cp,q.

Similarly, since the velocity on a panel is of linear accuracz, _ (_.n)

also may be described by a piecewise quadratic, and so, writing {TQ}i for
the ith entry of Vq, the 3xl column vector giving the velocity at _he qth
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panel defining point, the first term in (0.1.2) may be computed by,

K

= 2[VWN]i,. _FFMoD_
(0.2.4)

where VWN is the 3x9 matrix whose i,q entry is the ith component of Vq
times the normal mass flux at the qth defining point.

Thus, equation (0.1.2) becomes

9

SR {CF} i : - K _ S 2 [VWN]i q LFFMDjq
s8 2 all panels q=l I_I 2 0

+ [FFMD]iq Cp }1 'q (o.2.5)

Next we consider the calculation of the moment coefficient. Assume that

we have computed the 3x9 matrix NCPMI ("normal cross-product moment")
defined by

ff(_- _g) u dS : [NCPMI]
z

(0.2.6)

where P9 is the panel center.

This matrix is precomputed in the same manner as the remaining far field
moments. Similarly, let us define a 3x9 matrix [NCPM2] by

SSu (Q - P9) x ndS : [NCPM2] , (0.2.7)
z

The computation of NCMPI and NCMP2 is described shortly.
compute (0.1.3) using the above two matrices.

First, we easily see that S_" [Cp ( - ) x n] dS =

SScp (7- P_)x _ dS+ (_9-_o) x SScpBdS
S

[NCPM2] Cp + (P9 - Ro)X _: [FFM_] Cp

sB 2

We may then

(o.2.8)

(0.2.9)
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Next we recall from appendix E the permutation symbol

¢ijk: 1 _ i,j,k £ 3

¢ijk =
= I if i,j,k are distinct

-I if i,j,k are distinct

0 otherwise

and cyclic

and in reverse cyclic order

(o.2.1o)

which has the property that for vectors v and w,

.=_

(v x w) k : Z cij k v i wj

Thus

i,j

Sf [ (Q - Ro) x V (W.n)] dS :

(0.2.11)

i,j
(_'-R%) i Vj (_-n)cij k dS

[ (%- Ro)x SSg dS]k

+

(0.2.12)

Then Sf [ (Q -Ro) x V (_.n)]k dS

r.
i,j,q [NCPM2]iq [VWN]jq _ijk

+ Z (P9 - Ro)i K [VWN]jq LFFM_j q

i,j,q sB 2

Combining (0.1.3), (0.2.9), and (0.2.13),

_ijk
(0.2.13)

LR CM =

panels

f

-[NCMP2] Cp - (P9 - Ro) x K

[NCMPI].,q + K_ (pq _

q=l SB2
0}%) LFFMoj q x [VWN]. ,q

(0.2.14)
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This completes our discussion of the integration of (0.1.3); the

computation of the matrices [NCMP_] has been discussed in detail in
section 1.4.2, equations (I.4.21) through (I.4.27).
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0.3 Leading and Side Edge Force

0.3.1 Linearized Three-Dimensional Theory

Consider a flat plate at an angle of attack, as illustrated in figure
0.i. It is known that such a configuration experiences zero drag in subsonic
two-dimensional potential flow, where drag is the component of force in t_e
freestream or x-direction. Yet the surface normal has an x-component and the
surface is impermeable, and thus equation (0.i.i) indicates non-zero drag.

The resolution of this contradiction is found in the existence of a

leading edge force resulting from an infinite leading edge velocity (see
Ashley and Landahl, Ref. 5.3, section 5.3, or, for more detail, Hancock and
Garner, Ref. 5.2, part II). This leading edge force exactly cancels out the
drag computed by integrating the pressure over the configuration surface.
Since the surface is impermeable, the momentum transfer term gives no
contribution to the force on the surface.

A formula for the edge force magnitude per unit distance (on a three
dimensional wing) is given in Hancock and Garner (ref. 5.2). This formula,
valid for all subsonic edges (there is no edge force on a supersonic edge)
gives edge force per unit length by

dSldy n : (_/8) Bn [ lim (ulV_n)] 2 (0.3.1)
x _0

n

where, S is the edge force, Yn measures distance along the edge, x n
measures distance perpendicular to the edge and in the plane of the surface,
is the doublet strength on the surface and Bn is given by

2 2
Bn = 1 - Mn (0.3.2)

where Mn is the Mach number in the direction of the edge force. Thus,

Mn = Mm cos ^ where ^ is the sweepback angle as shown in figure 0.2. The

edge force direction is away from the edge and perpendicular to both the edge
and the surface normal, also as shown in figure 0.2.

0.3.2 Application in PAN AIR

To apply equation (0.3.1) in PAN AIR, we must first consider the
evaluation of the limit. First note that it is known that if z is a
polynomial in x n and Yn, then the exact value of _/X_n can be u_iformly
approximated by a polynomial. Given this fact, it is tempting to estimate the
limit by evaluating U/_n at the first and second panels from the edge and
extrapolating these values to x n = O. However, because PAN AIR represents

itself as a quadratic polynomial in x n and Yn' the expression _pA/%Z_n (we

denote the doublet distribution computed by PAN AIR as _pA ) will not

converge uniformly to u/V_n in the neighborhood of the edge. Consequently,
if we denote the computed and exact values of u at the center of the first

panel by _I,PA and Ul,exac t, then _l,PA/_1,exac t will not converge to i as the
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numberof panels is increased. Similarly, U2,PA/U2,exact does not converge to
I. These ratios will, however, converge to finite values, the specific values
depending upon the solution details, especially the panel spacing and
density. For example, different limit ratios are obtained for uniform spacing
than for cosine spacing. Also, since a potential flow field near an edge is
mathematically similar to two-dimensional flow about a flat plate, the
convergence properties for three-dimensional camberedsurfaces will be similar
to those for three dimensional flat plates. Thus, we assumethat the limiting
behavior of ul,PA/Ul,exact for a three-dimensional camberedsurface will

closely resemble the behavior of ul,PA/Ul,exac t for a 2-D flat plate as the
numberof chordwise panels is increased.

In light of these considerations, the following method is proposed as one
that (i) will yield reasonably accurate results without an excessive numberof
panels and (ii) will converge to exact results as the numberof panels is
increased, provided certain panel spacing rules are followed. Referring to
figure 0.3, define YI, Y2 by

Yi = _/ i = 1,2
(0.3.3)

×
n,i

where x n i denote the values of x. at the first and second panel center
away fro_ the edge (see figure 0._ for definition). These two evaluations now
immediately provide an extrapolated value of u/V_n at x n = O:

G : (Y1Xn,2 - Y2 Xn,l)/(Xn,2 - Xn,l) (0.3.4)

If u/_/_n converged uniformly to its limit value we could approximate

lim u/_ _ G
n

Xn_ 0

In fact, using equation (0.3.1) we write

dS/dy n : (x/8) 8n G2 f (0.3.5)

where the correction factor f (which is 0(i)) is determined from
program/theory comparisons for a series of two-dimensional flat plate
problems. The correction factor f depends on the number of panels and the
panel spacing method. The total leading edge force is computed from the
formula

f Yn,2S = (dS/dYn) dy n (0.3.6)
Yn,1

where the integral is evaluated by the midpoint rule using the formula (0.3.5)
to provide values for (dS/dyn).
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Correction factors for three types of panel spacing and various panel

counts are given in figure 0.4. Correction factors for untabulated values of
NPAN, the panel count, are obtained by interpolation, where f is regarded as a
function of (I/NPAN). Correction factors have not been computed for any other

types of panel spacing, and results obtained by PAN AIR for such types of

panel spacing may be neither accurate nor convergent.

The correct use and interpretation of figure 0.4 requires that one know
precisely what is meant by "cosine spacing" and "semi-cosine spacing." Let t
be a nondimensional coordinate defined such that the value t=O coincides with
the edge on which the edge force acts and t = i coincides with the opposite
edge. Then the panel corner points for cosine spacing are located at the
t-stations given by

(cosine-spacing) t i = (i/2)[1 - cos((i-1)x/NPAN)]

while for semi-cosine spacing these x stations are given by

i=I,...,NPAN+I

(0.3.7)

0.3.3

(semi-cosine spacing) ti = 1 - cos[(i-1)_/(2"NPAN)] i=1,..., NPAN+I
(0.3.8)

Edge Force Verification

A leading edge suction distribution has been computed by PAN AIR using the

technique described above for a 60° delta wing in incompressible flow. This
distribution is compared in figure 0.5 to the result derived in Medan, (ref.

0.1). Notice that the quantity (dS/dYn)/[(1-n)'28154_ 2] is plotted against n

where n represents "spanwise fraction," the fractional transverse distance

from the centerline to the outboard tip and _ is angle of attack. This

scaling of the leading edge suction distribution is based upon the theoretical

results derived in (ref. 0.1). In fact, as n approaches 1, dS/dy n itself
tends to zero so that the differences between results shown in figure 0.5 are

not significant when scaled and integrated to obtain overall forces. Note

also that PAN AIR results appear to converge to the theoretical values except

for the panels closest to the tip. In fact, the PAN AIR computed suction
force on the tip panel will never converge no matter how densely the wing is
panelled. This is another manifestation of nonuniform convergence arising

from the fact that PAN AIR constrains the doublet distribution to be a

quadratic function of the surface coordinates. Nevertheless, overall forces

and moments do converge as panel density increases.

Drag values predicted for a supersonic delta wing are compared in _igure

0.6 to the theoretical results presented in figure A,14m of Jones and Cohen
(ref. F.1). The PAN AIR results lie very close to the theoretical curve.

Since edge suction is a significant contributor to drag, this close comparison
provides some verification of the validity of PAN AIR's method of computing

edge suction forces.
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0.4 Coordinate Transformations

In this section we examine the behavior of force and moment vectors under
an orthogonal transformation of coordinates

ix}{xlF " Y --_ Y'

Z Z' (0.4.1)

This is necessary because the program permits force and moment computation
in a multiplicity of axis systems. These axis systems are defined in section
B.2.1 of the User's Manual.

We know from appendix E that velocity and normal vectors are dual vectors
w transforming according to

w = FT w' (0.4.2)

But since we assume r is orthogonal, its inverse is its transpose, and so

: (0.4.3)

Further, if w is a vector rather than a dual vector, it also obeys (0.4.3),
according to appendix E, because det r = i. In fact, because F is
orthogonal, vectors and dual vectors behave identically in all cases, and so we
make no further distinction between them.

Applying (0.4.3) in (0.1.1) we obtain

C'F = F c"_ (0.4.4)

since

{o F V}. n : p-_T FT F n : p V_ (0.4.5)

and F , being a matrix of constants, may be taken out of the integral
(o.1.1).

Next, we consider the transformation of the moment coefficient. Let us
assume we have computed the moment vector c M about the origin in reference
coordinates. That is,

LRSR _ (0.4.6)

We now wish to compute the moment coefficient CM in the primed coordinate

system about a point Ro. That is, C' M is defined by (0.1.3) with Q,

Ro, V, W, and n replaced by primed counterparts.
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So,

CM
- I

LRSR

[{ rT- rRo}Xrg(2r_.r_ )
I_l z

÷ Cp {FQ - rR o} x I_n]dS

(o.4.7)

But for vectors W-_land w-'2, we have (cf. (E.I.12-13))-

r_ x rG = r{_ x _} (0.4.8)

Thus

CM

CM

I

LRSR

- t [ Y(Q x v} (2W.n) + Cp r{Q x fi}]dS
LRSR

[ r{Rox _}( 2_n ) ÷ Cpr{Rox _}]dS

Noting that both F and Ro may be removed from the integral,

r c_ ÷ i__ r {RoxSf[_(_ ) + Cp_]dS
LRS R IV=,l 2

So, substituting (0.1.2) in (0.4.10),

(0.4.9)

(o.4.to)

CM = r CM - u r x
LR (0.4.11)

Thus moment vectors transform like force vectors, except with an extra
term which results from a shift in the point about which the moment is
calculated.

An addition minor complication is cause by the use of separate scaling
factors for different components of the moment coefficient vector. The effect
of separate scaling factors on (0.4.11) can easily be computed and is given by
the code in SUBROUTINE TRNSFM of the CDP module.
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0.5 AddedMass Coefficients

The inertial properties of a submergedbody moving in a fluid are affected
by the motion of the fluid surrounding the body. Theseproperties, which
becomequite significant whenthe mass of the displaced fluid is commensurate
with the massof the body, are concisely summarizedby a collection of tensors
called "added masscoefficients." In this section we will define the added
mass coefficients, describe their computation and derive someof their
transformation properties.

0.5.1 Formulation of AddedMassCoefficients

Consider an impermeablebody B with boundary surface S moving through a
fluid. Wesuppose that the fluid has constant density p and that the fluid
motion is itself irrotational. Thus, a velocity potential exists and
satisfies Laplace's equation. At the instant of observation, the motion of
the fluid is observed from an axis system fixed in the undisturbed fluid and
momentarily coincident with a body fixed axis system. The velocity of any
point _ on the body's surface is given by

where _ specifies the body's translational velocity and _ specifies its
rotational velocity about a center of rotation _o. The harmonic velocity
potential for the fluid's instantaneous velocity is now uniquely determined by
the impermeablesurface boundary condition

a¢lan = (_ +_ x (_'-_o)) _ on S (o.5.1)

An equivalent form of (0.5.1) using the implied summation notation is

a_/an = ui ni + _i _x n)i ; r = p - Po (0.5.2)

where we introduce the shorthand _ for the vector from the center of rotation

to a point on the body surface. Evidently, @ can be written in the form

= ui _i ÷ mi _i (0.5.3)

where @i and _i are harmonic velocity potentials satisfying the boundary
conditions

a_ i /an = n i

a_i/an = (_ x _)i on S (0.5.4)

The potentials introduced in (0.5.3) are associated with motion along an axis
in the case of _i, and with rotation about an axis in the case of _i.

The expression for added mass coefficients is obtained by computing T, the

kinetic energy of the fluid induced by the motion of the body. Summarizing
the development given in ref. 0.2, T is given by
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T : (p/2) /I/ (V_) 2 dV

R3_B

=-(p/2) /I _ (_/an) dS
S

Substituting (0.5.3) into (0.5.5) yields for T

(0.5.5)

• • • + (1/2) u _]: u.= (112) uI Mi3 uj i ij j

+ (1/2) u i Sij _j + (112) u. I.. m. (0.5.6)
1 lj j

where we define the various added mass coefficients by the expressions

Mij = -p fl _i (_jl_n) dS
S

Sij = -o II _i (3_jl_n) dS
S

_]ij = -p II _i (a_j/3n) dS
S

lij = -o ff 0 i (_*jl_n) dS (0.5.7)
S

The coefficients Mi4 are called inertia coefficients while Ii4 are called
moment of inertia coefficients; Sij and _-_'ii are called mixed J
coefficients. Green's second identity impl_es that M and I are symmetric and
further, that

Sij : _]ji (0.5.8)

Thus, the full 6x6 added mass coefficient matrix given by

is symmetric.

(0.5.9)

v

0.5.2 Integration Procedures

Because the method by which PAN AIR solves for _i and _i ensures
internal stagnation (¢i = @i = 0 interior to B), the integrals appearing
in equation (0.5.7) can be expressed quite simply in terms of the fundamental
singularity distributions. Letting ui, _i denote respectively the doublet
distributions associated with @i, _i and using the boundary conditions
(0.5.4), we obtain
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Mij = - p JJu i nj dS
J

Sij = - P flu (_'x _)j dS
S i

_-_'ij : - P --Jl_i n. dS
S 3

I ij = - p _sI_i (_" x _)j dS (o.5.1o)

Clearly these integrals can be evaluated by techniques similar to those

described in section 0.2 by using the moment matrices [FFM_] and [NCPM2].

It is important to note that the added mass coefficients given by equation

(0.5.10) are not precisely the results computed and printed by PAN AIR.

Rather, scaled quantities Mij, _ij, _ij and _ij are printed. These
are defined by

Mij : Mij/(½ p SL)

_ij : Sij/(½ p SL2)

_ij = _-]_ij/(½ p sL2)

lij = lij/(½ p SL3) (0.5.ii)

where S is a user specified reference area and L a user specified reference

length. Notice that if one takes S = L = p = i, one finds that Mij = 2 Mij,

_ij = 2 Sij, etc.

0.5.3 Orthogonal Transformation

Added mass coefficients computed in a body axis system which has been
subjected to an orthogonal transformation r can be defined in terms of added
mass coefficients in a reference coordinate system. Using primes to denote
quantities in the transformed system, the boundary conditions can be written as

! I

(_il_n) : (r_)i
(0.5.12)

! I

(_ i/_n ) = [ r (_'x _)]i on S

Equation (0.4.8) was applied to the second part of (0.5.12).
be satisfied, it must happen that

For (0.5.12) to
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!

@i = rij _j

_W_ = riJ _J (0.5.13)

Substituting (0,5.12) and (0.5.13) into a primed form of (0.5.7) will show that

! =

Mij rik Mkl rjl

The other coefficients transform identically.

(0.5.14)

0.5.4 Translation

Added mass coefficients computed about an arbitrary moment reference point

r-_o can be defined in terms of coefficients computed about the origin. The

technique is similar to that of section 0.5.2. The boundary conditions become

'/an' = n.

a,_/ n' = (_" x _)i - <_'o x _)i {0.5.15)

To satisfy these boundary conditions, the potentials in the translated system
must take the form

!

_i = _i

_i = _i - _ijk ro,j _k (0.5.16)

denotes the usual permutation symbo], (cf. eqn. 8.3.21 and ff.).where _ijk
Substitution of (0.5.15) and (0.5.16) into a primed form of (0.5.7) gives

M'. = M .
13 lj

!

Sij = Sij - Cik I ro, k M lj

]E]_j : _ij -Cikl ro,k MIj

lij = lij - _ilm ro,1 Smj - _jTm ro,I _]im

r r M (0.5.17)
+ ¢inp Cjlm o,n o,I pm

0.5.5 Symmetric Configuration

If the surface S consists of a surface S' and its mirror image S", the
added mass coefficients on S" can be defined in terms of those on S' Suppos

the plane of symmetry passes through rs and has a unit normal _. A point _"

on S' and its image point-_" on S" are related by

0.5-4



where

and X
o,j

" * + X
Pi = Rij Pj o,j

R.. = _.. - 2 _ u.
Ij Ij i j

= rs,j - Rjk rs,k

(o.5.18)

The point N o is the image point of the origin and R is the reflection matrix.

With primes and double primes denoting entities related to S' and S"

respectively, the boundary conditions become

a an" : Rij nj

B_V/an" = - Rij (_" x B')j + Rij (X'ox B')j

where _' is the vector from_ o, the center of rotation, to _'.

(0.5.19)

The second part of (0.5.19) required applications of (0.1.12) and (0.5.18).

To satisfy (0.5.19), the potentials take the form

_'; = R _'.
I IJ J

@V = -Rij _3 + Rij cJkl Xo,k Qi{

Applying (0.5.19) and (0.5.20) to a form of (0.5.7) yields

(0.5.20)

". M' R
Mi O = Rik kn jn

Sll • m--

ij _jlm Xo,l Mim - Rik Skq Rjq

: -Rik_E]kl Rjl _ipq Xo,p qo

" I' R + c i S"lij = Rik kq Jq kn Xo,k n,j
(o.5.21)
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Fto t Fp = integrated pressures

S S : leading edge force

Fto t - net force

Figure 0.1 - Effect of leading edge force
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Figure 0.2 - Leading edge force on a three-dimensional thin wing
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Figure 0.4 - Edge force correction factors
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Figure 0.6 Comparison of drag predicted by PAN AIR with theory

for a delta wing in supersonic flow
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P.O Flow Properties at Off-Body Points and Streamline Calculation

Once the potential flow problem has been solved, the program user

frequently has the need to evaluate the potential and velocity field at points

away from the configuration, to aid in flow field visualization. In this

appendix we will outline the processes by which flow properties are calculated
at off-body points and then describe the calculation of streamlines. The

basic idea underlying both of these procedures is that, once the potential

flow problem has been solved, both the source and doublet distribution are

known on the full singularity surface S. Then, by virtue of the

representation formulas for potential _ (equation (3.2.7)) and perturbation
velocity _ (equation (B.3.9)) it becomes possible to evaluate _ and _ at any
point in the flow field. This evaluation of _ and _ at an off-body point is

central to the evaluation of off-body flow properties as well as streamline

calculation. For off-body flow properties, the connection is straightforward:
given _ and v one simply applies the procedures of appendix N to obtain the
various pressure coefficients and corrected velocities. In the case of

streamline calculation, the perturbation velocity _ is combined with the onset

flow to obtain a total velocity (V) or mass flux (W) vector field which is

then integrated to trace the streamlines. This process is described more
fully in section P.2.
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P.I Evaluation of Potential and Velocity at Off-Body Points

Once the potential flow problem has been solved and the global singularity

parameters I_i} N are evaluated, the source strength o and doublet strength
i=1

are given everywhere on the singularity surface S by (cf. equations (3.3.1-2))

N

o(_) = E _I Sl (3) (P.I.1)

I=1

N

u(_) = E _I ml (7) (P.1.1)

I=1

Here, q denotes an arbitrary source point on S.

When no symmetry planes are present, we may combine these relations with

the representation formulas (3.2.7) and (B.3.9) and obtain for _(_) and T(_):

= -;i j (-°. . )dSq (P.I.3)
SND

P

1 fS (n x Vq _) x Vq (_) dSq

SADp
(P .I.4)

Note that we have dropped the line vortex term from v.

The evaluation of these formulae is now achieved by dividing S up into panels

and evaluating individual panel contributions in the fashion described in

detail in appendices J and K. The resulting evaluation procedure may be
summarized, using the notation of appendix K.6 (cf. page K.6-2):

N

_(p) = _ ¢IC I xI

I=1

N

I=1

[ _o(P, sI) + ¢ (p, ml)] xI
(P.Z.5)
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N

VlC I xI

I=1

N

[V (-p, sI) + _ (p, ml)] xI
o

I=1

(P.1.6)

Here, the various operators _ , ¢ etc. have the obvious definitions:
a

%(L sI)=- ff
SN Dp

si(q)/R(p, _) dSq
(P.1.7)

1
* (P,m I) : -_- _'j" ml(q) n .

SFIDp

Vq(i/R(_,q) ) dSq
(P.I.8)

_'(-" ): 1 ffo P'Sl ¥

SFIOp

sI(5) Vq(1/R(p,q)) dSq (P.I.9)

-. z ffV ,mI) :

sn Dp

(n x Vq mI) x _q(1/R(_,q)) dSq

(P.I.IO)

Up to this point, the evaluation of _ and _ has offered few surprises.

The situation becomes somewhat more complicated when we introduce the concept

of symmetry. Fortunately many of the complicated details have already been

worked out and presented in appendix K. Throughout the remainder of this
section we assume that the reader has a good familiarity with the results of

appendix K.

We begin our present study of symmetry by recalling the definition of _i,

equation (K.3.22). Inverting this definition, we obtain

• i HiJ _j --_(_I_) : Z _ (P) (P.I.11)

J

Setting i = +i and noting that H+j = 1 and R÷

we find _(_) given by

= I (cf. (K.3.6) and (K.3.21))

#A, _,_(_) : (_S(_) + m IpJ) (P.I.12)

m_
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Now _S(_) and _A(_) are given by equation (K.5.17) combined with the repre-

• _i
sentations (K.5.19-20) for _I, _ .

• ,

^i * _ *(Rj i= _E] _ HIJ [ (ROp,sl) + _ P,ml)] xI (P.I.13)
q IJ

I j

Substituting this result into (P.1.12) we obtain

i * "-* * '-_ ^i_(P) = _E] _E] _ Hij [_ (RJp,sl) + _ (RJp,ml)] _I (P.1.14)

I i j

Introducing the following notation (and definition) for desymmetrized

singularity parameters _ :

(P.I.15)

we obtain for _(p) the equation

[, (RJC,, I j"
I j

The corresponding formula for _(p) is obtained by formally applying

above result and using the operator equations

(P.I.16)

Vp to the

* _ _*(r
Vr • (r,s) = V ,s)o

Vr • (r,m) = V* (r,m)

One obtains

_E] RJ[v*(RJp,sl) + V'(RJp,ml)] x_

i j

As before the various operator integrals are computed by accumulating

individual panel contributions as described in appendix J.

Having treated the case of one plane of symmetry, the handling of two

planes of symmetry is easy. One obtains for _(p) :

_(_) : (RJl_,sl) + **(RJlF,ml)] x_l

I j l

jl
Here, kl are desymmetrized global singularity parameters:

(P.1.17)

(P.1.18)
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