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ABSTRACT T

UAr.,

One possible low speed propulsion system for the National

AeroSpace Plane is a Liquid Air Cycle Engine (LACE). The LACE V

system uses the heat sink in the liquid hydrogen propellant to liquify Wtox

air in a heat exchanger which is then pumped up to high pressure 14:0

and used as the oxidizer in a hydrogen-liquid air rocket. The inlet
air stream must be dehumidified or moisture could freeze on the

cryogenic heat exchangers and block them. W 2

The main objective of this research has been to develop a y

computer simulation of the cold-tube/antifreeze-spray water

alleviation system and to verify the model with experimental data.

An experimental facility has been built and humid air tests were _5

conducted on a generic heat exchanger to obtain condensing data for Ap
code development. AW

The paper describes the experimental setup, outlines the r h

method of calculation used in the code, and presents comparisons of

the calculations and measurements. Causes of discrepancies between

the model and data are explained.

NOMENCLATURE

Cl, C2

Di, D,

/-/i,
h

h,,
k

L

Le

th

Q
q

tube inside or outside surface area

proportionality constant between shear stress and

velocity

heat capacity at constant pressure

constants in glycol distribution function (eqn. (15))
tube inside or outside diameter

heal of vaporization of water

heat transfer coefficient

mass transfer coefficient

thermal conductivity

tube length
Lewis number

fluid flow rate

dynamic pressure

heat flow

temperature
overall heat conductance, film-air interface to

refrigerant

velocity

flow rate of fog per unit weight of dry air

flow rate of glycol/water mixture pe r unit weight of

dry air from upstream tube rows that is captured

by tube row under consideration

specific humidity of tube row outlet air stream
coordinate normal to tube surface

Greek symbols

Ix

P

film thickness

pressure difference

flow rate of water condensed per unit air flow
fraction of water/glycol mixture approaching tube

row that is caught

viscosity

fluid density

shear stress

Subscripts

[/

b

film, f

:og
i

in

lat

mix

out

0

r

sens

sire

w

air

bulk or average condition
film of condensate on tube

fog
tube row i

inlet

latent heat

water/glycol mixture

outlet

outside surface

refrigerant
saturation conditions

sensible heat

steam

tube wall

free stream conditions



INTRODUCTION

One possible low speed propulsion system for the

National AeroSpace Plane (NASP) is a Liquid Air Cycle Engine

(LACE). The LACE system uses the heat sink in the liquid

hydrogen propellant to liquify air in a heat exchanger. The liquid air

is then pumped up to high pressure and is used as the oxidizer in a

hydrogen-liquid air rocket. The NASP will be required to operate

from almost any location on earth; thus, humidities as high as 0.02

Kg-HzO/Kg-air could be encountered. Moisture from the air could

freeze on the cryogenic heat exchangers and block them. For this

reason, the incoming air stream must be dehumidified before coming

in contact with the cryogenic systems.

Any dehumidification system must operate with low

pressure losses. High system pressure loss would require large heat

exchanger face area in order to pass the required air flow thus

increasing system weight and volume. In the eondesing portion of

the LACE system, as the air condensing pressure is lowered, its

saturation temperature approaches its freezing temperature. Thus,

a large pressure loss in the dehumidification system could cause the

condenser unit to freeze with solid air. There are several practical

ways to remove moisture from an air stream. Desiccant beds, freeze-

out heat exchangers, and cold-tube heat exchangers are examples.

Desiccant beds remove moisture by passing the stream

through a packed bed of moisture-absorbing material such as silica

gel. For the NASP application this would be impractical because the

water removed from the air Would stay on board and increase system

weight.

In the freeze-out method, moisture is removed by

passing the humid air through a very cold heat exchanger. The

moisture is deposited on the heat exchanger surface in the form of

frost. The heat exchanger must be defrosted periodically or pressure

loss becomes excessive and moisture removal efficiency decreases.

For continuous operation a second identical heat exchanger can be

employed while the frozen unit is deiced. This system requires

valving to switch from cold refrigerant to a source of heat to defrost

the ice laden unit. Valves must also be used to shuttle the air flow

from one unit to the other.

The cold-tube/antifreeze-spray alleviation system

works like a home dehumidifier. Moist air is passed over the tubes

of a heat exchanger which are cooled below the dew-point

temperature of the air stream. Water condenses on the tubes and is

blown downstream in the form of droplets which are removed with

a particle separator. An antifreeze can be sprayed on the face of the

heat exchanger to prevent water freezing and allow refrigerant

temperatures down to 222 K or lower. This is a continuous process

and the pressure loss can be kept low.

The main objective of this research has been to

develop a computer simulation of the cold-tube/antifreeze-spray water

alleviation system. Toward this end, a computer code was

developed, an experimental facility was built, and humid air data

obtained for code development. The computer code can predict the

heat flow, pressure loss, outlet air temperature, and the outlet

humidity of the air stream given the air inlet conditions, heat

exchanger geometry, and refrigerant inlet conditions. Refrigerant

outlet conditions are also predicted.

This paper will describe the experimental facility and

outline the method of calculation used in the computer code. The

experimental data wilt be presented and a comparison with computer

predictions will be made. Causes of discrepancies between the
model and the data will be examined.

EXPERIMENTAL FACILITY

Air, steam and Klycol systems Figure I is a schema, tic

representation of part of the experimental facility. Shown on the

figure are the air, steam humidification, glycol spray, and condensate

collection systems. Starting at the upper right of the figure, air at

275.8 KPa pressure with a dew point of about 233 K was passed
through an orifice run and through the flow control-valve. At this
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Figure 1. Air, steam, and glycol systems.



point steam with around 8"C of superheat was injected into the duct
to hu,nidify the air. An orifice run was also used to measure the
steam flow. The amount of steam that could be added without

producing fog was a function of the air supply temperature which in
turn depended nn ambient temperature. Maximum humidity obtained

for these tests was around 0.021 Ibm-H20/Ibm-air (147 grains/Ibm).
Air total pressures were measured upstream and

downstream of each heat exchanger core. A cross rake of 16
thermocouples measured the incoming air temperature. Air
temperatures were also measured downstream of each heat exchanger
core with a single thermocouple that was shielded to prevent contact
with the cold condensate-glycol mixture. The air and
condensate-glycol mixture then passed through a wavy plate
separator where the condensate-glycol mixture was removed. The
separator was custom fabricated for this application with vanes
similar to the Brugess-Manning inline vane series 3200. The
cnndensate ran into a barrel that was suspended from a load cell
which was used to determine the flow rate. Air then passed to
atmospheric exhaust.

Ethylene glycol antifreeze was sprayed onto the face
of the upstream heat exchanger. Two different glycol nozzles were
used for these tests, they were the Bete Fog Nozzle, .Inc. model
numbers FWL-I/4-120X and FWL-I/2-120X. Both were 120 ° full
cone nozzles with a square spray pattern. The glycol supply barrel
was suspended from a load cell which was used to measure the flow
rate. Antifreeze nozzle droplet size was measured for a limited
number of flow conditions with a Malvern Particle Sizer Model 2600
HSD.

Refrigeration system - The research heat exchangers were cooled by

circulating refrigerant R-12 through them. The refrigerant did not
change phase as in a vap6r compression cycle but stayed in the
liquid state. The'refrigerant was cooled'by pumping it through a
shell and tube heat exchanger with liquid nitrogen (LN2) on the shell
side as shown in figure 2. R-12 was chosen as a refrigerant because
it has a freezing temperature around 117 K. This was still well
above the temperature of boiling LN 2 (78 K) but the R-12 did not
appear to freeze in the heat exchanger. Freezing did not occur
because the heat exchanger tube wall temperature was above the
Leidenfrost temperature of LN_; this caused it to film boil which led
m a large temperature rise across the nitrogen vapor film. R-12
temperatures were measured at the inlet and outlet of each of the

GN2 _-r

VENT_
LN2,/R- 12

T EXCHANGER

LN2 ' \ _._ STORAGE

INLET __. TANKTEMPERATURE h

CONTROL --
VALVE

research heat exchanger cores and flow rates were measured at the
outlet of each core. These flow rates and temperatures were lhen
used to calculate a heat flow rate which was compared to the air side
heat flow rate.

Research heat exchangers - The heat exchanger cores shown in
Figure 3 were fabricated from 0.125 inch diameter, bare (without
fins), aluminum tubes with 0.020 inch wall thickness. The tubes
were oriented vertically and arranged in an inline pattern with a tube

• T

Figure 3. Research hea! exchanger and air duct.

spacing of L25 tube diameters in the airflow direction and 1.5
diameters in tile non-flow direction. The width or non-flow

dimension of the heat exchanger duct was 12 inches and the duct
height (tube length) was 12 inches. There were 64 tubes in each row
and 20 tube rows in the airflow direction in each of the two cores.

Tube stiffener sheets divided the duct into thirds. The tubes passed
through clearance holes in the stiffener sheets but were not fastened
to the stiffener sheets. The tubes were epoxied into the tube sheets.
The R-12 inlet and outlet manifolds were bolted to the tube sheets

and were sealed with "O" rings. The core-manifold assembly was
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Figure 2. Refrigeration system.
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then installed into the air duct housings also shown in figure 3. The

air duct housings separated each core by 3.5 inches; this allowed for

instrumentation access between core segments. Tube vibration was

a major problem as evidenced by grooves worn in the tubes at the

stiffener sheet and cracking of the tubes at the tube sheet joints.

Figure 4 shows four heat exchanger cores installed in

the rig; for the present test only the two upstream cores were in

place. The refrigerant flow was kept the same through each of the

two cores so they functioned as a single refrigerant pass. Humid air

entered from the right and refrigerant (R-12) entered through the

pipes on the bottom and exited at the top. The viewports were

provided to observe the condensation, ice formation and runoff of
water on the tubes.

Figure 4. Research heat exchangers installed in rig.

DATA RECORDING

All data were recorded on the laboratory data

acquisition system described in Ref. 1. To help eliminate some of

the noise present in the system twenty "scans" or individual readings

of each data channel were recorded. These twenty scans were then

averaged to give a single reading for each channel and a statistical

analysis was performed to give a variance for each channel which

was used in the error analysis. A reading was taken about every 90

seconds and 8-12 readings were taken during each test run. Details

of how calculated quantities were obtained from the measured values
can be found in ReL 2.

ERROR ANALYSIS

An error analysis was performed by assuming an

appropriate fixed percentage error for each measuring instrument and

adding to that the standard deviation computed for each reading.

These assumed errors were then combined by the method of Kline

and McClintock (Ref. 3) to obtain an error estimate for each

calculated quantity. A table of error estimates for each reading is
available in Ref. 2.

COMPUTER MODEL

Both air and refrigerant mass flows and inlet

temperatures were assumed known as welt as air inlet humidity;

outlet temperatures, humidity, and pressure drops were calculated.

Each core segment of the heat exchanger consisting of one

refrigerant pass was solved from air inlet to exit, one tube row at a

time; the air exit conditions for the first tube row became the inlet

conditions for the second row and so on.

Hyt_roscooic Effect of Ethylene Glycol

Experimental results presented in Ref. 2 show that

humidity could be removed from the air stream by the hygroscopic

action of ethylene glycol. This effect was ignored in calculating the

heat and mass balances for the dehumidifier for the following

reasons. First, the overall energy balance will not be effected by the

hygroscopic removal of water because the heat of condensation of

water must still be removed by the heat exchanger. Second, very

little water was removed by hygroscopic action due to low relative

velocity between air and glycol and low surface area. Finally, the

hygroscopic effect was shown to be effective only for pure ethylene

glycol; thus, as water condenses arid dilutes the glycol the

hygroscopic potential will be lost after a few tube rows.

,lleat and Mass Transfer

The following logic was used to determine if

condensing water and frozen condensate were present: 1. The tube

row average surface temperature was first calculated assuming no

condensing took place. 2. If the resulting average tube temperature

was below the dew-point temperature of the incoming air, the tube

temperature was recalculated with a condensing water-ethylene glycol

film on its surface. 3. If the resulting tube temperature with

condensing was below the freezing temperature of the

condensate-ethylene glycol mixture, the tube temperature could be

recalculated with a layer of ice between the tube wall and the

condensate film. This latter condition was not encountered

experimentally and will not be discussed further. Calculation of dry

heat transfer is straightforward; the calculation of heat transfer and

pressure drop with condensing water and antifreeze-spray will now
be discussed.

Initial guesses for tile outlet temperatures of the air

and refrigerant streams as well as the average tube surface

temperature were made to start the calculation. Refrigerant

temperature was taken to be an average value for each tube row

which resulted in a constant tube surface temperature for each row.

In addition to the unknown air and refrigerant outlet temperatures the

temperature of the liquid-vapor interface where condensation takes

place, T,,,,, was unknown. This interface temperature controls the rate

of diffusion of steam to the condensate surface. An initial guess of

T,,,, wasalso made to start the calculation. Heat flow was assumed

constant ahmg the tube length and was calculated from the equation

q = <:/,,,7,+ qv.t (1)

The sensible heat or heat convected to the surface of the condensate

film was calculated from

q,,.,= h° Ao(To.b-T,._) (2)

h,,, the heat transfer coefficient between the air and tube bank, was

calculated from a curve fit of the data in Ref. 4. The heat of
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condensation or latent heat is

q_,c= _, Aw SY_ (3)

where AW is the flow rate of steam that diffuses to the tube row per
unit air flow.

The rate of condensation of water on the tubes is

controlled by the diffusion of steam through air to the surface of the

condensate film. The heat-mass transfer analogy was used to

calculate the rate of steam diffusion. The mass transfer coefficient,

h,, was calculated from the heat transfer coefficient and the Lewis

number, Le, as (Ref. 5):

h. -- h, (4)

p, Cp,, (Le) °'_7

were assumed linear and shear stress at the edge of the film was

assumed to be proportional to the air velocity.

dV._x V,

The average film thickness, 6, was then determined to be

8 -- 2 (Arc + B) -_ - B "_ 17)

Where A and B are defined by

A = l_,ux D_ hm(pscm,.-psu..,, c) (8)

P_x Ca _t,V,

Several data points were taken with the R-12 temperature above the

freezing temperature of water in order to test the code with no glycol

spray, Comparing these data with the calculated values it was

determined that the dry heat transfer coefficient, h,,, must be

multiplied by a factor of 1.18 when oondensing is present. This

augmentation is consistent with the findings of other authors (Ref.

6). The condensate flow rate was calculated from the mass transfer

coefficient and the concentration gradient (steam density difference)
between the free stream and the condensate surface.

S - I_._ Wo (9)

C_ is a constant; a value of 115 was found to give the best agreement

between data obtained in these experiments and calculations. The

film conductance, hat,,, was calculated from the film thickness as

k_x (10)
hLt.lm - 5

AW = h,. Ao(p,_.,.-pac_,,a c) (5)

" L

The thickness of the condensate film was needed to

calculate the film thermal conductance and the increase in pressure qt-r
loss due to the increased blockage. It was found that Nusselt's

falling film analysis (Ref. 7) of condensing on vertical tubes gave

film thicknesses that were unrealistically large. His analysis did not

account for the shearing effect of air flowing over the tubes. An

analysis was made of the condensate film that assumed the film to

be thin compared to the tube diameter, the shearing effect to be

dominant and gravity terms could be ignored. This analysis is

illustrated in figure 5. Velocity and temperature profiles in the film

GLYCOL/WATER MIXTURE l

FROM UPSTREAM TUBES_'_ o_o°°o°°o
-----...._ o 0 c _oo= o

o°Oo o(_ 03 o

o° o _ o c _ G

GLYCOL/WATER FILM------._ _ ,...

STEAId CONDENSES / h_ _(_/_°_ _ ''ON FILM SURFACE AT Tsat _

HEAT EXCHANCER_ _}il
TUBE ------I (.iX,:

::,, (

......-_o:Oo

FILM BLOWN OFF TUI3E _ _ oo _o _

The overall heat transfer from the liquid-vapor interface to the

refrigerant was calculated as

= UAt_,(r,,c - r,.b) =
(T._ - T_,_)

_£ilm no

in( D° )
Dt

2_k w L

1

]'Ir A I

(11)

" 2:%
"%.

Figure 5. Glycol:Water film model.
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Equating the heat flow between the air and the

vapor-liquid interfaee, eqn. (1), and from the vapor-liquid interface

to tile refrigerant, eqn. (l 1), then gave a new estimate for the

interface temperature

T,at = q1_ + UAr-_T_,_ + h_ AoT,. b (12)
UAz_r + ha A o

Fog Formation

The quantity of water condensed on a tube row was

subtracted from the inlet steam flow to obtain a tube row outlet

specific humidity. If the saturation value of humidity in the outlet

stream was lower than the calculated outlet humidity, the excess was

assumed to be converted into fog. This was an important

consideration; if the condensation to fog was not accounted for, the

predicted outlet air temperatures were too low. A new estimate of

the air outlet temperature was obtained from an energy balance of the

air, glycol, steam, condensate, and fog entering and leaving the tube

row.

TaD,i

(13)

A new estimate of tile tube wall temperature, Tw,,,, was obtained by

equating the heat conducted through the liquid film with the total
heat transfer

q

r.,= r= - (14)

With these new estimates the procedure was repeated

iteratively until the liquid-vapor interface and tube surface

temperatures did not vary more than 0.03"C between iterations.

The refrigerant flow was assumed to be divided

equally between tile tube rows. The refrigerant enthalpy rise and

outlet temperature were calculated from the heat flow and the

refrigerant flow rate. Refrigerant exit temperatures for all the tube

rows were then averaged to determine the outlet refrigerant

temperature for the entire refrigerant pass.

Pressure loss

The effect of the condensate layer on air side pressure

loss was accounted for by increasing the diameter of the tubes by

twice the average thickness of the layer, which decreased the
minimum free flow area of the tube bank. Pressure loss was

calculated as recommended in Ref. 4 with the assumption that the

liquid film did not alter the friction factor.

Antifreeze dist.r.ibution

Ethylene glycol antifreeze was sprayed only on the

face of the upstream heat exchanger. The assumed distribution of

glycol on the downstream tube rows had a large effect on the

calculated pressure loss; heat transfer results were less sensitive

because the film conductance was relatively high. The glycol

distribution was modeled by defining a "catch efficiency," ri_, as the

fraction of glycol from upstream that hits tube row i. Condensed

water from upstreant was assumed to have the same catch efficiency

as tile glycol. A paraholic distribution of catch efficiency was

assumed and the coefficients C l and C 2 were determined by matching

the predicted pressure drop with the data of the present experiment.

For the forty rows of tubes used in the present test, the catch

efficiency was given by the equation

(41 -i/2 (15)
rlj = C 1_, 40 } + c2

where i was the tube row numbe[ed counted from the first upstream

row, the best values fi)r Ct and C a were 0.1 and 0.5 respectively. All

results presented in this paper used the glycol distribution model of

equation (15).

EXPERIMENTAL RESULTS

Three groups of tests were run. In the first group

there was essentially zero inlet humidity. These data were taken to

validate the rig and data reduction procedures by comparing with

calculations made with heat transfer and pressure drop correlations

available in the literature for this tube bank configuration (Ref. 4).

The main body of data was with humid air flowing over cold tubes

and glycol spray to prevent water from freezing on the tubes. These

data were obtained to aid in the development of the computer code.

Finally, several runs were made to determine the amount of moisture

that tile ethylene glycol antifreeze could remove from the air stream

due to its hygroscopic properties; hygroscopic results are reported in
Ref. 2.

EnerRy Balance

Figure 6 is a comparison of the heat flow from the air

stream and the heat flow into the refrigerant stream. For all the

readings, the refrigerant heat flow is larger than the air heat flow.

This was thought to be due to conditions in the refrigerant stream

that caused local two phase flow at the heat exchanger exit even

though the bulk conditions indicated the refrigerant was all liquid.
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Figure 6. Comparison of R-12 and air heat flows.
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Figure 8. Measured outlet humidity as a function of
R-12 inlet temperature.

This led to high pressure loss across ihe refrigerant flow meter
which caused a higher than aciual fl0w rate to be calculated and thus

the calculated refrigerant heat flow was too large. Heat gain from
the surroundings could also have contributed to the imbalance, in

tests was from 0.0096 to 0.0212 Kg-ll20/Kg-air. Tile lowest specific
humidity obtained was 0.00018 Kg-ll20/Kg-air; the inlet humidity fi)r
this data point was 0.0139 Kg-HzO/Kg-air, and the refrigerant
temperature was 225 K. Tile outlet air temperature for this point was
242 K. The shape of the curve is itn indication of the diminishing
returns that are obtained with lowering refrigerant temperature; to
lower humdity further, more tube rows could be added.

general, the energy balancewas within the estimated expert=mental = _"....
error which gave confidence that the experimental setup was working
properly.

Humid Air Heat Transfer Data .........

Test matrix. Figure 7 shows the experimental
conditions that were run. Refrigerant temperatures ranged from 225
to 261 K; the ratio of glycol to steam flow ranged from 0.99 to 2.51.
Two nominal air flows were run, they were 1.1 and 1.8 Kg/sec.

Outlet humidity. The outlet humidity was calculated
from the measured air outlet temperature assuming saturated
conditions. Figure 8 shows the outlet specific humidity as a function
of refrigerant inlet temperature. The range of inlet humidity for these

Pressure loss. The dimensionless pressure loss (Ap/O)
across each heat exchanger core is shown in figure 9 plotted against
glycol/steam ratio. One thing becomes immediately obvious; there
is a large scatter in the pressure loss data for the first heat exchanger
core, fig. 9 a.). There is a definite trend with air flow; the lower air
flow has the higher dimensionless pressure loss. In general, pressure
toss tends to decrease with increasing glycol/steam ratio and is higher
for the lower refrigerant temperatures. The cause of the scatter will
be discussed later. Examination of pressure loss for heat exchanger
core #2, fig. 9 b.) reveals considerably less scatter; in fact, the
dimensionless pressure loss appears nearly constant. The single
anomalous point near glycol/steam ratio of 2 was for a special test
which will be discussed later.
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Antifreeze nozzle droplet size. Nozzle droplet size

was measured for the FWL-I/2-120X nozzle only. Figure 10 shows

the median droplet diameter versus flow rate for room temperature
ethylene glycol. For glycol flows between 0.06 and 0.12 lbm/sec the

median diameter varied from 260 to 2101_m.

COMPARISON OF EXPERIMENTAL DATA
WITH CALCULATIONS

Dry Heat Transfer

The code was used to calculate-heat ti'ansfer and

pressure drop for the dry data by setting the inlet humidity to zero.

Predicted heat flow, air outlet temperature, and pressure loss are

compared with experimental data in figures 11-13. Agreement "

between the code and experimental data is within the esiimated

experimental accuracy.

tleat Transfer With Cxmdensint_ Water

Figures 14-17 show a comparison of the experimental

heat flow, outlet air temperature, condensate-glycol flow, and

pressure loss for upstream (core #1) and downstream (core #2) heat

exchanger cores versus the computer prediction for all the

condensing data. Data wi:re obtained both with a single 3 inch heat

exchanger core and with two 3 inch cores cooled. The calculated

heat flow agrees with the measured heat flow to within about 5% as

seen on figure 14. Calculated air outlet temperatures agree within

3°C and calculated condensate flows (water + glycol) are also within

5% of the measured values• Note that the predicted condensate flow

is high by about 3% over the range of the data. This may reflect

inefficiency in the particle separator.

Pressure loss for the upstream core was not predicted

successfully. The numerical results were generally too low. As seen

on fig. 17 a.), the code predicted basically two levels of pressure loss

reflecting the two experimental air flow rates; however, measured

pressure Io_eshad large scatter. Pressure loss predictions for the

downstream core are much improved and are within +7 to -20%.
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To explain this discrepancy between the predicted and

measured pressure lossexamine figure 18. The total pressure

measured upstream of each heat exchanger core as a function of time

for one test run is shown in the figure. The downstream pressure

remained constant at slightly above atmospheric (pressure loss across

the separator was generally around 0.25 psi), thus the upstream total

pressure was directly proportional to pressure loss through the core.

At point A, the air and steam flows have been established with no

refrigerant flow through the heat exchangers. At point B, a test

glycol spray was started to set the proper glycol flow rate; the spray

lasts approximately one minute. The resulting blip in the pressure

trace was due to the liquid layer on the tubes that increased the

blockage of the heat exchanger core. At point C the steam flow was

turned off; this resulted in a slight drop in both mass flow and air

temperature which caused the pressure loss to decrease. At point D,

the refrigerant valve was opened and the heat exchangers began to
cool off which caused the pressure to drop further. The steam and

glycol flows were started simultaneously at point E; pressure then

rose during the entire test run until point F where the steam and

glycol flows were turned off. Of particular interest is the magnitude

of the pressure decrease at point F when the steam and glycol flows

were turned off. This pressure decrease was due to the liquid being

blown off the tubes. It is only slightly larger than the decrease when

the glycol test spray was turned off at point B; the difference is

probably due to the colder temperature of the glycol at point F

making it more viscous and thus increasing the liquid layer thickness.
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A- Heat exchanger at room temperature, air flow = !.81 Kg/sec, steam flow = 0.025 Kg./sec, humidity = 1.37%.

B- Glycol test spray, heat exchanger at room temp., glycol flow rate = 0.045 Kg/sec, glycol/steam ratio = 1.8,

pressure drop increases by - 1.7 KPa.
C- Steam flow off.

D- Refrigerant valve to heat exchanger opened, T_ = 225 K.

E- Steam and glycol valves opened, pressure rises during entire test from E to F.

F - Steam and glycol valves closed, pressure drop decreases by - 2.1 KPa and stays level between F and G.

G- LN2 to cool refrigerant turned off - refrigerant begins to warm.

tl- Refrigerant inlet temperature reaches - 236 K, air pressure drop starts to decrease.

I - Refrigerant pump turned off.

Figure 18. Pressure history for a typical test run.

At point G the LN: to the refrigerant-LN: heat exchanger was turned

off and the refrigerant began to warm up. The inlet temperature of

the refrigerant reached 236 K at point H where the pressure began
to hill. The pressure decreased toward the initial condition and the

refrigerant pump was turned off at point I. The high pressure

between points F and It must be due to something frozen on the
tubes.

Calculations indicate that for any reasonable

assumption of glycol distribution through the heal exchanger, the

concentration of glycol in the glycol-water mixture will be such that

no freezing can take place. The sketch in figure 19 illustrates what

we believe happened to cause the large and erratic pressure losses in

the first core. During initial checkout runs, the glycol nozzle

streamwise position was adjusted until no visible frost appeared on

the heat exchanger face. The nozzle had a square spray pattern but

some overspray was observed when full coverage was obtained.

Pure ethylene glycol freezes around 260 K. As shown in the sketch,

the glycol rich overspray flows downstream onto the cold heat

exchanger tubes and tubesheet where it freezes. This process

continues throughout the entire run, increasing the frozen glycol layer

thickness and thus increasing the pressure loss. No ice or frost was

seen on the heat exchanger face; however, ice or more precisely

slush was seen on the tubes next to the wall through the side

FROZEN GLYCOL_

--- GLYCOL SPRAY

IInI1 1

,,Q,,,D

"/ _ HEAT EXCHANGER

TUBES

Figure 19. Pure glycol freezes near wall.
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viewportsduringmustruns.CalculationsshowthataI/4-inchthick
icelayeraroundtheperimeterof theductcouldaccountfor a
pressurelossof the magnitude observed between points G and I cm
Fig. 18.

In an attempt to eliminate the glycol rich overspray
near the side walls, a l-inch thick honeycomb with l/4-inch cells was

placed between the glycol nozzle and the face of the heat exchanger.

The purpose of the honeycomb was to straighien the flow from the

glycol nozzle and turn it parallel to the wall thus eliminating the

overspray. The nozzle axial position was adjusted to prov'ide full

coverage to the honeycomb. The honr_ycomb did not lower the

pressure loss in the first core and made the pressure loss in the

second core higher as shown by the anomalous point on figure 9 b.).

The honeycomb did turn the spray but also acted as an agglomerator

making large glycol droplets from the small ones. Apparently, the
large droplets did not reach the tubes on the downstream core and

waler froze on the tubes thus increasing the pressure drop.

SUMMARY OF RESULTS

Tests were conducted on a cold-tube water alleviation

system that utilized ethylene glycol antifreeze to allow operation at

subfreezing temperatures. A computer code was written and

predictions were compared to the experimental data. The main
results were:

1. The system was tested at refrigerant

temperatures as low as 225 K and was

found to be capable of lowering the

humidity to 0.00018 Kg-H,O/Kg-air.

2. The system air pressure loss

increased during the test runs and was

believed to be caused by the freezing

of relatively pure glycol near the

sidewalls due to nozzle overspray.

3. Large glycol drops were ineffective

in reaching downstream tube rows

causing water to freeze on the tubes

and increasing the pressure drop.

4. Good agreement between

experimental data and computer

prediction was obtained for heat flow,

outlet temperature, and condensate

flow rate. Pressure loss was under

predicted in the first core because of

freezing of glycol due to non-ideal

glycol distribution. Pressure loss

predictions were improved in the
second core and were within +7 to -

20%.

CONCLUDING REMARKS . _ :. :

The objective of this work was to develop a computer

model of a cold-tube water alleviation system that utilized ethylene

glycol antifreeze tc_allow operation at reduced temperatures Toward

that end, an experimental rig was built and data taken at refrigerant

.temperatures down to 225 K. A successful computer model has been

developed and can be used to explore possible design variations of

, the system. Great care must be taken in spraying the antifreeze on

the heat exchanger; oversprays and droplet size have a large effect

on the system pressure loss.
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