&3
9

NO 2~ %

Advancements in Engineering Turbulence Modeling

T.-H. Shih
Center for Modeling of Turbulence and Transition
ICOMP/NASA Lewis Research Center

9th National Aero-Space Plane
Technology Symposium
November 1-2, 1990

Paper Number 105

108

£ ¢

5

L

)
L



ABSTRACT

Some new developments in two-equation models and second order closure models will
be presented. Two-equation models (e.g., k-€ model) have been widely used in CFD for
engineering problems. Most of low-Reynolds number two-equation models contain some
wall-distance damping functions to acount for the effect of wall on turbulence. However,
this often causes the confusions and difficulties in computing flows with complex geometry
and also needs an ad hoc treatment near the separation and reattachment points. In
this paper, a set of modified two-equation models is proposed to remove abovementioned
shortcomings. The calculations using various two-equation models are compared with
direct numerical simulations of channel flows and flat boundary layers.

Development of second ordér closure model will be also discussed with emphasis on the
modeling of pressure related correlation terms and dissipation rates in the second moment
equations. All the existing models poorly predict the normal stresses near the wall and fail
to predict the 3 dimensional effect of mean flow on the turbulence (e.g., decrease in the
shear stress caused by the cross flow in the boundary layer). The newly developed second
order near-wall turbulence model to be described in this paper is capable of capturing the
near-wall behavior of turbulence as well as the effect of three dimension mean flow on the

turbulence.
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1. k-€ model

The two-equation model, especially k-¢ model, is still the most widely used model
for computing engineering flows. We first list some of the commonly used two-equation
models,!L(2LI3LI4(5].06] 54 their predictions on the fully developed channel flows and
boundary layer flows compared with the corresponding direct numerical simulations. Then,

Wwe propose a modified k-e model which does not contain any wall distance. The proposed
k-e model has been also tested using direct numerical simulatjon data.

The eddy viscosity vr is assumed in two-equation models as follows:

k2
vr = Cufu?

~or

vy = Cufukr

where 7 = k2 /¢

The general k-¢ (or k-7) model equations are of the following forms:
[/ v
ket Uikj= (== +v)k;| +T+ur @+ Uji)Uij—e+D
L\ Tk WJ
€+ Ujeyj = ((2 + 1/) e’jJ + C]%VT (Ug,j + UJ‘,,') U,',j — szz% + E
- 1j

‘7',¢-l-U_,"r',j=r UT-{-V T +g- E-I—V ’C’,'T,,'—2 E-FV T,iT,i
L \Or2 K k\op T \0n

+ (1= Ca)zvr(Us + Us)Uij + (Cafo — 1)
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This table lists the model terms, damping functions and model constants appeared in

various two-equation models

Model E € C, |G fi fa
JL 2vu(55)° € 1.45|2.0 1.0 1 — .gel~149)
LB o € 1.44|2.0 |1+ (79;:1)’ 1 — el—%4)
Chien =2pe € 1.35(1.8 1.0 1 — .22e(~14730)
NH vi(1 — f,,) g—’——y‘;)’ € 1.45(1.9 1.0 1 —.3el=7)
Shih vi(55) e — %(52)| 1.45|20 1.0 1 = .22e(-T4/30)
| Model I D fu Ok
- =7
JL 0 —21/(646”@)2 e Rl 1.0
LB 0 0 [1 — elmo1sR)]2(1 4 2p4) 1.0
Chien o —2vk/y? 1 — e(~-01557) 1.0
NH ) —21/(%?)2 [1 - e(-v*/36.5)]2 1.0
SAA 0 o (1+ &'ﬁ;)tanh(%) 1.36
. osuik i - =3yt — -4t
Shih "kfp[l‘s':;l;(—y"’)] ) 1 — el—6x10 3yt —gxr107yT + 1.3
2.5% 10"6y+3—-4xw"9y+4)

k2
V= C,xf,:"g"

y+=g£y_ Rl—k’
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The following figures show the predictions on fully develop channel flow using various
two-equation models compared with the direct numerical simulation data.["] Ploted quan-
tities include the mean velocity U , turbulent shear stress (uv), turbulent kinetic energy k
and dissipation rate EPS e. The open circle represents direct numerical simulation, and
the solid line represents the model prediction.
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The figures below show the model predictions on flat plate boundary layer flow. A

direct numerical simulation of boundary layer flow!® is used for comparison. The skin
friction coefficient Cj is also included in the comparisons.
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Overall, Shih’s k-¢ model gives better prediction in both fully developed channel flows
and flat plate boundary layer flows according to the comparisons with corresponding direct
numerical simulations. However, this model has the same problem as the others, that is jt
contains the wall distance parameter y*, which is defined as

+ _ Ury

y
v

where u, is the friction velocity. The difficulty would occure in some situations. For
example, near the seperation point u, aproaches zero and hence v, (through f,(y*)) will
approach zero everywhere when this u, is used. Another example is the flow with complex
geometry that the wall distance is not well defined. In the both cases, the ad hoc treatment
is needed in the model implimentation. We notice that Jonse-Launder’s modell!l does not
contain y*. However, its present form does not perform very well in the simple testing
flows. Here, we based on the Shih’s k-¢ model modify the parts which is related the Al

k372
€

with another parameter R = J%‘ R is a ratio of turbulence length-scale to viscous

length scale. The modifications!®) made here are:

fu=1—exp {Ca [1 - exp(CsR1/4)]}
o= [%Z-fk,] |

E=¢ [1 - exp(—R:n)]

where R, = k% /ve, Cy = .004, C; = .0004, Cs =1.2
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The following figures show the predictions from the present model on fully developed

channel flow compared with other models

rect numerical simulation data.

6.0
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("] The open symbols represent direct numerical simulation,
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2. Second order modeling of near-wall turbulence

Using the near-wall asymptotic behavior of turbulencel!” as model constraints, we
formed a set of modeled transport equations for the Reynolds-stress tensor and the dissi-
pation rate of turbulent kinetic energy. The main empha.sis was on developing a near-wall
model for the pressure correlation and dissipation terms in the Reynolds-stress equation.
A modeled dissipation rate equation is derived more rationally. Asymptotic analysis shows
that near the wall, the viscous diffusion term in the Reynolds-stress equations becomes
the leading term and is balanced by the pressure correlation and dissipation terms. We
use this as a model constraint in the model development. The proposed models satisfy
realizibility and ensure no unphysical behavior will occur. Here, we briefly describe and
list the proposed models.

Reynolds stress equation

The exact equation for the Reynolds stress tensor is:
D (wiws) = Pij + Tij + DY + I — ei;
where ( ) stands for an ensemble average, D/Dt = 8/0t + Uy0/0z. the terms F;j;, T;;,

Df;), I1;; and €;; represent the production, turbulent diffusion, viscous diffusion, velocity

pressure-gradient correlation and dissipation tensor, and are identified as follows:

—(uiur)Ujx — (ujue)Usx
IJ = ( u;u uk) k
Da(;) = v(uiuj) ik

—

I;; = —=(uip,j + u;p,i)

h~}

€ij = 2v(uikttjk)

The proposed near-wall model for II;; — €;; is:

I0ij —€ij = —fo7=7 [2(u ;) + 4((uiue)njne + (uju)ning) + 2(ugungnngng)

(¢*)
where n; is a unit vector normal to the surface, and f, = exp(—(R:/C1)?), Rt = -%:;g—,
C) = 1.358R%* R.. = u.6/v. u, is the friction velocity, § is the thickness of the boundary
layer or the half width of the channel. -
Away from the wall, the velocity pressure-gradient correlation II;; is split into the
rapid part HS}) and the slow part Hg):

R o (0] (2)
IL; =117 + 115
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The proposed model for Hl(.;‘-‘) —€;j is:

2
HS}’ —&ij = —€(Bb;; + 5551')(1 - fw)

where F, 12 7.77
B =2+ 5 osza + 80U Inll + 624(~I1 + 23111) 7
F= 14 2701 + 9II
I=—Zbby;
I = Sbijbshs,

bij = (uiu;)/(¢’) - 6;/3

The rapid part of velocity pressure-gradient, H( ) is modeled as follows(Shih and
Lumley[u 12])

1 : 2 2
5 = (5 + 20s)e") Uiy +U3) = (1 - as)(P; ~ 2PBy;)
2 16 2 2 6
+(§ + ?as)(Dij"éP&ij)‘Fig(Pij D;;) + b.,P
2
+ g(q—g)[((uwk)Uj,q + (ujun) Ui g )(urug) — (wivp ) (ujug Uy g + U, ,)]
where,
Pij = —(uiuk)Ujk — (ujui)U;
Dij = —(uiug)Us j — (wjup)Us ;
P =P

[\-N

as = _l(1 + CyFY/2)
Cz = 0.8[1 — exp(—(R:/40)")]
Finally the model for the third moments is modeled as:

(uinjue) = 07%?[("!:“»)("&“;').;’ + (ujup)(uive) p + (uiup)(ujus) 5

Dissipation rate equation

The modeled dissipation rate equation derived in this work is:

€t + Uiei = (ve; — (ews)) ; ¢o( ey

é v{q
- Y1557 @) (uiu;)Us ; — ¢,

)(ukul)(Ui,jl ~ Ui Ui jk
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where

Yo = 1_;. +0.98[1 — 0.33In(1 — 55IT)] exp(~2.83R] /?)

P = 2.1

Y = —.15(1 - F)

v{g®)i{g®).s
4(¢?)

The turbulent flux term {eux) is modeled as:

E=¢€—

(eur) = —.07%? (urup)ep

These figures show some existing Reynolds stress models (for example, Launder and

Shimal'¥, Lai and So[“]) and present model compared with the direct numerical simulations.!”]
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3. Second order modeling of a three-dimensional boundary layer

A study!!® of three-dimensional effects on turbulent boundary layer were achieved by
direct numerical simulation of a fully developed turbulent channel flow subjected to trans-
verse pressure gradient. The results show that, in agreement with experimental datal'®] the
Reynolds stresses are reduced with increasing three-dimensionality and that, near the wall,
a lag develops between the stress and the strain rate. To model these three-dimensional
effects on the turbulence, we have tried various two equation models and second order
closure models. None of the current models can predict the reductions in the shear stress
observed using direct numerical simulations. However, we found that the newly proposed
second order closure model listed in the previous section do at least qualitatively capture
these three-dimensional effects.
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The following figures show the direct numerical simulation of the three dimensional
boundary layer flow and the model predictions from Launder and Shima, Lai and So and

the present models.
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Abstract

This paper presents a set of realizable second order models for boundary free turbulent
flows. The constraints on second order models based on the realizability principle arc re-
examined. The rapid terms in the pressure correlations for both the Reynolds stress and
the passive scalar flux equations are constructed to exactly satisfy the joint realizability.
All other model terms (return-to-isotropy, third moments and terms in the dissipation
equations) already satisfy realizability (Lumley 1978, Shih and Lumley 1986). To correct
the spreading rate of the axisymmetric jet, an cxtra term is added to the dissipation
equation which accounts for the effect of mean vortex stretching on dissipation. The test
flows used in this study are the mixing shear layer, plane jet, axisymmetric jet and plane
wake. The numerical solutions show that the new unified model equations (with unchanged
model constants) predict all these flows rcasonably as the results compare well with the
measurements. We expect that these model equations would be suitable for more complex
and critical flows.
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-1 Introduction

- Various turbulence models have been formulated for pre-
- dicting buoyancy-driven flows. Some of the parametersin these
modecls have been determined by Keving the solution’ of the
. model equations to experimental data for certain basic flows
- -such as decay of grid turbulence. Other parameters have been
determined by calibrating closure formulations directly with
experimental data. However, this approach may be somewhat
inaccurate due to the lack of quality experimental data for
certain correlations, especially dissipation. Finally, certain
model parameters have been fine tuned or determined by re-
quiring that the computed solution agree with experimental
-data for more complex flows, such as shear flows. In addition
there have been instances where model parameters have been
adjusted or empirical corrective terms added so that agreement
with experimental data is accomplished for a particular flow.
When model parameters are adjusted to get agreement, say
for the mean velocity and temperature fields for a particular
flow, little regard is given for the internal integrity of the model.
In other words, ar¢ the various processes such as diffusional
transport, pressure-strain interactions, ete., predicted cor-
rectly? Or are there compensating assumptions where one pro-
cess is overpredicted at the expense of another and yet the end
predicted result for the mean flow agrees with experiment?
The lack of complete sets of data for higher moments, dissi-
pation; and pressure-velocity correlations for various flows
has prevented detailed verification of closure models for the
various processes that have to be modeled.

The cbjective of this paper is to use the recently obtained
and comprehensive experimental data of Shabbir and George
(1987) and Shabbir (1987) on the axisymmetric buoyant plume
to assess the various closure relations proposed for the kinetic-
energy/dissipation and the algebraic stress models for buoy-
ancy-dominated flows. The usual approach is to solve the
modeled differential equations numerically, and then comparc
the computations with the experiment. However, this method
docs not help pinpoint the drawbacks in the various terms of
the models. In this paper, instead of the usual approach, cor-
relations obtained from measured velocity and temperature
are used directly to verify the closure hypotheses for the tur-
bulent transport of momentum, thermal encrgy, and turbulent
kinetic energy.

2 Experimental Data

The data used were taken in an axisymmetric buoyant plume
by Shabbir and George (1987) and Shabbir (1987), who meas-

Contributed by the Heat Transfer Division and prescnted at the National Heat
Transfer Confesence, Pittsburgh, Pennsylvania, August 9-12, 1987. Manuscript
reccived by the Heat Transfer Division March 3, 1988; revision reccived No-
vember 10, 1989, Kcywords: Modecling and Scaling, Plumes, Turbulence.
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Evaiuation of Turbulence Models
for Predicting Buoyant Flows

Experimental data for the buoyant axisymmeiric plume are used to validate certain
. closure hypotheses employed in turbulence model equations for calculating buoyant

JSlows. Clasure formulations for the turbulent transport of momentum, thermal

energy, kinetic energy, and squared temperature used in the k— and algebraic stress

models are investigated. Experimental data for the mean velocity, mean lemperature,

and kinetic energy are used in the closure formulation {o obtain Reynolds stresses,
" heat fluxes, efc., which are then compared with their measured values.

ured velocity and temperature fields at several vertical levels
abovz a heated source of air. Here we briefly summarize their

experimental technique and results. .

The three-wire probe used censisied of a cross-wire and a
temperaturé wire. Thus the instantancous values of the two
velocity components (vertical and radial) and temperature were
measured. The axisymmetry of the flow was established by
using an array of 16 thermocouples and also by rotating the
cross-wire by 90 deg. Profiles for the correlations between the
velocity components and velocity components with tempera-
turc through the fourth order were determined from the in-
stantaneous measurements.

Source conditions were continuously monitored in order to
calculate the rate at which buoyancy was added at the source.
The source Grashof number was 5.5. By integrating the mean
energy cquation, an integral constraint can be obtained for a
buoyant plume. For a neutral environment this constraint im-
plies that the rate at which buoyancy crosses each horizontal
section is constant and must equal the rate at which buoyancy
is added at the source, i.c., the ratio

F 1 5" —
E°F [Zr o gB(UAT+ul)rdr] 1)
must be unity (F, is the source buoyancy). This integral con-
straint was satisfied within 7 percent.

The correlation profiles at various heights were found to be
similar in the coordinate 4 = r/z (z accounted for the virtual
origin) when the velocity is scaled by U, £z and the
temperature is scaled by T, = F§z7%?/gB. The measurements
agreed well with the carlier study by George et al. (1977), who
measured only the temperature and the vertical component of
velocity. The scatter in the measurements of higher moments
is typical for such flows and is also present in previous ex-
periments, such as those of George et al. (1977). The primary
reason for the scatter is that slow time scales of the flow require

. much longer averaging time for the higher moments in order

to obtain the same statistical convergence as for the mean
quantities. Other errors in the measurements arise from the
flow reversal on the hot wire—a phenomenon most likely to
occur toward the outer edges of the flow where local turbulent
intensities are considerably higher. These are discussed in Shab-
bir and George (1987).

The various correlations in similarity variables were fitted
with curves using a least-squares fitting procedure. This rep-
resentation allows casy evaluation of the terms in the governing
cquations and closure formulations when they are cast in sim-
ilarity variables. Using these profiles the balances for the mean
momentum and cnergy differential equations were carried out
to check whether the flow satisfied the cquations of motion it
is supposed to represent. Within the thin shear layer and the
Boussinesq assumption the mean momentum and cnergy cqua-

NOVEMBER 1990, Vol. 112 | 945



SIMILARITY VARIABLES

0.20
",, -
wd

2

—

= E
<

>

> -
-

—

o

<<

-

= 4
=

=

w

.
L 'S 1 2.
0-04 rfz o 0.20
v/;

Fig. 1(a) Balances of mo;n energy and momentum equations (taken
from Shabbir and George, 1987)

tions can be respectively written as

U-aij V& =~ l — (ruv) gB8AT 2)
az or ra

3AT aAT iad .

U?z— oar =" rar ) )

Since all the quantities appearing in these equations are meas-
ured, their profiles were substituted to see whether the meas-
urements balance the equations. Figure 1{g), taken from
Shabbir and George (1987), shows that the experiment satisfies
this nontrivial test within 10 percent. An error of such mag-
nitude is typical of turbulent shear flows.

The dissipation of mechanical energy was determined by
balancing the turbulent energy equation

WOANG

NS

Flg. (%) Mechanical and thermal dissipation profiles! Full lines are

- experimental; the chalnad line Is from model equation (10}, which was
* solved for ¢ with all other quantities taken from experiment.

a* -
i ax,

where P = —ua; aU;/ax,- is the mechanical producuon and
G = —PBgud is the production due to buoyancy. Each term
except for the dissipation € and the pressure transport pt; is
determined from the experimentally determined correlations.
The pressure transport was evaluated from pu/p = —qu;/

( qzu + - pu/) +P+G-¢ )

"5, a formula given by Lumley (1978). Although this closure

relation has not been verified experimentally, it was felt that
since the pressure transport is significant, some correction
should be included rather than simply neglecting it, as is often
done. The ‘dissipation determined from the balance of the
turbulent kinetic ene1gy equation is shown in Fig. 1(a) as a
solid line.

By a similar procedure the dissipation of the mean-square
temperature £ is determined from

aﬁ BT

4 ax 3xj u,r’ “2u o 2 6

All terms are evaluated from experimental data and the re-
sulting thermal dissipation is shown in Fig. 1(b).

The time scales ?/e and F/e, for the relaxation of the me-
chanical and thermal dissipation, respectively, are shown in
Fig. 2, along with their ratio

©

R=(3/¢,)/(q/€)
Nomenclature
F, = buoyancy flux, equation (1) r = radial coordinate z = vertical coordinate
£ = acceleration due to gravity R = time scale ratio, equation (4) B = coeflicient of thermal expan-
G = turbulence production from ¢t = fluctuating temperature sion
buoyancy T = mean temperature ¢ = dissipation of mechanical en-
k = turbulent kinctic energy v = fluctuating axial velocity com- ergy
p = fuctuating pressure ponent ¢, = dissipation of mean-square
P = turbulence production by mean U = mean axial velocity component temperature
flow v = fluctuating radial velocity com- ¥r = turbulent eddy viscosity
Pry = turbulent Prandtl number ponent p = mean density
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These time scales appear extensively throughout the model
formulations and will be further discussed in the next sections,

3 Assessment of Closure Hypotheses of k-¢ Model

The form of the k-¢ model, which is considered to be the
standard one, is that used by Launder and Spalding (1974).
In this model the Reynolds stress is given by

— aU; auy; 2
—-Tu.=» + —) - = k8, 7
il (ax, ax,) T3 ™
and the heat flux by
’r aT
-ul= 8
ul= Pry ax, ®

where »r = C, kllc and C, = 0.09 (sec Launder and Spalding.
1974).
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By invoking the thin shear layer assumption for a buoyant
plume, the above relations reduce to
au

uv= —¥r=-—

ar

aT
@ =~ (7/Pry) 3~

aT
Ul =~ (’r/Pl'r) ’a_;

Taking Pry = 1.0, the right-hand sides of the above equations
were evaluated experimentally. These are compared with meas-
ured values of &y, u?, and o7 in Figs. 3-5. The points are
experimental values and the chain lines are from the model.
The modeled values of uv and 07 compare reasonably with
the experimental profiles except in the outer portion of the
curves. On the other hand the modeled profile of vertical heat
flux %7 is much smaller than the experimental one. It is well
known that the simple gradient models given by equations (7)
and (8) with an isotropic eddy viscosity are inadequate for
determining streamwise turbulent momentum and heat fluxes.
Usually these quantities do not influence the prediction for
shear layers since only the radial fluxes are important in these
flows. Howcever, in the case of the buoyant plume the flux
il is adominant production termin the turbulent kinetic energy
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equation and its correct calculation is very important for ac-
curate prediction of k. '

The diffusional transport in the kinetic energy equation (4)
for a thin shear layer is modeled as

B e R 3k '
Z't’qz*.'PPU——‘P;ar. S (9) Lo
Using po/p = - vg?/S from Lumley (1978) gives vg’/2 =

—(5/3)v13k/3r from which the result, with the right side eval-

uated from experimental results; is shown in Fig. 6. It is scen -

that the predicted and experimental data peak at different
radial locations; however, the predictcd magnitude is more
accurate, which indicates that the pressure diffusion needed
to be taken into account.

In the k-e model the dissipation is calculated from

de d — € €
e ety = G) - ha
U’ax, axje u;+Cy s (P+G)-C, X (10)
where ¢'v; = —(vp/0,)de/dx;and 0, = 1.3, C,; = 1.44, and

C, = 1.92 as given by Launder and Spalding (1974). In order
to get an indication of the validity of equation (10), it was
numerically solved for the dissipation € with a2ll other quantities
needed to evaluate the coefficients determined from the ex-
perimental correlations. The result is shown in Fig. 1(b) and
it is seen that it compares reasonably well with the curve ob-
tained from balancing the turbulent kinetic energy equation
with experimental data. .

Launder et al. (1972) showed that the standard k-¢ model
yields a solution for the axisymmetric jet that overpredicts the
spreading rate by about 30 percent. The standard k-¢ model
also does not correctly predict the axisymmetric buoyant plume
(Hossain and Rodi, 1982). Proposals have been made (Pope,
1978; Hanjalic and Launder, 1980) for modifying the dissi-
pation equation, based on arguments concerned with vortex
or eddy structures characteristic of axisymmetric flows. The
modified equation produces more dissipation, thus decreasing
the turbulent eddy viscosity, which results in a smaller spread-
ing rate of the flow. Here we use the empirical correction given
by Rodi (1972) where C,; = 1.92 (1-0.03SH) with H = | (y¢/
U,)dU, /dx1%2 and where U,, is the maximum velocity and
Ye is the distance from the centerline to the edge of the shear
layer. This correction decreases the destruction term in the
dissipation equation, hence producing an increased dissipation.
However, when this correction is used in equation (10) there
is very little change in the solution for ¢ when experimental
data are used for the other quantities in the equation. This is
probably due to the approach taken here, which does not allow
for the nonlinear interactions between the various terms in the
closure. If the kinctic energy and dissipation equations are
solved simultancously, then the axisymmetric correction will
produce a significant change in the solution of the k-¢ model.
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4 Assessment of Closure Hypotheses for Algebraic °
Stress Model

Chen and Rodi (1975), Tamanini (1978), Chen and Chen
(1979), and Hossain and Rodi (1982) have made predictions
for the buoyant jet using algebraic stress models. Many of the
idcas used in these models for calculating buoyant flows orig-
inated with Launder (1975, 1978). Algebraic stress models are
obtained by simplifying the convective transport equations for
Reynolds stresses and heat fluxes so they are no longer dif-
ferential equations. The dynamic equation for the Reynolds
stress tensor is

2
(C—D);;=PU+ Gﬁ'— - (6""

3

uu 1 ’ 2
~Ce —kl - 55‘.,) -G (P,-,-- spsg)

30C,-22 2 [3U, aU;
-—=—{p.,- =pPs5;) ~ -6k — + —
5 ( v 3 (8C2 ) 3Xj + ax,)

2
-G (Gv‘ 3 ng) (11

‘where Py = — Ul 9U;/dx, —iifiy 3U,/3x, is the mechanical

production and G; = —fg ui — Bg; U is the buoyancy
production. The left side .represents convection minus diffu--
siondl transport, the dissipation is assumed isotropic, and the
last three lines represent the closure formulation - for
P(3u;/3x;+ du;/dx;) /p given by Launder et al. (1975) and
Launder (1975, 1978). Launder assumes: (1) an equilibrium
situation where convection is balanced by diffusion (C - D
= 0) and production is balanced by dissipation (P + G — «
= 0); (2) the second and third terms (third line) in the rapid
part of the pressure-velocity correlation are negligible; the
cocfficient C, is adjusted so that the first term approximates
the entire rapid part; (3) the parameter C; is taken equal to
C,. After applying all the assumptions

2C,+C—1 1-Gk
e kb, C < (Py+ Gy (12)
where ¢; = 2.2 and C, = 0.6. It should be pointed out that
in free shear flows the equilibrium condition (C - D = 0 and
P + G — ¢ = 0) only applies in the outer portion of the flow.
Also, Zeman and Lumley (1976) found C; = 0.3, after applying
all the constraints applicable to determining the contribution
of buoyancy to the pressure-strain correlation.

The dynamic equation for the heat flux is

ar W, —
(C-Dyg=—u 0— - —— ~ e
/ 4 ax ax;
€ au;, 1_au —
_ - y il BNy B |
Cy k7u +C, Ut o, 57u 2%, +C B2 (13)

where the first line on the right side is the production and the
second line is the closure for pdt/ax,/p. Neglecting convection
and diffusion (C — D = 0) and the third term in the second
line, equation (13) becomes

1 k __daT U,
H= e [—u,u,- 7~ (-G o —n-c,,)ﬂg?]

(14)
where Cy; = 3.0, Gy, = 0.5, and Cy, = 0.5. Zeman and Lumley
(1976) show that C,, = 0.8 and C), = 0.2 from theoretical
considerations.

Neglecting the convection and diffusional transport in equa-
tion (5) and eliminating ¢, with cquation (6) gives

A

"
|
x
I
0
|

(13)
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which was given by Launder (1975, 1978) and used by Hossain
and Rodi (1982).

Chen and Rodi (1975) and Chen and Chen (1979) uscd the
ditferential equatjon (5), with ¢ climinated by using equation
(6) to determine £ rather than using equation (15). In cither
case R is taken to be a constant equal to 0.8 (Hossain and
Rodi, 1982; Chen and Rodi, 1975; Chen and Chen, 1979;
Launder, 1975, 1978). Itis scen in Fig. 2 that the experimentally
determined value of R is much lower with an average value
across the profile of roughly 0.25. Launder (1978) cites ex-
perimental evidence for R being in the range of 0.5 to 0.8.
However, he found that the algebraic stress relations agreed
best with an experiment for a stably stratified homogeneous
shear flow with R = 0.8. Hence, that value has been adopted
in the algebraic stress models. The experimental results of
Shabbir and George (1987) indicate R is much lower for strongly
buoyant flows. When the algebraic stress model is applied to
this experiment with R = 0.8, the results are very poor for
£. Therefore, in the following evaluation of the algebraic stress
model, the experimentally determined profile for R (Fig. 2) is
used.

Equations (10), (12), and (13) represent a system of algebraic
equauons that caii be solved for uwu;, @, and a. Employlng
the thin shear layer approximation, whcrc only gradisnts in
the radial dxrcctxon are retained, Hossain and Rodi (1982) give

2C,+C,—l l—Czk __au
- (- — +28gvl 1
G, -Cl e( uv8r+ gv (16)

W

—_1-Gk au '
B € or 17
’ Ci e ( v ar +gm) 17
— 2G,+G~1 .
V=it K 18
-3 ge (18)
1K aT U —
= G e [ ) e ar- (1‘. C;';,)t{ or (1-Gabg ]
(19
-1k=aT ,
TG 20
’ Cy € .ar (20)
PecR WL @D .
L€ .ar _ _
from whiCh“'i =C, /e where . v
- 205G+ G- aT/ar .
C = ——— —
o ' d Cu € B aU/ar (22)

i Thc system of cquanons (16)—(21) was solved t0 dctermmc the
R given by the experiment. The followmg valucs for the con-
stants were used:
. C| 2.2 C1=0 6 C) 0. 6
C=3.0, Cy= 0.5, C,,=OS

The value of C_, which appears in the eddy wscosuy relauon
v, = C,k*/ ¢ and is given.by equation (22), is roughly 0.125

and is rcasonably constant-across the flow. This value is con- .

siderably larger than the valye.of. C = 0.09'in the standard
k-¢ model. Rodi (1972), to correct for the discrepancies in the

“prediction for the axisymmetric )cx developed an empirical

correction to C,. The parameter C, is replaced by (1-0.465H)C,,
~ where H = | (yg/U,, )::iU,.,/dxl'u -U,,is the maximum velocuy,
. and yg is the distance from the centerline of the edge of the
jet. Hossain and Rodi (1982), Chen and Rodi (1975), and Chen
and Chen (1979) used this correction in their predictions for
turbulent buoyant jets. When the correction is applied, we get
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approxlmatcly 0.09, which is the valuc of C, for thc standard
k-e model. T

The question we are asking is, *‘given thc turbulent energy,
dissipation, velocity, and temperature, does the proposed al-
gebraic stress expression correctly predict the Reynolds stress
and heat flux components?”’ Figure 8 shows the radial Rey-
nolds stress determined from equation (18). It is seen-that the
predicted value v*7k = 0.53 is a little smaller than the exper-
imental curve in the center portion of the plume, but agrees
quite well with experiment in'the outer portion. The predicted
shear stress &0, the axial heat flux @, the radial heat flux 7,
£-are shown in Figs. 3, 4,
S, and 7, respectively. Again the points are cxpcnmcntal data
and the broken lines are from the model. It is seen that the

-shear stress @o and radial heat flux o7 are predicted reasonably.

However, the vertical heat fluxu? and temperature fluctuations -

" -fare predlctcd poorly and:have incorrect shapa. -unlike the

experimental values they go to zero near the origin.’
Equation (21) glvc rz proportional to the radial tem rature
= 0at

‘r =0, equation (19) gives @l = 0 at r = 0. In-order-to obtain
~vnonzcro values for @ and £ at.the centerline from the model
‘cquauons (12), (M), and (15); terms containing the aJual gra-

dient, i.c., 9U/3z and 37/dz, were retained. These terms were
added to equauons (19) and (21) and the system of cquauons
was solved again. Although the centerline values of u¢-and
2. were found to be nonzero, the prcdlcuons sull decrcascd to
relatively small values near the centerline.

Another” possnb:hty for this behavior is.the ncglcct of ad-
vection and diffusion terms in the model. Gibson and Launder
(1976) have proposcd thc followmg madel] for these: tcmxs

(C D).‘.,/ (P+G e) (23)
. ) 7
(C-D)iz= Py (Pi—e) + % (P+G-<) (24)

where P, is the production term in the A cquation. These were
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incorporated in equations (16)~(21) and the resulting set of
nonlinear coupled algebraic cquations was solved simultane-
ously. The results did improve the prediction for the vertical
heat flux &7 and temperature variance £ but the comparison
for radial heat flux and shear stress became worse. As noted
by Gibson and Launder (1976), the above model is not good
near an axis of symmetry. This is why, by incorporating them
in the original model, no overall improvement in the prediction
is achieved. )

Chen and Rodi (1975), Tamanini (1978), and Chen and Chen
(1979) use the differential convective-transport equation (5) to
determine £ in their predictions of buoyant jets. Equation (6)

was used to eliminate ¢ Thus, the final form of the £ equation
becomes S o :
37 -
U— +.Va‘Tz .19
-0z -

R a7 T les
ha S padiih i T .=t 2
o rar\ e ar) 2 ar R'k"2 )

“This cdualion was hum:rially solved for the temperature var-

ian_be £ with all other quantities needed to evaluate the coef-
“ficients determined from experiments. The value of C, was

taken as 0.13. The best agreement, as shown in Fig. 7, was

achiieved with R = 0.35. When the average experimental valie
“of R = 0.25 is used, the prediction peaks at about 6.0 (n =
-0.04) as compared to the experimental value of 7 of about 8,0

- {n = 0.04). When the standard value of R = 0.8 is used, 2 -

is overpredicted by a factor of four.

When £ is calculated from the convective-transport equation
(5), the diffusive transport is givea-by the simple gradient
closure - - ) o e

(26)

with C, = 0.13 as given by Chep and Rodi (1980). The pre-
diction for vf, using éxperimental information to evaluate the
right-hand side of equation (26), is shown in Fig.'9. The pre-
dicted curve peaks somewhat above and toward the centerline
as compared to the data. : B
Finally, we ask that if the models do not depict the .axial
heat flux @7 and the temperature variance correctly, then
why do the predictions such as made by Hossain and Rodi
(1982), Chen and Rodi (1975), Tamanini (1978), and Chen and
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Chen (1978) show reasonable agreement with the experiment
for the mcan velocity and buoyancy? The answer to this is
that with R = 0.8 the tempcrature variance ¢ from equation
(21) or (25) is too large. This makes the vertical heat flux @7
from equation (19) large enough so that the mean velocity and
buoyancy are reasonably predicted.

5 Summary and Conclusions

The experimental data on buoyant plumes were used to
cvaluate various closure relations for turbulence transport. The
objective was not to proposc new models, but to evaluate the
closure schemes proposed by other workers for buoyancy-
dominated flows. The closures evaluated were those used in
the k-€ and algebraic stress models. The results are summarized
below.

1 The closure relations of the k-¢ model compare reason-
ably with experimental data, except for the axial turbulent
transport, which is drastically underpredicted. The axial heat
flux governs the production due to buoyancy in the kinetic
energy and dissipation equations and its correct prediction is
very important. This is a probable reason why the results of
Hossain and Rodi (1982) from the k—¢ model underpredict the
spreading rate for the plume by 10 percent even when axisym-
metric jet corrections are included.

2 Theratio R of the time scales, which is used to determine
the dissipation of the mean squared temperature in the alge-
braic stress model, was found to be considerably different from
the accepted value of R = 0.8. Apparentiy R is not a universal
constaiit, but can vary from flow to flow and is influenced by
the strength of the buoyancy present. From the experimental
data on a plume it appears that R = 0.25 for strongly buoyant
flows. .

3 Theclosure equations for the shear stress and radial heat
flux of the algebraic stress models also compared well with
experiment but are not better than the simple gradient closures
used in the k-¢ model. The axial heat flux and mean squared
temperature are predicted poorly in the central core of the flow
and had incorrect trends. This drawback could be attributed
to the assumption of local equilibrium, which resulted in the
neglect of convection and diffusion terms in the transport
equations for Reynolds stress and heat flux. However, no
substantial improvement was.achicved by keeping the second-
ary derivatives or by incorporating the model for the convec-
tion and diffusion terms. Therefore, the full dynamic equations

- for Reynolds stress and heat flux with convection and diffusion

are required to predict the axial heat flux and temperature

variance properly.
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