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ABSTRACT

Somenewdevelopmentsin two-equation models and second order closure models will

be presented. Two-equation models (e.g., k-e model) have been widely used in CFD for

engineering problems. Most of low-Reynolds number two-equation models contain some

wall-distance damping functions to acount for the effect of wall on turbulence. However,

this often causes the confusions and difficulties in computing flows with complex geometry

and also needs an ad hoc treatment near the separation and reattachment points. In

this paper, a set of modified two-equation models is proposed to remove abovementioned

shortcomings. The calculations using various two-equation models are compared with

direct numerical simulations of channel flows and flat boundary layers.

Development of second order closure model will be also discussed with emphasis on the

modeling of pressure related correlation terms and dissipation rates in the second moment

equations. All the existing models poorly predict the normal stresses near the wall and fail

to predict the 3 dimensional effect of mean flow on the turbulence (e.g., decrease in the

shear stress caused by the cross flow in the boundary layer). The newly developed second

order near-wall turbulence model to be described in this paper is capable of capturing the

near-wall behavior of turbulence as well as the effect of three dimension mean flow on the

turbulence.
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1. k-e model

The two-equation model, especially k-e model, is still the most widely used model

for computing engineering flows. We first list some of the commonly used two-equation

models,[ll,i2],la],[4],[5] ,[6] and their predictions on the fully developed channel flows and

boundary layer flows compared with the corresponding direct numerical simulations. Then,

we propose a modified k-e model which does not contain any wall distance. The proposed

k-e model has been also tested using direct numerical simulation data.

The eddy viscosity VT is assumed in two-equation models as follows:

k 2

VT=

or

where r = k2/_

The general k-e (or k-r) model equations are of the following forms:

_,+Ui_,i= [(_VT +v) e i ],i

+ II + VT (U_,i + Ui,_) U,,j - e + D

+ C_-_vT(U_,j + U_,_)U_,j - C2A_ + E

= +v r,i +-_ +v k,ir, i-- +v r, ir, i
,j 1"

+ (1 - Cd)-_vT(Ui,i + Vi,i)Ui,i + (C,2/2 - l)
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This table fists the model terms, damping functions and model constants appeared in

various two-equation models
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The following figures show the predictions on fully develop channel flow using various

two-equation models compared with the direct numerical simulation data.[ 7] Ploted quan-

tities includethe meart velocityU, turbulentshear stress(uv),turbulent kineticenergy k

and dissipationrate EPS e. The open circlerepresentsdirectnumerical simulation,and

the solidlinerepresentsthe model prediction.
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The figures below show the model predictions on flat plate boundary layer flow. A

direct numerical simulation of boundary layer flow Is] is used for comparison. The skin

friction eoefflcient 01 is also included in the comparisons.
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Overall, Shih's k-e model gives better prediction in both fully developed channel flows

and fiat plate boundary layer flows according to the comparisons with corresponding direct

numerical simulations. However, this model has the sazne problem as the others, that is it

contains the wall distance parameter y+, which is defined as

y+ _ l_ry
V

where Ur is the friction velocity. The difficulty would occure in some situations. For

example, near the seperation point u,- aproaches zero and hence vt (through f_,(y+)) will

approach zero everywhere when this u_ is used. Another example is the flow with complex

geometry that the wall distance is not well defined. In the both cases, the ad hoc treatment

is needed in the model implimentation. We notice that Jonse-Launder's model[ 1] does not

contain y+. However, its present form does not perform very well in the simple testing

flows. Here, we based on the Shih's k-e model modify the parts which is related the !/+

with another parameter R = ks/_ lul R is a ratio of turbulence length scale to viscous

length scale. The modifications[91 made here are:

]_, = 1-exp {C3 [1-exp(C6Ri/4)]}

[Co VT "i

where Rt = k2/ve, Co = .004, C3 = .0004, C6 = 1.2
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The following figures show the predictions from the present model on fully developed

channel flow compared with other models (including Jonse and Launder's model []]) and di-

rect numerical simulation data.[ T] The open symbols represent direct numerical simulation,

and the lines represent the model prediction.
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2. Second order modeling of near-wall turbulence

Using the near-wall asymptotic behavior of turbulence [1°1 as model constraints, we

formed a set of modeled transport equations for the Reynolds-stress tensor and the dissi-

pation rate of turbulent kinetic energy. The main emphasis was on developing a near-wall

model for the pressure correlation and dissipation terms in the Reynolds-stress equation.

A modeled dissipation rate equation is derived more rationally. Asymptotic analysis shows

that near the wall, the viscous diffusion term in the Reynolds-stress equations becomes

the leading term and is balanced by the pressure correlation and dissipation terms. We

use this as a model constraint in the model development. The proposed models satisfy

reaiizibility and ensure no unphysical behavior will occur. Here, we briefly describe and

list the proposed models.

Reynolds stress equation

The exact equation for the Reynolds stress tensor is:

D

D-_(_j) = p,j + r_j + D_'_+ II,_- _,_

where ( ) stands for an ensemble average, D/Dt = c3/Ot "-bUkO/c3zk. the terms Pij, Tij,

D(.*') IXij and eli represent the production, turbulent diffusion, viscous diffusion, velocity
IIj '

pressure-gradient correlation and dissipation tensor, and are identified as follows:

P,j = -(,,,_,,)ui,k - (,,;,DV,,k

Tij = --(UiUjUk),k

= ,,<,,,us>,.
1 tL

IIis = --_( ip,s+ _'Jp,_)

eij = 2v(ui,lcus,k )

The proposed near-wall model for IIiS- eli is:

where ni is a unit vector normal to the surface, and fw = exp(-(Rt/C_)2), R, =

C1 = 1.358R°_ 4, P_ = u,.6/v, u,. is the friction velocity, 6 is the thickness of the boundary

layer or the half width of the channel.

Away from the wall, the velocity pressure-gradient correlation IIij is split into the

rapid part II_ ) and the slow part II_):
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The proposed model for IIl_ ) -eij is:

2
n_ )- _,i = -,(_b,_ + o_i)(1 -/_)

where
F. 72 7.77

fl=2+--_l_tD+80.11n[l+62.4(-II+2.3III)] } exp( ---R_/2)

F= I + 271II + 911

l

II = -_bijbji

1 b
III = -_bij jtbki

bq = (,,_,,A/(q_)- _i/3

The rapid part of velocity pressure-gradient, IIl_ ) is modeled as follows(Shih and

Luraleytn,n]):

1 2(1 2p6ij )Illl)=('_+2asl(q2)(Y,j+U'£i) - - asl(Po -

where,

2 2 6bliP+ ('_ "4-1"_63as)(Dij - "_P_ij) + -_5(Pij - Dij) A-

2

+ 5-_[((u,,,_)uj,, + (,,_,_)_,,,)(,_k_,_)- (,,,,,_)<,,j,,_)(u,,_+ u,,,)l

Dij= --(uiuk)Uk,j--(ujuk)Uk,i
1

p = -_p.

a5 = - 1-_(1 + C2F 1/2)

C2 = 0.8[1 - exp(-(a,/40)2)]

Finally the model for the third moments is modeled as:

6 }q2
(UiUjttk) = --.07-_'_-[(UkUp)(UiUj),p "4-(UjUp)(Uittk ),l_ -F (UiUp)(ttjltk),p]

Dissipation rate equation

The modeled dissipation rate equation derived in this work is:

e_
",, "_- Ui,,i -" (V',i- (¢tti)),i- _0 7"_'_

_,(q_)
- %bl_-_(ttillj)Ui,j-- %b2----_(ttk_l)(Ui,jl-- Ul,ij)Ui,jk
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where
14

¢o = -_-+ 0.9811- 0.331n(I - 551I)]exp(-2.S3R7 '/2)

_b1_ 2.1

¢5 = -.15(1 - F)

v{q2),i(q2),i

4(q2)

The turbulent flux term (euk) is modeled as:

q2

These figures show some existing Reynolds stress models (for example, Launder and

Shima []3], Lai and So []4]) and present model compared with the direct numerical simulations.[ z]
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3. Second order modeling of a three-dimensional boundary layer

A study [15] of three-dimensional effects on turbulent boundary layer were achieved by

direct numerical simulation of a fully developed turbulent channel flow subjected to trans-

verse pressure gradient. The results show that, in agreement with experimental data[16], the

Reynolds stresses are reduced with increasing three-dimensionality and that, near the wall,

a lag develops between the stress and the strain rate. To model these three-dimensional

effects on the turbulence, we have tried various two equation models and second order

closure models. None of the current models can predict the reductions in the shear stress

observed using direct numerical simulations. However, we found that the newly proposed

second order closure model listed in the previous section do at least qualitatively capture

these three-dimensional effects.
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The following figures show the direct numerical simulation of the three dimensional

boundary layer flow and the model predictions from Launder and Shima, Lai and So and

the present models.
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Abstract

This paper presents a set of re,'ylizable second order models for boundary free turbulent

flows. The constraints on second order models based on the realizability principle are re-

examined. The rapid terms in the pressure correlations for both the Reynolds stress and

the passive scalar flux equations are consttaxcted to exactly satisfy the joiut realizability.

All other model terms (retum-to-isotropy, third moments and terms in the dissipation

equations) already satisfy realizability (Lumley 1978, Shill mad Lumley 1986). To correct

the spreading rate of the axisymmetric jet, an extra term is added to the dissipation

equation which accounts for the effect of mean vortex stretching on dissipation. The test

flows used in this study are the mixing shear layer, plane jet, axisymmetric jet and plane

wake. The numerical solutions show that the new unified model equa.tions (with unchanged

model constants) predict all these flows reasonably as the results compare well with the

measurements. We expect that these model equations would be suitable for more complex
and critical flows.
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Evaiuati0nof Turbuleqce Models
for Predicting BuoyantFlows
_imentai data for the buoyant axlsymmetric plume are used to ualidate certain

closure hypothexPs employed in turbulence model equations for calculating buoyant

flows. C_o.vur_ formulations for the turbulent transport of momentum, thermal

energy, kinetic energy, and squared temperature used in the k-¢ and algebraic Mre_

models are investigated. _perimental data for the mean velocity, mean temperature,

and kinetic energy are used in the closure formulation to obtain Reynolds stresze._,

heat fluxes, etc.. which are then compered with their measured oalues.

1 Introduction

• Various turbulence models have been formulated for pre-

dict!ng buoyancy-driven flows. Some of the parameters in these

models have been tictcrmincd by l_¢.ving the solution" of the

model equations to experimental data for certain basic flows

-_.uch as decay of grid turbulence. Oth_.paramctcrs have bccn

determined by calibrating closure formulations directly with
experimental data. However, this approach may be somewhat

inaccurate duc to the lack of quality cxpcrimcntal data for

certain correlations, espcciaUy dissipation. Finally, ccrtain

modcl parameter s have been fine tuned or dctcrmincd by re-

quiring that the computed solution agree with experimental

data for more complex flows, such as shear flows. In addition

there have been instances where "model parameters have bccn

adjusted or empirical corrective terms added so that agreement

with experimental data isaccomplished for a particular flow.

\Vhcn model paramctcrs are adjusted to get agrccmcnt, say

for thc mcan velocity and tcmpcraturc ficldsfor a particular

flow, littleregard isgiven for the internal integrityof the modcl.

In other words, are the Various pi'occssessuch as diffusional

transport, pressure-strain interactions, etc., predicted cor-

rectly? Or arc there compensating assumptions where one pro-

ccss isovcrpredictcd at the ¢.xpcnse of another and yet the end

predicted result for the mean flow agrees with experiment?

The lack of complete sets of data for higher moments, dissi-

pation; and prcssurc-vclocity correlations for various flows

has prcvcmcd detailed verification of closure models for the

various processes that have to be modcled.

The objcc'livcof this paper is to use the rccendy obtained

and comprehensive cxpcrimcntal data of Shabbir and George

(1987) and Shabbir 0987) on the axisymmctric buoyant plume

to assess the various closure rclatious proposed for the kinctic-

cnergyldissipation and the algebraic stressmodels for buoy-

ancy-dominatcd flows. The usual approach is to solve the

modeled diffcrcndal equations numerically, and then comparc

the computations with the experiment. However, thismethod

does not help pinpoint the drawbacks in the various terms of

the modcls. In thispaper, instead of the usual approach, car-

relations obtained from mcasurcd vclodty and tcmpcraturc

arc used directly to verify the closure hypothesc_ for the tur-

bulent transport of momentum, thermal energy, and turbulent

kincdc energy.

2 Experimental Data

The data used were taken in an axisymmctric buoyant plume

by Shabblr and Gcorgc (1987) and Shabbir (1987), who mcas-

Contributed by thc I|cat Transfer D;vlsion and prc_cntcd =t the National l|¢at
Transfer Confcrcncc. Pittsburgh, Pennsylvania, Au£usl 9=12. 198"/.Manus<:rJpt
rcccived by the He.at Transfer Divlsion March 3. 1988; ro, lslon ='¢ccjved No--
vembcr 10, 1989. Key_ordt: Mod¢t;ng ,nd So=ling. Plumes. Turbulence.
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urcd vclocky and tcmpcrature fields at several vcrdcai levels

above a heated source of air. Here we briefly summarize their

cxperimcntal tcchnlquc and results.
The thrcc-wk¢ probe used consisted of a cross-wire and a

temperature wire. Thus the instantaneous values of the two

velocity components (vertical and radial) and temperature wcrc

measured. The axisymmetry of the flow was established by

using an array of 16 thermocouples and also by rotating the

cross-wire by 90 deg. Profiles for the correlations between the

velocity components and velocity components with tempera-

ture through the fourth order were deten-nined from the in-
stantaneous measurements;

Source condidons were continuously monitored in order to

calculate the rate at which buoyancy was added at the source.

The source Grashof number was 5.5. By integrating the mean

energy equation, an integral constraint can be obtained for a

buoyant plume. For a neutral environment this constraint im-

plies that the rate at which buoyancy crosses each horizontal

section is constant and must equal the rate at which buoyancy

is added at the source, i.e., the ratio

£
= l_ 2_ gfl(UAT+'_)r (1)Fo F.

must be unity (F# is the sourcc buoyancy). This intcgral con-

straint was sadsflcd within 7 percent.

The correlation profiles at various heights were found to be

similar in the coordinate q = r/z (z accounted for the virlual

origin) when the v-..locity is scaled by U_r P'_orJz- tt] and the

temperature is scaled by T, = _oz-S'_/gB. The mca.suremcnts

agreed well with the earlier study by George et al. (1977), who

measured only the temperature and the vertical component of

velocity. The scatter in the measurements of higher moments

is typical for such flows and is also present in previous ex-

periments, such as those of George ct al. (1977). The primary

reason for the scatter is that slow dine scales of the flow require

much longer averaging time for the higher moments in order

to obtain the same statistical convergence as for the mean

quantitlcs. Other errors in the measurements arise from the

flow reversal on the hot wire--a phenomenon most likely to

occur toward the outer edges of the flow where local turbulent

intensities are considerably higher. These are discussed in Shah-

bit and George (1987).

The various correlations in similarity variables were fitted

with curvc._ using a lea.st-squares fitting procedure. This rep--

rcsentation allows easy evaluation of the terms in the governing

equations and closure formulations when they are cast in sim-

ilarity variables. Using these profiles the balances for the mean

momentum and energy differential equations were carried out

to check whether the flow satisfied the equations of motion it

is supposed to represent. Within the thin shear layer and the

Boussinesq assumption the mean momentum and energy cqua-
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tions can be respectively written as

u °u v_ i a+ (_-_)-g_AT (2)

U aAT vOAT 1 8
aZ + a--'r-= -- r _r (ru'-'/) (3)

Since all the quantities appearing in these equations are meas-

ured, their profiles were substituted to see whether the meas-

urements balance the equations. Figure l(a), taken from

Shabbir and George (1987), shows that the experiment satisfies

this nontrivial test within 10 percent. An error of such mag-

nitude is typical of turbulent shear flows.

The dissipation of mechanical energy was determined by

balancing the turbulent energy equation

• I I i[ I

a 7s

4 25

z - o

_.

0 I, Io.o, oh o.:z o!:+
•. . r/z

Fig. l(b} Mech,gnlcal ;,nd Iheemal dissipation pcoflles! Full lines are
experimenlal; the chained line Is from model equation (10). which wlis

• solved lot _ with all oth.er quantities taken from experiment.

- a 1_

where P = -_-_ aUi/Ox i is the mechanical production and

G = -Og_--_ is the production due to buoyancy. Each term

except for the dissipation e and the pressure transport _ is

determined from the experimentally determined correlation___s.

The pressure transport was evaluated from _-_/p = -q_u/

• 5, a formula given by Lumley (19"/8). Although this closure

relation has not been verified experimentally, it Was felt that

since the pressure transport is significant, some correction

should be included rather than simply neglecting it, as is often

done. The dissipation determined from the balance of the

turbulent kinetic energy equation is shown in Fig. l(a) _s a

solid line.

By a simila_r procedure the dissipation of the mean-square

temperature r_ is determined from

-2 _ _xxT-2,, (_)

All terms are evaluated from experimental data and the re-

sulting thermal dissipation is shown in Fig. l(b).

The time scales _/_ and _/_, for the relaxation of the me-

chanical and thermal dissipation, respectively, axe shown in

Fig. 2, along with their ratio

R = (_/_,)/(_/0 (6)

Nomenclature

Fo = buoyancy flux, equation (I) r = radial coordinate z = vertical coordinate

g = acceleration due to gravity R ,= time scale ratio, equation (4) _ = cocfficlent of thermal expan-

G = turbulence production from t = fluctuating temperature sion

buoyancy 7" ,= mean temperature ¢ = dissipation of mechanical en-

k = turbulent kinetic energy u _ fluctuating axial velocity com- ergy

p = fluctuating pressure ponent _, = dissipation of mean-square

P = turbulence production by mean U = mean axial velocity component temperature

flow u = fluctuating radial velocity corn- _r = turbulent eddy viscosity

Prr = turbulent Prandtl number ponent p = mean density
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By invoking the thin shear layer assumption for a buoyant
plume, the above relations reduce to

#U

1lUre -- FT "-_f

aT
u-7 = - (,r/Prr) --

These time scales apl__,_ar extensively throughout the model
formulations and will be further discussed in the next sections.

3 Assessment of Closure Hypotheses of k-e Model

The form of the k_ model, which is considered to be the

standard one, is that used by Launder and Spalding (1974).

In this model the Reynolds stress is given by

__ /au, + _ (7)
-u'us='r_,_-_xj ax,/ 3

and the hcat flux by

• r 8T
- =--}= -- -- (8)

Prr ax,

where er = C_ l.'a/¢ and C_ = 0.09 (see Launder and Spalding.

1974).

aT

o-7 = - (,r/Prr) a"-r"

Taking Pr r = 1.0, the right-hand sides of the above equations

were evaluated experimentally. These are compared with meas-

ured values of _-_, u--/'0 and o-/in Figs. 3-5. The points are

experimental values and the chain lines are from the model.

The modeled values of_'-ff and o-/compare reasonably with

the experimental profiles except in the outer portion of the "

curves. On the other hand the modeled profile of vertical heat

flux u--7 is much smaller than the experimental one. It is well

known that the simple gradient models given by equations (7)

and (8) with an isotropie eddy viscosity are inadequate for
determining streamwise turbulent momentum and heat fluxes.

Usually these quantities do not influence the prediction for

shear layers since only the radial fluxes are important in these

flows. However, in the case of the buoyant plume the flux

u--?is a dominant production term in the turbulent kinetic energy
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equation and its correct calculation is very important for ac-

curate prediction of k.

The diffusional transport in the kinetic energy equation (4)

for a thin shear layer is modeled as

1 ----_ 1 ak

- vq'+ :-_= -'T_. • (9)2 p

-- m

Using _'F/p = :-vq2/5 from Lumley (1978) gives oq2/2.=

- (5/3)url)k/ar from which the result, with the right side eval-

uated from experimental results; is showrj in Fig. 6. It is seen

that the predicted and experimental data peak at different

radial locations; however, the predicted magnitude is more

accurate, which indicates th'at the pressure diffusion needed

to be taken into account.

In the k-( model the dissipation is calculated from

- axse uj+C,,-_(P+G)-C,2_ (I0)

where ('uj = -(.r/,,,)a_/ax i and a, = 1.3, C,i = 1.44, and

Co = !.92 as given by Launder and Spalding (1974). In order

to get an indication of the validity of equation (10), it was

numerically solved for the dissipation, with all other quantities
needed to evaluate the coefficients determined from the ex-

perimental correlations. The result is shown in Fig. l(b) and

it is seen that it compares reasonably well with the curve ob-

tained from balancing the turbulent kinetic energy equation

with experimental data.

Launder et al. (1972) showed that the standard k-E model

yields a solution for the axisymmetric jet that overpredicts the

spreading rate by about 30 percent. The standard k-¢ model

also does not correctly predict the axisyrnmetri¢ buoyant plume

(Hossain and Rodi, 1982). Proposals have been made (Pope,

1978; Hanjalic and Launder, 1980) for modifying the dissi-

pation equation, based on arguments concerned with vortex

or eddy structures characteristic of axisymmetric flows. The

modified equation produces more dissipation, thus decreasing

the turbulent eddy viscosity, which results in a smaller spread-

ing rate of the flow. Here we use the empirical correction given

by Rodi (1972) where C,a = 1.92 (1--0.035/-/) with H = I (y_/

U,,)dU,,/dxl °a and where U,, is the maximum velocity and

y_ is the distance from the centerline to the edge of the shear

layer. This correction decreases the destruction term in the

dissipation equation, hence producing an increased dissipation.

However. when this correction is used in equation (10) there

is very little change in the solution for ( when experimental

data are used for the other quantities in the equation. This is

probably due to the approach taken here. which does not allow

for the nonlinear interactions between the various terms in the

closure. If the kinetic energy and dissipation equations are

solved simultaneously, then the axisymmetric correction will

produce a significant change in the solution of the k-( model.

4 Assessment of Closure ltypolheses for Algebraic
Slresz Model

Chert and Rodi (1975), Tamanini (1978), Chert and Chen

(1979), and Hossain and Rodi (1982) have made predictions

for the buoyant jet using algebraic stress models. Many of the

ideas used in the_e models for calculating buoyant flows orig-

inated with Launder (1975, 1978). Algebraic stress models are

obtained by simplifying the convective transport equations for

Reynolds stresses and heat fluxes so they are no longer dif-

ferential equations. The dynamic equation for the Reynolds
stress tensor is

2

(C- D);'_j= Po+ Go- "_ _6ii

_ ! 2 P_O_
f

"where PO = - u-_ aU/axt - _ aup/ax, is the mechanical

production and G 0- = -#gi u'_ - 3gs u--fl is the buoyanL'y
production. The left side.represents convection minus diffu-

sion_il transport, the.dissipation is assumed isotropic, and the

last three lines represent the closure: formulation". for

p(au/Sxs+auj/dx_)/p given by Launder et al. (1975) and

Launder (1975, 1978). Launder assumes: (I) an equilibrium

situation where convection is balanced by diffusion (C - D

= 0) and production is balanced by dissipation (P + G -

= 0); (2) the second and third terms (third line) in the rapid

part of the pressure-velocity correlation are negligible; the

coefficient C2 is adjusted so that the first term approximates

the entire rapid part; (3) the parameter C 3 is taken equal to

C2. After applying all the assumptions

2 CI+C2-1 l-C2k
(Po+ G_) (12)

u'us= 3 C, k_'s C,

where c, = 2.2 and C2 = 0.6. It should be pointed out that

in free shear flows the equilibrium condition (C - D = 0 and

P + G - e = 0) only applies in the outer portion of the flow.

Also, Zeman and Lumley (I 976) found C3 = 0.3, after applying

all the constraints applicable to determining the contribution

of buoyancy to the pressure-strain correlation.

The dynamic equation for the heat flux is

__aT aU, --

( C- D)_ = - uiu i --axs- u-7 _ - {3g/

au, 1 L_
-c" __ +c_"_ T_ 5 ax,

where the first line on the ri_is the production and the

second line is the closure for pat/axJp. Neglecting convection

and diffusion (C - D = 0) and the third term in the second

line, equation (13) becomes

[__aT au, ]u.ff._= .._tt ._1k - uius _ - (l-C_)u---fl Tx/ - (l-C_,)Og_..

(14)

where Cu = 3.0. Cz_ = 0.5. and C_ = 0.5. Zeman and Lumley

0976) show that C_ = 0.8 and C_ = 0.2 from theoretical
considerations.

Neglecting the convection and diffusional transport in equa-

tion (5) and eliminating (t with equation (6) gives

aT
(1_)
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which was given by Launder (1975, 1978) and used by Hossain 12
and Rodi (1982).

Chcn and Rodi (1975) and Chen and Chen (197q) used the

dilferential equation (5), with (t eliminated by using equation ;._"I_
(6) to determine ta rather than using equation (15). in either
case R is taken to be a constant equal to 0.8 (HossaJn and
Rodi, 1982; Chen and Rodi, 1975; Chen and Chen, 1979;
Launder, 1975, i 978). it is seen in Fig. 2 that the experimentally 5
determined value of R is much lower with an average value
across the profile of roughly 0.25. Launder (1978) dtcs ex-
perimental evidence for R being in the range of 0.5 to 0.8.
However, he found thatthe algebraicstressrelationsagreed
bestwith an experimentfor a stablystratifiedhomogeneous
shear flowwith R = 0.8.Hence, thatvaluehas bccn adopted

in the algebraicstressmodels. The experimentalresultsof
Shabbirand George (1987)indicateR ismuch lowerforstrongly

buoyant flows.When the algebraicstressmodel isappliedto

thisexperiment with R -- 0.8,the resuhs arc very poor for
ta.Therefore,inthefollowingevaluationofthealgebraicstress
model, the experimentallydetermined profilefor R (Fig.2) is °"
uscd.

Equations (10), (12), and (13) represent a system of algebraic _,
equatio:w, that cali bc solved for u_, u--_, and ta. Employing
the t'.:in shear layer approximation, where only gradients in
the radial directio'n are retained, Hossain and Rodi (1982) give

I )_ t-C2k -_-r +g_ (17)
/20= Ci E

_=_2 c2+c2=1 k (is)
3 C,

"---- -: uV -_r. - ( I - C2,)N T/ + ( I - G,)_

(19)

.1_kV LT (20)
V-7= _ _ .ar

?-_ :.zR-k aT " (2o.
.ar

1 I

[.. v,OOtL

...... _u_tt_tc $_ttt nOO(t

0

O.Oe4 r/z O.12

Fig. 7 Mean squsfe tsmpefmlure

0.20

I i , I
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t t I I

.04 .01 .t2 .l&

at/=

Fig. 8 Radial Reynolds stress v _

approximately 0.09, which .is the value of C_ for the standard
k-e model.

The question we are asking is, "given the turbulent energy,
dissipation, velocity; and temperature, does the proposed al-

gebraic stress expression correctly predict the Reynolds stress
and heat flux components?" Figure 8 shows the radial Rey-

nolds stress determined from equation (18). It is seen that the
predicted value v21k = 0.53 is a little sma!!cr than the cxt>cr-
imental curve in the center portion of the PlUme: but agrees
quite well with experiment inthe outer portion..The predicted
shear stress EO, the axial hearflux u--/, the radial heat flux v-'I,
and the mean squared tcmi:_craturc r_-axe shown in Figs. 3, 4,
5,and.7, respcctivel.y. Again the points arc experimental data
and the broken lines arc from the model. It is seen that the

.... shear stress EO and t'adial he,at fluxv-/are'predicted reasonably.
from which ,,, = C,_I¢ where .. ]::]owcvcr, the vertical heat fl.ux u-'/and temperature flu_uations -

2 (1 - C_) (Ci + Cz L 1) [.. 1 k '. OTlar'_ .2_. _ - tz arcpr .edicte_:l .poorly and.have incorrect Shapes; unlike the.
= +   rimen , ues to=o ,=,'theorigin..

Equation (21) givesz a proportional to the radial tcm;oerature
•The sysiem, of equations (16)-(21 i Was solved to'determine the gra.di'en.t;.wliieh.iszcr6 at thecen.t_liuc. Then since # , 0 at

Reynolds stress and h6at flux compg., ncntswith U, T, k, ¢., and 'r = O, equation (19) gives u--J= 0.at r = 0. In-order.t0 obtain

R given hy the. expel'merit. The following values for the con- - nonzero values fo.r u--/and la at.the centcrlinC'from the model
stants were used: • - equations (12), (14), and (15); terms containing the axial gra-

c,=2._ c,=0.6, Q=0.6 ..
c,,=3.o, c,_=0.5, c_,=o.5

The value of C_, which appears in the eddy viscosityrelation
v, '= C,/ca/( and..isgivc'_.by equation (22); is roughly 0.125
and isreasonablyconstantacross the flow. This valueiscon-

siderably larger than the. value.0fC, = 0.09 in the standard
k_ model Rodi (1972), to correct for the discrepancies in the
prediction for the axisymm¢tHc jet, developed an empirical
correction to C,. The parameter C_ is replaced by (!--0.465H)C_,
where H = I (.Fz/U,)dU_/dxIO.'_,.U, is the maximum velocity,

. and yE is the dhaance from the centerline of the edge of the
jet. Hossain and Rodi (1982), Chcn and Rodi (1975), and Chen
and Chcn (1979) used this correction in their predictions for
turbulcnt buoyant jets. When the correction is applied, we get

dicnt, i.e., aUlaz =rid ar/aZ, were retained. These term's Were
added to equations (19) and (21) and thcsy;Jtcan of CClUatioks
--was-solved again. Although the _nterline values of utand

ta were found to be nonzero, the predictions stil! dc_:r_ to
relatively small values.near the Centerline.

Anotherpossibility for this behavior is.the neglect of ad-

vection and diffusion terms in the model. Gibson and Launder
(1976) have proposed th¢.fol]owingmodd, for theseterms:

-. (23)

(C-D)_= _ (P,-(,)+ _ (P+G-() (24)

where P, is the production term in the _ equation. These were
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incorporated in equations (16)-(21) and the resulting set of

nonlinear coupled algebraic . equations was solved simultane-

ously. The results did improve the prediction for the vertical

heat flux u-'7and temperature variance t 2 but the comparison
for radial beat flux and shear stress became worse. As noted

by Gibson and Launder 0976), the above model is not good

near an axis of symmetry. This is why, by incorporating them

!n the original model, no overall improvement in the prediction
is achieved.

Chen and Rodi (1975), Tamanini (1978), and Chen and Chen

(1979) use Lhe differential convective-transport equation (5) to
determine fl in their predictions of buoyant jets. Equation (6)

was used to eliminate e,. Thus, the final form of the _ equation
becomes •

1O

o,-;T,. _. k-T - (JS)

This equation was numerically solvedfor the temperature var-

iance t 2 with all other quantities needed to evaluate the coef-

•"fideilts dete/mined from exI_riment/: "The value" of C, was

taken as 0.13. The best agre_meat:.as shown in Hg. 7, wasl

adiieved with R _- 0.35. When the average experimental value

• of R = 0.25 is used, the prediction peaks at a_bout iS.0 (_ =
0.04) as Compared to the experimenial VaJue oft a of about 8.0

1.(7 = 0-04). When the standard value of R =O.8 is used,
ts overpr_licted by'a facxor of four.

When t 2 is calculated from the convective-transport equation

(5), the diffusive transport is givefi-by the simple gradient
closure- - • " . . -.-

-_= _ce_ .. .,
t'c ar " " (26)

with C, = 0:__13 as.given by Cheo and Rodi (1980). The pre-

diction for vt z. using e.xperimental information Zo evaluate the

right-haod side of equation (26), is shown in Hg. 9. The pre-

dicted curve peaks somewhat above and toward the centerline

as compared to the data. "

Finally, we ask that if the models do noLdepict the axial

heat flux u-? and the temperature variance _ correctly, then
why do the predictions such as made by Hossain and Rodi

(1982). Chert and Rodi (1975). Taraanini (1978), and Chert and

Chcn (1978) show reasonable agreement with the cxpcriment

for the mean velocity and buoyancy'? The answer to this is

that with R -- 0.8 the temperature variance ta from equation
(21) or (25) is too large. This makes the vertical heat flux u-7

from equation (19) large enough so that the mean velocity and

buoyancy ere reasonably predicted.

5 Summary and Conclusions

The experimental data on buoyant plumes were used to

evaluate various closure relations for turbulence transport. The

objective was not to propose new models, but to evaluate the

closure schemes proposed by other workers for buoyancy-

dominated flows. The closures evaluated were those used in

the k-_ and algebraic stress models. The results are summarized
below.

1 The closure relations of the k-e model compare reason-

ably with experimental data, except for the axial turbulent

transport, which is drastically underpredicted. The axial heat

flux governs the production due to buoyancy in the kinetic

energy and dissipation equations and its correct prediction is

very important. This is a probable reason why the results of

Hossain and Rodi (1982) from the k-_ model underpredicc the

spreading rate for the plume by 10 percent even when axisyrr,-
metric jet corrections are included.

2 The ratio R of the time scales, which is used to determine

the dissipation of the mean squared temperature in the alge-

braic stress model, was found to be considerably different from

the accepted value of R = 0.8. Apparently R is not a universal

constadt, but can vary from flow to flow and is influenced by

the strength of the buoyancy present. From the experimental

data on a plume it appears that R = 0.25 for strongly buoyant
flows.

3 The closure equations for the shear stress and radial heat

flux of the algebraic stress models also compared well with

experiment buc are not better than the simple gradient closures

used in the k-e model. The axial heat flux and mean squared

temperature are predicted .poorly in the central core of the flow

and had incorrect trends. This drawback could be attributed

to the assumption of local equilibrium, which resulted in the

neglect of convection and diffusion terms in the transport

equations for Reynolds stress and heat.flux_ However, no

substantial improvement was.achieved by keeping the second-

ary derivatives or by incorporating the model for the convec-

tion and diffusion terms. Therefm'e, the full dynamic equations

for Reynofds stress and heat flux with convection an d diffusion

are required to predict the axial heat flux and temperature

variance proper.ly.
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