
N92-23372

Combining Factual and Heuristic Knowledge in Knowledge

Acquisition*

Femando Gomez, Richard Hull, Clark Karr

Department of Computer Science

University of Central Florida

Orlando, F1 32816

gomez_cs.ucf.edu (407) 823-2764

Bruce Hosken, William Verhagen
Grumman

f_

sF _

Abstract

A knowledge acquisition technique that

combines heuristic and factual knowledge rep-

resented as two hierarchies is described. These

ideas have been applied to the construc-

tion of a knowledge acquisition interface to

OPERA (Expert System Analyst). The goal

of OPERA is to improve the operations sup-

port of the computer network in the space

shuttle launch processing system. The knowl-

edge acquisition bottleneck lies in gathering

knowledge from human experts and transfer-

ring it to OPERA. OPERA's knowledge acqui-

sition problem is approached as a classification

problem-solving task, combining this approach

with the use of factual knowledge about the

domain. The interface has been implemented

in a Symbolics workstation making heavy use

of windows, pull-down menus, and other user-

friendly devices.

1 Introduction

The goal of OPERA (Expert System Ana-

lyst; Adler, 1989) is to improve the operations

support of the computer network in the space

shutt/le4a_nch processing system. The check-
out, controI_-and monitor subsystem (CCMS)

"This research is being funded by NASA-KSC Con-
tract NAG-10-0058 _

is a distributed computer network, which in-

tegrates software, microcode, display switches
and hardware interface devices. OPERA is

intended to function as a consultant to the

operations staff assigned to each CCMS task.

Two basic expert systems form OPERA: the

Real Time System Error Manager (RTSEM)

and the Problem Impact Analyst (PIA). When

an error occurs, RTSEM displays information
on this error obtained from a data base of

errors. This information, although based on

the CCMS message catalog information, con-

tains experiential knowledge that "resides in

the head of tile human experts, not in texts."

The knowledge acquisition bottleneck that the

designers of OPERA are presently experienc-

ing is in gathering this knowledge from the hu-

man experts and transfering it to OPERA in

a form assimilable by the data structures and

algorithms of the expert system. OPERA con-
tains about one hundred thirty of these errors,

but the actual number of errors in the com-

puter network is greater than one thousand.

Hence, OPERA is short in its knowledge base

by a factor of ten. The goal of this project

is to build a knowledge acquisition interface

by means of which a domain expert without

knowledge of OPERA or expert systems will

be able to transfer his/her knowledge about

the computer network errors to OPERA.

195

OPERA is not a diagnostic expert system

whose task is to identify or recognize a prob-

lem or error from a set of symptoms and other

data. When an error occurs the computer net-

work identifies the error with a code number.

Then, OPERA's task is not one of deciding

which error has taken place, but rather one of

printing the pertinent information concerning

that error. This information basically consists

of the probable causes of the error, diagnos-

tic advisories (actions to be performed to find

out the causes of the error in case they are un-

clear) and the steps to be taken to correct it,

called operational advisories. Table 1 depicts

the information about a typical error.

Table 1. Information about a typical

error.

Message depicted on the firing room
consoles

{ FEP 141 ($$$$) MICROCODE DID NOT

RECEIVE AN ACKNOWLEDGE SIGNAL FROM

THE I/O ADAPTER, DATA ACQUISITION

HAS BEEN INHIBITED. MICAS-$$$$,

NSB=$$$$ }

{ ** TERMINAL ERROR FOR THE GSE FEP.

THE IlO ADAPTER DID NOT SEND AN

ACKNOWLEDGE SIGNAL TO THE

MICROCODE DURING THE OPERATION

INDICATED BY MICAS.

Probable cause(s):

I. IlO Adaptor failed.

2. GSE Option Plane failed.

3. I/O Adapter port on 4-port

controller failed.

4. FF2 T/R failed.

Operations advisory:

I. Halt CPU, and record CPU

registers. Push CPU through

recovery.
2. If redtmdant FEP hasn't taken

over, configure another FEP,

or $CLAI existing FEP again.

3. $SPRCVE

4. If redundancy isn't available,

and original FEP fails to

$CLAI, then troubleshoot per

follo,ing diagnostic advisory.

S. Lookup the MICAS in the

microcode listings, and verify

the operation being executed

at the time of the anomaly.

Diagnostic advisory:
1. $DPLORT LI 5

2. SEQ FEPIDI, If errors occur,

I/O Adapter thumbin may assist

troubleshooting.
3. GSE NO2

4. SEQ FEVTRI

(loop T/R via RCVS). }

When malfunctions occur, messages like this

one (in the figure it is displayed in the first set

of braces) appear on the firing room consoles

of the system engineers monitoring launch ac-

tivities. The error message designator, FEP

141, indicates the sub-system of the prob-

lem (in this case, the Front End Processor),

and the error number. Dollar signs are used

as place holders for actual hexadecimal ad-
dresses. This error occured because the FEP's

Input/Output adapter did not send an ac-

knowledgement to the microcode during the

operation indicated by the address in the MI-

CAS register. OPERA's response to this mes-

sage is as follows (OPERA output is the text

in the second set of braces). The text, denoted

by two asterisks, is a note field obtained from

the network system's documentation. This is

provided to the system engineer as a conve-

nience so that that he/she does not need to
take the time to consult the manuals.

Probable causes for this error are listed

next. Causes axe listed such that the first

probable cause is the most likely, the second

is the second most likely, etc. More than one

196

problem cause may apply to the error. For this

particular error, the probable cause is a failed

piece of hardware; from the most specialized

piece of hardware, the I/O Adapter, down to

the most general, the FEP's transmit/receive

circuitry.

After the probable causes, the operations

advisory is listed. This set of advisories de-

tails what should be performed to remedy the

situation while the launch is currently under-

way. Because of this requirement, any action

that would jeopardize the launch can not be

included in this advisory. Step 4 mandates

that if a redundant FEP is not available, the

potentially failing FEP is taken off-line and is

given a more thorough examination using the

diagnostic advisory.

The diagnostic advisory consists of a se-

ries of actual diagnostic programs to execute

that may determine the cause of the problem.

These procedures can not be run on any equip-

ment that is necessary to the continued success

of the launch.

However, OPERA has nothing to do with

the content of this information. This has been

gathered by human experts who are familiar

with the computer network. Experts may dis-

agree strongly about the content of this in-
formation, but, again, OPERA does not help

the experts to gather this information, or to

choose between disparaging information. Of

course, the value of OPERA as a consultant

to the humans who are monitoring the net-

work depends directly on the appropriateness

and correctness of the information printed by

OPERA.

2 OPERA: A Classification

Problem-Solving Task

At first sight, one may think that the task

of building a knowledge acquisition interface

for OPERA is just one of building a data en-

try program that will transform the English

text about the errors given by the experts into

the data structures of OPERA. This clearly

will not affect the operation of OPERA. But
if the information about the errors is incom-

plete or incorrect, OPERA would be of very

little use to the humans monitoring the com-

puter network. It is clear that the acquisition

of the correct knowledge from the experts is

essential, if OPERA is to serve a credible role
as consultant.

Although OPERA has not been designed

as a classification task (Gomez and Chan-

drasekaran, 1984; Clancey, 1985), and, as a

result, there is not a hierarchy of concepts me-

diating the knowledge about the errors, the

knowledge for each error gathered by human

experts and printed by OPERA clearly con-
stitutes a classification task. In classifica-

tion problem-solving, knowledge is organized

into a hierarchy of concepts. Top concepts in

the hierarchy represent the most general con-

cepts. Lower concepts in the hierarchy are re-

finements of the upper concepts. The main

idea behind this methodology is that concepts,
rather than lower level constructs such as rules

or procedures, provide the criteria to analyze

and organize domain knowledge and acquire

knowledge from experts. This translates into

the following knowledge acquisition maxim:

"Do not ask a domain expert for the rules or

procedures he/she uses in analyzing an error

or problem, ask him/her for the concepts that

he/she uses to conceptualize or classify the er-

ror, and 'then you can ask him/her for the

rules or procedures." From a problem solv-

ing point of view, the hierarchy forces the ex-

pert to make explicit the high level concep-

tuai steps (nodes in the hierachy) which he/she

will have to consider in determining the proba-

ble causes, advisories, and diagnostic steps for

a given error. From a knowledge acquisition

point of view, approaching this task as a classi-

fication task becomes a necessity if the knowl-

edge acquisition interface is going to go beyond

197

a data entry program, which would merely

prompt the user for the probable causes, ad-

visory, etc. The knowledge acquisition inter-

face uses the hierarchy to automatically depict

knowledge stored in the upper concepts upon

request of the human expert. Then, while a

human expert is adding knowledge about an

error, he/she may decide to consult knowledge

that he/she has stored in the upper concepts.

The detailed way in which this is done is ex-

plained in section 5.

The knowledge of most domains may be

divided into .factual or hard and heuristic or

soft. Heuristic knowledge is problem-solving

knowledge about a domain. In most cases,

there is no concensus among experts about

how this knowledge should be organized, what

constitutes this knowledge, its activation, etc.

This situation is reflected in the saying: "each

expert has her/his own book." The trouble

shooting knowledge that diagnosticians have

clearly falls within this type of knowledge. In

contrast to heuristic knowledge, factual knowl-

edge reflects the way things are. There is little

disagreement among experts about what con-

stitutes this type of knowledge. The knowl-

edge that a pathologist has about the human

body clearly falls within this category. These

two types of knowledge are not dichotomous

ones, but rather there is a rich interrelation
between them. The heuristic problem-solving

knowledge of a diagnostician may have need of

the factual knowledge, especially in those cases

in which the solution of a problem cannot be

obtained directly by applying some right-at-

hand rules.

The object of this paper, however, is not to

explore the relation between problem-solving

on one hand, and heuristic and factual knowl-

edge on the other hand, but rather to inves-

tigate the relation between knowledge acquisi-

tion and these two types of knowledge. In the

next two sections, we show the role that these

two types of knowledge play in knowledge aA:-

quisition within the domain of the CCMS net-
work.

3 A Factual Knowledge Hi-

erachy for the CCMS Net-

work

In the domain of CCMS network errors,

a taxonomy of errors may be built based on

the structural components of the network.

This classification hierarchy is based on "hard"

knowledge and does not follow any heuristic

principles. It reflects the way things are. Fig-

ure 1 depicts a portion of this hierarchy. The

three children of the root node, stand for Front

End Processor Messages, Input/Output Sys-

tem Messages and Operating System Integrity

Messages. The FEP Messages are in turn di-

vided into four categories: Ground Support

Equipment, Launch Data Bus, Pulse Coded

Modulation and UpUnk messages. These in
turn are subdivided into further categories.

The IOS2 submessages listed are not termi-

nal nodes, but instead are categories that in

turn are subdivided into other categories. Fi-

nally, the terminal nodes of this hierarchy will

consist of individual error messages.

The relevance of this hierarchy for knowl-

edge acquisition is that knowledge stored un-

der the nodes of this hierarchy may be used

by the human expert while she/he is in the

process of adding experiential/heuristic knowl-

edge about individual errors. The knowledge
stored under these concepts are causes, advi-

sories and corrective steps. This knowledge, as

we have been reiterating, is factual and resides

in the manuals describing the CCMS network.

Some of this knowledge may be very relevant

to a domain expert when he/she is entering

the causes, advisories, etc. for a specific error.

This is similar to the situation of a physician

who finds it necessary to consult a medical text

book about the functions of organs, while di-

agnosing a patient.

198

_SYSINTG-MSG}

chies vary from expert to expert. Figure 2 de-

picts an elaborated heuristic hierarchy. When

a domain expert starts using the Interface,

he/she has at her/his disposal the factual hi-

erarchy and an initial heuristic hierarchy sim-

ilar to the one depicted in Figure 2 but much

less detailed. This initial heuristic hierarchy is

provided to the expert as a basis for him/her

to start building his/her own hierarchy. Of

course, he/she may disagree with the struc-

ture a_d/or content of the hierarchy, and as a

consequence he/she may decide to change this

initial hierarchy to conform to his/her view of

the problem-solving knowledge.

Figure 1: A Portion of the Hard Knowledge

Hierarchy of the CCMS Network

The knowledge in the hierarchy is organized

following strict inheritance rules. That is, ev-

ery piece of knowledge in an upper-concept is

true of all its subconcepts. As concepts ap-

proach the tip nodes, the knowledge becomes

more specific. The user may traverse this hi-

erarchy by using the mouse either in a top-

down or in a bottom-up fashion. Or he/she

may visit any concept without following any

predetermined order. The knowledge will be

displayed to him/her by the interface. Then,

she/he may decide to consult the knowledge or

use that knowledge in its entirety or partially

(see section 5).

4 A Heuristic Knowledge Hi-

erarchy for the CCMS Net-

work

The place of the concepts in this hierarchy,

and the knowledge stored under each concept,

do not obey strict or hard rules; rather, they

depend on the way in which a given human ex-

pert approaches the solution of a problem. As

a consequence, heuristic classification hierar-

In building this hierarchy, an expert is in-

structed to proceed in a top-down manner.

The Interface walks a domain expert who is

unfamiliar with the interface through the fol-

lowing steps:

What are the most general categories

(software, hardware, etc.) that come to

your mind when the error, say, FEP-132
occurs _ ?

Once you have determined that the error

is, say, a software problem, which subcat-

egories within the software do you think
about?

• Which advisories and/or causes are

known for a given category?

Once the domain expert has acquired some

familiarity with the interface, the knowledge

acquisition process concentrates on entering
advisories about individual errors. During

this process, the domain expert may decide

to modify the heuristic hierarchy, by adding

new links, altering existing links or deleting or

adding advisories stored under the nodes. But,

in most cases, the expert may use the knowl-

edge stored by him/her in the heuristic hier-

archy and in the factual hierarchy in order to

build knowledge about individual errors. This

is explained in detail in the section below.

199

"-JCOMPONENTl

INCORRECT-BI_MAPJ

INCORRECT-BOOT-PROC]

IEXPLAINED-CONDITION i

3MI-USAGE-SHORTCUT I

QRONG-CDBFRIE:AC/CP_

Tj

-tNE&I- OPSYS/F IRMW_RE]

WITHIN-DESIGN-SPEC I

151MILAR-PRbB]

DEBUG-SCENARIO]

Figure 2: A Portion of an Elaborated Heuristic Hierarchy for the CCMS Network

5 A Walk Through The In-

terface

The interview process has two phases; the
first is the construction or modification of the

domain expert's error classification hierarchy,

and the second is the generation of OPERA

advisories. These two phases need not be

strictly ordered and can be interleaved, i.e.,

domain experts are not forced to construct
their final classification hierarchies before any

advisories are created, but rather they are free

to change their hierarchies at any time. To

minimize the amount of startup time and to

give the domain expert an idea of what we are

after, we provide an elaborated error classifi-

cation hierarchy designed from Grumman sys-

tems engineer Bill Verhagen's hierarchy (see

Figure 2). This hierarchy provides systems en-

gineers unfamiliar with the interface a starting

point from which they can begin to coalesce

their experiential knowledge of the CCMS net-

work. While initial interviews require some

instruction and typically last several hours, a

given interview session can be accomplished
in as little as 30 minutes, depending on the

amount of information to be elicited.

5.1 Creating and Editing OPERA
Advisories

The primary goal of the interface is the ac-

quisition of knowledge about error messages.

Currently the data collected are exported to

the OPERA system in the form of advisories

enumerating the probable causes, operational

advisories, and diagnostic advisories for spe-

cific errors generated by the CCMS network.

The first step in creating an advisory is choos-

ing the error message to describe. The user is

presented a menu of error messages that were

previously specified by the Knowledge Engi-

neer. The error messages on this menu reflect

those errors that the Knowledge Engineer is in-

200

terested in collecting information about. The

user is free to choose any message on the menu.

5.1.1 Placing Errors in the Heuristic

Hierarchy

Once an error message has been chosen, the

user is asked to place the error within his cur-

rent heuristic hierarchy. To aid the user in this

task, the interface provides help in the form of

status register decodings and notes provided

by the Knowledge Engineer.

Given this help, the user should be able to

place the error in his heuristic hierarchy. Plac-

ing the error within the heuristic hierarchy is a

matter of specifying which node is to become

the error's parent. If a suitable parent does

not exist in the hierarchy, the user is given a

chance to create and place the parent in the

hierarchy at that time. It may be, however,

that the parent of the parent (grandparent of

the original error message) does not exist in

the hierarchy. Again, the user may create and

place the grandfather in the hierarchy. This

process can continue as long as necessary un-

til the chain of new error categories can be

linked to a node in the hierarchy (see Figure 3).
Once the error has been inserted into the hi-

erarchy, the interface gives the domain expert

the opportunity to create the llst of probable

causes, operational advisories, and diagnostic
advisories associated with the error.

5.1.2 Causes, Operational Advisories,

and Diagnostic Advisories

Adding and editing cause and advisory in-

formation is quite simple. A pop-up menu

is presented that allows the user to pick be-

tween changing probable causes, operational

advisories, or diagnostic advisories. Once an
area has been selected the interface allows the

user to: add new lines of information, edit

specific lines, rearrange the order of lines, or
delete lines. Each line consists of free-form

text keyed in by the user or mouse-selected

from default information contained in the fac-

tual and heuristic hierarchies. Figure 4 shows

the interface screen during the entry of prob-
able cause data for the FEP 132 error.

5.1.$ Using the Default Information

As mentioned above, the user may cre-

ate advisories by selecting text, via the mouse,

from the factual and heuristic hierarchies. The

texts available to be selected are those de-

fault advisories constructed by the domain ex-

pert and knowledge engineer and stored in the
heuristic and factual hierarchies. When the

user is to the point of entering in a line of

text of the probable causes, operational advi-

sorT, or diagnostic advisory, the system dis-

plays the default advisories in the lower right

window pane of the interface screen (see Fig-

ure 5). How the interface determines which

default advisories are displayed in this pane is
described below.

First, the interface must determine whether

the user has chosen to display information

from the factual hierarchy, from his own

heuristic hierarchy, or both. This determina_

tion is based on the option the user has chosen

using the Select Inheritance command (the de-

fault option is to show both). If the user has

chosen to display both or has simply taken the

default, the interface will collect default ad-
visories from both hierarchies, displaying the

user's own defaults at the top of the window.

This is done under the assumption that the

expert will feel that his own default advisories
are more relevant than those of the knowl-

edge engineer. If the user chooses one or the

other type of knowledge, the interface will col-

lect only the default advisories from the corre-

sponding hierarchy.

Given that the system knows which hierar-

chy or hierachies to collect the default advi-

sories from, the interface then uses the hier-

archy's structure to decide which advisories to

display. For example, suppose the FEP 132

201

f

Heuristic Hierarchy

N

Error node

In hierarchy

J

New error New error

Category 2 Category I FEP - 132

•.-I H I--I I

Figure 3: Adding Error Message to the Heuristic Hierarchy

!Probable Cau|eg:

1: HIfl Nester Control Card fat|ed.
2: HIM BUS Card fatlad.
3: Intarn4ttent lo9t¢ failure.
4: Internal HIM Card fatled.

I [d!t Line" I
i DeleteLine I
I Hove Line I
! InserLLine I
I _CCCpt I

Figure 4: Entering Probable Cause Information

202

errorused above was classifiedas a mechan-

icalanomaly and the user had chosen to use

defaultadvisoriesfrom hisown hierarchy.The

interfacewould begin collectingdefaultadvi-

soriesfrom the mechanical anomaly node in

the hierarchy.These advisoriesare the most

specificand willbe displayedat the top of the

window pane. The interfacethen traversesup

the hierarchyto the ancestorsof the mechan-

icalanomaly node. The defaultadvisoriesfor

each ancestorare collectedand added to the

listofadvisoriesto be displayedaftertheadvi-

soriesfound inmechanical anomaly. This pro-

cesscontinuesuntilthe root node isreached

alongeach ancestralpath. The by-product of

thisprocessisa listof allthe advisoriesfrom

the parentofthe errorwe are describingup to

the root of the hierarchyin order from most

specificto most generic.

Once the advisories have been collected, the

user can select them using the mouse and in-

clude them, as is, in his description, or modify

them in anyway he chooses. This means that

the domain expert does not need to store "per-

fect" advisories, but can store advisory tem-

plates that can be modified as necessary. This

greatly enhances the flexibility of the interface.

may have childrenthat are the actual sub-

tests.For example, the diagnosticsequence

SEQ CP1 -CPU DIAGNOSTIC PART I,has

the followingnine sub-tests:

"TST02 - XORB TEST"

"TST03 - REGISTER ADDRESSING TEST"

"TST04 - R2 DATA INTEGRITY TEST"

"TST05 - BLM/BRX TEST"

"TST06 - R3-R15 DATA INTEGRITY TEST"

"TST07 - ABRB TEST"

"TST08 - NOP TEST"

"TST09 - LDX TEST"

"TSTIO - IBR TEST"

The user can chose the string"SEQ CPI -

CPU DIAGNOSTIC PART I" to includein

his advisory by clicking the left button of the
mouse when the mouse cursor is above this

text, or he can see the associated sub-tests by

clicking the right button. If there were sub-

sub-tests, these could be viewed by clicking

the right button again. Returning to a higher

level is accomplished by clicking the middle

button of the mouse. In summary, clicking

the left mouse button selects the text under

the mouse cursor, clicking the middle button

takes the user up one level in the advisory hi-

erarchy, and the right button takes the user

down one level in the advisory hierarchy.

Another enhancement stems from the fact

that the default advisories themselves are

stored in a hierarchical structure. This allows

different levels of default information to exist

and be used by the domain expert. One exam-

ple we encountered where this was useful was

in the specification of diagnostic advisories.

Typically, a diagnostic advisory includes refer-

ence to sequences of diagnostic programs that
should be executed. The case may be, how-

ever, that an entire diagnostic sequence need

not be run but only several of its sub-tests. To

accommodate this situation the domain expert

may specify that a default advisory has its own

children. This allows the system to recognize

that an advisory detailing a sequence of tests

When the user has finished entering his de-

scription of an error, he may choose to save

it in his hierarchy or simply abort. Saving the

information amounts to creating the necessary

frames and their fillers in the expert's hierar-

chy. If the user does not abort, the expert's hi-

erarchy is redisplayed with the new error node
included. This concludes the discussion of the

error description process.

5.2 Modifying the Structure of
Heuristic Hierarchies

Maintaining the domain expert's error

classification hierarchy is one of the most im-

portant tasks of the interface. Several power-

ful options have been implemented to allow the

2O3

Opera Knowledge Acquisition Interface

Clear Screen Delete Error Hessage Help Nlererchy Relntenance

Operlt|onll Rdvtlor4e!

|, |F llnl Dr|nter 18 |hop= esli9n reportl or lylte_ _el=m8
es to the other prtnter vt= $$SPOOL IISSICM,

f'-I _=="L2_"_'_:_:_ _71

Line Options k _ODeretio_,mZ Categories

B _ |f 11ne orlnter Is 1nOD, assign reports or s_-sten nesse9ee to t

Add Line B Itghten up solonold ecreus tf Doper ur(nkles or doesn't teed.

Edit Line _ 0eplace MflOtMHD/BDSK or replace heads end peck In the event of
Oelete Line COntlct helntenance ¢n the event Of • pneu_etlc los$.

H0v¢ Line

insert Line

_ccept
Reje c t

Figure 5: Interface Main Screen with Default Advisories

user to quickly and easily change the structure

of his/her hierarchy. These options include

adding new error categories, adding and delet-

ing links between errors or error categories,

and moving sub-hierarchies from one place in

the hierarchy to another.

5.2.1 Adding New Error Categories

New error categories are added to the do-

main expert's error classification hierarchy us-

ing the Add Error Category option. This op-
tion allows the user to create a new error cat-

egory and place it in the hierarchy. The user

is prompted for the name of the new category

and the category that is to be its parent. The

parent category must exist in the hierarchy

and may be given either by typing its name

via the keyboard or by clicking on its graphical

representation using the mouse (all the nodes

in the domain expert's hierarchy are mouse se-

lectable). After this information is given, the

interface redisplays the hierarchy reflecting the

addition of the new category.

5.2.2 Adding and Deleting Links

Links or inheritance paths can be added to

and deleted from the expert's hierarchy using

the Add New Link and Delete Li,k options.

In the case of adding a new link, the user is

prompted for a child category and a parent

category. The system checks to see if the par-

ent node is a descendant of the chihl node, and

if it is, the attempt is aborted. This constraint

guarantees that cycles will not be created by

adding new links. Deleting a link is similar

to adding a new one. The user is prompted
for the parent and child nodes that define the

end-points of the link. Assuming that the par-

ent and child nodes given indicate an existing
link, the system proceeds to remove the link

. •

a,d redisplay the luerarchy. Because the er-

ror classification hierarchy is a tangled hier-

2O4

archy,child nodes may have multiple parents

and deleting any one of them does not effect

the child node. Deleting the last link between

the child and the rest of the hierarchy, how-

ever, effectively removes the child and any of
its descendents that are not attached to the

rest of the hierarchy through their own links

(see Figure 6).

5.3 The Restructure Hierarchy Op-
tion

Should the user wish to radically restruc-

ture his/her heuristic hierarchy, the Restruc-

ture option can be used. This option allows

the user to move sub-hierarchies from one par-

ent node to another. The user is prompted for

the root node of the sub-hierarchy he would

like to move and its new parent. If the root

node has several existing parents, a menu con-

taining the names of these parents is displayed

and the user is expected to click on the name of

the parent node that he wishes to break away

from. Constraints involving the creation of cy-

cles and validity of node names are enforced to

prevent corruption of the hierarchy. When the

constraint checks are passed the hierarchy is

redisplayed.

5.4 Modifying Default Information
Within Heuristic Hierarchies

Information stored in the interior nodes

(error category nodes) of the heuristic hierar-

chy is modified using the Edit Category Data

option. With this option, users can explain

the reasoning behind their classifications and

create or edit default operational and diag-
nostic advisories. Default advisories contain-

ing the domain expert's experiential knowl-

edge are displayed and used during the cre-
ation of OPERA advisories. Each default ad-

visory and the expert's reasoning about his
classification consists of one or more lines of

text.

5.5 Specific Tools For OPERA

A special maintenance menu is provided

to the knowledge engineer so that he can:

add new errors to be described to the sys-

tem, dump the collected advisories in a format

readable by OPERA, and change the struc-

ture of the factual hierarchy. To add a new

error, the knowledge engineer must enter the

information that the domain expert is going to
need before he can describe the error. This in-

cludes the status register values of any register

inserts, the actual text of the error message,

the formats of the register inserts, the notes
from the CCMS documentation about this er-

ror, and the placement of the error within the

factual hierarchy.

Dumping the collected advisories

to OPERA is done by simply clicking a menu

option. The user is then asked for the file-

name of the dump file. The data output is in

a pseudo-LISP form that OPERA can directly

input. Data may be dumped at any time and

as many times as needed. Changing the struc-

ture of the factual hierarchy is handled simi-

larly to changing the structure of the expert's

hierarchy. The knowledge engineer uses the

same restructuring commands that are avail-

able to the domain expert for changing heuris-
tic hierarchies.

6 Design of the Two Hierar-
chies

The basic unit of information in our rep-

resentation is a frame representing a single

node within a hierarchy. A node (frame) may

represent a root, a leaf, or an internal node

within a hierarchy. Each node is known by

a "node name" that is specified as an ASCII

string (without spaces) by the expert creat-

ing the node. Associated with each node are

two types of information: first, the informa-

tion that details the hierarchy (i.e. the ex-

pert) to which the node belongs, its parent

206

a)

I blechsnicsl

Anomsly

initiMi_tion

Link to be delefed

L online

C DB FR- powe_

OnBonrd

envrn-crific,I

er|onomlc

round-power

tuppr t.impacl

sub-sy*tem

L CDBFR

HIM

Y__L
I Con*ole

J Error-132

/
]

1
i

b)

Mech*nic&l

AnnmAIv

nitiadizattion

k___FDB,R,....I I E.....,3, I

Figure 6: Deleting Links Between Nodes in the Heuristic Hierarchy: a) before, b) after

nodes, and its child nodes within the hierar-

chy; and second, the domain information that

node stores within that hierarchy.

The frame structure for specifying nodes is

as follows. A node is identified by a "name".

The information detailing a node's position

and connections within a hierarchy are stored

under the property "*inherit*" while the do-

main information is stored under the property

"*frame*". Within each property, the top level

slot names the expert creating the node. This

expert name uniquely identifies the hierarchy
to which the node belongs. Within the "*in-

herit*" property, under the expert name are

two slots, "children" and "parents", that iden-

tify the links within this expert's hierarchy. In

frame notation, a node is defined as:

(<node-name>

(*frame*

(<expert-namel>
(<domain-data ...))

(<expert-name2>

(<domain-data ...))

(<expert-nameN>

(<domain-data ...)))

(*inherit*

(<expert-namel>

(children (<node-name>

(parent (<node-name>)))

(<expert-name2>

(children (<node-name>

(parent (<node-name>)))

...))

...))

(<expert-nameN>
(children (<node-name> ...))

(parent (<node-name>)))))

The OPERA Interface is built upon a vari-

ety of primitive functions that control access
to information within the entire data struc-

ture. An expert is limited to his/her hierarchy

and the factual hierarchy defined by the knowl-

edge engineer. The system's primitives control
the inheritance of information within an ex-

pert's hierarchy and from the factual hierar-

chy to the expert's hierarchy. An expert is un-

aware that the data structure (frame) storing
his information also stores other experts' in-

formation. Duplicate names for internal nodes

206

within heuristic hierarchies create no problems

for keeping the domain experts' information

separate.

In the OPERA domain, heuristic hierar-

chies share leaf nodes describing individual er-

rors. All information entered about an error

by any number of experts is recorded within

the one frame describing the individual er-

ror. Contradictory and conflicting information

among experts is kept segregated within each

expert's subframe. In this fashion, the knowl-

edge structure supports multiple, conflicting

views of the domain without destroying the

integrity of any expert's information.

A priori knowledge about the domain is

stored in a hierarchy with the expert name:

"FACTUAL". The system's primitives recog-

nize "FACTUAL" as identifying the factual hi-

erarchy. Information within the factual hier-

archy is available to domain experts as they

define their hierarchies and enter specific in-

formation about individual errors. The sys-

tem uses the factual hierarchy to display sug-

gestions and/or possible text for the expert to

consider, modify, and incorporate in his/her

hierarchies. The system prevents experts from

altering the factual hierarchy.

This knowledge structure with its primitives

allows multiple experts to define heuristic hi-

erachies (which can be tangled) reflecting their

view of the domain, to interact with an a priori

knowledge base without contaminating it, and

to enter information into a single data repre-

sentation without fear of corrupting informa-

tion entered by other experts. At the same

time, all information is available to the knowl-

edge engineer in a consolidated form requiring

little manipulation to make sense of the infor-

mation.

7 Conclusions and Future

Research

A knowledge acquisition framework that

makes use of factual and heuristic knowledge

has been described. This technique has been

applied to the acquisition of advisories and

probable causes about errors that occur in the

computer network controlling the space shut-

tle launch processing system. The knowledge

acquisition interface is currently running on a

Symbolics 3653 under version 8.1 of the Gen-

era operating system. The implementation is

in the process of being converted to run un-

der CLIM (Common Lisp Interface Manager)

in Allegro Common Lisp on a SUN platform.

SUN workstations are much more common at

the Space Center than Symbolics machines,

and this migration should provide systems en-

gineers with greater accessibility to the inter-

face. Information about approximately 50 er-

ror messages has already been collected from

7 experts. While these error messages are pri-

marily concerned with the Front End Process-

ing sub-system, we are expanding our efforts

to recruit experts with knowledge about the

other sub-system messages.

Although we have applied these ideas to

the construction of a knowledge acquisition

interface for OPERA, and some of the com-

ponents of the interface are OPERA depen-

dent, (e.g., the final dumping of the advisories

into OPERA data structures), the interface

has a range of application that goes beyond

OPERA. In principle, any domain that can be

analyzed into a factual and a heuristic hierar-

chy as described in the body of the paper falls

within the scope of the interface. Of course,

this description is very general and some do-

mains are going to have idiosyncracies that will

require special mechanisms to handle them.

However, if one stays within the area of de-

termining the probable causes and advisories

of computer network errors, then the interface

can be used in many subdomains with very

207

minormodifications.

Table 2. A Portion of the Data

Dumped From the Interface

to OPERA.

** MSG-CAUSES:

((FILTERS) i.

((FILTERS) 2.

((FILTERS) 3.

((FILTERS) 4.

GSE Option Plane has

failed)

GSE FEP Option Plane

microcode has failed)

GSE FEP 4-port con-

troller has failed)

GSE FEP CPU failed)

** DIAGNOSTIC-ADVISORY: **

((FILTERS) I. NO2 on the data

acquisition plane)

((FILTERS) 2. SEQ FEPI01)

((FILTERS) 3. SEQ CPI, CPU Diag-

nostic Part I)

((FILTERS) 4. SEQ CP2, CPU Diag-

nostic Part 2)

((FILTERS) 5. SEQ OPD, Option Plane

Diagnostic)

((FILTERS) 6. $DPLORT LI 4)

((FILTERS) 7. $DPLORT LI 5)

** INSERT-FORMAT: **

(INSERTI ASCII CPU-NAME-INTERPRET

CPU-NAME)

(INSERT2 HEX MDT-CDT-PTR-DECODE

MDT-CDT-PTR)

** OPS-ADVISORY: **

((FILTERS) i. Note the MDT/CDT

Pointer Address in

the error message)

((FILTERS) 2. If ACTIVE GSE FEP,

verify that STANDBY

GSE FEP is O.K.)

((FILTERS) 3. Halt the CPU and

record CPU regs)

((FILTERS) 4. Perform applicable

data retrieval progs

$SPRCVE, $SPBLOK,

$SPSNPR)

** MSG-TEXT: **

FEP 142

INSFATI

MICROCODE DETECTED INVALID

MEASUREMENT/COMMAND TYPE CODE,

DATA ACQUISITION INHIBITED,

MDT/CDT PTR =

INSERT2

We are planning to incorporate in the inter-

face some of the ideas described in (Gomez

and Segami, 1990; Gomez and Segami, 1991).

We are targetting two possible applications of

these ideas. One is the construction of the

factual hierarchy from natural language input.

The other is to use natural language combined

with some elicitation techniques (Boose and

Bradshaw, 1987) to build the heuristic hierar-

chy during the first stages of its construction

by domain experts unfamiliar with the inter-

face. The final result will be the construction

of a generic knowledge acquisition interface in-

corporating the automatic construction of hi-

erachies from natural language input.

References

Adler, R., Heard, A., & Hosken, B. (1989).

An Expert Operations Analyst (OPERA)

for a Distributed Computer Network. AI

Systems In Government (AISIG). Wash-

ington D.C.

Boose, J. & Bradshaw, J. (1987). Exper-

tise transfer and complex problems: us-

ing AQUINAS as a knowledge acquisition

workbench for expert systems. Interna-

tional Journal of Man-Machine Studies,

26, 3-28.

Clancey, W.J. (1985). Heuristic Classifica-

tion, Artificial Intelligence, 27, 289-350.

Gomez, F. & Chandrasekaran, B. (1984).

Knowledge organization, and distribution

for medical diagnosis. In W. Clancey

208

& E. Shortliffe, Eds. Readings in Medi-

cal Artificial Intelligence. Reading, MA:

Addison-Wesley.

Gomez, F. & Segami, C. (1990). Knowl-

edge acquisition from natural language
for expert systems based on classification

problem-solving methods. Knowledge Ac-

quisition, 2, 107-128.

Gomez, F. & Segami, C. (1991). Classifi-

cation Based Reasoning. IEEE Transac-

tions on Systems, Man, and Cybernetics,

21(3), 644-e59.

2OO

Information Management

211

PRECEDING PAGE BLANK NOT FILMED

