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TECHNICAL PAPER

TECHNIQUE TO ELIMINATE COMPUTATIONAL INSTABILITY IN MULTIBODY
SIMULATIONS EMPLOYING THE LAGRANGE MULTIPLIER

I. INTRODUCTION

The Lagrange multiplier method has been used for many years by the author and other

engineers to develop the equations of motion in multibody problems. An important application for this

method is in the simulation of a space shuttle solid rocket booster (SRB) which is being decelerated

and stabilized for water impact by a drogue parachute or three main parachu.tes. Reference 1
describes one of the first digital computer programs at Marshall Space Flight Center (MSFC) that

employed the Lagrange multiplier method to simulate SRB-parachute dynamics.

Use of the Lagrange multiplier has an advantage over some other formulations in that it pre-

serves the original simple form of the equations of motion for each body. However, in typical time-

varying dynamics simulations that use the Lagrange multiplier, computational instability can occur

because integration error causes the two (or more) attached bodies to drift apart and violate the
constraints. The computational instability usually happens suddenly, and the computed values "blow

up" within a few time steps. Computational instability occurred often in SRB-parachute dynamics

work at MSFC in the 1970's resulting in much frustration for those involved.

This paper describes a technique to eliminate computational instability caused by drifting

apart of the attached bodies when the Lagrange multiplier is used. The equations of motion are not

changed; instead, the programming of the equations on a digital computer is changed. A computer

program listing is provided in the appendix to aid in the description of the programming technique.

H. EQUATIONS OF MOTION WITH LAGRANGE MULTIPLIER

For the sake of completeness, the multibody equations of motion employing the Lagrange

multiplier will first be presented. A simple dynamics problem has been selected as the example so

that the basic principles can be clearly illustrated. The example consists of two rigid bodies con-

nected by a frictionless swivel. Each body would have six degrees of freedom (DOF) if not con-

nected to the other body.

The development of the equations of motion with the Lagrange multiplier begins with the

general Newtonian equations that will be written for each body at its center of mass (CM) in a

body-fixed frame. The equations for either body have the familiar vector form:



i

_-L

MASS*VDO_r- FORCI_- _'x_*MASS , (1A)

RotatiQn

MOMEN_F ")_..HDOT = - WXJ-I , (1B)

where V is the velocity of the CM; W and H are the angular velocity and momentum, respectively;

VD07" and HD07" are time derivatives taken in the body frame; and MASS is a scalar quantity. The

FORCE and MOMENT vectors include both the external and attach point constraint components.

The Newtonian equations for each body must be converted to matrix form by using inertia

matrices and tilde matrices. The equations for both bodies can then be combined into the following
matrix equation:

[M][D_] = [FE] + [FA] + [FW] , (2)

where [M] is a 12x12 quasi-diagonal matrix containing the mass and inertia matrices for both

bodies which will be described in detail later; [Dfl] is a 12xl matrix containing the body-fixed com-

ponents of the VDO_ r and WDO_r accelerations for each body; [FE] is a 12xl matrix containing the

external forces and moments for each body; [FA] is a 12xl matrix containing the attach point con-

straint forces and moments expressed at the CM of each body; and [FW] is a 12xl matrix equivalent

of the (-Wx V'MASS) and (-W×H) vectors for each body. The calculation of [FW] is described in

the computer program listing in the appendix.

At this point, the subscripts B and C are chosen to represent the two bodies, and the follow-

ing sequence is specified for the cells in the [M] matrix and the 12xl matrices in equation (2):

First cell--translation of body B
Second cell--rotation of body B

Third cell--translation of body C

Fourth cell--rotation of body C

[M], the 12x12 quasi-diagonal matrix for masses and inertias in equation (2), thus has the form:

-[MASSB]

[M] = [IMB] 0

[MASSc]

0 [IMc]

where [MASSe] and [MASSc] are 3x3 diagonal matrices containing the mass of each body, and
[IMB] and [IMc] are the 3×3 inertia matrices in body-fixed frames.

[Dr2] in equation (2) is a 12xl matrix with the following four 3xl cells containing the body-
fixed components of translational and rotational acceleration for both bodies:

2
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[VDOTs]

[WDOTB]
[Dn]= [VDOTc]

[WDOTc]

A 12xl velocity matrix, [f_], will be defined similarly to [Df_]. Its four 3xl cells are:

[wB]|
[n]= [Vc] [ '

[Wc]J

where [VB] and [Vc] contain the body-fixed components of the velocity of the CM for each body, and

[WB] and [Wc] contain the body-fixed angular velocity components for each body.

Continuing with the Newtonian equations, equation (2) will be rearranged using the inverse
of [214] as follows:

[Df_] = [M] -1[[F] +[FA]] , (3)

where IF] is simply the sum of [FE] and [FW]. If the attach point constraint forces and moments,
[FA], were known, equation (3) could be used to determine the translational and rotational accel-

erations of both bodies as is done in a typical dynamics problem.

To calculate [FA], the Lagrange multiplier method will be used. To prepare for the incorpora-

tion of the Lagrange multiplier, the attach point constraint equation, which states the velocities of the

attach points of both bodies are equal, will be presented. In vector form, the attach point constraint
equation for the chosen example is:

VB+WBxLB = Vc+WcxLc, (4)

where._.,the subscripts B and C represent the two bodies (as is the case throughout this paper); _ and

W are the velocity of the CM and angular velocity previously defined; and L is the attach point vector

which defines the distance from the CM to the attach point for each body.

Equation (4) must be converted to a matrix form that will allow the 12xl [_] matrix to be

factored out. To do this, a vector, U, will be substituted for the (WxL') cross-product of each side of

equation (4):

(5)

Equation (5) can easily be converted to a matrix equation in the C body frame by using a

transformation matrix, [ACB], to transform from the B body frame to the C body frame. The resulting

equation is:

[A CB] [ Vs] + [A CB ] [ UB] = [ Vc] + [ Uc] . (6)

3



Returningto the U vectors in equation (5) they represent the following cross products:

UB = WB×LB and = x . (7)

These two cross products can be rearranged by reversing their order and inserting a minus
sign, producing:

Us =-LBXWo and =- x . (8)

By using the tilde matrix for each attach point vector, L, the two parts of equation (8) can be
converted to matrix form as follows:

[UB] = -[LTB][WB] and [Uc] = -[LTc][Wc] , (9)

where [LTB] and [LTc] are tilde matrices for the attach point vectors. The tilde matrices and angular
velocity matrices are all expressed in their original frames.

By substituting both parts of equation (9) back into equation (6), the following equation is
obtained:

[A CB][VBI-[ACB][LTB][WB] = [Vc]- [LTc][Wc] , (10)

Where every, term is a 3× 1 matrix.

After gathering all the terms in equation (10) to the left side, we have:

[A CB] [VR] - [A CB] [LTB] [WB] - [Vc] + [LTc][Wc] = 0 , (11)

Equation (11), the constraint equation, is now in a form that will allow the 12×1 [_] matrix to

be factored out. After factoring out [f_], the reconfigured constraint equation is:

[A][f_] = 0 , (12)

where [A] is a 3x12 matrix that will be called the "constraint matrix." By inspection of the terms in
equation (11), [A] can be expressed as four 3x3 cells as follows:

[A] = [[ACB] " -[ACB][LTB] " -[IDENT] " [LTc]] ,

where [IDENT] is a 3×3 identity matrix.

Continuing with the derivation, equation (12) will be differentiated with respect to time, which
gives the following:

[A][Df_I+[ADOT][_] = 0 . (13)

Substituting the expression for [Dfl] from equation (3) into equation (13) yields:



[A][M] -I[[F]+[FA]]+[ADOT][f)] = 0 . (14)

Equation (14) will be rearrangedasfollows:

[A][M] -I[FA] = - [A] [M] -1[F]-[ADOT][_] . (15)

[FA], the attach point constraint forces and moments,must be determined to finish the
derivation of the equationsof motion. Unfortunately, no inverse exists for the 3x12 matrix term
[A][M] -1 in equation(15), preventinga direct solution for [FA].

To obtain [FA], the Lagrangemultiplier methodwhich usesthe following derivable relation-
ship for the attachpoint constraintforcesandmomentswill be introduced:

[FA] = [A]T[_] , (16)

where [A] T is the transpose of the "constraint matrix," and [;t] is the 3xl Lagrange multiplier
matrix.

The derivation of the Lagrange multiplier relationship in equation (16) will not be presented in

this paper. The reader is urged to study reference 2 for an excellent explanation of the Lagrange

multiplier and related subjects.

To continue the calculation of [FA], note that [A] can be determined by first combining equa-

tions (15) and (16) to eliminate [FA], which produces the following:

[A] [M]-I [A ] T[A] = _ [A ][M]-1 [F] -[ADOT] [_1 . (17)

The matrix, [A][M]-I[A] r, is a 3×3 which has an inverse. Therefore, equation (17) can be

used to solve directly for I/q.] as follows:

[_] = [[A][M]-I[A]T]-I[-[AI[M]-I[F]-[ADOT][_]] . (18)

To calculate [FA], the expression for [_] in equation (18) is substituted back into equation

(16) to produce the following:

[FA] = [A]T[[AI[MI-I[AIT]-I[-[A][M]-I[F]-[ADOT][_]]. (19)

The derivation of [FA], the attach point constraint forces and moments, is now complete.

Equation (19) can be used to calculate [FA] as a function of the known system parameters such as

mass, geometry, external forces, and velocities. The components of [FA] are expressed at the CM of

each body, not at the attach point.

5



Ill. GENERAL PROGRAMMING COMMENTS

After [FA] has been calculated in the computer program, it is inserted in equation (3) to cal-

culate [Df2] which contains the 12 acceleration components. For convenience, equation (3) is again

presented:

[Df_]- [MI-II[F]+[FA]] . (3)

In all previous simulations which used the Lagrange multiplier and which are known to the
author, the 12 accelerations in equation (3) were integrated to obtain velocity and angular Velocity

components. After the integration had been performed over a period of time, integration error caused
the two bodies to drift apart and violate the constraints, which eventually led to computational

instability.

IV. TECHNIQUE TO ELIMINATE COMPUTATIONAL INSTABILITY

!

!

6

The technique that eliminates computational instability caused by drifting of the attached
bodies will now be presented. Instead of integrating the 12 acceleration coordinates in equation (3),

the 2 bodies in the chosen example will be examined to determine the independent coordinates. One

can see that there are only nine independent coordinates in the example: three rotational coordinates

for each body (total of six coordinates) and three translational coordinates for one of the bodies.

Body B will be chosen as the body whose translational coordinates are independent, meaning that
the translational coordinates of body C are dependent upon the other nine coordinates. Only the nine

independent acceleration coordinates will be integrated to get the three translational velocity compo-

nents of body B and the six angular velocity components for both bodies. The three translational

velocity components of body C must somehow be calculated. To do this, one needs only to take

equation (11), the constraint equation, and solve it for the velocity of body C:

[Vc] = [A CB] [VB] - [A CB] [LTB] [WB] + [LTc] [Wc] , (20)

where all matrices have been previously defined. By using equation (20) to calculate the velocity of

body C at each integration time step, drifting of the bodies is eliminated, as is the associated compu-

tational instability.

It would be sufficient to stop at this point because the stated intention of preventing compu-

tational instability has been accomplished. However, one more step is added to the process. The

translational position of body C will be.....................determined in the same manner as was its velocity.

Specifically, a position constraint equation will be used, instead of integration, to define the transla-

tion of the CM of body C at each integration time step. The two bodies will thus not only maintain the

proper relationship of their velocities but their positions as well. Details of the position constraint

are presented in the computer program listing in the appendix.
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APPENDIX

This appendix contains a digital computer program listing of the two-body simulation which

uses the programming technique that eliminates computational instability associated with the

Lagrange multiplier method. The two bodies are connected by a frictionless swivel. The aero-

dynamics and certain other aspects of the simulation are somewhat simplified to allow clearer illus-
tration of the basic principles used. No subroutines are listed because they all perform relatively

simple calculations such as matrix multiplication, trigonometric functions with zero denominators, or

integration. The program listing, in FORTRAN, begins on the next page.

PK_E'CED[NG PAGE BLANK NOT FILMED
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C JAN 15, 1992

C GAINES WATTS

C MSFC - EDI3

C

C TTTTTTT W W W 00000 BBBBBBo 00000 DDDDDD Y
C T W W W 0 0 B B 0 0 D D Y

C T W W W 0 0 BBBBBB 0 0 D D Y

C T W W W 0 0 B B 0 0 D D Y

C T WW WW 00000 BBBBBB 00000 DDDDDD Y
C

Y

Y

C A SIMPLE TWO-BODY LAGRANGE MULTIPLIER SIMULATION TO ILLUSTRATE
C THE PROGRAMMING TECHNIQUE THAT ELIMINATES COMPUTATIONAL INSTABILITY

C CAUSED BY DRIFTING APART OF THE BODIES. j
C

C_________@__@_____

C

C

C

C

C
C

C

C

C

C

C

C
C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

lO

PROGRAM INTRODUCTORY COMMENTS;

I. THE TWO BODIES IN THIS PROGRAM ARE AN SRB AND A PARACHUTE,

DESIGNATED BY SUBSCRIPTS "B" AND "C", RESPECTIVELY• A
FRICTIONLESS SWIVEL IS USED TO CONNECT THEM.

2, BOTH BODIES ARE ASSUMED TO BE RIGID WITH NO CHANGES IN

MASS PROPERTIES DURING A SIMULATION RUN. NO ADDED MASS,

APPARENT MASS, OR A_RODYNAMIC DAMPING ARE CONSIDERED•

A FLAT EARTH WITH CONSTANT GRAVITATIONAL ACCELERATION IS

ASSUMED• ATMOSPHERIC DENSITY VARIES WITH ALTITUDE, BUT NO
WINDS ARE USED,

•

•

•

THE INERTIAL REFERENCE IS ASSUMED TO BE THE 'i' FRAME WHICH IS

LOCATED AT THE EARTH'S SURFACE DIRECTLY BENEATH THE INITIAL

POSITION DF THE SRB. THE ORIENTATION OF THE 'I' FRAME

IS; NORTH - EAST- DOWN•

THE _I:-:'AND 'C' FRAMES ARE FIXED AT THE C.M. OF THE SRB AND

PARACHUTE, RESPECTIVELY. EACH FRAME USES THE X-AXIS AS THE

ROLL AXIS.
|
=

TWO SETS OF 3-2-I EULER ANGLES RELATE THE 'B' AND 'C' __
FRAMES TO THE 'I' FRAME.

•

•

AERO COEFFICIENT TABLES FOR THE SRB AND THE PARACHUTE ARE

EXPRESSED IN "MISSILE" AXES AS A FUNCTION OF THE TOTAL

ANGLE OF ATTACK. A POSITIVE ROTATION ABOUT THE ROLL AXIS

IS USED TO TRANSFORM FROM "MISSILE" AXES TO THE BODY-FIXED

FRAME FOR THE SRB OR PARACHUTE,

THE MOMENT REFERENCE F'OINT (M.R.P.) FOR EITHER BODY IS AT

THE C,M. -- -



•C

C

C

C I0.

C

C

C

C

C

C

C

C

C

C

A 'V' FRAME IS USED FOR THE SRB, HAVING ITS X-AXIS ALONG THE

SRB VELOCITY VECTOR AND ITS Y-AXIS HORIZONTAL.

A FLAG IS AVAILABLE TO ZERO OUT THE EXTERNAL FORCES AND

MOMENTS, AND PERMIT THE ATTACH POINT CONSTRAINT FORCES AND

MOMENTS TO BE CHECKED. (SET IFE = 0 TD USE THIS OPTION).

PARAMETER (NAB = 9)

PARAMETER (NAC = 5)

PARAMETER (NRHO = 8)
PARAMETER (NRNK = 30)

REAL LABB(3),LACC(3),LABI(3),LACI(3),LREFB,LREFC

REAL MASSB",MASSC,IXXB,IXXC,IYYB,IYYC,IZZB, IZZC,IXYB,IXYC,

IXZB,IXZC,IYZB,IYZC
REAL IMB(3,3),IMC(3,3),IMBINV(3,3),IMCINV(3,3)

REAL M(12,12),MINV(12,12),MIDENT(12,12)

DIMENSION ABI(

DIMENSION ABV(

DIMENSION A(3,

2TERMAI(3,3),AM

3,3) ,ACI (3,3),AIB(3,3),AIC(3,3),ACB(3,3)

3,3) ,AVI (3,3),AIV(3,3)

12),AT(12,3),ADOT(3,12),AMINV(3,12),AMINVA(3,3),

INVF (3), ADDTDM (3) ,TERMVI (3), TERMV2 (3) ,ADOMEG (3)

DIMENSION
DIMENSION

2VABB(3),VA

DIMENSION
DIMENSION

OMEGA(12),DOMEGA(12),DOMg(9)

VIBB(3),VICC(3),VIBI (3),VICI(3),VOBB(3),VOCC(3),

BC(3),RIBI(3),RABI(3),RICI (3),OMB(3),OMC(3)

FL(12) ,FG(12),FE(12),FW(12),F(12),FA(12) ,FTOTAL(12)

GI (3),GB(3),GC(3),H(12)

DIMENSION

DIMENSION

DIMENSION

DIMENSION

ALBTL(NAB),CAMBTL(NAB),CNMBTL(NAB),CMMBTL(NAB)

ALCTL(NAC) ,CAMCTL(NAC) ,CNMCTL (NAC) ,CMMCTL (NAC)

CARD(20) ,TITLE(16),RHOALT(NRHO),RHOTL(NRHO)

XXD(NRNK),XX(NRNK)

EQUIVALENCE (X

EQUIVALENCE (X
EQUIVALENCE (X

EQUIVALENCE (X

EQUIVALENCE (X

EQUIVALENCE (X

EQUIVALENCE (X

EOUI VALENCE (X

XD(01) ,B11D) ,(XXD(O2),BI2D), (XXD(03) ,BI3D)

XD(O4),B21D),(XXD(O5),B22D), (XXD(O6),I:-:23D)

XDCO?) ,B31D) ,(XXI](OS),B32D), (XXD(09) ,B33D)

XD(IO) ,C11D),(XXD(II),CI2D), (XXD(12) ,C13D)

XD(13) ..C21D) ,(XXD(14),C22D), (XXD(15) ,C23D)

XD (16) ,C31D) , (XXD( 17), C32D), (XXD (18) ,C33D)

XD(19) ,DDM9(1))

XD(28),VIBI(1))

EQUIVALENCE

EQUIVALENCE

EQUIVALENCE

EQUIVALENCE

EQUIVALENCE

EQUIVALENCE

EQUIVALENCE

EQUIVALENCE

(XX(OI),BII), (XX(02) ,B12), (XX(O3),BI3)
(XX(O4),B21) ,(XX(05) ,B22), (XX(O6),B23)

(XX(O7),B31),(XX(08),B32), (XX(O9),B33)
(XX(10),CII), (XX(II) ,C12), (XX(12),Ci3)

(XX(13),C21), (XX(14) ,C22), (XX(15),C23)

(XX(16),C31) ,(XX(17),C32), (XX(18),C33)

(XX(19),VIBB(1)),(XX(22),DMB(1)),(XX(25),OMC(1))

(XX(2B),RIBI (I))

II



L

C
C
C
C
C
C
C
C
C
C

C _ _ _ _ ,1_ .._ ._- .t$ .15 .,II-

AERO COEFFICIENT TABLES IN MISSILE AXES FOR THE SRB AND THE

PARACHUTE AS A FUNCTION OF TOTAL ANGLE OF ATTACK.

C .K. -ii.

C

CA - - AXIAL FORCE

CN - - NORMAL FORCE

CM - - PITCH MOMENT

CY - - SIDE FORCE

CW YAW MOMENT

"CR - - ROLL MOMENT

DATA ALBTL/O.,20.,40.,60.,90,,120.,147.,160.,180./ .......
DATA CAMBTL/O.O,O.O,O.O,+O.50,+I.40,-I.35,-3.65,-3.00,-2.20/

DATA CNMBTL/O.O,O.O,O.O,+9.00,+9.00,+9.00,+4.10,+I,80,+O.O0/

DATA CMMBTL/O.O,O.O,O.O,+15.5,+5.00,-3.30,-I.90,-I.IO,+O.O0/

CYMB = 0.0
CWMB = O. 0

CRMB = O. 0

DATA ALCTLIO.,5.,IO.,15.,25./

DATA CAMCTLI+0.62,+0.62,+0.62,+0.61,+O.56/

DATA CNMCTL/.O00,+.0100,+.032,+.090,+.i70/

DATA CMMCTL/.O00,-.0133,-.037,-.091,-.175/

CYMC = O. 0

CWMC = O. 0
CRMC = O. 0

REFERENCE AREAS AND LENQTHS FOR THE SRB AND PARACHUTE.
SREFB = 116.26

LREFB = 12.1667

SREFC = 2289.1

LREFC = 54.00
C

C # # _ _ _ _. -_. _ _. "_-

C ATMOS. DENSITY TABLE - - ENGLISH SYSTEM.

C

DATA RHOALT/O0,,5000,,8224.,8803.,14000.,20000.,30000.,40000,/

DATA RHDTL/0.0022964,0.0019909,0.00i 8053,0.0017735,

BO. O015086, O. 0012483, O. 0009024, O. 0006306/

C CONSTANTS.

CNV = 57,2957795

GZERO = 32.1740485
C _ _ _ _ _ _ # _ _ _

C READ AND F'RINT DESIRED PORTION OF FORTRAN SOURCE DATASET.

READ (5,805) NPMIN,NPMAX

DO i00 I=I,NPMAX

READ (9,820, END=lOS) CARD

IF(I .LT. NPMIN) GO TO I00
WRITE(6,822) CARD

i00 CONTINUE

105 WRITE (6,800)

C _ _ _ _ _ _r _ _ _

12



C

C

READ AND WRITE THE INPUT DATA.

READ (5,801)

WRITE(6,802)

READ (5,807)

WRITE(6,808)

TITLE,!DIAG,IFE

TITLE,IDIAG,IFE

TSTART,TMAX,DELT,DTPRT,TNPI,TNP2

TSTART,TMAX,DELT,DTPRT,TNPI,TNP2

READ (5,807)

WRITE(6,808)

READ (5,807)

WRITE(6,808)

READ (5,807)

WRITE(6,808)

VIBS,AZIIBS,GAMIBS,ALTBS

VIBS,AZIIBS,GAMIBS,ALTBS

PDEGBS,QDEGBS,RDEGBS,ALPHBS,PHIABS,BANKBS

PDEGBS,QDEGBS,RDEGBS,ALPHBS,PHIABS,BANKBS

PDEGCS,QDEGCS,RDEGCS,PSICS,THETCS,PHICS

PDEGCS,QDEGCS,RDEGCS,PSICS,THETCS,PHICS

READ (5,807)

WRITE(6,808)

READ (5,807)

WRITE(6,808)

READ (5,807)

WRITE(6,808)

WGHTB,IXXB,IYYB,IZZB, IXYB,IXZB,IYZB
WGHTB,IXXB, IYYB,IZZB, IXYB,IXZB,IYZB

WGHTC,IXXC,IYYC,IZZC,IXYC,IXZC,IYZC

WGHTC,IXXC, IYYC,IZZC, IXYC,IXZC,IYZC

XATTB,YATTB,ZATTB,XATTC,YATTC,ZATTC

XATTB,YATTB,ZATTB,XATTC,YATTC,ZATTC

WRITE(6,802)

MASSB = WGHTB/GZERO
MASSC = WGHTC/GZERO

C

C SET UP THE [M] MATRIX AND ITS INVERSE. [M] IS

C BE TREATED AS A QUASI-DIAGONAL MATRIX WITH FOUR

C THE INVERSE DF [M] CAN BE FOUND BY SIMPLY

C OF EACH CELL.
C

C
C

C

C
C

C

C

C

C
C

C

C

C

C
C

C

C

C

C

C

C

C

C

A 12X12

3X3

TAKING THE

0 0 0 0 0 0 0 0 0

I I

I MASSB I 0 0 0 0 0 0 0 0 0

I I

0 0 0 0 0 0 0 0 0

[M]

0 0 0 ......... 0 0 0 0 0 0
t I

0 0 0 I IMI:-: I 0 0 0 0 0 0
I 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

I I

0 0 0 0 0 0 I MASSC I 0 0 0

I I

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

I

0 0 0 0 0 0 0 0 0 I IMC

I

0 0 0 0 0 0 0 0 0

WHICH CAN

CELLS.

INVERSE
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C
C _- _-

C FIRST, ZERO ALL THE ELEMENTS OF [M] AND [MINV].

DO 121 I=I,12

DO 120 J=1,12

M(I,J) = 0.0

120 MINV(I,J) = 0.0

121 CONTINUE

C NOW, SET UP THE MASS CELLS IN [M] AND [MINV]. EACH MASS CELL IS

C A DIAGONAL MATRIX.

DO i30 I=1,3

M(I,I) = MASSB

M(I+6,1+6) = MASSC
MINV(I,I) = I./MASBB

130 MINV(I+6;I+6) = I./MASSC

C
C NEXT, SET UP EACH INERTIA MATRIX AND ITS INVERSE.

CALL IMATRX (IXXB, IVY_B,IZZB, IXYB,iXZB, IYZB,IMB)
CALL IMATRX (IXXC, IYYC,IZZC,IXYC,IXZC,IYZC,IMC)

CALL MAINV3 (IMB,IMBINV)

CALL MAINV3 (IMC,IMCINV)

FINALLY, SET UP THE INERTIA CELLS IN [M] AND [M!NV].

DO 133 I=I,3

DO 132 J=1,3

M(I+3,J+3) = IMB(I,J)

M(I+9,J+9) = iMC(i,J)

MINV(I+3,J+3) = IMBINV(I,J)

132. MINV(I+9,J+9) = IMCINV(I,J)

133 CONTINUE

C -_ _

C CHECK THE INVERSE OF [M] BY PRINTING [M] AND [M][MINV].

C _ _

DO 141 I=1,12

141 WRITE (6,812) (M(I,J),J=I,12)

CALL MMUL (M,MINV,MIDENT,12,12,12)

WRITE (6,802)

DO 142 I=1,12

142 WRITE (6,812) (MIDENT(I,J),J=I,12)

C

C SET UP VECTORS FOR C.M.-TO-ATTACH-FOINT DISTANCES.

C ARE DEFINED AS POSITIVE FROM C.M. TO ATTACH POINT.
LABS(1) = XATTB

LABS(2) = YATTB

LABS(3) = ZATTB

LACC(1) = XATTC

LACC(2) = YATTC

LACC(3) = ZATTC

C

C _" _" _ _ _- _. ._ _ _ _. _ _ -_ ._ ,_ _ .w-

C

C

C

BOTH VECTORS

SET UP THE 3RD AND 4TH CELLS OF [A], THE 3X12 CONSTRAINT

MATRIX WHICH HAS THE GENERAL FORM:

14



I I I I I
[A] = I +ACB I-ACB*LTBI -IDENT I +LTC I

I I I I I

WHERE LTB AND LTC ARE TILDE MATRICES FOR THE LABS AND

LACC VECTORS.

FIRST, ZERO ALL THE ELEMENTS OF [A]. ZERO [ADDT] ALSO.

DO 173 I=1,3

DO 172 J=1,12

A(I,J) = 0.0

172 ADOT(I,J)= 0.0

173 CONTINUE

NOW, FILL IN NDN-ZERD ELEMENTS IN THE 3RD AND 4TH CELLS OF [A].

A(1,7) = -:I.0

A(2,8) =-1.0

A(3,9) = -1.0

A(1,11) =-LACC(3)

A(I,12) = +LACC(2)

A(2,10) = +LACC(3)

A(2,12) =-LACC(1)

A(3,10) = -LACC(2)

A(3,11) = +LACC(1)
C

C BEGIN INITIALIZATION SECTION IN WHICH THE VALUES OF ALL NEEDED

C PARAMETERS ARE CALCULATED AT TIME = TSTART.

TIME = TSTART

C _ _ _

C ESTABLISH THE SRB PARAMETERS AT TIME = TSTART BY SETTING THEM

C EQUAL TO THE VALUES ALREADY READ IN.

VIB = VIBS

AZIIB = AZIIBS

GAMIB = GAMIBS

ALTB = ALTOS

PDEGB = PDEGBS
(_DEGB = 8DEGBS

RDEGB = RDEGBS
ALPHAB= ALPHBS

PHIAB = PHIABS

BANKB= BANKBS

C

C

C '_
C

C

C

DETERMINE 2 MATRICES TO INITIALIZE [ABI], THE 'I' FRAME TO 'B'
FRAME TRANSFORMATION, - - [ABI] = [ABV][AVI]

SET UP [ABV] USING A i-2-I EULER ANGLE SEQUENCE (BANKB,ALPHAB,

PHIAB).

SBKB = SIN(BANKB/CNV)

CBKB = COS(BANKBICNV)

SALB = SIN(ALPHAB/CNV)

CALB = COS(ALPH_BTCNV)

15



C

C
c-_

C

C

C

C

C

C

C

C

16

SPAB= SIN(PHIAB/CNV)

CPAB = COS(PHIAB/CNV)

ABV(I,I) = CALB

ABV(I,2) = SBKB_SALB

ABV(I,3) =-CBKB_SALB

ABV(2,1) = SPAB*SALB

ABV(2,2) = CPAB_CBKB - SPAB_SBKB_CALB

ABV(2,3) = CPAB*SBKB + SPAB_CBKB_CALB

ABV(3,1) = CPAB_SALB

"ABV(3,2) =-SPAB_CBKB - CPAB_SBKB*CALB

ABV(3,3) :-SPAB*SBKB + CPAB*CBKB*CALB

SET UP [AVI].

SAZB = SIN(AZIIB/CNV)
CAZB = COS(AZIIB/CNV)

SGMB = SIN(OAMIB/CNV)

CGMB = COS(gAMIB/CNV)
AVI(I,I) = CAZB_CGMB

AVI(I,2) = SAZBm'CGMB

AVI(I,3) =-SGMB

AVI(2,1) =-SAZB
AVI(2,2) = CAZB

AVI(2,3) = 0.0

AVI(3,1) = CAZB_SGMB

AVI(3,2) = SAZB_'SGMB

AVI(3,3) = CGMB

CALC. [ABI] AND SET UP ITS ELEMENTS AT

CALL MMUL (ABV,AVI,ABI,3,3,3)

BII=ABI(1,I)

BI2=ABI(I,2)

BI3=ABI(1,3)

B21=ABI(2,1)

B22=ABI(2,2)

B23=ABI(2,3)

B31=ABI(3,1)
B32=ABI(3,2)

B33=ABI(3,3)

TIME =

CALC. THE SRB INERTIAL POSITION

'I' FRAME AT TIME = TSTART.
RIBI(1) = 0.0

RIBI(2) = 0.0
RIBI(3) = -ALTB

COMPONENTS IN THE

CALC. THE SRB INERTIAL VELOCITY COMPONENTS

AND TRANSFORM TO THE 'B' FRAME AT TIME

VIBI(1) = VIB_CGMB_CAZB

VIBI(2) = VIB_CGMB_SAZB

VIBI(3) = -VIB_SGMB

CALL MATVEC (ABI,V!BI,VIBB,3,3)

SET UP THE SRB ANGULAR

OMB(1) = PDEgB/CNV

OMB(2) = QDEGB/CNV

TSTART.

IN THE 'I'

= TSTART.

FRAME

VELOCITY COMPONENTS AT TIME = TSTART.



OMB(3) = RDEGB/CNV
C
C _ _ _ _ "_

C ESTABLISH THE PARACHUTE PARAMETERS AT TIME = TSTART BY SETTING

C THEM EQUAL TO THE VALUES ALREADY READ IN.

PSIC = PSICS

THETC = THETCS

PHIC = PHICS

PDEGC = PDEGCS
@DEGC = @DEGCS

RDE_C = RDEGCB

C .i_

C

C .K- -_

C

C

SET UP THE PARACHUTE ANGULAR VELOCITY COMPONENTS AT TIME = TSTART.

OMC(1) = PDEGC/CNV

OMC (2) = .@DEGC/CNV
OMC(3) = RDEGC/CNV

SET UP [ACI] USING 3-2-I. EULER ANGLE SEQUENCE (PSIC,THETC,PHIC).
ST3C = SIN(PSIC/CNV)

CT3C = COS(PSIC/CNV)

ST2C = SIN(THETC/CNV)

CT2C = COS(THETC/CNV)

STIC = SIN(PHIC/CNV)

CTIC = COS(PHIC/CNV)

ACI(I,I) = CT2C_CT3C

ACI(I,2) = CT2C_ST3C

ACI(I,3) =-ST2C
ACI(2,1) = STIC_ST2C_CT3C - CTIC_ST3C

ACI(2,2) = STIC_ST2C_ST3C + CTIC_CT3C

ACI(2,3> = STIC_CT2C
ACI(3,1) = CTIC_ST2C_CT3C + STIC_ST3C

ACI(3,2) = CTIC_ST2C_ST3C - STIC_CT3C

ACI(3,3) = CTIC_CT2C

SET UP THE ELEMENTS OF [ACI] AT TIME = TSTART.

CI I=ACI (I,I)

C12=AC I (!, 2)

C13=ACI(1,3)

C21=ACI (2, i)

C22=ACI (2,2)

C23=AC I (2,3)

C31=ACi (3, i)

C32=ACI(3,2)
C33=ACI (3,3)

SET INITIAL VALUES OF PRINT PARAMETERS AND OTHER PARAMETERS.

TPRINT = TSTART

IPRFLG = 0
ICOFLG = 0

KUTTA = 4
C
C INITIALIZATION COMPLETED; PRINT HEADER INFORMATION,
C _ _ _ _" _ _ _ _ _ _ _ _ _ _ _

WRITE (6,800)
WRITE (6,802) TITLE
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WRITE (6,808) VIBB(1),VIBB(2),V!BB(3),VIBI(3),XXD(30),XX(30)
WRITE (6,802)
GO TO 407

C

C BEGIN INTEGRATION LOOP (INTEGRATION SUBR NOT CALLED FIRST PASS).

C _ _ _ * _ * * * . _ . , _ _ , _ . _ _ . , , _ _ _ _ . _ _ _ _ _ _ _ .

C

400 KUTTA = KUTTA + l

CALL RUNGF (NRNK,DELT,TIME,XXD,XX,KUTTA)
407 CONTINUE

C

C

CALCULATE ELEMENTS OF [ABIDOT] AND [ACIDOT],
BIID = B21*OMB(3) - B31*OMB(2)

B12D = B22*OMB(3) - B32*OMB(2)

BI3D = B23*OMB(3) - B33*OMB(2)

B21D = B31*OMB(1) - BII*OMB(3)

B22D = B32*OMB(1) - BI2*OMB(3)

Be3D = B33*OMB(1) - BI3*OMB(3)

B31D = BII*OMB(2) - B21*OMB(1)
B32D = B12*OMB(2) - B2_*OMB(1)

B33D = BI3*OMB(2) - B23*OMB(1)

CIID= C21,0MC(3) - C31.OMC(2)

C12D = C22.0MC(3) - C3P*OMC(2)

C13D = C23.0MC(3) - C33.0MC(2)

C81D = C31.0MC(I) - C11.0MC(3)

C22D = C32,0MC(I) - C12.0MC(3)

C23D = C33.0MC(I) - C13,0MC(3)

C31D = C11.0MC(2) - C21,0MC(I)
C32D = C12.0MC(2) - C28.0MC(I)

C33D = C13.0MC(2) - C23,0MC(I)

SET UP THE [ABI] AND [ACI] MATRICES.
ABI(I,I)=BII

ABI (I,2) =Bi2

ABI (|,3) =BI3

AI:-:I (2, I) =B21

ABI (2,2) =B22
ABI (2,3) =_-',23

ABI (3, 1)=_-',31

ABI (3,2)=B32

ABI (3,3) =B33

ACI(1,1)=C11

ACI (1,2) =C12

ACI (1,3)=C13

ACI (2, I) :C21
ACi (2.,8) =C82

ACI (2,3) =C,_3

ACI (3, I) =C31

AC I(3,2) =C32
ACI (3,3) =C33

CALCULATE [AIB],[AIC], AND [ACB],
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CALL TRANSP (ABI,3,3,AIB)
CALL TRANSP (ACI,3,3,AIC)
CALL MMUL (ACI,AIB,ACB,3,3,3)

C

C
C
C
C
C
C
C
C
C
C
C
C

USE CONSTRAINTE@UATIONSTO DETERMINETHE INERTIAL POSITION AND
VELOCITY OF THE PARACHUTE,ELIMINATING DRIFT CAUSEDBY
INTEGRATION ERROR.

THE CONSTRAINTEQUATIONSWILL BE CALCULATEDUSING A VECTOR
CROSS-PRODUCTSUBROUTINEINSTEAD DF TILDE MATRICES. ALLOWING
A LITTLE MIXING OF MATRIX AND VECTORNOTATION, THE CONSTRAINT
EQUATIONSARE:

RICI = RIBI + [AIB]*LABB - [AIC]*LACC
VICC = [ACB]*(VIBB + OMB X LABB) - OMCX LACC

C * * * *
C BEGIN WITH POSITION CONSTRAINT.
C * * * *
C TRANSFORM SRB C.M.-TO-ATTACH POINT DISTANCE INTO _I' FRAME.

CALL MATVEC (AIB,LABB,LABI,3,3)

CALC. INERTIAL POSITION OF THE ATTACH POINT IN THE 'I' FRAME.
CALL VADD (RIBI,LABI,RABI,I)

TRANSFORM PARACHUTE C.M.-TO-ATTACH POINT DISTANCE INTO 'I' FRAME.

CALL MATVEC (AIC,LACC,LACI,3,3)

CALC. INERTIAL POSITION OF PARACHUTE C.M. IN THE 'I' FRAME.

CALL VADD (RABI,LACI,RlCl,-I)

C

C * * * *
C NOW CALCULATE THE VELOCITY CONSTRAINT.

C****
C DETERMINE ATTACH POINT VELOCITY RELATIVE TO THE SRB C.M. IN THE

C 'B' FRAME.

CALL VCROSS (OMB,LABB,VOBB)
C

C

C

C
¢,.

C

C

C

C

CALC. INERTIAL VELOCITY OF THE ATTACH POINT IN THE 'B'

FRAME AND TRANSFORM INTO 'C' FRAME.
CALL VADD (VIBB,VOBB,VABB,I)

CALL MATVEC (ACB,VABB,VABC,3,3)

DETERMINE ATTACH POINT VELOCITY RELATIVE TO THE PARACHUTE C.M. IN

THE 'C' FRAME.

CALL VCRDSS (OMC,LACC,VDCC)

CALC. INERTIAL VELOCITY OF THE PARACHUTE C.M. IN THE 'C' FRAME.

(THIS VELOCITY WILL BE PLACED IN THE [OMEGA] MATRIX).

CALL VADD (VABC,VOCC,VICC,-1)

C

C******
C TRANSFORM INERTIAL VELOCITY OF THE SRB INTO _I' FRAME TO PROVIDE

C A DERIVATIVE OF INERTIAL POSITION. DD THE SAME FOR PARACHUTE.
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CALL MATVEC (AIB,VIBB,VIBI,3,3)
CALL MATVEC (AIC,VICC,VICI,3,3)

C
C _ _ _ _ _ _ _ _ _ _ _

C

C BEGIN AERO SECTION.

C

C__

C LOOK UP ATMOSPHERIC DENSITY USING SRB ALTITUDE.
ALTB = -RIBI(3)

ALTC = -RICI(3)

CALL TBLXY (NRHO,RHOALT,RHOTL,ALTB,RHO)
C .i_ .If.

C

C

C

C -w- "K"

C

C

C
C

C

C

C _-

C
C

C

CALCULATE DYNAMIC PRESSURES FOR SRB AND PARACHUTE, ALONG WITH
ASSOCIATED TERMS FOR AERD CALCULATIONS,

CALL VMAG (VIBB,VIB2,VIB)

CALL VMAG (V_CC,V!C2,VIC)

@BRB = 0.5_RHO_VIB2

@BRC = 0.5_RHO_VIC2

_BRSB = QBRB_SREFB

@BRSC = QBRC_SREFC
QBRSLB = QBRSB_LREFB

QBRSLC = QBRSC_LREFC

CALCULATE ALPHA-TOTAL AND AERO ROLL ANGLE FOR THE SRB

AND PARACHUTE. ALPHA-TOTAL HAS RANGE: 0 TO 180 DEGREES.

AERO ROLL ANGLE HAS RANGE: -180 TO +180 DEGREES.

ALPHAB= ACOS(VIBB(1)/VIB)_CNV

ALPHAC = ACOS(VICC(1)/VIC)_CNV

PHIAB = ZTAN2(VIBB(2),VIBB(3))_CNV

PHIAC = ZTAN2(VICC(2),VICC(3))_CNV

LOOK UP SRB AND PARACHUTE AERO COEFFICIENTS IN MISSILE AXES.
CALL TBLXY (NAB,ALBTL,CAMBTL,ALPHAB,CAMB)

CALL TBLXY (NAB,ALBTL,CNMBTL,ALPHAB,CNMB)

CALL TBLXY (NAB,ALBTL,CMMBTL,ALPHAB,CMMB)

CALL TBLXY (NAC,ALCTL,CAMCTL,ALPHAC,CAMC)

CALL TBLXY (NAC,ALCTL,CNMCTL,ALPHAC,CNMC)

CALL TBLXY (NAC,ALCTL,CMMCTL,ALPHAC,CMMC)

TRANSFORM AERO COEFFICIENTS FOR THE SRB AND PARACHUTE INTO THE
'B' AND 'C' FRAMES.

SF'AB = SIN(PHIAB/CNV)

CPAB -- COS(PHIAB/CNV)

CAB
CYB

CNB

CRB
CMB

CWB

=+CAMB

= +CYMB_CPAB - CNMB_SPAB

= +CNMB_CPAB + CYMB_SPAB
= +CRMB

= +CMMB_CPAB + CWMB_SPAB

= +CWMB_CF'AB - CMMB*SPAB
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C ,w..K-

C

C

C

SPAC = SIN (PHIACICNV)

CPAC = COS(PHIAC/CNV)

CAC

CYC
CNC

CRC

CMC
CWC

= +CAMC
= +CYMC*CPAC - CNMC_SPAC

= +CNMC_CPAC + CYMC_SPAC

= +CRMC
= +CMMC_CPAC + CWMC_SPAC

= +CWMC*CPAC - CMMC*SPAC

CALC. AERO FORCES AND MOMENTS AT EACH C.M., TAKING INTO ACCOUNT

THE SIGN CHANGE REQUIRED FOR CA AND CN.

FL(1)

FL(2)

FL(3)

FL(4)
FL(5)

FL(6)

= -QBRSB*CAB

= +QBRSB*CYB

= -@BRSB*CNB

= QBRSLB*CRB
= QBRSLB*CMB

= QBRSLB*CWB

FL(7) = -QBRSC_-CAC
FL(,9) = +QBRSC_CYC
FL(9) = -QBRSC_CNC
FL(IO) = QBRSLC'_CRC
FL(11) = G}BRSLC_CMC
FL(12) = QBRSLC_CWC

C
C END OF AERO SECTION.

C _" _ _ "_" _ .K- ._- ._ _ -_ -If.

C

C

C

C "]_ "_

C

C

C

SET UP GRAV. ACCELERATION COMPONENTS IN THE _i' FRAME.

GI (I) = 0.0

GI (2) = 0.0

GI (3) = GZERO

TRANSFORM THE GRAV. ACCELERATION TO THE 'B' AND 'C' FRAMES,

AND CALC. THE GRAV. FORCES AT EACH C.M. - - [FG] MATRIX.

CALL MATVEC (ABI,GI,GB,3,3)

CALL MATVEC (AC!,GI,GC,3,3)

DO 460 5=1,3

"FG(1) = MASSB_GB(1)

FG(I+3) = 0.0
FG(I+6) = MASSC_GC(!)

460 FG(I+9) = 0.0

C

C_ _._._

IF 'IFE' EQ O, ZERO OUT THE TERMS THAT COMPRISE THE [FE] MATRIX.C

C

IF(IFE .NE. O) GO TO 481

DO 480 I=I,12
FL(1) = 0.0

480 FG(I) = 0.0
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481 CONTINUE
C

C ALL THE EXTERNALFORCESAND MOMENTSHAVE NOWBEEN CALCULATEDAT
C THE SRB AND F'ARACHUTE C.M.'S. SET UP THE [FE] MATRIX.

DO 490 I=1,12

490 FE(I) = FL(I) + FG(1)

C

C SET UP THE [OHEGA] MATRIX USING THE PARACHUTE INERTIAL VELOCITY
C FROM THE CONSTRAINT EQUATION.

DO 512 I=1,3

OMEGA(1) = VIBB(1)

OMEGA(I+3) = OMB(I>

OMEGA(I+6) = VICC(I)

512 OMEGA(I+9) = OMC(1)
C

C CALCULATE THE MOMENTUM MATRIX [HI USING THE 12X12 MASS MATRIX.
CALL MATVEC (M,OMEGA,H,12,12)

C

C***

C

C
/,.

C

SET UF' THE [FW] MATRIX BY CALCULATING THE _MINUS W-CROSS' TERMS
FOR THE SRB AND THE PARACHUTE,.

+ OMB(3)*H (2)

+ OMB(1)*H(3)

+ OMB(2)*H(1)

FW(1) = -OMB (2)*H(3)

FW(2) = -OMB(3)*H(1)
FW(3) = -OMB (I>*H(2)

+ OMB(3)*H (5)
+ OMB(1)*H(6)

+ OMB(2)*H (4)

FW(4) = -OMB (2)*H(6)

FW(5) = -OMB (3)*H(4)

FW(6) = -OMB(1)*H(5)

+ OMC(3)*H (8)

+ OMC(1)*H(9)

+ OMC(2)*H (7)

FW(7) = -OMC (2)*H(9)

FW(8) = -OMC (3)*H(7)

FW(9) = -OMC (i)*H(8)

FW(IO) = -OMC(2)*H(12) + OMC(3)*H(11)

FW(II) = -OMC(3)*H(IO) + OMC(1)*H(12)

FW(12) = -OMC(1)*H(II) + OMC(2)*H(IO>
C

,.," ADD [FW] TO THE EXTERNAL FORCES AND MOMENTS TO GET

C THE [F] MATRIX.
DO 524 I=1,12

524 F(1) = FE(1) + FW(1)

C

C _ _$ _ * _$ _ _ -I_ , _ _ _ _ _ _ -_ _ _. _ _ _ _. _

C BEGIN CALCULATION OF ATTACH POINT CONSTRAINT FORCES AND

C MOMENTS AT THE C.M.'S [FA] MATRIX.

C _ "_-

C

C

C

C

SET UP THE IST AND 2NO CELLS OF [A], THE CONSTRAINT MATRIX. THE

IST CELL IS [ACB]. THE 2ND CELL, -[ACB][LTB], IS OBTAINED

BY USING THE 1ST CELL.
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532

533

C

C

C

C

C

C * *

C

C

C
C

C

C

C

C

C

C

C * *

C

C
C

DR 533 I=1,3

DO 532 J=l,3

A(I,J) = ACB(I,J)

CONTINUE

A(1,4) =-A(I,2)*LABB(3) + A(I,3)*LABB(2)

A(I,5) = +A(I,I)*LABB(3) - A(I,3)*LABB(1)

A(1,6) = -A(I,I)*LABB(2) + A(I,2)*LABB(1)

A(2,4) =-A(2,2)*LABB(3) + A(2,3)*LABB(2)
A(2,5) = +A(2,1)*LABB(3) - A(2,3)*LABB(1)

A(2,6) =-A(2,1)*LABB(2) + A(2,2)_LABB(1)

A(3,4) =-A(3,2)*LABB(3) + A(3,3)*LABB(2)

A(3,5) = +A(3,1)*LABB(3) - A(3,3)*LABB(1)
A(3,6) =-A(3,1)*LABB(2) + A(3,2)*LABB(1)

RECALLING THAT THE 3RD AND 4TH CELLS DF [A] WERE CALCULATED AT THE

START OF THE PROGRAM, [A] HAS NOW BEEN DETERMINED. TAKE THE

TRANSPOSE OF [A] FOR LATER USE.

CALL TRANSP (A,3,12,AT)

SET UP THE IST AND 2NO CELLS OF [ADOT]. THE 3RD AND 4TH CELLS

ARE ZERO. THE IST CELL IS [ACBDOT] WHICH IS OBTAINED FROM

THE FOLLOWING EQUATION:

[ACBDOT] = -[OMTC][ACB] + [ACB][OMTB]

WHERE [OMTC] AND [OMTB] ARE TILDE MATRICES FOR THE

PARACHUTE AND SRB ANGULAR VELOCITIES.

ADOT (I

ADOT (I

ADOT (i

ADOT (2

ADOT (2

ADOT (2

ADOT (3
ADOT (3

ADOT (3

,1 )=+OMC (3)*A (2, I) -OMC (2)*A (3, i) +OMB (3)*A( I,2) -OMB (2)*A (I,3)

,2)=+DMC(3)*A(2,2)-OMC(2)*A(3,2)-OMB(3)*A(I, I)+DMB(1)*A(I,3)

,3)=+DMC (3)*A (2-,3)-OMC (8)*A (3,3) +OMB (2)*A (I, i) -OMB(I )*A( I ,2)

,I)=-OMC(3)*A(I,I)+OMC(1)*A(3,1)+OMB(3)*A(2,2)-OMr_:(2)*A(2,3)

,2)=-OMC (3)*A (I, 2) +OMC (I)*A (3,2) -OMB (3)*A (2, I) +OMB(1)*A(2,3)

,3) =-OMC (3)*A (I ,3) +OMC (I)*A (3,3) +OMB (2)*A (2, I)-OMF-_(I)*A (2,2)

,I )=+OMC (2)*A( I, I) -OMC (I)*A(2, I) +OMB (3)*A (3,2) -OMI:-',(2)*A(3,3)
,2):+OMC(2)*A(I,2)-OMC(1)*A(2,2)-OMB(3)*A(3,1)+OMB(1)*A(3,3)

,3)=+OMC(2)*A(I,3)-OMC(1)*A(2,3)+OMB(2)*A(3,1)-OMB(1)*A(3,2)

THE 2NO CELL, -[ACBDOT][LTB], IS OBTAINED BY USING THE IST CELL.

ADOT(I,4) = -ADOT(I,2)*LABB(3) + ADOT(I,3)*LAI:'._':(2)

ADOT(I,5) = +ADOT(I,I)*LABB(3) - ADOT(I,3)*LABB(1)

ADOT(I,6) = -ADOT(I,I)*LABB(2) + ADOT(I,2)*LABB(1)

ADOT(2,4) =-ADOT(2,2)*LABB(3) + ADOT(2,3)*LABB(2)

ADOT(2,5) = +ADOT(2,1)*LABB(3) - ADDT(2,3)*LABB(1)

ADOT(2,6) = -ADOT(2,1)*LABB(2) + ADOT(2,2)*LABB(1)

ADOT(3,4) = -ADOT(3,2)*LABB(3) + ADOT(3,3)*LABB(2)

ADOT(3,5) = +ADOT(3,1)*LABF".(3) T- ADOT(3,3)*LABB(1)

ADDT(3,6) =-ADOT(3,1)*LABB(2) + ADOT(3,2)*LABB(1)

ALL MATRICES NEEDED TO CALCULATE [FA] HAVE NOW

SET UP. PERFORM THE REQUIRED OPERATIONS.

BEEN
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C

C
C
C

CALL MMUL (A,MINV,AMINV,3,12,12)
CALL MMUL (AMINV,AT,AMINVA,3,!2,3)
CALL MAINV3 (AMINVA,TERMAI)

CALL MATVEC (AMINV,F,AMINVF,3,12)
CALL MATVEC(ADOT_OMEGA,ADOTDM,3,12)

INSERT THE MINUS SIGN WHILE COMBININGZAMINVF] AND [ADOTOM].
DO 563 I=i,3

563TERMV1(1) = -AMINVF(1) - ADDTOM(I)

CALL MATVEC (TERMAI,TERMVI,TERMV2,3,3)

FINALLY, PERFORMTHE STEP IN WHICH [FA], A 12XI MATRIX, IS
CALCULATED.

CALL MATVEC(AT,TERMV_FA,12,3)
C
C "_ _ -I_ ._ _ _- _ _ -_-"_

C THE CALCULATION OF [FA] COMPLETES THE DETERMINATION OF ALL THE

C FORCES AND MOMENTS AT THE C.M,'S OF THE SRB AND PARACHUTE.

C ADD [F] AND [FA] TO GET [FTOTAL].

DO 570 I=1,12

570 FTOTAL(1) = F(1) + FA(1)

C

C .I(._-I_ -K. -I_ .l_ _ -K- _

CALCULATE ALL ACCELERATIONS IN THE 'B' AND 'C' FRAMES.
[DOMEGA] = [ MINV ][ FTOTAL ]

C _-

C

CALL MATVEC (MINV,FTDTAL,DOMEGA,12,12)

SET UP THE 9X1 ACCELERATION MATRIX THAT IS TD BE INTEGRATED.

DO 590 I=1,3

DOMg(1) = DOMEGA(1)

DOM9(I+3) = DOMEGA(!+3)

590 DOM9(I+6) = DDMEGA(I+9)

END OF INTEGRATION LOOP.

IF(KUTTA .LT. 4) GO TO 400

KUTTA=O

C

C* * * *** *
SET FLAGS TO CONTROL OUTPUT SECTION OF PROGRAM AND CUT-OFF.C

C
IF(TIME .GE. TPRINT) IPRFLG=I

IF(TIME .GE. TMAX) ICOFLG=I

IF(IPRFLG .EQ. I) GO TO 701

IF(ICOFLG .EQ. i) GO TO 701

C IF ALL FLAGS = O, GO TO START OF INTEGRATION LOOP.

GO TO 400

701 CONTINUE

C

C_#_
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C
C
C
C
C
C

C

C
C
C

C
C
C

C
C
C

CALCULATEOUTPUTPARAMETERSFOR PLOTTING.

CALC. THE 3-2-I EULER ANGLESFOR THE ORIENTATIONS
PARACHUTE.

ST2B = -ABI(I,3)
THETB = ASIN(ST2B)_CNV
PSIB =ZTAN2(ABI(I,2),ABI(I,I))*CNV

PHIB =ZTAN2(ABI(2,3),ABI(3,3))*CNV

ST2C = -ACI(I,3)
THETC = ASIN(ST2C)_CNV
PSIC =ZTAN2(ACI(I,2),ACI(I,I))*CNV
PHIC =ZTAN2(ACI(2,3),ACI(3,3))*CNV

CALC. FLIGHT PATH ANGLE AND AZIMUTH OF THE SRB AND

GAMIB = ZSIN(-VIBI (3),VIB)*CNV

AZIIB = 2TAN2(VI_I (2),VIBI(I>)_CNV

GAMIC = ZSINi-VICI(3),VIC)*CNV

AZIIC = ZTAN2(VIC, I (2),VICI(1))*CNV
-K.

SET UP [AIV] TO CALCULATE THE SFcB BANK ANGLE.

B*SGMB

SAZB = SIN(AZIIB/CNV)

CAZB = COS(AZIIB/CNV)
SGMB = SIN(GAMIB/CNV)

CGMB = COS(GAMIB/CNV)

AIV(I,I) = CAZB_CGMB

AIV(2,1) = SAZB*CGMB

AIV(3,1) =-SGM

AIV(I,2) =-SAZ

AIV(2,2) = CAZ

AIV(3,2) = 0.0

AIV(I,3) = CAZ

AIV(2,3) = SAZB*SGMB

AIV(3,3) = CGMB

CALL MMUL (ABI,AIV,ABV,3,3,3)
_ANKB = ZTAN2(ABV(I,2),-ABV(I,3)),CNV

SET UP ERROR INDICATORS.

CALL ORTH (ABI,ORTABI)

CALL ORTH (ACI,DRTACI)

CALL MATVEC (A,DOMEGA,ADOMEG,3,12)

CALC. VECTOR MAGNITUDES; CONVERT ANG. VELOCITIES TO

CALL VMAG (VABB,OUMM,VAB)

CALL VMAG (RIBI,DUMM,RIB)

CALL VMAG (RABI,DUMM,RAB)
CALL VMAG (RICI,DUMM,RIC)

CALL VMAG (GB,DUMM,GMAG)

PDEGB = OMB(1)*CNV

OF THE SRB AND

PARACHUTE.

DEG/SEC.
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C

C

C

QDEGB = OMB(2)*CNV

RDEGB = OMB(3)*CNV

PDEGC = OMC(1)*CNV

QDEGC = OMC(2)*CNV

RDEGC = OMC(3)*CNV

SORT OUT THE PRINT

720

C * * PRINT

WRITE

WRITE

2GAMIB,

WRITE

F'GAMI C,
WRITE

DO 730
730 WRITE

WRITE

C

C

C

CONTROL TIME LOGIC.

IF(IPRFLG .EQ. O) GO TO 740
IPRFLG = 0

TPRINT = TPRINT + DTPRT

IF(TIME .LT. TNPI) GO TD 720

IF(TIME .LT. TNP2) GO TD 740

CONTINUE

C

THE STANDARD SET OF PARAMETERS.

(6,858)

(6,861) T!ME,ALTB,_BRB,VIB,ALF'HAB,PNIAB,PDEGB,QDEGB,RDEGB,

AZIIB,RIGI(1),RIBI(2),PSIB,THETB,PHIB

(6,862) ALTC,QBRC,VIC,ALPHAC,PHIAC,PDEGC,_DEGC,RDEGC,

AZIIC,RICI(1),RICI(2),PSIC,THETC,PHIC
(6,871)

I=I,12

(6,808) FL(1),FG(1),FW(1),FA(1),FTOTAL(1),DOMEGA(1),OMEGA(1)

(6,879) DRTABI,ORTACI

733

734

2

739

74O

BEGIN DIAGNOSTIC PRINT, IF DESIRED.

IF(IDIAG .LT. I) GO TO 739
WRITE (6,889)

WRITE (6,809)

WRITE (6,809)

WRITE (6,808)

DO 733 I=1,3

WRITE (6,812)

DO 734 !=1,3

WRITE (6,812)

WRITE (6,B08)

VIB,VAB,VIC,RIB,RA'B,RIC

RHO,QBRSB,QBRSC,CAMB,CNMB,CMMB,CAMC,CNMC,CMMC

GMAG,MASSB,MASSC,BANKB

(A(I,J),J=I,12)

(ADOT(I,J) ,J=l,12)
ADOMEG (i) ,ADOTOM (I) ,ADOMEG (2) ,ADOTOM (2) ,

ADOMEG (3) ,ADDTDM (3)

WRITE (6,802)

CONTINUE

800
801

802

805

807

808

809

812

820

822

END OF OUTPUT

IF(ICDFLG .EQ.

END OF RUN.

STOP

FORMAT
FORMAT

FORMAT

FORMAT

FORMAT
FORMAT

FORMAT

FORMAT

FORMAT
FORMAT

SECTION.

O) GO TO 400

(IHI)

(16A4,II,12)

(IHO,16A4,116,215)

(II5,15,2X,4E11.8)
(7EII.8)

(IX,FIS.9,5FIg.9,FI8.9)
(4X,9E14.7)

(1X,IIEII.4,EIO.3)

(20A4)

(2X,20A4)
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858 FORMAT (3X,4HTIME,6X,3HALT,3X,4HGBAR,3X,2HVI,5X,5HALPHA,4X,
B4HPHIA,5X,IHP,6X,IHQ,6X,IHR,5X,5HGAMMA,3X,7HAZIMUTH,5X,2HXI,7X,
C2HYI,8X,18H3-2-1 EULER ANGLES)

861 FORMAT(F8.3,F9.1,F6.1,FT.2,3FS.2,2F7.2,2Fg.3,2Fg.1,Fg.2,2FS.2)
862 FORMAT (SX,F9.I,F6.I,F7.2,3FB.2,2F7.2,2Fg.3,2F9.1,Fg.2,2F8.2)
871 FORMAT(10X,2HFL,17X,2HFG,17X,2HFW,17X,2HFA,17X,6HFTOTAL,13X,

B6HDOMEGA,12X,5HOMEGA)
879 FORMAT (85X,16HERROR INDICATORS,2F15. IO_

889 FORMAT (6X,11HDIAGNOSTICS)

END
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