Techn‘i’quefrfg Eliminate

Computational Instability

in Multibody Simulations =~
- '| Employing the Lagrange

N i

Multiplier _,

G. Watts

(NASA-TP-322¢) TECHNIQUE
COMPUTATIONAL INSTARILITY
STMULATIONS EMPLOYING THE
MULTIPLIER (NASA) 30 p

TO ELIMINATE

IN MULTIBODY

LAGRANGF

€SCL 098
H1/61

N92-23432

Unclas
0083752

B S Z B R S - R ——-

NASA
Technical
Paper
3220

1992

NNASA

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Program

Technique To Eliminate
Computational Instability
in Multibody Simulations
Employing the Lagrange
Multiplier

G. Watts
George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama

W e e e e .-

TABLE OF CONTENTS

Page
L INTRODUCTION oo 1
II. EQUATIONS OF MOTION WITH LAGRANGE MULTIPLIER ccoommeveemerreens 1
II. GENERAL PROGRAMMING COMMENTSccoommmmvverserensssssscssssssesssssssssssssssssenes 6
IV. TECHNIQUE TO ELIMINATE COMPUTATIONAL INSTABILITYocoonreevvee 6
REFERENCES ooomreereerevormeeesss ARttt e 7
APPENDIX ...ooooomeeveevesseessssssssesssssssssssssssssssssssssssssssess sessstsssossessssssssssmasssosssssossessenssssssnsssesaons 9

!
on_| L suscares o
PRECEDING PAGE BLANK NOT FILMED iii

TECHNICAL PAPER

TECHNIQUE TO ELIMINATE COMPUTATIONAL INSTABILITY IN MULTIBODY
SIMULATIONS EMPLOYING THE LAGRANGE MULTIPLIER

I. INTRODUCTION

The Lagrange multiplier method has been used for many years by the author and other
engineers to develop the equations of motion in multibody problems. An important application for this
method is in the simulation of a space shuttle solid rocket booster (SRB) which is being decelerated
and stabilized for water impact by a drogue parachute or three main parachutes. Reference 1
describes one of the first digital computer programs at Marshall Space Flight Center (MSFC) that
employed the Lagrange multiplier method to simulate SRB-parachute dynamics.

Use of the Lagrange multiplier has an advantage over some other formulations in that it pre-
serves the original simple form of the equations of motion for each body. However, in typical time-
varying dynamics simulations that use the Lagrange multiplier, computational instability can occur
because integration error causes the two (or more) attached bodies to drift apart and violate the
constraints. The computational instability usually happens suddenly, and the computed values “blow
up” within a few time steps. Computational instability occurred often in SRB-parachute dynamics
work at MSI\’C in the 1970’s resulting in much frustration for those involved.

This paper describes a technique to eliminate computational instability caused by drifting
apart of the attached bodies when the Lagrange multiplier is used. The equations of motion are not
changed; instead, the programming of the equations on a digital computer is changed. A computer
program listing is provided in the appendix to aid in the description of the programming technique.

II. EQUATIONS OF MOTION WITH LAGRANGE MULTIPLIER

For the sake of completeness, the multibody equations of motion employing the Lagrange
multiplier will first be presented. A simple dynamics problem has been selected as the example so
that the basic principles can be clearly illustrated. The example consists of two rigid bodies con-
nected by a frictionless swivel. Each body would have six degrees of freedom (DOF) if not con-
nected to the other body.

The development of the equations of motion with the Lagrange multiplier begins with the
general Newtonian equations that will be written for each body at its center of mass (CM) in a
body-fixed frame. The equations for either body have the familiar vector form:

MASS*VDOT = FORCE - WxV*MASS , (1A)
Rotation
HDOT = MOMENT - WxH , (1B)

where V is the velocity of the CM; W and H are the angular velocity and momentum, respectively;
VDOT and HDOT are time derivatives taken in the body frame; and MASS is a scalar quantity. The
FORCE and MOMENT vectors include both the external and attach point constraint components.

The Newtonian equations for each body must be converted to matrix form by using inertia
matrices and tilde matrices. The equations for both bodies can then be combined into the following
matrix equation:

M][DQ] = [FE]+[FA]+[FW] , (2)

where [M] is a 12x12 quasi-diagonal matrix containing the mass and inertia matrices for both
bodies which will be described in detail later; [DQ] is a 12x1 matrix containing the body-fixed com-

ponents of the VDOT and WDOT accelerations for each body; [FE] is a 12x1 matrix containing the
external forces and moments for each body; [FA] is a 12x1 matrix containing the attach point con-
straint forces and moments expressed at the CM of each body; and [FW] is a 12x1 matrix equivalent

of the (—ﬁ'/x V*MASS) and (4_1;><P_1') vectors for each body. The calculation of [FW] is described in
the computer program listing in the appendix.

At this point, the subscripts B and C are chosen to represent the two bodies, and the follow-
ing sequence is specified for the cells in the [M] matrix and the 12x1 matrices in equation (2):

First cell—translation of body B
Second cell—rotation of body B
Third cell—translation of body C
Fourth cell—rotation of body C

[M], the 12x12 quasi-diagonal matrix for masses and inertias in equation (27), thus has the form:

[MASSg]
M] = [IMp] 0
[MASS(]
0 [IM(]

where [MASSg] én& [MASSC] are 3x3 diagonal fnatrices containing the mass of each body, and
[IMp] and [IM] are the 3x3 inertia matrices in body-fixed frames.

[DQ] in equation (2) is a 12x1 matrix with the following four 3x1 cells containing the body-
fixed components of translational and rotational acceleration for both bodies:

[

[VDOTg]
[WDOTB]
[VDOT(]
[WDOT¢]

[DQ] =

A 12x1 velocity matrix, [Q2], will be defined similarly to [DQ]. Its four 3x1 cells are:

[Vs]
_| [Ws]
(Wl

where [Vp] and [V¢] contain the body-fixed components of the velocity of the CM for each body, and
[W5] and [W(] contain the body-fixed angular velocity components for each body.

Continuing with the Newtonian equations, equation (2) will be rearranged using the inverse
of [M] as follows:

[DQ] = [MI[[F1+[FA]] , (3)

where [F] is simply the sum of [FE] and [FW]. If the attach point constraint forces and moments,
[FA], were known, equation (3) could be used to determine the translational and rotational accel-
erations of both bodies as is done in a typical dynamics problem.

To calculate [FA], the Lagrange multiplier method will be used. To prepare for the incorpora-
tion of the Lagrange multiplier, the attach point constraint equation, which states the velocities of the
attach points of both bodies are equal, will be presented. In vector form, the attach point constraint
equation for the chosen example is:

_‘;B +‘7V‘BXZB = {;C +ﬁ;c>(Zc , 4)

where the subscripts B and C represent the two bodies (as is the case throughout this paper); V and

W are the velocity of the CM and angular velocity previously defined; and L is the attach point vector
which defines the distance from the CM to the attach point for each body.

Equation (4) must be converted to a matrix form that will allow the 12x1 [2] matrix to be

factored out. To do this, a vector, TJ', will be substituted for the (VT’xI—:) cross-product of each side of
equation (4):

Vp+Up = Vc+Uc . 3)
Equation (5) can easily be converted to a matrix equation in the C body frame by using a
transformation matrix, [ACB], to transform from the B body frame to the C body frame. The resulting

equation is:

[ACB][VBI+[ACB][Us] = [Vc]l+[Uc] - (6)

Returning to the U vectors in equation (5) they represent the following cross products:
[—}B = W/BXZB and l_}C = ﬁ;cxzc . @)

These two cross products can be rearranged by reversing their order and inserting a minus
sign, producing:

(73 = —ZBXWB and (-}C = —ZCXWC . (8)

By using the tilde matrix for each attach point vector, L the two parts of equation (8) can be
converted to matrix form as follows:

[Upl = -[LTg][Wp] and [Uc] = —[LTclIW(] , ' Q)

where [LTg] and [LT¢] are tilde matrices for the attach point vectors. The tilde matrices and angular
velocity matrices are all expressed in their original frames.

By substituting both parts of equation (9) back into equation (6), the following equation is
obtained:

[ACBI[V5]-[ACBI[LT3)[W5] = [Vcl-ILTCIWc] , (10)
where every term is a 3x1 matrix.
After gathering all the terms in equation (10) to the left side, we have:
[ACBI[VB]-[ACBI[LTp][Wp] - [Vl +[LTcl[Wc] =0 (11)

Equation (11), the constraint equation, is now in a form that will allow the 12x1 [Q] matrix to
be factored out. After factoring out [€], the reconfigured constraint equation is:

[A][Q] (12)

where [A] is a 3x12 matrix that will be called the “constraint matrix.” By inspection of the terms in
equation (11), [A] can be expressed as four 3x3 cells as follows:

[A] = [[ACB] : _[ACB][LT5) —[IDENT] L ILTd]
where [IDENT] is a 3x3 identity matrix.

Contmumg with the derivation, equation (12) w1ll be differentiated with respect to time, which
gives the followmg

[AI[DQ]+[ADOTI[Q] = 0 . (13)

Substituting the expression for [DQ] from equation (3) into equation (13) yields:

L T T T TR R]

[AT T R

[A][M]'[[F]+[FA]]+[ADOTI[Q] = O . (14)

Equation (14) will be rearranged as follows:
[AIIM]™'[FA] = -[A]IM]7'[F]-[ADOT]IQ] . (15)
[FA], the attach point constraint forces and moments, must be determined to finish the
derivation of the equations of motion. Unfortunately, no inverse exists for the 3x12 matrix term

[A][M]! in equation (15), preventing a direct solution for [FA].

To obtain [FA], the Lagrange multiplier method which uses the following derivable relation-
ship for the attach point constraint forces and moments will be introduced:

[FA] = [A]T[A] , (16)

where [A]T is the transpose of the “constraint matrix,” and [A] is the 3x1 Lagrange multiplier
matrix.

The derivation of the Lagrange multiplier relationship in equation (16) will not be presented in
this paper. The reader is urged to study reference 2 for an excellent explanation of the Lagrange
multiplier and related subjects.

To continue the calculation of [FA], note that [A] can be determined by first combining equa-
tions (15) and (16) to eliminate [FA], which produces the following:

[A1IMTYAYT[A] = —[AlIM] [F1-[ADOTIIQ] . (17

The matrix, [A][M]-1[A]7T, is a 3x3 which has an inverse. Therefore, equation (17) can be
used to solve directly for [A] as follows:

(A1 = [farm1 a1l [-taM1- ' (F1-1aD0TIIQ] (18)

To calculate [FA], the expression for [A] in equation (18) is substituted back into equation
(16) to produce the following:

(FA] = AT [[ANMI Y A)] [-(AT1IM] Y (F1-[ADOTIIQ] . (19)

The derivation of [FA], the attach point constraint forces and moments, is now complete.
Equation (19) can be used to calculate [FA] as a function of the known system parameters such as
mass, geometry, external forces, and velocities. The components of [FA] are expressed at the CM of
each body, not at the attach point.

ITI. GENERAL PROGRAMMING COMMENTS

After [FA] has been calculated in the computer program, it is inserted in equation (3) to cal-
culate [DQ] which contains the 12 acceleration components. For convenience, equation (3) is again
presented:

[DQ] = [M]'[[FI+[FA]] . (3)

In all previous simulations which used the Lagrange multiplier and which are known to the
author, the 12 accelerations in equation (3) were integrated to obtain velocity and angular velocity
components. After the integration had been performed over a period of time, integration error caused
the two bodies to drift apart and violate the constraints, which eventually led to computational
instability.

IV. TECHNIQUE TO ELIMINATE COMPUTATIONAL INSTABILITY

The technique that eliminates computational instability caused by drifting of the attached
bodies will now be presented. Instead of integrating the 12 acceleration coordinates in equation (3),
the 2 bodies in the chosen example will be examined to determine the independent coordinates. One
can see that there are only nine independent coordinates in the example: three rotational coordinates
for each body (total of six coordinates) and three translational coordinates for one of the bodies.
Body B will be chosen as the body whose translational coordinates are independent, meaning that
the translational coordinates of body C are dependent upon the other nine coordinates. Only the nine
independent acceleration coordinates will be integrated to get the three translational velocity compo-
nents of body B and the six angular velocity components for both bodies. The three translational
velocity components of body C must somehow be calculated. To do this, one needs only to take
equation (11), the constraint equation, and solve it for the velocity of body C:

Vel = [ACB][VB]—[ACB][LTB][W3]+[LTc][Wc] ; (20)

where all matrices have been previourslyrdefinéd. By using equation (20) to calculate the velocity of
body C at each integration time step, drifting of the bodies is eliminated, as is the associated compu-
tational instability.

It would be sufficient to stop at this point because the stated intention of preventing compu-
tational instability has been accomplished. However, one more step is added to the process. The
translational position of body C will be determined in the same manner as was its velocity.
Specifically, a position constraint equation will be used, instead of integration, to define the transla-
tion of the CM of body C at each integration time step. The two bodies will thus not only maintain the
proper relationship of their velocities but their positions as well. Details of the position constraint

are presented in the computer program listing in the appendix.

e cucmarsmbwnn el o 1

REFERENCES
Murphree, H.L: “Computer Program Development and User’s Manual for Program PARACH.”
NASA TM-78238, Marshall Space Flight Center, AL, September 1979,

Rheinfurth, M.H., and Wilson, H.B.: “Methods of Applied Dynamics.” NASA Reference
Publication 1262, Marshall Space Flight Center, AL, May 1991.

[~

i

APPENDIX

This appendix contains a digital computer program listing of the two-body simulation which
uses the programming technique that eliminates computational instability associated with the
Lagrange multiplier method. The two bodies are connected by a frictionless swivel. The aero-
dynamics and certain other aspects of the simulation are somewhat simplified to allow clearer illus-
tration of the basic principles used. No subroutines are listed because they all perform relatively
simple calculations such as matrix multiplication, trigonometric functions with zero denominators, or
integration. The program listing, in FORTRAN, begins on the next page.

PRECEDING PAGE BLANK NOT FILMED

C JAN 15, 1992
c GAINES WATTS

C MSFC - ED13
XXX T XTI ELEEXTLLLTEEELTELTELEERETELEEEEEELEESETESEEEEELEEEEETELELEREEE L]

C

c TTTTTTT W W W 00000 EEBERB . 000OCO DDDDDD Y Y

c T W W W D 0 B B O 0 D D Y ¥

¢ T W W W D 0 EBEEBE O 0 D D Y

C T W W W 0O 0 B B 0O 0 D D Y ;
c T WW WW 00000 EBBREER 00000 DDDODD Y :
C - !
C*************************#**K%**%***%*****%****3&§§******************** ;
¢ , o |
C A SIMPLE TWO-EODY LAGRANGE MULTIPLIER SIMULATION TO ILLUSTRATE |

C THE PROGRAMMING TECHNIGUE THAT ELIMINATES COMPUTATIONAL INSTABILITY
C CAUSED BY DRIFTING APART OF THE BODIES.

G

T XL R L AL ELELELEEREEEELEERESEERTES LR EEIELEEEEEEE L ESEEESEEELEEEEEEEE

AN OO OGO GOOO0ON 00000000

—
o

PROGRAM INTRODUCTORY COMMENTS:

1.

ro

&y}

e st Lt

THE TWO BODIES IN THIS FROGRAM ARE AN SRE AND A FARACHUTE,
DESIGNATED EY SUBSCRIFTS “B“ AND "C", RESFECTIVELY. A
FRICTIONLESS SWIVEL IS USED TO CONNEGT THEM.

BOTH EODIES AKE ASSUMED TO EE RIGID WITH NO CHANGES IN
MASS FROPERTIES DURING A SIMULATION RUN. NO ADDED MASS,
APFARENT MASS, UK AERODYNAMIC DAMPING ARE CONGIDERED.

A FLAT EARTH WITH CONSTANT GRAVITATIONAL ACCELERATION IS
ASSUMED. ATMOSFHERIC DENSITY VARIES WITH ALTITUDE. BUT NO
WINDS ARE USED.

THE INERTIAL REFERENCE IS5 ASSUMED 7O EE THE ‘I’ FRAME WHICH IS
LOCATED AT THE EARTH’S SURFACE DIRECTLY BENEATH THE INITIAL
FPOSITION OF THE SRB. THE ORIENTATION OF THE 'I’" FRAME

ISt NORTH - EAST- DOWN. :

THE 'E’ AND 'C’ FRAMES ARE FIXED AT THE C.M. OF THE SRE AND 5
PARACHUTE, RESPECTIVELY. EACH FRAME USES THE X-AXIS5 AS THE

ROLL AXIS.

TWO SETS OF 3-2-1 EULER ANGLES RELATE THE 'B’ AND *C’
FRAMES TO THE '1° FRAME.

AERD COEFFICIENT TARLES FOR THE SRE AND THE FARACHUTE ARE

ANGLE OF ATTACK. A POSITIVE ROTATION AEOUT THE ROLL AXIS
1S USED TO TRANSFORM FROM "MISSILE" AXES TO THE BODY-FIXED

FRAME FOR THE SRE OR PARACHUTE.

I U NI

THE MOMENT REFERENCE FOINT (M.R.FP.) FOR EITHER EODY IS AT
THE C.M. e B :

B

2. A 'V’ FRAME 15 USED FOR THE SRE, HAVING ITS X-AXIS ALONG THE
SRE VELOCITY VECTOR AND ITS Y-AXI5 HORIZONTAL.

10. A FLAG IS AVAILAELE TO ZERO DUT THE EXTERNAL FORCES AND
MOMENTS, AND FERMIT THE ATTACH FOINT CONSTRAINT FORCES AND
MOMENTS TO EE CHECKED. (SET IFE = 0 TO USE THIS OPTION).

A0

**************#*%****************%***ﬁ*%********************%**********

9
3)
8)
300

FARAMETER (NAEB
PARAMETER (NAC
PARAMETER (NRHO
PARAMETER (NRNK

REAL LABE(E)yLACC(B)7LABI(3),LACI(E)yLREFB,LREFC

REAL MASSE,MASSC,IXXE,IXXC,IYYB,IYYC,IZZB,I1ZZC,IXYE,IXYC,
ZIXZIE,IXZC,IYIR,IYIC

REAL IME{(3,3),IMC(3,3),IMBINV(3,3),IMCINV{3,3)

REAL M{12,12),MINV(12,12) MIDENT{12,12)

DIMENSION AEI(3:3),ACI(3,3),AIE(3,3),A1C(3,3),ACE(3,3)

DIMENSION ARV(3,3),AVI(3,3),AIV(3,3)

DIMENSION A(3,12),AT(12,3),AD0OT(3,12), ANINV(3,12), AMINVA(3.3),
ETERMAI(3;3):AHINVF(3):ADDTUM(3)yTEHMVI(3),TERMVE(3)yADDMEG(3)

DIMENSION OMEGA(12),DOMEGA{12),DOMI(F)

DIMENSION VIER{3) ,VICC{3),VIEI(3),VICI(3),VOEE(3),VOCC(3) -
SYAKE (3), VARC(3),RIEI(3),RAEI (3),RICI(3),0ME(3),0MC(3)

DIMENSION FL(12) ,FG(12),FE(12),FUW(12),F{12),FA{12) ,FTOTAL{12)

DIMENSION GI(3),GE{3),GC(3),H{12)

DIMENSION ALETL{NAE),CAMETL (NAE),CNMETL (NAE) ,CMMETL (NAE)
DIMENSION ALCTL{NAC) ,CAMCTL (NAC) ,CNMCTL{(NAC) ,CMMCTL (NAC)
DIMENSION CARD{(20),TITLE(16),RHOALT{NRHD),RHOTL (NRHO)
DIMENSION XXD(NRNK) . XX {NRNK)

EQUIVALENCE
EGQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

(XXD(O1),B11D) , (XXD(02),E12D), (XXD(03) ,E13D)
(XXD(O4),BEID)yﬂXXD(OS):EEED);(XXD(Oé):EESD)
{(XXD(07) ,E31D), (XXD(08),E32D), (XXD{(0OF) ,E33D)
(XXD(10),C41D) , (XXD(11),C13D), (XXD(12),C13D)
(XXD(13).C21D),(XXD(14),Ca2D), (XXD(15),C23D)
(XYD{18),C31D) , {XXD(17),C32D), (XXD(18),C33D)
(¥XD(19),D0MT(1))

(XXD(28) . VIEBI(1))

(XX(01),B11),{XX(02) ,E12), (XX(03),E13)}
(XX(04),B21), (XX{03) ,E22), (XX(06),E2D)
(XYX{07),»BI1), (XX (08),E32), (XX{09),E33)

(XX (10),CL1Y . (XX (11),C128), (XX (12),C13)
(XX(13),C21), (XX (14),C22), (XX(15),C23)

(XX (16),C31), (XX (17),C32), (XX(18),C33)
(XX{19),VIBE (1)), (XX{22),0ME{1)), (XX {25),0MC{1))
(XX{28),RIBI (1))

11

eEeReNoNeNoNo NN NeNe]

[

[o T o I 4] [e

[R e B

o HeNe]

[

¥ ¥ ¥ ¥ ¥ O # £ ¥

AERO COEFFICIENT TABLES IN MISSILE AXES FOR THE SRE AND THE
FARACHUTE A5 A FUNCTION DF TOTAL ANGLE OF ATTACK.

CA - - AXIAL FORCE
CN - - NORMAL FORCE
CM - - PITCH MOMENT
CY - - SIDE FORCE
CW - - YAW MOMENT
‘CR - - ROLL MOMENT

DATA ALBTL/0.,20.,40.,60.,90.,120.,147.,160.,180./
DATA CAMBTL/0.0,0.0:0.0,+0.50,+41.40,-1.35,-3.65,-3.00,-2.20/
DATA CNMETL/0.0,0.0,0.0,+9.00,+9.00,+9.00,+4.10,+1,80,+0.00/
DATA CMMBTL/0.0,0.0,0.0,+15.5,+45.00,-3.30,-1.90,-1,10,+40.00/

CYMB = 0.0
CWME = 0.0
CRME = 0.0

DATA ALCTL/0.,5.,10.,15.,25./

DATA CAMCTL/+0.62,+0.62,+0.62,+0.61,+0.56/
DATA CNMCTL/.000,+.0100,+.032,+.090,+.170/
DATA CMMCTL/.000,-.0133,-.037,-.091,-.175/

CYMc = 0.0

CWYMC = 0.0

CRMC = 0.0

REFERENCE AREAS AND LENGTHS FOR THE SRE AND PARACHUTE.
SREFB = 116.26

LREFE = 12.1647

SREFC = 2289.1

LREFC = 54.00

¥R OE B ¥ OB OF OB

ATMOS. DENSITY TAELE - - ENGLISH SYSTEM.

DATA KRHOALT/00.,3000.,8224.,8803.,14000.,20000,,30000.,40000./
DATA RHOTL/0.0022944,0.,0019509,0.0018053,0.0017735,

£0.0015084,0.0012483,0.0009024,0,0006304/

#* #

100
105
¥ ¥

12

¥ # % ¥ ¥ ¥ %

CONSTANTS.
CNY = 57.2957795
- GZERD = 32.1740485
¥ 3 ¥ ¥ % ¥ & '

*
READ AND FRINT DESIRED PORTION OF FORTRAN SOURCE DATASET.

READ (5,805) NPMIN,NPMAX
DO 100 I=1,NPMAX DERIE
READ (9,820, END=105) CARD
IF(I .LT. NFMIN) GO TO 100
WRITE(&,B822) CARD ,
CONTINUE-

WRITE (6,800)

¥ ¥ % ¥ # ¥ O# #

il 1 1

1S

AN OO0 O0O0O000OO00nNn

READ AND WRITE THE INFUT DATA.

READ (5,801
WRITE(6,802)
READ (5,807)
WRITE(6,808)

READ (5,807)
WRITE(6,808)
READ (5,807)
WRITE(6,808)
READ (5,807)
WRITE(4,808)

READ (5.807)
WRITE(6,808)
READ (5,807)
WRITE(6,808)
READ (5,807)
WRITE(4,808)

WRITE(&,802)

TITLE,IDIAG,IFE

TITLE,IDIAG.,IFE

TSTART, TMAX,DELT,DTFRT, TNF1.TNF2
TSTART, TMAX,DELT,DTPRT, TNF1,TNFZ

VIES,AZIIBS,GAMIBS,ALTES
VIES,AZ1IBS,GAMIES,ALTES
PDEGES, @DEGES RDEGES, ALPHBS,FPHIAES, EANKES
FDEGES,QDEGBS,RDEGBS, ALPHBS,FHIABS, EANKBS
PDEGCS, QDEGCS,RDEGCS,PSICS, THETCS,PHICS
FDEGCS,QDEGCS,RDEGCS,PSICS, THETCS,PHICS

WCHTEB, IXXB, IYYR,1ZZB, IXYB,IXIB,IYIB
WGHTE, IXXE, IYYE,IZZB, IXYE,IXZB,1YZBE
WGHTC,IXXC,IYYC,I122ZC,IXYC,IXZC,1YIC
WGHTC,IXXC, IYYC,1ZZC, IXYC,IXZIC,1IYIC
XATTE:YATTE,ZATTE . XATTC,YATTC.ZATTC
XATTE,YATTE,ZATTE, XATTC,YATTC.ZATTC

FOH OE K OF F ¥ OB
MASSE = WGHTE/GZERD
"MASSC = WGHTC/GZERD

FEEHEREREFREF RN ER LR RE R R R R R ERFRER
SET UP THE [M] MATRIX AND ITS INVERSE.

EE TREATED AS A QUASI-DIAGONAL MATRIX WITH FOUR 3X3 CELLS.

[M1 IS5 A

12X12 WHICH

CAN

THE INVERSE OF [M31 CAN RBE FOUND EY SIMPLY TAKING THE INVERSE
OF EACH CELL.

{M1

mm—m-==== 0 0 O

l
I MAGSE

———— - ——

6 0 0
0 0 0
P
I IME
I]
0 ¢ 0
0 0 0
0 0 0
60 0 0
0 0 0
0 0 0

0 0 0
0 0 O
0 0 0
6 0 ©
0 0 0
0 0 0
o
I MASSC |
! I
0 0 0
0 0 ¢
0 0 0

0 0 0O
6 0 O
c 0 0
0 0 0
0 0 0
0 0 0
D 0 O
0 0 0
o0 0 0
o
I IMC |

13

eNeNe]
£
o*

FIKRST, ZERD ALL THE ELEMENTS OF [M3J AND [MINVI,
DO 121 I=1,12

DO 120 J=1,12 .
M(I.J) 0.0)
120 MINV(I,J) = 0.0

121 CONTINUE

'NOW. SET UP THE MASS CELLS IN [M] AND [MINVI. EACH MASS CELL IS
A DIAGONAL MATRIX.
DO 130 I=1,3
M{I, 1) MASSE
M(I+&6,1+6) = MASSC
MINV(I,I) = 1./MASSB
130 MINV{I+6;1+6) = 1./MASSC

o NoRe]
nn

C NEXT, SET UP EACH INERTIA MATRIX AND ITS INVERSE.
CALL IMATRX (IXXB,IYYB,IZZE.,IXYB,IXIB,IYZIE,IMB)
CALL IMATRX (IXXC,IYYC,IZZIC,IXYC,IXZC,IYIC,IMC)
CALL MAINV3 (IME,IMEINV)
CALL MAINVI (IMC,IMCINV)

C FINALLY, SET UP THE INERTIA CELLS IN [MJ AND [MINV],
po 133 I=1.3
Do 132 J=1,3
M{I+3,J+3) = IMEB(I.J)
CMI+9,J+9) IMC(T,J)

MINV(I+3,J+3) = IMEINV({I.J}

132 MINV(I+9,J+9) = IMCINVI(I,J)

133 CONTINUE :

CHECK THE INVERSE OF [M] BY PRINTING [M1 AND IMIIMINVI,

O OO

DO 141 I=1,1Z
141 WRITE (6,812) (M({I,J),J=1,12)
CALL MMUL (M,MINV,MIDENT,12,12,12)
WRITE (6,802)
DO 142 I=1,12 .
142 WRITE (6,812) (MIDENT(I,J),J=1,12)
C
CHEPRPRFFE SR REXFAEFEFE AT HEERLEIRRES

c © SET UP VECTORS FOR C.M.-TO-ATTACH-FOINT DISTANCES. DBOTH VECTORS
C ARE DEFINED AS PDSITIVE FROM C.M. TO ATTACH POINT.
LARE (1) = XATTE
LABE{2) = YATTR
LAEBR(3) = IATTE
LACC({1) = XATTC -
LACC(2) = YATTC =
LACC(3) = ZATTC :
C :
C # % % & # % ¥ ¥ § ¥ ¥ ¥ ¥ ¥ ¥ ¥ # 3
c SET UF THE 3RD AND 4TH CELLS OF [Al, THE 3X12 CONSTRAINT :
C MATRIX WHICH HAS THE GENERAL FORM:
C

b
S

OO0

e RN aNe N

e N R

[N NG RN NEN®

172
173

I | I 1 !
(Al = | +ACB |-ACE#LTE! -IDENT | +LTC |
] i ! ! I

WHERE LTE AND LTC ARE TILDE MATRICES FOR THE LABE AND
LACC VECTORS.

FIRST, ZERD ALL THE ELEMENTS OF [AJ. ZERD [ADOTI ALSO.

D0 173 I=
DO 172 J=
ACL,J)

ADOT(I,J)
CONTINUE

NOW, FILL IN NDN-ZERO ELEMENTS IN THE 3RD AND 4TH CELLS OF [Al.

A(1,7) = -1.0
A(2,8) = -1.0
A(3,9) = -1.0
All1,11) = -LACC(3)
All1,12) = +LACC(D)
A(2,10) = +LACC(3)
Al{2,12) = -LACCI{1)
A(3,10) = -LACC(2)
A{3,11) = +LACC(1)

B OE ¥ OB E F F OB K K

EEGIN INITIALIZATION SECTION IN WHICH THE VALUES OF ALL NEEDED
FARAMETERS ARE CALCULATED AT TIME = TSTART.

¥ ¥

TIME = TSTART

*

ESTABLISH THE SRE FARAMETERS AT TIME = TSTART BY SETTING THEM
EQUAL TO THE VALUES ALREADY READ IN.

VIE = VIRS

AZTIE = AZIIES
GAMIR = GAMIES
ALTE = ALTES
PDEGE = FDEGES
QDEGEB = QDEGES
RDEGE = RDEGES
ALFHAR= ALFHES
PHIAE = FHIARS
BANKE = EANKES

¥
DETERMINE 2 MATRICES TO INITIALIZE [AEII, THE I’ FRAME 70 "E’
FRAME TRANSFORMATION. - - [AEI] = [AEVI[LAVI]

SET UF [AEV] USING & 1-2-1 EULER ANGLE SEQUENCE (EANKE,ALFHAEB.
FHIAE) .

SEKE = SIN(EANKE/CNV)
CEKE = COS({EANKE/CNV)
SALE = SIN{ALFHAE/CNV)
CALE = COS{ALPHAE/CNV)

15

@]

o ReNe

s NeRe]

o Ne!

SPAE = SIN(FHIAE/CNV)

CPAE = COS{(FHIAE/CNV)

AEBV(1,1) = CALRB

AEBV(1,2) = SEKE#S5ALB

ABV(1,3) =-CBEKB*S5ALB

ABV(2,1) = SPAB#5ALB

AEBV(2,2) = CPAB*CEKB - SPAR#S5BKB#CALB
AEV(2,3) = CPAB*SBKB + SPAB#CBKB#CALB
AEBV(3,1) = CPAB*5ALB

‘ABV(3,2) =-5PAE*CEKB - CPAEB#SEKE#CALB
ABV(3,3) =-5PAB*5BKB + CPAB*CEKB#CALB

SET UP [AVI].

SAZB = SIN{(AZIIR/CNV)
CAZIB = COS(AZIIB/CNV)
SGME = SIN(GAMIB/CNV)
CGME = COS(GAMIB/CNV}
AVI(1,1) = CAZB*CGMRE
AVI(1,2) = SAZE*CGME
AVI(1,3) =-5GME
AVI(2,1) =-8AIE
AVI(Z.2) = CAZR
AVI(2,3) = 0.0
AVI(3,1) = CAZE*EGME
AVI(3,2) = SALZE*SGME
AVI(3,3) = CGMB

CALC., TAEI] AND SET UP ITS ELEMENTS AT TIME = TSTART.
CALL MMUL (ABV,AVI,ABI,3,3,3)
E1l1=AEI(1,1)

BizZ=AEI(1.,2)

E13=AEI(1,3)

B21=AEI(2,1)

E22=AaBI({2,2)

E23=ALI(2,3)

BE31=ARI(3, 1)

E32=AEI(3,2)

E33=AEI(3,3)

CALC, THE SRE INERTIAL POSITION COMPONENTS IN THE
*I7 FRAME AT TIME = TSTART.

RIEBI(1) = 0.0
RIEBI{2) = 0.0
RIEI(3) = -ALTE

CALC, THE SRE INERTIAL VELOCITY COMPONENTS IN THE ‘I°
AND TRANSFORM TO THE 'B' FRAME AT TIME = TSTART.

VIBI(1) = VIE#CGME*#CAZB
VIBI{(2) = VIE#CGME#SAZB
VIBI(3) = -VIE#*5GME

CALL MATVEC (AEI,VIEI.,VIEE,3,3)

SET UF THE SRE ANGULAR VELOCITY COMFONENTS AT TIME =
OME(1) = PDEGE/CNV
OME(2) = GDEGE/CNV

FRAME

TSTART.

leRe NN

[N

OMB(3) = RDEGE/CNV

¥ Kk F ¥

ESTAELISH THE FARACHUTE PARAMETERS AT TIME = TSTART BY SETTING

THEM EQUAL TO THE VALUES ALREADY READ IN.

PSIC = FSICS

THETC = THETCS

FHIC = FHICS

PDEGC = PDEGCS

@DEGC = @DEGCS

RDEGC = RDEGCS

SET UF THE PARACHUTE ANGULAR VELOCITY COMPONENTS AT TIME =
OMC(1) = FDEGC/CNV

gMC(2) = @DEGC/CNV

OMC{3) = RDEGC/CNV

TSTART.

SET UP [ACIY USING 3-2-1 EULER ANGLE SEQUENCE (FSIC,THETC,PHIC).

5T3C = SIN(FSIC/CNV)

CT3C = COS(PSIC/CNV)

S§TZC = SIN(THETC/CNV)

CT2C = COS{THETC/CNW)

ST1C = SIN(PHIC/CNWV)

CT1C = COS{FHIC/CNV)

ACI(1,1) = CTaC#({T3C

ACI(1,2) = CT2C#5T3C

ACI(1,3) =-8T2C

ACI(2,1) = STIC#BT2C#CT3C - CTIC#ST3C
ACI(2,2) = STI1C»ST2C#8T3C + CTIC#CT3C
ACI(2,3) = STIC*CT2C

ACI(3,1) = CTIC%¥BT2C#CT3C + STIC*ET3C
ACI(3,2) = CTIC#BT2C#8T3C ~ STI1C#LT3C
ACI(3,3) = CTIC#CTzZC

SET UF THE ELEMENTS OF [ACIJ] AT TIME = TSTART.
Cli=ACI(L, 1)
Cl12=ACI(1,2)
C13=ACIC(1.,3)
C21=ACTI(E, 1)
cza=ACI (2,2}
Cz23=ACI(2,3)
C31=ACI(3, 1)
C32=ACI(3,2)
C33=ACI(3,3)

SET INITIAL VALUES OF FRINT FARAMETERS AND OTHER FARAMETERS.

TEPRINT = TSTART
IPRFLG = 0
ICOFLG = O
KUTTA = 4

INITIALIZATION COMPLETEDs FRINT HEADER INFORMATION,
EOE R K B K K ¥ OE OB K B ¥ ¥

WRITE (6,800)

WRITE (6,802) TITLE

17

s NeNoNaNe

WRITE (6,803) VIEB{1).,VIEE(2),VIEE(3),VIEI(3),XXD(30),XX (30}
WRITE {6,802)
GO TO 407

BOEOE R OF R ¥ ¥ K B OF OF K OB X K E G OEOE ¥R EOE W OB OEOEOE OE EOEOEF O

BEGIN INTEGRATION LOOP (INTEGRATION SUER NOT CALLED FIRST PASS).
¥R R OB R OF B OF X F R R K ¥ F O F K B F E K R ¥ E K K OE K K F R OEOF K

400 KUTTA = KUTTA + 1
"CALL RUNGF (NRNK,DELT,TIME,XXD,XX,KUTTA)
407 CONTINUE
* %
CALCULATE ELEMENTS OF [ABIDOTJI AND [ACIDOTI.

QT

B11D = B21#0OMB(3) - B31+#0OMB(2)
B1z2D = Bz22#OME(3) - B32#0OME(2)
B13D = E23#0ME(3) -~ B33#0ME(2)
E21D = B31#0OMB(1) - B1i#0OMB(3)
Be2D = B32#0ME(1) - B12#0ME(D)
Bz3D = B33#OME (1) - BI13#0OME(3)
B31D = B11#CMB(Z2) - B2i1#0ME(1)
E3z2D = B1Z#0OME{2) - BZZ#0OME(1)
BE33D = EBI3#0OME(Z) - B23I#0OME(1)
Cl1D = C21x0OMC{3) - C31#0MC(2)
Ci12D = C22*OMC{3) - C32#0MC(2)
C13D = C23I#OMC(3) - CIJ#OMC(D)
C21D = C31#0OMC(1) - C11#DMC(3)
CzzD = CIZ#0OMC(1) - C1Z#0OMC(3)
Cz3D = C33#OGMC(1) ~ CI13#0OMC(3)
C31D = C11#OMC(2) - C21#0OMC(1)
C3zD = Clz#OMC{z) - Czz2#0MC{(1)
C33D = C13#0MC({2) - C23#0MC(1)
¥ #

SET UP THE [AEIJ AND [ACII MATRICES.
AEBI(1,1)=E11

AET{(1,2)=E12

ABI(1,3)=E13

ARI(2,1)=E21

ARl (2,2)=E22

ABI(2,3)=EE3

AETI{3,1)=E31

AET(3,2)=E32

AEBT (3,3)=E33

ACI{1,1)=C11

ACI{1,2)=C12

ACI{(1,3)=C13

ACI(2,1)=C21

ACI(2,2)=C22

ACI(2,3)=C23

ACI(3,1)=C31

ACI(3,2)=C3z2

ACI(3,3)=C33

¥ ¥

CALCULATE LAIEI.LAICI,

AND [ACE1].

A0 GOOOOO0O00OC0

o N o]

oW

SO e e N o R e Ne] ACGOOO0 []

pNe RO Ne!

CALL TRANSF (ARI.,3,3,AI1E)
CALL TRANSP (ACI.3,3,A1C)
CALL MMUL (ACI,AIE,ACE,3:3,3)

¥ ¥ K £ # &

USE CONSTRAINT EQUATIONS TO DETERMINE THE INERTIAL FOSITION AND
VELOCITY OF THE FARACHUTE. ELIMINATING DRIFT CAUSED BY
INTEGRATION ERROR,

THE CONSTRAINT EQUATIONS WILL EE CALCULATED USING A VECTOR
CROSS-PRODUCT SUERDUTINE INSTEAD OF TILDE MATRICES. ALLOWING
A LITTLE MIXING OF MATRIX AND VECTOR NOTATION, THE CONSTRAINT
EQUATIONS ARE:

RICI = RIEI + [AIRBI*LABP - [AICI*LACC

VICC = [ACBI#(VIRE + OMB X LABB) - OMC X LACC
¥
BEGIN WITH FOSITION CONSTRAINT.
¥ ¥

TRANSFORM SRE C.M.-TD-ATTACH FOINT DISTANCE INTOD 'I’ FRAME.
CALL MATVEC (AIR.LARE,LAEI,3,3)

CALC. INERTIAL FOSITION OF THE ATTACH POINT IN THE "I’ FRAME.
caLlL VADD (RIBI,LABI,RAEI.,1)

TRANSFORM FARACHUTE C.M.-TO-ATTACH POINT DISTANCE INTO ‘I’ FRAME.
CALL MATVEC (AIC,LACC,LACI.3,3)

CALC. INERTIAL FDSITION OF PARACHUTE C.M. IN THE 'I1’ FRAME.
CALL VADD (RAEI,LACI,RICI,-1)

£ ¥

NOW CALCULATE THE VELOCITY CONSTRAINT.

¥ ¥

DETERMINE ATTACH FOINT VELDCITY RELATIVE TO THE SRE C.M. IN THE
‘BT FRAME.

CALL VCROSS (OME,LAEE,VOEE)

CALC. INERTIAL VELOCITY OF THE ATTACH POINT IN THE ‘B’
FRAME AND TRANSFORM INTO 'C’ FRAME.

CALL VADD (VIEE,VOEE,VAEB.1)

CALL MATVEC (ACE.VAEB,VABEC,3,3)

DETERMINE ATTACH FOINT VELOCITY RELATIVE TO THE PARACHUTE C.M. IN
THE *C’ FRAME.
CALL VCRDSS (OMC,LACC,VGCC)

CALC. INERTIAL VELOCITY OF THE FARACHUTE C.M. IN THE *C’ FRAME.
(THIS VELDCITY WILL RE PLACED IN THE [OMEGAT MATRIX).
CALL VADD (VAEC,VOCC.VICC,~-1)

*oF OE ¥
TRANSFORM INERTIAL VELOCITY OF THE SRE INTO ‘I’ FRAME TO FROVIDE
A DERIVATIVE OF INERTIAL POSITION. DO THE SAME FOR FARACHUTE.

19

[sNeReRe NNy

e ReNeNg

(s NeNeoNeNe]

20

*

*

]

*x

CALL MATVEC (AIE,VIEBE,VIEI,3.3)
CALL MATVEC (AIC,VICC,VICI.3,3)

R OK B ¥ K # ¥ ¥
BEEGIN AERO SECTION.

* ¥
LOOK UP ATMOSFHERIC DENSITY UBING SRE ALTITUDE,

‘ALTE = -RIBI(3)

ALTC = -RICI(3)
CALL TELXY (NRHO,RHOALT,RHOTL.ALTE,RHD)

CALCULATE DYNAMIC PRESSURES FOR SRE AND PARACHUTE, ALONG WITH
ASSO0CIATED TERMS FOR AERD CALCULATIONS.

CALL VMAG (VIEE,VIR2,VIE)
CALL VMAG (VICC,VICZ.,VIC)

QERE = 0.3*RHC*VIEZ
QERC = 0.3*RHO®VIC2
QERSE = QERE*SREFE
QERSC = QBRC#SREFC
QERSLE = QERSE#LREFE
QERSLC = QERSC#LREFC

CALCULATE ALPHA-TOTAL AND AERD ROLL ANGLE FOR THE SRE
AND FARACHUTE. ALPHA-TOTAL HAS RANGE: 0 TO 180 DEGREES.
AERD ROLL ANGLE BAS RANGE: -180 7O +180 DEGREES,.

ALPHAE = ACOS(VIER(1)/VIR)*CNV
ALPHAC = ACOS(VICC(1)/VIC)*CNV
FHIAE = ZTANZ(VIEE(2) ,VIBE(3))#CNV
PHIAC = ZTANZ(VICC(2),VICC(3))#CNV

LOOK UFP SRE AND FPARACHUTE AERO COEFFICIENTS IN MISSILE AXES.
CALL TELXY (NAE,ALETL,CAMBTL,ALPHAR,CAME)
CALL TELXY (NAE,ALBTL,CNMETL.ALFHAE,CNME)
CALL TELXY {(NAB,ALBTL,CMMETL.ALFHAE.CMME)

CALL TBLXY (NAC,ALCTL,CAMCTL.ALPHAC,CAMC)
CALL TELXY (NAC,ALCTL,CNMCTL.ALFHAC,CNMO)
CALL TELXY (NAC,ALCTL,CMMCTL.,ALFHAC, CMMC)

TRANSFORM AERO COEFFICIENTS FOR THE SRE AND FARACHUTE INTO THE
‘E’ AND 'C’ FRAMES.

SFAE = SIN(FHIAR/CNV)

CFAE = COS(FHIAR/CNV)

CAE = +CAME

CYE = +CYME#CPAE - CNMB#*SPAPR
CNB = +CNME#CFAD + CYME#SFAE
CRE = +CRME

CMB = +CMME#CFAR + CWMB#SFAE
CWB = +CWMBE*CFAEB - CMMB#SFAB

e NoNaNe

[oRe NN RS

OO0

#*

¥ ¥

I

460

480

SFAC = SIN(FHIAC/CNV)

CFAC = COS({FHIAC/CNW)

CAC = +CAMC

CYC = +CYMC*CFAC - CNMC#SFAC
CNC = +CNMC#CPAC + CYMC#SPAC
CRC = +CRMC

CMC = +CMMC#CPAC + CWMC#SFAC
CWC = +CWMC#*CPAC - CMMC#SPAC

CALC. AERD FORCES AND MOMENTS AT EACH C.M., TAKING INTO ACCOUNT
THE SIGN CHANGE REQUIRED FOR CA AND CN.

FL{1) = -QBRSB#CAB
FL{(2) = +QERSDE#CYDB
FL{3) = ~-QERSB*CNB
FL{4) = QERSLB#CRE
FL{S) = QBRSLE*CME
FL{&) = QERSLE*CWE
FL(7) = -GERSC+*CAC
FL{8) = +Q@BREC*CYC
FL{?) = -QERSC#CNC
FL{10) = QERRSLC#CRC
FL(11) = QERSLC#CMC
FL(12) = QEBRSLC*CWC

END OF AERO SECTION.
¥R OE O K OE K OE ¥

SET UF GRAV. ACCELERATION COMPONENTS IN THE ‘I' FRAME.

GI(1) = 0.0
Grez) = 0.0
GI{(3) = GIERD

TRANSFORM THE GRAV. ACCELERATION TD THE ‘B’ AND 'C' FRAMES,
AND CALC. THE GRAV. FDRCES AT EACH C.M. - - [FGJ] MATRIX.

CALL MATVEC {AEI.GI.GE,3,3)
CALL MATVEC (ACI,GI,GC,3,3)

DO 4460 I=1.3

LD = MASBSEx*GE(I)
FG{I+3) = 0.0

FG{I+6) = MASEC#GC(])
FG(I+9) = 0.0

* # #

IF “IFE’ EQ@ 0, ZERD OUT THE TERMS THAT COMFRISE THE [FEJ] MATRIX.

IF(IFE .NE. 0) GO TO 481
DO 480 I=1.12

FL{I) = 0.0

FG(I) = 0.0

21

e Ne RNy

OO0

i

e N NeN e N

Ca

TIc YOy

eNeNoNeNORe NeReNe]

(34
o

431

FW(il)

CONTINUE

£ # ¥ # # ¥ ¥

ALL THE EXTERNAL FORCES AND MOMENTS HAVE NOW EEEN CALCULATED AT
THE SRE AND FARACHUTE C.M.’S8. ©SET UP THE LFEJ1 MATRIX.

DO 490 I=1,12

FE(I) = FL(I) + FG(I)

¥ 0% ® ¥ ¥ ¥ ¥ % X ¥

"SET UP THE [OMEGAJ MATRIX USING THE PARACHUTE INERTIAL VELQCITY

FROM THE CONSTRAINT EQUATION.
DO S12 I=1.3

OMEGA(I) = VIBB(D)
OMEGA(I+3) = OME(I)
OMEGA(I+6) = VICC(I)
OMEGA(I+®) = OMC(I)

oE R OR
CALCULATE THE MOMENTUM MATRIX [H1 USING THE 12X12 MASS MATRIX.
CALL MATVEC (M,OMEGA.H,12.,12)

*
SET UF THE [FW] MATRIX BY CALCULATING THE *MINUS W-CROSS5’ TERMS
FOR THE SRE AND THE PARACHUTE.

= -=0OMB(2)*H(3) <+ OMB(3)#H{(2)
FWi{z) = =~0OME(3)#H(1) + OME(1)#H(3)
FW(3) = -OMB(1)®H(Z2) + OMEB(2)#H(1)
FW{4) = ~OME(2}%H(&) + OMB(3)#H(3)
FW{S) = <-0OMEB(3)xH(4) <+ OMB(1)#*H{&)
FW(6) = -OMB{1)=H(S) + OMB(2)#H(4)
FW{7) = -~OMC{2)#H{9) + OMC{3)#H(8)
FWig) = =-0OMC(3)%H(7) + OMC(1)#H(9)
FW(g) = -0OMC{1)#H(8) + OMC(2)#H(7)
FW({10) = -0OMC(2)%H{12) + OMC(3)*H(11)
FW{11) = -OMC{3)#H{10) + OMC(1)#H(12)
FWIR) = -OMC{1)#H(11) + OMC(2)+#H(10)

SN I I

ADD [FWI TD THE EXTERNAL FORCES AND MOMENTS 7O GET
THE [FJ1 MATRIX.

Do Sz24 I=1,12

F{I) = FE(I) + FW(D)

BoEOE R OEOE E OB OE ¥ ¥ OB K ¥ OB B ¥ X X ¥ ¥ ¥
BEGIN CALCULATION OF ATTACH POINT CONSTRAINT FORCES AND
MOMENTS AT THE C.M.'5 - - - [FAJ MATRIX.

SET UP THE 157 AND &ND CELLS OF [AJ, THE CONSTRAINT MATRIX. THE
187 CELL IS [ACBJ. THE 2ND CELL, -TACBIILTEBI, IS5 OETAINED
EY USING THE 1ST CELL.

vere b Lt n e e LIL I N BETY [

o

oNeRe e

AACTOaOCGOOOCO

QOO

s EeoReNe N

532

333

o8

%

#

DO 533 I=1,3
DO 532 J=1.3

A(I,J) = ACE(I.J)

CONTINUE

Al1,4) = -A{1,2)#LAER(3) + A(1,3)#LABE(2)
Al(1,9) = +A{1,1)*LAEB(3) - A(1,3)#LARE(]1)
A(1,6) = -A{1,1)}#LAEB(2) + A(1,2)#LABB(1)
Al2,4) = -A(2,2)#LABB(3) + A(2,3)#LABEB(2)
AlZ2,5) = +A(2,1)*LAEB(3) - A(2,3)#LABB(1)
Al2,6) = -A(2,1)*LABB(2) + A(2,2)*LAEBB(1)
Al3,4) = -A(3,2)#LABB(3) + A(3,3)*LABB(Z)
A(3,5) = +A(3,1)*LAEB(3) - A(3,3)#LABE(1)
A(3,6) = -A(3,1)*LABB(2) + A(3,2)*#LABB(1)

RECALLING THAT THE 3RD AND 4TH CELLS OF [A] WERE CALCULATED AT THE
START OF THE PROGRAM. [Al HAS NOW BEEN DETERMINED. TAKE THE
TRANSPOSE OF [A] FOR LATER USE.

CALL TRANSP (A,3.12,AT)

¥ oO#

SET UP THE 18T AND 2ND CELLS OF [ADOTI., THE 3RD AND 4TH CELLS
ARE ZERO. THE 15T CELL IS [ACEDOTI WHICH IS OETAINED FROM
THE FOLLOWING EQUATION:

[ACEDOTI = -[OMTCILACE] + [ACEI OMTE]

WHERE [OMTC1 AND [OMTBI ARE TILDE MATRICES FOR THE
FARACHUTE AND S5REB ANGULAR VELOCITIES,

ADDT{1,1)=+0MC{3)*A(2,1)-0MC(2)#A (3, 1) +OME(3) #A(1,2) -OME(2)*A(1,3)
ADOT (1,2)=+DMC{3)*A(2,2)-OMC(2)%A(3,2)-0OME(3)*A (1, 1) +OME(1)*A(1,3)
ADOT(1,3)=+0MC{3)#A{2,3)-0MC(2) A (3,) +OMB{2)#A (1, 1) -OME(1)*A(L,2)
ADOT(2,1)=-0MC(3)*A{1, 1) +0MC{1)#A(3, 1) +OME(3) #A (2, 2) -OME (2) A (2, 3)
ADOT(2,2)=-0MC{3)*A(1,2)+0MC (1) #A(3,2) -OME(3)#A (2, 1) +OME (1) 2A (2, 3)
ADDT(2,3)=-0MC{3)#A(1,3)+0MC(1)*A(3,3) +OMB{2) %A (2, 1) -OME (1) *AL2,2)
ADDT (3, 1)=+0OMC(2)*A(1, 1) -OMC (1) #A(Z, 1) +OMB(3) *A (3, 2) -OME(2) *A (3, 3)
ADDT(3,2)=+0OMC{2)%A{1,2)-DMC (1) *A(2,2)-OMB(3)*A(3, 1) +OMB (1) *A (3, 3}
ADDT (3,3)=+0MC{2)*#A(1,3)~0OMC{1)#A(2,3)+0ME(2)#A (3, 1) -0OME{1)*A(3,2)

THE 2ND CELL, -[IACEDDTMLTEJ, IS OETAINED BY USING THE 187 CELL.

ADOT (1.4} ~4D0T (1, 2) #LARE(3) ADOT(1,3) #LAER(Z)
ADOT (1.,5) +ADOT(1,1) #LAEE(3) ADOT (1, 3)#LAER(1)
ADOT (1.,6) -ADOT(1,1)#LAEE(2) ADODT(1,2)#LAERB(1)
ADOT (2.4) -ADOT(2,2) #LAEE(3) ADROT (2, 3) #LARE(2)

ADOT(2,3) #LAERRB(1)
ADDT(2,2)#LAEBR(D)

+4D0T (2, 1) *LAEBE(3)
-ADOT(Z,1)#LABE(2)

ADOT (2,5}
ADDT(2.6)

+1 4+ + L+ 1+

w o uwuunn

ADOT (3.4} -ADOT(3,2) #LAER () ADDT(3,3) *LAER(2)
ADDT (3,5) +ADOT (3, 1) #LAEE(3) ADOT(3,3) #LAER (1)
ADDT(3,6) -ADGT (3, 1) #LAEBE(2) ADDT(3,2)#LAEB(1)
¥ o® # 7

ALL MATRICES NEEDED TO CALCULATE [FAJ HAVE NOW EEEN
SET UP. FERFORM THE REGUIRED OFERATIONS. '

23

(] OO0 Ca

OO0

(oo o RONY]

AN

[N ReRel S NS NG Re] OO

[}

[e

CALL MMUL (A,MINV,AMINV,3,12,12)
CALL MMUL (AMINV,AT,AMINVA.3,12,3)
CALL MAINV3 (AMINVA,TERMAIL)

CALL MATVEC {(AMINV.F,

AMINVF,3,12)

CALL MATVEC (ADOT.OMEGA,ADOTOM.3.,12)

INSERT THE MINUS SIGN WHILE COMEINING [AMINVF1 AND [ADOTOMI.

DO 563 I=1.,3

563 TERMVI(I) = -AMINVF(I) - ADOTOM(I)

CALL MATVEC (TERMALl,TERMVI,TERMVZ,3,3)

FINALLY, FERFORM THE
CALCULATED.

STEP IN WHICH [FAJ, A 12X1 MATRIX, 15

CALL MATVEC (AT.TERMVZ,FA,12,3)

¥ ¥ F K ¥ # ¥ ¥ % ¥

THE CALCULATION OF [FAJ COMPLETES THE DETERMINATION OF ALL THE
FORCES AND MOMENTS AT THE C.M.’S5 OF THE SRE AND PARACHUTE.

ADD [FJ AND [FAJ TO GET [FTOTAL I.

po 570 I=t.12

370 FTOTAL(I) = F(I) + FA{D)

Ok ¥ OF ¥ ¥ OB K ¥ ¥

CALCULATE ALL ACCELERATIONS IN THE 'R’ AND *C’ FRAMES.

[DOMEGA] =

[MINVIIFTOTAL]

CALL MATVEC (MINV,FTOTAL.DOMEGA.12,12)

SET UF THE 9X1 ACCELERATION MATRIX THAT IS TD BE INTEGRATED.

3
DOMEGA({I)

DO 590 I=1

DOMY (1)

DOMG (1+3)
590 DOM? (1+64)

~

o

DOMEGA(I+3)
DOMEGA (I+9)

END OF INTEGRATION LOOP.

OB OF OB OB K ¥ ¥ F ¥ X X ¥ OB OF & K 4 ¥ K ¥ OF B # #F ¥ ¥ X ¥ ¥ ¥ ¥ ¥ &

IF(KUTTA .LT. 4) G0 TO 400

KUTTA=0D

oW OE E K OB K
SET FLAGS TO CONTROL

IFATIME .GE. TPRINT)
IF(TIME .GE. TMAX)
IF{IPRFLG .EGQ. 1) GO
IF(ICOFLG .EQ. 1) GO
IF ALL FLAGS = 0, GO
GO TO 400

701 CONTINUE

¥ ¥ % # £ ¥ #

OUTPUT SECTION OF PROGRAM AND CUT-OFF.

IPRFLG=1

ICOFLG=1

TO 701

T0O 701

TO START OF INTEGRATION LOOP.

monor

M

OO

g ReRe]

e NS Re]

o NeRe!

OO

" PHIE

CALCULATE

¥

QUTFUT FARAMETERS FOR FLOTTING.

CALC. THE 3-2-1 EULER ANGLES FOR THE ORIENTATIONS OF THE SRE AND
FARACHUTE.

STzB =
THETE
PSIE

A
ITA

5T2C
THETC
PS1IC

PHIC
*

CALC. FLIGHT FATH ANGLE AND AZIMUTH OF THE SRE AND FARACHUTE.

GAMIR = I
AZIIB = 2
GAMIC = 1
AZIIC = 1

#*

SAZE = SIN{(AZIIE/CRNV)

CAZE = COS(AZIIB/CNV)

SGME = SIN{GAMIE/CNV)

CGME = COS{GAMIE/CNV)

AIV(1,1) = CAZE#CGME

AIV(2,1) = SAIB#CGMEB

AIVI3,1) =-SGMB

AIV{1,2) =-BAIB

AIV(2,2) = CALE

AIV(3,2) = 0.0

AIV(1,3) = CAZE+#SGMEB

AIVI(2,3) = SAIZB*SGME

AIV(3,3) = CGME

CALL MMUL (ABI,AIV.ARBV.,3,3,3)
BANKE = ZITANZ(AEV(1,2),-AEV{1,3))%CNV
¥

SET UP ERROR INDICATORS.

CALL ORTH {(AEI,DRTAEI)

CALL ORTH (ACI,ORTACI)

CALL MATVEC (A,DOMEGA,ADOMEG,3,12)
¥

CALC. VECTOR MAGNITUDES; CONVERT ANG., VELOCITIES TO DEG/SEC.
CALL VMAG (VAEB,DUMM,VAB)

CALL VMAG (RIEI.,DUMM.RIE)

CALL VMAG (RAEI.DUMM.RAE)

CALL VMAG (RICI.DUMM.RIC)

CALL VUMAG (GE,DUMM.GMAG)

FDEGE = OMB(1)#*CNV

-ABI(1,3)
SIN(ST2Z2E) #CNV
NZ(ABI(1,2),ABI(1,1))*CNV

ITAN2(AEI{2,3) ,ABI{(3,3))#CNV

-ACI(1,3)

ASIN(ST2C) #CNV
ZTAN2(ACI(1,2),ACI(1,1))%CNV
ITANZ(ACI(2,3),ACI(3,3)) *CNV

SIN{-VIBI{3),VIB)*CNV
TANZ(VIEI{2),VIBI(1))#CNV
SIN{-VICI(3),VIC)#CNV
TANZ(VICI(2),VICI{1)) #CNV

~SET UP [AIV] TO CALCULATE THE SRB BANK ANGLE.

25

o EeRe

(@ o]

@R N

[9]

26

¥ #*

730

733
734

73¢9
740

800
801
a0z
805
807
808
309
g1z
820
gez

QDEGEB = QOME(2) *CNV
RDEGB = OMB(3) #CNV
FDEGC = OMC(1)#CNV
@DEGC = OMC(2) #CNV
RDEGC = OMC(3)#CNV

¥
SORT OUT THE PRINT CONTROL TIME LOGIC.

IF(IFRFLG .EQ@. 0) GO TO 740

“IPRFLG = 0

TPRINT = TPRINT + DTPRT

IF(TIME .LT. TNP1}) GO TO 720

IF(TIME .LT. TNFZ) GO TO 740

CONT INUE

FRINT THE STANDARD SET OF FARAMETERS.

WRITE (6,858)

WRITE (4,861) TIME,ALTR,QERE,VIE,ALFHAB,PHIAB,FDEGE,@DEGE,RDEGE,
¢GAMIB,AZIIEB.RIRBI(1),RIRI (&) ,PSIE,THETE PHIE

WRITE (6.,862) ALTC,QERC,VIC,ALFHAC,FHIAC,FDEGC,QDEGC,RDEGC,
e¢GAMIC, AZIIC,RICI(1) RICI{(2),PSIC,THETC,FHIC

WRITE {(6,871)

DO 730 I=1,12

WRITE (6,808) FL{I),FG(I),FW(I),FA{I),FTOTAL{I),DOMEGA{1),OMEGA(D)
WRITE (6,879) ORTAEI,ORTACI

BEEGIN DIAGNDSTIC FPRINT, IF DESIRED.

IF{IDIAG .LT. 1) GO TO 739

WRITE (46,889)

WRITE {(6,809) VIE,VAR,VIC,RIE,RAEB.RIC

WRITE (6,809) RHO,QBRSE,QERSC, CAMB,CNME, CMME, CAMC, CNMC . CMMC

WRITE (46,808) GMAG,MASSE.MASSC.EANKE

D0 733 I={,3 .

WRITE {(6.812) (A(I.J),Jd=1,12)

bgd 734 1=1.3

WRITE {&6,812) (ADOT(I,J),J=1,12)

WRITE (6£.808) ADOMEG{1),ADOTOM(1),ADOMEG(2),ADOTOM(2),
ZADOMEG (3),ADOTOM(3)

WRITE (6.802)

CONTINUE

END OF QUTPUT SECTION.

¥ ¥ K ¥ # :

IF(ICOFLG .EG. 0) GO TO 400
END OF RUN.

STOF

FORMAT (1H1)

FORMAT (16A4.,11,12)

FORMAT (1HO,164A4.116,215)
FORMAT (I15,15,2X,4E11.8)
FORMAT (7E11.8)

FORMAT (1X,F18.9,5F19.9.,F18.9)
FORMAT (4X,9E14.7)

FORMAT (1X.11E11.4,E10.3)
FORMAT (20A4)

FORMAT (2X.20A4)

858 FORMAT (3X,4HTIME, 6X,3HALT,3X, AHREAR , 3X,2HVI,5X, SHALPHA, 4X,
B4HPHIA,SX, tHP,&6X,1H@,6Xs tHR, 5X,SHGAMMA, 3X, 7HAZ IMUTH, X, 2HX 1, 7X,
C2HY1,8X,18H3~-2-1 EULER ANGLES)

861 FORMAT (F8.3,F9.1,F6.1,F7.2,3F8.2,2F7.2,2F9.3,2F%9.1,F9.2,2F8.2)

862 FORMAT (8%X,F9.1,F6.1,F7.2,3F8.2,2F7.2,2F9.3,2F%.1,F%.2,2F8.2)

871 FORMAT (10X,2HFL,17X,2HFG,17X,2HFW,17X,2HFA, 17X, 6HFTOTAL , 13X,
BAHDOMEGA , 12X, SHOMEGA)

879 FORMAT (85X,16HERROR INDICATORS,2F15.10)

889 FORMAT (6X,11HDIAGNOSTICS)

END

27

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

coliection of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate

Pubhe repoﬁmg burden for thes collection of nformation 15 estimated 16 average ! hour per response, including the ume for TeviewIng instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewng the cotlection of information. Send comments re?ardmg this burden estimate or any other aspect of this

or information Operations and Reports, 1215 jetferson
Davis Highway. Suite 1284, Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project {(704-0188), Washungton, DC 20503

2. REPORT DATE
April 1992

1. AGENCY USE ONLY (Leave blank)

3. REPORT TYPE AND DATES COVERED'

8. TITLE AND SUBTITLE

Technique To Eliminate Computational Instability in Multibody
Simulations Employing the Lagrange Multiplier

6. AUTHOR(S)

G. Watts

Technical Paper

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

8. PERFORMING ORGANIZATION
REPORT NUMBER

M-687

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546

10. SPONSORING / MONITORING -
AGENCY REPORT NUMBER

NASA TP-3220

11. SUPPLEMENTARY NOTES

Prepared by Structures and Dynamics Laboratory, Science and Engineering Directorate.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Unclassified -— Unlimited
Subject Category: 61

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

a frictionless swivel.

This paper presents a programming technique to eliminate computational instability in
multibody simulations that use the Lagrange multiplier. The computational instability occurs when
the attached bodies drift apart and violate the constraints. The programming technique uses the
constraint equation, instead of integration, to determine the coordinates that are not independent.
Although the equations of motion are unchanged, a complete derivation of the incorporation of the
Lagrange multiplier into the equation of motion for two bodies is presented. A listing of a digital
computer program which uses the programming technique to eliminate computational instability is
also presented. The computer program simulates a solid rocket booster and parachute connected by

14. SUBJECT TERMS
Computational Instability, Multibody Simulation, Lagrange Multiplier,
Computer Programming Techniques, Parachute Dynamics

15. NUMBER OF PAGES
32

16. PRICE CODE

A03

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified Unclassified

OF ABSTRACT
Unclassified

19. SECURITY CLASSIFICATION

Unlimited

e
20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 73918
298-102

T T T)

L)

