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Abstract

This paper presents a procedure to identify the open-loop system when it is operating under closed-

loop conditions. First, closed-loop excitation data are used to compute the system open-loop and

closed-loop Markov parameters. The Markov parameters, which are the pulse response samples,

are then used to compute a state space representation of the open-loop system. Two closed-loop

configurations are considered in this paper: The closed-loop system can either have a linear output

feedback controller or a dynamic output feedback controller. Numerical examples are provided to

illustrate the proposed closed-loop identification method.

Introduction

The problem of identification of the open-loop system when it is operating under closed-loop

conditions is considered. This is a problem of considerable practical importance. There are several

instances when this is needed. For example, consider the case when an open-loop model of the

system is required, but the system is operating in closed-loop, and it is not possible to remove the,

existing controller for open-loop identification. Even when it is possible to remove the existing

controller for open-loop identification, it may not be desirable to do so. This is the case when the

open-loop system is only marginally stable or unstable, and the existing controller is needed to

ensure overall system stability. An open-loop model of the system may be required for purpose of

analysis or controller re-design. It is generally not possible to identify the open-loop system

simply by measuring the system output and the actual input during closed-loop operation because
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such input is usually not rich enough for identification. Additive input excitation during closed-

loop operation is necessary to identify the open-loop system. However, the excitation must be

added in such a way that it does not affect overall system stability that is provided by the existing

controller.

The paper considers the following closed-loop identification problems: First, the identification of a

system having an existing linear output feedback controller is formulated. This is a basic case,

upon which several extensions can be made. Second, if the open-loop system has a direct

transmission term, the mathematical problem becomes slightly more complicated, and this case is

treated next. Third, a .solution to the more general problem where closed-loop system has output

feedback dynamics is presented. Fourth, since the open-loop system may include known input

and/or output filters in addition to the plant, it is sometimes desirable to extract the plant dynamics

alone. Mathematically, this is the case of recovering the dynamics of one system from the

combined dynamics of two cascading linear systems when the other system is known. Finally,

numerical examples are provided to illustrate each of the developed identification procedures.

The closed-loop identification method developed here is based on the concept of an observer. Of

importance are certain basic algebraic relations between the Markov parameters of the observer,

and those of the closed-loop and open-loop system. The use of Markov parameters in system

identification is discus_d in Ref. I. The observer concept has been used previously in developing

_veral open-loop identification techniques. 2-8 Even though the closed-loop system identification

method developed in this paper is derived within a deterministic framework, the resultant

identification equations have the same structure as those developed previously for observer/Kalman

filter identification (OKID). The readers are referred to Ref. 4 and Ref. 7 for an investigation of the

stochastic properties of identification equations possessing this structure in the presence of process

and measurement noises. From the identified open-loop system Markov parameters, a state space

realization of the system is obtained by the Eigensystem Realization Algorithm (ERA), Ref. 10.

in the presence of noises, a variance based confidence criterion for ERA identified modal

parameters is developed in Ref. 11.

In this paper, the output feedback dynamics is assumed known. This requirement makes the

problem mathematically well-posed. If feedback dynamics is not known, then the feedback signal

is required to be known, which is the case treated in Ref. 12 for a closed-loop system possessing a

full state feedback structure.
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Problem Statement

Consider a linear multivariable system expressed in state space format as

x(i + 1) = Ax(i) + Bu(i)

y(i) = Cx(i)
(1)

where x(i)e R",y(i)_. Rq,u(i)_-R', i.e., n denotes order of the system, q is the number of

outputs, and m is the number of inputs. The system has an existing linear output feedback

controller with a gain F. For purpose of identification, an additional excitation v(i) is injected to

the control input, and the total input to the closed-loop system becomes

u(i) = Fy(i) + Gv(i) (2)

which yields the following system of the form

x(i + 1) = (A + BFC)x(i) + BGv(i)

y(i) = Cx(i)
(3)

For simplicity, let A¢ denote the closed-loop system matrix,

,4,:= A + BFC (4)

The additive excitation input vector Gv(i) and the corresponding output of the closed-loop system

y(i) are known. The existing linear feedback gain F is assumed to be known. See Fig. 1 for a

schematic diagram of the closed-loop system. The objective of the problem is to obtain a state

space model of the open-loop system, denoted by the .set (A, B, C), from input-output data of the

closed-loop system.

Furthermore, this is to be accomplished by first obtaining the Markov parameters of the open-loop

system, Y(i)= CA_-IB. A state space model of the system can then be computed from these

Markov parameters using a realization method, Ref. 10. Subsequent developments that treat

several extensions of this basic problem will be considered.
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Fig. 1: Schematic diagram of the closed-loop system

Mathematical Formulation

The mathematical formulation consists of the following developments. The input-output

description of the closed-loop system is described in terms of an observer whose Markov

parameters can be computed from closed-loop data. Algebraic relations between the Markov

parameters of the observer and those of the closed-loop and open-loop system are derived. From

these relations, the open-loop system dynamics can be recovered from the computed observer

Markov parameters and knowledge of the feedback gain. For clarity of presentation, the

formulation is done first for the case without a direct transmission term, then extended to the case

with a direct transmission term. This is because inclusion of the transmission term at the

beginning would complicate the algebra without altering it fundamentally. Also, the case of the

closed-loop system with a linear output feedback controller is treated first. The case with a dynamic

controller then follows. Further extensions to the situation when the open-loop plant includes

input or output filters are considered.

I. The Closed-Loop System and Its Associated Observer

This section introduces the concept of an observer as a intermediate step in solving for the Markov

parameters of the open-loop system. First, note from Eq. (3) that the additive excitation signal v(i)

does not affect the overall closed-loop system stability that is being provided by the feedback

controller since it does not alter the existing closed loop system matrix A,: = A + BFC. To solve

for the Markov parameters of the closed-loop system in Eq. (3), an observer is introduced to this

set of equations. This is accomplished by adding and subtracting the term My(i) to the right hand

side of the state equation in Eq. (3),
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x(i + 1) = A_x(i) + BGv(i) + My(i) - My(i)

= (A_ + MC)x(i) + BGv(i) - My(i)
(5)

Define the following quantities

A_ = A_ +MC , [Gv(i)]
B=[B,-M], z(i)= Ly(i)] (6)

Then the original closed-loop system can be expres:,;ed as

x(i + 1) = A_x(i) + Bz(i)

y(i) = Cx(i)
(7)

it has been shown in Ref. 3 or 5 that the above operation is equivalent to introducing an observer

to the system if the state x(i) is considered as an observer state, and the matrix M can be

considered as an observer gain. In this particular case, it is an observer of the closed-loop system

given by Eq. (3). It is important to note at this point that one does not have to know M explicitly at

the beginning, but rather it will be specified implicitly through the stability requirement for

= A,: + MC. Assuming zero initial conditions for x(i), the input-output description of the above

system is

i-I

y(i) = y_ C_'-'-'-Bz(z) (8)
"t'=O

If the system is made asymptotically stable by having a matrix A,=such that the Markov parameters

CAfB, C-Af÷t-B, C_P÷2-B .... can be neglected for some p, then at time steps i > p, the input-

output description can be approximately described by a reduced set of p Markov parameters

C-B, CA, B ..... C_P-_-B. The freedom in M can be used to make the observer equation stable by

placing its poles. Various cases where the prescribed poles may be real, complex, or deadbeat are

studied in Ref. 5, and more extensively in Ref. 8. In the case where M is a deadbeat observer

gain, the input-output relation of the above system can be expressed in terms of a finite set of

observer Markov parameters as
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y(i) = _ _('r)z(i- _:) (9)
f=l

where the observer Markov parameters Y_(i), i = 1, 2 ..... p, are defined as

_(i) = CA,_-'B (10)

and Y,(i)= 0 for i = p + 1, p+ 2 ..... Suppose that a set of N measurements of the closed-loop

system y(i) and u(i), i = O, 2, ..., N- 1, given in Eq. (3) is available. Assuming zero initial

conditions for the moment, the input-output relation for the set of measurements can be written in

matrix form as

where

y=_V (11)

y=[y(1) y(2)-.- y(p) y(p+l) -.-y(N-l)] (12)

=[CB CA. B ... C-A:-'-B] (13)

z(0) z(1)-.- z(p-l) z(p)

z(O) ... z(p- 2) z(p- l)

V= ... : :

z(O) z(l)

• .. z(N-2) ]
/

• .. z(N-3) |

/
• .. z(N- p- 1)l

(14)

From Eq. (11) the set of observer Markov parameters of the closed-loop system given in Eq. (3)

can be .solved for provided that the additive excitation is sufficiently rich such that the Gv(i) rows

in V have full rank. The least-squares .solution to the observer Markov parameter matrix _ is given

as

=Y V÷ (15)

where (.)* denotes the pseudo-inverse of the quantity in the parentheses.

For non-zero initial conditions a somewhat different equations must be used. The appropriate

replacement equation for Eq. (11) is simply
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y, = _ V, (16)

where the truncated output matrix y, and the truncated input matrix V, are given as

y, =[y(p) y(p+l) --. y(N-l)] (17)

z(p-l) z(p)

z(p - 2) z(p - 1)v,= !

Lz(O) zO)

• .. z(N - 2)

J• .. z(N -3)

•.. z(N- p- 1)

(18)

and the .solution for _ is

= y,V_+ (19)

The quantities y, and V, are obtained from y and V by simply deleting their first p - 1 columns,

respectively. This makes u_ of the fact that A_ - 0 for i > p, and the effect of the non-zero initial

conditions can be neglected afterp times steps.

Similar to the analysis in Ref. 4, the number of observer Markov parameters characterized by the

integer p, that are to be identified must be chosen such that pq > n, where n is the order of the

system and q is the number of outputs. Ifp observer Markov parameters are identified, then the

maximum order of a system that can be realized is pq. Next, algebraic relations between the

identified Markov parameters of the observer and those of the closed-loop system are described in

the following.

Ii. Relations Between Observer Markov Parameters and Closed-Loop System

Markov Parameters

Using the materials developed in the previous section, the observer Markov parameters of the

closed-loop system can be computed from closed-loop data. This section shows that from the

observer Markov parameters, the Markov parameters of the closed loop system can be recovered.

Define _(i)=[_0)(i) _t2)(i)], where _°)(i) and _c2)(i) are of dimensions qxm and mxm,

respectively. The Markov parameters of the closed loop system defined as



v_(i): CA_-'B

= C(A + BFC)i-IB
(20)

can be recovered from the observer Markov parameters _ (i) according to the following relation

i-I

Y_(i) = _°)(i) + _ _(2)(z)Y_(i- z)
'1"=1

(21)

where _(i) - 0 for i > p. In matrix form, the above recursive equation can be written as

I "Y_.(I)" E°)(1)-I

_(2)(I) / Y_(2) E°)(2) l

_(2)(2) _(2)(I) I Y,(3) = E('>(3) I

• : ". .. :
• • •

_(2)(i-1) _(2)(i-2).-. _(2)(i) I..Y_(i) _°)(i)l

(22)

The matrix on the left hand side of Eq. (22) is ,square and full rank, thus for a given set of observer

Markov parameters Yc(i), the closed-loop system Markov parameters Yc(i) can be uniquely

determined. The derivation of this convolution relation between the Markov parameters of the

closed-loop system and those of its observer is analogous to the development presented in observer

identification of Refs. 3-5, hence its proof is omitted.

!!I. Relations Between Open-Loop and Closed-Loop System Markov Parameters

with a Linear Output Feedback Controller

Recall that the primary purpose of the problem is to compute the Markov parameters of the open-

loop system. Sections I showed that from closed-loop data, the observer Markov parameters of

the closed-loop system can be computed. Section !! showed that from the observer Markov

parameters, the Markov parameters of the closed-loop system can be found. This section will

show that the M',u'kov parameters of the open-loop system can be recovered from knowledge of the

Markov parameters of the closed-loop system and the controller gain.

First, the first Markov parameter of the closed-loop system is the same as the first Markov

parameter of the open-loop system, i.e.,

8



Y(l) = Yc0) = CB (23)

Next, consider the closed-loop observer Markov parameter Yc(2)

Y_(2) = C(A + BFC)B

= CAB + CBFCB

= Y(2)+ Y_(I)FY(I)

(24)

from which the open-loop system Markov parameter Y(2) is simply,

Y(2) = Yc(2)- Y_.(I)FY(I) (25)

Similarly, the open-loop system Markov parameter Y(3) can be recovered by considering the

closed-loop Markov parameter Yc(3),

Yc(3) = C(A + BFC)2 B

= CA2B + CBFCAB + C(A + BFC)BFCB

= r(3) + _(I)FY(2) + Y_(2)FY(I)

(26)

which yields

r(3) = r,(3)- Yc(I)FY(2)- Y_(2)FY(1) (27)

By induction, the relationship between the Markov parameters of the closed-loop system given in

Eq. (3) and those of the open-loop system given in Eq. (1) is a weighted convolution sum, with

the weighting matrix being the closed-loop gain F. In general, this expression is written as

i-I

Y(i) = Y_(i) - Z Y_( v)FY(i - _) (28)
t=l

for i = 1, 2, 3..... The above recursive equation can be written in matrix form as
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/ " r0) -r_(1)

Yc(1)F ! Y(2) Yc(2)

Y,(2)K Y,(I)F i Y(3) = Yc(3)

: : "'. "'. i i

Y,(i-I)K Y_(i- 2)K ... Y_(I)F t. .Y(i) .Y_(i).

(29)

Each product Y,(i)F is a q x q square matrix. The left-hand side matrix in Eq. (29) is square and

full rank. This implies that the open-loop system Markov parameters can be uniquely recovered

from the closed-loop system Markov parameters by this method.

IV. Closed-Loop Identification of System with Direct Transmission Term

in the basic problem considered in Sections !-!11, the system description does not contain a direct

transmission term. In identification and control of flexible structures, accelerometers are often

used as measurement ,sensors, which will introduce a direct transmission term in the state space

model. Identification of such systems in the closed-loop is slightly more complicated. Consider a

state space model with a direct transmission term D,

x(i + 1) = Ax(i) + Bu(i)

y(i) = Cx(i) + Du(i)
(30)

where again x(i) • R", y(i) • R q, u(i) • R'. The input equation given in Eq. (2) in this case is

u(i) = Fy(i) + Gv(i)

= FCx(i) + FDu(i) + Gv(i) (31)

The closed-loop system dynamics can be derived as follows. First, from Eq. (31), the controller

input can be expressed as

u(i) = (/- FD)-' FCx(i) + (t - FD)-' Gv(i) (32)

provided that the inverse (! - FD) -_ exists. Using Eq. (32) in Eq. (30) yields the following set of

closed-loop dynamics equations describing the relationship between the excitation Gv(i) and

output y(i)
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x(i + l) = [A + B( i - FD) -_FClx(i) + B( ! - FD) -1Gv(i)

y(i) = (i - DF) -_ Cx(i) + (! - DF) -_ DGv(i)
(33)

provided the inverse (I - DF) -t exists. To derive the observer equations for the above system,

add and subtract My(i) to the right hand side of the state equation in Eq. (33)

x(i + 1) = A,:x(i) + B_Gv(i) + My(i) - My(i)

A,:x(i) + B_Gv(i) + M[Cx(i) + Du(i)] - My(i)

(A_ + MC)x(i) + MOu(i) + B_Gv(i) - My(i)

( A, + MC)x(i) + MD[ Fy(i) + Gv(i)] + B, Gv(i) - My(i)

(A_ + MC)x(i) + (Be + MD)Gv(i) - M(! - DF)y(i)

(34)

For simplicity of notation, the set of observer equations to be used for identification is

x(i + 1) = A_x(i) + Bcz(i)

y(i) = Cx(i) + Du(i)

where

= A, + MC , A, = A + B_FC , B, = B(I - FO)-'

(35)

(36)

B, :[Be + MD -M(I-DF)] , z(i):lGV(i)lF 1
[ y(i) J

(37)

The input-output description of the above system with zero initial conditions is

i-I

y(i) = Z C_'-"-_-B_z( z') + Du(O)
'l'=O

(38)

Let M be a deadbeat observer gain, then the input-output relation can be expressed as

y(i) = _ _ (z)z(i - "r) + Du(i) (39)
k=l

Writing in matrix form, the closed-loop observer Markov parameters are related to set of input-

output data by the following equation

11



y = _v (40)

where

...

y=[y(O) y(1) y(2) --- y(p) y(p+l) .--

=[D CB'_ C_B_ ... crv-' o]

y(N- 1)] (41)

"u(0) u(1) u(2) .-. u(p) u(p+l) ... u(N-1)

z(0) z(l) .-- z(p-l) z(p) ... z(N-2)

z(O) ... z(p- 2) z(p- 1) .-- z(N- 3)

".. : : :

z(0) z(1) ... z(N - p- I)

(42)

(43)

Equation (42) can be used to .solve for the closed-loop observer Markov parameters. The solution

is given in Eq. (15), with the exception that the output and input matrices are now given in Eq.

(41) and Eq. (43), respectively. If the initial conditions are not zero, then the truncated version of

the corresponding output and input matrices are

y,=[y(p) y(p+l) -.- y(N-l)] (44)

u(p) u(p + 1) ... u(N - l)

z(p- 1) z(p) ... z(N- 2)

z(p- 2) z(p- l) --- z(N- 3)

z(0) z(l) ... z(N - p- 1)

(45)

The observer parameter matrix is the same as in Eq. (42). Again, in order to be able to solve for

the observer Markov parameter matrix _, the rows of Gv(i) in z(i) must be full rank. Also, the

number of observer Markov parameters characterized by the integer p, that are to be identified,

must be chosen such that pq > n.

The next step is to show that the open-loop system Markov parameters

12



Y(i)=CA_-'B, i=1, 2 ..... p, p+l .... (46)

can be recovered from the identified observer Markov parameters

_(i):CT¢-'-ac : [C_'-'(Bc + MO), -C_'-'M(t-OF)]

and

• i=l, 2 .... , p (47)

_(i)=0 , i=p+l, p+2 .... (48)

Define the first and second partitions of Y_(i) as

_0)(i) = C_-'(B_ + MD)

=C[A+ B(I-FO)-'FC + MC]'-I[B(I-FD)-1+ MO] (49)

_2_ (i) = -C_'-t M( I - DF)

= -C[A + B(! - FD)-' FC + MC]'-'M(I- OF) (50)

The direct transmission term is identified directly,

D = _(0) (51)

- C_ B_, i=1, 2 ..... p, p+l, ... can beFrom Y,(i) the Markov parameters sequences Y,:(i)= _-t

computed from the following recursive equation

i

Y,:.(i) = _o)(i) + _._ _2)( _)( i - DF)-' Y_(i - r,) (52)

where Yc(0)= D and _(i)=0, i = p+l, p+2 ..... The Markov parameters Y_(i),

Yc(i) = CA_-_Bc = C(A + B, FC)'-1B, (53)

computed above, have the same structure as the Markov parameters Y_(i) given in Eq. (20) where

B¢ = B(! - FD) -_ now plays the role of B. Therefore, the open-loop system Markov parameters

Y (i) = CA_-_ B can be computed from Y_(i) = C( A + B_FC)_-I B_ as

13



i-!

Y (i) = Yc( i)( ! - FD ) - _.. Yc ( T)FY ( i - I:) (54)
'_=1

V. Closed-loop Identification of System with a Dynamic Feedback Controller

In this section, the identification of the open-loop model from a closed-loop system having an

existing dynamic feedback controller is considered. Consider again a system in state space

representation,

x(i + 1) = Ax(i) + Bu(i)

y(i) = Cx(i) + Du(i)
(55)

where x(i)_ R', y(i)_ R q, u(i)e R". A dynamic feedback controller is used to control the

system which for closed-loop identification is excited according to

s(i + 1) = Ps(i) + Qw(i) + v2(i)

g(i) = Rs(i) + Sw(i)
(56)

where s(i) _ R '_, g(i) e. R", w(i) _ R q. The scalar n, denotes the order of the dynamic controller,

which in general is less than or equal to the order of the open-loop system, n, < n. The dynamic

controller interacts with the system via

y(i) = w(i)

u(i) = g(i) + vt (i) (57)

The vector quantities v_(i) and v2(i) denote the additive excitation signals for closed-loop

identification. First, the closed-loop dynamics is derived. The input to the system can be

expressed as

u(i) = Rs(i) + Sw(i) + vl (i)

= Rs(i) + Sy(i) + v, (i)

= Rs(i) + S[Cx(i) + Du(i)] + v, (i)

(58)

from which the input u(i) can be expressed as

14



u(i) = (! - SD)-' [Rs(i) + SCx(i) + v, (i)] (59)

provided that the inverse (! -SD) -j exists. Substituting Eq. (59) into the state equation in Eq.

(55), and the controller state equation in Eq. (56) yields

xfi + I) = Ax(i) + B( i - SO)-' [Rs(i) + SCx(i) + v, (i)]

= [A + "(!- SO)-'SC]x(i)+IB('- SO)-' RIs(i)+["(/- SO)-I]v,(,)
(6O)

and

s(i + 1) = Ps(i) + Q[Cx(i) + Du(i)] + v2 (i) (61)

= Ps(i) + QCx(i) + QD(I - SD)-'[Rs(i) + SCx(i) + v, (i)] + v2(i)

: [OC + QO(! - SO)-' SC]x(i)+[P + Qo(, - so)-' R]s(i)+ [QO(, - so)-' ]vl (i)+ v2(i)

Equations (60) and (61) c_m be combined in matrix form as

x(i+l)] [ A+B(I-SD)-'SC B(I-SD)-XR _x(i)]+[ B(I-SD)-'

s(i + 1)J=[QC +QD(I-SD)-'SC P +QD(I-SD) -1RJ[s(i)J LQD(I-SD)-'

(62)

O][vl(')]
lJLv2(i)J

Recall that

u(i) = Rs(i) + Sy(i) + v, (i)

s(i + I) = Ps(i) + Qy(i) + v2(i)

(63)

(64)

One can write Eq. (63) and Eq. (64) together in a matrix form as

u(i) 1: 'qyU)l+Fv'_i)]
(65)

Furthermore, the system output equation and the controller state equation can be combined into a

single matrix equation,

[y,,)l__r olx,i)]+[o 0][u(i)1s(i)J LO t..j_s(i)j O__s(i + l)j
(66)
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In the following, a procedure is developed to solve for the Markov parameters of the open-loop

system from the Markov parameters of the closed-loop system when the dynamics controller is

known. Define the following augmented system characterized by the matrices 9

and the following augmented state, input, output, and excitation vectors

u.(.=r"(')1 ['(')1
Ls(i)j ' Ls(i+l)j'y°(i)=Ls(i)j' Lv2(i)j

Making use of the definitions above, Eq. (65) and Eq. (66) become, respectively,

u=(i) = Foy.(i) + v=(i)

yo(i) = Cox°(i) + D,,u°(i)

Furthermore, define a matrix X. to be

QD(I - SO)-'

It can be verified by direct substitution that the following identities hold

+QD(I-SD)-'SC e +QD(I-SD)-'R

B(I-SD)-' _]QD(t - SD)-' = B,X,

X. [! - DS = (/- F.Do)-'
=L-QD

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)
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Using these relations, the set of equations describing closed-loop dynamics becomes

x.(i + 1)= [a. + Bo(! - F.D.)-' F.Co]x. (i) + Bo(! - F.O.)-'v.(i)

y.(i) = (I - DoF.)-I Cox.(i)+ (I - DoFo)-I D.v.(i)
(75)

where the first equation in Eq. (75) is obtained by direct use of the identities in Eqs. (67) in Eq.

(62), and the second equation is obtained by substituting Eq. (69) into Eq. (70) and solving for

y°(i) provided that the inverse (I- D.F.) -_ exists. As before, the additive excitation does not

affect the overall system stability that is provided by the dynamic feedback controller. Comparing

Eq. (75) to Eq. (33) reveals that the augmented system for the closed-loop dynamic controller has

the .same form as the following system

x°(i + I) = A.x°(i) + B.uo(i)

y.(i) = C.x.(i)+ Dou°(i)
(76)

with an output feedback law for u.(i) given in Eq. (69), that includes an excitation term v°(i). The

observer equations for the augmented system can be derived by adding and subtracting the term

Moy.(i) to the state equation in Eq. (75),

x.(i + 1) = Ao,:Xo(i) + B_v.(i) + M°y°(i) - M°y.(i)

= A,_x°(i) + B°,:v°(i) + M.[C.x°(i) + D°u.(i)] - M.y.(i)

= (A_ + M.C.)x°(i) + M°D°[F.y°(i) + v°(i)] + B.,:v.(i) - n°y,.(i)

= (A_ + M.C°)x°(i) +(B,_ + M°D°)v°(i) - M.(! - DoFo)y°(i)

(77)

The set of observer equations to be used for identification is simply

x°(i + 1) = A°x°(i)+ Boz(i)

y.(i) = C.x.(i) + D°u.(i)
(78)

where

A°,:=A.,:+M°C. , A.,: = A° + B.,:F.C° , = B,(t - &Do)-' (79)
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[v°(i)]
_',_ =[B.. + M, Do -M,(I-D,&)] , z.(i)=Uy,(i) j (80)

The observer Markov parameters for the system given in Eq. (75) are

Y,_(O) =/9. (81)

V_(i)=C.-A_,_-B._ =[C.X='(B_ + MoDo) -'-_,-C.A,_M,(I-D.F.)] , i-l, 2 .... , p (82)

Assuming zero initial conditions, the observer Markov parameters can be solved from

y. = Y_V. (83)

where

y.=[y.(O) y.(I) y.(2)-.- y.(p) y.(p+l) -.. y.(N-1)] (84)

u.0)

z.(0)

u.(2) --- u.(p) u.(p+ 1) -.- u.(N-1)

z.(l)--- z.(p-l) z.(p) ..- z.(N-2)

z.(0)--- z.(p-2) z.(p-1) --. z.(N-3)

• . _" : .

z.(0) z.(1) ... z.(N- p- 1)

(86)

If the initial conditions are not zero, then the truncated versions of y. and I/. are to be used. They

are obtained by simply deleting the first p columns of y. and V., respectively. In this case, the

number of observer Markov parameters characterized by the integer p, that are to be identified must

be chosen such that p(q + n,) > n + n,.

As before, define the first and second partitions of Y,_(i) as

P'_')(i) = C.A-_' (B.,: + M.D.)

= C.[A. + ..(I-F.D,,)-' F_C. + M.c.]i-'IB.(I-F.O.)-'+ M.D.] (87)
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P2_(i)= -C._Y? M.( t - D.F. )

=-Co[A.+8o( - F.Oo)-'F.Co+m°C.]'-' OoFo) (88)

=CoA=B.The re,cursive equations for the Markov parameters for Y=(i) '-_

i=1, 2 ..... p, p+l .... are

and Y.(i) = C,,A_'B. for

i

Y_ (i) = Y_')(i)+ _ Y-_2)(t)(I -/9=/7.)-' Y.,:(i - 'r) (89)
'lr=l

i-1

Y=(i) = Y=(i)(! - F=Do) - _., Y=(,)FoYo(i - _) (90)
t=l

where Y-=(0) = Y=(O) = Do, and P_(i)= 0 for i = p+ I, p+2 ..... In this procedure, the Markov

parameters Y=(i) are first computed from the identified observer Markov parameters Y=(i) by

using Eq. (89). Then, the Markov parameters Yo(i) are computed from the Markov parameters

Y=(i) by using Eq. (90). Finally, it remains to be shown that the open-loop system Markov

parameters Y(i) can be recovered from the Markov paranleters Yo(i). This is simple, since

r°(o)= 0 0 ' Y.(I)= 0 , Y.(i)= , i=2, 3 .... (91)

Thus, the open-loop system Markov parameters Y(O)= D, Y(i)= CAi-tB , i = 1, 2 .... are the

upper left partitions of the computed Markov parameters Y°(i) , i = 0, 1, 2 .....

V. Identification from Combined Markov Parameters

in practice, the open-loop system considered in previous sections may actually include the plant

and the input/output filters. If the dynamics of the open-loop system is known, and the filter

dynamics is known, then under certain conditions, it is possible to recover the dynamics of the

plant alone. Mathematically, this is the case of a combined system consisting of two cascading

linear systems, and the problem is to compute the Markov parameters of one system if the Markov

parameters of the other system and those of the combined system are known. First, the

relationship between the Markov parameters of the combined system and those of the individual

systems need to be derived. Let one system denoted by

19



x,(i+ I)= A,x,(i)+ B,u,(i)

y1(i)= Clxi(i)+ D1u_(i)
(92)

be preceded by another system

x2(i + 1) = A2x2(i) + B2u2(i)

y2(i) = C2x2(i) + D2u2(i)
(93)

where x_(i) _ R"', yj (i) _. R '_', ut (i) _. R", and x2(i) _- R "2, y2(i) _ R q2, u2(i) __R". Let the

output of the second system be the input to the first system, i.e., q2 = ml, and

y2(i)=ut(i) (94)

Then the combined system dynamics is given as

x,(i + 1) = A,x,(i) + B,u2(i)

Yt(i) = C,x,(i) + D,u2(i)
(95)

where

[A, . rx (olA,: 0 A2 j "' L8, j c,:[c, o,c_l o,=o,o_ x,o):Lx,<i)] (96)

The relationship between the Markov parameters of the combined system, and the Markov

parameters of the individual systems is established in the following.

First,

Y,(O) = D, = DiD2 = YI (0)Y2(0) (97)

Next,

Y,(1) = C,B, = CIBID2 + DIC2B2

= r_ (1)Y2(0) + Y, (0)Y2(1)
(98)
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Similarly,

Y,(2) = C,A,Bt = CtAIB_D2 + CtBIC2B2 + DIC2A2B2

= Yj (2)Y2(0) + Yl (I)Y2 (1) + Y, (0)Y2(2)
(99)

Y,(3)= C,A2,B,= C_A_B_D2 + C_A_B_C2B2 + C_B_C2A2B2 + D_C2A_B2

= Yt(3)Y2(0)+ Y,(2)Y2(1)+ Y,(1)Y2(2)+ Y_(O)Y2(3)
(100)

By induction, the general relationship is given as

i

Y,(i) = _ Y, (z')Y2(i - "¢) (101)
T=O

Using this general relationship, under certain conditions, it is possible to solve for the Markov

parameters of one system when the Markov parameters of the combined system and of the other

system are known. In particular, the following cases apply.

If the Markov parameters of the combined system and of system 1 are known, then the Markov

parameters of system 2 can be solved using the following equations.

Y2(0) = [yr (O)Y, (0)]-' yr (O)Y,(O) (102)

i-I 1
Y2(i)=[Y r(O)Y, (0)]-' Y/'(()) Y,(i)- )-" Y,(z)Y2(i- z) , i= l, 2, ...

'r=0

(103)

provided ql > ml, and Yt(O)= D1 has full (column) rank.

On the other hand, if the Markov parameters of the combined system and of system 2 are known,

then the Markov parameters of system 1 can be solved according to the following equations.

r,(o) = Y,(O)r; (104)

,, ] [ ]1Y2(i) = r,(i)- _,Y,(z)Y2(i- z) yr(o) Y2(o)rr(o) , i = l, 2 ....
lr=O

(105)
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provided m2 > q2, and Y2(0) = D2 has full (row) rank.

State Space Realization by ERA

From the recovered open-loop Markov parameters, a state space model of the system can be

obtained by the Eigensystem Realization Algorithm, which is outlined in this section. The

algorithm begins with an r x s block data matrix, denoted by H(i - 1)

H(i-1)=
Y(i) Y(i+l) .-. Y(i+s-1) ]JY(i+l)i Y(i+2). ....... Y(i + s):

LY(i+r-l) Y(i+r) ... Y(i+r+s-2)

(106)

where Y(i) = CN-_B, i = !, 2 .... The order of the system is determined from the singular value

decomposition of H(0),

t!(0) = UEV r = U1S, Er (107)

where the columns of U_ and Vt are orthonormal, S_ is an n x n diagonal matrix of retained positive

singular values, and n is the order of the system. Defining a q x rq matrix E r, and an m x sm

matrix E,,r made up of identity and null matrices of the form

E_':[I, xq Oqx,,_,,,], Er=[l,x,, O,,x(,_,,,,] (108)

A discrete-time minimal order realization of the system can be shown to be

A, = SI-112Uf H(I)Vt $1-I/2

B, = SI"2V_rE,.

Cr = E_U, S,"2

(109)

This is the basic ERA formulation. To use ERA in the present identification procedure, the entries

that make up the data matrix given in Eq. (106) are precisely the recovered system Markov
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parameters Y(i)= CA_-tB, i = 1, 2 .... For further details on the algorithm, the readers are

referred to various references in the literature, e.g., Refs. 10, 1 1.

Numerical Examples

In this section, several examples are provided to illustrate the identification procedure for closed-

loop system developed in this paper. Example 1 illustrates the simple case of identifying a system

with an existing linear output feedback controller. The case of closed-loop identification of a

system with a direct transmission term is shown in Example 2. Example 3 presents a case with a

dynamic feedback controller. The system matrices are given here so that the readers can reproduce

the results, it is the purpose of the following examples to illustrate step-by-step the series of

computations involved for each of the respective closed-loop case, not the controllers used.

Example I: Consider a two-input three-output three degree-of-freedom (sixth-order) mass,

spring, dashpot system whose discrete system matrices are given below.

0.969 I

0.0154

0.0000
A=

-O.2817

O.!407

0.0005

0.0154 O.(K)OI 0.2120 0.0014 0.0000"

0.9690 0.0155 0.0014 0.2139 0.0014

0.0077 0.9768 0.0000 O.(XX)7 0.2127

0.1395 0.0(X)9 0.9458 0.0180 0.0001

-0.2838 0.1412 0.0180 0.9634 0.0182

0.0699 -0.2122 O.O(XIO 0.0091 0.9544

... ['i°°'°i] [i:]0 0 0 i D =

0 0 0 0 0

n_

"0.0232 0.0001"

0.0001 0.0233

0.0000 0.0000

0.2120 0.0014

0.0014 0.2139

0.0000 0.0007

(I10)

The inputs are the applied forces at two of the masses, and the outputs are the three velocity

measurements. Let the system be stabilized by a linear feedback controller of the form

u(i) = Fy(i) (111)

where the feedback gain is given as
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[75 0 :]F = (112)-0. 500

For closed-loop identification, the closed-loop be excited by a random perturbation of the system

output y(i), i.e.,

u(i) = F[y(i) + v(i)] (113)

In this case, G = F in Eq. (2). The excitation signal for the second output is shown in Fig. 2, and

the resultant closed-loop system response for the second output is shown in Fig. 3.

1

o.5

output o
Exdlatlon

-0.5

-I

O.l

0.05

Cloud-

Loop o
R_.

-0.05

-0.1

-0.15
20 40 so eo _00 20 40 eo eo 100

Time Steps Time Sleps

Fig. 2: Excitation signal for closed-loop

system by output perturbation.

Fig. 3: Response of closed-loop system to

excitation signal.

Using data from the excitation, the observer Markov parameters for the closed-loop system are

identified. Since the true order of the system is six, and the system has three outputs, the number

of observer Markov parameters that can be identified is two or greater, i.e., p > 2. For p = 2, the

identified observer Markov parameters are listed below.

r0.2120 0.0014 1.8354 0.0326 0.0001-
/

_(I)=IO.(X)I4 0.2139 0.0329 1.8254 0.0337
/
LO.0000 0.0007 O.0(X)I 0.0164 1.9312

(114)

-0.2120 -0.0014 -0.8969 -0.0020 0.0000"

_(2)=_-0.0014 -0.2139 -0.0021 -0.8874 -0.0029

I_ 0.(}000 -0.0007 O.(X)O0 -0.0011 -0.9774

(115)
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The two identified observer Markov parameters completely describe the closed-loop system, from

which any number of closed-loop system Markov parameters can be computed. The closed-loop

Markov parameters are the closed-loop system pulse response samples. From the computed

closed-loop system Markov parameters and the controller gain, the open-loop system Markov

parameters can be recovered. The open-loop system Markov parameters are the open-loop system

pulse responm samples. The calculation is illustrated here for the first few Markov parameters.

First, the clo'sed-loop Markov parameters Yc(l), Yc(2), Yc(3) .... are computed using Eq. (21)

[o.212oo.oo14]
Y_(1)= _(')(I):[O.(X)14 0.2139]

L0.(X100 0.0007 3

(116)

0.1771Y¢(2) : _°)(2)+ _(2)(1)Y_.(1)= 0.0081

LO.OOOO

0.0081]

O.1776[
0.0042J

(117)

[0.1353 0.0190"

r (3) = _(2)(1)Y_(2) + _(2)(2)Y_(1) =/0.0190 0.1330

LO.OO02 0.0_00

(118)

where _(')(1), F,(Z)(l) and _(')(2), _(2)(2) are the 3 x 2 and 3 x 3 partitions of _(1) and _(2),

respectively. Beginning with Yc(3), the extra closed-loop Markov parameters are computed by

setting Yc(i) = 0, i = 3, 4 ..... Next, the open-loop system Markov parameters Y(1), Y(2), Y(3),

... can be computed using Eq. (28).

0.2 i 20

r(1) = Y_(I) = lo.(x)t4

LO.OOOO

0.0014]

0.2139_
0.00073

(119)

0.1940 0.0084-

V(2) = re(2) - Y_(I)FY(1) = [0.0084 0.1995
LO.OOOO0.0043

(120)
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Y(3)= Yc(3)- Yc(1)FY(2)- Yc(2)FY(1)=

0.1648 0.0208-

0.0208 0.1733

0.0OO2 0.0106

(121)

In the same fashion, all desired closed-loop and open-loop system Markov parameters can be

computed from the two identified observer Markov parameters. The obtained results can be

verified using the open-loop model given in Eqs. (1 I0) and the controller gain given in Eq. (112).

This example illustrates the case where the number of observer Markov parameters to be identified

is chosen to be 2, p = 2, which is the minimum number for this case. The same result is obtained

if more observer Markov parameters are identified. The same computation procedure still applies

with the exception that the observer Markov parameters are now set to zero at a late time step. For

example, .say for p = 3, the observer Markov parameters _ (i) are set to zero for i = 4, 5, ...

Shown in Fig. 4 is the closed-loop pulse response function of the second-output first-input pair

obtained from the first 2(X) closed-loop Markov parameters computed from the two identified

observer Markov parameters. Results for the other input-output pairs are similar although they are

not shown here. Shown in Fig. 5 is the result obtained from the first 200 open-loop Markov

parameters that are computed from the 200 closed-loop Markov parameters and the controller gain.

O.1

O.OS

Closed-

Resp.

-O.OG

-0.1

0.15

0.1 i

0.05
O_n-
Loop

_sp.
-0.05

-0.1

-0.15
0so _oo t5o 2oo so lOO _so

Time Slefls Time Steps

200

Fig. 4: Identified closed-loop pulse resp.

(Closed-loop Markov parameters)

Fig. 5: Identified open-loop pulse resp.

(Open-loop Markov parameters)

From the identified open-loop Markov parameters, a state space realization for the system can be

found via realization theory.
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Example 2: To illustrate the closed-loop identification problem with the direct transmission

term, consider the same system in Example 1, with the exception that the direct transmission term

is now non-zero.

DE

0. ! 165 0.0352-

0.0627 -0.0697

0.0075 0.1696

(122)

The closed-loop system is excited by the perturbing the output signal the same as before. Also, let

p = 2, the identified observer Markov parameters are listed below.

y_(o)=
-0.1165 0.0352] [-0.0132 -0.0636 1.9199 0.0651 0.0001]

0.0627 -0.tm97| _(1)=/-0,239 0.3416 0.0799 1.7616 0.0337 /

0.0075 0.16961 L-0.0156 -0.0156 0.0059 0.1796 1.9312/

/[-0.0981 0.0327 -0.9396 -0.0191 -0.0000]_(2)=/0.0613 -4).2826-0.0256 -0.8531 -0.0029
L0.0074 0.1650 -0.0028 -0.0840 -0.97743

(123)

The direct transmission term D is simply _(0). All open-loop system Markov parameters can be

computed from _(I), _(2), and the controller gain F using Eqs. (52) and (54). With the direct

transmission tern1, however, the computation is slightly more complicated. For purpose of

illustration, the computation of the Markov parameters CB, CAB, and CA2B is shown below.

First, the closed-loop Markov parameters Yc(l), ¥c(2), Y_.(3) .... are computed using Eq. (52)

0.2032

Y,(1) = _°)(1) + _(2)(1)(I - DF)-'Yc(O)=[-O.O053
L-0.oooo

-0.0013-

0.2217

0.0007

(124)

[ 0.1702 0.0064"
/

Y_(2) = _(')(2) + _(2)(1)(! - OF)-; Yc(l) + _(2)(2)(! - OF) -t Yc(O) = [ 0.0028 0.1821
L-0.OOOl 0.OO43

(125)
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0.1302

Y_(3) = _¢2)(1)(! - DF)-' ¥, (2) + _¢2)(2)( ! - DF)-'Yc (1) = / 0.0150
[-0.00o_

0.01841

O.13621 ,
0.0104.J

(126)

where _°)(1), _12)(1) and _°)(2), _12)(2) are the 3 x 2 and 3 x 3 partitions of _(1) and _(2),

respectively, and Y,(i) = O, i = 3, 4 ..... Second, the open-loop system Markov parameters are

computed from the closed-loop Markov parameters above using Eq. (54). One thus obtains

Y(1)= Y, (1)(! - FD) =

0.2_20 o.o014]

0.0014 0.2139/
0.oo00 o.00o7j

(127)

Y(2) = }',(2)(I - FD) - Y_(I)FY(I) =

0.1940

0.0084

0.0000

0.00841

0.1995 /
0.0o43_1

(128)

r(3) = Y_(3)(t - FD)- Y_(I)FY(2) - r_(2)Fr(l) =
0.1648 0.0208]

0.0208 0.1733 / ....
0.0002 0.0106J

(129)

The above identified open-loop Markov parameters can be easily verified by direct substitution.

Example 3: This example illustrates the case of closed-loop identification with an existing

closed-loop dynamic controller. Consider the case where the 6-th order system in Example 2 is

controlled by a 4-th order dynamic controller. The controller matrices are given below.

0.3392

0.0054
P=

0.0000

0.0054 O.0(XX) 0.0742] [ 0.0654 -0.0071 -0.0024]
0.3391 0.0054 O.(XX)51, =I-0.0335 -0-0.0708-0.0419

0.0027 0.3419 0.(XXX)/ Q /00 030066_ -0.0,02 /

0.0488 0.0003 0.33101 L-0.0189 0.0517 0.0452 j

R=r-°°°°"0.00310.00320.0030-
k 0.0040 0.0060 -0.0106 0.0089

0.0191
, S =

-0.0624

-0.0072 O.0083

-0.0085 -0.0134

(130)

The closed-loop system is excited by a random perturbation. The time histories of the excitation

signal vl (i), v2(i), the system input u(i), the system output y(i), and the controller state s(i), each
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of 100 data samples, are recorded for system identification purposes. Since the dimension of the

augmented state is n+na=6+4=10, and the dimension of the augmented output is

q + n, = 3 + 4 = 7, the minimum number of observer Markov parameters that are to be identified is

two in the identification algorithm, p = 2. For p = 2, the identified observer Markov parameter

matrix is of dimensions 7 x 32. From this matrix, any number of closed-loop Markov parameters

for the augmented system can be computed. For illustration, the first few Markov parameters are

computed below using Eq. (89).

n

= r,. (o) = D. =

-0.1165 0.0352 0 0 0 O"

0.0627 -0. 0697 0 0 0 0

0.0075 0.1696 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

(131)

Y. 0) = FZ'(1) + F2 )(l)(t - D.F.)-' =

"0.2124 0.0019 0 0 0 0"

-0.0003 0.2131 0 0 0 0

-0.0000 0.0007 0 0 0 0

0.0072 0.0024 1 0 0 0

-0.0087 -0.0034 0 1 0 0

-0.0009 -0.0011 0 0 1 0

0.0014 0.0034 0 0 0 1

(132)

Using the fact that Y,_(i) = O, i = 3, 4 ..... the remaining closed-loop Markov parameters of the

augmented system can be computed as follows.

Y_(2) = P_')(2)+ P'_2)(I)(! - D.Fo)-' Y,,,:(1)+ Y-_2)(2)(1 -D.Fo)-'Y..(O)

0.1951

0.0040

0.0000

= 0.0164

-0.0100

0.0061

-0.0047

0.0085 -0.0001 0.0007 0.0006 0.0006"

0.1984 ().(lid 0.0013 -0.0023 0.0019

0.0042 0.0000 0.0000 0.0000 0.0000

-0.0004 0.3392 0.0054 0.0000 0.0?42

-0.0163 0.0054 0.3391 0.0054 0.0004

-0.0146 0.0000 0.0027 0.3419 0.0000

0.0117 -0.0986 0.0488 0.0003 0.3311

(133)
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Y_(3) = Y'_2)(I)(i - D°F_)-' Yc(2) + Y-_2)(2)(! - DoFf)-' Y,_(1)

0.1663 O.0205 41. 0001 O.0009 O.0008 O.0009"

0.0142 0.1718 O.{g109 0.0017 -0.0028 0.0025

0.0001 0.0105 0.00(}0 0.0000 0.0000 0.0000

= 0.0179 -0.0002 0.1078 0.0073 0.0001 0.0498

4L0101 -0.0201 0.0036 0.1149 0.0038 0.0005

0.0077 -0.0182 0.0000 0.0018 0.1171 -0.0001

-0. 0072 O.01.'34 -0. 0658 O.0322 O.0003 O.1024

(134)

Using Eq. (90), the Markov parameters Y,(i) are then computed.

Yo(l) = Y_ (1)(I - F_Do) =

-0.2120 0.0014 0 0 0 0"

0.(X)14 0.2139 0 0 0 0

0.(XX}0 0.0007 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Y_(2) = ¥_.(2)(I - FoDo) - ¥_ (1)F,,Y_(1) =

"0.1940 0.0084 0 0 0 O"

0. 0084 0.1995 0 0 0 0

0.0000 0.(X)43 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Y_(3) = Y,,,.(3)(! - F_D.) - Y_:(I)F_Y_(2) - Y_(2)F_Y_(1) =

-0.1648 0.0208 0 0 0 O"

0.0208 0.1733 0 0 0 0

0.0002 0.0106 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

(135)

(136)

.... (137)
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Again, it can be verified that the upper left partitions of Y=(0), Yo(1), Yo(2), )',(3) .... are the

open-loop system Markov parameters D, CB, CAB, CA2B .... respectively.

Concluding Remarks

This paper develops a procedure for identification of open-loop systems operating in the closed-

loop. First, the basic problem of identifying the open-loop system with an existing linear output

feedback controller is formulated. The approach used here is to inject additive excitation during

closed-loop operation, and closed-loop data is used for identification. The procedure consists of

two basic steps. First, through an associated observer, the closed-loop system Markov parameters

are identified. Second, the open-loop system is recovered from the identified closed-loop

parameters. Relations between the identified observer Markov parameters, the closed-loop system

Markov parameters, and the open-loop system Markov parameters are established. The basic

formulation is extended to the case of closed-loop identification of a system with the direct

transmission term. This case is important since accelerometers are often used as measurement

devices on large flexible structures. The considerably more complicated case of closed-loop

identification of a system with an existing dynamic feedback controller is also treated in this paper.

The developed solution requires perturbation of both the input signal and the controller state for

identification. Under this condition, it is shown that the identification problem with an existing

dynamic controller can be formulated to mimic the problem of identification with an linear output

feedback controller of an augmented dynamic system, which has a simple closed-form solution.

For the case of two cascading linear systems, it is sometimes possible to recover the Markov

parameters of one system when the Markov parameters of the other system and those of the

combined system are known. Numerical examples are provided to illustrate the identification

procedure for each of the respective closed-loop cases.
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