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FOREWORD

NASTRAN® (NASA STRUCTURAL ANALYSIS) is a large, comprehensive,
nonproprietary, general purpose finite element computer code for structural
analysis which was developed under NASA sponsorship and became available to
the public in late 1970. It can be obtained through COSMIC® (Computer
Software Management and Information Center), Athens, Georgia, and is widely
used by NASA, other government agencies, and industry.

NASA currently provides continuing maintenance of NASTRAN through COSMIC.
Because of the widespread interest in NASTRAN, and finite element methods in
general, the Twentieth NASTRAN Users' Colloquium was organized and held at the
Sheraton Colorado Springs, Colorado Springs, Colorado on April 27 - May I,
1992. (Papers from previous colloquia held in 1971, 1972, 1973, 1975, 1976,
1977, 1978, 1979, 1980, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990
and 1991 are published in NASA Technical Memorandums X-2378, X-2637, X-2893,
X-3278, X-3428, and NASA Conference Publications 2018, 2062, 2131, 2151, 2249,
2284, 2328, 2373, 2419, 2481, 2505, 3029, 3069 and 3111.) The Twentieth
Colloquium provides some comprehensive general papers on the application of
finite element methods in engineering, comparisons with other approaches,
unique applications, pre- and post-processing or auxiliary programs, and new
methods of analysis with NASTRAN.

Individuals actively engaged in the use of finite elements or NASTRAN
were invited to prepare papers for presentation at the Colloquium. These
papers are included in this volume. No editorial review was provided by NASA
or COSMIC; however, detailed instructions were provided each author to achieve
reasonably consistent paper format and content. The opinions and data
presented are the sole responsibility of the authors and their respective
organizations.

NASTRAN_ and COSMIC® are registered trademarks of the National Aeronautics and
Space Administration.
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N92-24325

NASTRAN INTERNAL IMPROVEMENTS FOR 92 RELEASE

by

Gordon C. Chan

NASTRAN Maintenance Group

UNISYS Corporation

HuntsviUe, Alabama

SUMMARY

The 1992 NASTRAN release incorporates a number of improvements transparent to users.

The NASTRAN executable has been made smaller by 70 percent for the RISC base Unix

machines by linking NASTRAN into a single program, freeing some 33 megabytes of system

disc space that can be used by NASTRAN for solving larger problems. Some basic matrix

operations, such as forward-backward substitution (FBS), multiply-add (MPYAD), matrix

transpose, and fast eigensolution extraction routine (FEER), have been made more efficient by

including new methods, new logic, new I/O techniques, and, in some cases, new subroutines.

Some of the improvements provide ground work ready for system vectorization. These are finite

element basic operations, and are used repeatedly in a finite element program such as

NASTRAN. Any improvements on these basic operations can be translated into substantial cost

and cpu time savings. This paper also discusses NASTRAN in various computer platforms.

NASTRAN SINGLE LINK

The 91 NASTRAN RSIC base Unix version was released as a single link program. (The

multi-link version can also be built.) The shell program that controls NASTRAN's execution was

modified so that it can run NASTRAN under single- or multi-link environments automatically.

The success of the single link Unix version (previously referred to as NASTRAN superlink)

prompts the conversion of the 92 VAX/VMS NASTRAN into a single link program. The VAX

single link program is extremely useful in debugging the Unix RISC version since the latter has

extremely poor system diagnostics and provides no error trace-back. The biggest advantage of

the single link version, and particularly in a small workstation environment, is that it needs only

25 percent of the disc space to hold the executable program as compared to the multi-link

version, and 33 megabytes of disc space is returned to the system that can be used by NASTRAN

for solving larger structures. It is also faster by almost 70 percent to build the single link

NASTRAN as compared to the complete multi-link version. In program execution, the single link

has no overhead for link-switching, and data saving and recovering between links are not needed.

The single link versions, both in RISC base machines and VAX/VMS, appear to be running faster



sincetheprogramcould beexecutingseveral"links" aheadof thescreenprintout if NASTRAN
is executedinteractively.For purposesof consistency,the single link programissuesthe link
numbersas if theprogramweregeneratedin multiple links. Presently,thereareno single link
versions for IBM, CDC, and UNIVAC machines.

NASTRAN IN VARIOUS MACHINE PLATFORMS

COSMIC/NASTRAN is supported in five computer platforms: IBM, CDC, UNIVAC,

VAX/VMS, and DEC/ULTRIX (a RISC base Unix machine). However, the COSMICJNASTRAN

is continuously improved aiming towards a unified environment. ANSII standard FORTRAN 77

is used; and most of the machine dependent items are removed if possible. Some source codes

are modified or re-written with system vectorization in mind. A far-reaching plan is initialized

in the boot-strap (BTSTRP) subroutine that is used to set up machine-dependent constants for the

five machines that COSMIC supports. The 92 COSMIC/NASTRAN has expanded the

machine-dependent constant table in BTSTRP for 18 major computers and two dummies. A user,

or a third-party organization, can install NASTRAN to a new platform currently not supported

by COSMIC. Also, the users or third parties using the new computer platform can talk to one

another since the machine type has been pre-arranged. The machine-constant table in BTSTRP

is arranged for the following computers:

DUMMY, IBM, UNIVAC, CDC, VAX, DEC/ULTRIX (RISC base Unix), SUN,

IBM/AIX, HP, SILIC.GRAPHICS, MAC, CRAY, CONVEX, NEC, FUJITSU,

DATA GENERAL, AMDAHL, PRIME, 486, DUMMY

BTSTRP sets up the machine constants correctly only for the first six machines. The first

DUMMY is set up for IBM 7094, which has long been obsolete, and therefore can be reused for

any machine not on the list. The last DUMMY is intended for the same purpose. The constants

for the remaining 14 machines are dummies or guess-values. Therefore before moving

COSMIC/NASTRAN to any computer platform, one must first re-supply the correct machine

dependent constants in BTSTRP for that machine. The machine constants are well defined in the

BTSTRP subroutine, such as NBPW, number of bits per word; NBPC, number of bits per

character;, NLPP, number of lines per printout page, etc.

There are also a few machine-dependent constants outside BTSTRP that need to be set

locally. These few constants are scattered in about eight or nine NASTRAN subroutines. For

example, some of these constants involve convergent criteria used only locally, and therefore not

at the same level of importance as those in BTSTRP. To locate these few machine-dependent

constants has been made easy in the 92 NASTRAN release. If the first word of labeled common

/MACHIN/in a subroutine is MACHX, not just MACH, there are machine dependent constants

that require fixing.

The main NASTRAN program in the single link environment is called NASTRN. In the



multi-link environment,each of the 15 links is a complete program by itself, and the main

programs are NAST01, NAST02, NAST03 ..... NAST15. There is something very special in

NASTRN and in NAST01 in the 92 NASTRAN release. If the DEBUG flag in NASTRN or

NAST01 is changed to 1, the so-called <LINK 1> portion of the single link NASTRAN, or the

regular LINK 1 in the multi-link program, will go through a series of machine compatibility

checks. The results will echo back to the user. If some things, or some parameters, are set

incorrectly, NASTRAN will stop. For example, if the FORTRAN OPEN statement of a new

computer platform is in byte count for the record length, RECL, and the user sets the

corresponding constant in BTSTRP to word count, an error diagnostic will appear.

Due to COSMIC policy, the NASTRAN Maintenance Group has never tried to move

NASTRAN outside the five designated computer domains. However, it was demonstrated by a

user in 1991 that the DEC/ULTRIX version required only two minor changes to move

NASTRAN to a SiliconGraphics machine; and those two changes have been incorporated back

into the 1992 COSMIC/NASTRAN release. The NASTRAN Maintenance Group in UNISYS

welcomes any contribution from the users or third parties, concerning the migration of

NASTRAN to different computer platforms.

INTERNAL IMPROVEMENTS

The PROFILER, a performance analyzer of the VAX/VMS machine, was used to identify

the major time consuming elements in several typical NASTRAN runs. This was followed by a

major effort to look into the logic, computing mechanism, methods of calculation, order of

execution, paging, vectorization etc. of the time consuming areas, and to search for improve-

ments. Most of the time consuming elements are basically standard matrix operations, and they

are the essential elements of a finite element program. Their treatments are either "textbook

standard", or "company proprietary". Generally speaking, the original NASTRAN developer did

a very fine job in these areas. Further improvements are not easy, and cannot be treated lightly

or as short projects. Indeed, several of the 1992 internal improvements were made in periods of

several weeks, not days. Some improvements were made on top of previous improvements or

newly written subroutines. Sometimes a simple line of improvement may require days of careful

study, thorough understanding of the program algorithms, and the theoretical treatment of the

subject. The final improvements in the 92 NASTRAN release are quite satisfactory. Several slow

moving areas are speeded up 25 to 30 percent, and in some areas, three to five times faster.

Appendix A tabulates some of the test results. Most of the new internal improvements of the 92

NASTRAN release can be removed by DIAG 41.

The following sections of internal improvements apply only to large matrix operations.

Usually the matrices are many times larger than the available computer core memory can hold

at one time. Many of the matrix operations must be done by parts, or in a number of passes.



IMPROVED FORWARD-BACKWARD SUBSTITUTION

The forward-backward substitution (FBS) is used for matrix inversion, load-solution,

eigenvalue iteration, and many other applications that follow matrix decomposition. If the number

of columns on the solution side of the equation is large, FBS can be very time consuming. It

could easily take 10 to 20 times longer to go through FBS than to do the matrix decomposition.

In NASTRAN, the driver for FBS is the subroutine FBS. The actual FBS computation

takes place in FBSI, FBS2, FBS3, or FBS4 for real single precision, real double precision,

complex single precision, and complex double precision calculation respectively. If FBS requires

more than seven passes, the new improvements will automatically kick in. The improvements are

in four new subroutines, FBSI, FBSII, FBSIII, and FBSIV, similarly arranged as the subroutines

FBS 1/2/3/4. The new improvements include reduced I/O operations, large data blocks, and new

row-and-column matrix multiplication. The new FBSI/II/IIIIIV are about 30 to 50 percent faster

than the original FBS1/2/3/4, as tested in COSMIC's VAX/VMS machine.

THE FEER METHOD

Seventy to seventy-five percent of the cpu time used by the FEER method (the fast

eigenvalue extraction method, with real tridiagonal reduction) is actually spent in the subroutine

FNXTVC (double precision version) or FNXTV (single precision version). The main time

consumer in FNXTVC/FNXTV is the forward-backward substitution operation. Unlike the FBS

module, the open core in FEER method is not fully used, and particularly not in FN C/

FNXTV subroutines. The improvements in FNXTVC/FNXTV include reduced I/O operations,

full utilization of the core space, and new row-and-column matrix multiplication. The new

improvements in FNXTVC/FNXTV alone produce impressive results - reducing the FEER

method cpu timing by 30 to 200 percent, as tested on the VAX/VMS machine, and on a CRAY

(tested on RPK/NASTRAN).

COSMICdNASTRAN sometimes gives negative values for the rigid body eigenvalues.

(They should be zeros.) Sometimes the negative values could be quite large (-1.E+5 range)

particularly on the IBM machine. The explanation for this strange behavior, and the solution to

the problem, may or may not match. On the solution side, since the rigid body frequencies are

zeros, the 92 COSMIC/NASTRAN FEER method, by default, will set them to zeros. The second

solution option is to reinforce certain key areas of computation in FNXTVCdFNX'IN by

quad-precision (real*16) for the 32-bit word machines, and by double-precision for the 60- or

64-bit word machines. This second option gives good results and moves the rigid body

frequencies down to 1.E-6 to 1.E-12 range. However, it takes 2 to 3 times longer to compute.

To activate quad-precision calculation in a 32-bit word machine or double-precision in

a 60- or 64-bit word machine in FEER method, one only needs to replace the BC'D word "FEER"

on the third field of the EIGR bulk data card by "FEER-Q". Replacing "FEER" by "FEER-X"
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will prohibit the substitution of zeros for the rigid body frequencies.

Now to explain what happens to produce the negative eigenvalues. The criterion for

orthogonality convergence EPSILON is 1.E-28 for the 32-bit word machines using double

precision computation, and 1.E-24 for the 60- and 64-bit word machines using single precision

computation. In FNXTVC/FNXqN', the accumulated sum of a mode shape is compared to

EPSILON. The accumulated sum at the end of a do loop is the difference of two very close

numbers. Therefore this very small numeric difference is a function of the number of digits a

computer word can hold. Most 32-bit word machines with double precision calculation, and most

60- or 64-bit word machines with single precision, are limited to 14 to 16 digits per word, and

therefore down to only 1.E-14 to 1.E-16 numeric accuracies. Here, the mantissa as well as the

exponent of a data word is important! Since all five computers supported by COSMIC exhibit

this accuracy problem, it becomes meaningless to do an orthogonality check by comparing the

result to EPSILON, which is another 10 to 14 decades smaller. To home in to the size of

EPSILON could end up producing big numeric errors. (Just a guess here.) Since the mantissa of

an IBM machine word, in double precision, is smaller than a VAX, IBM seems to produce big

negative rigid body eigenvalues more often than the VAX. Similarly the 60-and 64-bit machine

using single precision computation could be worse than IBM.

In the 92 NASTRAN release, an attempt is made to avoid the above dilemma. The

orthogonality convergence criterion is based on a ratio instead of the finite difference of two very

close numbers. However, presently there is not enough test data to verify that is a good fix.

NEW LOGIC FOR MATRIX TRANSPOSE

Matrix transpose of a matrix which is too big to reside completely in the computer core

memory is not an easy task. It can be done, but it may use up lots of cpu time. Lots of I/O may

be involved here, and perhaps a high percentage of system paging if a virtual machine is used.

The problem here is how to do the matrix transpose in seconds instead of minutes, or in minutes

instead of hours. A good algorithm here is a treasure, and quite often, it becomes a "company

proprietary" product.

The out-of-core matrix transpose in NASTRAN is handled by the subroutine TRNSP. The

algorithm there is amazingly powerful. The only drawback is that it uses up to nine scratch files.

The scratch files are supplied by the calling routines. The more scratch files passing over to

TRNSP, the bigger matrix transpose TRNSP can do. There is no check in TRNSP of the actual

scratch files requirement. Again, there are lots of I/O, data packing, and unpacking involved.

If only 1/50th of the matrix can be loaded into the computer core memory space at one

time, TRNSP will complete the transpose task in 50 passes. A new matrix transpose subroutine

TRNSPS has been written for 92 COSMIC/NASTRAN. If the passes exceed seven, TRNSP will

switch over to TRNSPS automatically, if and only if DIAG 41 is not turned on by the user.



TRNSPS uses only one scratch file. The I/O department and the data packing and unpacking are

greatly reduced. The new TRNSPS is two to four times faster than the original TRNSP.

MPYAD, MPY4T, AND MPYDRI

Matrix multiplication and addition are basically the most important and most widely used

tools for a finite element program. If the matrices are small and can reside completely in core,

multiply-add has no problem; and three simple do-loops will complete the job. Again, if the

matrices are bigger than the computer core can hold, malrix multiplication and addition have to

be done by parts, and there will be many passes, many I/O operations, and many row- and

column-packings and unpackings. The problem can become I/O bound, and lots of epu time will

be spent on getting and saving the intermediate results. The situation is further complicated in

NASTRAN in that the matrices can be of different types (single precision or double precision;

real or complex), or of different forms (rectangular, square, diagonal, identity that may or may

not exit, lower or upper triangular, row vector, or symr_tric), or transpose and non-transpose
matrices.

There are five multiply-add (MPYAD) methods in NASTRAN, two methods for the

non-transpose case (MPY1NT and MPY2NT) and three for MPYAD with transpose (MPY1T,

MPY2T and MPY3T). NASTRAN selects internally the best method to use based on the epu

time requirement of each method that fits best for a given matrices-and-core environment. The

cpu time requirement is a function of size and shape (rows and columns), form and density of

the matrices, and core space. The cpu time requirement is also a function of the relative sizes and

shapes of the matrices. That is, matrix A may be very big and cannot reside in core, while matrix

B is small, and matrix B may or may not be loaded entirely into the available core space. Or vice

versa. All five MPYAD methods are written in assembly languages for four out of five COSMIC

supported machines, except VAX.

Matrix transpose is supposedly very slow. The programmer manual recommends matrix

transpose be done via MPYAD with transpose, and an identity matrix. This turns out not to be

very efficient. Two test matrices A and B, 5166x5166 each, using the best of MPY1NT or

MPY2NT, can be multiplied together in 470 cpu seconds (on the VAX machine), while

A-transpose times B, using the best of MPY1T, MPY2T, and MPY3T requires 6680 cpu seconds.

That is 12 times longer! If matrix A is transposed first by TRNSP routine O'RNSPS is not used),

then followed by MPYAD without transposing, the total cpu time can be cut to half. The only

problem here is that at least one extra scratch file is needed to save the transpose file, and in
many instances, there is no extra scratch file available.

MPY1NT and MPY1T share much common logic, and operate quite similarly. The same

holds true for the MPY2NT and MPY2T pair. MPY3T is a third method for the transpose case.

The best method for the test matrices A and B above, with transpose, is MPY2T. One would

think that since NASTRAN stores a matrix by column, and that a column of matrix A transpose



is a row of A, the row-and-column multiplication (matrix A in row and matrix B in column)

should be very fast, very smooth, and very convenient. One could almost feel and touch the

natural flow of the multiplication algorithm. But what one can feel or imagine, is not what a

computer sees. The row-and-column multiplication produces only one element in the resulting

matrix. There are more than 26 million (51662 ) double precision elements to go. Anyway, the fact

is that MPY2T takes 12 times longer than MPY2NT.

Several methods, several logics, and several new algorithms were developed and tested

to beat the clock set by MPY2T. The ultimate goal is to match the MPY2NT performance if

possible. Finally, after many trials, a fourth method, MPY4T, was developed based on the scheme

similar to MPY2T, except that matrix B (and matrix C, to be added if it is present), and the

resulting matrix D are processed by column instead of by element. Of course, the logic in

MPY4T becomes much more complicated and the open core must be rearranged. But MPY4T
is three to five times faster than MPY2T. In the 92 NASTRAN release, MPY4T will be

automatically substituted for MPY2T, unless DIAG 41 is turned on by the user. MPY4T is

written in FORTRAN, and it is machine independent.

The original MPYAD does not take advantage of certain types of matrices. For example,

the transpose of matrix A which is symmetric, need not go through the transpose route. (This is

already checked in the 91 release.) A new subroutine, MPYDRI, is added to the 92 release to

handle special cases involving diagonal matrix, row vector, and identity matrix.

The correct handling of these special matrices expedites the MPYAD process by

manyfold.

NEXT IMPROVEMENTS UNDER CONSIDERATION

The internal improvements in the 1992 NASTRAN release tackle a few important, and

often-used, basic finite element tools with satisfactory results. However, there are many more

areas in NASTRAN that can be explored. There are still several areas involving FBS that have

not been touched. The matrix decomposition process could be improved. All the complex

computations involving complex FBS, complex decomposition, complex FEER method, and

more, are targets for the next improvements. Nevertheless, the internal improvements in 1992

NASTRAN release represent the beginning of an extraordinary effort to bring NASTRAN up to

par.



APPENDIX A

Demo problem D03012A was used in most of the following tests. The D03012A demo

produced a double precision KGGX matrix of size (5166 x 5166) and a KAA (2380 x 2380),

double precision. The trailer of the KGGX matrix in some cases had to changed from

"symmetric" to "square" so that NASTRAN did not take the symmetric route processing the

modules under investigation. Tests were done on a VAX/VMS machine, unless stated otherwise.

In most cases, HICORE is 350,000 words.

FBS test: KAA

1991 Version

5644 _ seconds

1992 First Version 1992 Second Version

3508 cpu seconds 3120 cpu seconds

FEER method

1991 VAX Version

1043 cpu seconds

1991 CRAY Version

1992 VAX Version

GINO Improvement Open Core Not Used Open Core Used

978 cpu seconds 907 cpu seconds 763 cpu seconds

1991 CRAY Version Plus Changes - Open Core Used

45.7 cpu seconds 21.8 cpu seconds

MPYAD, KGGX(transpose) ° KGGX + KGGX

With MYADTDIAG 41 On
(Obso_e)

6681 cpu secs. 3871 cpu secs.

MPYAD Wlth MPYAD Wlth If Symmetrlc
New TRNSPS New MPY4T Malrlx Allowed

2114 cpu secs. 1358 cpu secs. 469 cpu secs.
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EVOLUTION OF A NASTRAN TRAINER

H.R. Grooms, P.J. Hinz, and M.A. Collier

Rockwell International

Downey, California

INTRODUCTION

This paper traces the development of a NASTRAN training system. It encompasses the design and
organization of the program, including the static and dynamic modules. A discussion of how user

feedback, in the form of questionnaire responses, was used to evaluate and improve the trainer is included.

BACKGROUND

The user-friendly NASTRAN trainer was originally designed as a segment of a larger system
(ref. 1). After the static module was developed, used, and evaluated (ref. 2), it became clear that the trainer
concept readily lent itself to a wide range of applications.

The NASTRAN trainer (figure 1) was initially conceived as a low-cost, convenient tool for giving
engineers who were novices in finite element analysis a few practical applications of the method.
Although several very good short courses and classes on NASTRAN are available, most are offered
periodically and cost $200 to $800 per person. These classes usually require the engineer to set aside his
current work assignment and devote his full time to the class for anywhere from a couple of days to a
couple of weeks. When funds are low or schedules are tight, the money or time required for these classes
can be insurmountable barriers.

Various researchers have developed computer programs for structural analysis and design
applications. Ginsburg (ref. 3) addresses computer literacy, and Woodward and Morris discuss improved
productivity through interactive processing (ref. 4). Wilson and Holt (ref. 5) developed a system of
computer-assisted learning in structural engineering. Sadd and Rolph (ref. 6) describe the various ways in
which design engineers could be trained to use the finite element method. Self-adapting menus for
computer-aided design (CAD) software are covered by Ginsburg (ref. 7).

Bykat (ref. 8) is developing a system that will have features for training, analysis control, and
interrogation.

STATIC MODULE

The static module was developed to provide the user a variety of different types of problems. The ten
problems generally increase in difficulty as their numbers increase. Table I describes each problem, and
figures 2 and 3 show the problems. Figure 4 gives the classical solution for static example 6.

The user may work the problems in any order.



DYNAMIC MODULE

The dynamic module contains eight problems (table II) of increasing complexity. The problems are
shown in figures 5 and 6. A classical solution for dynamic problem 4 is presented in figure 7. The
examples were selected to allow the user to decide on:

1. Grid fineness

2. Mass representation

3. Number of degrees of freedom retained

4. Particular degrees of freedom retained

Each of these decisions can have a significant beating on the accuracy of the eigensolution.

A complete description of this module is given in ref. 9.

TRAINER ORGANIZATION

The NASTRAN Environment (NE) is written for the IBM computer system running MVS/ESA
SP 4.1.0 using TSO/E 2.1.0. It uses the features provided by the dialogue management services under
ISPF/PDF to the fullest extent. This includes panels, skeletons, CLISTs, and tutorial services. In addition,

the trainer requires VS/FORTRAN and VS/Pascal compilers if the executable code is not directly
portable. Newer versions of any of these services should not invalidate the NE if the improvements are
upwardly compatible.

The NE has job setups to execute MSC/NASTRAN and COSMIC/NASTRAN on IBM and/or
MSC/NASTRAN on the Cray running Unicos 6.1. At least one of these programs must be available for
the NE to be used as intended. These codes are not delivered with the NE.

The NE comprises 15 datasets; 14 are partitioned and 1 is sequential. These datasets are listed below
with a brief explanation of their contents. Figure 8 illustrates the organization of the NE datasets.

• ALTER--Rigid format alter library for NASTRAN. Must be updated with each release of a new
version of NASTRAN. Not a requirement for the trainer and most NASTRAN users.

• CLIST--Procedural commands to invoke the NE, allocate and manage datasets, create and submit
batch jobs, invoke the SPF editor and initialize profile variables.

• MSGS--Messages that appear on panels for information, caution, and warning.

PNLZ (Environment)---Panels that serve as the user interface. All information that the user inputs
and the system outputs is through panels. This includes data entry screens, system news, help
sections, user manuals, problem descriptions, and classical solutions.

• DOC--Documentation on efforts to develop NASTRAN expert systems.

• FORT--FORTRAN programs and subroutines that compute the classical solutions and extract
system jobcard information.

10



• INP--Input decks that are example solutionsto the NASTRAN trainer problems.

• LOAD--Load modules of the compiled and linked FORTRAN and Pascal programs.

• LOG--Log of NASTRAN trainer usage for each NASTRAN trainer job submitted.

• OBJ----Object modules of the compiled FORTRAN and Pascal programs.

• OUT-Output decks that are example solutions to the NASTRAN trainer problems.

• PVS--Pascal program that produces a report of the usage of the NASTRAN trainer.

FUTURE ENHANCEMENTS AND USER FEEDBACK

Modules for elastic stability (buckling) and substructuring are in the planning stage. These additions
are planned as self-contained units that can be used by anyone who has completed the static module.

Users of the static module were asked to fill out a questionnaire. The questions and responses are
shown in figure 9. Another questionnaire is currently being used to solicit opinions about the dynamic
module.

CONCLUSIONS

The NASTRAN trainer has been used by a number of engineers, who found it to be a versatile low-
cost tool. It is particularly helpful in bridging the gap from theory to practical application of the finite
element method for structural analysis. The program, along with documentation, is available through
COSMIC.
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TABLE I.-STATIC EXAMPLE PROBLEMS

Example Descrlpt]on Significant Features

1

2

3

4

5

6

7

8

9

10

Statically determinate plane trusssubjectedto point load

Beam simply supported on one end and fixed at the other
subjected to point load

Beam fixed at both ends subjected to through-the-depth
temperature difference

Plane frame subjectedto point load

Simply supported beam subjected to temperature pattern

Plate with hole in center subjectedto in-plane load

Simply supported square plate subjected to out-of-plane
point load at center

Three-dimensional frame subjected to point load

Cylindrical shell subjected to hydrostatic loading

Bar elements, stabilityconstraints

Beam elements

Temperature input

Half-model, symmetric, and antisymmetric loads

Half-model, temperature distribution decomposed into
symmetric and antisymmetric parts

Plane stress, quarter-model, fine grid around hole

Plate-bending elements, quarter-model

Cylindrical shell with ring frames closed at both ends
subjected to internal pressure

TABLE II.-DYNAMIC EXAMPLE PROBLEMS

Example Descrlpt]on Significant Features

Tapered beams, three-dimensional

Three-dimensional simulation of curved surface using
flat elements

Self-equilibrating loading, three-dimensional

1

2

3

4

5

6

7

8

Beam simply supported on both ends with lumped mass in
middle

Beam simply supportedon both ends with uniformly
distributed mass

Beam fixed on one end with a lumped mass at the free end

Beam fixed on one end with a uniformly distributed mass

Rectangular plate clamped on one edge, all other edges free,
with a uniformly distributed mass

Rectangular plate, free-free withuniformly distributed mass

Two beams connected by springs, each with distributed and
lumped mass

Problem7 with a forcing function added

Motion in one plane only, lumped mass only

Motion in one plane only, distributed mass

Motion in any direction, lumped mass only

Motion in any direction with uniformly distributed mass

Plate bending with distributed mass

Free-free (implies six modes with zero frequency)

Multibody problem, free-free

Forcing function
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P _r,---

Static Problem 6 - Plate With Hole in Center

1
D

a

J:D 
r I

P = Running Load (Ib/in.)
D = Width of Plate (in.)
t = Thickness of Plate (in.)
r-- Radius of Hole (in.)

a T = Stress at Distance From Hole (psi)

a x = Stress (X) at Hole (psi)

ay = Stress (Y) at Hole (psi)

Classical Solution:

Calculate cX at Point a:

a x = a max = aa = kanom

PD
Where aria m = t(D- 2r)

k = 3.00- 3.13(--_-)+ 3.66(.--_-) 2- 1.53(--_--) 3

Calculate ay at Point b:

a T = Stress at Distance From Hole =
t

ay = a b =-a T

Reference: Roark and Young. Formulas for Stress and Strain, 5th Edition, p. 594.
MTD 920210-3135

FIGURE 4.-CLASSICAL SOLUTION FOR STATIC PROBLEM 6
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Dynamic Problem 4 - Cantilever Beam With
Uniformly Distributed Mass

W

L

W= Ib/in

A,E

d

' 1
.__.____ b ........__

Cross Section

E = Modulus of Elasticity (psi)

I = Moment of Inertia (in.4)

i4 = Distributed Mass (Ib-sec2/in. 2)

L = Length of Beam (in.)

(on = Natural Frequency - Angular (rad/sec)

f n = Natural Frequency (cycles/sec or hertz)

Reference: FlIJgge, W.: Handbook of Engineering
Mechanics. McGraw-Hill

1962, pp. 61-8.

(Fundamental Mode)

(Higher Order Modes)
(n>l)

Classical Solution:

Calculate Natural Frequencies:

(oi = (0.597 _)2 EA/'_
L 2

(on = (n- 1/2) 2 _2
L 2

(on

f n=---_-

Where n = 1,2 .... (the Mode Number)

MT O 920212-3138

FIGURE ?.-CLASSICAL SOLUTION FOR DYNAMIC PROBLEM 4
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Critique of NASTRAN Trainer

Was using this system a worthwhile expenditure of your time?
a. Yes (89%)
b. No (0%)
c. Undecided (11%)

2 How much total time would you estimate that you spent using the trainer?
60 hours

5

6

10

11

How much total time would you have spent (estimate) to gain this knowledge if the trainer had not been
available 135 hours

The number of examples was
a. Too few (17%)
b. Too many (6%)
c. About right (77%)

The system was

a. Too simple (17%)
b. Too complicated (6%)
c. About right (77%)

Could the trainer be improved by adding other topics?
a. Yes (67%)
b. No (22%)
c. Maybe (11%)

Which section, if any, should be expanded upon?
(Wide variety of responses.)

How often (average) did you invoke the NASTRAN documentation manual section?
a. Never (44%)
b. 0-2 times/example (22%)
c. More than 2 times/example (34%)

Was the NASTRAN documentation section useful?

a. Yes (36%)
b. No (33%)
c. Never used it (29%)

How often did you use (average) the printed COSMIC or MSC NASTRAN manuals?
a. Never (6%)
b. 0-2 times/example (17%)
c. More than 2 times/example (77%)

Please add any additional comments you desire.

(Responses vary from "great" to "give us more advanced problems.')

FIGURE 9.-QUESTIONNAIRE FOR USER FEEDBACK (STATIC)

MTD 920211-3140
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ANIMATION OF FINITE ELEMENT MODELS AND RESULTS

Robert R. Lipman

David Taylor Research Center

Computational Signatures and Structures Branch (Code 1282)

Bethesda, Maryland 20084-5000

SUMMARY

Several years ago, the phrase 'visualization in scientific computing' (ref. 1) was coined for

what we used to call computer graphics. Although computer graphics is part of visualization,
visualization encompasses computer graphics hardware and software, network communications,

user interfaces, computer-aided-design, and more. The purpose of visualization is to provide

insight into the engineer's models and calculations. Animation of finite element models and

results is a visualization process that can provide the insight.

The paper is not intended to be a complete review of computer hardware and software
that can be used for animation of finite element model and results, but is instead a

demonstration of the benefits of visualization using selected hardware and software. Opinions
expressed are solely those of the author and are not those of the David Taylor Research Center,

the Navy, or the Department of Defense. Good reviews of visualization hardware and software

can be found in the following journals: Computer Graphics World, Supercomputing Review,

IEEE Computer Graphics and Applications, and CAE Computer-Aided Engineering. A

videotape showing visualization and animation of finite element models and results is an integral

part of this paper although it is not included in the proceedings.

INTRODUCTION

Visualization and animation give an engineer insight into his finite element model and

results. Wire-frame plots of a finite element mesh do not convey the sense that a 'real' structure
has been modeled. We do not live in a wire-frame world. We live in a world of color, light,

shading, and perspective. A beam is not a line between two points. A beam has a web and a

flange of substantial size and cross-section. The transient motion of a structure cannot be

determined from static plots at selected time steps or plots of the response of a node versus

time. Visualization and animation can be used to show an engineer the realistic configuration

and response of a structure.

The earliest animations of finite element analysis results were made by painstakingly

recording a sequence of static plots on film. Some of the first computer animations of finite

element analysis results were made on Evans & Sutherland graphics hardware (ref. 2). Today,

with the price/performance of computer graphics hardware so low and visualization software
packages becoming more mature, finite element model visualization and animation is now a

desktop tool.
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HARDWARE

It seems that computer workstation vendors are announcing faster and less expensive

hardware almost every day. Current Cray X-MP supercomputer computational speeds should bc
available in desktop computer workstations in 1-2 years. By the time this paper is presented,

the 1-2 year time frame may have been reduced from years to months. The cost of memory and
hard disk storage is also falling.

As important as raw computational power is to animation and visualization, graphics

speed is equally important. Graphics speed, usually quoted in polygons per second, is not

increasing as fast as computational speed. Rather, the cost of current graphics power is getting

less expensive. Current peak graphics speeds of 200,000 polygons per second can be found on

the top-of-the-line graphics workstations. The user must beware of the type of polygon that thc

vendor uses when quoting graphics speed. Quotes of one million polygons per second are usually
for highly optimized meshes of triangles without light-source shading. For animation of finite ele-

ment models, the graphics speed for independent quadrilateral polygons is more relevant.

When computation and visualization take place in a distributed environment, communica-

tions spccd bctwcen the client and server is another important issue. Today, animations of finite

clemcut analysis results are typically done in a batch mode. The analysis is done on a large
mainframe or supercomputer and the results are sent to a workstation to be used with visualiza-

tion softwarc. In the future, the two proccsses of analysis and visualization will be more tightly

couplcd where thc analysis and visualization are being computed concurrently. For this scenario

to take placc, much higher network communications speed between the computational server
and visualization scrvcr will be necessary than current local- and wide-area networks provide.

Finally, animation sequences have to be recorded to videotape. There are two methods

for recording computer graphics animations on videotape: real-time and frame-by-frame. For

real-time rccording, the computer graphics display is converted, in real-time, to a television sig-
nal suitable for recording on videotape and being displayed on a regular television monitor.

Therefore, whatever is being displayed on the computer graphics display can be recorded to
vidcotapc. If the graphics speed is fast enough to animate a finite element model in real-time,
then this process is sufficient.

With graphics hardware that is not fast enough and with visualization software that has a

rendering capability, then frame-by-frame recording can be used. The visualization software

rcnders individual images that are recorded one-by-one on videotape. The result is a continuous

animation sequence. Frame-by-frame recording also produces higher quality animations and
renderings than real-time animation.

SOFTWARE

Visualization software packages can be separated into three categories: general-purpose,

modular, and application specific. The types of data that the packages can visualize are usually

either structured or unstructured grids. A structured grid is typical for finite-difference applica-
tions such as computational fluid dynamics. A finite element mesh is an example of an unstruc-

tured grid. Many of the general-purpose visualization packages (PV-Wave, Spyglass, Data

Visualizer) are very good with structured grids and less useful for finite element applications.

There are also several application specific visualization packages (Fieldview, Fast, Plot3D) that
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can be used with only structured grids. The modular visualization packages (AVS, Iris Explorer,

apE) allow users to write their own applications specific software modules to be integrated with
the visualization software.

There are few choices for application-specific visualization packages for finite element

analysis animation. The popular finite element pre and postprocessors (Patran, I-DEAS) have

animation capabilities, but are not oriented to the visualization process and to recording video-

tapes. FOTO (ref. 3) is a data visualization software package geared towards finite element

models and animation. FOTO was used to make the videotape that is part of this paper. FOTO

is easy to interface with analysis codes; is user-definable lnenu driven; has many visualization

types including: color, displacement, contour lines, vectors, transparency, and culling operators;

and has a tightly coupled videotape system.

There are also free visualization software packages available from the national supercom-

puter centers. Because they are free, the source code is provided allowing the user to tailor the

code to his application. However, because they are free, the user will not get the same type of

support or updates to the software that a commercially available package would provide.

THE FUTURE

What is currently possible for finite element animation and visualization is not the final

product, but only a step towards a more interactive, dynamic environment for doing analysis and

visualization. In the future, analysis and visualization will occur concurrently in near real-time

and the engineer will have the capability to interact with the analysis by changing the finite ele-

ment model as the computations are taking place to explore new configurations of the model.
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ACCURACY OF THE TRIA3 THICK SHELL ELEMENT

William. R. Case, Marco Concha and Mark McGinnis
NASA/Goddard Space Flight Center

SUMMARY

The accuracy of the new TRIA3 thick shell element is assessed via comparison with
a theoretical solution for thick homogeneous and honeycomb flat simply supported
plates under the action of a uniform pressure load. The theoretical thick plate
solution is based on the theory developed by Reissner and includes the effects of
transverse shear flexibility which are not included in the thin plate solutions based
on Kirchoff plate theory. In addition, the TRIA3 is assessed using a set of finite
element test problems developed by the MacNeal-Schwendler Corp. (MSC).
Comparison of the COSMIC TRIA3 element as well as those from MSC and
Universal Analytics Inc. (UAI), for these test problems is presented. The current
COSMIC TRIA3 element is shown to have excellent comparison with both the
theoretical solutions and also those from the two commercial versions of

NASTRAN with which it was compared.

INTRODUCTION

The TRIA3 thick shell element was added to the 1990 release of COSMIC

NASTRAN. Along with the QUAD4, the two new shell elements represent a
significant increase in the capability of COSMIC NASTRAN to model complicated
shell structures. The deficiencies of the original TRIAl,2 and QUAD1,2 shell
elements have been recognized for years and have been reported in the literature.
At the Goddard Space Flight Center (GSFC), the triangular and quadrilateral shell
elements are used in virtually all structural analyses of our spacecraft and related
hardware. Typical applications are for the modeling of cylindrical shells and flat
plates made of honeycomb or machined, lightweighted, metal that make up the
structure of spacecraft and scientific instruments. In some cases these models
require that the effects of transverse shear flexibility be included due to their
thickness. The TRIA3 and QUAD4 elements include these effects. The QUAD4

element has, in addition, an improved membrane capability for in-plane loading.
The TRIA3 element, due to it's limited number of degrees of freedom retains the
constant strain membrane capability of the older TRIAl and TRIA2 elements. This
necessitates finer meshes for in plane loading cases than would be required when
using the QUAD4 element.

The purpose of the study reported herein is to assess the accuracy of the TRIA3
element in modeling a variety of situations involving both solid cross-section plates
as well as those constructed of honeycomb. An identical study for the QUAD4
element was reported in the 18th NASTRAN User's Colloquium and is documented
in reference 1. As with the QUAD4 study, the three goals of the TRIA3 study were
to determine:
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a) what is the rate of convergence to the theoretical solution as the mesh is
refined

b) whether the element exhibits sensitivity to aspect ratios significantly
different than 1.0

c) how the element behaves in a wide variety of modeling situations, such as
those included in the MSC element test library (discussed below).

The first two questions were addressed in the same manner as several other studies
reported by one of the authors in prior NASTRAN colloquia (references 1 - 3). The
procedure used in those studies, and followed here also, is to isolate the effects of
mesh refinement and aspect ratio. That is, the mesh refinement study is done using
elements with an aspect ratio of 1.0. Then, once a fine enough mesh has been
reached such that the errors are small, the effects of aspect ratio can be investigated
by keeping the mesh the same (i.e. same number of elements) and varying the
overall dimensions of the problem, thus resulting in each element aspect ratio
changing. Obviously, in order to accomplish this latter step there must be a
theoretical solution (or some other equally acceptable comparison solution) to the
problem with which to compare the finite element model results. This is needed
since, at each step, a problem of different dimensions (and therefore different
theoretical solution) is being modeled.

The above tests are important in that they show the rate of convergence toward the
theoretical solution as the mesh is refined. Those tests, however, are not sufficient
to completely test the accuracy of a finite element since they do not test irregular
geometries, or a variety of loadings or material properties. The MSC has developed
a comprehensive set of problems for testing finite elements in a variety of situations
(reference 4). The library of problems consists of 15 test problems for shell
elements that cover all of the parameters mentioned above. This element test
library was used to test the TRIA3 element as was done for the QUAD4 element
reported in reference 1.

RESULTS OF MESH AND ASPECT RATIO STUDY

For the mesh and aspect ratio study a theoretical comparison solution is highly
desirable. Since the effects of transverse shear flexibility are included in the TRIA3
element formulation, a theoretical solution for moderately thick plates, based on
Reissner (or Mindlin) thick plate theory is also desirable. Such a solution is given in
references 5 and 6 for rectangular simply supported thick plates under the action of
apressure load. Thus, this problem was used for the mesh and aspect ratio portions
of the study.

Figure 1 defines the geometry, coordinate system, boundary conditions and loading
for the rectangular plate. The thickness indicates a moderately thick plate of length
to thickness ratio of 20. The effect of transverse shear flexibihty is only
approximately 1% on the maximum displacement but is important in discerning the
quality of the convergence of the finite element results to the exact theoretical
solution. By exact is meant the theoretical basis for the TRIA3 element, which is
expressed in the Reissner thick plate theory. Figure 2 shows the finite element
mesh geometry used in the mesh and aspect ratm studies. Due to symmetry only
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one quarter of the plate was modeled. The 4 x 4 mesh shown in figure 2 is an
example only; the mesh was varied during the mesh study. However, as was done
for allproblems, the quad areas were subdivided into triangles in the alternating
orientation shown in figure 2.

Figures 3a - 3c show characteristics of the theoretical solution. As indicated in
figure 3a the central displacement solution is represented as an infinite series of
hyperbolic functions. A FORTRAN computer program was written to compute the
theoretical solutions for displacements (using the series shown) as well as stresses
(solution not shown). Figures 3b and 3c show the stiffness parameters needed in the
theoretical solution for the homogeneous and honeycomb plates. For the
honeycomb plate, two different core stiffnesses were investigated. The stiffer one is
representative of aluminum honeycomb construction that has been used at the
GSFC. The more flexible one was chosen because it represents a core flexibility
that is quite low and was expected to be a more critical test of the TRIA3's shear
flexibility formulation.

thTheresults of.the mesh study, showing the convergence of the TRIA3 solutions to
e theoretical, arepresented in tabular form in tables 1 - 2 and in graphical form in

fi_gt!res 4 - 7. Both formats show percent error in displacement at the center of the
plate as a function of mesh refinement. Results are included for COSMIC 9.0, UAI
11.1 and MSC 66A NASTRAN. The tables merely give exact numbers (along with
the theoretical displacements) and the figures contain the same error information,
but in graphic form. Figures 4 and 5 and table 1 are the results for the

homogeneous plate. The difference between the results in figures 4 and 5 (and that
in the two parts of table 1) is that fi_ure 4 (and the top half of table 1) is for a
solution in which shear flexibility is included and fi_gure 5 (and the bottom half of
table 1) neglects shear flexibility. These two situations were investigated to test the
MID3 option on the PSHELL NASTRAN bulk data deck card which allows the
effects of shear flexibility to be ignored if MID3 is left blank. As seen in figures 4
and 5 the NASTRAN results converge very rapidly with mesh refinement f-or
COSMIC 9.0, MSC 66A and UAI 11.1. As seen, all versions converge to less than
1% error for a mesh size of 8 x 8.

Figures 6 and 7 and table 2 are the results for the honeycomb plate. Figure 6 (and
the top half of table 2) are for the honeycomb plate with the stiffer core and figure 7
(and the bottom half of table 2) are for the more flexible core. As seen in figures 6
and 7 the NASTRAN results for COSMIC 9.0 and the two commercial NASTRAN
versions converge very rapidly for the two honeycomb plates as they did for the
homogeneous plate.

In order to test the TRIA3's sensitivity to aspect ratio, the model with a 12 x 12
mesh was run in which the plate side dimension in the x direction was varied. This
causes the element aspect ratio to vary while maintaining a constant mesh in an
attempt to prevent mesh refinement errors from significantly affecting the results.
As seen in tables 1 and 2, the TRIA3 results with a 12 x 12 mesh (and aspect ratio of
1.0) have very little error. The results of the aspect ratio stud), are presented in
figures 8 - 10 and tables 3 - 5. Tables 3 - 5 give percent error m the displacement at

the center of the plate versus aspect ratio for a model with a mesh of 12 x 12 TRIA3
e ements (over one quarter of the plate). As mentioned above, the aspect ratio was
varied by changing the dimension of the plate along the x axis. For example, the
results tor the aspect ratio of 10 are for a plate _and all TRIA3 elements) that is 10
times as long in the x direction as in the y direction. Therefore, the theoretical

solution changes with aspect ratio. Figure 8 and table 3 are for the homogeneous
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plate (with transverse shear flexibility) while figure 9 and table 4 are for the stiff

core honeycomb plate and fi/igure 10 and table 5 are for the more flexible core
honeycomb plate. Investigation of the percent error in the tables, as well as in
figures 8 - 1Oshow that the TRIA3 has essentially no aspect ratio sensitivity over the
range investigated.

Based on the above results, the COSMIC TRIA3 element is seen to give very
accurate results for the displacements in the problem investigated, both in
comparison to the exact theory and in comparison to the two commercial versions of
NASTRAN that we have at the GSFC. Although the results are not presented
herein, similarly accurate results were obtained for the shear and moment stress
resultants as well. In addition, the rates of convergence for the TRIA3 compare
quite favorably with that found for the QUAD4 in reference 1 for this plate bending
problem.

RESULTS OF TESTING USING THE MSC ELEMENT TEST LIBRARY

As mentioned earlier, the mesh and aspect ratio studies, while a very useful tool in
the evaluation of an element, do not test all of the important variables that affect
accuracy in a finite element solution. The MSC element test library mentioned
above represents a rather exhaustive series of tests that include many of the element
related parameters which affect the accuracy of a finite element solution.
Reference 4 gives a detailed description of the test problems along with theoretical
answers and the results of the testing on several MSC elements. The reader should
consult reference 4 for a complete description of the various problems in the test
series. The portion of this series of element tests that relate to shell elements was
run by the authors on the TRIA3 elements contained in COSMIC 9.0, UAI 11.1 and
MSC 66A. As the MSC does in their report, the results are presented in detail and
also in a summary form in which the element is given a letter grade of A through F
based on the magnitude of the error. Table 6 shows the summary results for the 15
tests in the series ranging from a simple patch test to modeling of beams (using the
TRIA3 element through the depth) and various plates and shells. The meaning of
the letter grades is given at the bottom of the table. As pointed out in reference 4, a
failing grade for an element in one test is not a reason to dismiss the element. For
one thing, the test scores would improve with mesh refinement; the mesh used in
most of the problems was quite coarse. Of importance in this discussion is not the
actual grades listed in table 6 but the comparison of the COSMIC grades with those
from the other two programs. As seen in table 6, the COSMIC TRIA3 element is as
good as, or better than, those of the commercial programs. All of the low marks (D
or F) are apparently due to the constant strain membraneportion of the TRIA3
element and the low order mesh used in those problems. For example, the straight
beam bending, with in-plane loading, had only one TRIA3 through the thickness.
This was done to keep the same mesh as MSC used for the QUAD4 element tests,

and was also done in reference 1. Refining the mesh would have improved the
answers to any degree of accuracy desired; the low grades are not indicative of any
failure of the element to converge. Although not shown in table 6, the old TRIA2
element (included in reference 4) has a D or F grade in 9 of the 15 problems. The
twisted beam test (number 11 in table 6) is really used to test the effect of warp on
quadrilateral elements, which is not applicable for the TRIA3 element.
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CONCLUSIONS

The COSMIC TRIA3 generalpurposeflat shell element has been shown to be an
excellent element and, together with the QUAD4 quadrilateral flat shell element,
significantly enhances the usefulness of COSMIC NASTRAN. The element has
been shown to compare excellently with those available in two commercial versions
of NASTRAN that are currently being used at the GSFC.
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List of Symbols

w = plate displacement in the z direction
x,y,z = coordinate directions

p = pressure load on the plate in the z direction
a, b = plate dimensions (length, width)
t = overall plate thickness
D = plate bending rigidity (see Figures 3b, 3c)
Cs, Cn = plate shear stiffness (see Figures 3b, 3c)

tf = thickness of face sheets for honeycomb plate

tc = thickness of the core for honeycomb plate

Nx = number of elements in x direction in one quarter of plate

Ny = number of elements in y direction in one quarter of plate
ARe = element aspect ratio (see Figure 2)
E = Young's modulus
G = shear modulus
v = Poisson's Ratio
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TABLE 1:TRIA3 Error in Displacement at Center of Plate

Mesh Size Study (Element Aspect Ratio 1.0)

Simply-Supported, Homogeneous Plate Under Uniform Pressure Load

Theoretical Displacements

With Transverse Shear Hexibility: 3.571 x 10-5 m

(1.406 x 10-3 in.)

Without Transverse Shear Hexibility: 3.529 x 10-5 m

(1.390 x 10-3 in.)

% Error
Cosmic UAI MSC

Mesh 90 Ver. 11.1 Ver. 66A

With Transverse Shear Hexibility

lxl 39.33 27.64 16.62

2x2 13.63 11.36 9.01

4x4 3.29 2.77 2.06

8x8 0.01 0.55 0.34

12x12 0.00 0.13 0.04

Without Transverse Shear Hexibility
lxl 40.56 28.37 17.45

2x2 14.31 11.72 9.52

4x4 3.74 3.01 2.43

8x8 0.95 0.76 0.62

12x12 0.42 0.34 0.27
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TABLE 2:TRIA3 Error in Displacement at Center of Plate

Mesh Size Study (Element Aspect Ratio 1.0)

Simply-Supported, Honeycomb Plate
Under Uniform Pressure Load with Transverse Shear Flexibility

Gz = 1.379x 107 N/m 2 •

Theoretical Displacements

Gz= 1.517x108 N/m 2 : 2.422x10 -3 m

(9.535x10 -2 in.)

3.102x10 -3 m

(1.221x10 -1 in.)

Mesh

% Error

Cosmic UAI MSC

90 Ver. 11.1 Ver. 66A

Gz = 1.517x108 N/m2 (22000 psi)

lxl 38.28 27.13 16.08

2x2 13.36 11.36 8.88

4x4 3.35 2.92 2.16

8x8 0.81 0.73 0.52

12x12 0.37 0.33 0.24

Gz = 1.379x107 N/m2 (2000psi)

lxl 24.07 17.82 7.37

2x2 9.71 8.83 6.35

4x4 2.48 2.26 1.60

8x8 0.60 0.55 0.38

12x12 0.30 0.28 0.02
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TABLE 3:TRIA3 Error in Displacement at Center of Plate

Aspect Ratio Study (12 x 12 Mesh)

Homogeneous, Simply-Supported Plate

Under Uniform Pressure Load with Transverse Shear Flexibility

% Error
theoretical w, Cosmic UAI MSC

AR m (in.) 88 Ver. I0.0 Ver. 65C

1 3.571x10-5 0.17 0.13 0.04

(1.406x10-3)

2 8.865x10-5 0.14 0.10 0.03

(3.490x10-3)

5 11.34x10-5 0.11 0.11 0.07

(4.465x10-3)

10 11.38x10-5 0.08 0.08 0.05

(4.482x10-3)
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TABLE 4:TRIA3 Error in Displacement at Center of Plate

Aspect Ratio Study (12 x 12 Mesh)

Stiff Core, Simply-Supported, Honeycomb Plate

Under Uniform Pressure Load with Transverse Shear Flexibility

% Error
theoretical w, Cosmic UAI MSC

AR m (in.) 88 Ver. 10.0 Ver. 65C

1 2.422x10-3 0.37 0.33 0.24

(9.535x10-1)

2 5.974x10-3 0.28 0.24 0.17

(2.352x10-1)

5 7.631x10-3 0.21 0.21 0.17

(3.004x10-1)

10 7.660x10-3 0.21 0.21 0.17

(3.016x10-1)
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TABLE 5:TRIA3 Error in Displacement at Center of Plate

Aspect Ratio Study (12 x 12 Mesh)

Flexible Core, Simply-Supported, Honeycomb Plate

Under Uniform Pressure Load with Transverse Shear Flexibility

% Error

theoretical w, Cosmic UAI MSC

AR m (in.) 90 Ver. 11.1A Ver. 66A

1 3.102x10-3 0.30 0.28 0.20

(1.221x10 -1)

2 7.026x 10 -3 -0.67 0.24 O. 18

(2.766x10-1)

5 8.785x10-3 0.22 0.22 0.17

(3.459x10-1)

10 8.815x10 -3 0.17 0.17 0.13

(3.470x10-1)
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TABLE 6

SUMMARY OF TEST RESULTS FOR TRIA3 SHELL ELEMENTS

Test

1. Patch Test

2. Patch Test

3. Straight Beam, Extension

4. Straight Beam, Bending

5. Straight Beam, Bending

6. Straight Beam, Bending

7..Straight Beam, Bending

8. Straight Beam, Twist

9. Curved Beam X

10. Curved Beam

11. Twisted Beam X

12. Rectangular Plate (N=4)

13. Scordelis-Lo Roof (N=4) X

14. Spherical Shell (N=8) X

15. Thick-Walled Cylinder X

(nu =.4999)

!Number of Failed Tests (D's and F's)

Elem. Loading

In Out of

Plane Plane

X

X

X

X

X

X

X

X

X

X

X

X

Element COSMIC UAI MSC

Shape 90 11.1A 66A

Irregular A A A

Irregular A A A

All A A A

Regular F F F

Irregular F F F

Regular B B B

Irregular B B B

All F F F

Regular F F F

Regular F F F

Regular C C D

Regular B B B

Regular D D D

Regular A A A

Regular A A A

7

Grading for Shell Element Test Results

Grade Requirement

A

B

C

D

F

2% > Error

10% ___Error > 2%

20% > Error > 10%

50% > Error > 20%

Error > 50%
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Fig. 1
Test Problem

I y

b/2

- ----4_ X

b/2

Plate Size: a=1.016 m (40. in.)* b--1.016m (40.in.)

Boundary Conditions: simply supported on all edges

Loading: pressure load, p=6895. N/m 2 (1.0 psi) +Z direction

Thickness: t=0.0508 m (2.0 in.)

*: Variable in aspect ratio studies
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b c

Fig. 2
Mesh Geometry

a¢

I Y _ ,_.,.,......- 1/4 of plate modelled

\/\

/\<\/
/\/\

I--
b/2

b/2

ARe= a/_% = element aspect ratio

N x = a/2ac = number of elements in X direction in 1/4 of plate

N = b/2b = number of elements in Y direction in 1/4 of plate
y e
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Fig. 3a

TheoreticalSolution- CentralDisplacement

CentralDisplacement

a 4p [ 1w(x=_,y=0)= _ E
m-l.3_ ....

+ C 5 cosh( la y) + layC 6 sinh( la y)

2 (.._...1 1+ v'_] sin lax+ kt
D\ts s -_n/ la5

where,

1 [1÷
C5 =- cosh _m 1"_n ] +_'Otm tanh( Otm)]

1

_'6 = 2 cosh Ctm

mx b mx

Ctm- 2 a, la=-'_ ""
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Fig. 3b

Theoretical Solution - Homogeneous Plate Parameters

Homogeneous Plate

Et 3
D=

12(1-v 2 )

5 Et

Cn=6 v

5 E

C s = _ Gt, G= 2(1+ v)

E = 6.89 x 10 10 N/m 2 (10.0 x 10 6 lb/in 2 )

v =0.33

t = .0508 m (2.0 in.)
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Fig. 3c

Theoretical Solution - Honeycomb Plate Parameters

Honeycomb Plate

D = Eftf (tc+t f/2 )2

4(1- v 2)

C n =oo

C s =t cGc

Ef=6.89 x 1010

(10 x 10 6

v = 0.33

N/m 2

lb/in 2 )

G c=1.379 x 107 N/m 2

or

1.517 x 10 8 N/2

_,,,Honeycomb Core "q

Core Detail

(2000. lb/in 2 ) Flexible Honeycomb Plate

(22000. lb/in 2 ) Stiff Honeycomb Plate

t c = .0508 m (2.0 in)

tf = .254mm (.01 in.)

t = tc+t f
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VALIDATION OF THE CQUAD4 ELEMENT FOR VIBRATION AND SHOCK

ANALYSIS OF THIN LAMINATED COMPOSITE PLATE STRUCTURE

by

Douglas E. Lesar

Ship Structures and Protection Department

Carderock Division, Naval Surface Warfare Center

Bethesda, Maryland 20084-5000 U.S.A.

ABSTRACT

The CQUAD4 thin plate element implemented in COSMIC NASTRAN is

capable of modeling thin layered plate and shell structures composed

of orthotropic lamina. Fiber-reinforced composites are among the

classes of inhomogeneous and non-isotropic materials which can be

treated. Although the CQUAD4 has been extensively checked in static

cases, little validation has been carried out for vibration response

modeling. This paper documents validation of the CQUAD4 element's

accuracy for vibration response analysis of thin laminated composite

plates.

The lower-order natural frequencies and mode shapes of ten

glass fiber-reinforced plastic (GFRP) and carbon fiber-reinforced

plastic (CFRP) plates are computed and compared to published experi-

mental and numerically-computed data. A range of ply geometries

including unidirectional, cross-ply, and angle-ply are considered.

The plates' length-to-thickness ratios all lie in the vicinity of

i00 to 150. The CQUAD4 plate idealizations provide natural frequen-

cy predictions within ten percent of measured data for all six

lowest modes of seven of ten plates. For two of the remaining three

plates, only the fundamental frequency is predicted with an error

greater than ten percent. Results for the one remaining plate do

not correlate with published data, possibly because of erroneous

reporting of its geometry or material properties in the literature.

To obtain accurate frequency predictions, lamina in-plane elastic

moduli had to be tuned to reflect each plate's fiber volume

fraction.

These results show that the NASTRAN CQUAD4 plate element is

useful and reasonably accurate for vibration and shock analysis of

structures composed of thin fiber-reinforced plastic plates.

INTRODUCTION

There is strong current Navy interest in exploitation of fiber-

reinforced plastics as lightweight materials for a wide variety of

ship structures. These structures must be designed to withstand in-

service loads of quasi-static, transient dynamic, and steady-state

dynamic nature. For many ship structures, transient shock is a pri-

mary load. For these and others, steady-state vibration response
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impacts the ship's acoustic signature. In both cases, the struc-

ture's modal properties (natural frequencies, mode shapes, and modal

loss factors) are key parameters governing its transient and steady-

state response. In most cases, the ship structures being designed

are complex enough so that numerical (finite element) methods must

be employed to obtain realistic modal property estimations.

The NASTRAN finite element code is one of the Navy's premier

tools for steady-state vibration response analysis of ship and

submarine structures. Undamped natural mode analysis and forced

vibration response analysis with hysteretic damping can be performed

by NASTRAN, as well as modal frequency and loss factor analysis for

structures with viscoelastic damping materials (Ref. I). NASTRAN is

also a key component of the NASHUA suite of codes for performing

radiated noise and acoustic scattering analysis of vibrating submer-

ged structures (Ref. 2,3).

The COSMIC NASTRAN CQUAD4 element is designed to model aniso-

tropic layered plates as well as homogeneous and isotropic plates.

The theory and assumptions behind the CQUAD4 have been informally

documented (Ref. 4). The CQUAD4 has been found to be more accurate

for a given finite element grid than its predecessor, the CQUAD2

element, for prediction of low frequency eigenmodes of thin-walled

cylindrical shells composed of isotropic materials (Ref. 5). To the

author's knowledge, no comparable study of the accuracy of the

CQUAD4 formulation for anisotropic plate or shell vibration yet

exists, particularly for plates and shells composed of layers of

fiber-reinforced plastic lamina.

This paper summarizes an investigation of the accuracy of the

NASTRAN CQUAD4 membrane and plate bending element for vibration

analysis of structures composed of thin fiber-reinforced composite

plates. This is accomplished by comparisons of NASTRAN-computed

undamped natural frequencies of ten GFRP and CFRP plates with

published experimental data and other numerical predictions.

NOTATION

Eli
Lamina extensional modulus in

direction parallel with fibers

E22
Lamina extensional modulus in

direction transverse to fibers

E33 Through-thickness extensional

modulus

GI2

GI3

In-plane lamina shear modulus

Transverse lamina shear modulus for

out-of-plane shearing of a fiber
cross section
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avg.

CFRP

CLT

consis.

CPT

DOF

FEA

GPa

GFRP

Hz

kg

Transverse lamina shear modulus for

in-plane shearing of a fiber cross
section

Plate side length

Plate thickness

Fiber volume fraction

In-plane shear strain

Out-of-plane shear strains

In-plane extensional strains

Fiber orientation angle with

respect to one plate side

In-plane lamina Poisson's ratios

Transverse lamina Poisson's ratio

Average mass density

In-plane extensional stresses

In-plane shear stress

Out-of-plane shear stresses

ABBREVIATIONS

Average

Carbon fiber-reinforced plastic

Classical lamination theory

Consistent

Classical plate theory

Degree(s)-of-freedom

Finite Element Analysis

Gigapascals

Glass fiber-reinforced plastic

Hertz

Kilograms
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m Meters

mm Millimeters

params. Parameters

psi Pounds (force) per square inch

ref. Reference (s)

RMS Root-mean-square

sym Midplane-symmetric

BACKGROUND

Anisotropic plate analysis is more difficult and involves more

variables and parameters than isotropic plate analysis. The impor-

tance of accounting for transverse shear flexibility in relatively

thin composite laminates is discussed in the next section. The ways

by which the CQUAD4 addresses these difficulties are also briefly

described.

TRANSVERSE SHEAR DEFORMATION ISSUES

In composite plate mechanics, the counterpart of the well-known

Kirchhoff (Classical plate) theory (CPT) for isotropic plates is the

so-called "Classical Lamination Theory" (CLT). The two theories

invoke the same kinematic assumptions regarding the deformation of

the plate with respect to its middle surface; that is, sections

originally planar and perpendicular to the middle surface remain

planar and perpendicular in the deformed state. The mathematical

development of CLT occupies much of the text by Jones (Ref. 6). The

reader should consult this (or some other) text for detailed

exposition of CLT assumptions and derivation of the CLT equations.

The accuracy of the Kirchhoff kinematic assumption in isotropic

plate mechanics degrades when the plate thickness becomes signifi-

cant compared to its span length. For isotropic metallic plates,

transverse shear-stiffness-governed transverse deflection becomes

significant relative to flexural deflection when the span length-to-

thickness ratio (L/t) is sufficiently small. An idea of required

smallness can be gained from the discussion of "corrected" plate

flexural waves in Chapter II, Section 3b of Cremer, Heckl, and

Ungar (Ref. 7). They show, for a uniformly thick plate composed of

an isotropic material, that transverse shear effects decrease flex-

ural wavespeed by ten percent when the flexural wavelength is about

six times the plate thickness. For one-half wavelength over a plate

span length, this limitation translates to an L/t ratio of 3.

In the case of high modulus composite plates, an analogous

limitation of the adequacy of CLT is encountered at larger L/t.

This more stringent limit arises because the ratio of effective

laminate extensional elastic modulus to shear modulus is a key fac-



tor (other than section geometry) governing the magnitude of shear
deformation relative to flexure. A rough idea of limiting L/t
ratios for the adequacy of CLT for composite plates follows from
insertion of some "ballpark" ratios of effective laminate extension-
al and transverse shear moduli for GFRP and CFRP into the approxi-
mate expression for shear-corrected plate flexural wavespeed found
on page 115 of Reference 7. Using Eli / Gg_ = 13 for GFRP and 125
for CFRP, ten percent differences in Waves_ed arise for L/t of 6.75

and 20.9, respectively. (A comparable modulus ratio for isotropic

materials is 2.6). These ad hoc assessments are qualitatively corro-

borated by static examples found in section 6.5 of Reference 6. In

the problem of cylindrical bending of a CFRP strip with Eli / Gg_ =
125, maximum static deflection predicted by CLT is twenty _erce_

smaller than the true shear-corrected solution at L/t = 20.

The low frequency composite plate vibration literature is domi-

nated by evaluation of methods for account of transverse (interlami-

nar) shear in prediction of natural vibration frequencies and modal

deflections. The inadequacies of CLT even for fundamental plate

frequencies are repeatedly demonstrated in the literature for L/t's

of 5 or i0. Many approaches have been developed to provide finite

element-based plate formulations to handle through-thickness stress

fields for arbitrary L/t. In these complex formulations, transverse

normal stresses are no longer assumed to be zero, transverse shear

stresses are constrained to be zero on upper and lower laminate

surfaces, and shear stress continuity between laminae is maintained.

As a result, sections perpendicular to the plate midplane rotate

with respect to the midplane and warp out of a planar configuration.

The plate finite elements simulating through-thickness stress

fields in laminates are, obviously, quite sophisticated. Tables III

and VI of Mallikarjuna and Kant (Ref. 8) provide a good flavor for

the performance of some higher-order approaches for reckoning with

the effect of transverse shear and normal strains in plate vibration

frequency prediction. Table III shows that CLT provides reasonable

fundamental frequency predictions for a simply-supported CFRP angle-

ply plate for L/t at and above 20. Even for such highly anisotropic

plates, the complications of very complex high-order transverse

shear theories, necessary for laminate strength and structural

integrity problems, are not justified in vibration problems unless

L/t is less than about 20, or if short-wavelength (high frequency)
vibration modes are of interest.

The NASTRAN CQUAD4 membrane and bending element embodies the

assumptions of CLT, but contains first-order corrections for trans-

verse shear flexibility. When the CQUAD4 is used to model homogen-

eous plates, transverse shear strains vary linearly with the thick-

ness coordinate, and zero shear stress and strain boundary condi-

tions on upper and lower plate surfaces are not satisfied. The

shear energy implied by the linear distribution is corrected by a

multiplicative constant to produce the energy implied by the true

quadratic distribution. As a result of these assumptions, sections

perpendicular to the plate midplane are allowed to rotate with
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respect to the midplane, but remain straight when the plate is in
the deflected state. This ad hoc transverse shear correction ex-
tends the element's range of validity to thicker homogeneous plates,
but is not acceptable for inhomogeneous layered plates.

When modeling inhomogeneous plates composed of orthotropic
layers, a quadratic transverse shear strain distribution is assumed
in each layer of the CQUAD4 element. Interlaminar shear strains are

matched at lamina interfaces, and zero shear stress boundary condi-
tions are enforced on the upper- and lower-most lamina surfaces.

However, the through-thickness normal stress is assumed to be zero,

and complete consistency between the strain-displacement equations
for in-plane direct strain and transverse shear strain is not main-

tained. The CQUAD4 is thus seen to overcome the limitations of CLT

for laminated plates, but does not represent all aspects of the

kinematics of three-dimensional continua taking place in relatively
thick laminates.

The CQUAD4 element is discussed in more depth in the following
section.

THE CQUAD4 ELEMENT

The CQUAD4 is a four-noded planar element possessing membrane,

flexural, and transverse shear stiffness. In the case of layered

plates, individual laminae are not modeled explicitly; rather,

equivalent stiffness matrices for the plate as a whole are defined.

Each lamina is assumed to be in a state of plane stress, and the

laminae are presumed to be perfectly bonded by infinitesimally thin

non-shear-deformable layers. Each lamina is assumed to be specially

orthotropic, with six independent elastic moduli when through-

thickness direct stresses and strains are ignored. Any alignment of
lamina fiber axis with respect to the local element coordinate

system can be accomodated. Hence, any layup or stacking sequence

can be handled (unidirectional, cross-ply, regular or irregular

angle-ply). Layups unsymmetric with respect to plate midplane can

also be modeled, as membrane-bending coupling is accounted for when

it occurs. Each lamina may also be composed of a different ortho-

tropic material, if desired.

The element's stiffness matrix terms for determining in-plane

displacements and flexural rotations as a function of imposed forces

and moments arise from CLT assumptions. The CQUAD4's force-versus

strain equations for membrane, flexural, and membrane-flexure coup-

ling (Ref. 4) are identical to those developed in sections 2.1

through 2.6 of Reference 6. The kinematic assumptions regarding in-
plane and flexural strains and displacements follow classical

assumptions and require no explanatory remarks here. Reference 4

documents the force-versus strain matrix terms for transverse shear

strains. These are based on overall element equilibrium, continuity

of transverse shear between adjacent laminae, and satisfaction of

zero shear strain and stress boundary conditions on the upper- and

lower-most laminate facings. As mentioned earlier, the strain-

versus displacement matrix is based on the assumption that through-
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thickness planar sections rotate with respect to the plate midsur-

face and also distort out of planes originally perpendicular to the

midsurface.

The CQUAD4 is an isoparametric element, whose displacement

fields are interpolated through space by linear variations of in-

plane and transverse displacements (and rotations about midsurface)

between grid points. The associated in-plane strains are constant

between grid points but vary linearly with the thickness coordinate.

However, transverse shear strain varies quadratically through each

lamina thickness.

Those who use the CQUAD4 to model fiber-reinforced composite

plates must realize that the input elastic moduli are effective

moduli for a particular fiber-matrix combination. There are many

different fibers in use (glass, carbon, kevlar, and boron are exam-

ples) and many resins or matrix materials, each of which has their

own unique elastic moduli. Although matrix resins are usually con-

sidered to be isotropic, fibers have distinct extensional, trans-

verse, and shear moduli. The effective in-plane moduli of an ortho-

tropic continuum defined to be equivalent to the actual inhomogen-

eous fiber and resin system are (sometimes nonlinear) functions of

the extensional, transverse, and shear moduli of the fiber, the

extensional and shear moduli of the resin, and the Poisson's ratios

of the fiber and resin. The fraction of the lamina volume occupied

by fiber material is an important variable defining the magnitude of

effective in-plane lamina moduli. Some strength-of-materials rela-

tionships defining effective lamina in-plane moduli as a function of
constituent matrix and fiber moduli and fiber volume fraction are

developed in sections 3.1 and 3.2 of reference 6. Reference 9 pro-

vides a handy tabulation of effective lamina elastic moduli under

the assumption of a transversely isotropic lamina. Chamis provides

formulas for effective out-of-plane shear moduli as well as the more

commonly reported in-plane extension and shear moduli.

APPROACH

Specifics of the present vibration modeling study are now
described.

PLATE VIBRATION SPECIMENS

It was desired that the validity of the CQUAD4 be proven by

comparison to numerical results obtained independently by other

researchers, and to experimental data, if possible. Lin, Ni, and

Adams (Ref. I0,II) and Xiao, Lin, and Ju (Ref. 12) have published

experimental data and finite element computations for the lowest six

vibration modes of square CFRP and GFRP plates for free, uncon-

strained boundary conditions. They measured and computed both natu-

ral frequencies and damping loss factors, which makes their work

almost uniquely complete and thorough. Reference ii contains data

for nine plates repeating that for four plates treated in reference

I0. Reference 12 revisits three previously examined plates with a
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more refined finite element formulation allowing plane sections to

rotate and warp, with consistent correction of all strain-displace-

ment relations for these kinematic conditions. This paper contains

data for one additional new plate, making a total of ten unique

plates in all (four CFRP and six GFRP). Refinement of their finite

element method (Ref. 12) improved correlation of their predictions
with measurements.

The geometric and material parameters of the ten plates studied

by Lin et. al. and Xiao et. al. are listed (in SI units) in Table I.

The parameters given in reference 12 for plates 770 and 772 are

inconsistent with those reported in reference II. The NASTRAN study

confirmed that the side lengths, thicknesses, average mass

densities, and fiber volume fractions given for plates 770 and 772

in reference ii are the correct values. Further correlation of

plate parameters, frequencies, and mode shapes between references

10-12 revealed accidental reversal of mode shape plot labels in ref-

erence ii. In addition, two unidirectional GFRP plates of different

size are reported in references Ii and 12 with the identification

number 761. (They are herein distinguished from the other as 761L

and 761X). These discrepancies initially caused much confusion, but
the author is confident that the data in Table 1 is correct.

Some features of these plate specimens are notable. All of

them are square, and have L/t ratios in the vicinity of i00 to 150.

Even though such L/t would seem to be in the range of applicability

of CLT, Xiao et. al. show that CLT, which totally ignores transverse

shear deformations, overestimates natural frequencies by factors as

high as sixteen percent over a theory with first-order shear correc-

tion. All of the laminates listed in Table 1 are symmetric about

the plate midplane, eliminating flexure/extension coupling effects.

Five plates (GFRP specimens 734, 761(L), 761(X) and CFRP specimens

762 and 764) have "specially orthotropic" lamina (all fibers aligned

with the plate sides). For these plates, there is no coupling

between in-plane extension and in-plane shearing, so their vibration

mode shapes have nodal lines more or less parallel with the plate

edges. The other five plates (765, 769, 771, 770, 772) have at

least some plies with fibers angled relative to plate edges, pro-
viding more complex mode shapes.

All plates were tested with "free" edges (supported by soft

foam rubber strips) and numerically analyzed with zero-constraint

boundary conditions. (Although many practical design problems of

interest would involve plate structures with boundary constraints,

this feature eliminates uncertainties about which boundary degrees-

of-freedom (DOF) to constrain to obtain "simply supported" edges).

An iterative technique was used to obtain natural frequencies and

modal damping loss factors. First, the specimens were excited into

steady-state vibration by an electrodynamic shaker, and approximate
resonance frequencies were determined. Nodal lines for each excited

natural mode were located by the classical Chladni sand pattern

technique. Then, for each mode of interest, locations of the

support strips were then adjusted to align with nodal lines. A

transient excitation technique was then used to obtain more precise
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estimates of resonance frequencies and modal damping loss factors.

LAMINA MATERIAL PROPERTIES

Effective in-plane lamina elastic moduli are reported in Lin
et. al. and Xiao et. al. These are listed in Table 2, in both SI
and English units. These moduli pertain to a lamina microstructure
where half of the total ply volume is occupied by fibers and half by
the matrix. For each plate analyzed here, the moduli input to
NASTRANmust be adjusted up or down from these nominal values,

according to the measured fiber volume fraction (Vf) for each plate.

In general, the moduli vary nonlinearly with Vf, bQt experimentally-

verified semi-emplrlcal equations are availabl_ for determining Vf-
adjusted moduli. References 10-12 reported only the nominal moduIi

in Table 2, but provided a literature source (Ref. 13) for accom-

plishing the adjustments.

For orthotropic laminae in a state of plane stress (in the 1-2

plane), the only independent engineering moduli are E , E , G

and _.^. The additional Poisson's ratio _21 must s_isf_2the 12'
relati6_ship:

_)12 / Ell = _21 / E22

The NASTRAN CQUAD4 element enforces this constraint on 12_I (Ref.

4). With these moduli, all in-plane strain and stress components

are defined by the CLT. However, the NASTRAN CQUAD4 element also

requires, as input, nonzero transverse shear moduli G._ and G_3,
associated with out-of-plane shearing, which are not _ecifie_ or

required in CLT. Fortunately, fiber-reinforced lamina may often be

assumed to be "transversely isotropic" in analysis of composite

structures, as implied by reference 9. This means that if the

lamina lies in the 1-2 plane, and the fibers are aligned in the l-

direction, then the transverse shear modulus GI_ is equal to the
in-plane shear modulus G._. The transverse sh_r modulus associated

with shearing of the matrix "around" the fibers and distortion of

the fiber in a plane perpendicular to its axis (G2_) remains to be
determined. To clarify these matters, the stress _nd strain compo-

nents for a transversely isotropic lamina with zero direct stress

normal to the lamina are illustrated in Figure i.

Lin et. al. and Xiao et. al. did not report either of the

transverse shear moduli used in their analyses. Educated guesses

had to be made for both the CFRP and GFRP G . Reference 8 provides
nondimensional elastic moduli for a CFRP-Ii_ material which are

closely satisfied by the in-plane parameters for the CFRP in Table

2. According to reference 8, Gg_ should equal 0.2E_9. This implied

value of Gg_ was used in the pr_ent CFRP plate anaI_ses, based on

fiber volu_ fraction-adjusted E92. For the glass fiber lamina, G_

= 0.6GI_ was assumed, based on i_-house experience with such mater =-
ials. _he assumed out-of-plane moduli are indicated in the "notes"

section of Table 2. G23 could also be estimated by methods reported
in reference 9.
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Table 3 contains lamina elastic moduli for each of the ten

plates, after adjustment of the nominal moduli in Table 2 for fiber

volume fraction. Lin et. al. did not correct the in-plane Poisson's

ratio for fiber volume fraction, even though Ni and Adams show that

it decreases appreciably for increasing V_. Lin et. al. claim that

accounting for this decrease had no significant effect on their

calculated natural vibration frequencies. We match their assumption

by keeping _)'2 constant at 0.3 for all ten plates. In general,

I)12 should b_ adjusted for Vf.

ASSUMPTIONS REGARDING LAMINATE BEHAVIOR

The kinematic assumptions of the CQUAD4 element have been dis-

cussed previously; namely, that planar sections perpendicular to the

plate midplane can rotate and warp relative to the midplane. NAS-

TRAN-computed natural frequencies for CQUAD4 plate idealizations

will, subsequently, be compared to some CLT predictions (Ref. 12)

and to the FEA predictions of Lin et. al. (Ref. ii) and Xiao et. al.

(Ref. 12) These three approaches differ in accuracy, and it is

important to understand how the NASTRAN predictions should compare

with them. Kinematic assumptions are discussed first.

As discussed previously, CLT totally ignores any transverse

shear deformation effect, and will always predict lower-order

vibration frequencies which are too high for laminates with low L/t

and high extensional-to-shear modulus ratios. In terms of through-

thickness lamina kinematics, CLT prescribes linear variations of

direct and in-plane shear strains, and zero transverse shear

strains. The kinematic assumptions of Lin et. al. (Ref. ii) and

within the CQUAD4 (Ref. 4) are identical, and imply linear through-

thickness variations of direct and in-plane shear strains and

quadratic through-thickness variations of transverse shear strains,

with zero shear stress boundary conditions on the upper- and lower-

most lamina facings satisfied. However, this thick plate-type

theory is only an approximation; consistent correction of al__!l

strain-displacement relationships when cross-section warping is

allowed requires cubic through-thickness variations of direct and

in-plane shear strains. Xiao et. al. (Ref. 12) include this consi-

derable complication in their plate-type FEA formulation, which can

be understood as a special case of three-dimensional elasticity.

From an understanding of kinematic assumptions alone, CQUAD4

composite plate idealizations should provide natural frequency

estimates that are (I), more accurate than CLT, (2) as accurate as

the Lin et. al. predictions, and (3) less accurate than the Xiao et.

al. predictions. However, other factors will influence the com-

parisons between FEA-predicted frequencies; particularly, the

polynomial form of the interpolation functions expressing element

displacement fields in terms of grid point displacements, and the

mass matrix formulation (consistent or lumped). The CQUAD4 utilizes

linear interpolation functions with respect to the element's four

grid points. Lin et. al. do not specify the interpolation func-
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tions used in their "8-node 40-degree-of-freedom" elements, although

they can be guessed to be of at least quadratic order.

NASTRAN ANALYSES

The results of the NASTRAN computations are now compared to

the calculations and experimental data in references 10-12.

FEATURES OF THE NASTRAN PLATE IDEALIZATIONS

Lin et. al. and Xiao et. al. employed a 6-by-6 mesh of 8-noded

isoparametric rectangular elements in all of their plate FEA ideali-

zations. Each element possessed 40 DOF, (5 per grid point), imply-

ing that all rotations about axes normal to the plate surface were

constrained. As in the CQUAD4, they applied a numerical condition-

ing factor to transverse shear stiffness terms to eliminate excess-

ive shear stiffness ("shear locking"); a consequence of numerical

integration of element stiffness. The NASTRAN CQUAD4 elements also

have five DOF per node, with normal axis rotation constraints app-

lied, and are also conditioned to avoid shear locking.

The CQUAD4 differs from the Lin and Xiao et. al. elements in

one important way; they are 4-noded isoparametric quadrilaterals and

thus have linear interpolation of in-plane displacements between

grid points instead of quadratic interpolation. Thus, although the

Lin et. al. element is kinematically similar to the CQUAD4 as far as

through-thickness shear effects are concerned, the elements' assumed

in-plane displacement fields differ as a function of the plate's in-

plane dimensions. The Xiao et. al. element provides for a more com-

plex through-thickness displacement and strain distribution than the

Lin et. al. element and the CQUAD4, as discussed earlier.

The NASTRAN CQUAD4 meshes used here consist of a 12-by-12 grid

of elements, with 169 grid points and 845 unconstrained DOF. These

idealizations are roughly comparable to the Lin and Xiao models in

modal displacement field interpolation quality. Three of the plates

were initially modeled with 6-by-6 meshes with 49 grid points and

245 DOF, but these idealizations did not provide sufficient mode

shape resolution to be acceptable. The Lin and Xiao et. al. mesh is

compared to the NASTRAN mesh in Figure 2.

The edges of the NASTRAN plate idealizations were unconstrain-

ed, and all rotations about axes normal to the plate surface were

suppressed. A SUPORT input record imposing fictitious constraints

on all five remaining DOF on one grid point was used to provide

zero-frequency rigid body modes. The FEER eigenmode extraction

method was used in NASTRAN Rigid Format 3 (normal modes analysis),

with the lowest twenty modes requested. The Inverse Power method

was employed in some trial runs; it provided about half as many

frequencies as FEER but at more than two times greater run time and

cost. All computations were performed by RPK COSMIC NASTRAN, 1990

release, installed on the DTRC CRAY X-MP supercomputer in a COS

operating system environment. Typically, 22 to 24 modes were ex-

tracted by FEER in 23 to 24 CP seconds.
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Lin and Xiao do not mention whether they used lumped or con-

sistent mass matrix formulations. Both options were considered in

the NASTRAN study.

NASTRAN MODAL ANALYSIS RESULTS

Initial NASTRAN analyses utilized nominal elastic moduli based

on fifty percent fiber volume fraction. Although predicted frequen-

cies were in the general vicinity of measured values, they did not

compare with CLT results, the Lin et. al. results, or the Xiao et.

al. results in the expected way. That is, the CQUAD4 did not neces-

sarily appear more accurate than CLT and less accurate than the Xiao

et. al. approach. It suffices to say that fiber volume fraction

strongly influences effective moduli and must be accounted for to

obtain credible composite plate modal predictions.

Relative NASTRAN frequency predictions are compared with CLT,

Lin's, and Xiao's results in Table 4. There is, in general, good

correlation with measurements, and NASTRAN's frequency error trends

are comparable to those in the Lin et. al. analyses (especially

those for a consistent mass matrix). The fact that effective lamina

elastic moduli must be corrected for fiber volume fraction to obtain

credible natural frequency predictions for laminated composite

plates is emphasized in Table 5, where root-mean-square (RMS) values

of frequency prediction percentage error are tabulated for the six

modes of each plate. RMS error is seen to be significantly reduced
in most cases when fiber volume fraction-corrected lamina moduli are

employed. The major exception is plate 765, which still suffers

from some large unknown systematic error making predicted frequen-

cies far too low. Results for plate 770 were not much changed since

actual Vf was already close to one-half. RMS errors for plates 764
and 771 _emain at ten percent and above However, the major part of

these high errors involves their fundamental modes, which can be

easily impacted by test article boundary constraint. (The Linet.

al. analysis also predicted overly high frequencies for these

modes).

Absolute measured and predicted natural frequencies are summar-

ized in Table 6, which lists Lin et. al. measurements and computa-

tions and the NASTRAN CQUAD4 idealization results for lumped and

consistent mass. Mode-by-mode and average percentage frequency

prediction errors are listed in Table 7 along with mode shape de-

scriptions. The NASTRAN lumped mass model gives the lowest average

error in seven of ten cases, and the NASTRAN consistent mass model

is best in two of the three remaining cases. (Interestingly, the

consistent mass model errors roughly parallel those of the Lin

model). Lin et. al. calculations are "best" only for plate 765, for

which the author believes a parameter was misdocumented in reference

ii. In six of the nine plates other than 765, NASTRAN predicts

frequencies that are all at or within ten percent of measured. In

the other three, errors are greater than ten percent only for the

first and/or second modes, and these roughly parallel the errors in

the Lin et. al. analyses.
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Plots of chosen NASTRAN-computed eigenmodes are presented in

Figures 3-8. Plate 761X does not appear since its mode shapes are

identical to plate 761L, and plates 764, 770, and 772 are omitted

since their mode shapes are very similar to those of plates 734,

769, and 771. The nodal patterns can be confirmed as being identi-

cal to those measured. (Figures 3-8 should be compared to Tables 8,

7, i0, 9, ii, and 3, respectively, of reference ii). Finer details

of some NASTRAN modes, particularly the veering of nodal lines away

from each other in plates with angled plies, are more easily seen in

colored graphics terminal displays. Only the plates with specially

orthotropic ply layups (734, 761L, 761X, 762, 764) exhibit eigen-

modes with nodal lines more or less parallel to the plate sides.

Most of these modes are essentially beam-like flexural modes with or

without phase changes at one symmetry plane. In contrast, plates

with angled plies possess a larger number of more complex plate

flexural modes.

The natural frequency results obtained via NASTRAN CQUAD4 plate

element idealizations in these simple composite plate vibration

problems are judged to be acceptably accurate for engineering pur-

poses. The element performs as well as alternative formulations of

similar accuracy (the Lin et. al. element) for both GFRP and highly

anisotropic CFRP plates for a variety of ply geometries. Potential

users of the element must be cautioned that this validation effort

concerned plates with L/t ratios in the vicinity of i00 to 150. For

such L/t, modeling of laminate transverse shear stiffness helps to

eke out a few percent in low-order natural frequency accuracy, but

is not absolutely essential to obtain rough-cut results. A more

critical test of the CQUAD4 for modeling highly anisotropic lami-

nates would have to concern plates with L/t lower than, say, about

50.

It should be mentioned that Lin et. al. and Xiao et. al. also

measured and computed the specific damping capacities (2_ times the

modal loss factor) of each mode. Their FEA program was capable of

modeling orthotropic lamina damping properties. No attempt was made

to predict modal damping factors in this effort, as NASTRAN is curr-

ently restricted to the modeling of isotropic material damping.

SUMMARY

The performance of the NASTRAN CQUAD4 membrane and plate

element in analysis of undamped natural vibration modes of thin

fiber-reinforced composite plates has been evaluated. The element

provides natural frequency estimates that are comparable in accura-

cy to alternative formulations, and, in most cases, deviate by less

than ten percent from experimentally measured frequencies. The

predictions lie within roughly equal accuracy bounds for the two

material types treated (GFRP and CFRP), and for the ply layups

considered (unidirectional, cross-ply, angle-ply). Effective

elastic lamina moduli had to be adjusted for measured fiber volume

fraction to attain this level of accuracy; nominal moduli at fifty

percent volume fraction gave significantly inferior frequency

estimates. The lumped mass option provided more accurate frequen-
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cies than the consistent mass option.

This evaluation concerned only plates with L/t ratios on the

order of I00 to 150. Since the CQUAD4 utilizes first-order correc-

tions for transverse laminate shear stiffness, the element should

provide useful frequency estimates for plate-like structures with

lower L/t. For plates with L/t below 20, consideration should be

given to idealizing with 3-D solid elements.

Based on the observation that natural frequencies and mode

shapes are predicted with acceptable engineering accuracy, it is

concluded that the CQUAD4 should be a useful and accurate element

for transient shock and steady-state vibration analysis of Naval

ship structures.
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TabLe 1. Geometric and material parameters

of ten fiber-reinforced plastic

plates tested and analyzed by

Lin el. at. and Xiao et. at.

I I
PLate i Plate Plate PLate I Fiber Mass

fdent. I Material Length Thickness I Velum Density

.u_r I L t I Fraction _ 3

I (mm) (mm) I Vf (kg/m)
I........ I ................................ I....... -..............

734

761L

761X

765

769

771

762

764

770

GFRP

GFRP

GFRP

GFRP

GFRP

GFRP

CFRP

CFRP

EFRP

227.0

182.75

249.0

230.5

224.2

204.6

178.0

234.5

215.0

2.05

1.64

2.28

1.45

1.37

2.11

1.58

2.12

1.62

0.451

0.568

0.550

0.607

0.621

0.592

0.516

0.342

0.494

1813.9

1971.0

1924.7

2023.6

2041.7

2003.5

1566.0

1446.2

1551.4

I I I
I .umber I Ply Source I

I of I Layup of I
I Plies I (degrees; see Data I

I I Figure 2) (ref. no.] I

-I ........ I..........................
8

8

8

8

8

12

8

8

8

[O/90/O/9O]

[0]

COl

[45/-45/45/-45]

[0/90/45/-453

[10/-60/60) 21
[0]

[019010190]

[01901451-45]

10,11,12
11

12

11

11

10,11

11

10,11

11,12

772 CFRP 215.6 2.02 0.618 1636.4 12 [(0/-60/60) 2] 10,11,12
..................................................................................................... i

NOTE: All laminates are symmetric about plate midptana. I

I

TabLe 2. Nominal in-plane effective elastic

moduti of GFRP and CFRP Laminae at

fifty percent fiber volume fraction

I
I Material Fiber

i type

I
I

GFRP "Glass"

CFRP HM'S

DX210 .....

epoxy

Resin

type

DX210

epoxy
OX210

epoxy

I I I

Ell I E22 I G12 1_12
I I I

¢opa) I (psi, I c_Pa) I (psi) I (oPa) I (psi) I
I/lO) I I/lO) I I/lO) I

....... I....... I....... I ....... I....... I ....... I.........
37.78 5.48 10.90 1.58 4.91 0.71 0.3

172.7 25.0 7.20 1.04 3.76 0.55 0.3

3.21 0.47 3.21 0.47 1.20 0.17 0.34

I ......................................................................................

I NOTE: _ = 0.6(612) = 2.94 GPe is assumed for GFRP,
23 0.2(E22) 1.44 GPa is assumed for CFRP.I 23

I
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Table 3. In-plane and out-of-plane effective elastic

n_luli for GFRP and CFRP laminae, _djusted

for fiber volume fraction of each plate

I I I

I Plate I Plate I Fiber Ell E22, G12,

J ldent. [ Nateriat J Volume E33 G13
I Nulflc)er I I Fraction (GPa)

I I I vf (GPa) (cPa)
I........ I .......... I .........................................

734

761L

761X

765

769

762

764

770

GFRP

GFRP

GFRP

GFRP

GFRP

GFRP

CFRP

CFRP

CFRP

CFRP

0.451

0.568

0.530

0.607

0.621

0.592

0.516

0.342

0.494

0.618

34.4

42.5

39.9

45.2

46.2

44.1

178.0

119.0

171.0

213.0

9.7

13.0

12.0

14.2

14.4

14.0

7.4

5.6

7.1

8.7

4.3

5.7

5.2

6.5

6.7

6.2

3.9

2.6

3.7

5.0

I I

I _z3 I
I I
I (_a) I
I I

I .......... I
2.6

3.4

3.1

3.9

4.0

3.7

1.5

1.1

1.4

1.7

NOTE: "1)12 = 0.30 is assumed for all laminates, with no Vf adjustment.

Table 4. Comparison of natural frequencies from final

NASTRAN CQUA04 idealizations and predictions of

Lin and Xiao et. at. to measured data

Plate Node

Number Nuni0er

and

params.

734 1

GFRP

8 plies 2

[019O101 3

90] sym
4

Lit =

110.7 5

6

.......... i ........

Natural Frequency Ratios, (computed / measured)

CLT I Lin at. Xiao I NASTRAN I NASTRAN

I at. ref. et. at. [ 12-by-12 I 12-by-12

ref. 12 I 11,12 ref. 12 I lumped I consis.

.......... I..................... I.......... I ..........

1.09

1.20

1.11

1.12

1.11

1.20 1.07

1.00

1.03

1.05

1.04

1.06

0.98 1.03

1.00 0.94

1.00 0.98

1.03 0.99

1.01 1.00

1.01 0.98

1.05

0.97

1.01

1.03

1.03

1.04
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Table 4. (Continued)

Plate Mode Natural Frequency Ratios, (computed / measured)

Number N_r

and CLT [in Xiao NASTRAN NASTRAN

parems, et. el. et. ai. 12-by-12 12-by-12

ref. 12 Per. 11 ref. 12 lumped consis.

.......... I ........ i ......................................................

761L

GFRP

8 plies

[0] sym

L/t =

111.4

761X

GFRP

8 plies

[0] sym

L/t =

109.2

765 I

GFRP

8 piles 2

[45/-45/ 3

451-45]

sym 4

Lit = 5

159.0

6

.......... i ........

I ....

2 ....

3 ....

4 ....

5 ....

6 ....

........ i ..........

1 1.18

2 1.20

3 1.20

4 1.08

5

6

1.13

1.00

1.05

1.00

1.04

1.03

1.11

0.97

1.02

0.94

0.99

0.97

1.13

1.00

1.05

0.97

1.02

1.03

.......... I .......... I.....................
1.09

1.08

1.08

0.99

1.10 1.02

1.14 1.03

0.98

1.00

0.98

0.99

0.99

0.99

1.10

1.02

1.05

0.94

0.98

0.95

1.11

1.05

I. 08

0.96

1.02

1.01

.......... I ................................ I ..........
.... I.09

.... 0.88

.... 0.95

.... 1.07

.... I .06

.... 1.02

.......... I ..........

0.82

0.65

0.68

O. 78

0.78

O. 72

0.83

0.67

0.70

0.81

0.81

0.77

.......... I .......... I.......... I
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Tabte 4. (Continued)

PLate Node

Number Number

and

params.

.......... i ........

769 1

GFRP

8 plies 2

[01901451 3

-45] sym

4

Lit =

163.6 5

6

I..........I........I..........
771 1 ....

GFRP

12 plies

[0/-60/60

/0/-60/60]

sym

L/t =

97.0

762

CFRP

8 plies

[0] sym

L/t =

112.7

2 ....

3 ....

4 ....

5 ....

6 ....

........ I ..........

1 ....

2 ....

3 ....

4 ....

.......... i ........

Natural Frequency Ratios, (computed / measured)

CLT Lin Xiao I NASTRAN NASTRAN

et. a[. et. at. J 12-by-12 12-by-12

ref. 12 ref.11 ref. 12 I Lumped consis.

0.95

1.08

0.98

1.01

1.04

1.01

.... 0.93

.... I.03

.... 0.92

.... 0.96

.... 0.99

.... 0.94

1.20 I .... I .19

I
1.17 I .... 1.13

I
0.98 I .... 0.93

I
1.06 I .... 1.02

I
1.07 j .... 1,03 1,07

I
1.03 I .... 0.95 1.01

I
........:-I.....................I.........

1.03

1.10

1.06

1.11

.... 1.10

.... 1.03

.......... j ..........

1.01

1.02

0.99

1.01

0.95

1.06

0.94

0.99

1.03

0,99

1.20

1.16

0.96

1.06

1.02

1.05

1.04

1.08

.... 1.00 1.07

.... 1.00 1.03

.......... I.......... I ..........

-I

7O



TabLe 4. (Continued)

PLate Mode

Number Number

a_

_rauls.

764 1

CFRP

8 plies 2

[0/90/0/ 3

9O] sym
4

L/t =

110.6

Natural Frequency Ratios, (computed

CLT

ref. 12

5 .... 1.00

6 .... 0.98

............................ i ..........

Lin I Xiso

el. at. I et. at.

ref. 11 I ref. 12

.......... i ..........

0.84 ....

0.97 ....

0.97 ....

0.99 ....

770

CFRP

8 plies

[019O145

/-45] sym

Lit =

132.7

1.14 1.11

1.16

1.15

1.07

1.15

1.11

.......... i........ I..........

1.11

1.09

1.00

772

CFRP

12 plies

1.08

1.03

[01-60160

101-60160]

sym

Lit =

106.7

1 1.07

2 1.05

3 1.07

4 1.10

5 1.09

6 1.09

/ measured)

NASTRAN I NASTRAN

12-by-12 I 12-by-12

lumped I consis.
.......... i ..........

0.81

0.95

0.93

0.97

0.97

.... 0.92

.......... i ....................

0.82

0.97

0.96

0.99

1.00

0.97

1.00 1.04

1.00 0.99

1.01 1.01

1.00 1.02

1.00 1.02

0.99 0.97

1.05

1.03

1.04

1.06

1.05

1.03

.......... I .......... I..........
1.08 1.10 1.12

1.06 1.09 1.12

1.00 1.06 1.10

1.00 0.98 1.01

0.99 1.06 1.09

1.00 0.99 1.04

1.05

1.02

1.04

1.06

1.05

1.03

71



Table 5. Root-rr_en-square errors in NASTRAN-computed natural

frequencies for ten composite plates for uncorrected

and corrected effective lamina elastic moduli

I
PLate I RMS error in NkSTRAN-predicted frequency

Number I

J With uncorrected With corrected

I moduti (percent) moduti (percent)

.......... i ......................... , ..........................

734

761L

761X

765

769

771

762

764

770

772

5.3

8.8

10.7

34.4

15.6

9.7

2.1

11.9

7.1

9.6

2.9

5.5

5.7

26.7

5.4

10.1

0.8

9.6

6.6

2.5

Table 6. Con_oarison of absolute measured end predicted

con_x)site plate natural frequencies of Lin et. at.

with NASTRANCQUAD4con_outations

PLate Mode Natural Frequencies (Hz)

N_r N_r

and Lin et. el., I NASTRAN NASTRAN

l_r_. ref. 10-12 I 12-by-12 12-by-12

measured computed I Lumped consis.

.......... I ........ I ..................... I.....................
734

GFRP

8 plies

[0/90/0/

903 sym

Lit =

110.7

1

2

3

4

5

6

62.2

131.4

159.2

180.5

200.1

326.7

66.4

131.6

164.5

189.8

208.9

34 7.2

64.2

123.8

156.4

177.9

199.2

321.2

65.0

127.4

160.9

184.0

206.0

338.4
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Table 6. (Continued)

Plate Mode

Number Number

and

params.

761L

GFRP

8 plies

[0] sym

L/t =

111.4

761X 1

GFRP

8 pries 2

[03 sym 3

L/t = 4

109.2

5

6

m ..........

765

GFRP

8 plies

[45/-45/

45/-45]

sym

L/t =

159.0

I ..........

Natural Frequencies (Hz)

measured computed I tumped

........ I ..................... I .........

1 78.1 88.1 86.9

2 131.2 130.7 127.1

3 211.5 222.2 215.0

4 246.0 246. I 232. I

5

6

Lin et. at., I NASTRAN I NASTRAN

ref. 10-12 I 12-by-12 I 12-by-12

I consis.

-m ..........

88.0

130.7

222.2

238.7

287.1 297.8 284.1 294.2

362.6 374.4 352.9 3_.0

.......... I .......... i .......... ' ..........

57.2

90.3

148.7

181.6

211.2

270.5

62.5

97.4

160.5

180.2

215.9

278.8

62.9

92.5

155.9

170.4

207.5

256.9

63.7

95.2

161.2

175.2

214.9

272.9

........ I .......... I .......... m ....................

1 84.0

2 114.0

3 157.0

4 199.3

5 213.4

6 346.6

........ i ..........

91.3

99.9

149.5

212.6

226.7

353.5

68.7 69.6

74.4 76.6

107.1 110.0

156.3 161.6

167.2 173.4

249.6 265.5

..........I..........I..........

73



Table 6. (Continued)

Plate

NL_t_r

and

par a_r_. ref

measured

I..........I........I..........
769

GFRP

8 plies

[0/90/45/

-45]sym

L/t =

163.6

Mode Natural Frequencies (Hz)

Number

lin et. al., I NASTRAN NASTRAN

I0-12 J 12-by-12 12-by-12

co_qputed I t UnMPed cons iS.

" ......... I .......... = ..........

I 58.2

2 91.6

3 125.5

4 150.4

5 156.8

6 277.3

55.5

99.0

123.0

151.3

163.0

279.4

54.4 55.1

94.5 97.2

115.2 118.4

143.8 148.7

155.7 161.1

260.5 274.4

I..........I........I..........,..........i..........'..........
771

GFRP

12 plies

[0/-60/60

/0/-60/60]

sym

L/t =

97.0

90.4 108.2

144.7 168.6

222.3 218.6

264.1 280.2

281.1 301.0

492.6 505.2

107.4

163.6

206.6

270.6

290.9

469.7

108.8

168.4

212.4

279.8

300.9

499.3

..........I........I..........,..........I.....................
762

CFRP

8 plies

[0] sym

L/t :

112.7

4

5

6

81.5

107.4

196.6

295.5

382.5

531.0

83.6

118.4

207.8

329.4

419.8

546.9

82.2

109.4

198.4

299.2

383.6

530.6

83.3

112.5

205.1

318.2

410.2

545.9

.......... I ..............................l !
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TabLe 6. (Continued)

PLate Node Maturer Frequencies (Hz)

Number Number

end Lin et. at., MASTRAN MASTRAN

parms, ref. 0-12 12-by- 12 12-by- 12

measured computed Lumped consis.

.................. i .......... | .................... | ..........

764

CFRP

8 plies

[0190101

90] sym

L/t =

110.6

68.9 58.1 55.5

218.9 213.3 206.9

251.2 243.5 233.3

305.4 302.5 294.9

323.5 324.2 312.7

452.5 441.6 414.5

*1 ..........

85.9

220.6

2?3.9

293.6

322.0 348.4 3/,0.6

496.7 512.2 490.0

.......... | .......... I ..........

.......... i........ I ....................

770

CFRP

8 plies

[0/90/45

1-45] sym

L/t =

132.7

772

CFRP

12 plies

[0/-60/60

101-60160]

sym

Lit =

106.7

1

2

3

4

5

6

1

2

3

4

5

6

77.8 86.3

202.7 224.5

258.0 280.4

298.7 298.8

156.6

272.0

372.3

407.8

486.1

779.0

165.2 162.7

279.1 269.9

387.8 376.9

432.6 416.7

511.4 494.7

800.4 752.6

56.2

212.8

241.5

303.4

323.7

437.8

87.0

226.9

283.4

302.0

352.4

517.3

165.0

277.6

387.6

431.1

512.0

799.4
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Table 7, Node-by-n_de tabulation of MASTRAM CQUAD4 idealization

frequency prediction errors, with averaged percentage

errors and eigenmode descriptions

Plate

Number

and

_raflts.

734

GFRP

8 plies

[0190101

90]sym

L/t =

110.7

Mode

Number

I

2

3

4

5

6

Percentage errors Eigenmode

description

Lin et. I NASTRAN NASTRAN

el. I lZ-by-lZ lZ-_-lZ
I lumped consis.

evg •

+7

0

+3

+5

+4

+6

I ........

I avg.

.......... i ........

761X 1

GFRP

8 plies

[0] sym

L/t =

109.2

+3 +5

-6 -3

-2 +1

1 +3

0 +3

-2 +4

.......... j .....................

+ 4.2 I " 1.3 + 2.2

shear and flexure

2-noded beat, abt.

weak axis

2-noded beam abt.

strong axis

2-noded beam abt,

weak axis + shear

2-noded beam abt.

strong axis + shear

fundamental

plate flexure

761L 1 + 13 + 11 + 13 shear end flexure

GFRP

8 plies 2 0 - 3 0 2-noded beam abt.

weak axis

[0] sym 3 + 5 + 2 + 5 2-noded beam abt.

weak axis + shear

L/t = 4 0 - 6 - 3 2-noded beam abt.

111.4 strong axis

5 + 4 - 1 + 2 2-noded beam abt,

strong axis + shear

6 + 3 - 3 + 3 3-noded beam abt.

weak axi s

................................

+ 4.2 0 + 3.3

+ 9 + 10 + 11 shear and flexure

2 + 8 + 2 + 5 2-noded beam abt.

weak axis

3 + 8 + 5 + 8 2-noded beam abt.

weak axis + shear

4 1 - 6 - 4 2-noded beam abt.

strong axis

5 + 2 - 2 + 2 2-noded beam abt.

strong axis + shear

6 + 3 - 5 + 1 3-noded beam abt.

weak axis

I........ I................................ I
I avg. I +4s +0.7 +Is I

.......... I........ I................................ I .....................
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TabLe 7. (Continued)

P[ate Node Percentage errors E i genmode

Number Number description

and Lin et. NASTRAN I NASTRAN

paralns, at. 12-_-12 I 12-_-12

Lumped I consis.
.......... I........ I..................... I .......... I.....................

765

GFRP

8 pties

[451-45/

451-45]

sym

Lit =

159.0

769

GFRP

8 plies

[01901451

-45] sym

L/t =

163.6

771

GFRP

12 plies

[0/-60/60

1/0/-6o/60]
sym

Lit =

97.0

1

2

3

4

5

6

avg.

1

2

3

4

5

6

avg.

1

2

3

4

+9

- 12

-5

+7

+6

+2

18 - 17

- 35 - 33

- 32 - 30

- 22 - 19

- 22 - 19

- 28 - 23

+ 1.2 - 26.2 23.5

plate ftexural

plate fLexurat

plate flexurat

plate ftexurat

plate ftexural

plate ftexurat

.......... I .......... I ................................

-5

+8

-2

+1

+4

+1

-7 -5

+3 +6

-8 "6

-4 -I

"I +3

"6 - I

..........I..........I..........
+ 1.2 - 3.8 0.7

shear and flexure

2-noded beam abt.

weak axis

2-noded beam abt.

strong axis

plate ftexurat

plate flexura[

plate ftexurat

+ 20 + 19 + 20 shear and flexure

+ 13

-7

+2

+ 17

-2

+6

5 +7 +3 +7

6 +3 -5 +1

I........ I .......... I.....................
I avg. I +8-5 I +4-2 +7.7

+ 16 2-noded beam abt.

weak axis

- 4 2-noded beam abt.

strong axis

+ 6 plate ftexurat

plate flexurat

3-noded beam abt.

weak axis

.......... I ..................... I.......... I........ I.......... I..........
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Table 7. (Continued)

Plate Mode

Number Number

and

params.

762 1

CFRP

8 pt ies 2

[0] sym 3

Lit = 4

112.7

5

6

I ........ I

1 avg.

I.......... I ........
764 1

CFRP

8 plies

[0190101

90] sym

Lit =

110.6

Percentage errors Eigenmode

description

Lin et. NASTRAN I NASTRAN

at. 12-by-12 I 12-by- 12

fumed I consis.
.......... ! .......... I .......... ! .....................

+ 3 + 1 + 2 shear and flexure

+ 10

+6

+11

+ 10

+3

+ 7.2

- 16

-3

-3

1

+2 +5

- 1 +4

+1 +8

0 +7

0 +3

.......... t.......... I
+ 0.5 I + 4.8

.......... i ..........

19 - 18

-5 -3

-7 -4

-3 -I

2

3

4

5 0 -3 0

6 -2 -8 3

I........I..........I....................
I avg. - 4.2 - 7.5 - 4.8

.......... i ..........I .......... f ..................

770 1 + 11

CFRP

8 plies

[0/90/45

/-45]sym

L/t =

132.7

2 +11

3 +9

4 0

5 +8

6 +3

+ 10

+9

+6

-2

+6

- I

-I

+ 12

+ 12

+ 10

+I

+9

+4

I........I..........I.....................
I avg. I + 7.0 I +4.7 +8.0

I .......... I........ I.......... I..........

2-noded beam abt.

weak axis

2-noded beam abt.

weak axis + shear

3-noded beam abt.

weak axis

3-noded beam abt.

weak axis + shear

2-noded beam abt.

strong axis

shear and ftexure

2-noded beam abt.

weak axis

2-noded beam abt.

weak axis + shear

2-noded beam abt.

strong axis

2-noded beam abt.

strong axis + shear

fundamental

plate flexure

shear and flexure

2-noded beam abt.

weak axis

plate ftexurat

2-noded beam abt.

strong axis

plate ftexurat

plate ftexurat

.......... i .....................
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Table 7. (Continued)

modePlate

Numloer N_r

and I.in et. J NASTRAN

_rm. at. I 12-by- 12

I t-.pad
.................. I .......... m ..........

772

CFRP

12 plies

[0/-00/00

101-60160]

sym

Percentage errors Ei 9enmode

description

NASTRAN

12-by-12

consis.

.......... I ..................... I
+4

- 1

+1

+2

+2

-3

+ 0.8

Lit =

106.7

1 +5

2 +3

3 +4

4 +6

5 +5

6 +3

I ........ I ..........
I svg. I +4.3
t I

+5

+2

+4

+6

+5

+3

+ 4.2

I

shear and flexure

2-noded beam abt.

weak axis

2-noded beam abt.

atron9 axis

plate flexurat

plate flexural

3-noded beam abt.

weak axis
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ASSUMPTIONS

(i). Plane stress (o_ = 0),
but nonzero transverse
shear strains

(2). _221 = _212(E2/EI)

(3) . 2-3 plane is plane of

transverse isotropy,

hence G13 = GI2

r23' _/ 2

1 T S1 ' 1 -

Figure i. Stress and strain components for a
fiber-reinforced lamina
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Notes: Positive X-axis:
Positive Y-axis:

fiber orientation angle of 0 degrees

fiber orientation angle of 90 degrees

8-noded rectangles

,/./
4-noded CQUAD4 's

,/2
e l | it'_ ! I a ! !

6-by-6 mesh

X

12-by-12 mesh

X

(i) Lin and Xiao et. al.
idealization

(ii) NASTRAN CQUAD4
idealization

Figure 2. Plate element meshes used by Lin and

Xiao et. al. and in NASTRAN analyses
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Fig. 3a. Plate 734, Mode 1

V

PtFrTE rtD. XIF[],LIN,.JL,I [0/cJO/O/c-:JO]5 _ (liFe'l_--I_)

c_l.Lrtl(]_l 3 - EII_J./R.LE I:lq:J,_/SI5

C9[_ 6;_t_ fl:El_ G. GgflflE+OS ]

Fig 3b. Plate 734, Mode 2

Figure 3. NASTRAN-computed eigenmodes for plate 734
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!_. XIII_,I, IN, JU [O/gO/O/SO_S _ (ILZ-it_le)
S3.JJTli_ • -- EIGS_NJJ[ II_I_SlII
jar" G" I'IN |: li_/ i. I_Sl I['I-OG3

Fig. 3c. Plate 734, Mode 3

[cr l:m I0;||1_/ 1.40Sg-+OG]

Fig. 3d. Plate 734, Mode 4

Figure 3. (Continued)
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vS
N[3, XIFI:,Llrt,,.liJ [_/O/IJ03S I;F "T:FI (la--BY--12)

SDJ.ITII::]I_I I -- EI_I_,I:I.LE R'i:L,_ISIS

(E G:I.I_I I I ;EI[_J I .7'llIBgE+Ot; "j

Fig. 3e. Plate 734, Mode 5

PL.ql"E ND. X|FEI,L1N,JIJ (:0,_JO/O/I:JO:]S GFFIP (IL:-EY--I_)

SI2JUT|{]_I | -- EII;B_Ia=I.I.E II_IRUIxj|S

IrE G: FIt I;:I:Ei_J '11. EBimE+IDI;2

Fig. 3f. Plate 734, Mode 6

Figure 3. (Continued)

84



PIJqT'E 7 _LINolql,lqOq'6 (ISlB4) C(O_O"I I_=lqP'_li_._B_'-Ie)

S[:LLITIC]N _1 -- EIG_#.4qUJE RNqL'_J;iS
re=" 7"m ?:EI_J i_ . S_II|E+0S'I

Fig. 4a. Plate 761L, Mode 1

Pt..qTIE 7 ,NI,R[]I=ff_ (1_41) [(0)0"1 Gq=IP (IE-,-EV-IE)
SOLLJTICIN 3 - EIG_4=LJ..E i_NRI...%_IS
rcr 0: m O : EIG_J S. |4EEE+O51

Fig 4b. Plate 761L, Mode 2

Figure 4. NASTRAN-computed eigenmodes for plate 761L
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SI1AJTIC]_ 3 -- EII_'_,,q::V..._E I::V'e:L_'_IS

Fig. 4c. Plate 761L, Mode 3

R.RT£ 7 ,NI,ROR'S (Igg4) r(0)B) R E--E_--IE)

SDL.UTIOr,.I 3 - EI(;_',MRLLIE RNRL,'.t_I¢:

C cx" IO:HN 10,: EI_,P I . EU?OE.H3G'z

Fig. 4d. Plate 761L, Mode 4

Figure 4. (Continued)
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Fig. 4e. Plate 761L, Mode 5

Fig. 4f. Plate 761L, Mode 6

Figure 4. (Continued)
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Fig. 5a. Plate 765, Mode 1
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Fig 5b. Plate 765, Mode 2

Figure 5. NASTRAN-computed eigenmodes for plate 765



7'_l: OF I..17_,Nl,li:_Olr_ (IS84) [4S,-_,,_,*_53S _ (1_:=.-I_-I_)
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£SC B:/'_ I" EIE;V 3. _4_11Ee_53

Fig. 5c. Plate 765, Mode 3
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Fig. 5d. Plate 765, Mode 4

Figure 5. (Continued)
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Fig. 5e. Plate 765, Mode 5
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Fig. 5f. Plate 765, Mode 6

Figure 5. (Continued)
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Fig. 6a. Plate 769, Mode 1
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rc_' 8: /'IN 8: EJGIJ i_. II(_?IE+OS3

Fig 6b. Plate 769, Mode 2

Figure 6. NASTRAN-computed eigenmodes for plate 769
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Fig. 6c. Plate 769, Mode 3
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Fig. 6d. Plate 769, Mode 4

Figure 6. (Continued)
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Fig. 6e. Plate 769, Mode 5
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Fig. 6f. Plate 769, Mode 6

Figure 6. (Continued)
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Fig. 7a. Plate 771, Mode 1
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Fig 7b. Plate 771, Mode 2

Figure 7. NASTRAN-computed eigenmodes for plate 771
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Fig. 7c. Plate 771, Mode 3
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Fig. 7d. Plate 771, Mode 4

Figure 7. (Continued)
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Fig. 7e. Plate 771, Mode 5
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Fig. 7f. Plate 771, Mode 6

Figure 7. (Continued)
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Fig. 8a. Plate 762, Mode 1

JO'l VlB OF LIN, NIoKI:I'6 r(O)B3 I::FRP (le--I_h-i;e)
¢Joi.J.Jlrll:_l ! - EIGB_ARI..LE FIPI_IS

Fig 8b. Plate 762, Mode 2

Figure 8. NASTRAN-computed eigenmodes for plate 762
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Fig. 8c. Plate 762, Mode 3
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Fig. 8d. Plate 762, Mode 4

Figure 8. (Continued)
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Fig. 8e. Plate 762, Mode 5

rIO OF LIN, Ni,_ [(0)8] _ (liFOIsl_-I ll)
S[31.1./T,¢_ ]i -- EIGB_k4q[.I.E Iq'_I._ISlS

Fig. 8f. Plate 762, Mode 6

Figure 8. (Continued)

99



N92-24330

A CASE OF POOR SUBSTRUCTURE DIAGNOSTICS

Thomas G. Butler

BUTLER ANALYSES

Substructuring is a powerful tool. As with any powerful

tool the options for managing a Job are legion. On the other

hand, the NASTRAN Manuals in the Substructurlng area are all

geared toward instant success, but the solution paths are fraught

with many traps for human error. Thus, the probability of suf-

fering a fatal abort is high. In such circumstances, the neces-

sity for diagnostics that are user friendly is paramount. This

paper is written in the spirit of improving the diagnostics as

well as the documentation in one area where the author felt he

was backed into a blind corner as a result of his having com-

mitted a data oversight. This topic will be aired by referring

to an analysis of a particular structure.

The structure, under discussion, used a number of local

coordinate systems that simplified the preparation of input data.

The principal features of this problem are introduced Dy refer-

ence to a series of figures.

Figure 1 illustrates a PILOT model of the basic component

substructure of a full scale structure. This pilot model

was used to explore the error that developed in the true

structure. In preparation for the investigation into the

difficulty that was encountered during a "COMBINE" operation,

the pilot basic was cloned 4 times into CLONA, CLONB, CLONC
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and CLOND.

Figure 2 tabulates the bulk data for the 5 coordinate systems

that were used in the Dasic component. Coordinate system "5"

is cylindrical and was used for its core. Coordinate systems

"50, 60, 70 & 80" are rectangular and were used [or the four

arms with their local X axes pointing outward at zero de-

grees, 90, 180 and 270 respectively. Each clone retained its

own copy of the set of five local coordinate systems. Thus,

the Substructure Operating File (SOF) at this point had a

complement of 5 x 5 = 25 coordinate systems to catalog. The

multiplicity of coordinate systems was at the root of the

fatal error which erupted.

Figure 3 illustrates two separate "COMBINE" operations

amongst the substructures. In the first "COMBINE", point 51

of P/S CLONC Joins with point 71 of P/S CLOND. In the second
1

"COMBINE", point 61 of P/S BASE joins with point 81 of P/S

CLONA, while point 61 of P/S CLONA joins with point 81 of P/S

CLONB.

During the subsequent linking of substructures, the points that

were combined each had their own local coordinate systems. Well

this doesn't seem to be a problem, because NASTRAN has a wonder-

ful module called CSTM (Coordinate System Transformation Matrix)

which keeps track of all transformations amongst a host of coor-

dinate systems. So the user is disarmed into thinking that

I. The abbreviation P/S, meaning pseudo-structure, is used as a

generic term for any number of different kinds of substructures:

basic, or clones, or condensations, or combined.
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NASTRAN can handle anything dealing with coordinates. This was

especially true in this case, because, just prior to the abort

being described here, a mistake in translating one of the cloned

structures was corrected in response to a diagnostic message that

declared that points, which were targeted to be joined, were not

within tolerance. The error was that one of the translations,

defined on a "TRANS" card was off by an eighth of an inch. After

the correction a message was issued declaring that all points in

the "COMBINE" operation were within tolerance. So the reaction

to a subsequent message to the effect that the local coordinate

systems were incompatible seemed ridiculous, because NASTRAN had

no difficulty in locating the points in space and in pronouncing

that they were within tolerance with the coordinate systems that

were corrected.

As it turned out there are a number of different coor-

dinate systmes that have to be dealt with here, and the "TRANS"

set that was Just corrected - though at first suspected - was not

at the hub of the problem. The problem arises not in the align-

ment, which the TRANS coordinates deal with, but in the sub-

sequent mating, which depends of the local DISPLACEMENT coor-

dinates of points that are being brought together.

As a matter of general substructuring principle, when a

group of substructures is assembled, any place where parts are

linked can involve contributions from 2 or more individuals. At

any such place the set of points are merged into a resultant

single point. What is not told in the manuals is that the resul-

tant point needs to refer to just one coordinate system. If all

of the merging points refer to a common coordinate system, there

is no problem. But, when each point has its own local displace-

ment coordinate system, NASTRAN aborts and issues a message #6528

102



SUBSTRUCTURE DIAGNOSTICS

saying that incompatible local coordinate systems have been

found. But if the user thinks that the problem has Just been

corrected, the characterization of the coordinates in message

#6528 as being "incompatible" doesn't make sense and he becomes

convinced that there must be a bug in NASTRAN and the user is to

be absolved of blame. Hls certitude of blamelessness is further

reenforced by the details that are supplied wlth the diagnostic

message. The text of the complete message, shown in Figure 4,

refers to local coordinate systems I and i0. But if you look at

Figure 2, you can verify that no coordinate system was numbered 1

or i0. This seems to further corroborate that NASTRAN got some

tables mixed up and is in need of having a bug straightened out.

Gordon Chan of the UNISYS Support Group came to my rescue

and published the transformation matrices for the coordinate

systems that were involved. The reasnn that NAS_T,'AN aborted was

rluL buc_u_ u£ an error in the code. It deliberately compared

the local coordinates at the combining point and found that one

pair of signs was aligned while the signs of two other axes were

of opposite in sign. The message referring to coordinate

systems resulted from a partially completed execution of the

COMBINE command. It had reassinged coordinate system ID's in

terms of its own internal bookkeeping system, Dut it phrased the

diagnostic in terms of its own scheme of ID's. Unformtunately,

that part of its completed operation was never output, because of

the abortion, so the diagnostic which was trying to be helpful

was confusing the situation even further. However, NASTRAN

appeared to be operating properly.

Double checking of coordinate systems 50 through 80 found

them to be error free. As a further check, the manual method was
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compared to the automatic method of combining. The same diagnos-

tic regarding incompatible local coordinates showed up in this

automatic trial as well, but this time referred to pairs of

coorainates with other sets of strange identifications; i.e. 2 &

9 and 7 & 14. That diagnostic is shown in Figure 5. Finally a

vague, misty fragment seemed to Kindle in the back of my brain

that had something to do with the data card called "GTRAN'. I

pored over the Substructure Section of Chapter 1 of the User's

Manual to uncover a hint on the use of GTRAN. No help. Nor was

the Theoretical Manual any assistance. Figure 1 shows that in

the example of the manual COMBINE, points 51 and 71 refer to

coordinate systems 50 & 70 respectively. NASTRAN finds that

these two systems do not align with each other and so both cannot

be allowed to represent that point after a merge. The situation

must be reconciled and NASTRAN needs guidance from the user. The

avenue by which the user exerts his preference is through the use

of GTRAN. The bulk data explanation of GTRAN left many unanswer-

ed questions. The only thing left to do was to resort to the old

"black Dox" method of finding out how it behaved. GTRAN was

tried out under its options. One option is to refer all connect-

ing points to the overall basic system, and the other is to refer

them to the system defined by the TRANS entry. Both worked!

Figure 6 shows an excerpt of the output from a successful manual

run using GTRAN. It repeats the message about points within

tolerance, then gives the tabulation of the resulting points

after the COMBINE operation, showing those degrees of freedom

that were merged into a single point. This connectivity summary

does not, however, refer to any coordlnate system. Coordinate ID

information is published subsequently in the BGSS. In this case

the BGSS shows that it was arbitrated by referring both points to

the "0" system (the overall basic).
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Figure 7 is an excerpt of a summary of connectivities for

the automatic COMBINE case after a proper use of GTRAN. It shows

a similar set of connections as in the manual case but amongst

BASE, CLONA, and CLONB.

There were many unhappy features relating to documenta-

tion in this encounter: (i) the diagnostic itself, (2) the

explanation of the diagnostic in Chapter 6, (3) the guide to

modeling in Chapter i, (4) the explanatory notes in the bulk

data, and (5) the Theoretical Manual. It is incumbent upon the

manuals to acquaint the user with what its needs are so that he

can supply necessary data. But in this instance the documenta-

tion gave NO hint of how NASTRAN operated internally, so the user

was set adrift by a diagnostic that impugns his data as INCOMPAT-

IBLE. For all he knew NASTRAN had some sort of internal default

to meet the arbitration needs. Without the help of documenta-

tion, the user must look into the code to find out what NASTRAN

is doing in subroutine "COMBI". He does not know from the above

documentary sources whether NASTRAN takes a default when not

supplied wlth specific direction or aborts. The situation is

this. NASTRAN first determines that the points that it is di-

rected to llnk are collocated. This can be done by temporarily

transforming all locations to the overall basic system. But now

when it wants to trim all connecting points to a single point, it

must assign some coordinate system to that resulting point. But

which one? Dave Hertlng and the savants that helped him with the

architecture of SUBSTRUCTURING were aware of the problem and

provided for it with the GTRAN card. But as is often the case

with programming, the documentation did not coach the user into

anticipating the need to guide NASTRAN in the assignment of a

coordinate system to a common point.
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Rather than overcome the obstacle with the provision of a

GTRAN card and then to continue with the analysis of the struc-

ture only, I chose to share this experience at the Colloquium and

to volunteer a supplement to the documentation so that any

subsequent user can be well guided when he encounters message

#6528. Figure 8 shows the recommended diagnostic message.

Figure 9 shows the recommended supplement to the "COMBINE"

section of Chapter 1 on modeling with substructures, and in

Chapter 6 on explanation of diagnostics. No suggestions are

offered for the Theoretical Manual, because it is currently

awaiting a major revision.

I extend my deep appreciation to Gordon Chan for his help

in unearthing this problem and for his modification of the dlaq-

nostic message in the code. The new release will have the re-

vised diagnostic message. In addition Gordon Chan added a print-

out of the transformation matrices of the coordinate systems that

are indicted.

My hope is that this small effort will save future users

much time and frustration when faced with an unsuccessful COMBINE

operation in their substructuring work.
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Figure i. Plot of Basic Component BASE of Pilot Model.
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CORD2C 5 0 0.0 0.0 0.0 0.0 0.0 10.0

+CYLN 10.0 0.0 10.0

CORD2R 50 0 I0.0 0.0 I0.0 i0.0 -I0.0 I0.0

+RAYO 20.0 -i0.0 I0.0

CORD2R 60 0 0.0 I0.0 I0.0 I0.0 i0.0 i0.0

+RAYgO I0.0 20.0 I0.0

CORD2R 70 0 -I0.0 0.0 I0.0 -I0.0 I0.0 I0.0

+RAY180 -20.0 I0.0 I0.0

CORD2R 80 0 0.0 -I0.0 i0.0 -I0.0 -I0.0 I0.0

+RAY270 -I0.0 -20.0 I0.0

+CYLN

+RAYO

+RAY90

+RAY18

+RAY27

Figure 2. Coordinate Systems in Component BASE
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7/

|

4O

71

TRANS

8o

Figure 3. Connection Diagram of Two COMBINE Operations
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USER INFORMATION MESSAGE 6516,

ALL MANUAL CONNECTIONS SPECIFIED ARE

ALLOWABLE WITH RESPECT TO TOLER.

USER FATAL MESSAGE 6528,

INCOMPATABLE LOCAL COORDINATE SYSTEMS

HAVE BEEN FOUND. CONNECTION OF POINTS

IS IMPOSSIBLE, SUMMARY FOLLOWS.

**************************************

THE FOLLOWING MISMATCHED LOCAL COORDINATE

SYSTEMS (CSTM) HAVE BEEN FOUND FOR

LOCAL COORDINATE SYSTEM ID NO.

PSEUDOSTRUCTURE ID NO. 1

INTERNAL POINT NO. 2

***************************************

LOCAL COORDINATE SYSTEM ID NO.

PSEUDOSTRUCTURE ID NO. 2

INTERNAL POINT NO. 14

USER FATAL MESSAGE 6537, MODULE COMB1
TERMINATING DUE TO ABOVE ERRORS.

I0

Figure 4. Diagnostic From Abort of Manual COMBINE
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SUMMARY OF AUTOMATICALLY GENERATED CONNECTIONS

CONNECTED CONNECTION PSEUDOSTRUCTURE NAMES

DOF CODE BASE CLONA CLONB

123456 12 7 15 0

123456 12 5 13 0

123456 12 3 II 0

123456 23 0 7 15

123456 23 0 5 13
123456 23 0 3 Ii

USER FATAL MESSAGE 6528,

INCOMPATABLE LOCAL COORDINATE SYSTEMS

HAVE BEEN FOUND. CONNECTION OF POINTS

IS IMPOSSIBLE, SUMMARY FOLLOWS.

THE FOLLOWING MISMATCHED LOCAL COORDINATE

SYSTEMS (CSTM) HAVE BEEN FOUND FOR

LOCAL COORDINATE SYSTEM ID NO.

PSEUDOSTRUCTURE ID NO. 1

INTERNAL POINT NO. 5

2

************************************************

LOCAL COORDINATE SYSTEM ID NO.

PSEUDOSTRUCTURE ID NO. 2

INTERNAL POINT NO. 13

THE FOLLOWING MISMATCHED LOCAL COORDINATE

SYSTEMS (CSTM) HAVE BEEN FOUND FOR

LOCAL COORDINATE SYSTEM ID NO.

PSEUDOSTRUCTURE ID NO. 2

INTERNAL POINT NO. 5

************************************************

LOCAL COORDINATE SYSTEM ID NO.

PSEUDOSTRUCTURE ID NO. 3

INTERNAL POINT NO. 13

14

USER FATAL MESSAGE 6537, MODULE COMB1

TERMINATING DUE TO ABOVE ERRORS.

Figure 5. Diagnostic From Abort of Automatic COMBINE
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USER INFORMATION MESSAGE 6516,
ALL MANUAL CONNECTIONS SPECIFIED ARE

ALLOWABLE WITH RESPECT TO TOLER.

SUMMARY OF PSEUDOSTRUCTURE CONNECTIVITIES

INTERNAL INTERNAL DEGREES OF

POINT NO DOF NO FREEDOM

PSEUDOSTRUCTURE NAMES

CLONC CLOND

16 89 123456 CLONC

72

17 95 13 CLONC CLOND

51 71

18 97 123456 CLOND

51

Figure 6

Summary of Connectivities After GTRAN Use in Manual COMBINE
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SUMMARY OF AUTOMATICALLY GENERATED CONNECTIONS

CONNECTED CONNECTION PSEUDOSTRUCTURE
DOF CODE BASE CLONA

123456 12 7 15
123456 12 5 13

123456 12 3 11
123456 23 0 7
123456 23 0 5

123456 23 0 3

NAMES
CLONB
0

0
0

15
13

11

SUMMARY OF PSEUDOSTRUCTURE CONNECTIVITIES

INTERNAL INTERNAL DEGREES OF *
POINT NO DOF NO FREEDOM BASE

PSEUDOSTRUCTURE NAMES

CLONA CLONB

16 89 123456 BASE
72

17 95 13 BASE CLONA

61 81

18 97 123456 CLONA
52

33 183 123456 CLONA
2

34 189 13 CLONA CLONB
61 81

35 191 123456 CLONB
52

Figure 7

Summary of Connectlvltles After GTRAN Use in Automatic COMBINE
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USER FATAL MESSAGE 6528

INCOMPATABLE LOCAL COORDINATE SYSTEMS HAVE BEEN FOUND. COMPLETTION OF

CONNECTION IS IMPOSSIBLE. SUGGEST USE OF "GTRAN". SUMMARY IN TERMS OF

JUST-FORMED INTERNAL FREEDOMS AND INTERNAL COORDINATE SYSTEM ID'S PER THE

EQSS & BGSS FOLLOW:

Figure 8. Revised Fatal Diagnostic Message 6528
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USER' S MANUAL CHAPTER I.

ADD THE FOLLOWING TEXT TO SUPPLEMENT THE TOPIC OF THE "COMBINE" OPERATION ON

SUBSTRUCTURING IN THE NASTRAN USER'S MANUAL, PAGE 1.10-39 (14 LINES UP FROM

THE BOTTOM OF THE PAGE.

WHEN POINTS ARE ALIGNED FOR COMBINING AFTER A TRANSLATION AND/OR ROTATION OF

COMPONENTS, THEY BECOME A SINGLE POINT UPON LINKING. IF THE POINTS ABOUT TO

BE CONNECTED REFER TO DIFFERENT LOCAL COORDINATE SYSTEMS, THE SUBSTRUCTURE
ROUTINE "COMB1" DOES NOT IMPOSE A DEFAULT CORRDINATE SYSTEM FOR THE POINT.

SUCH A SITUATION MUST BE ANTICIPATED BY THE ANALYST TO AVOID A FATAL ABORTION.

THE ANALYST CAN ASSIGN A DISPLACEMENT COORDIANTE SYSTEM TO THE RESULTING POINT

THROUGH THE USE OF THE GTRAN CARD. IT OFFERS 3 OPTIONS: (I) TRANSFORM TO THE

OVERALL BASIC SYSTEM, (2) NO TRANSFORMATION, AND (3) TRANSFORM TO THE COORDI-
NATE SYSTEM WHICH WAS DEFINED ON THE SELECTED "TRAMS" CARD.

USER'S MANUAL CHAPTER 6.

ADD THE FOLLOWING TEXT AFTER THE FIRST SENTENCE OF DIAGNOSTIC MESSAGE 6528.

EACH POINT IS CARRYING ITS OWN LOCAL COORDINATE SYSTEM INTO THE "COMBINE'D"

POINT AND THEY HAVE BEEN FOUND TO BE DIFFERENTLY ALIGNED_ I.E.

INCOMPATABLE. THE USER IS REOUIRED TO ARBITRATE BETWEEN THE COMPETING

LOCAL COORDINATE SYSTEMS. HE IS ADVISED TO CONSIDER USING ONE/OR SEVERAL

"GTRAN" CARDS. (SEE PAGE 1.10-39 OF THE USER'S MANUAL.) HE IS FURTHER

ADVISED TO "DESTROY" THE PSEUDO-STRUCTURE DEFINED IN THE COMBINE OPERATION
IN ORDER TO REMOVE ANY PARTIALLY COMPLETED "COMBINE" DATA FROM THE SOF

(SUBSTRUCTURE OPERATING FILE), BEFORE RERUNNING THE "COMBINE" OPERATION.

Figure 9. Supplements to Documents in USER'S Manual
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ALTERNATIVE METHODS TO MODEL FRICTIONAL

CONTACT SURFACES USING NASTRAN

Joseph Hoang

GE Goverment Services, Houston, Texas

SUMMARY

Elongated (slotted) holes have been used extensively for the integration

of equipment into Spacelab racks. In the past, this type of interface has been

modelled assuming that (1) there is no slippage between contact surfaces, or

(il) there is no load transfer in the direction of the slot. Since the contact sur-

faces are bolted together, the contact friction provides a load path determined

by the normal applied force (bolt preload) and the coefficient of friction. This

paper examines three alternate methods that utilise spring elements, exter-

nally applied couples, and stress dependent elements to model the contacted

surfaces. Results of these methods are compared with results obtained from

methods that use GAP elements and rigid elements.

INTRODUCTION

Elongated holes have been used in the design of Spacdab Experiment Equipment

mounting provisions. This type of joint is employed where large tolerances are allowed

in one direction of the hole for the ease of integration. A simple way to model these

interfaces is to use RIGID elements with the assumption that two connecting grid points

are not moving against each other when loads are applied. Another common method is to

use RIGID elements with the degrees of freedom associated with the longitudinal direction

of the elongated hole released. When using this method, it is assumed that the joint did

not carry load in its slotted direction.

Due to the assumption involved, neither method yields realistic results. GAP dements

have been used to achieve better results. However, when large numbers of GAP dements

are used in a complex model, an unreasonably large amount of computer processing time

is required to solve the system and, hence, is not economical or practical.

In this paper, three alternative methods are investigated. The first method employs

a spring element with a spring rate equal to the maximum load at the connection divided

by the gap length. By using a spring element at the connection, the nonlinear frictional
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force developed at the gap is replaced by a spring force that increases proportionally with

gap distance. The second method used an externally applied couple to represent the

frictional forces at the two contacted surfaces. This method creates a local realization of

frictional forces when two grid points, representing two contacted surfaces, move against

each other. In the third method, two contacted surfaces are connected by elements with

stress-dependent material properties. The piecewise linear static analysis rigid format is

ultilized to solve element forces at these elements.

A simple stowage container and four supporting columns were developed to represent

a typical installation in a Spacelab rack. The container was integrated on supporting

columns using the above methods. The models were run on a SUN workstation using

CSA/NASTRAN. The results obtained from each method were then compared.

THEORY AND BACKGROUND

Figure la shows a typical elongated hole and Figure lb shows force vs. relative

displacement of an elongated hole. The force vs. displacement curves of other elements

are show_,,_ i_ _;_,:_,'_ 2 through 7.

From inspection, the stress dependent material element is the more appropriate ele-

ment to simulate elongated hole behavior because the GAP element, spring element and

coupled element would generate some error. A rigid element with all three translational

degrees of freedom coupled (R123) should be used only when the frictional force is greater

than the force at the connection. A rigid element with degrees of freedom associated with

the longitudinal direction of the hole released (R23) should be used when, the frictional

force and the displacement in elongated direction are small.
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Fig la Typical elongated hole Fig lb

y

orcevs displacement of elongated hole

Fig 2

v

orcevs displacement of R123 element Fig 3 Force

Iiii,ii_

iiiii--

vs displacement of R23 element

Iiiiiiii_

n.,iii-

Fig 4 Forcevs displacement of couple element

v

Fig 5 Fdrcevs displacement or sor_ngelement
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Fig. 6 Force

r

vs, displacement of GAP element Fig 7

v

orcevs displacemen[ of nonlinear element

1002 I004

1013 13

06 1008

1037 37 1017 17 20 1020

1001

41
44 1044

1005 1007

Fig. 8 Plot of test subject a simple box and four supported columns
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ANALYSIS AND RESULTS

A simple box is constructed using QUAD2 elements. It is supported by four columns

which were modelled using BAR elements. A plot of the structure is shown in Figure 8.

In the rear, the box is mounted on two rear columns at grid points 13, 24, 37, and 48

using rigid elements with all three translational degrees of freedom coupled. In front, the

box is mounted to the front left column at grid points 17 and 41 and to the front right

column at grid points 20, and 44, using a different integrating method. Gravitational loads

varying from 0.2g to 4.0g are applied to the model in the X-direction, which is parallel to

the slotted direction.

The material and properties of QUAD2 and BAR elements are chosen such that the

box is heavier and more flexible than the columns. Since the columns are much stiffer than

the box, displacement of the grid point on the column is small as compared to displacement

of the grid point on the box. Displacement of the rear panel is closed to the displacement

of rear columns because the rear panel interface points are mounted to the rear columns

by rigid elements with aJ] three translational degrees of freedom coupled. However, at

the frull_ panel, the relative displacement of front panel and front columns are greatly

dependent on the type of connecting elements used. It should also be noted that the single

point constraint forces developed at the front columns are also dependent on the amount

of load that has been transfered to the columns through the front connecting elements.

Properties of each type of connecting element are chosen in such a way that its de-

formation can follow the elongated hole displacement curve as close as possible. The gap

length and frictional force of the contacting surface were chosen arbitrarily at 0.5 inches

and 15.0 lbs respectively.

Displacement of the left front interfaces (grid points 17 and 41 were identical and

were tabulated in Table 1). The single point constraint force of the left front column (grid

points 1005 and 1006) are tabulated in Table 2. Table 3 shows the displacement of the

right front interfaces (grid points 20, and 44) while Table 4 shows a single point constraint

force of the right front column (grid points 1007 and 1008).
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DISCUSION

Examination of the displacement of the left and right front panels of the box and the

load distribution over four supporting columns indicates that types R123 and 1123 are the

two extreme cases. For rigid R123 types, the load was distributed evenly over four columns;

meanwhile, for rigid R23 types, the load was carried by the rear columns only, and the

box acts as a cantilever beam. The exact load distribution pattern is somewhere between

the boundary established by these two types of connections. With finer load increments,

the displacement curve of a stress dependent material element can be made to match the

displacement curve of an elongated hole and, therefore, used as a reference to evaluate

performance of other types of connections.

In general, static analysis with GAP elements and piecewise linear analysis employ

an iterative scheme for solution. ,,They are costly to run especially when models become

complex. For the problem at hand, the GAP element did not yield a corrected solution

when under tension load, meanwhile, stress dependent material elements did not perform

well when under compression. Therefore, these two types of elements were not suitable for

tuudel with multiple loading cases where the directions of the load at the interfaces are

often unknown.

A couple type connection shows the same characteristics as the R23 type, with the

displacement shifted due to externally applied couple. It is also difficult to use when the

direction of the loads at the connection is unknown. However, the solution can be obtained

with less computing time.

The solution for rigid elements and spring elements always contains some degree of

error, but can be obtained with less computing time, and can be used in problems involv-

ing multiple loading conditions. The spring rate can he adjusted to control the relative

displacement of the two connecting grid points.

RECOMMENDATION

It is recommended that for problems with multiple loading conditions, models should

be run first using R123 type connections. Then, for interfaces that develop forces larger

than the frictional forces of the elongated hole, the type R123 connection should be re-

placed with appropriate spring elements. This methodology yields reasonable results with

minimum computer run time.
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Hierarchical Tapered Bar Elements

Undergoing Axial Deformation

N. GaneJan and S. K. Thampl

GE Government Services, Houston, Temas

ABSTRACT: A method is described to model the dynamics of tapered

axial bars of various cross sections based on the well-known Cralg/Bampton
component mode synthesis technique. This element is formed in terms of
the static constraint modes and interface restrained normal modes. This is
in contrast with the finite elements as implemented in NASTRAN where the
interface restrained normal modes are neglected. These normal modes are
in terms of Bessel functions. Restoration of a few of these modes leads to

higher accuracy with fewer generalized coordinates. The proposed models
are hierarchical so that all lower order element matrices are embedded in

higher order element matrices. The advantages of this formulation compared
to standard NASTRAN truss element formulation are demonstrated through
simple numerical examples.

1. Introduction: Tapered bars and beams have high strength to weight ratios as well

as architectural advantages. They are frequently employed to model structures in di-

verse applications, such as ship masts, turbine blades, chimney structures or complex

frame constructions. NASA (Langley) has tested a truss structure which is made from

tapered members to be used in space applications [1]. The technical literature on tapered

beams is indeed vast with a long history [2-10]. Tapered beam finite elements are ei-

ther simple elements (e.g., Lindberg[2], Rouch/Kao[3]) having two degrees of freedom at

each end or higher order elements (e.g., Thomas/Dokumaci[4], To[5]) having more than

four degrees of freedom. Ovunck[6], Avakian/Beskos[7], Gupta[8], Banerjee/Williams[9]

and Spyrakos/Chen[10] have used frequency dependent finite elments in their analysis of

tapered bars. Banerjee/Williams[9] have developed exact dynamic stiffness matrices for

Bernoulli-Euler beams. However the approach in References [6-10] involves the unknown

frequencies of the overall structure. The general framework developed by Engels[ill and
applied in References [12-14] allows for the derivation of hierarchical finite elements for

any type of structural element. This approach does not require the prior knowledge of

system frequencies, thus overcoming the need for an iterative procedure to compute the

structural response. In the present paper, a dynamic finite element model for a certain

class of tapered bars with loads acting only in the axial direction is developed. The ele-

ment matrices are presented in parametric form and can be easily extended to formulate

the finite elments for a wide variety of tapered bars covering most practical cases. The

convergence properties of this dynamic finite element, when compared to the regular finite

element, are examined using numerical examples.

2. Assumed Modes Method: The Lagrangian elastic displacement vector e(z,y, z,t)

for a generic element can be written as the sum of two separate displacement vectors ei
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and i.

• = ez + i (I)

where e! is a quasi-static displacement vector due to the interface displacements qx and is

expressed as a ]/near combination of static constraint modes _i,

= qz (2)

The second part _ represents the remainder of the total displacement vector e. It is that

part of • which is measured relative to el by an absolute observer. Clearly, _ vanishes

at the ql coordinates and therefore can be expressed as a linear combination of assumed

modes qbwhich are restrained at those qx coordinates

}----@_ (3)

The vector _ represents a set of generalized coordinates to be determined as part of the

solution. One example of _ modes are the normal modes of the element E restrained at the

qx coordinates. It should be stressed that although restrained normal modes have often

unique advantages, they are only one of many possible sets. In fact, _ modes need only be

restricted to admissible functions that vanish at the qx coordinates. Substituting Eqs. (2)

/"}
and (3)into Eq. (1) yields

(4)

so that • is written in terms of a linear combination of two sets of assumed modes: (1)

static constraint modes and (2) interface restrained assumed modes. It should be noted

that the representation of • in Eq. (4) is complete in the sense that any degree of accuracy

is theoretically possible as long as enough _ modes are added.

In the standard consistent mass matrix approach, the elastic displacement vector e

over the element is represented as a linear combination of interpolation or shape functions.

In fact, these shape functions are identical to the static constraint modes @I and therefore e

is approximated by el as in Eq. (1). The standard finite element approach therefore totally

neglects the displacement _ in Eq. (1). Ignoring _ leads directly to a deterioration of the

modal content of a typical finite element model. One way to ensure better convergence

to a desired model fidelity is suggested by Eq. (4) and leads to dynamic finite element

models. Instead of totally neglecting the _ displacement, one could retain a limited number

of _ coordinates, thereby improving the mass and force distribution models. Of course,

adding _ coordinates also increases the order of the overall model. However, this approach

has three important advantages: (1) The model converges much faster, i.e., far fewer

degrees of freedom are necessary to attain comparable accuracy; (2) in principle, no further

subdivision of basic elements is necessary, thereby simplifying the finite element grid and

(3) the model is hierarchical and therefore has all the advantages associated with this

property. In addition, these finite element models are directly based on the assumed

modes method which provides a sound theoretical basis.
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In Reference [11] it is shown that for a linear elastic material, the element kinetic and

potential energies T and V can be written as

T= _q Mq, M= eT_bdm (5)
E

V = _q Kq, K = (B_b) TC(B_b) dV (6)

E

in which the matrix C is the material stiffness matrix and B contains the appropriate

partial derivatives in z,y and z. Futhermore, the matrices M and K represent the mass

and stiffness matrices of a generic finite element E. In partitioned form,

M = LMTN MNN J' 0 KNN (7)

where

E E E

KII = /(B¢I)TC(BqbI)dV, KNN = /(B-_)TC(B_)dV

(8)

(9)

and

E E

Note that the KIN partition is always zero, which means that no stiffness coupling exists

between ql and _.

At this point, a few remarks are in order. First, the matrices MII and Kll repre-
sent the standard finite element consistent mass and stiffness matrices for the element E.

The consistent mass matrix approach represents in fact a static condensation or Guyan

reduction whereby all noninterface degrees of freedom are eliminated. Secondly, if the in-

terface restrained normal modes are used for the columns of ¢, then the present approach

is identical to the Craig/Bampton component mode synthesis procedure as applied to a

finite element. It should be emphasized that the element E is generic. This means that

the proposed approach is valid, at least in theory, for any type of element. In the present

paper, this general procedure will be applied to the special case of the tapered bars.

3. Tapered Bars: The hierarchical stiffness and mass matrices of the tapered bar are

obtained by solving the governing equations of motion for displacement. Figure (I) repre-

sents linear tapered bar ab with a straight centroidal axis and the directions of the principal

axes being the same for all crossections. The cross sectional area A(z) is given by

(A(z)= Aa l +c (10)

where c = db/d,, - 1 and Ai, dl (i = a, b) denote the cross sectional area and the depth

respectively, c > -1 otherwise the beam tapers to zero between its ends and L is the

length of the bar.
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Although the formulation is valid for any n > 0, many

practical cases of tapered bars arise when n is one or two, see

Figure (2). If the geometrical properties of the element at both

ends are given, the shape function for n can be derived as

log(Ab/Aa) (11)
= log(db/d )

For bars of closed box or I-section of constant width and vary-

ing depth, n is not an integer and will vary slightly from E-

q. (10) at all = other than the two ends. But the deviations

are usually within one percent of the exact values.

L

Figure 1.

Tapered Element

4. Static Constraint Modes: Consider the axial bar element as illustrated in Fig-

ure (1). The bar is assumed to undergo vibration along its own axis and as a rigid body can

only move along that same axis. The interface displacements are defined as qz (t) = u(0, t)

and q2(t) = u(L, t), i.e., qz = [ qz q2 ]T and the displacement vector • is considered to have

only one component, i.e., u. Eq. (4) is therefore written as

m

(12)

(n- I ) t

o

(a) (DJ _c_ (d) (e)

1 i-._In=2)

d

(r] (hi (t) /11_

ELEVATION:

,)t

(all cases) d (I .c)a

PLANS:

(for (b). (el, (ell, (cJ),

(for (a), (f) & (t)) (h) & (Ill
(for (e))

l}

Figure 2. Sample Cross Sections
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The static constraint modes, _bi can be computed from the differential equation for

the axial deformation u at z from end a of the tapered bar,

where E is Young's modulus. Integration of Eq. (13) gives,

(13)

EA(z) d_ =CI (14)

Substituting for A(z) from Eq. (10) and setting _ = 1 4- c_ gives

du CIL 1

d_ EAoc C _

Integrating Eq. (15) again,

(15)

where

CIL

- k--27, f(_) + C_ (16)

1

f(_) ---- (n- I)_ n-1 for n _ 1 (17)

= In _ for n = 1

The appropriate boundary conditions for the computation of static constraint modes are

given by

ql =1, qz=O

ql -- 0, q2 -- 1 (18)

The resulting static constraint modes are

Ol -- f(_) -- f(1 + c) f(1) - f(_) (19)
f(1) - f(1 + c)' ¢_ - f(1) - f(l + c)

Note that these constraintmodes are in factthe shape functions used in the stiffnessmatrix

of the tapered bar.

At this point, enough information exists to compute MH and KH from Eqs. (8-9).

Indeed, for the tapered bar, the kinetic and potential energies T and V are given as

L L

T = _ pA(z) dz, Y = _ _ dz
0 0

(20)

Substituting Eq. (12)into Eq. (20) gives

L L

0 0

(21)
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When n - 1, the explicit expressions for KH and MII are defined as

c[11 11] rmlm12]K,, - ': , M. -
L 77I'21 171"22

(22)

where

pAaL [-21n2(1 + c)- 21n(1 + c) + c 2 + 2c]
roll = 4cln2( 1 + c)

pA, L [(c 2 -t- 2c -I- 2)ln(1 + c) - c2 - 2c] (23)
m12 -- Wit21 "" 4ch2(1 + c)

pA, L [2(1 + c)2(ln2(1 + c) - ln(1 + c)) + c2 + 2c]
m22 = 4tin2( 1 + c)

The counterpart expression for KH when n _ 1 is given as

KH = EA"c(n-1)(l+c)"-l___)-_-_-1 _ 1 [11 -1]1 (n_l) (24)

The stifness matrix partitions KH and MH for n = 2 are evaluated as

K. = EA,(1 + _) 1 -1 M.- (25)
L -1 1 ' 6 l+e 2(1+c) 2

Because of the similarity of the governing equations between axial bars and torsional

shafts, Eq. (25) can be used as the stiffness and consistent mass matrices for tapered shafts

by replacing the wriables Aa, E with Ja, G respectively, where J, is the polar second

moment of area and G is the shear modulus of elasticity. If it is decided that no extra

coordinates are to be retained in Eq. (4), then the procedure can be terminated at this

stage.

5. Interface Restrained Normal Modes: An entire class of hierarchical models can

now be created solely on the basis of choosing the interface restrained assumed modes. In

this paper, the set of interface restrained normal modes is used. The normal modes and

their corresponding frequencies are obtained from solving the eigenvalue problem associ-

ated with the partial differential equation,

_- EA(z) = pA(z) Bt 2 (26)Bz

subjected to the clamped-clamped boundary conditions.

Substituting for A(x) from Eq. (10) and letting _ = 1 + cz/L gives,

_u n t_u pL 2 a_u
_ -{- --- --- (27)
a__ _ 0_ Ec_ &2
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For harmonic vibration,

u(_,t) = U(_)sinwt (28)

where t denotes time and w is the circular natural frequency. Eq. (27) is modified using

Eq. (28) as

d 2 U n dU w2 pL 2
d_--5- + _ _- + _c2U = 0 (29)

The solution of Eq. (29) when c > 0 is

V(_) = _ _;av- { asz:_ (a_) + BY,_,, (a_)} (30)

where J and Y are Bessel functions of the first and second kind and a = _ V/-_-E.

For the case of n = 2, imposing the clamped-clamped boundary conditions in Eq. (30)

yields the characterstic equation for the tapered bar,

sin ac = 0 (31)

The solution of Eq. (31) is

,, = --_ V p , i= 1,2,...,oo (32)

It is noteworthy that the natural frequencies of the tapered bar with clamped ends for the

case of n = 2 are independent of c and are in fact the same as that of uniform rods. From

Eq. (30), the interface restrained normal modes for n = 2 becomes

¢i = Ci sin(a_ - a) (33)

where the mass normalization constant Ci must satisfy

l+c

1

- 1 (34)

Substituting Eq. (33) into Eq. (34), Ci is determined as

Ci= L
(35)

From Eq. (8), the mass matrix partitions are evaluated as

L

MNN = / pA(z)-¢T-_dz = I,
o

L

/MtN = [m/i], mji = pA(m)¢i¢idz

0

i = 1,2,...,eo, j = 1,2

(36)
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with

,nl, = {_. , ,n,i= ,_" 1 + c)(-1)i+1 (37)

When cissettozero,Eqs.(25)and(36)reducetothecaseofuniformbars.Appli-
cationof Eq. (33) into Eq. (20) gives the stiffness matrix partitions,

KIN = O, KNN = Diag. [_ w_...] (38)

and _i is given by Eq. (32). It can be seen that the tapered bar element matrices consist

of very simple terms.

6. Demonstration Examples:

6.1 Tapered Cantilever: This first example is concerned

with the cantilevered bar clamped at the right end, see Fig-

ure (3). The pertinent structural parameters are E = 30 ×

106 psi, pg = 0.28391b/in_,A_ = l in2,Ab =4in 2 andL=

72 in.

The characteristic equation of this cantilever is given by

a cos ac + sinac = 0 (39)

Tables (I) and (2) show the number of converged frequencies

to within a given percentage relative error when compared to

the theoretical frequencies from Eq. (39) for different model
orders n.

Figure 3. Cantilever

Note that the bar is subdivided into the requisite number of elements to arrive at the

model order n in the standard finite element method as implemented in CSA-NASTRAN

whereas in the hierarchical finite element model, the number of bar elements is always one

and the requisite interface restrained normal modes are added to arrive at n.

Table 1. Standard Finite Element Method

e

<1%

<5%

< 10%

8 '16 24 32 40

1 3 4 5 6

3 6 8 11 14

4 8 12 16 20
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Table 2. Hierarchical Finite Element Method

e n

8 16 24 32 40

< 1 % 6 14 23 31 39

< 5 % 7 15 23 31 39

< I0 % 7 15 23 31 39

6.2 Planar Truss: Next, consider the planar single-bay truss

as illustrated in Figure (4). The parameters are the same as

in Section (6.1). The horizontal bar has a uniform cross sec-

tional area of 4 in _. For planar truss elements, the transverse

inertia must be taken into account. This time, however, no

'exact solution' for the frequencies of the structure exists. A

reference solution was obtained in two different ways: (1) by

constructing a highly refined standard finite element model (2)
by retaining a large number of normal modes in the hierarchical

model. Both models were refined to the point where no signif-

icant change in the frequencies occured and both the models

produced the same results.
Figure 4. Planar Truss

Table (3) lists the frequencies from the hierarchical finite element model when two

normal modes per bar are added (i.e., n = 16) as compared to the reference solution. In

order to achieve comparable results from standard finite element method, each bar has to

be subdivided into five beam elements (i.e., n = 66) and consistent mass matrix has to be

generated within NASTRAN.

Table 3. Frequency Comparisons For Planar Truss

Mode

Number

2

3

5

7

9

11

13

14

16

Reference

Frequency (Hz)

2.606E2

2.999E2

6.958E2

1.467E3

1.757E3

2.141E3

2.889E3

3.049E3

3.382E3

Computed

Frequency (Hz)

2.606E2

2.999E2

6.961E2

1.468E3

1.762E3

2.172E3

2.898E3

3.081E3

3.505E3

Error

%

-1.123E-2

-1.703E-2

-4.763E-2

-1.837E-2

-2.970E-1

-1.432

-3.317E-1

-1.045

-3.622
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7. Conclusions For the case of tapered bars, it has been demonstated that the modal

synthesis approach, where substructures are assembled to form the overall structure, can

be used at the element level itself. This approach has superior convergence characteristics

and the advantages of hierarchical formulation.

8. References:

.

.

3.

.

.

.

.

,

.

10.

11.

12.

13.

14.

W. L. Heard Jr., H. G. Bush, R. E. Wallsom and J. K. Jensen. A mobile workstation

concept for mechanically aided astronaut assembly of large trusses. NASA Technical

Paper 2108, 1-35 (1983).

G. M. Lindberg. Vibration of nonuniform beams. Aero. Quart. 14,387 (1963).

K. E. Rouch and J. S. Kao. A tapered beam element for rotor dynamics analysis J.

Sou. Vib. 66, 119-140 (1979).

J. Thomas and E. Dokumaci. Improved finite elements for vibration analysis of ta-

pered beams. Aero. Quart. 24, 39-46 (1973).

T. W. S. To. Higher order tapered beam finite elements for vibration analysis. J. Sou.

Vib. 63, 33-50 (1979).

B. Ovunck. Dynamic analysis of frameworks by frequency dependent stiffness matrix

approach. Int. Assoc. Bridge Struct. Engg. Publ. 32, 137-154 (1972).

A. Avakian and D. E. Beskos. Use of dynamic stiffness influence coeffiecients in

vibrations of nonuniform beams, d. Sou. Vib. 47, 292-295 (1976).

A. K. Gupta. Frequency dependent matrices for tapered beams. J. Struct. Div.,

ASCE 112 1-17 (1986).

J. R. Banerjee and F. W. Williams. Exact Bernoulli-Euler dynamic stiffness matrix

for a range of tapered beams. Int. J. Num. Meth. Engg. 21, 2289-2302 (1985).

C. C. Spyrakos and C. I. Chen. Power series expansions of dynamic stiffness matrices

for tapered bars and shafts. Inter. d. Num. Meth. Engg. 30, 259-270 (1990).

R. C. Engels. Reduced order structural modeling techniques for high energy laser

systems. Final report/'or AFWL/ARBM Kirkland, NM (1986).

M. Link, J. Moreno-Barragan and M. Weiland.

using modal synthesis techniques. Proc. Euro.

Bonn (1989).

Derivation of finite clem¢',_ ,_,,¢l_'ls

Forum Aeroe/as. Str. 1)r,.. I)(;IJl_

N. Ganesan and R. C. Engels. Hierarchical Bernoulli-Elder beam tinitc eh'nwllls.

Comp. Struct. (to appear) (1992).

N. Ganesan and R. C. Engels. Timoshenko beam finite elements using assumed modes

method. 2. Sou. Vib. (to appear)(1992).

133



N92-24333

TRANSIENT THERMAL STRESS RECOVERY FOR STRUCTURAL MODELS

William Walls

McDonnell Douglas Space Systems Co.
Huntsville Alabama

ABSTRACT

A method for computing transient thermal stress vectors from

temperature vectors is described. The three step procedure

involves the use of NASTRAN to generate an influence coefficient

matrix which relates temperatures to stresses in the structural
model. The transient thermal stresses are then recovered and

sorted for maximum and minimum values. Verification data for

the procedure is also provided.

1.0 INTRODUCTION

There are many occasions when the stresses produced by transient

thermal events must be considered. The ascent, on-orbit, and

descent phases of a Spacelab mission produce large temperature

gradients on the Cargo Element. A method for recovering the

thermal stresses produced by these events was developed by the

Structural Analysis Group at McDonnell Douglas Space Systems

Company-Huntsville (MDSSC-HSV), and has been used for more than

six years in Spacelab Evaluation.

Because this method was somewhat unhandy to use, only a limited

number of temperature distributions could be run. These were

generally chosen on the basis of temperature or temperature

difference extremes. Unfortunately, there is no proven

relationship between "worst stresses" and "worst temperatures"

or "worst temperature differences" for the complex models with

which Spacelab has to deal. It was therefore decided to develop

a process that would transform transient temperature vectors

(which are separately calculated) directly into stress vectors

that could then be sorted for maximum and minimum (Max/Min)

values.

Section 2 presents the theory used in the procedure, Section 3

describes the procedure, Section 4 presents verification

results, and Section 5 contains the conclusions.
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2.0 THEORY

The method described assumes that the thermal strains, and hence

stresses are linearly proportional to the temperatures. The

method, therefore, is not applicable to models having

temperature or stress dependent material properties.

An influence coefficient matrix, [TRAS], to transform the

temperatures at a models n grids into m stresses can be

developed as follows. A temperature of one unit above the

reference is applied to a grid in the model while the remaining

n-i grids are held at the reference temperature. The resulting

m stresses are then recovered. This is repeated for all n grids

in the model. The resulting n sets of stresses are then

assembled as columns to form an m by n influence coefficient

matrix, [TRAS], that can be used to transform temperature

vectors into stress vectors. The transformation is as follows:

[STMHST] = [TRAS][TEMPS] (i)

Where;

[STMHST] = Stresses in the finite element model

(time history).

[TRAS ] = Linear transformation (influence

coefficient) from temperatures to

stresses.

[TEMPS] = Temperatures at the grids (time

history).

Equation (i) is used to recover transient stress vectors from

transient temperature vectors.

3.0 PROCEDURE

The procedure used to recover maximum and minimum thermal

stresses is divided into three steps. The first step is to

generate the influence coefficient matrix [TRAS]. The transient

stresses are recovered using equation (i) in the second step.

The transient thermal stresses are then sorted for Max/Min data

in the third step. Each of these three steps will be described
below.
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3.1 Step 1 - Generation of The Influence
Coefficient Matrix [TRAS]

NASTRAN is used to generate [TRAS] as described in Section 2.

NASTRAN Subcase commands are used to accomplish this step with

each subcase corresponding to a grid in the model. It should be

noted that NASTRAN can handle a maximum of sixty-six temperature

load cases. A model having more than sixty-six grids will,

therefore, require multiple runs and subsequent merging of the

output data. An example of a NASTRAN control deck to generate

[TRAS] for the verification model described in Section 4 is

shown in Figure i. The DUMMOD5 module is used to convert the
OESI table into a matrix data block which is then written to a

file using the OUTPUT5 module. The extraneous rows (fiber

distances, safety margins, etc.) of [TRAS] are then removed

using a specially developed FORTRAN code.

3.2 Step 2 - Recover Transient Thermal Stress

Vectors From Temperature Vectors

The transient temperature vectors must now be obtained. At

MDSSC-Huntsville, the thermal analyses are performed using
SINDA. A FORTRAN code has been written to access the SINDA

output file and recover the desired temperatures along with the

corresponding time vectors. The temperature and time data is
written in OUTPUT5 format. Care should be taken to ensure that

the row order of the temperature vectors is compatible with the

column order of [TRAS].

Equation (I) is then used to recover the transient thermal

stress vectors. This is easily accomplished in a simple DMAP

run using the MPYAD module. The resulting thermal stress

vectors and time vector are written to a file using the OUTPUT5
module.

3.3 Step 3 - Sort Thermal Stress Vectors For
Maximum and Minimum Data.

The transient thermal stress vectors are now sorted for Max/Min

data. This step is performed using a specialized FORTRAN code.

This code can search multiple time histories allowing composite

Max/Min tables to be obtained. An example of output from this

program for the Spacelab Multipurpose Experiment Support

Structure (MPESS) is shown in Table i. The data in Table 1 was

obtained from actual temperature vectors for a Spacelab mission

and encompasses ascent, orbit, and descent.
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4.0 VERIFICATION

In order to verify that the procedure is working correctly, a
test case was performed. A simple rectangular plate model was
constructed using QUAD4 and BAR elements. A plot of the plate
model is presented in Figure 2 and the Bulk Data is shown in
Figure 3. The model has thirty-three grids and is homogeneous.
A temperature gradient (see Figure 4) was applied to the model
and the resulting stresses in four elements were recovered using
NASTRANdirectly. The results are presented in Figure 5. The
transient thermal stress recovery procedure was then used to
calculate stresses due to the same temperature gradient and the
results are shown in Table 2.

It can be seen from Figure 5 and Table 2 that the results are
the same. This indicates that using [TRAS] to perform the
thermal stress recovery produces the same results as using
NASTRANdirectly.

5.0 CONCLUSION

A procedure has been developed to recover thermal stresses in a
NASTRANmodel directly from temperatures output by a thermal
model. Because the procedure uses a linear transformation
matrix rather than a computer program, entire thermal stress
time histories may be efficiently obtained and scanned for
Max/Min thermal stress data. Tabular output of the Max/Min data
is then produced. A test case has been executed and the results
indicate that the procedure functions correctly.
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NASTRAN TITLEOPT=0

$

S RUN TO GENERATE INFLUENCE COEFF. MATRIX FOR THERMAL STRESS RECOVERY.

$

$

$
S

ID CHECKOUT PLATE

APP DISP

SOL 1,7

TIME 999

DIAG 13,14,21,22,26,42

S

$ WRITE OUT ELEMENT STRESS/FORCE MATRICES

$ WHERE;

$ OESI=STRESSES

$ OEFI=FORCES

S I=# OF ELEMENTS FOR WHICH STRESSES/FORCES ARE BEING RECOVERED

S

ALTER 106

DUMMOD5 OESI .... /ELSEU .... /C,N,44////IC,N,I/C,N,1 $

OUTPUT5 ELSEU ....//0/15//0 S

OUTPUT5 .... //-9/15//0 S

ENDALTER

CEND

S
TITLE = ANALYSIS OF PLATE

SUBTITLE = RUN TO GENERATE INFLUENCE COEFFICIENT MATRIX

LABEL = PLATE

MAXLINES = 99999999

SPC=100

$
SUBCASE 1

LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 1

TEMP (LOAD) = 1

ELSTRESS=ALL

$
SUBCASE 2

LABEL = APPLY A 1 DEGREE ABOVE REF, TEMP. TO GRID 2

TEMP (LOAD) = 2

ELSTRESS--ALL

$

SUBCASE 3

LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 3

TEMP(LOAD) = 3

ELSTRESS=ALL

$

SUBCASE 4

LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 4

TEMP (LOAD) = 4

ELSTRESS=ALL

$
SUBCASE 5

LABEL = APPLY A i DEGREE ABOVE REF. TEMP. TO GRID 5

Figure i. NASTRAN Control Deck to Generate [TRAS] for the
Verification Plate Model
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TEMP(LOAD) = 5

ELSTRESS=ALL

$

SUBCASE 6

LABEL = APPLY A I DEGREE ABOVE REF. TEMP. TO GRID 6

TEMP(LOAD) - 6

ELSTRESS=ALL

$
SUBCASE 7

LABEL = APPLY A i DEGREE ABOVE REF. TEMP. TO GRID 7

TEMP(LOAD) = 7

ELSTRESS=ALL

$
SUBCASE 8

LABEL = APPLY A i DEGREE ABOVE REF. TEMP. TO GRID 8

TEMP(LOAD) = 8

ELSTRESS=ALL

$
SUBCASE 9

LABEL _ APPLY A I DEGREE ABOVE REF. TEMP. TO GRID 9

TEMP(LOAD) = 9

ELSTRESS=ALL

$

SUBCASE I0

LABEL = APPLY A ] DEGREE ABOVE REF. TEMP. TO GRID I0

TEMP (LOAD) = i0

ELSTRESS=ALL

$
SUBCASE Ii

LABEL = APPLY A I DEGREE ABOVE REF. TEMP. TO GRID II

TEHP(LOAD) = ii

ELSTRESS=ALL

$

SUBCASE 12

LABEL _ APPLY A I DEGREE ABOVE REF. TEMP. TO GRID 12

TEHP(LOAD) = 12

ELSTRESS=ALL

S
SUBCASE 13

LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 13

TEMP (LOAD) = 13
ELSTRESS=ALL

$

SUBCASE 14

LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 14

TEMP(LOAD) = 14

ELSTRESS=ALL

$

SUBCASE 15

LABEL = APPLY A I DEGREE ABOVE REF. TEMP. TO GRID 15

TEMP(LOAD) = 15

ELSTRESS=ALL

$
SUBCASE 16

LABEL = APPLY A I DEGREE ABOVE REF. TEMP. TO GRID 16

Figure i. NASTRAN Control Deck to Generate [TRAS] for the

Verification Plate Model (Continued)

139



TEMP(LOAD)= 16
ELSTRESS=ALL

$
SUBCASE 17

LABEL _ APPLY A i DEGREE ABOVE REF. TEMP. TO GRID 17

TEHP(LOAD) = 17

ELSTRESS=ALL

$
SUBCASE 18

LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 18

TEMP(LOAD) = 18

ELSTRESS=ALL

S

SUBCASE 19

LABEL = APPLY A i DEGREE ABOVE REF TEMP. TO GRID 19

TEMP(LOAD) = 19

ELSTRESS=ALL

S
SUBCASE 20

LABEL = APPLY A I DEGREE ABOVE REF. TEMP. TO GRID 20

TEMP(LOAD) = 20

ELSTRESS=ALL

$
SUBCASE 21

LABEL = APPLY A I DEGREE ABOVE REF. TEMP. TO GRID 21

TEMP(LOAD) = 21

ELSTRESS=ALL

S
SUBCASE 22

LABEL = APPLY A i DEGREE ABOVE REF TEMP. TO GRID 22

TEMP(LOAD) = 22

ELSTRESS=ALL

S
SUBCASE 23

LABEL = APPLY A i DEGREE ABOVE REF. TEMP. TO GRID 23

TEMP(LOAD) = 23

ELSTRESS-ALL

$

SUBCASE 24

LABEL - APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 24

TEMP(LOAD) = 24

ELSTRESS=ALL

$
SUBCASE 25

LABEL - APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 25

TEMP(LOAD) = 25

ELSTRESS=ALL

$

SUBCASE 26

LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 26

TEMP(LOAD) = 26

ELSTRESS=ALL

$

SUBCASE 27

LABEL = APPLY A I DEGREE ABOVE REF. TEMP. TO GRID 27

Figure 1. NASTRAN Control Deck to Generate [TRAS] for the
Verification Plate Model (Continued)
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TEHP(LOAD) = 27

ELSTRESS=ALL

$
SUBCASE 28

LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 28

TEHP(LOAD) = 28

ELSTRESS=ALL

S

SUBCASE 29

LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 29

TEMP(LOAD) = 29

ELSTRESS=ALL

$

SUBCASE 30

LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 30

TEMP(LOAD) = 30

ELSTRESS=ALL

$

SUBCASE 31
LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 31

TEMP(LOAD) = 31
ELSTRESS=ALL

$
SUBCASE 32

LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 32

TEMP(LOAD) = 32

ELSTRESS=ALL

$
SUBCASE 33

LABEL = APPLY A I DEGREE ABOVE REF. TEMP. TO GRID 33

TEMP(LOAD) = 33

ELSTRESS=ALL

$
BEGIN BULK

$
SPC1

$
TEMP
TEHPD

TEMP

TEMPD

TEHP

TEMPD

TEHP

TEMPD

TEMP

TEMPD

TEMP

TEHPD

TEHP

TEHPD

TEHP
TEHPD

TEMP

TEHPD

Figure 1.

I00 123456 1

1 1 71.0

1 70.0

2 2 71.0

2 70.0

3 3 71.0

3 70.0

4 4 71.0

4 70.0

5 5 71.0

5 70.0
6 6 71.0

6 70.0
7 7 71.0

7 70.0

8 8 71.0

8 70.0

9 9 71.0

9 70.0
NASTRAN Control Deck to Generate [TRAS] for the

Verification Plate Model (Continued)
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TEMP

TEMPD

TEMP

TEMPD

TEMP

TEMPD

TEMP

TEMPD
TEMP

TEMPD

TEMP

TEMPD

TEMP

TEMPD

TEMP

TEMPD

TEMP

TEMPD
TEMP

TEMPD

TEMP

TEMPD
TEMP

TEMPD

TEMP

TEMPD

TEMP
TEMPD

TEMP

TEMPD

TEMP

TEMPD

TEMP

TEMPD

TEMP

TEMPD

TEMP

TEMPD

TEMP

TEMPD

TEMP

TEMPD

TEMP

TEMPD

TEMP

TEMPD

TEMP

TEMPD

S

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22

23

23

24

24

25

25

26

26

27

27

28

28

29

29

30

30

31

31

32

32

33

33

10

70.0

ii

70.0

12

70.0

13

70.0

14

70.0

15

70.0

16

70.0

17

70.0

18

70.0

19

70.0

20

70.0

21

70.0

22

70.0

23

70.O

24

70.0

25

70.0

26

70.0

27

70.0

28

7O.O

29

70.0

3O

7O.O

31

70.0

32

70.0

33

7O.O

71.0

71.0

71.0

71.0

71.0

71.0

71.0

71.0

71.0

71 0

71 0

71.0

71 0

71 0

71 0

71.0

71.0

71.0

71.0

71.0

71.0

71.0

71.0

71.0

Figure i. NASTRAN Control Deck to Generate [TRAS] for the

Verification Plate Model (Concluded)
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$

SPC1 100 123456 1

S

TEMP 55 1 100.0

TEMP 55 2 300.0

TEMP 55 3 600.0

TEMP 55 4 600.0

TEMP 55 5 300.0

TEMP 55 6 100.0

TEHP 55 7 600.0

TEMP 55 8 300.0

TEHP 55 9 i00.0

TEHP 55 I0 i00.0

TEHP 55 11 300.0

TEMP 55 12 600.0

TEHP 55 13 200.0

TEMP 55 14 450.0

TEHP 55 15 600.0

TEMP 55 16 450.0

TEHP 55 17 200.0

TEHP 55 18 350.0

TEMP 55 19 325.0

TEHP 55 20 300.0

TEHP 55 21 325.0

TEHP 55 22 350.0

TEMP 55 23 350.0

TEMP 55 24 350.0

TEHP 55 25 325.0

TEMP 55 26 300.0

TEHP 55 27 325.0

TEHP 55 28 350.0

TEHP 55 29 450.0

TEHP 55 30 200.0

TEHP 55 31 i00.0

TEHP 55 32 200.0

TEHP 55 33 450.0

TEHPD 55 70.0

TEMPD 60 70.0

$

$

$

GRID I 0.0

GRID 2 50.0

GRID 3 I00.0

GRID 4 150.0

GRID 5 200.0

GRID 6 250.0

GRID 7 0.0

GRID 8 50.0

GRID 9 100.0

GRID I0 150.0

GRID Ii 200.0

GRID 12 250.0

Figure 3.

PLATE _*_e_e***

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

-50. 0.0

-50. 0.0

-50. 0.0

-50. 0.0

-50. 0.0

-50. 0.0

Plate Model Bulk Data
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GRID

GRID

GRID

GR ID

GRID

GRID

GR ID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

$

CQUAD4
CQUAD4

CQUAI)4

CQUAD4

CQUAI)4

CQUAD4

CQUAD4

CQUAD4

CQUAD4

13 25.0 0.0 0.0

14 75.0 0.0 0.0

15 125.0 0.0 0.0

16 175.0 0.0 0.0

17 225.0 0.0 0.0

18 0.0 -25.0 0.0

19 25.0 -25.0 0.0

20 50.0 -25.0 0.0

21 75.0 -25.0 0.0

22 I00.0 -25.0 0.0

23 125.0 -25.0 0.0

24 150.0 -25.0 0.0

25 175.0 -25.0 0.0

26 200.0 -25.0 0.0

27 225.0 -25.0 0.0

28 250.0 -25.0 0.0

29 25.0 -50.0 0.0

30 75.0 -50.0 0.0

31 125.0 -50.0 0.0

32 175.0 -50.0 0.0

33 225.0 -50.0 0.0

1 1 1 13 0.0

2 1 13 2 0.0

3 I 2 14 0.0

4 1 14 3 0.0

5 1 3 15 0.0

6 I 15 4 0.0

7 I 4 16 0.0

8 1 16 5 0.0

9 1 5 17 0.0

I0 1 17 6 0.0

Ii 1 6 28 0.0

12 1 28 12 0.0

13 1 12 33 0.0

14 1 33 ii 0.0

15 1 II 32 0.0

16 1 32 i0 0.0

17 1 I0 31 0.0

18 1 31 9 0.0
19 1 9 30 0.0

20 1 30 8 0.0

21 1 8 29 0.0

22 1 29 7 O. 0

23 1 7 18 0.0

24 1 18 1 0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1 i000 18 19 13 1

2 i000 19 20 2 13

3 I000 20 21 14 2

4 I000 21 22 3 14

5 I000 22 23 15 3

6 I000 23 24 4 15

7 1000 24 25 16 4

8 1000 25 26 5 16

9 1000 26 27 17 5

Figure 3. Plate Model Bulk Data
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6

6

6

6

6
6

6

6

6

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

I 0

1 0

I 0

1 0

1 0

1 0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

(Continued)

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
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COUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4
CQUAD4

CQUAD4
CQUAD4

CQUAD4
CQUAD4

S
PSHELL

S
PBAR

$
MAT1

$

ENDDATA

I0 I000 27 28 6 17

Ii i000 7 29 19 18

12 i000 29 8 20 19

13 I000 8 30 21 20

14 1000 30 9 22 21

15 1000 9 31 23 22

16 1000 31 10 24 23

17 1000 10 32 25 24

18 1000 32 11 26 25

19 1000 11 33 27 26

20 1000 33 12 28 27

1000 4000 .7 4000 4000

1 4000 1.9375 4.85 4.85 7.27

4000 1.0+7 .33 .000371 13.3-6 70.0

Figure 3. Plate Model Bulk Data (Concluded)
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Transient Loads Analysis

For Space Flight Applications

S. K. Thampi, N. S. Vidlta_agar and N. Gane_an

GE Government Services, Houston, Teza8

ABSTRACT: A significant part of the flight readiness verification process
involves transient analysis of the coupled Shuttle-payload system to determine

the low frequency transient loads. This paper describes a methodology for

transient loads analysis and its implementation for the Spacelab Life Sciences

Mission. The analysis is carried out using two major software tools - NAS-

TITAN and an external FORTRAN code called EZTRAN *. This approach is
adopted to overcome some of the limitations of NASTRAN's standard tran-

sient analysis capabilities. The method uses Data Recovery Matrices (DRM)
to improve computational efficiency. The mode acceleration method is ful-

ly implemented in the DRM formulation to recover accurate displacements,

stresses and forces. The advantages of the method are demonstrated through
a numerical example.

1. Introduction: In the past decade, NASA has conducted numerous Spacelab Missions

for the advancement of space exploration and research. The Spacelab is a reusable labora-

tory that is carried in the cargo bay of the Space Shuttle Orbiter. Experiments in several

different disciplines such as astronomy, life sciences and material science are accommodated

in this modular laboratory for various Shuttle missions. The module also contains utili-

ties, computers and work benches to support the experiments. The experiment hardware

is mounted in instrument racks located on either side of the module, in overhead lockers,

and in the center aisle, as shown in Figure 1.

During liftoff and landing flight events, the Shuttle and its payload show significant

low-frequency transient accelerations due to thrust from the main engines and solid rocket

boosters, wind gust, vortex shedding, and launch pad forces during liftoff, and crosswinds

and nose-gear slapdown during landing. The levels of acceleration on a specific payload

component depend on the response of the Spacelab inside the Orbiter cargo bay and

the response of the component inside the Spacelab. Because these responses depend on

the dynamic characteristics and interactions of the Orbiter-Spacelab-payload system, a

transient analysis of the coupled system is required to determine the quasi-static loads as

part of the flight readiness verification process.

Analysis of the coupled system can be carried out using the standard transient analysis

capabilities of NASTRAN. However, these procedures have some limitations in terms of

computational efficiency and accuracy, especially when dealing with large substructured

models [Rf. 1,2]. An alternate procedure which relies on the extensive use of data recovery

matrices is presented to overcome some of these limitations. The methodology has been

successfully implemented for the analysis of the Spacelab Life Sciences (SLS-2) Mission [Rf.

* EZTRAN is developed by Structural Dynamics Research Corporation, San Diego,

California
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3] which involved large models (in excess of 190000 degrees of freedom) and long simulations

(in excess of 4500 time steps). The advantages of the method are demonstrated through a

simple example problem in this paper.

2. Overview of Methods: There are two methods for performing dynamic transient

analysis in NASTRAN. The Direct Transient Response, available in Rigid Format 9, solves

a system described in terms of its physical mass, stiffness and damping matrices.

[m]{a} + [c] + [k]{u} = {f) (1)

These equations are numerically integrated to determine the response at the physical de-

grees of freedom (DOF) as functions of time. The Modal Transient Response method,

available in Rigid Format 12, is similar to the direct method, with the exception that it
uses the classical modal transformation

{u} = [¢] {Q} (2)

to diagonallze the physical mass, stiffness and damping matrices. The overall response is

calculated by including only a small number of the structural modes, making the numerical

integration of the generalized equations of motion much faster.

(3)

where

[M] = [¢]T [Tn] [¢], [el --- [¢]T [el [_], [K] : [_]T []¢] [¢], {F} = [_]T {jr}

Physical responses can be recovered from a modal transient analysis through the mode

displacement method (Eqn. 2) or the mode acceleration method (Eqn. 4). The former

method is more efficient and quite accurate for calculating accelerations if sufficient modes

are retained to envelope the frequency content of the forcing functions. However, the

latter method is preferred when accurate displacements, dement forces and stresses are

required from a modal transient analysis. The mode acceleration technique minimizes the

loss of accuracy due to modal truncation by including the static response of the truncated

high-frequency modes in the solution.

(4)

The implementation of the mode acceleration procedure in NASTRAN has some disad-

vantages. In order to include the effects of inertia and damping forces in the load vector

in Eqn. 4, the accelerations and velocities at all DOF in the solution set (L-set) must be

computed. A static solution must then be performed with the modified load vector at each

time step. This requires significant computer processing time if the L-set is large and/or

the number of integration steps is large. In addition, there are accuracy problems when
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dealing with multi-stage substructured models. For such cases, the mode-acceleration cor-

rection is applied only to the residual structure and not to upstream substructures. This

leads to modal truncation errors because the component modes are used to represent the

static response of the interior degrees of freedom [Rf. 1].

Because of these disadvantages, standard transient analysis procedures in NASTRAN

are not suitable for solving large problems involving multi-stage substructured models.

Alternate methods are required to overcome these limitations, and yet retain the benefits

of the mode acceleration method. Such a procedure, used for transient loads analysis of

the SLS-2 Mission configuration, is described in the following section.

3. Alternate Method: The alternate method is based on a slightly different form of the

mode acceleration data recovery equation. Assuming that damping is negligible, Eqn. 4

can be expressed in the following convenient form.

The first term represents the static portion of the transient response. It is obtained as the

product of tb, the static response caused by a set of unit loadJ, I, and a time varying load

scale factor, p(t). Note that the unit loada multiplied by the scale factor are equivalent
to the applied loads, i.e.,

(fCt)} = [X] {p(t)} (6)

The second term in Eqn. 5 represents the dynamic portion of the response. It usually

includes only the elastic mode contributions as the rigid body modes (if any) do not

contribute to stresses and forces. However, the contribution from rigid body modes to the

total displacement, [¢rb] {Q,_b}, can be included in Eqn. 5 if desired. The computational

advantages of the alternate method stem from the size of the [¢] and [¢] matrices which

are determined by the number of response recovery points, the number of load application

points and the number of retained elastic modes. These are usually much smaller than the
full model size.

The alternate method is implemented using two major software tools - NASTRAN

and an external FORTRAN program called EZTRAN. NASTRAN is used to develop,

process and assemble the finite element model of the coupled system, calculate system

modes, determine unit load static responses, and create data recovery matrices. EZTRAN

calculates the modal initial conditions, solves the generalized equations of motion, and

recovers physical results. The following steps describe how the two work in conjunction to

perform the various analysis tasks.

3.1 Model Generation and Assembly: Finite element models of the Orbiter, S-

pacelab and experiment payloads are developed by different organizations and are usually

test-verified models. They are assembled into a solution system using the automated

multi-stage substructuring features of NASTRAN. Prior to assembly, the quality of each

component model is verified by performing a series of analytical checks including rigid

body modes check, stiffness matrix equilibrium check, rigid body mass check and an en-

forced displacement check. At each stage of assembly, the effective DOF in the model is
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reduced either through a Guyan reduction (REDUCE) or a modal reduction (MREDUCE).

A fixed-interface Craig-Bampton modal reduction is the preferred method as it will not

compromise the fidelity of test-verified finite element models.

3.2 Loads Definition: The input forcing functions for coupled loads analysis are ob-

tained from previous flight accelerometer data. These are maintained by NASA and pro-

vided to payload organizations during design evaluation to refine design loads. The data is

provided in terms of discrete force-time coordinate pairs, with the point of application of

each force being identified by a node number and component name. They include multiple

load cases for liftoff and landing flight events. Load scale factors are generated for each

load case by normalizing the system forcing functions with unit loads, as indicated in Eqn.

6. The unit loads are defined as the maximum force occuring at each loaded DOF, across
all load cases.

3.3 Normal Modes Analysis: A normal modes analysis of the fully assembled system is

performed using NASTRAN Rigid Format 3. The rigid body modes and the elastic modes

of the system, in a specified frequency range, are recovered and stored in the substructure

operating file (SOF) database. The frequency range for modal truncation is decided based

on the frequency content of the excitation.

3.4 Unit Load Static Analysis: An inertia relief static analysis is performed on the

fully assembled system for unit loads derived from the liftoff and landing forcing functions.

An unit load vector is generated for each loaded DOF, and they are sequenced in the same

order as the forcing functions to form a unit load matrix. The static analysis is performed

using Rigid Format 2 because it is capable of analyzing structures with rigid body modes.

SUPORT cards must be included if rigid body modes are present, and the choice of support

points has significant effect on the computation of displacement results. A good choice

is indicated by low strain energy at the support points. An unreduced model is used for

static analysis in order that the full mass matrix be available for calculating internal inertia

loads of upstream substructures. The static displacements from the inertia relief solution
are recovered and stored in the SOF database.

3.5 Data Recovery Matrices Generation: The alternate procedure requires the

generation of acceleration and displacement data recovery matrices. These are formed for

each basic substructure by performing two data recovery (Phase 3) restart runs with special

DMAP alters. The acceleration DRM is made up of rigid body modes and retained elastic

mode vectors. These axe extracted from the normal modes database for DOF specified

through XYPLOT/XYPEAK requests in the SOL 3 data recovery run.

Acceleration DRM = [¢,-b Ce,] (7)

Displacements and displacement dependent responses such as element forces, stresses and

substructure interface loads are recovered using the mode acceleration method. The dis-

placement DRM has two partitions. The first consists of the unit load static deflection

vectors which are extracted from the static analysis database. The second, which provides
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the dynamic contribution, is obtained from the normal modes database. A rigid format

alter in the SOL 2 data recovery run assembles the full displacement DRM for responses
specified through XYPLOT/XYPEAK requests.

Displacement DRM = [¢ ee,A_ 1] (8)

The size of the DRMs is controlled by many factors. The number of rows in the acceleration

and displacement DRMs will correspond to the number of response requests in the data

recovery runs. Since the number of output requests is usually much smaller than the

model size, data recovery operations using DRM procedures are much faster than standard

methods. The number of columns in the acceleration DRM will correspond to the number

of retained system modes. The number of columns of the displacement DRM will be equal

to the sum of the retained elastic modes and the number of load application points.

3.6 EZTRAN Execution: The solution of the generalized equations of motion and

the recovery of physical responses are accomplished by EZTRAN using the NASTRAN

generated data. The information provided to EZTRAN is shown in Figure 2. The gener-

alized mass and stiffness matrices and the generalized unit forces, F,, = qbTI, are supplied

by NASTRAN through a model file. The scaled forcing functions are supplied through

a forcing function file. Specific instructions for an EZTRAN run including load cases to

be analyzed, time step information, number of modes to be included, modal damping

parameters, and type of initial conditions are entered by the user in an input file. The

NASTRAN generated DRMs are supplied through a matrix file. A dictionary file provides
identification for the response items in the DRMs.

The modal equations of motion are uncoupled by virtue of linearity and proportional
damping assumptions.

(9)

They are solved using a simple recursive algorithm [Rf. 4]. The solution is exact within the

hmits that the applied forces are assumed to vary linearly between integration steps. The

method is unconditionally stable, regardless of integration step size. However, the step size

must be sufficiently small so that linear interpolation accurately follows the applied force

time histories. Initial conditions are either zero (undeformed structure) or can be auto-

matically computed by EZTRAN, assuming that the system is in steady-state equilibrium

with initial non-zero forces. For example, the Orbiter and payloads are initially deflected

by gravity, wind loads, and restraining forces at the launch pad attach bolts, and are in

steady state equilibrium. The deflections of elastic modes and acceleration of rigid body

modes are computed from the initial modal forces by EZTRAN for such cases.

The solution of modal differential equations yields the modal acceleration, Q. Physical
responses are recovered using these solutions and the DRMs.

PhysicalAccelerations 1 = [ Accelerati°nDRM ] {Q(t)} (10)
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/Physic Oispl cement} Oisplcement1/ }DisplacementResponsesdependent -- DRM ] (_(t)
(11)

3.7 Post Processing: The results from EZTRAN include minimum/maximum sum-

maries and time histories for the response items selected in the data recovery runs. The

responses can be scaled by static and dynamic uncertainity factors to account for possible

variations in the dynamic models or forcing functions. The results are written to format-

ted files that can be read by other postprocessing programs to provide extrema reports,

response history plots, shock response spectra, relative displacements, and other output.

4. Example Problem: To illustrate the accuracy and efficiency of the alternate method,

an example problem was analyzed. The problem consists of simple models of the Orbiter,

Spacelab, Floor, Rack and a Box which were assembled into a solution system as shown in

Figure 3. Modal reductions were performed at each stage of substructure assembly. The

model was analyzed for a dynamic transient load case which had 45 load application points
on the Orbiter substructure.

The analysis was performed using three different approaches. The first analysis used

the direct transient solution feature of NASTRAN to solve a full, unreduced model of the

system (3971 DOF). Although this approach is not practical for most real world problems,

it provides an accurate baseline solution without any modal truncation errors. The second

analysis used the modal reduced system model (205 DOF) with modes up to 35 Hz being

retained in the final solution system. The transient analysis was performed in the modal

domain, and the physical responses were recovered using NASTRAN's mode acceleration

method. Finally, the transient analysis was performed on the same modal reduced system

model using the alternate mode acceleration method. All three cases were undamped with

zero initial conditions. The simulations were carried out for 0.5 seconds with an integration

time step of 0.001 seconds.

A comparison of the cost and accuracy of the three methods clearly demonstrates

the merits of the alternate method. The axial forces in a CBAR element of the BOX

substructure are shown in Figure 4. The alternate method produces results which are much
closer to the baseline solution than the NASTRAN mode acceleration solution. Similar

results were obtained for other displacement dependent responses. In addition to being

accurate, the alternate method was also more efficient than the other methods, as shown in

Figure 5. The computational advantages of the alternate method become more pronounced

as the length of simulation increases.

5. Conclusions: An accurate and efficient method for performing coupled transient loads

analysis was presented and compared with the standard transient analysis capabilities of

NASTRAN. The procedure uses data recovery matrices to reduce matrix size and compu-

tation times. The mode acceleration method is incorporated in the DRM formulations to

recover accurate displacements and displacement-dependent quantities like element stress-

es, element forces and interface loads. The method is ideally suited for large, multi-level
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substructured models.
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ABSTRACT

An algorithm for calculating acoustic intensities from a time-harmon& pressure field m an

axisymmetric fluid region is presented. Acoustic pressures are computed in a mesh of NASTRAN

triangular finite elements of revolution (TRIAAX) using an analogy between the scalar wave

equation and elasticity equations. Acoustic intensities are then calculated from pressures and

pressure derivatives taken over the mesh of TRIAAX elements. Intensifies are displayed as vectors

indicating the directions and magnitudes of energy flow at all mesh points in the acoustic field. A

prolate spheroidal shell is modeled with axisymmetric shell elements (CONEAX) and submerged

in a fluid region of TRI/L4X elements. The model is analyzed to illustrate the acoustic intensity

method and the usefulness of energy flow paths in the understanding of the response of

fluid-structure interaction problems. The structural-acoustic analogy used is summarized for

completeness. This study uncovered a NASTRAN limitation involving numerical precision issues

in the CONEAX stiffness calculation causing large errors in the system matrices for nearly

cylindrical cones

INTRODUCTION

An acoustic intensity fl)rmulation for general, axisymmetric, fluid domains modeled w_th TRIAAX

elements is presented. Numerical acoustic field solutions to fluid-structure interaction problems eurrentlyyield
acoustic pressure fields, which may be used to locate high acoustic pressure concentrations. The motivation for
calculating and displaying acoustic intensities is to help visualize the energy flow paths which cause high pressure

regions. Thc energy flow fields can then help to identify dominant power paths which flow between structure
and fluid, and therefore the important radiating parts of a structure.

The general problem of computing the interaction of an elastic structure with an acoustic fluid can be
solved by combining a finite clement model of the structure with a fluid loading computed using boundary

element [1-11], finite element [12-23], combined finite element/analytical [24-26], T-matrix [27-29], and
approximate fluid loading [30-32] techniques. In the fluid finite element approach, the exterior fluid domain is
modeled with finite elements truncated at a finite distance from the structure and terminated with an

approximate radiation boundary condition to absorb outgoing waves. The principal computational trade-off
between this approach and the boundary element approach is that the finite element approach yields large,
banded matrices, whereas the boundary element approach yields smaller, densely-populated matrices. This

trade-off sometimes favors the finite clement approach for long, slender structures like ships which are

"naturally banded." In addition, only the fluid finite element approach has directly available an explicit fluid
mesh which can be used for graphical display of the wave motion through the fluid. Since a significant part of our

interest involves the display of wave propagation through both structure and fluid, we therefore formulate this
problem using the fluid finite element approach. The principal drawbacks to fluid finite element modeling are
the need for an approximate radiation boundary condition at the outer fluid boundary, the requirements on mesh

size and extent (sometimes leading to frequency-dependent fluid meshes [20]), and the difficulty of generating
the fluid mesh.
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Direct frequency response NASTRAN [33] solutions for axisymmetric regions are described in general,
and for domains that are defined using both structural and fluid subregions. Structural regions are modeled using
standard structural finite elements (CONEAX, TRIAAX, TRAPAX); fluid regions are modeled with triangular
elements of revolution (TRIAAX) using an analogy relating the Helmholtz equation to the elasticity equations
used for the structural elements. The analogy is described in detail by Everstine [34] and is summarized for
completeness here. The modeling of fluid-structure interaction between fluid and structure domains is also
defined, as well as the application of acoustic boundary conditions to fluid models.

The acoustic intensity formulation includes the definition of the intensity quantity, the algorithm used
to calculate fluid particle velocities using the pressure distribution in a general triangularized domain, and the
calculation of the acoustic intensity vector quantity from pressures and velocities. The formulation has been
implemented in the program AcINT (Acoustic INTensity), which functions as a post-processor to NASTRAN.
An example, a submerged prolate-spheroidal shell with two sets of boundary conditions, is analyzed for a ring
load. The resulting acoustic intensity fields are displayed for a given excitation frequency to illustrate the energy
flow paths which result. The acoustic intensity vector plots show the utility of the method in identifying dominant
power paths in fluid-structure interaction problems.

STRUCTURAL-ACOUSTIC ANALOGY

From an engineering point of view, it is convenient to be able to make use of existing general purpose
finite element codes for analyzing structural-acoustic problems. Finite element codes are widely available,
versatile, reliable, well supported, and an abundance of pre- and postprocessors may be used with them. Thus we
summarize in this section an analogy [34] between the equations of elasticity and the wave equation of acoustics.
This. analogy allows the coupled structural acoustic problem to be solved with standard finite element codes like
NASTRAN.

The pressure p in an acoustic field satisfies the wave equation

Wp - 1_
- c_, (1)

where V2 is the Laplacian operator, p is the dynamic fluid pressure, c is the wave speed, and dots denote partial
differentiation with respect to time.

On the other hand, the x-component of the Navier equations of elasticity, which are the equations
solved by structural analysis computer programs, is

1 Q u, (2)_.+ 2G 2+ G(v_ + w,=) + _-fx = GG u.,= + u.yr + u._ + _

where u, v, and w are the Cartesian components of displacement, k is a Lain6 elastic constant, G is the shear
modulus, fx is the x--component of body force per unit volume (e.g., gravity), Q is the mass density, and commas

denote partial differentiation.

A comparison of Eqs. 1 and 2 indicates that elastic finite elements can be used to model scalar pressure
fields if we let u, the x-component of displacement, represent p, set v = w = 0 everywhere, fx = 0, and X = -G.

For three-dimensional analysis, the engineering constants consistent with this last requirement are

_ G_ (3)
E_ = 10_°G_, 0_ c2 ,

where the element shear modulus G, can be selected arbitrarily. The subscript "e" has been added to these

constants to emphasize that they are merely numbers assigned to the elements.

A variety of boundary conditions may also be imposed. At a pressure-release boundary, p = 0 is
enforced explicitly like other displacement boundary conditions. For gradient conditions, the pressure gradient

#p/On is enforced at a boundary point by applying a "force" to the unconstrained DOF at that point equal to

G,Adp/dn, where A is the area assigned to the point and n is the outward normal from the fluid region. For

example, the plane wave absorbing boundary condition

ap p
- (4)

an c
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is enforced by applying to each point on the outer fluid boundary a "force" given by - (G,A/c)p. Since this

"force" is proportional to the first time derivative of the fundamental solution variable p, this boundary Condition

is imposed in the analogy by attaching to the fluid DOF a "dashpot" of constant G_A/c. qhe Neumann condition

0p/On = 0 is the natural boundary condition under this analogy. The next higher order local radiation

boundary condition, the curved wave absorbing boundary condition [23,36]

ap _ p p (5)
On c r '

where r is the radius of the boundary, is enforced under the analogy by attaching in parallel both a "dashpot" and a
"spring" between each boundary point and ground.

At a fluid-structure interface (an accelerating boundary), momentum and continuity considerations

require that

dp _ Qti., (6)
On

where n is the normal at the interface, 0 is the mass density of the fluid, and ¢i. is the normal component of fluid

particle acceleration. Under the analogy, this condition is enforced by applying to the fluid DOF at a

fluid-structure interface a "force" given by - (G.oA)u..

TO summarize, the wave equation, Eq. 1, can be solved with elastic finite elements ff the
three-dimensional region is modeled with 3-D solid finite elements having material properties given by Eq. 3,

and only one of the three Cartesian components of displacement is retained to represent the scalar variable p. In
Cartesian coordinates, any of the three components can be used. The solution of axisymmetric problems in
cylindrical coordinates follows the same approach except that the z-component of displacement is the only one

which can be used to represent p.

FINITE ELEMENT FORMULATION OF FLUID-STRUCTURE INTERACTION

There are two fundamental fluid-structure interaction problems of interest in structural acoustics:

acoustic radiation, in which a submerged elastic body is subjected to a mechanical excitation applied to the
structure, and scattering, in which the structure is subjected to an external incident pressure loading. For general
time-dependent problems, the excitation is an arbitrary function of time, whereas in the time-harmonic case _f

interest here, the excitation has a single circular frequency w.

Although our specific interest here is the time-harmonic case, we summarize the theory [22,35] for the
more general case, which includes an incident loading as well. The radiation problem will be covered as a special
case. For scattering, we assume, without loss of generality, that the incident wave propagates in the negative z
direction. The speed of such propagation is c, the speed of sound in the fluid.

Within the fluid region, the total pressure p satisfies the wave equation, Eq. 1. Since the incident
free-field pressure Pi is known, it is convenient to decx)mpose the total pressure p into the sum of incident and

scattered pressures

P = Pi + P,, (7)

each of which satisfies the wave equation.

We now formulate the problem for finite element solution. Consider an arbitrary, submerged,
three-dimensional elastic structure subjected to either internal time-dependent loads or an external

time-dependent incident pressure. If the structure is modeled with finite elements, the resulting matrix equation
of motion for the structural degrees of freedom (DOF) is

Mfi + Bu + Ku = F- GAp, (8)

where M, B, and K are the structural mass, viscous damping, and stiffness matrices (dimension s x s), respectively,
u is the displacement vector for all structural DOF (wet and dry) in terms of the coordinate systems selected by
the user (s x r), F is the vector of applied mechanical forces applied to the structure (s x r), G is the rectangular
transformation matrix of direction cosines to transform'a vector of outward normal forces at the wet points to a
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vector of forces at all points in the coordinate systems selected by the user (s x f), A is the diagonal area matrix for

the wet surface (ix f), p is the vector of total fluid pressures (incident + scattered) applied at the wet grid points (f
x r), and dots denote differentiation with respect to time. The pressure p is assumed positive in compression. In
the above dimensions, s denotes the total number of independent structural DOF (wet and dry), f denotes the

number of fluid DOF (the number of wet points), and r denotes the number of load cases. If first order finite
elements are used for the surface discretization, surface areas, normals, and the transformation matrix G can be

obtained from the calculation of the load vector resulting from an outwardly directed static unit pressure load on

the structure's wet surface. The matrix product GA can then be interpreted as the matrix which converts a vector
of negative fluid pressures to structural loads in the global coordinate system. The last two equations can be

combined to yield

Md + Bu + Ku + GAps = F- GAp,. (9)

A finite element model of the fluid region (with scattered pressure p. as the unknown) results in a

matrix equation of the form

QI6, + up, + Hp_ = F °'), (10)

where p, is the vector of scattered fluid pressures at the grid points of the fluid region, Q and H are the fluid

"inertia" and "stiffness" matrices (analogous to M and K for structures), C is the "damping" matrix arising from

the radiation boundary condition (Eq. 4), and F _) is the "loading" applied to fluid DOF due to the fluid-structure

interface condition, Eq. 6. Using the analogy described in the preceding section, elastic finite elements can be

used to model both structural and fluid regions. Material constants assigned to the elastic elements used to
model the fluid .are specified according to Eq. 3. In three dimensions, elastic solid elements are used (e.g.,
isoparametric bricks (IHEXi) for general 3-D analysis or solids of revolution (I'RIAAX, TRAPAX) for

axisymmetric analysis).

At the fluid-structure interface, Eqs. 6 and 7 can be combined to yield

dp,
- 0(tim- Un), (11)

dn

where n is the outward unit normal, and U,. and ti., are, respectively, the incident and total outward normal

components of fluid particle acceleration at the interface. Thus, from the analogy, we impose the fluid-structure

interface condition by applying a "load" to each interface fluid point given by

F°) = - 0G.A(ti._ - d.), (12)

where the first minus sign is introduced since, in the coupled problem, we choose n as the outward norma{ from

the structure into the fluid, making n an inward normal for the fluid region. The normal displacements u. are

related to the total displacements u by the same rectangular transformation matrix G used above:

u, = GTu, (13)

where the superscript T denotes the matrix transpose. Eqs. 10, 12, and 13 can be combined to yield

Qi _, + cp, + Hp,- oG,(GA)Tti = -oG,Afi_. (14)

Since the fluid-structure coupling terms in Eqs. 9 and 14 are nonsymmetric, we symmetrize the problem [21] by
using a new fluid unknown q such that

t

q = /p_dt, q = p_. (15)

0

If Eq. 14 is integrated in time, and the fluid element "shear modulus" G, is chosen as

-1
G, = --, (16)

Q

the overall matrix system describing the coupled problem can be written as
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M (GA)][. {I
= {F-(GA)p,1

Av,], J '

where v,, (-- %,) is the outward normal component of incident fluid particle velocity.

(17)

The new variable q is, except f{}ra multiplicalive constant, the velocity potential _, since

p = -eq}. (18)

Eq. 17 could also be recast in terms of _ rather than q as the fundamental fluid unknown, but no particular

advantage would result. In fact, the use of q rather than _ has the practical advantage that the fluid pressure can

be recovered directly from the finite element program as the time derivative (velocity) of the unknown q.

"It} summarize, both structural and fluid regions are modeled with finite elements. For the fluid region,
the material constants assigned to the finite elements are

- 1020 - 1 - 1
E. - , G, = --, v, = unspecified, 0, - (19)

0 0 0c2 '

where Ee, Ge, v_, and 0, are the ¥oung's modulus, shear modulus, Poisson's ratio, and mass density,

respectively, assigned to the fluid finite elements. The properties 0 and c above are the actual density and sound

speed for the fluid medium. The radiation boundary condition used is the plane wave approximation, Eq. 4, which
appears to be adequate if the outer fluid boundary is sufficiently far from the structure [20]. With this boundary
condition, matrix C in Eq. 17 arises from dashpots applied at the outer fluid boundary with damping constant

- A/(0c ) at each grid point to which the area A has been assigned. At the fluid-structure interface, matrix GA is

entered using the areas (or areal direction cosines) assigned to each wet degree of freedom. (Recall that GA can
be interpreted as the matrix which converts a vector of negative fluid pressures to structural loads in the global

coordinate system.)

For radiation problems, the right-hand side of Eq. 17 can be simplified further since the incident
pressure p, is zero, and we obtain

M 0 u B "

Ill ()]{q} + ({}A.,.((J?)]{:} fK {}] u

We note that the structural and fluid unknowns are not sequenced as perhaps implied by the partitioned
form of Eq. 20. The coupling matrix GA is quite sparse and has nonzeros only for matrix rows associated with the

structural DOF at the fluid-structure interface and columns associated with the coincident fluid points. Thus, the
grid points should be sequenced for minimum matrix bandwidth or profile as if the structural and fluid meshes

comprised a single large mesh. As a result, the structural and fluid grid points will, in general, be interspersed in
their numbering, and the system matrices will be sparse and banded.

ACOUSTIC INTENSITY CAI.CULATIONS

The procedure for solving for the acoustic intensity field in an axisymmetric fluid finite element model
using NASTRAN [33] and the acoustic intensity post-processor AclNT is:

• run NASTRAN on a dynamically loaded finite element model of structural elements

and fluid elements using direct frequency response analysis, and generate resultant
nodal pressures for the fluid region(s);

• run AcINT using the output from NASTRAN to calculate nodal fluid velocities and
acoustic intensities.

The nodal pressures, actually the cosine coefficients of nodal pressures, are computed by NASTRAN
in response to the AXISYMMETRIC = COSINE command in the case control part of the input data. Since only
cosine coefficients are requested, the 2, 4, and 6 DOF are removed by NASTRAN for harmonic zero. The 1

and 5 DOF must be constrained by the user, leaving the 3 DOF to represent the scalar fluid velocity potential.
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The velocity potential integrated over time is the fluid pressure. Therefore, in the analogy, nodal pressures are
obtained by the case control command VELOCITY = ALL (or SETID). The resultant fluid nodal pressures are
used as illustrated below to compute acoustic velocities and intensities.

Acoustic Intensity

Intensity is defined as the time averaged product of a pressure with the in-phase component of particle

velocity. For time-harmonic analysis, where complex numbers are used, this calculation may be visualized as

taking the dot product of the pressure and velocity phasors. Multiplying one complex number by the in-phase

part of another complex number is the same operation as multiplying the first number by the complex conjugate

of the other number and taking the real part of the result:

I" = _ [pv'], (21)

where p is pressure, and v" is the complex conjugate of velocity. (Often, a factor of 1/2 appears in intensity

equations. However there is no factor 1/2 in the equations if the assumption is made that pressures and velocities

are "effective" rms values rather than amplitudes. With this assumption, consistency is maintained, and there is

no mixing of effective and peak quantities in this formulation.)

Acoustic Velocities

The derivation of acoustic velocities for axisymmetric problems is performed for the cosine coefficients
of the Fourier summation about the axis of rotational symmetry (z), where the r, z, and rotation about 0 DOF
are active. Only the r and z variations of the scalar pressure field are used to calculate the acoustic velocity vector

field. The particle velocity in a fluid domain is defined as:

v = t-(-' Vp = j__' (O.dV_.p[+ O__p_) , (22)
coo _0e or az

where e is the fluid density, to is the circular frequency, i is the square root of-l, dp and dp are the pressure
dr dz

derivatives in the r and z directions, and _" and !_ are unit vcctors in the r and z directions, respectively. A first

order finite difference approximation of the pressure derivatives at the nodes in an individual TRIAAX element
can be made as shown in Figure 1. The pressure differences between nodes are divided by the distancesbetween

nodes to approximate the first derivative of pressure in the direction of the two nodes. The approximate pressure

3

1

I:>
Z

0p P2 - Pl
g12 " Vp - =

Os,2 [_',-_I

Op Ps - Pl
s,3" Vp - ---

where: gn -- (s,25 + s,:,l_)/l_,21

_,, -- (s,3,[ + s,,,i)/l_,,I

Figure 1. Pressure Gradient Approximation.

gradient equations are written for all nodes connected to the node for which the velocity vector is to be calculated.

In the case above, all elements connected to node I must be found, and equations are written for each node
connected to node 1. No duplicate equations are written when two elements share a common edge. An
overdetermined system of equations for the pressure derivatives in the r and z directions is the result, with one
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equation for each node connected to the primary node. The system of equations is

-sir s,; 0f 1 F0_p_p/

s2, sz_ t.Od_.t dS_[= 0p/

• ' I
• °

• • i ° ;
, !

SNr SNz. •

o__E.Pi
• OSN

(23)

where s_ and s,, are the r and z components of the unit vector from the primary node to the connecting node

i, and N is the number of connecting nodes.

The derivatives are determined approximately using a least squares approach. The particle velocity

vector is then solved for using Equation 22, and the acoustic intensity vector is given by Equation 21. The
axisymmetric acoustic intensity field for a complete domain is found by repeating this procedure for each node
in the domain. In this way, a complete energy flow solution can be derived from nodal pressures and element
connectivities.

EXAMPLES

The axisymmetric model of a submerged, half prolate spheroidal shell is shown in Figure 2. The
structure has a semi axes of 10 m and 5 m. The material is steel with a uniform thickness of 25 ram, a Young's

modulus (E) of 2.074 Ell N/m 2 , a density (p) of 7860 kg/m 3 , a Poisson's ratio (v) of 0.3, and a material loss

factor of 0.0. The frequency range of interest was 100 to 500 Hz. The problem was analyzed for harmonic zero,

commonly referred to as the "breathing mode" of the domain, implying no variation in the solution field about
the z axts.

20.0

5.0 " \\\\\\_

re'_" '_ axis of symmetry I
0.0 _ , I_

10.0 25.0 z

Figure 2. Axisymmetric Model of a Submerged, Half Prolate-spheroid.

172



As shown in the diagram, the structure is submerged in fluid, which was also modeled and interfaced

with the structure. The fluid is seawater, with a density (13) of 1025 kg/m 3 and a speed of sound (c) of 1500 m/s.

"1_,o sets of boundary conditions along the left, vertical fluid edge wcrc applied, and are discussed in more detail
below.

A finite element (CONEAX) model of the problem is shown in Figure 3. The structure was modeled
using axisymmetric conical shell elements. The plate thickness, steel material properties, and the frequency
range determine an estimated average flexural wavelength [38] of 0.7 m at 500 Itz, which for a mesh requirement

of about eight elements/wavelength translates to a structural mesh density of 0.087 m/element length.

The outer fluid was modeled using TRIAAX elements. The seawater properties and frequency range

determine an upper wavelength of 15.0 m and a lower wavelength of 3.0 m. The upper wavelength determines

the location of the outer boundary of the fluid mesh, shown as A in Figure 2, as one wavelength from the
structure, or 15.0 m. The lower wavelength determines the fluid mesh density, which for a minimum of 8
elements/wavelength, specifies a fluid mesh size of 0.375 m/element length. The fluid and structural meshes

are distinct at the fluid-structure boundary, but with coincident nodes. These coincident nodes are coupled by
area matrices which map fluid pressures to structural forces, as described earlier. Only one fluid DOF was
assigned to each mesh point.

The area matrices are input with DMIG cards, which apply area values to the damping, or B2PP matrix.

A current limitation of NASTRAN is the program performing nonsymmetric system matrix decompositions when
MPC data is used with DMIG input. Despite the DMIG input being declared symmetric, when the MPC

equations are used to obtain the BDD matrix, NASqlLa, N changes the matrix trailer to nonsymmetric. All matrix
operations become nonsymmetric as a result, greatly increasing computer time. A sequence of AISI'ER
statements may be used to restore the trailer to its symmetric form. One such sequence (for the 1990 version

of NASTRAN, Rigid Format 8) is shown below for BDI).

ALTER 1195
DIAGONAL BDD/AVEC/*COLUMN*/0.$

ADD AVEC,/PVEC/(0.0,0.0)$
MERGE BDD,,,,PVEC,/B DDSYM/- 1//65
EQUIV BDDSYM,BI)D$

Make BDD trailer symmetric
Vector of ones

Vector of zeros (P--Vet)
Dummy merge

l?,l)l) now symmetric

This alter is inserted before the FRRI) modulc. With the BI)I) symmctr S flag rcslolcd, sul_,cqucnt mattlx

operations will take advantage of the symmetry of the system, reducing the required computer time. "lhis
NASTRAN bug has been fixed by Gordon Chan of Unisys for the 1992 program release.

Since the structural elements are about one-quarter the size of thc desired fluid elements, some mesh
transitioning in the fluid meshes was required from the mesh density of the structure (0.087 m/element length)
to the mesh density of the fluid (0.375 m/element length). The fluid clement material properties were assigned

according to Eq. 19.

Boundary and Loading Conditions

Two sets of boundary conditions were applied in the problem. In both cases, a 0c impedance, or plane

wave absorbing boundary condition was applied to the curved outer fluid boundary; and a point fc_rcing function
was applied at z=6.0 in the positive r direction along the structure, as shown in Figure 2. The structure was
constrained in all degrees of freedom at the upper left end. The left vertical fluid boundary was modeled in two

ways: (1) as a rigid wall, which reflects incident waves, and (2) as a 9c impedance absorber. I)MIG statements

inputting - A/Qc values for all boundary points simulated the {_c plane wave ahsc)rbcr.

Results

The problem may be accurately solved for any set cfl frcquencics from 100 to 500 1 lz. I)etailed results
are presented here for the 100 Hz case for Cases 1 and 2. The numerical output is examined several ways: power

input and power radiation calculations, structural displacements, acoustic pressure contour plots, and acoustic
intensity vector plots. This set of output provides a nearly complete solution to Ihe slruclural acoustic prohlcm.
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Figure 3. Finite Element Mesh.

Since hot h materials arc lossless, all power entering the structure must eventually be radiated into the

fluid. This means tim power input by the forcing function must equal the power exiting the system through the
l_lanc-wave ahsorhing outer boundaries. Power input is defined as

P,, = l,,v;,,, (24)

where F,_ is the radial complex input force (in this case unity), and v_, is the complex conjugate of the

corresponding volt,city at the force point. The power radiated through the absorbing boundary may be found
by integrating the calculated acoustic intensity field normal to the boundary:

[i',P,.,,, = t_ dA, (25)

c

where C denotes the b_undary contour, 6 is the outward normal vector, and dA is the incremental area. This

integration may bc c(mverted to a summation over all nodes on the boundary, where

1'_._, _ "3_ I__, a,. (26)

, 1

In this case. n_ altd A, are calculated for each node on the boundary, and used with lhe intensity vector at each

node to calcu late lh c power leaving the _stem. The summation over all boundary nodes gives the total radiated

power.
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Radiatedpoweriscommonlyrepresentedbyasphericalpressurefieldwitha referenceradiusof one
yard.If theouterboundaryisin thefar-field,thepressureatoneyardis

p_y,rd(dB)= 201og/QcP,,_ + 120, (27)

where 120 dB is added to calculate the pressure relative to 1 rtPa.

Tablel lists the power quantities defined above, and the relative error calculated by subtracting the
radiated power from the input power and normalizing to the input power. The error, about 2% for each case,

is probably due to the curved outer boundary. The approximate boundary condition was of a plane-wave
absorbing boundary. Since neither the boundary nor the radiated waves is perfectly plane, small reflections at
the boundary can occur, causing the power balance to be slightly in error. The radiated power, and therefore

the pressure at 1 yard, is higher for Case 2, and the error is either due to the additional left pc boundary's

absorbing more power, or the boundary's causing a small shift in the frequency response of the system. A full
frequency sweep would be required to determine the effects of the left absorbing boundary.

Case

I

2

Power Input (W) Power Radiated Ohl) %Error Pressure@l yard

(dB re: 1 I.tPa)

1A99E-8 1.519E-8 -1.33 91.9

8.988E-8 8.798E-8 2.11 99.5

Tablel. Power Results for 100 Hz.

A plot of the displaced shapes of the structure for both cases is shown in Figure 4. The displacement
field of the structure is complex, and a time dependent animation of the structural response is required to

visualize fully the movement. The plots shown here are at a single phase angle in the displacement cycle (292.5 o),
and show that the change in boundary condition does not significantly alter the structural response. A small
phase shift has occurred, but the general shape is the same for both cases. The ring loading causes the
discontinuity in the waveform at z = 6.0. This point is the source of the waves travelling to the left and right from
the load.

Acoustic intensity vector plots are superimposed on acoustic pressure contour plots in Figures 5-8.
Figure 5 shows the entire field for Case 1, and Figure 6 is a close-up of the field near the structure. Figure 7

is a plot representing Case 2, and Figure 8 is a closer view. A common pressure scale is used for all plots, with
the letters on the contours corresponding to the pressure levels (dB re: 1 _tPa). The vector lengths are
proportional to the log of the intensity magnitudes. The log of intensity is used in the plots to overcome the 1/r
decay in intensity magnitude with distance. Since this is an axisymmetric analysis at circumferential harmonic
zero, the acoustic fields are constant for all angles about the z axis, and no net energy may pass through the lower

z boundary. All intensity vectors along the lower boundary therefore have zero radial components.

The plots for Case 1 (Figure 5 and Figure 6) show the highest levels of far-field pressures to be in the

r and z directions, with values between contours I and J, or 70 to 75 dB. Near-field pressure peaks are indicated
near the structure by D contours, or about 100 dB levels. Examining the far-field intensity vectors show a
far-field condition (all acoustic energy directed outward) at the outer boundary, with the dominant energy flow

paths in the r and z directions. The rigid boundary condition along the left wall is evidenced by the absence of
any outward z directed intensity component along it. The near-field intensity vectors shows an energy path that
begins at the load point (z = 6.0) and branches to the fight and left. At the fight, or bottom of the structure, energy

flows along the fluid-structure boundary before travelling away toward the far-field at the r = 0 boundary. To
the left of the load point, energy re-enters and re-exits the structure twice before radiating outward at the z = 0

boundary. The circulation of power to the left of the load point causes "false sources" to appear where the energy
re-exits the structure. Examination of the entire intensity field identifies the load point as the original source
of power though.

For Case 2, the use of the pc boundary (Figure 7 and Figure 8) and at the left edge of the fluid causes

the acoustic pressures in the r direction, or upper left of the fluid domain, to decrease significantly from the rigid
boundary case, from 75 to 55 dB. The acoustic intensity field shows the reason for the decrease in pressure; the
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vectorsalongthe0c boundary now have a z-directed component, implying power exiting the system through the
boundary. The overall radiated power is higher for Case 2, though, due to an increase in the radiated energy
along the midsection of the outer boundary. The near-field intensity plot reveals that the circulating power flows
between structure and fluid to the left of the load point have disappeared. The energy now flows along the
fluid-structure boundary and radiates outward at the top of the structure. To the right of the load however, power

now circulates. The dominant path is from the load point to the right; into and out of the structure; then along
the structure until r = 0, where some power reenters the structure, and the rest radiates outward along the z axis.

NASTRAN DIFFICULTIES ENCOUNTERED

Two important limitations of NASTRAN became apparant during this study: the BDD damping matrix's

being specified as unsymmetric regardless of the symmetric nature of fluid structure interaction and absorbing
boundary data input by DMIG cards; and the formulation of stiffness coefficients for CONEAX elements. The

BDD matrix trailer may be restored to symmetric using the ALTER statements outlined in the Example section.
The difficulties with the CONEAX formulation are not easily fixed however.

Stiffnesses for CONEAX elements are computed analytically by NASTRAN, and involve the inverse

of Ar/AI, where Ar is the difference in radii and AI is the total distance between the grids defining an element.

For perfectly cylindrical shell elements with no variation in radii ( Ar/AI = 0), a different formulation is used

to avoid a floating point error caused by a division by zero. However, no provision is made for small relative

variation in radii ( Ar/AI = 0), and for a small range of elements the analytical computation is corrupted when

computer precision limits are reached. Sometimes the error is so drastic that negative values are obtained for

self term (diagonal) stiffnesses. The negative stiffnesses are reported to the user when NASTRAN checks the
system matrices for singularities. However, sometimes the error may be drastic in the positive sense, i.e.,
stiffnesses orders of magnitude too large. No error would be reported to the user, and the final solution would
be incorrect.

CONEAX stiffness errors were encountered for the example described here at the upper left end of
the structure, where the elements become nearly cylindrical. In this case, the stiffnesscs of several of the near
cylindrical elements were output and analyzed for accuracy. The two end elcmcnts were found to have large

errors in stiffness. "Ib solve the problem, the radii of the element grid points were set equal, and the end of the
structure was approximated as purely cylindrical.

A possible programming solution to the sensitivity of CONEAX stiffnesses to small relative differences

in radii is to approximate nearly cylindrical regions as cylindrical. For example, if for a given element Ar/AI

is below some specified tolerance E, the second grid radius is set equal to the first grid radius. The resulting model
would be a stepwise approximation of the nearly cylindrical region. The chief problem is how to choose E. Studies

would have to be performed on ranges of nearly cylindrical elements using different levels of computer precision
to determine the accuracy limits on the analytical stiffness computation method.

CONCLUSIONS

The combination of structural displacement plots, pressure contours, and acoustic intensity vector fields

all serve to reveal the complete state of a structural-acoustic problem. However, one component of the response
is missing: the energy flow within the structure. The circulating energy along the structural-acoustic boundary
indicated by the intensity plots show power flowing through the structure. A formulation similar to that for
acoustic intensity can be performed for the structure; however more than one wave type must be considered.

For the axisymmetric shells of revolution (CONEAX) used here, for example, both flexural (composed of both

shear and moment waves) and longitudinal waveforms may transport energy through structures. Methods have
been developed for general three-dimensional structural models of beams (BAR) and plates (QUAD4) [39], but

have not yet been extended to axisymmetric problems. This additional analysis tool will help improve
considerably the understanding of structural-acoustic, frequency response problems.
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I'igutc 5. Act_ustic Intensities and Pressures for Rigid Vertical Boundary;
I in¢,_ I'Jc'n_tc ('_nstant t'ressurc Contours: Vectors Denote Acoustic Intensities.
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Figure 6. Close-up of Acoustic Intensities and Pressures for Rigid Vertical Boundary;
Lines Denote Constant Pressure Contours; Vectors Denote Acoustic Intensities.
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Figure 7. Acoustic Intensities and Pressures for Absorbing Vertical Boundary;
Lines Denote Constant Pressure Contours; Vectors Denote Acoustic Intensities.
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Figure 8. Close-up of Acoustic Intensities and Pressures for Absorbing Vcrticul I_ound;u),;
Lines Denote Constant Pressure Contours; Vectors I)enotc Acoustic Intcn_;itic_.
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