
N92-244!3

GRAPEVINE: GRIDS ABOUT ANYTHING BY POISSON'S EQUATION IN A

VISUALLY INTERACTIVE NETWORKING ENVIRONMENT*

Reese L. Sorenson

NASA Ames Research Center

Moffett Field, CA

Karen McCann

Sterling Software

Palo Alto, CA

SUMMARY

A proven three-dimensional multiple-block elliptic grid generator, designed to run in "batch

mode" on a supercomputer, is improved by the creation of a modem graphical user interface (GUI) run-

ning on a workstation. The two parts are connected in real time by a network. The resultant system offers

a significant speedup in the process of preparing and formatting input data and the ability to watch the

grid solution converge by re-plotting the grid at each iteration step. The result is a reduction in user time

and CPU time required to generate the grid and an enhanced understanding of the elliptic solution pro-

cess. This software system, called GRAPEVINE, is described, and certain observations are made con-

cerning the creation of such software.

INTRODUCTION

Mathematical algorithms for grid generation, especially structured grid generation, are well ad-

vanced. But even so it can take six man-months to generate a useable multiple-block grid about a real

airplane or any other complex real-world shape, with that effort split between surface modeling, surface

gridding, and volume gridding. A major reduction of that discrepancy between algorithms and perfor-

mance, in the area of volume grid generation, is the subject of this paper.

3DGRAPE1,2 is an example of grid generation software which is algorithmically mature, but the

use of which can account for a generous share of those six man-months. The user's time goes to collect-

ing and formatting input data and to actually running the grid generation program. Input data for such a

grid generator (EAGLE3,4 is another example of the genre) can extend to thousands (or even tens of

thousands) of lines for a grid about a realistic shape. A reasonable approach to reducing that burden is to

use the graphical power of a workstation to speed-up the processes of collecting and formatting the input

data, and of running the program. GRAPEVINE is a software system which attempts to do that.

* Ms. McCann's participation in this project was under contract to Sterling Software, NAS2-13210.

319

GRAPEVINE consists of the five code modules illustrated in Figure 1. First is a newly-written

user-friendly GUI, running on a workstation, which controls the process. Second is 3DECANT, a code

module which displays the grid. The third code module is 3DGRAPE, the elliptic multi-block grid gen-

erator program. The fourth code module is 3DPREpS, a recendy-written workstation program to speed

the process of collecting and formatting the input data for 3DGRAPE. 3DPREP is not yet fully integrated

with the other code modules, and so is shown as separated from them in the Figure.

While the GUI, 3DECANT, and 3DPREP are written in C and naturally reside on a workstation,

the elliptic solver is written in FORTRAN and must run on a supercomputer due to the large amount of

calculation required. Hence the GRAPEVINE system operates across a network, with the C modules

running on a workstation and the elliptic solver running concurrently on a supercomputer. The code to

effect that communication and control across the network is the fifth module making up GRAPEVINE.

The result is a system which will work as shown in the flowchart in Frlgure 2. The user first

prepares input data in a graphically enhanced and accelerated fashion. The user then decides just what

grid surfaces should be viewed during the iteration process and how they should be viewed, and then

chooses to do the numerical processing on either the workstation or a supercomputer. He sends that data

to the numerical processor and starts it running. The numerical processor notes what very small subset of

all the grid data is required each iteration to update the grid plotting, and sends that data back to the

workstation each iteration. Thus the grid plot is updated every iteration, allowing the user to watch it as it

converges. By using these features the user can allow the solution process to continue, or stop it and

change some data, or abort it and start anew. The result is a greatly enhanced understanding of the eUiptic

grid generation process, and significant savings in CPU time and the user's time. At present the step

labeled "Create control scalars," shown in the upper left-hand corner of the Figure, is done in the separate

program 3DPREP, or in an editor.

Graphical User Interface(GUI):

control entire process "--- --.- .__..--. _ /

/ _ _ /---'" "- \ display grids

--. \ (IRIS) DP P:--L /
prepare input data for [- "" ---- ",> "_ }

3DGRAPE(IRIS) _ _J_ __ _

\ / / \ /'- _ 3DGRAPE: eniptical
" grid generator

Network Code (X_ \ / CRAY somoonl Sa omoon \ //
CRAY; connect both)

320

Figure 1. Modules comprising GRAPEVINE.

• @ IRIS I CRAY
Create control scalars | "

l | or IRIS
Read bo_ly points |

1 I
Set

grilldisplaya _ _ _ .!. _ _ _
[Input data and]

Set host, start 3DGRAPE I initial conditions J
__l _

'_ q [Selected grid surfaces
Watct it run

II_Run an iteration

L
-- -- --Send grid view data

Y----- {'Inte--r'upt [I

[and histogram data]

Examine grid aid G.Q. Functs "_

Figure 2. Flow chart summarizing GRAPEVINE operation.

CODE MODULES

GRAPEVINE is a combination of several code modules, some new and some old.

The 3DPREP Module

This module is currently a separate program, running on a workstation, which helps the user

collect and format input data for the 3DGRAPE program. It consists of a multiple-screen graphical user

interface. It obtains its input data by asking the user questions, or allowing the user to enter input data in a

random-access fashion, or allowing the user to read in an old case and then selectively modify it. The

module outputs two files (called filel0 and filel 1, file names and file structures which are familiar to

users of 3DGRAPE). These files are then used as input data for the 3DGRAPE grid generator. This code

module, 3DPREP, is discussed in detail in Ref. 5. Future plans call for integrating its capabilities into
GRAPEVINE.

321

The 3DECANT Module

This module has been fully integrated into GRAPEVINE. It consists of graphics code and trans-

formation algorithms. It allows the user to select the grid surfaces, taken from any block or blocks, which

are to be plotted. The user can color the surfaces arbitrarily or by grid quality functions, and do any

combination of translation, rotation, and zooming, about either the body's axes or the screen's axes, with

the center of rotation being the centroid of that which is being viewed. Various other display options,

such as hidden-surface-removal, are included. This module is also discussed in Ref. 5.

The 3DGRAPE Module

This code is the proven three-dimensional multiple-block elliptic grid generator. Given the user's

requirement for cell height on boundary surfaces, numerical values for inhomogeneous terms are found

iteratively by the code. The result is local near-orthogonality and controlled cell height on boundary

surfaces, with those controlling influences decaying exponentially toward the interior of the blocks. It is a

multiple-block volume grid generator wherein the block-to-block boundary surfaces are found automati-

cally by the code, alleviating the need for the user to define them before starting. This module is dis-

cussed in detail in Refs. 1 and 2. As used in GRAPEVINE the code is improved by better initial condi-

tions, and by an improved treatment of sharp corners in the middle of block faces.

The Graphical User Interface Module

The graphical user interface and the network code are the principal contributions presented in this

paper. The graphical user interface consists of several screens.

The Data Input/Output (I/O) Screen

GRAPEVINE begins in the Data I/O Panel, as shown in Figure 3 (all the screen Figures in this

paper have been reduced to grayscale, but generous use of color is made in the program). Default file

names for input and output are given. The user has the opportunity to overwrite those file names. Upon

exit, the current file names are written into an "environment file" which is read upon the succeeding

startup. Thus the user's chosen file names in the current run become the default file names for the next

run, simplifying operation. The input files include the filel0 and filel 1 input files which are created by

3DPREP. Once the user has entered the necessary file names, he clicks on either the "read start files"

button or the "read restart files" button. Those simple operations give GRAPEVINE all the information it

needs to generate the grid.

However, the program needs one more input data file, this one telling it how to plot the grid. The

creation of this file is discussed below, but once it has been created it is typically just read in and used as

322

ii _i_ 'r/'_i_ _i :!_i_i:i_!:_ii_ _;i!!i_iiiiii_ii_ii_iiii;iUiii_i_i_ii_i_i_ii!i**_-t;i_t_qi__i_iiii_:i_i̧ ;_ii!!_iii_ii!_;i_iiii_ii_̧q_ ___!i_,i,iiiiii_i_!_¸_̧,__ _:_!_i _i Idll

Figure 3. Data I/O panel.

in the previous run. Doing this requires clicking on the "read view" button. Thus after clicking on two

buttons, the program is in most cases ready to begin calculating.

The lower part of the Data I/O Panel shows the different file type options available for outputting

the grid. It can write in the 3DGRAPE or PLOT3D formats, with several options for each format.

3DGRAPE has the ability to do both new starts and restarts; this capability is preserved in GRAPEVINE.

Upon exiting the program this panel comes up again. It shows the user not only what files have

been read but also what files have been written, in the small boxes containing the words "yes" or "no." If

the user desires to write a file which was not requested in the input data, such as a restart file, it may be

done from this panel.

The Create Surface Panel

This panel, shown in Figure 4, is where the user specifies what surfaces are to be plotted and how

they are to be colored. Any collection of surfaces or portions thereof viewed together make a "surface

set." The user may specify any number of surface sets. When viewing the user may cycle through the

323

Figure 4. Create surface panel

given surface sets, viewing each separately.

Sliders shown in the center of the

Create Surface Panel are used to specify the

starting and ending index values which,

together with a block number, specify each

surface or portion thereof (the user could

even specify a solid region for a surface,

such as an entire wing including both upper-

and lower-surfaces). The lower-right-hand

comer of the Create Surface Panel gives
three vertical sliders which are used to

specify the color in which the surface is to

be plotted. The color is specified by the
hue-saturation-value method.

Plotting transformations, discussed

above, are used to translate, rotate, and zoom

the plots of the surface-sets. At the user's

option a different orientation for each sur-

face set may be used, or the same orientation

may apply to all surface sets.

The data specified in this panel --

block numbers, index limits, color codes --

together with the orienta_;o,a matrices which

are the result of operating the transforma-

tions, are written at the conclusion of the run

and are read in the next time as the "view

file." This file is simple text, and can be
viewed and modified with an editor. This is

an example of an attempt, also made in

3DGRAPE, to keep the input data file types

accessible to the user. This is much appreci-

ated if, for whatever reason, things go

wrong.

The Main Iteration Screen

There is one task which the user will wish to do before beginning the iteration process, and that is

to specify upon which host processor the numerical calculations for solving the Poisson equations will be

done. For small cases the user may wish to perform the calculations in "standalone" mode on the work-

station. In most cases, however, a supercomputer is required. The "remote host" panel, shown in Fig. 5,

effects this choice. The computers available are, of course, installation-dependent. At the Numerical

Aerodynamic Simulation (NAS) facility at NASA Ames Research Center the choice is between the user's

324

IRIS workstation(aproductof SiliconGraphics,Inc.,
alsoreferredto asSGI),a CRAY-2 calledNavier,
andaCRAY-YMP calledReynolds(bothCRAYsare
productsof CRAY Research,Inc.).

Themainiterationscreen,whichtheuserwatches
during the iterationprocess,is shownin Fig. 6. The
largeplottingregionon thelowerleft showsthegridat
eachtime step. Beforestartingtheiterationthe user
cyclesthroughthegivensurfacesets,choosingtheone
to beviewedduring the iteration,andpositionsit as

Figure5. Remotehostpanel

Figure6. Main iterationscreen

325

desiredby usingthetransformations.At anytime duringtheiterationprocesstheusermayinterrupt,re-
positiontheviewedset,or chooseanothersurfaceset,andcontinue.

Abovetheplotting regionis theiterationhistorydisplay. For achosenblockfour parametersare
givenin numericalform at eachiteration. Theseparameters,familiar to usersof 3DGRAPE,are
MAXMOVE, thedistancemovedby thepointwhichmovedthefarthest,AVEMOVE, theaverageof the
distancesmovedby all interiorpoints,PQRMAX, themaximumabsolutevalueof theforcing functionsat
eachpoint, andPQRCOR,themaximumabsolutevalueof thecorrectionsappliedto theforcing functions.
Thesesamefour parameters,all functionsof iterationcount,arealsoshownasplots. In theactualpro-
gramcolor is usedto differentiatebetweenthedifferent functionplots.

326

Figure 7. Grid quality screen.

The main menu is given on the upper right, and the panel on the lower right controls starting and

stopping the iteration process.

The Grid Quality Screen

The last remaining screen, the grid quality screen, shown in Figure 7, is a graphical implementa-

tion of a grid quality program originally written for batch operation in FORTRAN by K. Chawla. For a

chosen block it gives the user the option of calculating the cell volume, and up to five other grid quality

functions, with each of the other five functions in any of the three coordinate directions. Those grid

quality functions are: (1) the angle between neighboring normal vectors, (2) the ratio between the lengths

of the two diagonals in a cell face, (3) the aspect ratio of the cells, (4) the ratio between the heights of

adjacent cells, called the stretching ratio, and (5) the orthogonality given by dot-products. Volume or any

one of the other functions can be shown at any time. The chosen function is used to color grid surfaces as

the program marches through the grid by incrementing or decrementing a chosen index. The marching

may be manual or automatic. Various options are given to map the calculated function values into colora-

tions. A distribution display shows how many of the points have various values of the chosen function.

The user may rotate, translate, and zoom the displayed surfaces.

The Network Code Module

As mentioned above, the user may choose to do the mathematical calculations (the numerical

solution of the Poisson equations) on either the IRIS upon which the remainder of the program is running,

or on some remote host processor (typically a supercomputer such as a CRAY). If the choice is the IRIS,

no networking is needed; the 3DGRAPE program is simply linked with the other code and called.

But if a remote host is chosen, a modified version of 3DGRAPE is run on the CRAY. That opera-

tion requires several steps:

1. The input data files (filel0 in the case of a new start or file16 in the case of a restart, and filel 1)
are sent from the IRIS to the CRAY. This is done by using the C function "system" to call the

UNIX function "rcp."

2. The UNIX function "rexec" is used to start the remote process on the CRAY.

3. The C header code on the CRAY reads the input files to determine what dimension sizes are

required, and allocates storage on the CRAY accordingly.

4. The IRIS sends to the CRAY a list of the surfaces which the user has chosen to display during the

iterative process.

5. 3DGRAPE in FORTRAN on the CRAY re-reads the input data, initializes its variables, and begins

iterating.

327

. After each iteration the x,y,z values for the displayed surfaces are sent to the IRIS, along with

convergence history information which is to be plotted as a function of iteration count. The IRIS

display is then updated.

. When the iteration procedure is completed, or when an exit interrupt is received by the CRAY, the

entire grid is sent to the IRIS.

Three different IRIS-to-CRAY interrupts were found to be necessary: kill, exit, and pause-con-

tinue. A kill interrupt causes the CRAY process to halt, possibly in the middle of an iteration, and not

send the grid back. This is useful when the grid being generated is obviously unsatisfactory, and the most

expedient halt is desired. An exit interrupt causes the CRAY to complete the current iteration, send the

grid back, and stop. This is used when the grid appears to be good enough to use without further iteration.

A pause interrupt causes the CRAY to finish the current iteration, send the entire grid back to the IRIS,

and then halt without releasing CRAY memory or terminating the run. The user can then examine the

grid graphically on the IRIS by cycling through other surface sets; do translation, rotation, and zoom

operations on those plots; and plot the grid with coloration by grid quality functions with marching

through all grid points. Once development of the program is finished, and the functionality of 3DPREP is

fully integrated into the code, the user will be able at this point to modify the input parameters. After

performing these tasks during the pause, the user can issue the continue command and re-start the CRAY

process.

Network functions "socket" and "bind" were used to open sockets on both the IRIS and CRAY

sides of the network. All communication is done over the sockets, with the exception of the kill interrupt

which is sent at the system level. Routines from the CRAY library "binconv" were used to change float-

ing point and integer numbers between CRAY and IRIS formats. Algorithms used were partially modeled

on the sample code "chat" provided by SGI on IRIS systems, and the networking library "dlib" written by

M. Yamasaki. All network functions are error-trapped; this is necessary because hardware interruptions

from both the CRAY and the network may occur at any time.

The purpose of distributing the code over a network is to accelerate the iterative solution of the

Poisson equations, relative to the speed at which they would be solved running on the IRIS alone. The

speed at which the code runs when distributed is dependent upon many factors. First is the IRIS, which

slows due to a lack of free memory or too many users. Second is the network, which slows under heavy

use. Third is the CRAY which, when many users are logged on, can cause a particular task to wait for as

much as sixty seconds before getting another time slice. For these reasons it is difficult to give a defini-

tive statistic concerning the degree to which the code speeds up when distributed, but experience indicates

a speedup by a factor of ten to fifteen.

LESSONS LEARNED

It should be recognized that distributed processing, at least in the CFD context, is in its relative

infancy. There have been networks for many years, over which data and news are shared. But there are

few examples of systems wherein the processing of data is shared over more than one node of a network.

328

Doing so allows specialization wherein individual processors are assigned those tasks at which they excel.

The present work is one example of truly distributed processing. The workstation excels at graphical

interfacing, while the supercomputer excels at "number crunching."

When this project was begun approximately two years ago CRAY computers (together, possibly,

with the emerging Japanese supercomputers), held a unique position in the computational scheme of

things, widely accepted as the only real practical supercomputers. And so at that time, due to their posi-

tion in the industry and the fact of the availability of several of them at NASA Ames Research Center,

CRAYs were the obvious choice for the numerical processor for this project. It is doubtful that network-

ing was high on the priority scheme during their design (one might argue that CRAYs are good at number

crunching because they do not excel at networking). But that lack of emphasis has revealed itself in

certain difficulties faced by this design team. CRAYs tend, it would seem, to favor long time slices per

user, causing the interactive user to have to wait as long as sixty seconds for the processing of an inter-

rupt. And it was the experience of this design team that the CRAYs crashed several times per day (the

IRIS workstations are up for weeks at a time). And because they are so attractive for number crunching,

CRAYs tend to be heavily loaded, further slowing things. Also, it was found that certain networking

functions worked differently on different host computers. CRAYs and IRISes have different internal data

formats, giving rise to the need for conversion before transfer. These difficulties took their toll on this

development effort. CRAY's position in the scheme of things is now threatened by ultra-high-end mul-

tiple-processor workstations, which have a clear price/performance advantage, and by massively parallel

machines, which have the potential for much higher mflops rates. Ultra-high-end workstations and

massively parallel machines should be considered as candidates for the numerical processor in the design

of any such distributed system in the future.

At the outset of this project there was debate over how much of the pre-existing 3DGRAPE code

should be translated into C. Opinion ranged from "all" to "none." As it turned out, a header program was

written in C which reads the input data to determine array dimension requirements, allocates arrays

accordingly, processes iterrupts, and does data output for transfer back to the IRIS. This header calls

various parts of 3DGRAPE in FORTRAN to re-read the input and initialize variables. And the C header

contains the "main iteration loop" in which other parts of 3DGRAPE in FORTRAN are called to actually

perform an iteration. If these authors had it to do over again, more of the FORTRAN would be translated

into C, principally the remainder of the data I/O, and the variable initialization, leaving only the contents

of the main iteration loop in FORTRAN.

It is obvious that the graphical capabilities of modern workstations can have a great and beneficial

effect upon productivity of scientists and engineers in general, and on practitioners of CFD in particular.

But they bring about a situation with respect to programming languages which is analogous to that which

argues for distributed computing. Just as distributed computing allows different computers to do that part

of the job at which they excel, so does multi-linguistic programming allow different languages to do what

they do best. C (or C++) is the language of choice for graphical interfaces for many reasons including

versatility in data structures, versatility in performing I/O, and compatibility with graphical libraries.

329

FORTRAN(especiallyasimplementedonCRAY computers)vectorizesbest,andis still thelanguageof
choiceamongthescientistsandengineerswhodevelopthetechnologyimplementedby thesesystems.
And sotheparadigmsuggestedabove,whereinthegraphicaluserinterface,thenetworking,arrayalloca-
tion, initializationof variables,andI/O aredonein C (or C++),andthecontentsof the"main iteration
loop" remainsin FORTRAN,seemsatpresentto beaworkablecompromise.

CONCLUSIONS

A working software system for generating structured multiple-block grids, distributed over a

network between a supercomputer and a workstation, has been developed and tested. Because the code is

distributed its user interface is interactive on a workstation, and its numerical processing is performed on a

supercomputer. Thus a great reduction is seen in user time required to collect and format the input data

and to run the code, and the numerical processing is performed much faster than if it were done on a

workstation.

It was the experience of these developers that CRAY supercomputers, though powerful at numeri-

cal processing, are not ideally suited for interactive networking applications. Developers of similar

distributed software systems in the future should instead consider the use of ultra-high-end workstations

or massively parallel computers for role of numerical processor. It is further the conclusion of these

developers that when coding a graphical user interface in C for a pre-existing numerical application in

FORTRAN, everything except the contents of the "main iteration loop" should be translated into C.

ACKNOWLEDGEMENTS

The authors are grateful to Michael J. Yamasaki and Matthew W. Blake of NASA Ames Research

Center, and John R. Campbell of Computer Science Corp. for their help in writing the networking code.

The authors are grateful to Kalpana Chawla of the MCAT Institute for supplying a grid quality code. And

the authors thank the NAS Applied Research Branch, the NAS Systems Development Branch, and the

Office of Technology Utilization at NASA Ames Research Center for partial financial support.

REFERENCES

. Sorenson, R. L.: Three-Dimensional Zonal Grids About Arbitrary Shapes by Poisson's Equa-

tion. Appears in Sengupta, S., H_iuser, J., Eiseman, P. R., and Taylor, C., eds.: Numerical

Grid Generation in Computational Fluid Mechanics. Pineridge Press Ltd., 1988.

330

2. Sorenson, R. L.: The 3DGRAPE Book: Theory, Users' Manual, Examples, NASA TM-

10224, 1989.

3. Thompson, J.F.: A Composite Grid Generation Code for General 3D Regions -- the EAGLE

Code. A/AA Journal, vol. 26, no. 3, March, 1988, p. 271.

o Thompson, J.F. and Lijewski, L.E.: Composite Grid Generation for Aircraft Configurations

with the EAGLE Code. Appears in Thompson, J.F. and Steger, J. L., eds.: Three Dimensional

Grid Generation for Complex Configurations -- Recent Progress, AGARD-AG- 309, 1988.

5. Sorenson, R. L., and McCann, K. M.: A Method for Interactive Specification of Multiple-

Block Topologies. AIAA 91-0147, Jan., 1991.

331

