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ABSTRACT

Title of Dissertation : A Study of Viscous Interaction Effects

on Hypersonic Waveriders

Jinhwa Chang, Doctor of Philosophy, 1991

Dissertation directed by: Dr. John D. Anderson, Jr.

Professor

Department of Aerospace Engineering

in a continuing effort to generate new and improved classes of viscous op-

timized hypersonic waveriders, the present work takes a step forward and ex-

amines the effects of viscous interaction in the waverider design and analysis

process. Parametric runs are made to produce L/D, CL, and Co contour plots

for Mach number 6.0 to 30.0 at an altitude 30.0 to 80.0 Km, for waverider

designer's refi'rence. This is the first work to examine the effects of viscous in-

teractions on hypersonic waveriders, and to generate a new family of waveriders

wherein viscous interaction effects are included within the optimization process.

Corda's computer program is used to generate viscous optimized hypersonic

wavcriders from conical flowfields without viscous interaction. Each waverider

is optimized for maximum L/D , and comparison studies are made between the

cases with and without viscous interaction. Other results of the investigation

agreed with viscous interaction theory in showing an increase in the surface

pressure near the leading edge of a waverider, and also the tendency for it to

approach the freestream value further downstream. This change in the surface

pressure distribution as well as increases in the skin friction, resulted a decrease

in the maximum Lift/Drag for the w_verider. The influence of viscous interac-

tions on the surface pressure distribution and hence the maximum L/D were



found to result in noticeably different viscous optimized waveriders generated

without considering viscous interactions.

Finally, the results show that aerodynamic performance of the viscous inter-

action waveriders are greatly reduced due mainly to a large increase in skin-

friction drag associated with the viscous interaction phenomena that is increased

with increasing the Mach number and altitude, but some of this loss can De re-

couped by including viscous interactions within the optimization procedure.

When the waverider is optimized for viscous interaction, the shape can change

dramatically.

The central conclusion of the present work delineates on a velocity-altitude

map that region where viscous interaction effects are significant for modern hy-

personic waveriders. In particular, viscous interaction effects become important

at Mach numbers greater than sixteen and altitudes upwards of 140,000 feet.
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Chapter 1

Introduction

1.1 Viscous Interaction: What is it?

In recent years concepts such as the National Aero-Space Plane (NASP) and the

German Sanger project have led to a renewed interest in the design of efficient

hypersonic configurations. With the recent resurgence of interest in NASP, space

shuttles, hypersonic missiles, and orbital transfer vehicles, waverider configura-

tions are being proposed as effective hypersonic designs [1]. One of the most

significant challenges facing the designer of a hypersonic vehicle is an accurate

prediction of skin friction and heat transfer; these are viscous effects, caused by

the dissipatior, of kinetic energy within the boundary layer. Viscous effects will

be critical for the accurate assessment of the aerodynamic performance of hyper-

sonic vehicles. Hypersonic waveriders, at high altitude, will fly at a high Mach

number and a low Reynolds number; these conditions accentuate the effects of

hypersonic viscous flow. In fact, under these conditions, viscous effects can domi-

nate the flow field and drastically alter the pressure distribution on the waverider

- this is called hypersonic viscous interaction.

Stollery [2] defines viscous interaction "as the mutual interaction between



the external flow field and the boundary layer growth around a body of a given

shape." In the literature, several types of viscous interactions axe addressed. Each

is a consequence of the so-called "mutual interaction" -- a highly viscous bound-

ary layer changes the character of the outer inviscid flow, which in turn changes

the structure of the boundary layer. Cox and Crabtree [3] uses the term "second

order boundary layer effects" when describing viscous interaction; these axe the

effects neglected in classical boundary layer theory, used typically to analyze high

Reynolds number flows.

The first viscous interaction, and the one germane to this research, is the so-

called _pressure interaction" due to the presence of exceptionally thick boundary

layers under certain hypersonic conditions. As pointed out in Ref. [4] , pressure

interaction is frequently referred to as simply "viscous interaction" in today's

literature. Compared to vorticity interaction, pressure interaction is generally

"by far the most important" [5].

Talbot et al., [6] uses the term "viscous self-induced-pressure effect". He

explains the phenomenon as follows (refer to Figure C.1, from Ref. [4]):

"At hypersonic speeds the boundary layers which develop on bodies are,

because of the large temperature differences generated through them,

many times thicker than those which are produced at low speeds. Since

the density of the hot gas in a hypersonic boundary layer is very low,

the mass fluz within the boundary layer is small. Thus, the presence of

a thick layer of hot gas adjacent to the surface of a body results in the

2



outward displacement of streamlines in the flow ezternal to the layer;

this outward displacement can be regarded as equivalent to an effective

thickenin9 of the body. It can easily� be seen that this thickenin9 will

result in increases in pressure in the flow ezternal to the boundar_

layer, and because the pressure in the ezternal flow is transmitted

essentially without change throuyh the boundary layer, the pressures

on the surface of the bod_t will likewise be increased. The difference

between the actual surface pressure and that calculated by inviscid

theory neglecting self-induced pressure."

As stated above, a hypersonic boundary layer can be "many times thicker

than those which are produced at low speeds." - "10-15 times thicker" according

to a report by Lees [7] in 1956. The major consequence of this phenomenon

is the "self-induced-pressure effect". Anderson uses the term "induced pressure

change". The first mention of this in the literature was by Becker [8]. He was

quick to make the following observation: "Two obvious practical effects of this

phenomenon are to increase the pressure drag of hypersonic airfoils and to alter

appreciably the characteristics of leading-edge control devices." Additionally, due

to "displacement effects", Truitt [9] found the skin friction coefficient (hence

drag) to be "several times greater" than that predicted by conventional boundary

layer theory without including displacement effects. Bertram [10] confirmed

this experimentally for hypersonic flow over a fiat plate; Bertram found a 20 -

40% increase (above classical laminar skin friction results) in skin friction drag

caused by "boundary layer induced pressure". Anderson [4] provide the following

3



physicalargument to explain the aboveconsequenceof viscous interaction:

"The inereased pressure (hence increased density) tends to make the

bounda_ lalter thinner than would be expected (although _ is still large

on a relative scale), and hence the velocity and temperature #radients

at the wall are increased. In turn, the skin friction and heat transfer

is increased over their values that would exist if a constant pressure

equal to P_ were assumed".

The second interaction effect( [2], [3], and [4]) is the shock wave/boundary

layer interaction; this refers to the interaction occurring when a shock wave im-

pinges upon a boundary layer (refer to Figure C.2, from Ref. [4]). Because pres-

sure increases across a shock wave, a region of adverse pressure gradient can be

established in the vicinity of this interaction. A severe gradient can result in

"pockets" of locally separated flow within the boundary layer. Additionally, sec-

ondary shocks can be formed as the flow field seeks to establish itself in some form

of "equilibrium". Between the separation shock wave and reattachment shock,

the curvature of the boundary layer turning back to the surface of the plate will

create expansion waves. The pressure will increase and the boundary layer will

become quite thin at the reattachment point. The net effect, of this rather com-

plicated picture, can be regions of extremely high aerodynamic heating and heat

transfer.

The third type of interaction associated with large boundary layer thick-

nesses occurs when the vorticity in the external inviscid flow is sufficiently large



that the boundary layer structure is affected not only by the external velocity

distribution but also by the inviscid vorticity distribution. For sharp-nosed slen-

der bodies, vorticity interaction results from the effective blunting of the nose

due to the initial boundary layer growth [5]. In 1937, Crocco [11] used his the-

orem to show that entropy gradients, behind a curved shock wave, resulted in

a rotational flow field. Vorticity interaction may be especially important in the

boundary layer for the case of blunted slender bodies or blunt bodies at very

low Reynolds numbers [5]. In the early analyses of viscous interactions (see, for

example, Ref. [12]), using primarily "self-similar" and "matching" techniques,

these regions of entropy gradients/rotational flows presented major difficulties in

developing theories to adequately predict flow field structure.

For completeness, Cox and Crabtree [3] also classifies "body curvature"

and "slip effects" as secondary interaction effects. Both influence boundary layer

growth and hence interact with the external flow field.

The reader is reminded again that only the "pressure interaction" type of

viscous interaction is considered in the present research.

5



1.2 A Brief Review of Waveriders

Over the 30 years since the waverider concept was first formulated by Nonweiler

in 1959 [13], this concept has received sporadic attention, with majority of the

research carried out in Europe. A waverider utilizes a known supersonic or hyper-

sonic flow field to define tile compression lifting surface with an attached leading

edge shock. Since the shock wave is attached to the leading edge at the design

Mach number and angle of attack, the wing appears to ride on its shock wave;

therefore, it is called a "waverider'. Lifting efficiency of the compression surface

is obtained because there is no flow spillage from the lower surface to the upper

surface.

Most early waverider concepts(1959-1968) were derived from two-dimensional

planar flow fields. An excellent and authoritative survey of waverider research

has been given by Townend [14] and a tutorial approach is also taken by Roe [15].

The basic design methodology was explained in detail by Townend [16] and is il-

lustrated in Figure C.3. The intersection of an arbitrary capture flow tube surface

with a two-dimensional oblique shock defines the leading edge of the waverider.

The lower surface is defined by tracing the flow field streamlines from the leading

edge to the desired base location of the waverider. The upper surface is defined

by tracing streamlines parallel to the freestream flow from the leading edge to

the base of the waverider. As shown in Figure C.3, the shape of the waverider

is dependent on the shape of the capture flow tube and the shock angle, which

defines both the upper surface contour and the planform. Because of the attach-



ment of the shock at the leading edge, a two dimensional planar compressed flow

is contained on the lower surface, which provides for efficient lifting pressures.

Several waverider concepts derived from two-dimensional planar flow fields

are illustrated in Figure C.4. Experimental studies of Nonweiler's caret waverider

concept indicated lower aerodynamic performance (i.e., lower lift-to-drag ratio)

than was predicted [I7]. In addition, equivalent delta wings having the same vol-

ume and projected planform were found to have equal or better performance than

the caret waverider [17}. These caret waverider deficiencies have been attributed

to their large wetted area and hence higher skin friction drag. Nonweiler also

proposed the W-delta waverider concept [18], which consists of two caret wings

which have been rolled in opposite directions and joined in the center. Flower's

T-delta waverider is similar to Nonweiler's W-delta, but has a flat upper surface

[19]. Woods developed the concave waverider concept, which was found to have

better performance than either the caret waverider or the equivalent delta wing

[20]. Townend proposed that a two-dimensional isentropic compression derived

waverider would have improved lifting efficiency relative to the planar derived

waverider [16]. Flower introduced the concept of shaping an expansion upper

surface to develop efficient upper-surface lift; this concept was incorporated in

the Y-delta and X-delta waverider concepts [19].

In 1963, Jones [21] presented a method of constructing the waverider lower

surface using the known flow field past axisymmetric bodies. The basic design

methodology, which was first developed for conical flow field, is illustrated in

Figure C.5. Tile intersection of an arbitrary capture flow tube with a conical



shock defines the leading edge of the waverider. The shape of the waverider

leading edge is dependent on the capture flow-tube shape and the shock angle (as

was the case for the two dimensional planar shock case) and also is dependent on

the distance of the capture flow tube from the conical shock centerline. The lower

surface and upper surface are defined in the same manner as the two-dimensional

planar flow-derived waveriders. In search of optimum waverider shapes, Cole

and Zien [22] used hypersonic small disturbance theory to obtain inviscid flow

solutions of axisymmetric bodies with longitudinal curvature.

Shown in Figure C.6 are several waverider concepts derived primarily

from axisymmetric flow fields. Jones' cone derived waveriders were experimen-

tally shown to develop the predicted compression surface pressures [23]. Ras-

mussen( [24] and [25]) and Kim et al.( [26] and [27]) investigated a series of

circular and elliptic cone flow field derived waverider concepts. A sufficient num-

ber of waveriders were derived to indicate which shapes were optimum for a given

Mach number and volume. Experimental studies showed that the performance

was always lower than predicted. As was the case with the two-dimensional pla-

nar flow field derived waveriders, the performance deficiencies were attributed to

viscous skin frictioI_ effects, which were not included in the optimization consid-

erations. In order to address these deficiencies, Bowcutt and Anderson developed

a numerical procedure for optimizing cone-derived waveriders which included the

effects of skin friction drag within the optimization process ( [28] and [29]).

Waverider geometries designed using this optimization method are predicted to

have very high performance relative to previous concepts. It is important to note

8



that since 1986, several additional waverider developments have occurred. Corda

[30] extended the work of Bowcutt to include waveriders derived from any ax-

isymmetric flow field. For example, a waverider derived from the flow field of a

minimum drag body would be expected to have a lower drag than its cone flow

derived counterpart. Mclaughlin [31] further extended the optimization methods

to account for chemical equilibrium flow as opposed to the perfect gas assump-

tions used in the previous methods. Finally, Sobieczky has developed methods to

derive waveriders from arbitrary shock shapes [32]. Rescently Jones et. al., [33]

compared hypersonic waverider aerodynamic performance with numerical and

experimental results.

1.3 Present Study

The present work is part of the continuing study of waveriders in the Hypersonic

Group at the University of Maryland. The purposes of this research are to exam-

ine tile viscous interaction effects on existing hypersonic waverider designs and

to generate a new family of hypersonic waveriders wherein viscous interaction

effects are included within the optimization process. In the process, through nu-

merical experiments, the results/discussions presented in this work will also serve

to clarify the physical aspects of viscous interaction on hypersonic waveriders.

The model of hypersonic flow over a sharp flat plate, at zero incidence

angle, is applied along each streamline oil the waverider surface. The rational for

this geometry is based on tile following comments:

1. The sharp fiat plate is a "particularly appropriate model to examine the el-
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fects of the flow field development due to viscosity, apart from complicating

effects of body geometry." [34]

2. The "magnitude of the viscous interaction is more significant for thin bodies

such as flat plates and slender cones than for thick bodies, since for thin

bodies the changes in effective geometry due to boundary- layer growth will

be proportionally larger" [6]).

3. The combined conditions of high Mach number and low Reynolds number(

high altitude) accentuate viscous interaction.

4. Assume at each streamline on waverider acts like

two-dimensional flow on the flat plate.

Laminar flow is assumed - a valid assumption for high Mach, and rel-

atively low Reynolds number flow. A number of parametric runs at different

altitudes, and Mach numbers were carried out to examine viscous interaction

effects on existing waverider designs and to generate a new family of waveriders

wherein viscous interaction effects are included within the optimization process.

A major objective of this work is to construct velocity-altitude maps delineating

those flight regimes where viscous interaction effects are important for hypersonic

waverider design.

1.4 Contribution to the State-of-the Art

This dissertation represents the first time that calculations have been made on

waveriders including viscous interaction effects on existing waverider designs, and
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also the first to generate a new family of waveriders wherein viscous interaction

effects are included within the optimization process. Velocity-altitude maps axe

constructed clearly delineating those, flight regimes where viscous interaction ef-

fects are important for waveriders in hypersonic flight. It is understood that

viscous interaction effects are important at high Mach number and high altitude

flight. However, answers to the following questions have not been available until

now.

1. At what altitude and Mach number ranges are these viscous interaction

effects important for hypersonic flight vehicle design?

2. flow much does aerodynamic performance, differ from cases with and with-

out viscous interaction effects?

3. ltow much are the waverider shapes changed, and what is the optimum

shape with viscous interaction effects?

Answers to these questions constitute the main focus and contributions of the

present dissertation.
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Chapter 2

Method of Calculation

2.1 Classical Viscous Interaction Solution

On slender bodies at subsonic or low supersonic speeds at low altitude (hence

high Reynolds number), the total streamline deflection induced by the boundary

layer is of the order of the reciprocal of the square root of the local Reynolds

number [35].

6 1
- (2.1)
x

In this case, the effect on the pressure distribution will be inversely propor-

tional to the square root of the Reynolds number, and it is negligibly small. On

the other hand, at the hypersonic speeds the streamline deflection is of the order

of its value at low Mach numbers multiplied by Me 2, and the induced pressure

on a slender body due to the interaction of the new effective body shape with

the Math waves in the inviscid field is of the order of the streamline deflection

times M_ [3]. To provide some insight on the relative thickness (/_) of a flat plate

laminar boundary layer, Anderson [4] develops the following relation:
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M_ (2.2)

In the above, z is the "running-length" along the flat plate, Me is the Math

number at the edge (e) of the boundary layer, and Re is the Reynolds number

based on edge conditions. Due to the square of the Mach number dependency,

hypersonic boundary layers can be "orders of magnitude thicker than low speed

boundary layers at the same Reynolds number" [4]. An interaction effect of

this order of magnitude will be very important at large Mach number. The

considerable distortion of the flow field about plane surfaces or slender bodies in

hypersonic flow due to the boundary layer displacement effects are the result of

the low mass flows involved in laminar boundary layers; this effect can take on

considerable importance at high Mach numbers and low Reynolds numbers.

Classically, for the purposes of analysis, viscous interaction (pressure inter-

action)has been sub-divided into two categories, "strong" and "weak" interaction

regions, such a.s shown in Figure C.7 (from Ref. [4]). In these two regions, -_ is

the rate of growth of the boundary layer displacement thickness (6*). In the re-

gion of strong interaction, clearly the zrowth of the displacement thickness is the

"triggering mechanism" which ultim,,tely results in the induced pressure along

the body's surface. Therefore, the concept of "displacement thickness" is "key" to

understanding viscous interaction - it is "physically the distance through which

the external flow is displaced by the presence of the boundary layer" (refer to

figure 1.1, obtained from [4]). The name "effective body" is given to the sum of
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the actual body shapeplus the displacement thickness. In figure 1.1, the shaded

region is the "effective body".

Three important points characterizing the strong interaction region are:

1. In the leading edge region (strong interaction) the growth of the displace-

ment thickness is large. As a result, the incoming freestream no longer

"sees _ a sharp flat plate. Rather, the plate "possesses, in a certain sense,

a fictitious curvature because the presence of the viscous layer" [36] - an

"effective body". Consequently, a curved "induced shock wave" [37] is

generated at the leading edge.

2. The boundary layer strongly influences the outer inviscid flow.

changes are "fed back" into the boundary layer.

In turn,

3. Results of detailed analyses of the strong interaction zone have shown that

the boundary layer thickness scales with the three-fourth power of the

streamwise coordinate [38].

In contrast [4], the growth of the boundary layer is small in the weak

interaction region. Thus, the inviscid flow is only slightly affected, and feedback

is ignored.

Engineers are constantly in search of similarity parameters to assist in the

collection and interpretation of data. The relevant parameter for this leading-edge

viscous inviscid interaction problem was first pointed out by Lees and Probstein
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[39]. The Lees and Probstein interaction parameter, defined as

3

M_ V'-_ (2.3)

in which the Chapman-Rubesin constant C in the linear viscosity-temperature

law is defined as [40]

C,_ = (P'_)(P'_) (2.4)
/*oo Poo

Since the pressure can be taken as constant across the boundary layer

= (2.5)
poo lw

We use the Suther]and mode] to calculate#:

A = (/)}To+ I*O°K (2.6)
#o To T+ I10°K

From classical hypersonic similarity theory, for all practical purposes

we know that the Lees parameter characterizes the strength of the boundary

layer/shock interaction. White [37] provides the following ranges on _ -- these

can be used to predict the significance of viscous interaction for a specific appli-

cation.

• _" ,_ ] : negligible interaction effects.

• $ = 0(1) • weak interaction;

can be computed by simply assuming supersonic inviscid flow over the

(uncoupled) body shape 6"(z).
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• _" _ 1 • strong interaction;

_'(z) and the external supersonic flow are strongly interdependent and

must be solved simultaneously.

As it turns out, Bertram and Blackstock[41] derive an ordinary differential

equation valid for all these regimes, which correlates P with the local slope of the

boundary layer and correlates _* with the favorable gradient P(z) through the

similar solutions. White [42], following Bertram and Blackstock [41], showed from

hypersonic similarity theory that the hypersonic boundary layer displacement

thickness could be represented as

b" 1 2A

M®v (2. 1

where P = _ the pressure ratio across the shock and A a term is defined in
Poo

equation 2.13. The pressure gradient due to shock curvature is assumed negligible,

as Bertram and Blackstock demonstrated. Note that in the hypersonic limit,

the mass flux in the boundary layer is so low that displacement thickness is

approximately equal to the actual boundary layer thickness. The calculation of

P is based upon the tangent wedge theory, which assumes that the local pressure

at any point where the body slope is 0(z) is given by supersonic flow past a wedge

of the same angle 0. This is known to be a good approximation at high Mach

number [5]. At hypersonic speeds, wedge theory for P reduces to a simple formula

which depends only on the specific heat ratio and single hypersonic similarity

parameter. At any angle, Shapiro[44] has shown that

p = 1 + 7Mtcp (2.8)

16



wherethe pressurecoefficientCp is given by

Cp 4M _ sin 2 B - 1

- "Cpl M2(7 + cos 8) + 2
(2.9)

Cp<<l:

bers and small wedge angles such that tanO,,edg, _- O,,,eao, and cos3,ho_k '_ 1,

P= l + 7(7 + l) K2 + TK_/I[
4 V

where the hypersonic similarity parameter is

d_g.;. _
h" = M,o( O,o_ag_ + dz "

This formula is valid whenever K = 0(I) and 0 is less than about 20 degree [37].

The second angle term, due to the boundary layer slope, is transformed into a

function of the Lees parameter:

dli_,._. A 1 "_ dP )- + 2--Ti (2.12)dz

from Eq.(2.11) Note that as _ _ 0, the hypersonic similarity parameter K ap-

proaches M_O,oe,O_ as should be the case in the weak interaction zone.

The A function characterizes the gas/wall heat transfer, and is here written

for general Prandtl number, Pr; this form was determined by Lewis [43] fitting

the results for Pr =l. and Pr =.73 to a power law form;

= {0.4302Pr°'m_(_) + 0.1660er°'_ss'}( 7 - 1)_ (2.13)A

along the plate, in the so-called weak interaction region. Thus, for large values

of x, corresponding to small values of _,

17
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+ (-7-K) (2.10)

(2.11)

A closed-form solution for shock pressure ratio can be found at large Mach num-



$" 2A
z - M_ (2.14)

with a slope that approaches zero a.s x _ oo.

It is assumed that the total wedge a_agle is positive, or else the forebody

flow would have to be treated as an expansion flow. The above model is iterated

in _, which is an inverted spatial coordinate:

lira x = _ _z.loj
_--*0

lira z = 0 (2.16_
3-.00

_ f

Thus, the solution begins at the weak interaction limit and proceeds to the strong

interaction limit. In the present implementation, a simple Euler forward iteration

scheme is used. Tile derivative in equation(2.12 ) is calculated with a finite

difference method between two closely spaced values of P(_). Smaller increments

are required at large _ to adequately resolve the strong interaction region.

For application to a waverider, it is assumed apply locally along each

streamline over the surface of the waverider. This appears to be justified because

the streamlines over a waverider have very little transverse curvature; they are

reasonably straight. Moreover, the pressure gradients along the surface stream-

lines are small(in the non-interaction case), and therefore it appears reasonable

to apply the above flat plate analysis locally at each point along a streamline.

In equations (2.3) -- (2.14), wherever freestream variables appear, denoted by

the subscript infinity, these are replaced by the local values at each point along
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a surfacestreamlineascalculatedfrom the standard, non-interaction, waverider

analysis. For example, in equation (2.10), Poo is replaced by the local static

pressure at a given point along the waverider streamline as calculated from the

non-interaction analysis, and Pe as calculated from equation (2.10) then repre-

sents the pressure on the waverider surface at that point, including the induced

pressure increment due to viscous interaction.

2.2 Skin Friction Coefficient

An important aspect of the present work is the inclusion of viscous interaction

effects within the waverider optimization process itself. Although the waveriders

are carved from inviscid flow fields, as will be discussed in the next chapter, a lo-

cally, two--dimensional viscous interaction analysis is performed on the waverider

along each streamline at every level of the optimization.

The hypersonic flow field through an oblique shock is nearly unchanged

for small deflection angles. This means that under conditions compatible with

hypersonic similarity, the skin friction and heat transfer merely change inversely

with the boundary layer thickness. So we can use Reynolds analogy for the skin

friction calculations. The skin friction distribution along the streamlines that

form the waverider is calculated using the flat plate viscous interaction solution.

In the use of Reynolds analogy for the present work, approximate formulas are

used to predict the skin friction, with the physical properties evaluated with the

increased pressure due to the viscous interaction.

For the laminar flow over a flat plate, the local skin friction coefficient is
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given by

C! -- 2Ch = 0.664V:_e _ (2.17)

Re_ isthe loc_d Reynolds number defined as

p_ V_x
= (2.18)

#oo

where the subscript e denotes conditions at the edge of the boundary layer. Also

in equation 2.17, P is the pressure ratio defined as

p.
P = _ (2.19)

The shear stress is evaluated as

1
= 6'/q_o = Cl (_pooV_) (2.20)

For calculatingthe waverider skin frictiondrag, thisshear stressis calculated

along each stream line,and then integratedalong the complete waverider surface.
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2.3 Procedure for Examing the Viscous Interaction Regime

The investigation was carried out for many predetermined altitude-Mach num-

ber points with the altitude varying from 20 - 80 Km and the Mach number

varying from 3 - 30. A 5% or more reduction in the maximum Lift/Drag for an

optimum waverider shape at a particular altitude-Mach number point was used

as a criterion to determine if viscous interactions were important.

1. Because Corda's code utilized the reference temperature method, the input

of a wall temperature was required as a boundary condition. Instead of just

randomly choosing a wall temperature, it was decided to set T_/To_, = 0.33

all cases. This implies that whenever To_ changes due to a change in Moo,

T_, also changes accordingly.

2. Corda's code was run using 100 iterations for optimization to obtain the

viscous optimized waverider shape with the largest maximum Lift/Drag a

given the altitude-Mach number point. The code had to be run a number

of times at the given altitude-Mach number point, wherein the cone angle

of the body used to generate the flow field was varied. This would yield the

optimum of optimums, the best viscous optimized waverider shape with the

largest maximum Lift/Drag for the altitude-Mach number point.

3. The viscous interaction code was run using no additional optimization by

inputing the leading edge geometry of the best viscous optimized waverider

shape determined in step 2 and the same cone angle used to generate the

same flow field. This forced the code to determine the characteristics of the
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same viscous optimized waverider shape obtained in step 2, but the effects

of viscous interactions were now included in the analysis, this allowed for a

comparison to be made to determine if viscous interactions were important.

4. The maximum Lift/Drag values obtained in steps 2 and 3 were compared.

If the value for the maximum Lift/Drag determined in step 2 exceeded the

value determined in step 3 by 5% or more, viscous interaction were said to

be important and should be considered in the analysis of viscous optimized

waveriders at that altitude--Mach number point.

f

5. If viscous interactions were found to be important in step 4, The viscous

interaction code was run at the altitude-Mach number point. It was run in

the same manner as Corda's was in step 2. This would yield the new family

of best viscous optimized waverider shape with the inclusion of viscous

interaction effects in its generation analysis.

Throughout the investigation the slenderness or base to length ratio was

constrained to 0.075, and the length was 60 meter for all of the waverider shapes

generated. This was done so the waveriders would be analogous to actual hyper-

sonic vehicles.
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Chapter 3

Waverider Construction

For the single waverider construction, two basic functions need to be performed.

First, a flow field solution must be obtained around some generating body, which,

as stated in the introduction, is the basic premise of the waverider concept. In

the present work, cones are used as the generating bodies; an inviscid flow of a

calorically perfect gas is assumed. Second, once the flow field solution has been

obtained, it is redefined so that a stream function may be generated on a workable

grid to allow for streamline tracing. Once these two tasks have been completed,

it is possible to carve any number of different waveriders from a single generating

flow field. The solutions of the generating flow fields, the redefinition of the

generating flow field, and the construction of a single waverider geometry, are

described in the Ph. D. dissertation of Stephen Corda [30] and the master thesis

of the Thomas McLaughlin [31]. So as to make the present dissertation more

self-contained, the description that appears in Reference 30 and 31 is repeated

here in appendix A. The reader is referred to appendix A for all the details. For

all practical purposes, appendix A is chapter 3 of this dissertation.
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Chapter 4

Aerodynamic Analysis of a Waverider Configuration

4.1 Inviscid Aerodynamic Analysis

The inviscid lift, drag, and moment are obtained by numerically integrating the

pressure distribution over the surface of the waverider. Recall that the waverider

surface is defined by 51 streamlines. Flow properties are known along these

streamlines from the space-marching flow field solution. The inviscid lift, Lp, is

calculated by integrating (in cartesian coordinates x and z) over the projected

planform area as given below.

P(x,z) dx dz (4.1)
JO JO

where P(x,z) is the pressure distribution on the waverider surface, I is the length

of the waverider, f(z) is the function that defines the planform in the (x,z) plane,

0 denotes the origin of coordinates (at the nosetip of the waverider), and the

factor of 2 accounts for the fact that the actual integration is performed over half

of the vehicle due to symmetry.

Similarly, the inviscid drag, Dp, is obtained by integrating (in polar coot-
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dinates r and 0 ) over the base area of the waverider as follows.

r,r/2 rr=o(s)

D, = 2 J0 J0 [p(r, 0)- pool r dr dO (4.2)

where p(r, 0) is the pressure distribution over the surface of the waverider, P_ is

the freestream pressure, g(O) is the function that defines the base in the (x,y)

plane, and 0 denotes the origin of coordinates (centerline of the waverider).

The pitching moment about the waverider leading edge or nose is calcu-

lated by performing similar integrations over the planform and base area of the

waverider. The contribution to the pitching moment due to the pressure distri-

bution over the planform area, Mv.pta,_, is given by

= [' [_="("M,.,,ta,, 2 p(x,z) z dx dz (4.3)
JO JO

The pitching moment due to the pressure distribution over the waverider base,

Afp.bo,_, is given by

[,,l_ [.=,(e)Mp._,,,,. = 2 p(r,O) r = dr dO (4.4)
dO JO

The total pitching moment due to the inviscid forces, Mr, is the sum of equa-

tions 4.3 and 4.4.

= + M.,bo.. (4.5)

Tile integrations is equations 4.1 through 4.4 are evaluated numerically,

using the composite trapezoidal rule [45] as given below for an arbitrary function,

f, of two variables, x and y.

f b [d(=)J¢(=) f(x,y)dydx =
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4.2

b-a

4 {[d(a) - c(a)][f(a,c(a)) + f(a,d(a))] +

[d(b) - c(b)][f(b,c(b)) + f(b,d(b))]}

Viscous Aerodynamic Analysis

(4.6)

The calculation of the lift, drag, and moment due to the skin friction distribution

over the waverider surface is conceptually similar to the aerodynamic analysis due

to the pressure distribution. Values of the shear stress are again known along

the streamlines that describe the waverider's upper and lower surface. Using the

values of C! that have just been calculated, the viscous shear stress forces can be

determined and then integrated over the surfaces of the waverider. Determining

the shear stress force, _', at a given point on one of the waverider surfaces is

a matter of multiplying the local skin friction coefficient, Cf, by the local edge

dynamic pressure, q_ such that

7, --- (C! q_), (4.7)

This calculation is performed at each of the points that define the waverider.

Once the shear stress distribution is known, the surfaces of the waverider are

divided into triangular panels, as described in a paneling scheme is used where

the vertices of triangular panels correspond to data points along the streamlines

that describe the waverider. Knowing the value of the shear stress at the corners

of a triangular panel (¢1, r2 and "r3), the average value of the shear stress, ro,_e,

over the panel is given by

1

_'o_ = _(_1 + _ + _'3) (4.8)
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The viscous force over a panel, F_,_,l, is given by

F_.,I = ro_A_,.a (4.9)

The area of a panel, Apo,_, in equation 4.9, is defined for an arbitrary panel as

= (4.10)

where a, b, and c are the lengths of the sides of the triangular panel and s is

defined as

1

s = -_(a+b+c) (4.11)

The viscous force on a panel is separated into lift and drag components, L.,_,,.,I

and D_,p_.,i respectively, as shown in Figure C.14. The lift and drag components

are defined as

D..,..., = F,..., cos(O, )

(4.12)

(4.13)

where F_,a cos(0_h) is the component of the force in the (x-z) plane.

It is assumed that the forces act at the shear stress weighted centroid of

the panel. The y and z coordinates of this centroid are needed to evaluate the

pitching moment. These coordinates are given by

Y_ = _r_ + y2r2 + ysr3 (4.14)
Taug

Zc = zl'rl + Z2r2 + Z3r3 (4.15)
ra_9
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These coordinates are measured from the leading edge of nose of the waverider.

The contribution to the pitching moment about the leading edge due to the

viscous forces on a panel, M.,n.... is defined as

M,,p,,,,! = - Yc D,.p,,,et + ZcL,.,n,,,,t (4.16)

The total lift, drag, and pitching moment due to skin friction are obtained

by summing over all of the panels.

N

L, = y_ Lr,i
i=l

N

D, = '_ D,.,
i=!

N

M, = _ M,.i
i=l

(4.17)

(4.18)

(4.19)

where the index i specifies a particular panel and N is the number of panels.

4.3 Total Aerodynamic Forces and Moments

The total aerodynamic forces and moments on the waverider is simply the sum of

the contributions due to the inviscid (pressure) and viscous (shear stress) sources.

The total lift, drag, and pitching moment about the leading edge are defined as

L = Lp + L, (4.20)

D = Dp + D, (4.21)

M = M, + M, (4.22)

Aerodynamic coefficients can be defined any of the terms in equations 4.20
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through 4.22. The total lift, drag, and moment coefficients are defined as

L
CL = -- (4.23)

qooS
D

CD - (4.24)
qooS
M

= (4.25)
qoo S !

where S is the waverider planform area, I is the centerline length of the waverider,

and qoo is the freestream dynamic pressure, defined as

= :poor: (4.28)
2

The lift to drag ratio is simply defined, using equations 4.23 and 4.24, as

LID = CL/CD (4.27)

This concludes the aerodynamic analysis of a single waverider configuration. Once

again, recall that the results of the entire waverider construction and correspond-

ing aerodynamic analysis are completely dependent on the choice of the initial

five leading edge points, once the generating flow field is defined. This fact is

important to the optimization procedure described in the next chapter.
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Chapter 5

Waverider Optimization

The goal of the optimization procedure is to find the best performance waverider

(optimized for one figure of merit) within a given generating flow field. The con-

struction and aerodynamic analysis of a single waverider configuration is shown

by Chapter 3 and 4. The numerical optimization routine wraps itself around this

core analysis of a single waverider. The optimization is performed by perturbing

the shape of the leading edge curve (which corresponds to a unique waverider

geometry), until a configuration is found with the optimum value of the specified

figure of merit - a maximum lift-to-drag ratio. The optimization procedure used

in the present work, is based directly on the work of Corda. Defining the current

situation in more concrete terms, we have one figure of merit associated with one

waverider, which it turn is defined by five leading edge points. Each of these five

leading edge points is defined by two coordinates in the x-y plane which results

in eight degrees of freedom for the definition of a single waverider, and hence, a

single figure of merit. The details of the numerical optimization procedure will

be discussed first.
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5.1 The Simplex Optimization Method

The non-linear simplex method of Nelder and Mead [46] is used for the numer-

ical optimization. This is a zero order method - only function evaluations are

needed to find an optimum (no derivative information is required). These func-

tion evaluations are the calculations of the figure of merit (e.g. L/D or Up) for

each configuration.

The non-linear simplex method minimizes a function of n variables by

comparing values of the function at (n+l) vertices of a "simplex". The vertex

with the highest function value is replaced by another point, determined by the

logic of the scheme, with a lower function value. The simplex "moves" over the

function surface in the direction of the function minimum. Three operations are

used by the simplex in its search for the function minimum- reflection, expansion,

and contraction. These operations are graphically illustrated by considering the

minimization problem shown in Figure C.15. Here, the minimum of a function

of two variables (xl and x2) is sought, where the surface defines the function.

A simplex composed of n+l =3 vertices (a triangle) moves over the function

surface by reflecting or "flip-flopping" up or down the function valley, expanding

if possible to speed up the process, and finally contracting around the function

minimum. The following outlines the simplex method for the minimization of a

function.

1. Define the object function F as a function of n variables

F = ..., (5.t)
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The minimum valueof this function is sought.

2. Generate an initial (n+l) dimensional polytrope or simplex. (The

generation of this initial simplex is discussed in section 5.3.) Each

vertex of the simplex is represented by a vector of the variables, For

the jth vertex, this vector is given by

x, = x_(_,,_,_3, ..., _,) (5.2)

3. Evaluate the object function, F, at each simplex vertex.

4. Order the object functions in step 3 such that

FI<F2<F3< ... <F,<F,+I

The logic of the simplex method replaces the vertex with the highest

function value, X,+z, with a vertex corresponding to a lower function

va,] ue.

5. Calculate the centroid, C7, of the best n vertices.

c = _ 2_ x_ (5.3)

6. Generate a new vertex by reflection. This vertex is represented by the

vector X, given by

x, = _ + _(_- x.+,) (_.4)

where c_ is the reflection coefficient.

7. Evaluate the object function at the reflected point, F,(X,). Three

options are now available:
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a If X, is not a new best point or a new worst point, (F1 < F, < F,),

then the vertex, Xr, replaces the old worst vertex, Xn+_, and a

new iteration is begun(return to step 4).

b If Xr is the new best point (F, < Fl), then it is assumed that the

direction of reflection is "good" and an expansion is defined by

x, = x, + -r(x, - _7) (5.5)

where 7 is the expansion coefficient. If the expansion is successful

(Fe < F,) then Xe replaces X,,+I. If the expansion fails (F, > F_)

then X, replaces X,+j. A new iteration is now begun (return to

step 4).

e If tile simplex is too large (F, > F,,) then a contraction is defined

by

Xc = C + _(X,+, - "C) if F, > F,_+I (5.6)

Xc = -C4-fl(Xr - -C) if F, < F,,+_ (5.7)

where fl is the contraction coefficient. If the contraction is suc-

cessful (Fc < min{F,,F,_+l}) then Xc replaces X,,+1. If the con-

traction fails (F, > min{F,,F,,+_})then the entire simplex is

contracted according to

1

xc = _(Xc+ x,) (5.8)
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A new iteration is now begun (return to step 4).

8. The optimization is halted after a specified number of iterations.

An optimization level concludes each time a new simplex is created, and

by continuing this procedure over a number of optimization levels, a minimum to

the function is eventually reached. A physical description of the algorithm has

been presented above to give the reader a flavor of how the optimization process

proceeds.

5.2 Application to Current Study

The procedure described above is easily extended to minimize a function of

eight variables. Tile simplex becomes "nine-sided ", and operates in an eight-

dimensional space. Each function evaluation, in the current study, is the negative

of the lift over drag ratio, and is analogous to the elevation of a given node in the

above description. In addition, since each leading edge shape defines a particular

waverider, each new location in the domain of the mountain analogy corresponds

to new leading edge shape. The result of this is that by parameterizing the

leading edge shape, an optimum waverider can be found.

The domain of the optimization is controlled by the user in the present

study. This is accomplished by enforcing constraints on the generation of each

new node of the simplex, and hence on each new waverider that is created. For

example, if a specific minimum slenderness ratio is set by the user and a waverider

is created that falls below this minimum, then that node is not allowed to be

created, and simplex optimization must operate within these bounds.
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Certain constraints must be enforced in order to create valid waveriders,

and to have control over the optimization procedure. Each constraint is stated

and discussed in the following sections.

Recall that the leading edge curve projected in the x-y plane is the initial

parameter that needs to be specified in order to create a single waverider. Past

experience in generating waveriders, gained by Bowcutt and Corda, has shown

that there are a number of restrictions that need to be placed on the geometry

of each leading edge in order to insure that a valid waverider is constructed.

The reasons for some of these constraints are relatively obvious, while others are

somewhat subtle.

Constraints on the leading edge shapes:

1. The second leading edge point away from the centerline cannot be on the

line of symmetry. -- If this were to occur, the resulting waverider would

have a sharp spike on the upper surface which is undesirable. In addi-

tion two streamlines would lie in the same flow plane. This, too should

be avoided because problems will arise in the integration of the waverider

volume and surface areas.

2. All leading edge points must lie within the shock wave.-- Since the flowfleld

is not defined outside for the shock wave, the streamlines, resulting in extra

surfaces. More importantly, the shock wave would not be attached to the

leading edge, which violated the basic waverider premise.

3. The radial distance to each of the leading edge points from the centerline
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to the shock wave must continually increase. -- In some cases, a violation

of this occurrence will cause the waverider's upper and lower surfaces to

cross over each other. This is obviously an unrealistic result.

4. The polar angle to each of the leading edge points from the centerline to

the shock wave must continually increase. -- A violation of this occurrence

also causes the waverider's upper and lower surfaces to cross each other.

A completely different set of constraints are placed on the entire vehicle

geometry for the optimization procedure. For each of these cases, even though

a valid leading edge is created, the resulting waverider may exceed other limits

imposed by the user. The user imposed limits provide a control mechanism over

the optimization procedure. The simplex is never allowed to move beyond these

bounds, and therefore some control is gained over which local minimum is found

by the optimization procedure. All of the constraints listed below have the option

of being made inactive. This is sometimes done since it is occasionally necessary

to relax some of the constraints to allow the optimization procedure to continue

operating properly.

Constraints on the Vehicle Geometry:

1. Minimum Slenderness Ratio -- The user can adjust this constraint to limit

the lower bound of the slenderness ratio of the vehicle. Any vehicle that

has a slenderness below this minimum is discarded by the optimization

procedure.

2. Box Size -- The user can set both the upper and lower bounds on the box
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size of the vehicle. The box size is defined as the semi-span to length ratio of

the vehicle. This constraint can be imposed to keep the waverider planform

narrow,or it can be relaxed to allow the waverider to have a wide planform.

The suggested values for these parameters are 0.1 < _ < 0.4. These are

the values that are used for most of the applications in the present study.

Any vehicles outside of these bounds are discarded by the optimization

procedure.

:3. Volume -- The user can also impose limits on the minimum and maximum

volume of the waveriders. This is useful when optimizing for maximum L/D

since no waverider will be considered if it has a volume below this minimum.

The maximum limit is useful when relaxing either the slenderness ratio or

box size constraints. This keeps the waveriders for getting drastically out

of proportion in some of these cases.

For each optimized waverider, between seventy and one-hundred optimiza-

tion levels are run to achieve a converged solution. These numbers are determined

by experiment and prove to be acceptable for all of the cases that are run in this

study. A typical optimization history is shown in Figure C.16.

Values of the coefficients c_, B and "/of 1, 0.5, and 2 respectively are use in

the present study. These are the values suggested by Nelder and Mead[46]. For

an interesting treatment of the application of the simplex method, and also other

higher-order methods, to optimization problems similar to the present study, see
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the work by Van Wie [47].

5.3 The Leading Edge Shapes

It is clear that the simplex optimization procedure is able to minimize a given

function, but recall the minimum that the simplex finds is a local minimum. Since

a set of somewhat arbitrary points is chosen to start the optimization, the choice

of the nine initial (or "basis") leading edge shapes will influence which particular

minimum is found.

An effort is made to select a diverse set of basis leading edge curves. Six

of tile basis leading edge shapes are polynomials of the form

_, = C, + C2X,. + CsX,2, + C4X_. (5.9)

and three of the basis shapes are of the form

Yt_ = C5 + C6(I - cos (5.10)
rj

Y_ = C, + C, sin(" X,.) (5.11)
rs

where X_¢ and }'i_ are the X and Y coordinates of the leading edge and r, is

the radius of the shock wave at the base of the waverider. By chosing a set of

basis leading edge shapes that are all similar, the optimum waverider will most

likely be of the same general nature as leading edge shapes. Choosing a diverse

set of leading edge shapes, however, will allow the initial simplex to encompass

many more possible minimums, and provide the opportunity for the optimization
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procedure to find a "better" minimum.

In the present work, both methods of chosing the basis leading edge shapes

are used. For cases in which a particular type of resulting leading edge shape

is desired beforehand, a set of similar basis leading edge shapes are chosen. For

most cases, however, a diverse set of leading edges are chosen as shown in Figure

C.IT. The final optimized leading edge shape is also shown as the bold curve in

this figure.

This set of leading edge shapes consists of two horizontal linear curves,

three first order polynomials, two second order polynomials, and two trigonomet-

ric functions. For cases in which rounded leading edges are desired, all of the

leading edge shapes are moved away from the origin, made to be nonlinear, and

k_pt similar to each other in their general shape.

A small parametric study is performed to examine the effects of varying

the basis leading edge shapes between these two extremes. In most cases the

effects are small enough to ignore, since the figures of merit change by only a

few percent. In some cases, however, the choice of the basis leading edge shapes

causes the optimization procedure to find a completely different waverider class.
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Chapter 6

Results and Discussion

6.1 Computer Code Validation

The initial portion of the work in the present study is the calculation of viscous

interaction on a fiat plate in hypersonic flow as described in Chapter 2. The first

step in validating the present code is to insure that the computed distribution

of induced pressure versus _ on a fiat plate is the same as that obtained from

previous solutions in the literature. Results from Chapter 2 are compared against

the results in reference [37] as well as analytical expressions given by Hayes and

Probstein's[5] for the induced pressures as a function of _'.

For an insulated fiat plate, the induced pressure for both the strong and

weak interactions are given by:

P
m = 0.759 + 0.514_"
Poo

P
= 1 + 0.31_ + 0.05_ 2

eoo

For a cold wall case, where T,. << To,., the expressions are as follows:

P
w - 1 + 0.15_
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P
w - 1 + 0.078_"

The viscousinteractionparameter,X, isindicativeof the strengthof the

hypersonicviscousinteraction.White[37] providesranges for _" for both the

stronginteractionregionand the weak interactionregion.These are presented

in section2.I.They can be used to predictthesignificanceof viscousinteraction

for a specificapplication.The resultsare presentedin figures6.1- 6.3 and are

discussedbelow:

1. In Figure C.18, the induced pressure ratio is plotted as a function of, A, a

stretching variable used by White to make his differential equation for the

interaction independent of growth parameter, a. This growth parameter is

given by, the following,

= 0.425( + 0.35)(-r-I)

The solutions were generated for an insulated wall with a-0.23. The com-

puted results show good agreement with those given by White's method.

. In Figure C.19, the pressure ratio is plotted function of _" from the trail-

ing edge to leading edge. The freestream conditions are that for Mach 6

flow at 60 kilometers. The computed solutions which follow Bertram and

Blackstock's formulation and those given by White are in good agreement.

3. In Figure C.20, solutions given by Hayes and Probstein, and White are com-

pared to the present calculations for a cold wall case with a=0.07. Again
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these resultsare ingood agreement with each other with allsolutionsfalling

along the same line.Note that for the cold wall solution the induced pres-

sure ratioisapproximately four times lower than for the insulated plate.

Thus, it is shown in Figures C.18 to C.20 that the method of solution, adapted

from Bertram and Blackstock, predicts the correct pressure distribution for a

given value of the interaction parameter.

The next step in the code validation procedure was to make sure that given

a leading edge curve, the same waverider results as those obtained using Corda's

method[30] were obtained. Corda's waverider generation has been well validated

both numerically and experimentally, and for this reason, is used here for compar-

ison. Using Corda's code, a 60 meter waverider was generated from five leading

edge coordinates at a given flight condition and cone angle. This waverider was

optimized for maximum L/D. This resulting waverider was compared to one gen-

erated by the current code using the same leading edge points but inducing the

effects of viscous interaction. Geometric parameters for both cases are given in

Table B.1. Note that the major differences occurred in waverider volume. This

is due to the accumulation error when the volume is integrated over the cross-

sectional areas. These trends were also found by Mclaughlin[31]. Despite these

small differences, the numbers indicate that the two codes do produce the same

waverider shapes. These are shown in Figures C.21 and C.22.
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6.2 Viscous Interaction Flight Regime

One of the primary goals of the present study was to determine the range of

Mach numbers and altitude for which viscous interaction becomes significant for

hypersonic flight vehicles. This range was determined on the basis of a compari-

son of waveriders designed with and without the inclusion of viscous interaction

effects.

In order to have a valid basis of comparison, two waveriders were generated

using the same cone angle, flight conditions, and construction process. The flight

regimes have been constructed on the basis of 5% or more reduction in optimum

L/D when viscous interactions are considered at a given Mach number-altitude

design point for all cases, a cold wall was assumed with T,,,/T_,o = 0.33. It should

be noted however that data for the low speed , high altitude range was not

obtainable for the given waverider optimization constraint.

From the above described process, a Mach number-altitude map was con-

structed and is illustrated in Figure C.23. The heavy solid line separates the

viscous interaction region from the region where this interaction is negligible

or nonexistent. Thus, for vehicles planning on operating in viscous interaction

regime, the viscous interaction effect may be excluded from their design. How-

ever, if a vehicle is to be designed for flight conditions above this line, the shaded

region in Figure C.23 is that region where viscous interaction effects must be

included. This region was mapped by running hundreds of different waverider

calculations for different Mach and Reynolds numbers. For a waverider larger
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than a 60m length , the boundary will move upwards and to right; the adverse

effects of viscous interactions will be shifted to larger Mach numbers and higher

altitudes. In contrast, for a waverider smaller than a 60m length, the boundary

will move down and to the left in Figure C.23.

To illustrate the importance of viscous interaction on current high speed

vehicles, the space shuttle trajectories and the anticipated NASP flight envelop

are superimposed from Reference [48] and [491 . For the space shuttle trajecto-

ries, these calculations show that viscous interaction on the waveriders become

important above Mach numbers of six and altitudes greater 200,000 feet on the

ascent flight trajectory. Upon entry, the waverider is subjected to this effect until

the Mach number and altitude fall below 14 and 180,000 feet respectively. Within

the NASP flight envelope, viscous interaction is important above 160,000 feet at

Mach number 15 and 140,000 feet at Mach number 16.

It was also determined that viscous interactions become stronger as the vis-

cous interaction flight regime is further penetrated. At a constant Mach number,

viscous interactions become stronger as altitude is increased, and at a constant

altitude, they become stronger as the Max:h number is increased.

6.3 Viscous Interaction Effects on Waverider Geometry
and Performance

A primary objective of the present study is to determine the effect of viscous

interaction on the geometric shape and aerodynamic performance of existing

hypersonic optimized waveriders. In the present work, maximum lift over drag

44



ratio waveriders are generated by using the LID parameter as the figure of merit

in the optimization procedure. This waverider class is aimed at producing the

best cruise configuration for hypersonic vehicles. No effort is made to reduce

the total drag, achieve a high volume, or enhance the volumetric efficiency of

the vehicle. Effort is only made to achieve a high lift over drag ratio. Results

are presented in this section for waveriders constructed both with and without

viscous interaction based on a 60 meter length for Mach numbers of 6.0, 10.0,

15.0, 20.0, and 25.

In the generation process of an optimized waverider several quantities were

specified as follows. The slenderness ratio, defined as the ratio of base height to

length, was set equal to 0.075. The box size, defined as the semi-span to length

ratio, was set to BOXMAX=0.4 and BOXMIN=0.1, also in all cases, a cold wall

was assumed with T_,/Ta,,,=0.33.

6.$.1 Results of Viscous Interaction Effects at an Alti-

tude 50 km

In this section waveriders with and without the inclusion of viscous interaction

are compared for various Mach numbers at an altitude of 50 kilometers. Again, to

have a valid comparison of the waveriders the same leading edge points are used to

generate each set of waveriders at the given flight condition. The results presented

herein show the effect of the interaction on the maximum L/D; lift coefficient, CL;

and the drag coefficient, Co, also pressure distributions are shown as a function of

and actual waverider shapes for each pair of waveriders generated are presented.
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By first examining the definition of _, the governing similarity parameter

of viscous interactions, it is evident that an increasing Mach number, increases

directly. Also, since _ is inversely proportional to the square root of the Reynolds

number, a decrease in Reynolds number due to an increase in altitude also in-

creases _. Since the viscous interaction effect becomes greater for higher values of

_, it is expected that high Mach number, low altitude conditions produce strong

viscous interaction effects.

Distribution of _ are shown in Figures C.24 and C.25 for the best viscous

optimized waverider shapes analyzed in step 3 in section 2.3 for Mach 1,5 and Mach

25 at ,50 kin. The distributions are presented for streamline #1, the streamline

directly down the center of a waverider on both the upper and lower surfaces.

The distributions presented in both these two figures agree with well-documented

trends of _" along a fiat plate. It is very large near the leading edge where

strong viscous interactions exist due to the large boundary layer growth rate in

this region and then tapers off to a small value further downstream where weak

viscous interactions exist due to the moderate boundary layer growth rate. Note

also that the _ values are three times greater in Figure C.26 for the case of Mach

25 than in Figure C.25 when Mach 1,5. This can be correlated with the previous

conclusion that viscous interactions increase with increasing Mach number. Also,

an interesting result related to the generaJ concept of a waverider is the significant

difference between the _ values for the top and bottom surfaces. The values of

are much larger for the top surface because the top surface is designed to be a

surface parallel to the freestream which acts in a manner much like the flat plate
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shown in Figure C.1. The bottom surface, however, has lower values of _" because

the waverider is designed such that the bottom surface is a compression surface

and flow must first pass through a shock wave attached along its entire leading.

This reduces the Mach number and increases the density, therefore reducing the

subsequent values of _'.

Figures C.26 and C.27 illustrate the top and bottom pressure distributions

for both Mach number 15 and Math number 25 along streamline #1. The surface

pressure has been nondimensionalized by the freestream pressure. The dotted

lines represent the results for the waveriders without the inclusion of viscous

interaction effects. These were generated following the procedure outlined in

step 2 of section 2.3. Note that in both figures, the pressure distributions along

the upper surface are simply equal to unity. This is because when the viscous

interaction is not included the upper surface is simply a freestream surface. Shown

as solid lines are the pressure distributions obtained by including the viscous

interaction effect as outlined in step 3 of section 2.3. In comparing the two

different Mach numbers, it can readily be seen that the pressure is a factor of

two times larger at the higher Mach number. This is because the shock waves

as well as the viscous interaction is stronger at the higher Mach number. Also,

in comparing the upper and lower surfaces, the pressure is higher on the bottom

because the flow has been compressed as it passes through the shock wave which

is attached along the leading edge.

Figures C.28 - C.31 illustrate the various waveriders which are generated

by both including and excluding the viscous interaction effect in the generation
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of the waverider. In Figures C.28 and 6.29 waveriders are shown but without

and with this interaction for the case of Mach number 15, 50 kilometers altitude

and a cone angle of 5.4 degrees. Note that the geometry seems to be similar but

quantitative information regarding the geometric and aerodynamic parameters

is given in Table B.2. Similarly Figure C.30 and C.31 illustrate the waveriders

for the second case of Mach number 25. The altitude again is 50 kilometers

however the cone angle is 5 degrees. Again, quantitative information regarding

these waveriders is given in Table B.3. It was found that the difference between

the waverider shapes at a given flight condition and cone angle became more

significant at higher Mach numbers. For example, the waverider volume difference

for Mach 25 was 10% compared to an 8% difference at Mach 15. This of course

follows logically because the viscous interactions are stronger for the higher Mach

number.

The optimized L/D of the waveriders, as well as the lift and drag coefficients

are plotted versus Mach number in Figures C.32 through C.34. In Figure C.32,

the optimized values of L/D are plotted. In general, there was a reduction in L/D

when viscous interaction was considered. The highest reduction was found to be

10% at Mach 25 which was 2% higher than the reduction at Mach 15. At a Mach

number of six, where there was negligible viscous interaction, no reduction in L/D

was present. In Figure C.33, a small increase is shown in the lift coefficient when

viscous interaction was included. However, the largest difference between the lift

coefficients in the Mach range considered is 2%. In Figure C.35, we find that

although the drag coefficient decreases with increasing Mach number, the value
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of the drag coefficient at a given Mach number is higher when viscous interaction

is included and this increment in Co increases with increasing Mach number.

Quantitatively, there is a 0% increment at Mach number 6 and this increases to

230£ at Mach number 25. The increase in drag coefficient for the waverider which

includes viscous interaction can be traced to the physical characteristics of the

viscous interaction effects. Thus, the reduction of the L/D ratio is due mainly to

an increase in the drag associated with the viscous interaction phenomena.

The breakdown of the drag coefficient in terms of the pressure and skin

friction drag coefficients is shown in Figures C.35 and 6.19. Calculations of the

skin friction drag coefficient were performed using the equation (2.17) for the

case in which included the viscous interaction. For the case which it was not

taken into account, the reference temperature method was used. These methods,

however are considered to be equivalent. In figure 6.18, the wave drag coefficient

is consistently higher when viscous interaction is accounted for. This is true even

at Mach number 6 where the interaction is weak. In Figure C.36, the skin friction

coefficient is lower for the case with the viscous interaction for Mach number 6

and Mach number 10. At the higher Mach numbers, however, the skin friction

drag is once again higher relative to the case with no viscous interaction.

6.3.2 Results of Viscous Interaction Effects at an Alti-

tude 60 km

The second set of results presented are for waveriders generated for Mach number

6, 10,15,20, and 25 at 60 kilometers altitude. Detailed results are presented for
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Mach 15 and Mach 25. In Figures C.37 and C.38, distributions of _ versus the

length of the waverider are given for Mach 15 and 25 respectively. The values

of _ are calculated for both the upper and lower surfaces along streamline #1,

the streamline directly down the center of the waverider. As found in the lower

altitude case, the values for _ on the upper surface are twice as high for the

Mach number 25 case as that for Mach 15. Also, as was found earlier for the 50

kilometer altitude case, the bottom surface has lower _ values since the Mach

number has decreased and the density has increased as the flow passes through

the attached shock wave. According to the White's [37] analysis the lower surface

results for both Mach numbers should typify the characteristics of weak viscous

interaction except near the leading edge.
J

Figures C.39 and C.40 illustrate the top and bottom nondimensionalized

pressure distribution for Mach number 15 and Mach number 25 at 60 kilometers.

As in the previous section, the solid lines represent the pressure distribution

on the top and bottom surface of the waveriders generated with the inclusion

of viscous interaction. The squares denote actual data points. These pressure

distributions agree with fiat plate trends given in Figure C.1. Quantitatively, the

pressure distributions are two times larger in Figure C.40 for Mach number 2,5

than in Figure C.39 for Mach number 15. This follows logically since both the

viscous interaction and the shock waves are stronger for Mach number 25. The

pressure along the bottom is also larger than on the top because of the higher

pressure on the bottom due to the flow passing through the shock.

Figures C.41 through C.44 show the geometry of the waveriders developed
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for Mach 15 and Mach 25. In Figures C.41 and C.42, waveriders without and

with viscous interaction are presented for Mach 15. These are generated with a

cone angle of 6.5 degrees. The geometric and aerodynamic parameters for these

vehicles are presented in Table B.4. Likewise, in Figures C.43 and C.44, the

same comparison is made for waveriders at Mach 25 generated with the same

cone angle as above. Detailed geometric and aerodynamic data is available in

Table B.5. In general, inclusion of the viscous interaction phenomena smooths

the leading edge. In both cases, the waveriders designed with viscous interaction

had reduced planform area and volumetric efficiency. These reductions became

greater as the Mach number increased.

In Figures C.45 through C.49 various aerodynamic characteristics are com-

pared over the full range of Mach numbers studied for waveriders which include

viscous interaction versus the baseline viscous optimized waverider. In Figure

C.45, the lift to drag ratio is plotted. Note that the reduction in LID due to the

interaction is 10% for Mach 25 and that this percent reduction decreases for the

lower Mach number. Note also that at the higher altitude, viscous interaction

effects are more heavily present at Mach 6 then they were at the 50 kilometer

altitude of the previous section. This Mach 6, 60 km flight condition corresponds

to the border between the viscous interaction region of the Mach number-altitude

map of Figure C.23.

In Figure C.46, the lift coefficient, CL is plotted versus Mach number.

As with the previous 50 km altitude case, the lift coefficient is increased due

to the interaction and since higher Mach numbers enhance this interaction, the
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increments in lift coefficients increase with increasing Mach number. The total

drag coefficient also increases for the viscous interaction with an increase of 3%

for Mach 6 to 23% for Mach number 25. The net result is a decrease in the lift

to drag ratio which is consistent with Figure C.45.

Figures C.48 and C.49 show the breakdown of the drag coefficient into

pressure drag coefficient and the skin friction coefficient. In both cases, these

drag coefficients are higher for the case which includes the viscous interaction.

Increments in CD_ range from 9% for Mach 6 to 21% for Math 25. Roughly

the same is found for the skin friction with increments range from 4% at Mach

6 through 27% at Mach 25. Again, these findings verify that the interaction

becomes stronger at the higher Mach numbers. Finally, by comparison with

previous altitude of 50 km. It is seem that the strength of the interaction is

increasing with altitude as well.

6.3.3 Results of Viscous Interaction Effects at an Alti-

tude 80 km

The third set of results are obtained at an altitude of 80 kilometers. This high

altitude is chosen to accentuate the effects of viscous interaction. Recall that _:

is inversely proportional to the Reynolds number which decreases at the higher

altitudes. In general the results presented here follow the same trends as in the

previous cases. Therefore, they will not be repeated in detail. At this altitude,

however, _ is a large value at both the leading and trailing edges which suggests

that the impact of the viscous interaction is much more significant. In Figures
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C.50 and C.51_ the values of _ of 110 and 300 are obtained at the leading edge

for each Math number respectively. Also, at the trailing edge, where typically _"

is small, values of 4 an 12 are obtained. Again this suggests that for these cases

the viscous interaction will dominate the entire length of the waverider. For this

reason, the emphasis here is to briefly highlight the differences between this high

altitude case and the prior relatively low altitude case.

Figures C.52 and C.53 show the nondimensional surface pressure distribu-

tion for Mach number 15 and 25. The trends at this altitude are similar to those

at 50 km. However in comparing Figures C.26 and C.27 which pertain to the

50 km altitude with Figures C.52 and C.53, it is clear that the induced pressure

increment is greater for the high altitude case. This is to be expected since the

values of _- along the length of vehicles is higher for this case. Also by compar-

ison of Mach 15 with Mach 25, again it is shown that the viscous interaction

is accentuated at the higher Mach numbers. At Mach number 25, the induced

pressure increment at the trailing edge is four times greater than that of Math

number 15. The resulting waverider geometrics for the Mach 15, 80 kilometers

design-point are shown in Figures C.54 and C.55. In Figure C.54, the baseline

waverider excludes viscous interaction in the generation process is given Figure

C.55 shows the for waverider generated by including the interaction process. In

Table B.6 the geometric and aerodynamic characteristics are given. Similarly, in

Figures C.56 and C.57, waveriders are presented for the Mach 25 case. Table

B.7 presents a quantitative assessment of their characteristics. In general for the

80 kilometer waveriders, the overall shape of the waveriders was not significantly
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altered by the inclusion of the viscous interaction. In Figures C.58 through C.62,

the L/D ratio, lift and drag coefficients are plotted for Mach numbers ranging

from 6 to 25. Overall, these plots are qualitatively similar to the previous cases

and are discussed here only to emphasize the effect of the high altitude on the

results.

1. Figure C.58: The distribution of L/D versus Mach number is similar to that

50 km. However, the reductions due to the viscous interactions are 8% and

16% for the Mach number 6 and the Mach number 25, respectively. -- At

an altitude of 50 km the reduction in L/D was 10% for Mach number 25.

Thus the viscous interaction is causing a larger decrease in the L/D ratio.

2. Figure C.59: The distribution of lift coefficient shows the same trend as

at the lower/50 km altitude. The effect of viscous interaction on CL is to

increase it over the baseline configuration. This increment is 2% at ,50 km

altitude while at 80 km, the increase is 18%. Here the viscous interaction

is strongly effecting the lift coefficient.

3. Figure C.60: The drag coefficient distribution also shows the same trend

as at the lower altitudes. As with the lift coefficient the viscous interaction

causes an increase in Co. This increment ranges between 14% at 50 km and

42% at 80 km at Mach number of 25. Thus this increment has increased

three fold by increasing the altitude from 50 km to 80 km.

4. Figure C.61: The pressure drag coefficient shows the same qualitative vari-

ation as the total drag coefficient.
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5. Figure C.62: The skin-friction drag coefficient varies similarly with CDI at

the 60 km altitude. The increment in Cot due to the viscous interaction

increases with both Mach number and altitude. There is an increment in

Col at Mach 25 at 50 km. This can be contrasted to 65% increase in Co!

at 80 kin.

The basic trend that appears for these analyses is a lowering of the maxi-

mum L/D ratio with increasing altitude due mainly to the increasing strength of

the viscous interaction.

Note that the strength of the viscous interaction is a strong function of

the wall temperature. This is illustrated by Figures C.63 and C.64. It is shown

that higher wall temperature ratios tend to yield higher L/D values. This is

expected because physically, the effect of increasing the wall temperature is to

increase the boundary layer thickness _ . In turn, the velocity gradient at the

wall is decreased. Since (du/by),,, = O(Ue/_). Because the wall shear stress r_

is proportional to the velocity gradient, then it also will decrease, thus yielding

a decreased value of the skin friction. It should be noted that there is not a

large gain in L/D obtained when the wall temperature ratio is increased above

0.33. Although there are decreases in skin friction due to the thicker of boundary

layer, this increased thickness may yield a stronger overall viscous interaction

effect which opposes the gains in decreasing skin friction.

Figures C.65 and C.66 show the L/D distribution plotted versus altitude

for Mach 15 and Mach 25 respectively. As we expected, the lift to drag ratios

decrease with increasing altitude because the viscous interaction becomes stronger
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at the higher altitudes.

Figures C.67 through C.73 display the aerodynamic characteristics of wa-

veriders, designed both with and without the inclusion of viscous interaction

effects. These waveriders were designed for altitudes ranging from 30.0 to 80.0

km in altitude and operational Mach numbers which varied between 6.0 and 30.0.

Specifically in Figures C.67 and 6.51 the L/D ratio is overlaid on a Mach number-

altitude map for both the case where viscous interaction was not accounted for

and for the case where it was included. The same type of comparison is available

for the lift coefficient in Figures C.69 and C.70 and the drag coefficient in 6.54

and 6.55. These maps are useful for waverider design and performance analyses.

Viscous interactions can affect the design of viscous optimized hypersonic

waveriders. They must be considered in the analysis and design of any hypersonic

waverider which will operate within the viscous interaction flight regime. The ba-

sic trend that appears throughout these analyses is a lowering of the maximum

L/D ratio with increasing altitude. The physical reason for this is the combined

effects of increasing skin friction and increasing viscous interaction with the de-

creasing Reynolds number that accompanies an increase in altitude.

6.4 New family of Waverider

A new family of waveriders was developed by optimizing the viscous interaction

waveriders at specific design points along the proposed NASP flight trajectory

given in Figure C.23. The design points, denoted by squares in the same figure,

were chosen to be within the viscous interaction regime. Specifically, the design
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points used in the present study were flight Mach numbers of 14.0, 16.0, 20.0, and

25.0 with corresponding altitudes of 140,000, 175,000, and 230,000 feet. Table

B.8 lists the freestream conditions for these design points as well as the wall

temperature used in each analysis.

As with the previous studies, the length of the waveriders generated was

fixed at 60 meters. This is typical of proposed hypersonic vehicles. Geometric

constraints were placed on the waverider generation procedure as detailed in

section 5.2. In particular, maximum L/D waveriders are generated by using L/D

as the figure of merit in the optimization procedure. This class of waveriders is

aimed at producing the best cruise configuration for hypersonic vehicles. The

geometric constraints were placed on vehicle box size and the slenderness ratio.

Another parameter, the cone angle of the generating flowfield, must also

be specified. This has a significant impact on the geometry and performance

of hypersonic waveriders. These waveriders can be optimized for a given figure

of merit and generated for a range of cone angles when the figure of merit is

plotted versus cone angle is usually found which provides the best figure of merit.

This was done for conditions at Mach 2,5 and 230,000 ft altitude. The figure of

merit was the lift to drag ratio as mentioned above. The results are shown in

Figure C.73 which show L/D versus cone angle O. for the given class of viscous

interaction optimized waveriders. This figure shows that the maximum value of

Lift/Drag that is achieved at the given condition is L/D = 4.13 at a cone angle

of O_ = 8.0 o.

In summary, the viscous interaction optimized waverider is based on the
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aerodynamic properties as predicted by the viscous interaction analyses described

in Chapter 2. It is suspected that a further optimization can be achieved by

"scooping out" the waverider surface to account for the local displacement thick-

hess of the boundary layer. Such _scooping out" was not included here. It is

interesting to point out that such %cooping out" is not possible at and near the

leading edge, because 8" is thicker than the vehicle thickness itself. This is shown

in Figure C.74, where the variation of 8" is shown as a function of distance from

the leading edge for a typical case of Moo = 25 and altitude 230.000 ft.

The methodology discussed above was applied to the Much 14.0, 140,000

feet altitude design condition. The resulting waverider which can be labded an

optimized viscous interaction waverider, is shown in Figure C.75. For compari-

son, Figure C.76 and Figure C.77 are given which displays waveriders generated

without accounting for viscous interaction and with viscous interaction but no

optimization. Notice that a major difference between the waveriders which ac-

count for the viscous interaction and the one which does not is that the pointed

leading edge of the latter is smoothed in the former. Note also that for the opti-

mized viscous interaction waverider, the cone angle of the generating flowfield is

Oc = 5.7 degrees. A detailed comparison of the geometric and aerodynamic char-

acteristics of all three waveriders is shown in Figures C.78-C.79, and is given in

Table B.9. The last column in this table gives the percentage change between the

parameters for waveriders optimized with and without viscous interaction effects.

It is interesting that even at these small values of $ and resulting induced pres-

sures, there is a significant change in shape of the waverider when it is optimized
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with viscous interaction, but this change in shape only results in a 2% reduction

in L/D. Figure C.78 shows the distribution of _ against the waverider length for

the optimized viscous interaction waverider. The distribution is presented for

streamline #1 the streamline passing through the center of a waverider, on both

the upper and lower surfaces. Figure C.79 illustrates the upper and lower surface

pressure distributions for the same waverider.

Similar studies where undertaken for the second design condition of Mach

16, 140,000 ft altitude along the NASP trajectory. The resulting shape for the

optimized viscous interaction waverider is given in Figure C.80. Note for this

case, the optimum cone angle is slightly lower with Oc = 5.43 degrees. For the

purposes of comparison, Figures C.81 and C.82 show the shapes of waveriders

which are generated when viscous interactions are not accounted for and when

the viscous interactions are included but the optimization process is not invoked.

In Table B. 10 the comparisons in the geometric and aerodynamic charax:teristics

are given. The format is similar to that of Table B.9. In particular the volume

of the optimized viscous interaction waverider has decreased by 32% and there

are also significant reductions in the area. Both the Table and the Figures show

large changes in shape, however there is only a moderate decrease of 9o£ in the

lift to drag ratio. Figure C.83 illustrates the. _ distribution and Figure C.84

illustrates the pressure distribution for this case. As expected the _" distribution

is higher for this higher Mach number case and thus there is a larger increment

in the induced pressure.

Typical results are given for Mach 20 at 175,000 feet in Figures C.85
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through C.89. Detailed quantitative comparisons are given in Table B.11. Simi-

laxly results are illustrated for Mach 25 at 230,000 feet in Figures C.90 through

C,94 and Table B.12. The general features of these results can be summarized

for all cases in the following manner:

1. Viscous interactions tend to reduce the lift to drag ratio, but some of this

loss is recovered when the waveriders are optimized for viscous interactions.

2. The percent by which the lift to drag ratio is reduced by the inclusion of

viscous interaction effects, increases with Mach number and altitude. At

Mach 14 the L/D reduction is 2% where as at Mach 25 there is a 21%

reduction in this ratio.

3. The loss in L/D is due mainly to an increase in both pressure drag and

skin-friction drag associated with the viscous interaction phenomena. The

increment in Co ranges from 7% at Mach 16 to 64% at M_h 25.

4. The viscous interaction effects are increased with increasing the Mach num-

ber and altitude.

5. When the waverider is optimized for viscous interaction, the area, volume

and overall shape can change significantly.

Once again the study shows how important the viscous interaction effects

can be inside this regime. Therefore we must consider the viscous interaction

effects when we design the hypersonic vehicles, especially for high altitude, high

Mach number applications.
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All of the studies that were conducted in the present work were performed

on the Unisys 1100 and Sun Microsystems file server. As stated earlier, 100

optimization levels are used in the optimization of a given waverider configuration.

This requires approximately 15 minutes of CPU time on a Unisys 1100 and 20

minutes on a Sun station. The relatively short running time allows for a large

number of parametric studies for generating the viscous interaction flight regime

and new family of waveriders that are discussed in this chapter.
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Chapter 7

Conclusions and Recommendations

The present results show for the first time the effects of accounting for viscous

interactions in the generation of hypersonic waveriders. Also, another important

contribution is the generation of a Mach number-altitude map which delineates

the region of viscous interaction effects for typical hypersonic vehicles. The re-

sults of the present study illustrate a number of important conclusions reg_ding

the effects of the viscous interaction on viscous optimized hypersonic waveriders.

The results also provide useful insight as to when the viscous interaction effect

should be accounted for in the design procedure. Although instructive, the con-

clusions of the present study suggest that further work must be done in order

to improve upon the current design process as well as to gain more information

about the detailed aspects of the waverider's performance.

7.1 Summary of Results

A summary of the major results discussed in the previous chapter are itemized

below:
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1. The region of significant viscous interaction for waveriders, 60 meters in

length has been delineated on a Mach number-altitude map. By overlaying

the anticipated NASP flight envelope on this map, it is shown that the

waverider will undergo viscous interaction effects above a Mach number of

16 and altitude of 140,000 feet.

2. Viscous interactions tends to reduce L/D, but some of this loss is recovered

when waveriders are optimized for viscous interactions.

3. The loss in L/D increases with increasing Mach number and altitude. Note

that a 9% loss in L/D was found for Mach 16 and this increased to 21% for

Mach number 25 case.

4. The loss in L/D is due mainly to an increase in both pressure drag and

skin-friction drag associated with the viscous interaction phenomena. The

increment in Cn is increased from 7% for Mach 16 case to 64% for Mach

number 25 case.

5. Contour plots are generated for L/D, CL, and Cn for cases with and without

viscous interaction cases. These clearly show how viscous interaction effects

are increased with increasing the Mach number and altitude, as well as

provide useful information for vehicle designers.

6. A new family of waveriders were generated wherein viscous interaction ef-

fects are included within the optimization process. When the waverider is
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optimized for viscous interaction, the shape can undergo significant changes.

7. The present work provides a versatile and e_cient engineering design tool

which allows parametric analyses of many waverider configurations.

7.2 Recommendations

In this study, the question of viscous interaction effects on hypersonic waveriders

has been addressed. In order to verify the results for the viscous interaction

waverider the following independent studies are suggested.

1. Experimental testing at one or more of the design conditions to confirm the

prediction of aerodynamic characteristics such as the lift to drag ratio and

also to examine the off- design characteristics and the stability and control

of such a vehicle.

2. Computational solutions of the detailed flowfield surrounding a viscous in-

teraction optimized waverider. This would also verify the aerodynamic

characteristics predicted in this study as well as provide interesting infor-

mation on the heat transfer to the vehicle.

Additionally, there are a number of studies which could be performed to

advance the waverider concept. This author believes that future work should

focus on detailed aerodynamic analysis of existing waverider geometries, as well

as the development of the waverider concept into a total vehicle concept. Such

studies are described below:
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1. Studies should be made to determine the effects of other physical phenom-

ena such as low density effects and heat transfer on waverider configurations.

2. Since the leading edge of the waveriders will have to be blunted for heat

transfer purposes, the effects of a resulting entropy layer should be studied.

3. Methods for integrating propulsion systems into the waverider design pro-

cess need to studied_

4. Stability and control considerations should be examined and integrated into

the waverider design.

It should be noted that a number of these studies are currently under way

in the hypersonics group at the University of Maryland.

Finally the author would like to suggest two improvements on the existing

waverider methodology.

1. The basic waverider program which provides viscous optimized waveriders

(following Corda) should be integrated with current programs which include

the effects of equilibrium chemistry, viscous interaction and heat transfer.

In this way the user could easily select the effects which should be accounted

for in any given design.

2. The current numerical optimization scheme should be improved upon since

the resulting optimized waveriders are dependent on the choice of initial

simplex and only local minimums can be found.

65



Appendix A

Waverider Construction

A.1 Generating Flow Field Solutions

The conical flow field solution for the calorically perfect gas is generated using a

standard Taylor-Maccoll formulation, as described by Anderson in Reference 4.

A spherical coordinate system with coordinates (r,0, ¢) is used for this solution

as shown in Figure C.8.

The solution is obtained for a semi-infinite cone at zero angle of attack,

producing an axisymmetric flow independent of the angle ¢. Conical flow fields

at zero angle of attack have curved streamlines within the shock layer, and con-

stant properties along rays stemming from the vertex of the cone. Properties

are therefore constant along the radial coordinate r. These two conditions are

written as

0
----0 (A.I)
O¢

for axisymmetric flow, and

0
-- = 0 (A.2)
Or
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for constant flow properties along rays from the vertex. The continuity equation

for steady flow is

(pl_) = 0 (A.3)

Writing Equation (A.3) in spherical coordinates, evaluating the derivatives and

applying the conditions for axisymmetric flow, this equation reduces to

OVo Op
2pV, + pVecot O+ p-_ + Ve_ = o (A.4)

where V, and V0 are the velocity components in the r and 0 directions,

respectively.

Crocco's equation for irrotational flow is,

_x IP=O (A.5)

which simplifies to

0_
Ve = 0-0 (A.6)

Since the conical flow is irrotational, this equation can be used in place of the

Euler's equation,

dp= -pray (A.7)

is used as an appropriate format the momentum equation. Recognizing that the

flow is isentropic, and defining a new reference velocity V,,,_= such that ho =
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these equations cascade into one ordinary differential equation which is the
2

Taylor-Maccoll equation.

7-1

2

dV, 2 dV, d2V,.
V_.,-V/-(-_-) [2V, + --_- cot 0 + --_T]}

dl/,_ dV, anK

do l = ° (A.8)

The only dependent variable in this equation is V, , so the solution of this equa-

tion gives Vr as a function of 0. Once V, is known, Ve can be determined from

Equation A.6.

Since there is no closed form analytical solution to this equation, it must

be solved numerically. Defining a new variable V' as

V
V' - (A.9)

helps to speed up the numerical procedure. The dependent variables representing

the velocities then become V" and Vo'; these will be referred to in the subsequent

discussion as the "working" velocities. Solving the Taylor-Maccoll equation nu-

merically for a specific cone angle involves an inverse approach in which the shock

wave angle is guessed and the cone angle that supports that shock is calculated.

Once the shock angle has been assumed, the conditions immediately downstream

of the shock, including V" and V0' are calculated using oblique shock relations.

The equation is then numerically integrated using a fourth order Runge-Kutta

method, stepping in the 0 direction, from the shock wave to the body. For this

solution, twenty-one rays are used within the shock layer. At each theta step,
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the value of V0' is calculated; the 0 value where V0' equals zero corresponds to

the cone surface. Successive shock wave angles are chosen until the desired cone

angle is found. Once the proper solution is achieved, the flow field variables such

as pressure, temperature, and density are found using isentropic relations.

A.2 Redefinition of the Generating Flow field

Redefining the generating flow field to prepare it for the creation of a waverider

consists of generating a workable grid within the shock layer, interpolating,for

the flow field variables between the grid points, and defining a stream function

on the grid.

A.2.1 Grid Generation and Curve Fits

The conical flow algorithm produces constant values of pressure, temperature,

density, and velocity on twenty-one rays emanating from the vertex of the cone.

This network of rays, however, does not lend itself to the generation of a wa-

verider shape, so a new grid must be defined within the conical shock layer.

A conical grid, which consists of the twenty-one rays from the cone flow

solution and one-hundred equally spaced stations in the streamwise direction is

created for the purposes of waverider generation. This grid is fitted between the

shock wave and the body, as illustrated in the a sectional view is given in Figure
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C.9.

This is the same grid network that has been used in previous works by

Bowcutt and Corda, and has proven to be quite acceptable for waverider genera-

tion. Since the flow is axisymmetric, the grid only needs to be defined in a single

plane. For simplicity, the y-z plane is chosen. Within this grid, therefore, the

distance of a given point form the z-axis is denoted as y. This is identically the

projection of the radial coordinate in the x-y plane.

Using the flow field variables that are now defined on this grid, it is pos-

sible to construct cubic splines vertically along each of the streamwise stations

for the flow field variables. This interpolation between the grid points allows the

calculation of surface conditions on the waverider once it has been generated. For

example, from the cubic splines for pressure, at a given streamwise station, it is

possible to get the pressure at any y-location between grid points. Cubic splines

are chosen for the interpolations due to their accuracy and ease of implementation.

A.2.2 Definition of the Stream Function

During the curve fitting process, it is necessary to define a stream function ver-

tically along each of the streamwise stations in order to trace the streamlines

through the flow field. Cubic splines are then fit to the stream function values in

a fashion similar to that used for the flow field variables. The stream function is

defined as a function of the mass flow rate between the surface of the generating
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body and a conical surface corresponding to a given point in the flow field. As

a result, the stream function value becomes zero along the surface of the gener-

ating body. Defining a stream function within the conical flow field involves the

integration of the local mass flow rates from the surface of the generating body,

outward, toward the shock wave.

Determination of Mass Flow Rate Between Grid Points :

The elemental area used for the integration of the i th mass flow rate is depicted

in Figure C.IO.

The mass flow rate through this elemental area is defined as

m, = (?w),ridr,d¢ (A.10)

where p is the local density, w is the local z-velocity, and ri is the projection of r

on the x-y plane. The total mass flow rate is the elemental area mass flow rate

integrated over r; and ¢. the symbol r,h denotes the radius to the shock.

/2_,.hm - (A.ZZ)
JO JO

Performing the outside integration, this expression becomes the following:

(A.z2)
_ JO

This expression can now be recast in terms of the working variables used in the

present study. Since the projection of the radial coordinate is defined as y, ri

becomes yi. In order to define stream function values at all of the grid points
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within the flow field, the remaining integration is performed numerically. The

integration becomes a summation in the vertical, y-direction of the grid, and the

differential, dri, becomes the y-spacing between grid points. The expression for

mass flow, therefore, becomes

rh

2r

2O

/---i

(A.13)

The mass flow rate between a pair of grid points corresponds to the above value

determined between two indices. Now that the mass flow rates have been deter-

mined, the stream function values can be calculated.

Determination of Stream Function Values :

The stream function values generated by the code are proportional to the mass

flow rate between the surface of the generating cone and the conical stream sur-

face uniquely defined by any point within the flow field. The stream function

is defined as zero on the cone surface, and as the value (r:n/2_r)i at each verti-

cal y-location on the grid at a given streamwise z-station. This is precisely the

value defined in Equation (A.13), so we let this value be the stream function at

each y-location. The stream function is denoted by @, and at each y-grid point

qJ; = (rh/21r); for a given z-station.

At each z-station, a cubic spline is fit to the y-coordinates versus the

values, so that it becomes possible to extract a y-location for a given value of the
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stream function, _. These stream function value are the basis for tracing stream-

lines through the flow field a_d generating the lower surface of the waverider.

A.3 Generation of a Single Waverider Geometry

In order to construct a waverider, it is first necessary to define a leading edge that

is coincident with the shock wave of the generating body. Streamlines emanating

from a number of discrete points on the leading edge curve are then traced through

the flow field, and the resulting stream surface becomes the lower surface of the

waverider. The upper surface is defined by freestream streamlines emanating from

the same points along the leading edge curve. The resulting conically derived

waverider is illustrated in Figure C.5, along with its generating flow field.

Note that since the upper surface of the waverider is a freestream stream

surface, the flow field depicted above this surface, and the generating cone, do

0

not exist when the waverider is actually in flight. The entire flow field above the

upper surface is strictly used in the design of the vehicle, and only the flow field

below the waveriders lower surface actually exists at flight conditions.

A.3.1 Definition of a Single Leading Edge

Due to the fact that the waverider is symmetrical about the y-z plane, it is only

necessary to define one half of the entire leading edge. For this reason, further

references to the construction and analysis of the upper and lower surfaces will
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refer to only one half of the entire waverider. Each leading edge curve is defined

by a projection of five points in the x-y plane, one of which is forced to lie on the

y-axis and one of which is forced to lie on the shock wave. Figure C.11 depicts

these points for a typical leading edge curve.

Since one point must always lie on the y-axis and one on the shock wave,

these five points represent eight degrees of freedom for the definition of a single

leading edge curve. Five degrees of freedom result from the y-coordinates of each

of the five points, and the three remaining degrees of freedom result from the

x-coordinates of the three points that are not forced to lie on the y-axis or the

shock wave. The importance of the recognition of these eight degrees of freedom

will become clear during the discussion of the optimization procedure.

The original five points of the leading edge are not sufficient to give enough

resolution of the lower surface, since they would only allow for the tracing of five

streamlines of the lower surface. In order to create a greater number of leading

edge points, a cubic splil_e is generated to fit the original five leading edge points.

Fifty-one equally spaced points are defined along the x-axis between the y-axis

and the x-value of the leading edge point that lies on the shock wave. The cor-

responding y-values are determined by interpolation from the cubic spline. This

results in fifty-ot,e points defined along the leading edge. These fifty-one points

serve as the starting points for the streamline tracing of the waverider, for a typ-

ical leading edge curve.
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At this point it is important to note that an entire waverider geometry,

along with all of its particular aerodynamics and resulting figure of merit, is

completely defined by the choice of the five original leading edge points. Of

course, if a different flight condition is used for the solution of the generating flow

field, or a different generating body is chosen, the same geometric leading edge

shape produces an entirely different waverider. For a single case however, the

rest of the waverider analysis results from the choice of the five original leading

edge points.

A.3.2 Lower Surface Construction

Once the fifty-one leading edge points are defined on the x-y plane, it is possi-

ble to begin to construct the lower surface of the waverider. The first step is

to recognize that each leading edge point uniquely defines a single flow plane

perpendicular to the z axis. Due to the _isymmetric nature of the generating

flow field, however, the flow field solution in each flow plane is identical, and

it is possible to use the same locally two dimensional flow to trace each of the

streamlines. Tracing the streamlines emanating from each of the leading edge

points defines the lower surface of the waverider.
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Flow Planes :

A flow plane, shown in Figure C.12, is characterized by its flow plane angle, _b,

which is simply the polar angle from the x-axis to the ray that contains a partic-

ular leading edge point. By recognition of the axisymmetric nature of the flow,

it becomes evident that a streamline which originates in a particular flow plane

will have its projection remain in that flow plane as it is traced through the flow

field.

At thispoint,itshould be noted that there are certain leading edge shapes

that can cause more than one leading edge point to liein the same flow plane. If

this occurs, or ifthe polar angle to each successiveleading edge point does not

continuallyincrease or decrease,then a non-realisticwaverider isproduced when

the streamlines are traced. In order to avoid thisand other violations,a number

of constraints are implemented into the code. A detailed discussion of all the

various constraintsand violationsthat may occur are presented in Chapter 5.

Streamline Tracing :

Recall that values of the stream function were defined between the shock wave

and the body at each of the one hundred one streamwise stations. Each flow

plane, therefore,already contains information sufficientto trace streamlines. For

tracing purposes, the radialdistance from the z-axisto a point in a flow plane

isdefined as h. In order to trace a particularstreamline through the flow field,

a value of the stream function must firstbe determined immediately behind the
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shock wave and then used to evaluate the y-location of that streamline at each

successive downstream station.

The initial value of the stream function is determined by taking the radial

distance, b, of a particular leading edge point and using that value to find the

mass flow rate between the axis of the generating body and the leading edge

point. The mass flow rate (pwh), where p is the freestream density, and w is the

freestream velocity is calculated and converted into the modified stream function

as defined previously. This initial stream function value is then applied at the

appropriate z-location and used to begin the tracing of a single streamline.

The radial distance, h, of a particular leading edge point uniquely defines

a downstream distance, z, at which h is the exact distance between the axis of

the generating body and the conical shock wave. Applying this fact, each leading

edge point is defined in a cylindrical coordinate system of (h, ¢, z). Note that this

definition of z insures that each leading edge point is coincident with the shock

wave. Starting from each leading edge point z-location, the previously defined

initial value of the stream function is traced through the flow field.

The tracing is conducted from the shock wave, downstream, to the end of

the generating body. The first data point on a single streamline coincides with the

first z-station downstream of the shock wave. Using the cubic spline fit generated

for determining the stream function along a z-station, a value of h is calculated

which corresponds to the appropriate stream function value. This h-value is the
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distance,perpendicular to the freestream, between the surface of the generating

cone and the current streamline being traced. The h-value locates a point on the

lower surface of the waverider at this z-station, within the current flow plane.

This procedure is repeated for all of the remaining downstream z-stations within

the current flow plane, and then applied to all of the fifty remaining flow planes.

In this way, the lower surface of the waverider becomes completely defined in a

cylindrical coordinate system.

As a note to this discussion, the exact choice of the leading edge curve

influences the number of z-stations that exist for a given waverider. For example,

if the centerline leading edge point is chosen to lie halfway between the shock

wave and the centerline of the cone, only half of the z-stations of the generating

flow field are part of the resulting waverider. If the centerline leading edge point

is chosen to lie close to the vertex of the cone, however, almost all of the z-stations

are part of the waverider. This is clearly illustrated in the graphical pictures of

the waveriders in this paper. Each waverider graphic has the same number of

cross-sections as the number of z-stations that lie downstream of the leading edge

point which is forced to lie on the y-axis.

A.3.3 Upper Surface Construction

The upper surface of the waverider is much simpler to construct. This sur-

face is defined by tracing freestream streamlines downstream from the leading
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edge points. Since each leading edge point has a y-coordinate which represents

that particular points vertical distance from the x-axis of the generating body, a

freestream streamline is simply a streamline with this y-coordinate at each down-

stream z-station for the given flow plane.

The combination of the upper and lower surfaces, defined in the manner

described above, completely defines a waverider shape, which stems entirely from

the definition of five original leading edge points. Now that the geometry is de-

fined, the next step is to calculate the waverider's volume and surface areas.

A.3.4 Calculation of Waverider Volume and Areas

Since the waverider geometry is now completely defined, calculation of the vehicle

volume, planform area, and total surface area is possible. In order to accomplish

this, the base area at each z-station, planform area, total upper surface area, and

total lower surface area must be numerically integrated.

The volume of the vehicle is calculated by applying the trapezoid rule in

two different stages. First, the upper and lower surface points that define the

waverider are projected onto the x-y plane for each z-station (the same plane

as that utilized for definition of the leading edge points). This projected cross-

sectional area is then integrated using the trapezoid rule between the projected

points. Note that this integration for the last z-station is the base area of the
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entire vehicle. The samecross-sectionalarea integration is carried out for all of

the z-stations that make up the waverider. The next stage involves the numerical

integration of all of the calculated cross-sectional areas over the entire length of

the vehicle. This is also accomplished using a trapezoid rule applied to a curve of

the values of cross-sectional area versus the streamwise locations of the z-stations.

In this manner, the entire volume of the vehicle is determined.

To calculate the planform area, the fiRy-one leading edge points in cylin-

drical coordinates are first projected onto the cartesian x-z plane represented by

a flow plane angle of zero degree. Using these projected points, the planform area

is numerically integrated using the trapezoid rule from the nose tip toward the

base of the vehicle.

The calculation of the upper and lower surface areas of the waverider is

much more intensive since the surfaces are, in general, curved. This means that

to keep accuracy in the integration, a large number of small panels must be cho-

sen. In order to perform these integrations, each surface is divided into triangular

panels as depicted in Figure C.13.

There are one-hundred panels between each of the z-stations of the wa-

verider. Each surface, therefore, is divided into anywhere from two-thousand to

ten-thousand panels, depending on the exact number of z-stations that make up

the waverider. The areas of these triangular panels are calculated and summed
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systematically from the wingtips to the centerline, and then from the nose tip to

the base of the vehicle.

In order to achieve better computational efficiency, the actual calculation

of the upper and lower surface areas is deferred in the code until the viscous aero-

dynamic force calculations are made. This is done since a detailed knowledge d

the surface area panels is not needed for the inviscid aerodynamic analysis, but

becomes important when the skin friction forces are integrated on both of these

surfaces. It is more efficient, therefore, to calculate these areas at the same time

the viscous force coefficients are being calculated.

Now that the waverider is completely defined, and its volume and areas

are known, the next step is to determine the aerodynamic characteristics of the

waverider.
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TableB.I: Waverider shape comparison between without and with viscous inter-

action at 60Kin M=6

Case

S_l_.(,__)

Slwet(Tn 2)

Suwet(m 2)

Stwet( m 2)

Volume(m 3)

V_H

Cord_ Chang

1915.89

134.22

1973.33

1942.67

3916.00

3256.43

0.1147

1886.5

129.18

1926.2

1902.1

3828.3

2963.12

0.1093

%difference

1.5%

4%

2%

2%

2%

9%

5%

Corda : Without viscous interaction optimum waverider

Chang : Non-optimized viscous interaction waverider
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Table B.2: Waveridercomparisonbetweenwithout and with viscousinteraction
at 50Kin M=15

Sp/an (_'12 )

&a.. (m _)

S_,,(m 2)

Volume(m 3)

Ct.

Cn

L/D

No.Vise.

1256.0

91.92

2548.48

2216.36

0.1353

0.0178

0.0019

9.23

Visc.lnt.

1258.44

89.48

2553.3

2069.76

0.129

0.0179

0.0021

8.49

%difference

0.2%

3%

0.2%

7%

5%

+ 0.6%

+ 11%

8%

No.Visa : Without viscous interaction optimum waverider

Visc.lnt. : Non-optimized viscous interaction waverider
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Table B.3: Waverider comparison between without and with viscous interaction
at 50Km M--25

Case

S_.,,(m 2)

Swt.¢ ( tT_ 2 )

Volurnc(m s)

V, fl

Cz

co

L/D

No.Visc.

1186.43

88.82

2411.5

2203.88

0.1427

0.0153

0.00167

9.15

Visc.Int.

1178.02

85.11

2390.2

1983.23

0.134

0.0156

0.00191

8.2

%difference

0.7%

4%

0.9%

lO%

6%

+ 2%

+ 14%

10%

No.Visc. : Without viscous interaction optimum waverider

Vise.Int. : Non-optimized viscous interaction waverider
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Table B.4: Waverider comparison between without and with viscous interaction

at 60Kin M=15

CzL_e

Sp,°n(m2)

Sba.e(m2)

S._,(rn _)

Volume(m 3)

V_H

CL

Co

L/D

No.Visc.

1690.93

156.45

3438.48

3937.48

0.147

0.0256

0.00358

7.16

Visc.lnt.

1639.48

146.07

3330.72

3334.72

0.136

0.027

0.00427

6.54

%difference

3%

6.6%

3.1%

15%

7.5%

+ 5.5%

+ 19%

8.6%

No.Visc. : Without viscous interaction optimum waverider

Visc.lnt." Non-optimized viscous interaction waverider
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Table B.5: Waverider comparison between without and with viscous interaction

at 60Km M=25

Case

,_. plan(TTl 2 )

Sb..(,n 2)

Volume(m 3)

No.Visc.

1412.4

140.49

2878.45

3315.32

Visc.lnt.

1463.38

133.61

2889.9

2901.65

%difference

+ 3.6%

5%

+ 0.4%

12%

Cl.

Co

L/D

0.157

0.0255

0.00367

6.96

0.143

0.028

0.0045

6.23

9%

+ 10%

+ 23%

10%

No.I/,sc. : Without viscous interaction optimum waverider

Visc.lnt. : Non-optimized viscous interaction waverider
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"Fable B.6: Waverider comparison between without and with viscous interaction

at 80Kin M=15

Case

, 2.%_..(rn )

.¢[base ( l'?i 2 )

_ulet ( 11l 2 )

Volume(m s )

No.Visc.

1654.83

224.8

3438.6

5642.15

Visc.lnt.

1659.37

218.7

3449.03

5274.2

%difference

+ 0.3%

3%

+ 0.3%

6.5%

I/ell

CL

Co

L/D

0.192

0.0489

0.0124

3.93

0.1826

0.0555

0.0167

3.33

5%

+ 5%

+ 35%

15%

No.Vise. : Without viscous interaction optimum waverider

Visc.lnt. : Non-optimized viscous interaction waverider
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Tabh"B.7: Waveridercomparisonbetweenwithout and with viscous interaction

at 80Kin M=25

Case

Splan ( 771l2 )

,.¢_'base ( T_ 2 )

S_.,(.,_)

Voh,.,c(,,?)

V,Ij

No.Vise. Visc.lnt.

1359.09

194.44

2820.5

4613.54

0.204

1359.05

188.89

2820.51

4280.61

0.194

%difference

0%

3%

0%

4%

7%

"L

Ct)

L/D

0.049

0.0129

3.79

0.058

0.0183

3.17

+ 18%

+ 42%

16%

No.Visc. • Without viscous interaction optimum waverider

Vise.Int. : Non-optimized viscous interaction waverider
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Table B.8: Flight condition of viscous interaction optimum waverider

Property

l,ength

0-)

Altitude

(ft*1000)

P ress u r e

(mira 2)

Density

(Kg/ra 3)

Temperature

(K)

Temperature

Wall(K)

Mach 14 Mach 16

140 140

201.3 201.3

2.72E-3 2.72E-3

257.7 257.7

1020.0 1020.0

Mach 20

175

52.61

6.82E-4

268.9

1200.0

Mach 25

230

5.52

8.75E-5

219.7

1500.0
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Table B.9: Waverider comparison between with and without viscous interaction

at 140,000Ft M=14

Spto,,(m_)

&o.,(m 2)

,q,,,,,(,,_2)

Ca.sel C_e2 New

1452.30

117.15

2951.64

1479.52

111.46

3007.11

1236.50

88.69

2526.05

%difference

15%

24%

14%

Vol,,m,'_(m3)

I;jj

('L

Co

L/D

2494.30

0.127

0.0216

0.00217

9.96

2149.28

0.113

0.0215

0.00223

9.66

1843.29

0.122

0.0194

0.00198

9.75

26%

4%

10%

9%

2%

Casel : Without viscous interaction optimum waverider

Case2 : Non-optimized viscous interaction waverider

New : With viscous interaction optimum waverider
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Table B.10: Waveridercomparisonbetweenwith and without viscousinteraction
at 140,000FtM=16

Ca,_cl Case2 New

Spt°,_(rn_) 1691.22 1697.40 1442.56

Sbo,,(rn2) 127.31 119.55 99.73

S,,,et(rn_) 3408.62 3421.15 2918.11

V°lume(m 3) 2986.42 2522.04 2023.03

V,/! 0.123 0.109 0.111

Ct, 0.0181 0.0181 0.0176

('D 0.00167 0.00187 0.00178

L/I) 10.9 9.7 9.9

%difference

15%

22%

14 %

32%

10%

3%

+ 7%

9%

Casel • Without viscous interaction optimum waverider

Case2 • Non-optimized viscous interaction waverider

New • With viscous interaction optimum waverider
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Table B.11: Waverider comparison between with and without viscous interaction

at 175,000Ft M=20

Sbo,,(_2)

Volume(rn z)

ICH

('L

Co

L/D

Casel

909.25

66.89

1866.22

1647.7

0.153

0.0156

0.00193

8.1

C@_e2 NettJ

903.12

65.28

1851.1

1552.41

0.148

0.0161

0.00240

6.7

664.88

48.77

1381.38

1116.18

0.162

0.0163

0.00243

6.7

%difference

27%

27%

26%

28%

+ 6%

+ 4%

+ 25%

17%

Casel : Without viscous interaction optimum waverider

Casc2 : Non-optimized viscous interaction waverider

New : With viscous interaction optimum waverider
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Table B.12: Waverider comparison between with and without viscous interaction
at 230,000Ft Mach=25

Casel

1467.82

184.82

3026.89

4578.38

0.188

0.034

0.00644

5.26

1364.22

166.13

2861.41

4081.07

0.187

0.043

0.0107

4.07

1194.8

145.3

2480.56

3230.20

0.183

0.044

0.0106

4.13

%difference

19%

21%

18%

29%

3%

+ 29%

+ 64%

21%

Cascl • Without viscous interaction optimum waverider

Casc2 : Non-optimized viscous interaction waverider

Ncw • With viscous interaction optimum waverider
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Figure C.2: Schematic of the shock-wave / boundary-layer interaction
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Figure C.3: Derivation of waveriders from a two-dimensional planar flow field
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Figure C.4: Waverider concepts derived from two-dimensional planar shocks
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Figure C.5: Waverider from a conical flow field

100



&xisymmetric Body
lnviscid (Jones)

Cone-Derived

[nviscid(Raamussen)

Cone-Derived

(Boweutt)
Axisynunetric Body

(Corda)

Chemical Equ/l. Flow
Cone (McLaughlin) Arbitrary Shock

Figure C.6: Waverider concepts derived from axisymmetric or arbitrary shocks
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Figure C.9: Section of conical grid fitted between shock wave and cone
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Figure C.IO: Elemental area used for integration of mass flow rate
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Figure C. ! 1: Illustration of five original leading edge points

106



¥

Single Flow Plane

X

Figure C.12: Definition of flow plane
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Figure C.13: Triangular panels for surface area integration
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Figure C.14: Nomenclature for a single panel
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Figure C.IS: Example of the simplex method using two variables
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Figure C.16: Typical optimization history
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Figure C.21- Without viscous interaction waverider H=60km, M=6
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Figure C.22: With viscous interaction nonoptimized waverider H=6Okm, M=6
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Figure C.24: $ distribution on waverider H=50km, M=I5
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Figure C.25: _ distribution on waverider H=50krh, M=25
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Pressure Distribution on Waverider
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Figure C.26: Pressure ratio distribution on waverider H=50km, M=15

121



20.0

18.0

16.0

Pressure Distribution on Waverider

Alt=50 Kin, Mach=25 Stream line # 1
..... ''''1'''''''''| ''' L' _"' .... 'l'''' ..... I'' ....... |''"''"''"

w----v Viscous interaction

......... Without viscous interaction

Length(m)

Figure C.27: Pressure ratio distribution on waverider H-50km, M=25
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Figure C.28: Without viscous interaction waverider H=50km M=15 P=5.4
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Figure C.29: Nonoptimized viscous interaction waverider H=50km M=15 8=5.4
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Figure C.30: Without viscous interaction waverider H=50km M=25 0--5
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Figure C.31: Nonoptimized viscous interaction waverider H=50km M=25 #=5
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Figure C.32: Lift/Drag distribution on waverider at H=50km
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Figure C.33: Lift coefficient distribution on waverider at H=50km
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Figure C.34: Drag coefficient distribution on waverider at H=50km
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Figure C.35: CDv distribution on waverider at H=50km
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Figure C.36: Cot distribution on waverider at H=50km
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Figure C.37: _ distribution on waverider H=60km, M=15
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Figure C.38: y distribution on waverid.er H=60km, M=25
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Figure C.39: Pressure ratio distribution on waverider H=60km, M=15
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Figure C.40: Pressure ratio distribution on waverider H=60km, M=25
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Figure C.41: Without viscous interaction waverider H=60km M=15 # = 6.5
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Figure C.42: Nonoptimized viscous interaction waverider H=60km M=15 0 = 6.5
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Figure C.43: Without viscousinteraction waveriderH=60km M=25 8 = 6.,5
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Figure C.44: Nonoptimized viscous interaction waverider H=60km M=25 $ = 6.5

139



I0.0

L/D vs Mach No. at Alt=60 Km

'l_/Tad=0.33

,0 ............................................... p ..............

8.0 ............................... :

7.0 .................. - "..........................-.-.. ¢. _...............
- *.._. .... : . .

.............. _ ...... :
: ............ la. ...... :
: ............ 4b

6.0 ............................................... _..............................................

"_ 5.0 ............................................ _.............................................

4.0

__._,n ............................... :............... _............... :

Without Vi_."eous Interaction

2.0 ............... r.",v.':::.a"'Wit.tl" "Vt_ ti_" I'_tt_t_ _ _o'_ .........................

: : T

! .0 ............... :"

0.0 5.0 I0.0 15.0 20.0 25.0 30.0

Mach Number

Figure C.45: Lift/Drag distribution on waverider at H-60km
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Figure C.46: Lift coefficient distribution on waverider at H=60km
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Figure C.47: Drag coefficient distribution on waverider at H=60km
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Figure C.48: CDp distribution on waverider at H=60km

143



0.0050

Cdf vs Mach No. at ALL=60 Km

Tw/Tad=0.33

_J

0.0040

0.0030

0.0020

0.0010

0.0000
0.0

W.ithout Vi:mous Inte.'raction

......_' _ith Viscolzs Interadtion
.............................................. I ............... L...............................

................ _. ........... a .............................. ................ . ..............

5.0 10.0 15.0 20.0 25.0 30.0

Mach Number

Figure C.49: CD! distributionon waverider at H=60km
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Figure C.50: R distribution on waverider H=80km, M=15
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Figure C.52: Pressure ratio distribution on waverider H=80km, M=15
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Figure C.53: Pressure ratio distribution on waverider H=80km, M=25
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Figure C.54: Without viscous interaction waverider H=80km M=15 # = 9
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Figure C.55: Nonoptimized viscous interaction waverider H-80km M--15 0 -- 9
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Figure C.56: Without viscous interaction waverider H=80km M=25 8 = 9
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Figure C.57: Nonoptimized viscous interaction waverider H=80km, M=25 O = 9
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Figure C.58: Lift/Drag distribution on waverider at H=80km
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Figure C.59: Lift coei_icient distribution on waverider at H=80km
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Figure C.60: Drag coefficient distribution on waverider at H=80km
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Figure C.61: Cz)_, distribution on waverider at H=80km
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Figure C.62: CDI distribution on waverider at H=80km
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Figure C.63: Comparison of L/D between Tw/Taw=0.04, 0.33 H=80km
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Figure C.64: Comparison of L/D between Tw/Taw=0.04, 1.0 H=80km
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Figure C.65: L/D distributionversus altitudeon M=15
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Figure C.66: L/D distributionversus altitudeon M=25
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Figure C.67: L/D contour without viscous interaction
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Figure C.68: L/D contour with viscous interaction
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Figure C.69: Lift coefficient contour without viscous interaction
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Figure C.70: Lift coefficient contour with viscous interaction
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Figure 0.71: Drag coefficient contour without viscous interaction
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Figure C.72: Drag coefficient contour with viscous interaction
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Figure C.73: L/D versus cone angle for best optimum waverider
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Figure C.75: Viscous interaction optimum waverider H=140,000ft M=14
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Figure C.76: Without Viscous interaction waverider H=140,000ft M=14
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Figure C.77: Nonoptimized viscous interaction waverider H=140,000ft M=14
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Figure C.78: _ distribution on waverider H=140,000ft M-14
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Figure C.79: Pressure ratio distribution on waverider H=140,000ft M=14
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Figure C.80: Viscous interaction optimum waverider H=140,000ft M=16
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Figure C.81: Without Viscous interaction waverider H=140,000ft M=16
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, i I

No Optimized Viscous Interaction Waverider

Mach= 16, Altitude= 140,000 Ft

Cone angle(deg)=5.5 Length=60m

Figure C.82: Nonoptimized viscous interaction waverider H=140,000ft M=16
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Figure C.84: Pressure ratio distribution on waverider H=140,000ft M--16
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Figure C.85: Viscous interaction optimum waverider H=175,000ft M=20
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Figure C.86: Without viscous interactionwaverider H=175,000ft M=20
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Figure C.87: Nonoptimized viscous interaction waverider H=lTS,000ft M:20
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Figure C.88: _ distribution on waverider H=175,000ft M=20
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Figure C.89: Pressure ratio distribution on waverider H=175,000ft M=20
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Planform view Side view Front view
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Figure C.90: Viscous interaction optimum waverider H=230,000ft M=25
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Figure C.91: Without Viscous interaction waverider H=230,OOOft M_25
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Figure C.92: Nonoptimized viscous interaction waverider H=230,000ft M=25
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Figure C.93: _ distribution on waverider H=230,000ft M=25
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Figure C.94: Pressure ratio distribution on waverider H=230,000ft M=25
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