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Abstract

Christopher J. Riley: An Engineering Method for Interactive Inviscid-Boundary

Layers in Three-Dimensional Hypersonic Flows. (Under the direction of Dr. Fred R.

DeJarnette.)

An engineering method has been developed that couples an approximate three-

dimensional inviscid technique with the axisymmetric analog and a set of approximate

convective-heating equations. The displacement effect of the boundary layer on the

outer inviscid flow is calculated and included as a boundary condition in the inviscid

technique. This accounts for the viscous interaction present at lower Reynolds num-

bers. The method is applied to blunted axisymmetric and three-dimensional elliptic

cones at angle of attack for the laminar hypersonic flow of a perfect gas. The method

is also applied to turbulent and equilibrium-air conditions. The present technique

predicts surface heating rates, pressures, and shock shapes that compare favorably

with experimental (ground-test and flight) data and numerical solutions of the Navier-

Stokes and viscous shock-layer equations. In addition, the inclusion of the viscous

interaction significantly improves results obtained at lower Reynolds numbers. The

new technique represents a major improvement over current engineering aerothermal

methods with only a modest increase in computational effort.
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1 Introduction

The thermal design of hypersonic vehicles involves accurately and reliably pre-

dicting the convective heating over the surface of the vehicle. Such results may be

obtained by numerically solving the Navier-Stokes (NS) equations [1] or one of their

various subsets such as the parabolized Navier-Stokes (PNS) [2] and viscous shock-

layer (VSL) equations I3, 4, 5] for the flowfield surrounding the vehicle. However, due

to the excessive computer run times and storage requirements of these CFD (compu-

tational fluid dynamics) approaches, they are impractical for the preliminary design

environment where a range of geometries and flow parameters are to be studied. Even

coupled solutions of the outer inviscid region described by the Euler equations and the

inner viscous layer described by the boundary layer equations may be too computer

intensive for preliminary design [6, 7].

On the other hand, engineering inviscid-boundary layer methods [8, 9, 10, 11] have

been demonstrated to adequately predict the heating over a wide range of geometries

and aerothermal environments. Various approximations in the inviscid and boundary

layer regions reduce the computer time needed to generate a solution. This reduction

in computer time makes the engineering aerothermal methods ideal for parametric

studies.

The approach followed by the existing engineering methods is similar to a "classic"

boundary layer analysis. The inviscid flowfield is calculated and that solution controls
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the viscous boundary layer solution. In this decoupled approach, the viscous layer is

assumed to have a negligible effect on the outer inviscid region. This assumption is

accurate for relatively high Reynolds number flows where the boundary layer is thin

compared to the shock layer. At lower Reynolds numbers, the thicker boundary layer

displaces the outer flow and increases the surface pressure. These changes in the pres-

sure may also significantly increase the heat transfer. The displacement effect of the

boundary layer on the outer inviscid layer is called viscous interaction [12]. Neglect-

ing the viscous interaction at these lower Reynolds numbers may lead to inaccurate

results.

Two of the simpler engineering methods that are currently used are AERO-

HEAT [8, 9] and INCHES [10]. Both use the "axisymmetric analog" concept [13]

which allows axisymmetric boundary layer techniques to be applied to three-

dimensional (3-D) flows provided the inviscid surface streamlines are known. AERO-

HEAT calculates approximate streamlines based solely on the body geometry.

INCHES uses an approximate expression for the scale factor in the windward and

leeward planes that describes the spreading of surface streamlines. Circumferential

heating rates are then generated by an empirical relation. Another area of approx-

imation is the surface pressure distribution employed by the engineering methods.

AEROHEAT assumes modified Newtonian theory which is inaccurate for slender

bodies, whereas INCHES uses an axisymmetric Maslen technique [14, 15]. The defi-

ciencies and limitations of these approximations to the surface streamlines and pres-



sures in the engineering aerothermal methods, along with their corresponding effects

on the surface heat transfer, have been documented in Refs. [16] -[18].

To address these limitations and improve the capability of the engineering methods

for lower Reynolds number flows, an engineering, interactive inviscid-boundary layer

method for 3-D hypersonic flows has been developed. Jackson [19] developed a similar

technique for 2-D and axisymmetric flows. The present method includes a simplified

inviscid technique for computing the 3-D outer flow, a method of computing surface

streamlines that allows the use of any axisymmetric boundary layer technique for the

viscous solution, and an improved coupling between the viscous and inviscid solutions.

This coupling of the two regions accounts for the viscous interaction effects.

The approximate 3-D inviscid method [20, 21, 22] employed here is more accurate

than modified Newtonian theory and has a wider range of applicability than the

axisymmetric Maslen technique. The inviscid method uses two stream functions that

approximate the actual stream surfaces in the shock layer and a modified form of the

Maslen second-order pressure equation [23]. Inviscid flowfields have been calculated

over 3-D blunted noses as well as 3-D afterbodies with reasonable accuracy [22 I. In

addition, the method is much faster than numerical solutions of the inviscid (Euler)

equations [22]. The first portion of the paper outlines this approximate inviscid

technique.

Improved surface streamlines are calculated based on both the body geometry and

surface pressure distribution. (Although the stream surfaces in the inviscid method
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define surface streamlines, they are approximate and are not constrained to give the

correct streamline directions on the body surface.) With the streamlines known, the

axisymmetric analog allows axisymmetric boundary layer methods to be employed

along each streamline. In lieu of numerically integrating the boundary layer equations,

a set of approximate convective-heating equations developed by Zoby [24] is used for

the viscous solution. This keeps computer costs to a minimum. The displacement

effect of the boundary layer on the inviscid flow is computed and included as a new

boundary condition in the inviscid technique. The later chapters present derivations

of the surface streamline and convective-heating equations as well as a description of

the inclusion of the effects of viscous interaction.

Results including shock shapes, surface pressures and heating rates are presented

for spherically-blunted and 3-D elliptic cones at angle of attack for laminar and turbu-

lent conditions. Both perfect gas and equilibrium-air flows are considered. Compar-

isons are made between results of the present technique, more exact methods (Euler,

VSL, and NS), and available experimental data to demonstrate the accuracy and

capability of the present engineering technique.



2 Inviscid Analysis

This chapter outlines the approximate technique used in the outer inviscid re-

gion of the shock layer. Although much of this material has been presented previ-

ously [20, 21, 22], a detailed description of the method is given for completeness. All

variables used in the analysis are nondimensionalized by the reference quantities given

in Appendix A.

2.1 Coordinate Systems

The three-dimensional shock surface can be represented by

= f(x,¢) (2.1.1)

where (x, v, ¢) are cylindrical coordinates with corresponding unit vectors (e_, e_, e_).

The x axis is aligned with the freestream velocity vector and is normal to the shock

surface at the origin. Two angles, 6_(x, ¢) and F(x, ¢), describe the shock wave shape

and are defined as

1 Of tanr = Of
tan_¢ - f 0¢ _xx cos6¢ (2.1.2)

An additional angle that is useful in dealing with Cartesian coordinates is given by

a = ¢ - 6¢. All angles are shown in Fig. 2.1 and Fig. 2.2. For the special case of

axisymmetric flow, r = f(x), F = F(x), _¢ = 0, and a = ¢.

Next a shock-oriented curvilinear coordinate system (_, _, n) is defined where _ and

represent coordinates of a point on the shock surface and n is the inward distance
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Figure 2.1. Shock wave geometry: side view.

¥

Figure 2.2. Shock wave geometry: rear view.
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normal to the shock. Differential arc lengths alongeachcoordinate direction at the

shockare h_ d_, h e dfl, and dn where h_ and hz are scale factors for the corresponding

coordinates. This coordinate system is well-suited for hypersonic flow (Moo >> 1 ) and

thin shock layers.

The unit vector in the normal direction is defined by

-_'F

e. = IVFI (2.1.3)

where

F(x,,, ¢) - r - f(z, ¢) = 0 (2.1.4)

The remaining unit vectors, e¢ and e_, are tangent to the shock surface and are chosen

such that e_ is in the direction of the tangential velocity just inside the shock surface.

Since the tangential component of the freestream velocity is unchanged across the

shock wave, the unit vector e_ may be found by subtracting the normal velocity from

the freestream velocity as

ez - (ex • en)e.

e¢ =- le * _ (ex. en)e, I
(2.1.5)

The unit vector e_ is then defined to be perpendicular to e_ and en and is given by

ez = e. x e_ (2.1.6)

Lines of constant _ are shown in Fig. 2.3 and Fig. 2.4. By using Eqs. (2.1.1)-(2.1.6),
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V_

v

Figure 2.8. Shock-oriented curvilinear coordinate system:

the unit vectors of the curvilinear coordinate system become

side view.

ee = cosFex + sinF cos6¢ e_ - sinr sin6_ e_

eo = sin6ce_ + cos_¢e 6

e,, = sinrex - cosF cos6¢ e_ + cosF sin6¢ e¢

(2.1.7)

Written in Cartesian coordinates,

e¢ = cosFe, + sinFcosae_ + sinFsinaez

ez = -sina% +cosaez

e,, = sinFe_-cosFcosae_ - cosF sinae_

(2.1.s)

Although this curvilinear coordinate system is orthogonal at the shock surface, it is

nonorthogonal within the shock layer for a general three-dimensional shock. However,
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Figure 2.4. Shock-orientedcurvilinear coordinatesystem: front view.

for thin shocklayers,orthogonality may beassumedin the outer inviscid region. The

nonorthogonality of the curvilinear coordinate system is only important near the

body surfacein the boundary layer. The transformationsbetweenthe curvilinear,

cylindrical, and Cartesiancoordinateson the shocksurfaceand in the shocklayer are

detailed in Appendix B.

The velocity is definedin terms of the unit vectorsat the shockas

V = lte_ + Yen + wejo

From the definitions of e_ and e_, the crossflow velocity component at the shock, ws,

is equal to zero.
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2.2 Governing Equations

In this section, the governing conservation equations for a steady, inviscid, and

adiabatic flow are developed in the curvilinear coordinate system. By examining the

shock layer geometry, approximations are made that allow for a simpler solution of

the outer inviscid flowfield.

2.2.1 Stream Functions

The continuity equation for three-dimensional flows is given by

v. (pv)=0

This equation may be solved by the introduction of two stream functions as

pV = gr_ x _7¢

where g2 and • represent the two stream functions [23]. Intersections of these stream

functions define streamline paths.

Rewriting this equation in the shock-oriented curvilinear coordinate system yields

0_ O_ O_ 0¢
puh_B =

OZ On On O_
O_ O'b Oq_O'b

pv h _h _.A]3 - o_ o9 o8 o_
Og20'_ 0_0 0¢

pwheA =
On O_ O_ On

(2.2.1)

where the coordinate system is assumed to be orthogonal and the geometric factors

.At and B are derived in Appendix B. They are given by

.A = l - nx¢ 13= 1- nxz
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where xe and xz represent the curvatures of the shock surface in the _-n and 3-7t

planes, respectively. As noted in Refs. [14] and [23] for blunt bodies at hypersonic

speeds, most of the mass flow is near the shock wave where the velocity component u, is

small. A simplifying assumption for the outer inviscid layer is that w = 0 throughout

the shock layer. From Eq. (2.2.1), it is seen that _(/3) satisfies this assumption. Thus,

if • is set equal to/3, $ becomes

O---_ = -puh_B (2.2.2)

0_

0---_ = pvh_h_.AB (2.2.3)

These definitions of qJ and • are not unique, and because of the above assumption,

they satisfy the exact flowfield equations only at the shock wave. The intersections

of planes of constant /3 with the shock surface are referred to as shock lines. Shock

lines are in the direction of the _ coordinate, and for axisymmetric flow, planes of

constant/3 are meridional planes (see Figs. 2.3 and 2.4).

2.2.2 Pressure Equation

The momentum equations for steady, inviscid flow may be written as

V. VV = -1Vp (2.2.4)
P

Writing these equations in the (_,/3, n) system gives the following momentum equation

normal to the shock (assuming w = 0):

(2.2.5)
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Now transform this equation from the (_,/3, n) system to a new set of computational

variables (_,/3, 7/) where

_=¢ 3=/3 .= _-:

By letting @ = 0 define the body surface, r/ = 1 on the shock and r/ = 0 on the

body. Using the chain rule of partial differentiation, the partial derivatives in the two

coordinate systems are related by

o_ = -_ _

o (o_)oo_ = _-_

(o_) o (o,7) o+ -_ -_ + -_ N
0

Note that since no derivative with respect to /3 appears in the normal momentum

equation, its partial derivative is not included here. With the help of Eqs. (2.2.2)

and (2.2.3), the partial derivatives become

0 0 h¢h_ [pv.AB - r/(pv),] 0 (2.2.6)

0 _ puht3B 0 (2.2.7)
On % Orl

Substitute the transformation into Eq. (2.2.5) to obtain

(2.2.s)

By substituting n into Eqs. (2.2.6) and (2.2.7), an expression for the velocity compo-

nent v normal to the shock can be obtained and is given by

u 1 on (ov), (2.2.9)
v - ..4h_ O_ + _ pAB
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The only assumptions used in Eqs. (2.2.8) and (2.2.9) are that the velocity com-

ponent w is equal to zero throughout the shock layer and that the curvilinear coor-

dinate system is strictly orthogonal. To obtain explicit expressions for the pressure

and normal velocity component, additional assumptions are required. The following

approximations, which are consistent with the simplifications in Refs. [14] and [23],

are valid for hypersonic flow and thin shock layers:

$

_0

Ov

A,._ I 0"-_ ,_ 0

Bml

Relations for the derivative of the scale factor h a (see Appendix B) and the velocity

components at the shock (see Appendix C) are also needed to reduce Eqs. (2.2.8)

and (2.2.9) to their final form. They are given by

1 Oh_ sinF Oa

h_ht3 0_ ht3 0/3

and

sinF
t/, s = cosF vs --

P_

Equations (2.2.8) and (2.2.9) can now be written as

p(_,_,r/) = p,(_,_) + px(_,/})[7/-1]+ P2(_,_)[r/2- II (2.2.10)

v(_,_},¢) = v_(_,3)+ vl(_,_)[7 - iI (2.2.11)



14

where

Pl =
h_

• .v, tanF (_
p2 = 2h_ + t¢_)

_JsV8 .

- h +

The pressure and normal component of velocity can now be found explicitly along a

line normal to the shock surface, since all variables in Eqs. (2.2.10) and (2.2.11) are

evaluated on the shock. Keep in mind that Eqs. (2.2.10) and (2.2.11) are approximate.

2.2.3 Other Relations

The energy equation for steady, adiabatic, inviscid flow reduces to the simple

relation that the total enthalpy of the flow is constant:

H = h + 2(u 2 + v 2) = Hoo (2.2.12)

Also, for inviscid equilibrium or frozen flow, the post-shock entropy is constant along

a streamline. This may be expressed as

S -- S(@,,8) (2.2.13)

whereas the equations of state are of the form

p = p(p,S) h = h(p,S) (2.2.14)

The distance from the shock surface to the body is calculated by integrating Eq. (2.2.2)

and noting that the geometric factor B is a function of n as given in Appendix B.
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nb2_Z _ 01, fo 1 drInb 2 hz p---_ (2.2.15)

Equations (2.2.10)-(2.2.15) provide expressions for the pressure, density, enthalpy,

the velocity components u and v, and shock layer thickness. When combined with

the properties at the shock (see Appendix C), they form an inverse method: for an

assumed shock shape, the corresponding body shape is calculated.

2.3 Method of Solution

The procedure for solving the approximate inviscid flowfield equations,

Eqs. (2.2.10)-(2.2.15), is outlined in this section. Since the method is an inverse

one, the shock shape must be changed until the correct body shape is produced. The

resulting iteration procedure is handled differently in each region of the flow.

2.3.1 Subsonic-Transonic Region

In the stagnation region of a blunt body traveling at hypersonic speeds, the flow is

subsonic and the flowfield equations are elliptic. Thus, the shock shape for the entire

subsonic-transonic region must be determined globally.

In this investigation, the blunt nose of the body is represented by a longitudinal

conic section with an elliptical cross section as

=
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where

Vo0

shock

Figure 2.5. Shock and body axes.

X

ff(/_ cos2_ + sin2_) = 25: - b._2 (2.3.1)

and the bars indicate that the conic section parameters and coordinates refer to the

body with er aligned with the body axis and not the wind axis (see Fig. 2.5). The

nondimensional nose radius in the 2- £" plane is equal to unity. The parameter

/_ governs the ellipticity of the body cross section and for /_ = 1, the shape is

axisymmetric. The parameter b determines the longitudinal shape of the body. Values

of b greater than zero produce ellipsoids, equal to zero produce a paraboloid, and less

than zero produce hyperboloids. A value of b equal to one produces a sphere provided

/} is also equal to one.

Van Dyke and Gordon [25] suggest that a conic-section body shape produces a
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shocksurfacethat can alsobedescribedby a conic section. Therefore, represent the

three-dimensional shock surface in the subsonic-transonic region by three longitudinal

conic sections blended in the circumferential direction with an ellipse as

_ = f(_,¢)

where

f2[B(x)cos2¢+ sin_¢] + fC(x)cos¢ = D(x)

B(x)

C(_)

D(_)

= B(_)(f_- 11)

=#

(2.3.2)

and

f_ + bkx _ - 2ckz + 2&xfk = 0 k = 1,2, 3 (2.3.3)

The index k refers to the 0, 90, and 180 deg meridional planes, respectively, in the

wind-oriented system. Cheatwood and DeJarnette [26] follow a similar approach in

curve-fitting body geometries. One advantage to this approach is that parameters

are added by blending more conic sections with additional elliptic arcs. A limitation

of using this shock shape is that the sonic line must remain on the blunted nose. On

very blunt geometries (e.g. 60 deg sphere-cone), the sonic line is located at the end

of the afterbody and the shock contains inflections in the axial direction. This shock

fit does not allow for inflections.
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The parameter b governs the shape of the conic section in the same manner as

the body parameter b. The parameter c determines the scale of the shock relative

to the body and the parameter d represents the rotation of the conic section. The

requirement that the shock curvature at the origin is continuous in the planes of

symmetry (¢ = 0, 180 deg) leads to the constraint that

C3 -- Cl

Additional constraints are placed on the coefficient d:

d3 = -dl d2 = 0

These restrictions imply that the shock shape in the windward (¢ = 0 deg) and

leeward (¢ = 180 deg) planes of symmetry may be rotated, but there is no rotation

of the shock shape in the side (¢ = 90 deg) meridional plane. Thus, the total number

of parameters governing the shock surface is reduced from nine to six.

The iteration procedure for determining the six shock surface parameters is as

follows:

1. Assume initial values for the six shock shape parameters ba, b2, b3, cl, c2, and

dl. For an axisymmetric flow, the only parameters are bl and cl.

2. Determine initial values for the shock line variables (x, r, ¢, sinF, ha, _8) from

the limiting form of the shock shape, Eqs. (2.3.2) and (2.3.3), in the stagnation

region. The initial values are given in Appendix D.
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3. Calculatethe shockstandoffdistanceon the stagnation line (origin of the wind-

oriented coordinate system) from the limiting form of Eqs. (2.2.10)-(2.2.15) on

the stagnation line. Its derivation is also outlined in Appendix D.

4. Integrate the shock line variables along three shock lines (/3 = 0, 90,180 deg)

from the stagnation region to the end of the subsonic region. Only one shock

line is needed if the flow is axisymmetric. The derivatives of the shock line

variables are obtained from Eqs. (2.1.2), (2.2.3), (B.6), (B.12), and (B.17) as

6Qx
Q -- cosF
8s
Or
Os sinF cos_#

0¢ sinF sin6_

0s r

OsinF
= -_ cosFOs

c_hz
- hz_¢_ tanF0s

O---_ = hz sinr

(2.3.4)

(2.3.5)

(2.3.6)

(2.3.7)

(2.3.8)

(2.3.9)

where

To insure that the axial location is the same for each shock line, transform the

distance along a shock line, s, to a time-like variable along a shock line, t, using

0 z 0

& cosF Os

This transformation allows derivatives in the C-direction to be found more con-

veniently and also results in well-behaved derivatives near the origin. The
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integration scheme is detailed in Appendix E. Shock angles and curvatures

are calculated from the assumed shock surface using Eqs. (2.1.2), (B.6), (B.7),

and (B.17).

5. After each integration step, calculate the shock standoff distance nb for each

shock line using the shock layer equations. A geometric distance nbg,o is also

found by projecting a normal line from the assumed shock surface to the known

body shape.

6. Stop the integration when the surface (_ = 0) Mach number is supersonic on

each shock line. A typical value for Mb is 1.05.

7. Compute the error between the calculated body shape and the known body

shape for each of the three shock lines. Errors in body position and slope are

estimated at the last integration step and are given by

(elk = io_ -- 1 eak = \_nbg,o / i,,,_

where V is the backwards difference operator and isub represents the last inte-

gration step.

8. Use the error in the body shape to obtain improved shock surface parameters

from a quasi-Newton nonlinear equations solver. The above steps are then

repeated until the error between the calculated and known body shape is within

a prescribed tolerance. Consequently, the calculated body shape is constrained

to match the given body shape at only a few points.
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9. Once the shock surface has been determined, the shock variables are integrated

along all shock lines (as determined by the user) from the stagnation region to

the end of the subsonic-transonic region.

2.3.2 Supersonic Region

Once past the transonic region, the flow is totally supersonic and a marching

scheme is well posed. The shock surface and resulting shock lines from the transonic

region form a starting solution for the marching procedure. The general marching

procedure is as follows:

1. Starting at x_, predicted values for the shock variables (r, ¢, sinF, h_, _s) are

obtained at xi+x for each shock line using Eqs. (2.3.5)-(2.3.9). In the supersonic

region, it is not necessary to use the time-like variable t. Instead, transform to

the axial coordinate x using

0 1 0

Oz cosr Os

&r

2. The angle _ and the derivative _ are computed using the predicted values of

the shock radius. These derivatives may be calculated from finite differences in

the circumferential direction. Smoother derivatives are obtained by fitting the

shock radii with an ellipse in a least squares sense and then differentiating the

ellipse.

3. On each shock line, the local shock curvature x_ is varied in Eqs. (2.2.10)-

(2.2.15) until the calculated shock layer thickness matches the geometric thick-
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ness. Convergence usually requires two or three iterations with the secant

method.

4. The above steps are repeated for the corrector step using the new values for the

shock curvature _¢.

5. Upon completion of the corrector step at x;+l for each shock line, predicted

values for the shock variables are obtained at x_+2 and the entire process is

repeated.
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3 Viscous Analysis

In this chapter, the analysis of the viscous region near the body surface is detailed.

An overview of the method is given in Ref. [27]. Because the viscous region is assumed

to be thin in comparison with the shock layer, the appropriate governing equations are

the 3-D boundary layer equations. These equations may be found in most textbooks

concerning viscous flow (such as Ref. [28]), so they are not repeated here. Properties at

the boundary layer edge are obtained from the inviscid solution previously described.

3.1 Axisymmetric Analog

The 3-D boundary layer analysis is simplified by using the axisymmetric ana-

log [13] as is done in most engineering aerothermal methods. The full equations are

first written in a inviscid surface streamline coordinate system. The crossflow velocity

component tangent to the surface but normal to the streamline is then assumed to

be equal to zero throughout the boundary layer. This assumption, which is similar

to the approximation of w = 0 used in the outer inviscid region, is accurate when

the streamline curvature is small [29] or when the wall is highly cooled [30]. The 3-D

boundary layer equations reduce to their axisymmetric form, provided the distance

along the streamline is substituted for the surface distance and the scale factor de-

scribing the divergence of the streamlines is interpreted as the axisymmetric body

radius. This approach allows any axisymmetric boundary layer method to be used.
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3.2 Inviscid Surface Streamlines

Before applying the axisymmetric analog, inviscid surface streamlines are com-

puted from the approximate inviscid solution. These body streamlines may be calcu-

lated from the surface pressure distribution [9] or from the velocity components [11].

The approximate inviscid method used here predicts accurate surface pressures, but

the direction of the velocity on the surface is not accurate. Therefore, in the present

analysis, streamlines are calculated from the surface pressures.

A streamline coordinate system [9] (_,8, fi) is defined in which _ and _ are co-

ordinates of a point on the body surface and fi is the distance normal to the body.

The bars indicate the coordinates are relative to the body, rather than the shock.

Differential arc lengths along each coordinate direction at the body are h E dE, h_ d_,

and dfi where h_ and hz are scale factors for the corresponding coordinates.

If the body surface is represented by r = fb(z, ¢) in wind axes with the axial

coordinate parallel to the freestream velocity and passing through the stagnation

point, the unit vector normal (outward) to the body surface is given by Eq. (2.1.3) as

e_ = - sinFb e, + cosFb cos_b e, - cosFb sin_¢b e¢

The body angles are defined in the same fashion as the shock angles, so that

oh
1 orb tanrb = cos_¢b ab = ¢ -- _¢_b

tan6*b -- A 0¢

(3.2.1)

The body geometry in the wind axes is related to the body axes in Appendix F.

The tangential unit vectors on the surface, e_ and e_, are similar to the tangential



25

unit vectors at the shock. The vector e¢ is in the direction of a surface streamline

and et_ is perpendicular to the streamline. From Ref. [9] they are given as

e_ = cos0es + sin/ge? (3.2.2)

e_ = -sin0ei + cosge (3.2.3)

where

ei = cosF6 e_ + sinF6 cosZ_b er - sinF6 sin_b e_ (3.2.4)

e_ = sin6¢b er + cosgcb e¢ (3.2.5)

and the angle 0 represents the orientation of the surface streamlines with respect to

e_. Note that the vectors e_ and e_ are identical in form to the unit vectors e_ and

ea defined earlier.

The orientation of the inviscid surface streamlines, given by 0, is found by applying

the momentum equations along the body surface in conjunction with the pressure

distribution generated by the inviscid solution. From Eq. (2.2.4), the momentum

equations may be written as

DV 1
- Vp

Dt p

where ff)Tt represents the time derivative along a streamline and is equivalent to V.VV

for steady flow. Writing this equation in the orthogonal streamline coordinates and

substituting

DV V oqV
= __-h--F V = fie_

Dt ,t_ uq
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gi YeS

f_ Off fL20e( 1 { 10p 10pe _ Op )+ 0-T= ÷ "+ (3.='.6)

By taking the scalar product of Eq. (3.2.6) with e 9 and substituting the unit vectors

from Eqs. (3.2.2)-(3.2.5), the following expression is obtained:

1 0t_ sinFb0_b 1 1 Opb

h_O_ - h_ O_ pbfi_ h_ 013 (3.2.7)

The derivative of the scale factor h$ can be determined in the same manner as

the derivative of the scale factor ht_. Referring to Eq. (B.11), the derivative is

Oh z . Oe_

O'-'-_-= h_-_ .e$

Substituting Eqs. (3.2.2)-(3.2.5) yields

1 0 (lnhg) 1 O0 sinrb 0ab

h_ 0_ h3 0/3 + ht_ 0_- (3.2.8)

Equations (3.2.7) and (3.2.8) may be integrated along a surface streamline to

obtain the streamline direction 0 and the scale factor hz, respectively. Although

these body streamlines can be determined after the inviscid solution has already been

calculated, it is more convenient to compute the inviscid flowfield and the surface

streamlines simultaneously. This simplifies the coupling of the inviscid and boundary

layer regions. Before applying these equations along shock coordinates, transfor-

mation operators relating derivatives with respect to the the streamline coordinates

(_,/3) to derivatives with respect to the shock coordinates (_,13) are needed. In the

approximate inviscid method, the curvilinear coordinate system is assumed to be or-

thogonal throughout the shock layer. This assumption simplifies the analysis but does
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not changethe form of the approximatepressureand velocity relations, Eqs. (2.2.10)

and (2.2.11),sincethe flowfield variablesare evaluatedat the shock (where the co-

ordinate system is in fact orthogonal). At the body surface,however, the shock

coordinate system is nonorthogonaland the correct coordinate directions need to

be considered. Using the coordinate directions at the surface, the transformation

operatorsare derivedin Appendix B and repeatedhere:

1 0

..Tbh_0_0 = (Bbe_. e,- :Dbe_" e_) 0 + (Abe_ • ez - Dbe_ • e_) hzO_ (3.2.9)

and

fib 0 _ (Bbez.e__ T_be_. ez) 1 O 1 0 (3.2.10)_-_ _--_ + (.Abez. e_- T_be$. e_) ha a_aZ

where

•,4b = 1--nb_

t_b "- 1 -- nb_;B

nb or'

9b = 05

fib = AbBb -- D_

The scalar products may be evaluated from Eq. (2.1.8) and Eqs. (3.2.2)-(3.2.5) as

e_ • e_

e_. ez

e$ • e_

e3.e_

= cosOe_ • e{ + sinOei, e{

= cosOea • eo + sinOef, e_

= - sinOe_ • e¢ + cosOe_, e_

= -- sinOe_ • ez + cosOe_, ez

(3.2.11)
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where

ei. ee = cosFcosFb+ sinF sinFb cos(a - ab)

e_.ea = --sinFbsin(a--ab)

e_.e_ = sinFsin(a- ab)

e_.ea = cos(a-ab)

(3.2.12)

These operators can be used to calculate the pressure derivative that appears in

Eq. (3.2.7). They also allow Eqs. (3.2.7) and (3.2.8) to be integrated with respect

to the shock coordinate _. The limiting forms of these equations in the stagnation

region are derived and given in Appendix G.

3.3 Convective-Heating Equations

The axisymmetric analog allows any axisymmetric boundary layer method to be

applied along an inviscid surface streamline. Although the axisymmetric bound-

ary layer equations may be integrated numerically, a set of approximate convective-

heating equations developed by Zoby [24] provides accurate surface heating rates with

a minimal amount of computational effort. These equations are used here since they

are consistent with the approximate nature of the inviscid method described previ-

ously. Laminar and turbulent heating rates may be calculated from these relations for

both perfect gas and equilibrium flows. Results using this technique have been shown

to compare favorably with more detailed methods for both wind tunnel and flight

conditions [31, 32, 33]. A complete derivation of the approximate heating equations



29

is found in Appendix H and their stagnation regionvaluesaregiven in Appendix G.

3.3.1 Laminar Heat Transfer

The laminar heating rates are calculated by first relating the surface skin friction

to the momentum thickness Reynolds number. Then a modified Reynolds analogy is

used to relate the heat transfer to the skin friction. The surface heat transfer is given

by

-_ -_ p_fie(h_- h_)(Pr_) -°'6
(3.3.1)

where Eckert's reference enthalpy relation [34] is used to account for compressibility

effects. The laminar momentum thickness, 8L, which appears in the momentum

thickness Reynolds number, ReoL, is given by

0.664(Io_p'_'_,h_h__)''_
OL = (3.3.2)

pe_teh_

3.3.2 Turbulent Heat Transfer

The turbulent heating rates are computed in a similar fashion as

(P*)(#'l"pefi_(h°,_-h_.)(prw) -°'4qwT= c, (Reor)-"' -_e \la_/
(3.3.3)

The turbulent momentum thickness is defined by

o_- (_I_'"'_u°h_h_d_)°' (3.3.4)

where
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2
rn--_-_-- r c3= l+m

Cl = _ (N+I)(N+2)

c2 - (1 +m)cl

n'L

cs = 2.2433 + 0.93N

and N is computed from a curve fit of axisymmetric nozzle wall data [35] as

N= 12.67- 6.51og (Re0r)+ 1.21 [log(ReoT)] _

Note that the momentum thickness for both laminar and turbulent flows may be nu-

merically integrated in the same manner as the surface streamline variables/_ and h3.

3.3.3 Transition

In the transition region, both the laminar and turbulent values of O and q,o are cal-

culated. Their distribution is then computed from the weighting function of Dhawan

and Narasimha [36] as

0 = O_+ wj (Or - OL)

where

wf = 1 -exp (-0.412_2_)

and g is the distance along the body surface.

must be specified in the present approach.

3.3.4 Edge Properties

q,_ = qtoL + wl (qwT -- qwL)

\ send -- sbeg

The beginning and end of transition

The laminar and turbulent heating equations given by Eqs. (3.3.1)-(3.3.4) require

properties evaluated at the edge of the boundary layer. These edge conditions are
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obtained from the approximate inviscid solution. However,care must be taken in

determining the correct edgeproperties. It cannot be assumedthat they are equal

to the inviscid body values due to the large entropy gradients near the surface. This

entropy layer is created by the highly curved shock waves generated by blunt-nosed

bodies traveling at hypersonic speeds. The boundary layer grows inside the entropy

layer and eventually "swallows" the entropy layer. At that point, the value of the

entropy at the boundary layer edge differs significantly from the normal shock value.

Thus, the density and velocity at the edge are different than the corresponding surface

values.

In this investigation, boundary-layer edge properties are found by interpolating in

the approximate inviscid solution a distance away from the wall equal to the bound-

ary layer thickness (see Fig. 3.1). The laminar boundary layer thickness [24, 37] is

approximately

L

whereas the turbulent boundary layer thickness [24, 38] is approximately

r h,_ + 1 1 -F 1.29Pr _/_ (3.3.6)

The procedure involves assuming an edge location and iterating until the assumed

edge location matches the edge calculated from Eqs. (3.3.5) or (3.3.6). An additional

approximation is made by interpolating in the inviscid solution along a line normal

to the shock instead of normal to the body. For thin shock layers, this simplification

does not create any significant errors. This approach for computing the boundary
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Figure 3.1. Boundary layer edge.

layer edge properties approximately accounts for the effects of entropy layer swallow-

ing. It has been used successfully by several authors for both axisymmetric [24] and

3-D [11, 39, 40] flows.
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4 Viscous Interaction

The previous chapters outline the classic boundary layer approach where it is

assumed that the viscous region has a negligible effect on the outer inviscid flowfield.

As such, the inviscid solution may be obtained independently of the boundary layer.

This is a valid assumption for high Reynolds number flows where the boundary layer

is indeed very thin compared to the shock layer.

At moderate to low Reynolds numbers and at higher Mach numbers, the boundary

layer may occupy a significant portion of shock layer. For these conditions, the

interaction between the inviscid and viscous regions is important. The boundary

layer displaces the outer inviscid layer thereby creating an increase in the surface

pressure. Consequently, this increase in pressure influences the boundary layer and

increases the surface heat transfer. This chapter gives the transpiration boundary

condition (which accounts for the displacement effect of the boundary layer on the

inviscid layer) and describes its implementation. Approximate expressions for the

boundary layer displacement thickness are also given.

4.1 Transpiration Boundary Condition

For both viscous and inviscid flows, the continuity equation written in the surface

streamline coordinates (_,_,fi) is

_(pfih3) + _---_(p_h_h3) = 0 (4.1.1)
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wherethe axisymmetricanalog(i.e. tO= 0) has been used. The streamline geometric

factors corresponding to the shock layer geometric factors .,4 and B appearing in

Eq. (2.2.1) are assumed to be equal to unity across the boundary layer. Multiply

Eq. (4.1.1) by dfi and integrate from the surface to the edge of the boundary layer.

For the boundary layer solution where vb = 0:

=- ]0 (4.1.2)

Apply Eq. (4.1.1) to the inviscid solution with injection or suction at the wall to

obtain

(p_r,_h_h_)_- (p_f,_h_h_)b= - (p_r,_h_)d_ (4.1.3)

At the boundary layer edge, set (p_i)_ = (p0)_. Subtracting Eq. (4.1.3) from

Eq. (4.1.2) gives

fo 6 -_(pi_ih_O -_d [6- pfih_) dfi = Jo (Pifiihh - p_th_) dfi

By assuming the absence of an entropy layer (pifii _ Perle) and substituting the defi-

nition of the displacement thickness given by Eq. (H.3), this relation can be simplified

as

(p_ih(h_)b = _(p, fi_h_5*) (4.1.4)

where 5" is the boundary layer displacement thickness. The quantity (pi_ih_h;i)b

represents the mass transpired through the body surface for the inviscid flow to

account for the mass defect in the boundary layer. Equation (4.1.4) is referred to

as the transpiration boundary condition. For inviscid CFD methods whose surface
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boundary conditionsconsistof specifyingthe normal velocity componentat the wall,

Eq. (4.1.4) is the appropriate boundary condition for viscousinteraction. However,

the approximate inviscid method describedin this investigation definesthe body

surfacein terms of @= 0 and the distancen = nb from the shock.

Return to Eq. (4.1.1) and define the stream functions ff and ¢ such that if _ = 3,

Comparing Eq. (4.1.6) with Eq. (4.1.4) gives

piftih3 (4.1.5)

piOih_h;3 (4.1.6)

(Itb= -p_fi_h$6* (4.1.7)

This equation gives the transpiration boundary condition in terms of the stream

function defined in the streamline coordinate system. The boundary condition with

respect to fi is found by integrating Eq. (4.1.5) and assuming the absence of an entropy

layer near the body. This boundary condition becomes

fi_=o = 6" (4.1.8)

which states that the boundary layer displaces the outer inviscid flow a distance

equal to 6", thereby creating an "effective" body shape. This is an anticipated re-

sult and is the most common way of accounting for the viscous interaction. Equa-

tions (4.1.4), (4.1.7), and (4.1.8) are equivalent boundary conditions.

The boundary condition in h is applied in the approximate inviscid method by
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Figure 4.1. Boundary layer displacement thickness.

first assuming that e_ _ -e,,. This leads to

_=TZb--n

Substituting Eq. (4.1.8) gives the shock layer thickness as

nb = (nb)_=o+ ,_" (4.1.9)

In Fig. 4.1, the effective body is represented by k9 = 0 and is located a distance equal

to _* above the actual body. The distance (nb),_=o is the distance from the shock to

= 0. The distance nb is the total distance from the shock to the actual body. Thus,

the transpiration boundary condition is included in the approximate inviscid method

by adding the boundary layer displacement thickness to the shock layer thickness

previously calculated. It is this distance that is matched to the geometric distance
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from the shock to the body. Note that the boundary layer edgeis now located a

distanceequal to 6 - 6" abovethe effectivebody.

The iteration procedurefor including the viscousinteraction is handled differently

in the subsonic and supersonic regions. Referring to Sec. 2.3.1, in the subsonic region,

the displacement thickness is calculated after each integration step and included in

the total shock layer thickness as stated by Eq. (4.1.9). The remaining procedure is

the same. In the supersonic region, a predicted value for the displacement thickness

is obtained from a linear extrapolation of the previous values. It is held constant as

the local shock curvature is varied. An updated value for the displacement thick-

ness is then computed for the corrector step. If the displacement thickness changes

significantly from the predicted value, then additional corrector steps are necessary.

4.2 Displacement Thickness

and

(_s, -2

u_ (H,,+ 1)

where HtT is a transformed form factor (see Appendix H) for low speed flows. In

the boundary layer thickness, Zoby [24] assumes Ht,. = -1 and _ = 5.55.computing

To apply the transpiration boundary condition, expressions for the boundary layer

displacement thickness and total thickness are needed. For laminar flow, Ref. [37]

gives the distances as

6 6t,. u_-2
= + _-Z--(HtT + 1)

zne
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However, this choice for the form factor leads to a negative displacement thickness.

This is unrealistic at some flow conditions. In this investigation, it is assumed that

Htr _ 0

which corresponds to a cold wall with zero pressure gradient (flat plate) in the analysis

of Ref. [37]. Simplifying the above expressions yields

= 5.55 + u....._ (4.2.1)
2h_

L

and

u, (4.2.2)
L 2h_

The turbulent displacement thickness corresponding to Eq. (3.3.6) is obtained from

Ref. [38] as

r = -1 + N h.w + 1 1 + 0.97Pr_/3 (4.2.3)
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5 Results and Discussion

Results obtained with the present technique are presented in this chapter. Inviscid,

boundary layer, and interactive inviscid-boundary layer solutions are computed at

perfect gas and laminar conditions. Equilibrium-air calculations for laminar and

turbulent flow are also shown. Surface pressure and heating rate distributions along

with the corresponding shock shapes are examined to demonstrate the capability and

accuracy of the present method for blunted axisymmetric and 3-D body shapes at

angle of attack. Comparisons are made with experimental data as well as with flight

data. Inviscid solutions are compared with the results of two inviscid CFD methods:

HALIS [41] and STEIN [42]. Viscous solutions are compared with the results of

a VSL method [3], a NS method (LAURA) [1], and an approximate VSL method

(AVSL) [43]. The results from two engineering techniques, AEROHEAT [8, 9] and

INCHES [10], are also shown where appropriate.

Results are presented in nondimensional form (see Appendix A) in the body-

oriented coordinate system (_,¢). The windward plane is given by ¢ = 0 deg and the

leeward plane is located at ¢ = 180 deg. Distances are referenced to the nose radius

of the body in the _-5 plane, R_.
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Figure 5.1. Body pressure comparison in planes of symmetry for paraboloid.

5.1 Inviscid Solutions

Inviscid solutions are calculated for a paraboloid and blunted 1.5:1 elliptic cone

at angle of attack. Results over spherically-blunted cones at angle of attack using the

inviscid version of the present technique [20, 21] have been documented and are not

repeated here. All solutions are computed using 21 points in the q direction. These

points are clustered to resolve the entropy layer near the body surface.

Paraboloids

Surface pressures and shock shapes for a paraboloid at 12 deg angle of attack are

presented in Figs. 5.1 and 5.2, respectively. Experimental results [44] are presented at

freestream Mach numbers of 9.9 for the surface pressures and 5.73 for the shock shape.

Although a paraboloid is axisymmetric, the shock shape produced in the nose region
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is fully three-dimensional when the body is at angle of attack. Three longitudinal

conic sections are blended with an ellipse as described in Sec. 2.3.1 to produce the

shock shape in the nose region. Six iterations using the quasi-Newton nonlinear

equations solver are required for convergence. Good agreement (within 8 percent)

in surface pressures between the present method and the experimental data [44] is

shown in Fig. 5.1. In Fig. 5.2, the calculated shock lies slightly closer to the body

than does the experimentally determined shock shape, but the agreement is good.

Comparisons in Ref. [44] at 0 deg angle of attack were made with the axisymmetric

Maslen technique of Zoby and Graves [15l, and a similar result was observed.
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Figure 5.3. Circumferential body pressure comparison for 1.5:1 elliptic cone.

Blunted Elliptic Cones

Surface pressures over an elliptic cone with a cone half-angle of 10.26 deg in the

windward plane and an ellipticity of 1.5 are shown in Fig. 5.3. The experimental

data [45] displayed are for a pointed elliptic cone. For the calculations, a very small

nose radius is assumed for the elliptic cone. Circumferential pressures are shown for

a position far downstream (._ = 120), where the surface pressures should approach

sharp cone values. At 10 deg angle of attack, the agreement between the experimental

and calculated pressures is excellent except near the leeside region (_ > 140 deg) as

shown in Fig. 5.3. Since viscous effects are more pronounced in the leeward region,

an inviscid method is not appropriate for calculations in this area anyway.

Numerical solutions for this case were also computed using two Euler equation
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solvers. The first, a time-dependent solution of the inviscid equations (HALIS) [41],

is used to compute the blunt nose region of the elliptic cone. This provides a starting

plane for the second Euler equation solver which computes the supersonic region of the

flow with a marching procedure (STEIN) [42]. The following run-time comparisons

are for a CRAY-2 supercomputer. For a length of 2 nose radii, HALIS requires 1000

iterations for convergence and a time of 120 CPU (central processing unit) sec for a

grid consisting of 31 points in the streamwise direction, 37 points in the circumferential

direction, and 11 points across the shock layer. For the solution downstream of the

nose, STEIN requires 105 CPU sec to advance 50 nose radii using 575 marching steps

with a grid consisting of 37 points in the circumferential direction and 21 points across

the shock layer. The present technique requires less than 1 CPU sec to advance 50

nose radii using 65 marching steps, 19 points around the circumference of the shock,

and 21 points across the shock layer. These comparisons demonstrate the approximate

inviscid technique is much faster than more exact CFD methods for 3-D nose shapes.

The surface pressure distribution in the windward plane of symmetry of the elliptic

cone is shown in Fig. 5.4 for 10 deg angle of attack and a Mach number of 10. The

results of the present method are in excellent agreement with the STEIN solution.

Circumferential pressure distributions in the nose region and on the conical afterbody

are given in Fig. 5.5 for the elliptic cone at angle of attack. Good agreement is noted

except on the leeward side (¢ > 90 deg).
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5.2 Boundary Layer Solutions

Surface heating rates are presented for perfect gas and laminar conditions over

spherically-blunted and blunted 3-D elliptic cones at angle of attack to evaluate the

accuracy of the inviscid-boundary layer technique as described in Chaps. 2 and 3.

The Reynolds number is relatively high so that the boundary layer is thin and the

viscous interaction may be neglected. Viscous interaction effects are examined later.

Spherically-Blunted Cones

Computed laminar surface heating rates are presented for the windward plane of

a 15 deg spherically-blunted cone at angles of attack of 5 and 10 deg. The freestream

conditions are Moo = 10.6, poo = 0.00973 kg/m 3, and Too = 47.3 If. The wall temper-

ature is Tw = 300 K. Results of the present method are compared with results of an

engineering aerothermal method AEROHEAT [8, 9] and experimental data [46] for

a nose radius of R_ = 0.0279 m. Good agreement (within 10 percent) between the

results of the present method and the experimental data is shown in Figs. 5.6 and .5.7.

The AEROHEAT results fail to predict the correct magnitude of the surface heating

as well as the local maximum in the heating. These discrepancies can be attributed

to the modified Newtonian pressure distribution and approximate streamlines used

in AEROHEAT. Circumferential heating rates are presented in Figs. 5.S and 5.9 at

two axial locations on the blunted cone for angles of attack of 5 and 10 deg. The

comparison of the experimental and predicted heating rates is seen to be good at both
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Figure 5.10. Axial heat transfer comparison for 5 deg sphere-cone, R_ = 0.0381 m.

axial stations of 4.86 and 10.13 nose radii. This comparison illustrates the present

technique's ability to compute heating rates off the windward plane of symmetry.

To demonstrate the significant improvement of the present method over current

engineering aerodynamic heating methods, the surface heating rates in the windward

plane of symmetry are calculated for a 5 deg spherically-blunted cone at an angle of

attack of 3 deg. The freestream conditions are M_ = 15, p¢¢ = 0.00171 kg/m 3, and

T¢¢ = 266 K. The wall temperature is specified to be T,o = 1256 K. Heating rates are

computed using the present technique, AEROHEAT, INCHES [10], and a detailed

VSL method [3] for a nose radius of R_ = 0.0381 m. The resulting surface heating

rates are presented in Fig. 5.10. The surface heat transfer predicted by AEROHEAT

and INCHES differ by as much as 40 percent from the more accurate VSL solution.
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(5 deg sphere-cone at a = 0.14 deg), R_ = 0.00356 rn.

This difference can be attributed to the approximate streamlines employed by both

engineering techniques. On the other hand, the solution of the present method shows

much better agreement (within 15 percent) with the VSL results and also predicts

the correct trend in the surface heating rate levels.

The surface heating rates over a 5 deg spherically-blunted cone at equilibrium-air

and turbulent conditions are examined next in Fig. 5.11. Results from the present

method are compared with heat-transfer data obtained from the flight experiment

Reentry F [47]. The Reentry F vehicle was a 5 deg spherically-blunted cone with a

length of 13 ft and an initial nose radius of 0.1 inches. The data shown in Fig. 5.11 cor-

respond to a trajectory point at 80,000 ft. The freestream conditions are Mo¢ = 19.97,
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poo : 0.0446 kg/m 3, and T_¢ = 221 K. The wall temperature is variable and the nose

radius is R_ : 0.00356 m. The angle of attack is 0.14 deg. The results are for the

leeward plane of the vehicle. In the present technique, equilibrium-air properties are

obtained from Hansen [48], and transition is assumed to begin at the reported dis-

tance [47]. Excellent agreement between the results from the present technique and

the flight laminar and turbulent data is noted.

Blunted Elliptic Cones

The perfect gas, laminar solution over a blunted 2:1 elliptic cone is examined next

at angles of attack of 0 and 15 deg. Even at 0 deg angle of attack, the flowfield

is three-dimensional. The cone angles in the windward and side planes are 5 and

9.93 deg, respectively. The freestream conditions are Mc¢ - 10.19, pc¢- 0.0193

kg/m 3, and T_ : 51.1 K. The wall temperature is T,, -- 261 Kand the nose radius is

R_ - 0.0254 m. Surface heating rates from the present technique are compared with

experimental data [49] and thin layer NS results from the LAURA algorithm [1]. The

LAURA method is chosen for comparison purposes because of its ability to compute

the flowfield about a 3-D nose. In addition, there is an apparent lack of heat-transfer

data available in the open literature on 3-D nose shapes. Thirty-seven streamlines are

used to obtain the solution around the elliptic cone in the present technique. A grid

of 64 cells in the axial direction, 30 cells around the circumference of the body, and

64 cells in the normal direction is used to obtain the LAURA solution. The present

technique requires approximately 200 CPU sec on a Sun workstation to obtain a
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solution. The LAURA solution requires approximately 4 CPU hrs on a CRAY-2

supercomputer, although it should be noted that no effort was made to optimize the

LAURA calculations.

Axial surface heating rates are depicted in Fig. 5.12 for the windward (_ = 0 deg)

and side (_ = 90 deg) planes at an angle of attack of 0 deg. Good agreement is noted

near the nose and in the side plane downstream. However, in the windward plane

downstream, the results from the present technique overestimate the results generated

by LAURA by 25 percent. For the blunted elliptic cone, the surface streamlines di-

verge rapidly from the side plane and converge towards the windward plane. Unfortu-

nately, in this inflow region near the windward plane, it appears that the approximate
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surface pressures are not accurate enough to predict reasonable streamline paths as

shown in Fig. 5.13. For this reason, the solution over the elliptic cone at 0 deg angle

of attack is computed using "simplified" surface streamlines which are obtained by

setting the streamline angle _ equal to zero. At angle of attack the streamlines are

again computed using the surface pressures since the inflow is reduced.

Circumferential heating rates for the blunted elliptic cone at 0 deg angle of attack

are depicted in Figs. 5.14-5.17 at four axial locations on the body. The first is on

the 3-D nose, whereas the remaining three are downstream on the 3-D afterbody.

Excellent agreement (within 10 percent) is seen at 5: = 0.4 on the 3-D nose. At

5: = 2.2, the rapid drop in the heating rate away from the side plane may be attributed
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to the fact that the approximate inviscid solution is based on the shock and tends

to smooth the effects of the discontinuity in body curvature at the nose-afterbody

juncture. The same trend is noted in the pressure comparisons in Ref. [22]. This effect

is seen in Fig. 5.12 around _" = 1.0. Farther downstream (at ._ = 9.7 in Fig. 5.17) the

surface heating rates from the present method match the circumferential distribution

of the LAURA solution and the experimental data except near the windward and

leeward planes.

The axial surface heating rates in the windward plane on the blunted 2:1 elliptic

cone at 15 deg angle of attack are shown in Fig. 5.18. The agreement between the

present results and the LAURA solution is excellent. As noted previously, surface
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streamlines are computed from the pressure distribution at angle of attack. Circum-

ferential surface heating rates are depicted in Figs. 5.19-5.22 at the same four axial

locations as shown for 0 deg angle of attack (in Figs. 5.14-5.17). The present tech-

nique is inappropriate for calculations in the viscous-dominated leeward region on

the afterbody of a vehicle at large angle of attack. For this reason, the solution is

computed only in the windward region (¢ < 90 deg). If a solution is desired only

on the blunted nose, then the fiowfield may be calculated including the leeward side.

Good agreement (within 15 percent) is noted both on the 3-D nose and at the axial

stations downstream. There are some discrepancies between the results from LAURA

and the experimental data at _ = 9.7. The resolution of the LAURA grid may not
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blunted 2:1 elliptic cone, R_ = 0.0254 m.

be adequate for this case. These comparisons not only demonstrate an improvement

over present engineering methods, but the applications to 3-D bodies significantly

enhance current capabilities.

5.3 Interactive Inviscid-Boundary Layer Solutions

In this section, results are presented for a spherically-blunted and blunted elliptic

cone at lower Reynolds number conditions. At these conditions, the boundary layer

represents a significant portion of the shock layer so that viscous interaction could be

important. The interaction between the outer inviscid layer and the viscous region

is calculated using the procedure described in Chap. 4 and compared with results

generated assuming no displacement effect. Note that the lower Reynolds number is
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obtained by decreasing the nose radius only. The freestream conditions are identical

to the corresponding cases in Sec. 5.2. All solutions are computed assuming perfect

gas and laminar conditions.

Spherically-Blunted Cones

The shock layer and displacement thicknesses calculated for a 5 deg spherically-

blunted cone are presented in Figs. 5.23 and 5.24 for 0 deg angle of attack. This

cone and the corresponding freestream conditions are identical to the ones given in

Fig. 5.10 except that the nose radius here is a factor of 10 smaller. It is given by

R_ = 0.00381 m. The freestream Reynolds number based on the nose radius is

Reoo = 1900. Results from the present technique, both including and neglecting the
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viscous interaction, are compared with the solution generated from an approximate,

axisymmetric VSL algorithm (AVSL) [43]. The AVSL technique is identical to the

VSL method except that the normal momentum equation is replaced by Maslen's

second-order pressure equation for axisymmetric flow.

Figures 5.23 and 5.24 illustrate the influence of the boundary layer on the inviscid

flowfield. From these figures, the displacement thickness (which is less than the

boundary layer thickness) is seen to make up 20 percent of the total shock layer.

Therefore, neglecting the viscous interaction in the present technique leads to a much

thinner shock layer than the one given by AVSL. By including the displacement

effect, the present shock shape shows excellent agreement with the AVSL shock shape.
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Figure 5.25. Body pressure comparison for 5 deg sphere-cone, R_ = 0.00381 m.

In addition, note that the simple expression used for the ratio of displacement to

momentum thickness, Eq. (4.2.2), agrees reasonably well (within 20 percent) with

the AVSL solution in Fig. 5.24.

Figures 5.25-5.28 highlight the effect of the viscous interaction on the surface

pressures and heat transfer. At the location of the pressure minimum (_: _ 40)

in Fig. 5.25, the present technique without the displacement effect underpredicts

the surface pressure by 25 percent compared to the AVSL results. Including the

displacement effect in the present method dramatically improves the comparison to

within 5 percent. In addition, results generated with the viscous interaction match the

correct pressure levels farther downstream at _ = 200. The effect on the heating rates

is not as dramatic as shown in Fig. 5.26. This is expected since in the weak interaction
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Figure 5.26. Heat transfer comparison for 5 deg sphere-cone, R_ = 0.00381 m.

region downstream, the displacement thickness grows gradually (see Fig. 5.24) and

only weakly affects the inviscid flowfield. The corresponding changes in the outer

inviscid flow have a negligible effect on the boundary layer and the surface heating.

Therefore, the stronger interaction effects are seen in the nose region in Figs. 5.27

and 5.28. Note that at least part of the discrepancy in the heating rates in the

pressure overexpansion region is due to approximations made in the AVSL method

as documented in Ref. [43].

Results generated over the 5 deg spherically-blunted cone at 0 deg angle of attack

with the original nose radius of R_ = 0.0381 m are given in Figs. 5.29-5.31. With

the larger nose radius, the freestream Reynolds number is Reo_ = 19000. At these

conditions, the boundary layer is much thinner as shown by the shock layer thickness
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Figure 5.28. Heat transfer comparison for 5 deg sphere-cone (nose region),

R_ = 0.00381 m.
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Figure 5.29. Shock layer thickness comparison for 5 deg sphere-cone,

R_ = 0.0381 m.

comparisons in Fig. 5.29. As a result, the corresponding effects on the surface pres-

sures and heat transfer in Figs. 5.30 and 5.31 are minimal. As expected, at the larger

Reynolds number corresponding to the conditions of Fig. 5.10, viscous interaction

effects may be neglected.

Blunted Elliptic Cone

Solutions are examined next for the blunted 2:1 elliptic cone described in Sec. 5.2.

As mentioned previously, the cone angles in the windward and side planes are 5 and

9.93 deg, respectively. The freestream conditions are identical to the ones given in

Figs. 5.12-5.22. The nose radius is decreased by a factor of 100 to R_ = 0.000254 m

to illustrate the displacement effect of the boundary layer. The freestream Reynolds
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Figure 5.31. Heat transfer comparison for 5 deg sphere-cone, R_ = 0.0381 m.
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number is Reoo = 2170. Comparisons are again made with thin layer NS results from

the LAURA algorithm.

Shock layer thicknesses in the windward and side planes of symmetry are shown in

Fig. 5.32. Results are calculated both including and neglecting the viscous interaction.

Simplified surface streamlines (# = 0) are again used. The region where viscous

interaction effects should be greatest are encompassed in the relatively short (20 nose

radii) computational domain. As seen in the comparison, the boundary layer accounts

for 15-20 percent of the shock layer. The viscous interaction should significantly

influence the surface properties at these conditions.

Surface pressures and heat transfer in the planes of symmetry are given in
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Figure 5.33. Axial body pressure comparison for blunted 2:1 elliptic cone,

Re = 0.000254 m.

Figs. 5.33-5.36. In Figs. 5.33 and 5.34, comparisons of the surface pressures and

heating rates improve when viscous interaction effects are included. Without the

displacement effect, the present technique underpredicts both the pressure levels and

the heating rates by at least 30 percent. By including the displacement effect, the

comparison with the LAURA solution is within 15 percent. Similar improvement is

seen in the side plane as shown in Figs. 5.35 and 5.36.

Circumferential pressure and heat transfer distributions are given in Figs. 5.37-

5.42 at three axial locations. The first is again on the 3-D nose, whereas the other

two are located downstream on the 3-D afterbody. As shown in the axial distribu-

tions, the results generated with the viscous interaction effects agree more closely
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Figure 5.34. Axial heat transfer comparison for blunted 2:1 elliptic cone,
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R_ = 0.000254 m.
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Figure 5.37. Circumferential body pressure comparison for

blunted 2:1 elliptic cone, R_ = 0.000254 m.
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with the LAURA solution. The improvement is most dramatic near the windward

plane. These comparisons on the 3-D body shape as well as the axisymmetric cone

demonstrate that the applicability of engineering methods can be extended to lower

Reynolds number flows by including viscous interaction effects. However, keep in

mind that at even lower Reynolds numbers, the boundary layer may merge with the

shock layer. The shock layer is fully viscous and an inviscid-boundary layer approach

is not valid.
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Figure 5.40. Circumferential heat transfer comparison for

blunted 2:1 elliptic cone, R_ = 0.000254 m.
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6 Conclusions

A new engineering method has been developed that calculates the coupled inviscid-

boundary layer flow over blunted bodies in 3-D hypersonic flow. The effect of the

boundary layer on the outer inviscid flow is included to improve the applicability of

the technique. The method is applied to the solution over spherically-blunted cones

and 3-D elliptic cones at angle of attack for the laminar and turbulent flow of a perfect

gas and equilibrium air.

The inviscid properties (surface pressures and shock shapes) given by the present

technique compare favorably with experimental data and numerical solutions of the

Euler equations except in the leeward region at angle of attack. For high Reynolds

number flows, the present technique predicts surface heating rates that show good

agreement with experimental data, equilibrium-air flight data, and numerical solu-

tions of the NS and VSL equations. One of the limitations of the method is its

inability to calculate surface streamlines from the pressure distribution for elliptic

bodies at 0 deg angle of attack. Simplified streamlines based solely on the body ge-

ometry may be used in these instances. For lower Reynolds numbers, the inclusion

of the viscous interaction greatly improves the shock shape and surface properties

generated by the present technique. As anticipated, the viscous interaction has the

least influence on surface heat transfer.

The present engineering method significantly extends the capabilities of current
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engineering techniques in the following areas: 3-D applications, accuracy of inviscid

solution, and ability to account for the viscous interaction. Solutions generated by the

present technique can also be obtained with very little computational effort. There-

fore, for these reasons, it would make an excellent tool for preliminary aerothermal

design.
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A Nondimensional Variables

Variables are nondimensionalized according to the following relations:

W p, p'

V- V£ P- p- P- pooV2''_

T_T£h' T' ''
=_ T=_ Ti--

h v2 7-, v2

#, q' k'T'
k- oo

#- ^, lz, r, q _ ^t l/t3 ^t T,rt3Tt
p_ v _J_rd Poo v _ Poo r oo'_reJ

Units for the dimensional quantities are

.--tml
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B Coordinate Transformation

Before using the curvilinear coordinates (_,/3, n), it is advantageous to relate them

to more accessible coordinates. On the shock surface where the curvilinear coordi-

nates are orthogonal, transformation operators are derived that relate partial deriva-

tives in the curvilinear system to derivatives in the cylindrical and Cartesian systems.

Derivatives of the scale factors at the shock are also given. Within the shock layer

where the curvilinear coordinates are nonorthogonal, both the coordinate transfor-

mation between the curvilinear and Cartesian systems and their partial derivatives

are derived. On the body surface, the transformation between the shock curvilinear

coordinates and a set of body orthogonal curvilinear coordinates ((,/3, fi) is given.

This transformation assists in the coupling of the viscous solution with the inviscid

solution.

B.1 Shock Surface

To derive the transformation operators on the shock surface, define a position

vector Ps measured from the origin of the cylindrical system to a point on the shock

surface. This vector may be expressed as

P s = xex q- rer

where

r= f(x,¢)
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The derivative of this vector is

0y
dP, = (ez + _xer )

and since P, is also a function of (_, _)

where

OP_ OP,

lOf )dx + e¢ + y_-_e_ fd¢ (B.1)

= e_h¢ d_ + ezhz dfl (B.2)

_P. OP,

hee¢ = -_ hze z = oq---_ (B.3)

Taking the dot product of Eqs. (B.1) and (B.2) with e,, equating, and noting that x

is a function of (_, _) yields

Ox Ox

0"--'_= e_. e_h_ 0--'_ = e_. e_h_ (B.4)

Taking the dot product of Eqs. (B.1) and (B.2) with e¢ and equating gives

/9¢ e_ .e¢ vq¢ e_ .e¢

The transformation operators relating derivatives with respect to (_, 3) to derivatives

with respect to (x, ¢) at the shock (n = 0) may now be written, using Eq. (2.1.7) and

Eqs. (B.4) and (B.5) as

1 0 = cosr--0 _ sinrsinS¢ 0 (B.6)
h_ O( Oz f 0¢

1 0 cosS, 0

hz0fl f 0¢ (B.7)

The transformation operators relating derivatives with respect to (_, fl) to derivatives

with respect to (y, z) at the shock are derived in a similar fashion by noting that

Ps = xez + ye v + Zez
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where

The transformation operators are given by

/°h¢O_ - sinF cosa +sina (B.S)

1 0 -_sina_u +cosa_z (B.9)
h a 0_ y

Derivatives of the scale factors h_ and h a with respect to the curvilinear coordi-

nates may be derived from the fact that

02p 02p

0 0Z 0Z0 

Substitute Eq. (B.3) into the above equality to obtain

c3ho _ Oeo Oh_ _ Oe_
(B.10)

The dot product of Eq. (B.10) with e¢ and e_ yields

These relations may be simplified using Eq. (2.1.8) to obtain

1 Oh_ sinF0a 1 Oh_ sinF0a

h_h z O_ he O_ h_hz O_ h a 0/3
(B.12)

B.2 Shock Layer

The transformation between the curvilinear coordinates (_,/5, n) and the Cartesian

coordinates (x, y, z) in the shock layer is given by

P = P, + nen
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where P is a position vector from the origin of the Cartesian system to an3' point in

the shock layer. Using Eq. (2.1.8), this becomes

x = x,+nsinP

y = y°-ncosFcosa (B.13)

z = z,- ncosFsina

where all variables on the right hand side of the equations, with the exception of n,

are functions of _ and/3. Subscripts are used to denote the shock coordinates.

Partial derivatives in the two coordinate systems are related by

= _ _+ _ _+ _
0

o/3
0

On

-_ _ + _ _ + -_ -Y;z

(o )o(o )o(oz)o_ + _ N + _ -Yiz

The metrics in the above equations may be found by taking the partial derivative of

Eq. (B.13) with respect to the curvilinear coordinates and using Eqs. (B.6)-(B.9) for

the derivatives of the shock coordinates. The metrics are given by

OX

0--_ = h_AcosF

Ox
-_ htflp cosI-'

o/3
Ox

= sin['
On

(B.14)

and

Oy

o_
h_ (AsinF cosa - D sina)
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Oy

0-'3 = hz(-Bsincr + :DsinFcosa)

Oy _ cosF cosa
On

(B.15)

and

OZ

= h_(AsinFsina + Dcosa)

,gz

0_ = hz(B cosa + Z_sinr sina)
Oz

On - -cosFsina

(B.16)

where .A, B, and 2:) are geometric factors given by

.,4 = 1 - nn_

13 = 1-nx_s

1 OF

v = . h--;o-_= -n
cosF Oa

he O_

and t¢_ and xz represent the curvatures of the shock surface in the _-n and/3-n planes,

respectively. The curvatures may also be defined as

1 OF cosF/:ga

x_ = h_ O_ tots - hz 03 (B.17)

The inverse transformation is represented by

0 (0 )0(0 )0(0n) = _ _+ _x _+ _

o (o_)o (O_)_ (On)OOz = _ -_ + -8;z + Tz o---£
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where the inverse metrics are given by

Oy 3"h_

O_ 1

Oz Jh_

COS_

(B sinF cosa + 7) sina)

(B sinF sina - 79 cosa)

(B.18)

and

08
Ox

o8
cgy

o8
Oz

-1
7) cosF

3'hz

-1
(.,4 sina + 7) sinF cosa)

,.7"hZ

1
(.,4 coscr - :D sinF sine)

3"hz

(B.19)

and

On 1

Ox ,.7"h_h_

On -1

Oy flh_hz

On -1

Oz ,.7"h_h_

sinF

cosFcosa (B.20)

cosF sina

where fl is a geometric factor related to the Jacobian of (x,y,z) with respect to

(_, 8, n) and is given by

,7" = AB - 7:)2

For the outer inviscid layer where the curvilinear coordinate system is assumed to be

orthogonal, the geometric factors reduce to

.4 = 1-n_



87

B = 1 - n_z

D = 0

J = A8

B.3 Body Surface

The transformation between the shock curvilinear coordinates (_,/_) and the body

curvilinear coordinates (_,/_) is found by defining a position vector to a point on the

body surface as

Pb = P, + nbe,, = xbex + ybe_ + zbe,

where all variables are functions of ({,/_). The Cartesian coordinates of the body are

found from Eq. (B.13) with n = nb(_,/3). The derivative of this vector is

I' Oxb Oybe. Ozb ) I' Oxb OYbe_ OZbez_ d/_dPb=_--_-ex+-_-_,+'_e, d{+_--_-ex+--_- +--_ ]

Simplifying using Eqs. (B.14)-(B.16) and Eq. (2.1.8) yields

dPb= Abe_+g)beo+_--_-_" ]h_d{+ g_be_+Bbea+ hzd_ (B.21)

Since Pb is also a function of the surface coordinates (_,/}), use Eq. (B.2) to obtain

dPb = e_h_ d_ + esh$ d/_ (B.22)

Taking the dot product of Eqs. (B.21) and (B.22) with e_ and equating gives

Abh_ d{ + g)bhz d_ = e_ . e_h_ d_ + ea • e_h a d_
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Taking the dot product of Eqs. (B.21) and (B.22) with e z and equating gives a similar

result:

T>bh_ d_ + Bbhz d_3 = e_. ezh_d_ + e_ . ezh_ d_

Solve for d_ and dfl to find

flsh, d_ = (Bbe_. e,- Vbe(.et3 ) h(d_+ (Bbe z.e, - Vse z .ez) h3d z

Jbh_dfl = (.At, e_. e,- Vbe_. e,) h(d_ + (.Abe3.e_ -- Vbe3 . e,) h3d_

Noting that _ and fi are functions of (_, fi) gives the transformation operators relating

derivatives with respect to the shock coordinates (_,/3) to derivatives with respect to

the body coordinates (_, fl) as

h_ 0_ • - . (8.23)

and

Js 0 = (Bbe_.e_--Dbe._.e._) -_0"_10 { _ hzl 0/30 (B.24)hz OZ

These transformation operators allow equations in the body coordinate system to be

transformed to the shock coordinate system.
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C Shock Properties

The properties at the shock surface are determined by applying the normal shock

relations with the upstream velocity equal to the normal component of the freestream

velocity. In the curvilinear coordinate system ((, t3, n), the freestream velocity com-

ponents are

I !

uoo = V_e= •e(
I

vooez " enV_ -- W_

Using Eq. (2.1.7), these velocity components become

u_' = V_ cos F v¢¢' = V_' sin I" Woo' = 0

The tangential velocity u' is conserved across the shock surface so that

! ! I
u, = uoo = V" cosF

The governing equations (continuity, momentum, and energy) for the equilibrium or

frozen flow across a normal shock are now applied using the normal velocity compo-

nent v'. They are

I I I I

poov_ -- p_v a

r t t2 t t t2

Po_ + Poovoo = p_ + p_v,

,t) t2o_ /2h'+-- = h'+ v'
2 2

Transforming to nondimensional variables (see Appendix A) yields

u, = cosF (C.1)
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p,v, = sinF (C.2)

p, + p_v_ = poo + sin2r (C.3)

2 sin2F
h, + V_ = hoo +_ (C.4)

2 2

For closure of this set of equations, an equation of state is needed. For both equilib-

rium and perfect gas flows, this is in the form of

ps= ps(p,,h.)

C.1 Perfect Gas

For a perfect gas, the equation of state involving pressure, density, and enthalpy

is given by

h ! ---

At the shock (in nondimensional form),

_, p'

_/--Ip'

h,- 3' P, (C.5)
7- ip_

Now solve Eqs. (C.2)-(C.5) to obtain the shock properties for a perfect gas. The3'

are

with hs defined above.

PS m
2 sin2F "r - 1 (C.6)
7 + 1 3'(7 + 1)M_

(7 + 1)M_ sin2p

P" = (3' - 1)M_ sin2r + 2
(c.7)

sinF
v_ - (C.s)

P,
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C.2 Equilibrium

For a flow in thermodynamic and chemical equilibrium, the equation of state is

given by

p' = p'(p', h') (C.9)

This relation is typically evaluated through the use of tables or curve-fits of data.

Unlike the shock properties for a perfect gas, shock properties for an equilibrium

flow cannot be determined explicitly. An iterative numerical solution is required.

Substitute Eq. (C.2) into nqs. (C.3) and (C.4) to obtain

p_ = pc¢+sin2r(1 -1) (C.IO)

he = h¢¢+_ 1- (C.11)

The iterative procedure is as follows:

1. Assume a value for p,. A typical value is 10.

2. Calculate p, and ha from Eqs. (C.10) and (C.11).

3. Calculate a new value for p_ from the equation of state, Eq. (C.9).

4. Repeat steps 2 and 3 until the difference between the new and old values for ps

is within a prescribed tolerance.

5. Calculate the normal velocity v_ from Eq. (C.2).
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D Inviscid Stagnation Region

Because the governing inviscid flowfield equations are indeterminate on the stagna-

tion line (origin of wind-oriented coordinate system), a limiting solution is developed

in the surrounding region. This solution then provides the initial location of a shock

line and the shock standoff distance on the stagnation line. A similar approach for

surface streamlines in the stagnation region is found in Ref. [8].

D.1 Shock Line Geometry

An analytic solution describing the curvilinear coordinate geometry in the stag-

nation region may be found by neglecting x 2 and xr in the shock surface equations,

Eqs. (2.3.2) and (2.3.3). For convenience, use Cartesian coordinates and describe the

shock surface by an elliptic paraboloid as

By 2 + z 2 = 2cx (D.1)

where

RZ

c = Rz B =
R_

and the shock radius of curvature at the origin is R_ in the x - y plane and R_. in the

x - z plane. Now define

F(x,y,z) = By 2 + z 2 - 2cx = 0



93

Using Eq. (2.1.3), the unit vector normal to the shock surface can be calculated:

cex -- Byev - Zez

e, = (c 2 + B2y 2 + z2)1/2 (D.2)

The shock angles F and a may be determined by comparing Eqs. (D.2) and (2.1.8).

They are given by

C Z

tanF = (B2y _ + z2)1/2 tan_r = B-----y (D.3)

The equation for a shock line is found by applying the transformation operator,

Eq. (B.8), to yield

Oz/O z
-- tana -- --

Oy/O_ By

Integrate to find

z B = Cy (D.4)

where the parameter C is a function of _ and distinguishes one shock line from

another. The behavior of the shock lines near the origin is illustrated by examining

the slope and location of the shock lines:

dz Cz 1-B z
-- = tana - - = tan¢ = Cz 1-B
dy B y

For B = 1 (axisymmetric), the shock lines emanate radially from the stagnation line.

However, if C is finite and non-zero and B is not equal to one, the shock lines emanate

from ¢ = 90 deg for B > 1 and from ¢ = 0 deg and ¢ = 180 deg for B < 1. The

shock lines for B > 1 are shown in Fig. D.1. For B < 1, the same pattern is simply

rotated 90 deg.
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Figure D.1. Stagnationregionshocklines (B > 1): front view.

The scale factor at the shock may be found by substituting the equation defining

a shock line, Eq. (D.4), into the transformation operator, Eq. (B.9), to yield

C' yz (D.5)
ha = C (B2y 2 + z2) 1/2

where

dC
C'

dZ

An explicit expression for the stream function at the shock may be obtained from

Eq. (2.2.3) and (C.2) as

_, = sinFhah _ d_

The transformation operators, Eqs. (B.8) and (B.9), are used to calculate the differ-
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ential alonga shockline as

d_ = (B2y2 + z2)1/2 dz (D.6)
h_ sinF z

Substitute Eqs. (D.5) and (D.6) into the equation for the stream function _, and

integrate to yield

C _ yz
_, = (D.7)

CB+I

To determine the parameter C(/3), an arbitrary value of /3 is assigned to each

shock line at a point in the stagnation region. The convention used here is to relate

/3 to the circumferential angle ¢. Thus, the initial location of a shock line is found by

defining

_ = 2cx, /3 = ¢,

where e is a constant with a typical value between 0.01 and 0.10 and shock lines may

be arbitrarily distributed around the shock surface at x,. From Eq. (D.1)

ecosB esinB

y,= (Bcos2/3+sin2/3)x/2 z, = (Bcos2/3 + sin2fl)l/2 (D.S)

Substitute into Eq. (D.4) to find

B-1

/C - cos/3 B cos2/3 + sin2/3

and

C - sin_cos/3 \ B_+si-_]

The shock curvatures _ and x_ appear in the approximate pressure equation and

in the geometric factors that define the coordinate transformation across the layer.
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They are calculatedfrom the derivativesof the shockanglesF and a as

1 0r cos r Oa
(D.9)

Using Eq. (D.3), the shock angle derivatives become

OF B2ysin3F __0F= zsin3F (D.10)
Oy e2 cosF Oz c2 cosF

and

c9_ Bz 00 By

_y = B2y 2 + z 2 Oz - B2y 2 + z 2

Substitute into the transformation operators, Eqs. (B.8) and (B.9), to obtain

sin3F(B3y2+z 2)_ - c B2y 2 + -_ _ -
B sinr /( By 2+_

c \ B2y 2 + z 2 J

D.2 Shock Standoff Distance

(D.11)

(D.12)

The shock standoff distance on the stagnation line is calculated from Eq. (2.2.15)

as

n_o _ 1 dl_uhz _ (D.13)

uh_

where the velocity term _ is indeterminate along the stagnation line and is found

from the flowfield equations in the stagnation region. This analysis follows the ap-

proach of Ref. [9]. However, the complete energy equation and a more accurate

pressure relation are used here.

The tangential velocity u is obtained from the energy equation Eq. (2.2.12):

(D.14)



97

Beforeu can be calculated, analytic expressions are needed for the flowfield properties.

Since enthalpy is a function of pressure and entropy, expand about the position where

the streamline crosses the shock to give

h(_,fl,_) _ h8(/3,_)+ (O_ph) [p(_,_3, g/)-ps(13, k_)]
s

(D.15)

where

from the first and second laws of thermodynamics. Since density is a function of

pressure and enthalpy, expand about the normal shock position to obtain

p,(_,_) _ _pso+ L Op Jso[p,O,_)- p,o]+ 8o -

The pressure and normal velocity component across the layer appear in the enthalpy

relation and energy equation, respectively, and are given by Eqs. (2.2.10) and (2.2.11)

as

p(_C, fl, kO) = ps(_,/3) + p1(_,/3) [r/- 1] + p2(_¢,13) [7/2 - 1] (D.17)

v(_,/3, _) = v_(_,13) + v_(_,/3) [r/- 1] (D.18)

where

Pl --

P2 =

V 1

sin2Fcos2F (B3y2+z 2)B + 1 B2y 2 + -_

sin2F sin2r + B
2(B + 1)p, B2y2+-_ \_yy2_-72)J

sinI" sin2 F + B
(B+ 1)p8 \Bb _ +7 B---':_ 7 7_)J
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and

r/= @o

The shock wave geometry in the stagnation region has been used to simplify these

pressure and velocity expressions.

Now define the variables at the shock in terms of the shock angle F such that

cos F = G

sin 2 F - 1 - G 2 (D.19)

ps = ps 0- ApG 2 (D.20)

hs =- hso - AhG 2 (D.21)

where in the stagnation region

G 2<<1 ApG 2<<1 AhG 2<<1

Substitute into Eq. (D.16) to yield

1 1
-- _ _ - A(1/p)G 2 (D.22)
ps P,o

where

[0(1/p)]
A(1/p) = L ap j

so so

The quantities Ap, Ah, and A(1/p) are related to the shock gradients of the respective

properties and may be calculated from the shock properties for either a perfect gas

or an equilibrium flow. Their derivation will be detailed in a subsequent section.
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Next substitute Eqs. (D.15)-(D.23) into the energy equation, Eq. (D.14), and

neglect higher order terms to obtain for the velocity

Pso

+2, p+! + 1)}
P"o

#ao
(D.24)

Recall that (_,_) refers to the shock location along a line normal to the shock and

(/3,_) refers to the position where a streamline crosses the shock. Evaluate G2((, 3)

from the shock line geometry as

lim h_G2(_'/3) (B + 1) 2= (D.'_5)
y,z-_0 _ c_

Determine G2(/3, _) from the approximation that the shock angle F varies linearly

with the stream function • along shock lines. This approximation is employed

throughout the flowfield and implies

sinr(Z, _,) _ 1 + [sinr(_,/_) - 117

Substituting Eq. (D.19) gives

h_C'(_, _) h}C'(_,Z) (B + 1)'
lim _ lim rt = 7? (D.26)

_,z-0 _ _,z-0 _] c2

The ratio of shock coordinates that appears in the velocity expression is evaluated by

substituting Eq. (D.4) for the coordinate y and taking the limit as the coordinate z
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approaches zero to yield

f

D- !i-m° (B3Y2 + Z2) I B B < I
k,B2y 2 T-fi = 1 B > I

(

(D.27)

The limit of the shock curvature t;_ at the origin is found in a similar manner as

xa°=! i-r_ BsinFc \ _-_-y2 Sr z2/ BY2 + z2 ) = { B-lc B>B<11
(D.2S)

Substitute Eqs. (D.24)-(D.28) into Eq. (D.13) and simplify to yield for the stagnation

shock standoff distance

= - -" 'oB+l".o p(u0$_.,)l.
(D.29)

where

o [, ] 1 ,/u0 = B+l(r/-1) 2---(r/-1) +2Ap+--+A(1/p)(rl2+
Pso P_o

ul = 2P.oAh- 2Ap- A(1/p)(r/2- 1)

Note that the density is calculated from the equation of state as

p = p(p,So)

Expressions for the shock gradients Ap, Ah, and A(1/p) are given below.

D.3 Shock Gradients

Substitute for the shock values of pressure and enthalpy in the shock relations

Eqs. (C.3) and (C.4) to obtain

ps o - ApG _ = p_ + (1- G_)(1-1)
P,
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1(1 - a2)(1 - 1h,0 - Aha_ = h=¢+ _ p-l)

Now substitute for the density with Eq. (D.23) and neglect higher order terms to

obtain

_ foil/./1_. rolli.i1 .,,.,,,,.+.,z
_P--L ap J,o -L Oh J,o p.o

___.s_ro¢_,i. ro¢i,,,,_,,h_._0 _)Ah- P,ol, I. Op J,o"P-[_],o _"-2 -

Solve for hp and Ah to yield

1

Ap = 7

1

Ah = 7 ½(,__/,+[o(,,,)] __±[o(1,_)] (, _)] (D.31)p,oSt I. ap l,oJ p,oL @ Joo

where

[o(11p)] +--
I=1+ [ Op J,o p,0 ,o

The density derivatives can be calculated explicitly for a perfect gas from

1 ,_-lh

p "_ p

to yield

0(lip) 1 O(l/p) 1
ap pp oh -

For an equilibrium gas, these derivatives must be calculated numerically.
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E Numerical Integration Scheme

The scheme used to numerically integrate the shock line and surface streamline

variables is a variable-step size, second-order, predictor-corrector, ordinary differential

equation solver. To illustrate the scheme for a single equation, let y be the dependent

variable, x be the independent variable, f be the derivative of y with respect to x,

and h be the step size in x. Then the predictor step gives

y_ , h( _ f,__)= Yi-1 + 3f_-x

whereas the corrector step yields

where the index i represents the current x location. The local truncation error e is

estimated by the difference in the predicted and corrected values as

e = lyp- y.I

The step size h is varied such that the error e remains below a prescribed tolerance.

Initial conditions for the predictor-corrector scheme are calculated from a second-

order Runge-Kutta scheme given by

Yi = Yi-_ + hk2

where

kl = f(xi-1, yi-1) k2= f(x__l +h,y__l +hkl)
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F Body Geometry

In Sec. 3.2, the surface streamline equations require body geometry angles that

are referenced to the wind axes. However, reentry vehicle geometries are typically

described with respect to the body axis as in Ref. [26]. The transformation from a

body-oriented to a wind-oriented coordinate system and its application are detailed

here for a 3-D body.

The 3-D body surface may be described in the body-oriented system by

and in the wind axes by

r- f(x,_)

The two sets of axes are shown in Fig. 2.5.

variables apply to the body surface.

The body angles are defined by Eq. (2.1.2) such that in the body axes

No subscripts are used here since all

tan6, - 1 Of tanF = Of
f Oq_ _ cosS, a = _ - 5, (F.2)

For later use, derivatives of these angles with respect to the body axis coordinates

and in the wind axes

o:
tan[' = _-_ cos$_ 5 = ¢ - (5_ (F.1)
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are needed.They aregiven by

7 o-7= --7-LTaa_- _,:o_:j

and

1 0_ 1 1 0_

f/)¢ f f a¢

and

[c92 f -_ 0f sin$_ )0_r0_= co:r _ coso0-

1 0[' cos2; rL,,": o,,_
fob [fO_O¢ c°s$* --b-_ singe (f "0-'¢"/]

The unit vector normal to the body surface is calculated from Eq. (2.1.3).

body axes, the vector becomes

(F.3)

(F.4)

(F.5)

(F.6)

(F.7)

(F.S)

In the

e_ = - sinf'ee + cost' cos6-e_ + cost' since, (F.9)

and similarly in the wind axes

e_ = - sinFex + cosF cosa% + cosF sinaez (F.10)

Referring to Fig. 2.5, the two systems are related in Cartesian coordinates by

ee = cosaex +sina%

eo = - sinae_ + cosa% (F.11)

e_ = ez
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and

Yc = YCo+ (x - nbo) COSa + ysina

f� = 9o- (Z-nbo) Sina+ycosa

Y_, -- Z

(F.12)

where (xo,Y0) is the stagnation point on the body and nbo is the shock standoff

distance on the stagnation line. The stagnation point is assumed to be the Newtonian

stagnation point located by

V_ . e_ = - 1

Noting that V_ = e= and substituting Eq. (F.9) and Eq. (F.11) gives

sinf'o = cosa

The stagnation point can then be calculated from the definition of r'.

The body radius f is assumed to be a known function of the body axis coordinates

(_,¢). However, the body location is given by its wind axis coordinates (x,¢) obtained

from Eq. (B.13) with n = nb. Before calculating f, transform the wind-oriented

coordinates to the corresponding body axis coordinates using Eq. (F.12). Then fl'om

either an analytic expression such as Eq. (2.3.1) or a geometry package such as the

one detailed in Ref. [26], the body radius f may be computed along with its first and

second derivatives with respect to _ and ¢. The body angles and their derivatives

with respect to the body axes are then calculated from Eq. (F.1) and Eqs. (F.3)-(F.S).
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To obtain the surface angles with respect to the wind axes, substitute Eq. (F.11)

into Eq. (F.9) and equate with Eq. (F.10) to yield

sinF = cosa sinf' + sina cos[' cos6"

cosr coscr = - sina sinf" + cosa cost' cosO" (F.13)

cosF sina = cosF sin8

Differentiate to obtain

cos2F da

cosF dF

= (cosc_ cosF - sins sinF cosa) cosF da + (sina sina) dF

= (cosa cosF - sina sinP cos#) dF - (sina sin#) cosF d#

where the differential represents both

0 10

0_ f 0¢

All terms on the right-hand side of these equations are known.

Before transforming these derivatives with respect to the body axes to derivatives

with respect to the wind axes, transformation operators are needed. Following the

procedure of Appendix B, define a position vector from the origin of the shock-oriented

system to a point on the body surface as

P = P0 + _e_ + fe_ = xe_ + fe_

The analysis of Appendix B gives the transformation operators relating derivatives

in the body axis coordinates (_,¢) to derivatives with respect to the shock-oriented
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coordinates (x,¢) as

0
Ox

10

fa¢

-- _ -_'_x+ f-_'xx 7"_

(Zo_:__o ::o::'__o

(F.I_)

(F.15)

where

Oz

f_
1 0_,

I o¢

f o¢

cosa + _fx (sina cos¢)

Of (_ cosa sine cos¢ + cos(_sine)
= sinasin¢ + _xx

1 Of (sinc_ cos¢)
- - sinc_ sine + _-_

1 Of( cosasin¢cos¢ + cosCsin¢)
- cosasinCsin¢ + cos¢cos ¢ + -]_-_,-



108

G Viscous Stagnation Region

The surface streamline and convective-heating equations are indeterminate at the

stagnation point on the body. Therefore, a limiting solution similar to the analyses

of Appendix D and Ref. [8] is found in the stagnation region. This solution gives the

initial location and orientation of the streamlines as well as the stagnation values of

the momentum thickness and heat transfer.

G.1 Streamline Geometry

Before describing the streamline geometry, define the shock and body surfaces

in the stagnation region. Recall from Appendix D that the shock surface may be

represented by an elliptic paraboloid as

By 2 + z 2 = 2cz (G.1)

where (x,y,z) are referenced to the wind axes. The body surface is also given by an

elliptic paraboloid from Eq. (2.3.1):

/392 + 52 = 22 (G.2)

where 22 has been neglected and (2,9,5) refer to the body axes depicted in Fig. 2.5.

Transform the body equation to wind axes using Eq. (F.12) to obtain
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where x_ and xbyb have been neglected. Comparing with Eq. (G.1) implies

1
Bb = B costa cb -

COSC_

The angles 1P and Fb are calculated using Eq. (D.3). However, in the stagnation

region, the shock and body coordinates are small so that higher powers of these

coordinates may be neglected. That is,

y = o(() z =

where e is a small parameter defined in Appendix D. The shock angle F may then be

approximated as

sinF _ 1

Similarly, the body angle Fb reduces to

cost= o(e)

sinrb _ 1 cosrb = o(e)

Because the surface streamlines are integrated with respect to the shock coordi-

nates, the transformation between the shock coordinates (_,B) and the body coordi-

nates (_,fl) is needed in the stagnation region. Substitute for F and Fb in Eqs. (3.2.11)

and (3.2.12) and neglect higher powers of e to obtain

e_. e_ _ - sin(g + o'b - cr)

e_.ez ,_ cos(O+ab--a)
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The transformation operators at the shock, given by Eqs. (B.8) and (B.9), simplify

to

1 0 0 O

cosa_-_u + sina_z z
h_ O_ y
1 0 0 0

-sino'_--_ + coSa_z z
h_ 013 y

Now substitute into Eqs. (3.2.9) and (3.2.10) to obtain for the transformation

Jb 0

h_ O_

+

[cos(O+ ab- a)(Bbcosa + :Db sina)

0

-sin(O + ab- a)(A_ sina + :Db cosa)] _yy

[cos(0 + at, - a)(Bb sina -- :Db cosa)

0
sin(0 + ab -- a)(.A+ cosa - Db sina)]+

and

J_ 0

h_ O_

+

[- sin(0 + ab - a)(Bb cosa + :Db sina)

0

cos(0 + ab - a)(.A_ sina + :Db cosa)] _yy

[- sin(0 + ab- a)(Bbsina- :Db cosa)

0

+ cos( + cos°- vb sin )]

The geometric terms involving ,4, B, and D may be simplified using their definitions

given in Appendix B along with Eqs. (D.9)-(D.12) to obtain

Bb cosa + Db sina

•Ab sina + T_b cosa
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Bb sina -- T_b sina _ sina (1 Bnb°c )

.Abcosa--_bsina _ cosa 1 -

and

Bnb°c )

The transformation between the shock and body coordinates may now be written as

--_ _ Orb) 1 0 _z 0 (G.4)1 0 cos(0+ _y+Sin(0+ab) _zz
h_ O_

1 0 1 0 1 0 (G.5)---- _ -sin(_ + _)_ + cos(_+ o_)
h_ 08 n_ e,g hzOz

where the scale factors are

hu = 1 Bnbo hz = 1 nbo
C C

The inviscid surface velocity is represented by

V= fibe_ Ube_ + Wbez

_ [co_(_+ _)e_ + sin¢_+ _)e_] (G.C)

where the velocity components U and W are functions of the shock coordinates y and

z. On the stagnation line (y = 0, z = 0), the velocity components are equal to zero

and from symmetry across z = 0,

OU
--=0 W=0
Oz

Therefore, in the stagnation region,

u _ \-b-_u7ou w _ oz
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The velocity gradients may be calculated for both perfect gas and equilibrium flows

from Eq. (D.24) as

_ ,{ , [ ]o cmo B+i(7 i) 2 too(7 i)

+2_p+--'+_(ilp)(¢+i)}'/_
Pso

--_z ° cP,o B+l(7/ 1) 2 P.o (,7 1)

+2av+i +_(1/,) (¢ +1)}'/_
Pso

(G.7)

(G.S)

where, at the body surface, r/= 0.

Now the equation of a streamline in terms of the corresponding shock coordinates

can be obtained from Eq. (G.4) and Eq. (G.6) as

az/a( _ h__tan(_+ _b) h_z
a_/a¢ hz - _hzy

where

Note that B should not be confused with the body geometry parameter B. This

equation may be integrated to obtain

z _ = C'y (G.9)

where the parameter C' is a function of the streamline coordinate _ and y and z

represent the shock coordinates. Remember that the surface streamline coordinates

yb and zb are located along the shock normal coordinate n.
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The scale factor at the body is found by substituting Eq. (G.9) into Eq. (G.5), so

that

C' yz
(G.10)

where

The parameter C(fl) is analogous to the shock line parameter C(¢3). It is determined

by assigning a value of/_ to each surface streamline in the stagnation region. For

convenience, define/_ = _ for the streamlines corresponding to the e-curve (x_,y¢,z_)

defined in Appendix D. Substituting the e-curve coordinates given by Eq. (D.8) into

Eq. (G.9) yields the desired result for C' as

C" 1

C sin/3 cos j5

The orientation of the surface streamlines is calculated from Eq. (G.6) as

tan(0 + eb) = -=--z (G. 11)
By

The body angle ab may be found using Eqs. (D.3) and (G.3).

Zb

taneb- Bbyb

Relate the surface coordinates to the shock coordinates using Eq. (B.13) to obtain

Yb = y-- nbcosFcose _ hvy

Zb = Z -- nb cosFsine _ hzz
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Substituting into Eq. (G.11) yields

tan0 = (G.12)

BBb_y 2 + z 2

This expression can be used to determine the initial orientation of the streamlines by

substituting the e-curve coordinates (y,,z,) for the shock coordinates (y,z).

G.2 Convective-Heating Equations

In addition to the streamline geometry, the laminar convective-heating equations

may also be simplified in the stagnation region. From Eqs. (3.3.1) and (3.3.2), the

laminar expressions are given by

q,_=O.22(Reo) -a _ _ p, fi,(h,,_-h_,)(Pr_) -°'6 (G.13)

and

Since the thermodynamic and transport properties are "even" functions of y and z

(O/Oy = O, O/Oz = 0) at the stagnation point, they may be approximated by their

stagnation values as

pc _ P_o P* _ P°

h,,_ _ h, 0 h_ ,-_ h,_0

Pr_ _, Pr_ o
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where higher order terms have been neglected and Eq. (H.7) has been used to simplify

the adiabatic wall enthalpy, h,_. Substituting into Eq. (H.6) yields the reference

enthalpy in the stagnation region.

h" 1 (h_0 + h,_o )

The edge velocity is calculated from Eqs. (G.6)-(G.8) as

_o= \--a-T/°

where T/ = r/_ is used to obtain W_. However, the ratio of the velocity gradients,

/3, is still calculated using r/ = 0 to keep the analysis simple. This additional ap-

proximation causes no great difficulty. The scale factor h# is given by Eq. (G.10),

and the differential arc length along a streamline is found in the same manner as the

differential shock line arc length given by Eq. (D.6). The streamline arc length is

h_ = hz(B_y2+ z2)'" 6±
z

Substitute the above expressions into Eq. (G.14) and integrate by making use of

Eq. (G.9) to obtain for the momentum thickness:

112

p;#;hz (G.15)

o oo_o ( z)o(
The surface heating follows from Eq. (G.13) as

qw _ q=o = 0.469 k h, +1 (p;/t; -_ \ Oz ) oJ

a12

( heo - h_o ) ( Prwo ) -°'6

(G.16)
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H Convective-Heating Equations

The convective-heating equations developed by Zoby [24] for axisymmetric laminar

and turbulent boundary layers are derived from the integral form of the momentum

equation [28]. First, define a coordinate system along the axisymmetric body to be

(s,n) where s represents the distance along the body surface and n is the distance

normal to the body. The corresponding velocity components are u and v and the

body radius is given by r. In this system, the momentum equation may be written

as

_O Odr Odue ( uedpe_ Cf
_ss+r_s+ - _,2+H+-- =uo _ ped_,] Y

(H.1)

where

2% 6"

CI =- #eu 2e H -_ 0 (H.2)

and the displacement and momentum thicknesses are given by

6" = 1 dn (H.3)
Pe

O= ---- 1- dn
Pe Ue

and

(H.4)

Note that 6, 6", and 0 are the standard symbols for boundary layer flows and should

not be confused with the geometry variables 6_, 6_, and 0.

For H = -1, Eq. (H.5) simplifies to

d

(p_uerO) -_peuer (H.5)ds
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In addition to the simplicity of this relation, Zoby assumes H = -1 based on the

insensitivity of the turbulent heat transfer to the form factor H for values of ap-

proximately 1.0 or less [50, 51]. Lees [52] also uses this value of H in developing a

hypersonic laminar method.

Compressibility effects are accounted for by Eckert's reference enthalpy relation [34]

which is

h* 1 (he + h,_) + 0.22 (h_ - he)

where the adiabatic wall enthalpy, h_, is defined as

1 2

h,,,= h_+_Ru e

(H.6)

(H.7)

The recovery factor R is equal to R _ Pr 1/2 for laminar flows and R _ Pr 1/3 for

turbulent flows. The reference enthalpy concept allows the formulas and variables of

incompressible flow to be used for compressible flow provided all physical properties

are evaluated at the reference enthalpy or temperature. For instance, the skin friction

coefficient defined in Eq. (H.2) may be written as

2v_
Cfine = • 2

P ue

Thus, the relationship between the compressible and incompressible skin friction co-

efficients is

_

C! = --Cl_,c (H.S)
pe

In a similar fashion, the definition of the momentum thickness gives

Pe Ue pe
(H.9)
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whereas the definition of the Reynolds number based on momentum thickness yields

p_ue$ it"
Re0 = = _R%.0 (H.10)

For both laminar and turbulent flows, the incompressible skin friction coefficient

is assumed to be of the form

2

where cx and m are constants. Substitute Eqs. (H.8)-(H.10) into Eq. (H.11) to obtain

-- = c,-- (Reo) -'_ (H.12)
2 pe

By substituting this relation into Eq. (H.5), the integralform of the momentum

equation becomes

__ P*( _d (p_uerO) = p_u,rc_-- t_* (Reo)-m (H.13)
ds pe \ #_ 7

This equation may be used to determine the momentum thickness for both laminar

and turbulent flows according to the values ca and m.

H.1 Laminar Boundary Layer

For the laminar boundary layer over a flat plate, the Blasius [28] solution gives

C Y'"c - 0.22 ( Reoi,,c ) -1
2

which implies

Cl = 0.22 m = 1
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is a good approximation. Substitute these values into Eq. (H.I3) and integrate to

obtain for the momentum thickness:

0.664 (fo" P'l_'u_r2ds) 1/2
/gL = (H.14)

_eUe r

The surface heat transfer is then calculated from a modified Reynolds analogy as

C_ (pr,o)_o.6St= -5"

where St is the Stanton number and is defined as

St--
q!11

Simplify the above relation using Eq. (H.12) and solve for the laminar surface heating

rate to obtain

(,•)-_e _ P'u'(h==-h_)(Pr_)-°'6
(H.15)

H.2 Turbulent Boundary Layer

For a turbulent boundary layer, the parameters cl and m are not constant. They

are found by assuming a velocity profile of the form

where the exponent N is a variable and is computed from a curve fit of axisymmetric

nozzle wall data [35] as

N = 12.67 - 6.51og (ReoT) + 1.21 [log (Re_T)] 2
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Equation (H.13) may be integratedassumingcl and m are locally constant to give

for the turbulent momentum thickness:

C $

ST= ( 2f_ P*#*'_u_r¢3ds) c' (H.16)
peUer

where from Ref. [24], the parameters are given by

0 = xcsj N+I +2 c4=

c2 = (1 +rn)cl c5 = 2.2433 + 0.93N

Axisymmetric Analog

= -_ P_u_(h,,,-h,,)(Pr_) -°'4

H.3

Solving for the surface heat transfer gives

CI (pr_)-o.4St = --_

_OW as

(H.17)

The laminar flow equations given by Eqs. (H.14) and (H.15) and the turbulent

flow equations given by Eqs. (H.16) and (H.17) are derived for axisymmetric flow.

These relations may be applied to 3-D flows by using the axisymmetric analog [13]

approximation. The axisymmetric analog assumptions allow the axisymmetric bound-

ary layer relations given above to be used in a surface streamline coordinate system

The surface heat transfer then follows from a modified Reynolds analogy for turbulent
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(_,/_,fi) provided the following substitutions are made:

r = h_ ds = h_d_

where h$ is the scale factor describing the divergence of the surface streamlines and

he d_ is the differential distance along the streamline.




