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ABSTRACT

The Space Storable Rocket Technology Program (SSRT) was
conducted for NASA-LeRC by TRW to establish a technology base
for a new class of high performance and long-life
bipropellant engines using space storable propellants. The
results of the initial phase of this systematic multi-

year program are described. Task 1 evaluated several
characteristics for a number of fuels to determine the best
space storable fuel for use with 1LO,. The results of this
task indicated that LO,-N,H,; is the best propellant
combination and provides the maximum mission/system
capability-maximum payload into GEO of satellites. Task 2,
Preliminary Design, developed two models-performance and
thermal. The performance model indicated the performance
goal of specific impulse > 340 seconds (€ = 204) could be
achieved. The thermal model was developed and anchored to
hot fire test data. Task 3, Exploratory Test, consisted of
design, fabrication and testing of a 200 1lbf thrust test
engine operating at a chamber pressure of 200 psia using
LO,-N,Hs. A total of 76 hot fire tests were conducted
demonstrating performance > 340 seconds (€ = 204) which is a
25 second specific impulse improvement over the existing
highest performance flight apogee type engines.
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1.0 SUMMARY

The Space Storable Rocket Technology (SSRT) Basic Program was
initiated in mid February 1991 and completed on schedule in
mid October 1991. The program was very successful in
achieving its overall objectives.

The Applications Evaluation task (Task 1) evaluated several
characteristics for a number of fuels to determine the best
space storable fuel for use with LO, oxidizer. These
evaluation factors included mission usage, propulsion system
configuration and space storable fuel properties to achieve
payload maximization. The evaluation task also established
preliminary system and engine requirements. The maximum
mission potential usage for the Space Storable engine is
placement into GEO of NASA, military and commercial
communication, surveillance, tracking, earth observation and
meteorological satellites. The system analyses and fuels
evaluation indicated that LO -N2H is the best propellant
combination and provides the maximum mission/system
capability-maximum payload into GEO. The nominal engine
design based on preliminary system/engine requirements is
presented as follows:

Propellants LOy,-NoyHy
Thrust (F) 200 1bf
Chamber Pressure (P.) 200 psia
Specific Impulse (Ispm) 340 lbf-sec/lbm

The Preliminary Design task (Task 2) developed a performance
model which indicated the performance goal could be achieved.
A thermal model was developed and anchored to the test data
obtained in the Exploratory Test task so it would be a useful
tool. The thermal model indicated that additional injector
dome cooling is required to operate for long duration at high
engine performance. Therefore, overall engine dome concepts
have been identified which will be evaluated in Option 1.

The Exploratory Test task (Task 3) consisted of design,
manufacturing, testing and analysis of the test data. Two
series of tests were conducted evaluating six configurations
indicating high performance could be attained. A total of 76
tests was conducted. Performance of 95% C* which projects to
> 340 lbf-sec/lbm vacuum specific impulse (€ = 204) was
achieved with thermal characteristics indicating that
operation with a columbium thrust chamber is feasible. The
use of a rhenium thrust chamber is another alternative which
would allow performance approaching 350 lbf-sec/lbm.



2.0 INTRODUCTION

The increasingly demanding spacecraft missions and their
associated requirements for increased payloads over the last
30 years have been successfully achieved by the steadily
improving capabilities of spacecraft propulsion systems.
These systems have used earth storable propellants,
principally either hydrazine as a monopropellant or nitrogen
tetroxide/amine fuels as bipropellant. The technology level
of these propellants and their systems have been repeatedly
improved as mission demands have grown.

Space storable propellant usage offers the advantage of using
higher performance propellants to achieve increased payload
weight into orbit. The results of TRW studies are in concert
with NASA-LeRC's conclusion that liquid oxygen (LO,) is the
best space storable oxidizer. The space storable fuels are
defined as those fuels that can be passively stored, within
mission constraints, without active cooling or refrlgeratlon.
Figure 2-1 shows the overall propulsion scheme of propellant
development (Isp levels with respect to time) and where space
storable fuels fit into this overall scheme which indicates
the need for space storable rocket development. Space
storable propellants provide the link between upgraded earth
storable and an integrated H/O system. Among the categories
evaluated were alcochols, amines, cryogens and hydrocarbons.
In order to adequately evaluate the propellants, selection
criteria were established and system analyses conducted based
on representative missions and engine performance. The
results of this Task 1 study provided the following:

® Evaluation of mission usage

® Propulsion systems and fuels evaluation to achieve
payload maximization

e Evaluation and selection of fuels

® Preliminary system and engine requirements
The space storable rocket technology (SSRT) program consists
of four phases (Basic program + three options). The first
phase (Basic Program) consisted of three tasks:

® Applications Evaluation as discussed above

e Preliminary Design

- Performance analyses

~ Thermal analyses
- Overall engine concepts
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® Exploratory Tests

- Initial tests with LO,
- Modify hardware based on initial test results
- Retest with modified hardware

This report will discuss the results of the three tasks of
the Basic program phase.



3.0 APPLICATIONS EVALUATION

Space storable propellants offer the advantage of providing

higher
orbit.
areas:

performance to achieve greater payload weight ipto
The applications evaluation studied the following

Mission evaluation usage of advanced propulsion

technology

Propulsion systems and fuels evaluation to achieve
payload maximization

Evaluation and selection of fuels
Preliminary system and engine requirements

Conclusions

3.1 Missions

Three representative missions were investigated to utilize
advanced propulsion technology. These three types of
missions are defined as follows:

Perigee/apogee integral propulsion systems are used to
place satellites into geosynchronous earth orbit (GEO)
utilizing expendable launch vehicles (i.e., Atlas,
Delta, etc.). These missions include NASA, military
and commercial applications for communlcatlon,
surveillance, tracklng, earth observation and
meteorology. These missions constitute the greatest
quantlty and frequency of mission applications and are
shown in Table 3-1 which average 30-40 yearly not
including classified military missions.

Low earth orbit is another mission application. One
application uses the Orbit Maneuvering Vehicle (OMV)
or another similar vehicle to go from shuttle cargo
bay to Space Station or from Space Station to the
requlred mission. Table 3-2 shows the typical oMV
missions and their requlrements. Figure 3-1 shows the
representatlve mission selected for the system study
since it utilizes the greatest AV requirement.

The planetary application is another representative
mission. The Comet Rendezvous Asteroid Flyby (CRAF)
was selected as the typlcal planetary application.
The mission is shown in Figure 3-2 and the AV
requirements are shown in Table 3-3.
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TABLE 3-1

MISSION PLANNING

LAUNCH VEHICLE | 1992 1993 1994 1995 - 1996 1997
Arianespace Insat 2A Intelsat VIl F4 Astra 1D
Telecon 2 F1 Galaxy 7 Brazilsat B2
Intelsat VI F4 Telecom 2 F2
Inteisat VIl F1 Astra1C
Satcom C3 Brazilsat B1
Topex/Poseidon ESA Infraved
Space OBS
Hispasat 1
Hispasat 2
Galazy 4
Long March Aussat B1 Aussat B2
Shuttle USML-01 SL-D2 IML-02 USML-02 SAL-03
LAGEOS Il SLS-02 SPTN-04 SL-D3 GEOSTAR-03
EURECA-1R TDRS-F ISEM-02 SPACEHAB-06 SPACEHAB-07
ASP DEE CXM-02 SPTN-05 OAET-03
DOD CTM SFU-RETR CXH-10 ATLAS-05
TSS-01 SPACEHAB-02 [CXM-03 USMP-04 SSBUV-A-04
EURECA-1L OQAET-01 CMSE-02 WSF-03 CONE
1MAX-06 CAPL XTE SSF/MB-02 SSF/MB-04
EO01-II/TEMP 2A-03 |FLOATZONE-01 |[EUVE RETR SPACEHAB-05 SSF/MB-03
ATLAS-01 SRAD/TP1TS GEOSTAR-01 GEOSTAR-02 SSF/MB-05
SSBUV-04 WSF-01 SPACEHAB-03 EURECA-2R SLS-03
ACTS 1EH FROZEPIPE CMSE-03 USMP-05
CANEX-02 1SEM-01 HPE ATLAS-04 WSF-04
DXS SPACEHAB-01 |[MICROWAVE-01 |W1SP DCWS
INTELSAT VI-R OREFUS-SPAS [USMP-03 SSBUV-A-03
CVTE-01t GAS BRIDGE OQAET-FLYER AAFE
ASEM SHOOT SRL-02 OAET-02
SL-J CRISTA-SPAS SSFMB-01
GAS BRIDGE ATLAS-03
SSBUV-A-02
WSF-02
SPACEHAB-04
EURECA-2L
CXM-04
MEDIUM CLASS GEOTAIL (D) POLAR (D) RADARSAT (D) GPS il (D) LIFESAT 1 (D) ACE (D)
Atlas (A) WIND (D) NOAA-J (A) LAGEQS il (D) GPS Hi (D) LIFESAT 2 (D) LIFESAT-3 (D)
Delta (D) GPS Il (D) GPS Il (D) NOAA-K(T-11)  |GPS lli (D) NOAA-L (T-11) NOAA-M (T-11)
Titan |1 (T-11) GPS Il (D) GPS 11 (D) GPS Il (D) DMSP 5D2 (T-11) |GPS Il (D) GPS Il (D)
GPS !l (D) GPS Il (D) GPS Il (D) GPS 1ll (D) GPS Il (D)
GPS Il (D) GPS 1 (D) GPS Il (D) GPS Il (D) GPS Il (D)
GPS Il (D) GPS 11 (D) GPS Il (D) GPS il (D) GPS il (D)
DMSP 5D2 (T-11) DMSP 5D2 (T-11) GPS Il (D) GPS Il (D)
DMSP 5D2 (T-11) |GPS lli (D)




TABLE 3-1

MISSION PLANNING CONTINUED

LAUNCHVEHICLE [ -~ 1992 1993 1994 1995 1396 1997
INTERMEDIATE  |GOES-1(A-1) Intelsat Vil MSAT (1C) SOHO (11AS) DSCS5D3(11)  |ATDRS-1(1C)
CLASS F2 (11AS)
Titan 1 MO (T-111) Intelsat VIi Telstar 4 TDRS-G (1C) UHF FO (A-1) GOES-L (A-1)
Alias Il AS F3 (11AS) F2 (11AS)
GOES-J (A-1) UHF-2 (A-1) SAX (A-1) GOES-K(A-1)  |UHF FO (A-1) SSF
GALAXY-1R (A-1)  |Telstar 4 ORION-2 (11A) _ |MARS OBS UHF FO (A-1) DSCS 503 (1)
F1(11AS)
UHF-1 (A-1) ORION-1(11A) |DSCS5D3(11)  |SSF UHF FO (A-1)
DSCS 5D3 (A-11) DSCS5D3(11) |UHF FO (A-1) UHF FO (A-1)
DSCS5D3(11) |UHF FO(A-1) UHF FO (A-1)
UHF FO (A-1)
LARGE CLASS MILITARY SURV MILITARY SURV [MILITARY SURV_|MILITARY SURV |MILITARY SURV |MILITARY SURY
Titan IV MILITARY SURV MILITARY COMM |MILITARY COMM |MILITARY SURV |MILITARY COMM
CASSINI CRAF  |CASSINI CRAF _|MILITARY COMM
SSF SURV
SURV
SSF
SECONDARY P/LS |PMG SEDS-2 HETE NGL
Delta EUV SAC-B 1CDC
SEDS-1 B
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3.2 System Analyses

System analyses were conducted for each of the three missions
of 3.1. The fuels considered and selected typical for these
missions are shown in Table 3-4.

3.2.1 Engine Performance

The engine configuration utilized for this study consisted of
100-400 1bf thrust radiation cooled engines operating at 100-
400 psia chamber pressure. This selection was based on the
use of multiple liquid bipropellant engines to avoid single
point failures. Rhenium thrust chambers were used to achieve
the high performance (4000°F wall temperatures). A high
thrust version was investigated using 1000 1lbf thrust
regeneratively cooled engines operating at 400 psia chamber
pressure. The engine performance used is presented in Table
3-5 and was anchored to the TRW dual mode engine which is
qualified and successfully flying.

3.2.2 System Configuration

The baseline system to be used for evaluation which is
presently flying on communication satellite applications to
GEO is shown in Figure 3-3. This configuration was based on
evaluation of the various system options and includes the
following:

® Pressurization - regulated pressure-fed system using
GHg at 7500 psia in spherical graphite/epoxy
overwrapped tank with aluminum liner.

® Propellant storage - two oxidizer and two fuel tanks
which are cylindrical with elliptical heads and
are graphite/epoxy overwrapped with aluminum
liner. MLI is used for the cryogenic tanks.

e Perigee/apogee engines - radiation cooled as discussed
in 3.2.1. The low thrust version used a total
thrust of 400 1bf (1, 2 or 4 engines) while the
high thrust version used a total thrust of
2000 1bf (2 engines).

® Reaction control system - decomposed hydrazine system
per Figure 3-4. For LO,-N,H, system, the
hydrazine is fed from main hydrazine tanks.

The ground rules used to analyze the various applications
and fuels are:

® Residual - 1% of total propellant was considered

unusable for all applications including OMV and
CRAF.

12
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Figure 3-4. Hydrazine RCS System
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® Boil-off - 0.4% of the cryogenic propellant was
considered boil-off except for high thrust
condition which used 0.25%. These losses were
used for all applications including OMV and CRAF.
LH, losses were established at 6.1% (based on
AFRPL-TR-86-045) .

e Startup/Shutdown - 0.5% of total propellant used for
all applications. For LH,, 2% was used.

e Thermodynamic vent system cooling - 2% total of LH,.

3.2.3 Results of System Analyses

System analyses were conducted to evaluate their weights to
orbit for the three types of missions (GEO, OMV, CRAF)
defined in 3.1.

3.2.3.1 Perigee/Apogee Applications

The investigation of mission applications indicates perigee/
apogee applications have the greatest usage potential in the
foreseeable future. Therefore, the system analyses for these
applications are most important and the results have the
greatest impact. The analyses used the Delta 7925 (6000 lbm
into LEO) and Atlas IIA (14,750 lbm into LEO) as typical
launch vehicles. The results of the analyses are presented
in Table 3-6 which indicates LO,-N,H, is the best propellant
combination to achieve the greatest welght into GEO. These
weights consider the major subsystems except for the RCS
system and system components (regulators, valves, lines,
heaters).

The hydrogen tank volumes (~ 450% of amine tank volume) are
so great that LH, could only be integrated into the vehicle
using toroidal tanks nece551tat1ng aluminum toroidal tanks
due to unavailable overwrapping toroidal tank technology.
This results in non-competitive weights into GEO.

The impact of the RCS subsystem was investigated. Figure 3-4
shows the system used to assess RCS impact based on a

AV = 1465 ft/sec for RCS and stationkeeping. Figure 3-5
shows the RCS weight impact on payload into GEO.

3.2.3.2 OMV Type Applications

System analyses were conducted to determine the best
propellant combination for a typical low earth orbit
application and the OMV viewing mission (DRM-6) was selected.
The four best fuels (amines and hydrocarbons) were selected
for the analyses including N,H,, MMH, CH; and C3zHg. The
propulsion system was 51m11ar to Flgure 3-3 except four
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Figure 3-5.

WEIGHT OF PAYLOAD INTO GEO

is impacted by RCS

4

DN \\\\\\\\\
AL L

N \\\W\\\\\\\\\\\

:x\\\\\\\\\V\\\\\\\\\\\>\>\>>

AAAAHARTINTANNAANR AN

%x\\‘k\\\\‘k\\\“\\\\(‘»\

i
ALARTZHAATIITTARNAN AN

AR \\\\\\\>\

DO ANV

FAEANMIIA IR >\>\

NN \\\\\\\\\\\\\

\\Nk\\\\“s\\\\&\\\»\

OOV RN NN

\\\WN&\\Vs\\\\\\\\ DN

0
™

Lo

0 ~ 0 -
N -—

(spubsnoyl)
saT

18

'e} o
o

/_.
DN \\\\\&\\\\ \ N

LO2—-MMH .02—-CH4

LO2—-N2H4

LO2—C3H8 LO2—RP-—1 L0O2-C2H50H LO2-LH2

77/ Net Payload Weight

PROPELLANT COMBINATION

]Z] Gross

into GEO

Payload
Welght

(after excluding

RCS waelght)

[XE RCS wat

into GEQ
(inc RCS)

Welght



*ZH7 JO SAWN|OA 3ALSSAIX3 01 anp 3|dtyaA ojul ajeuabajul 03 [W YItM Saaul| wnutunje buisn syuey 207 (speay |edotydi||a
y3iM) eotaput|Ad Axoda/ajLydedb pue [1W y3im CHT 404 SRUBY |BPLOAO] Wnuiwn|e uo paseq ate sjybram peo|Aed asayl,

6661 Shze 90vE 8LEE - L95€ £8G€ oov 0001 0SL' b1

€161 502¢ €EEE LL2E 6£2€ pESE 885¢€ 00t 0ot 0GL'v1

80€2 . ¥61€ Y% €62€ GIEE 6YSE £19¢€ 002 002 0SL'v1

0£€2 8E1E 192€ 622¢ 9p2¢ 905€ 18G€ 062€ 001 001 06L'v1
SLL 8/21 AR 2€€T - 60V 1 91¥1 00t 0001 0009
£84 0821 2€ET 60€T v621 pIvl oEyT 00 00t 0009
506 1/21 veel T1€1 02€1 SIvl AR 002 002 0009
v26 Svel G621 0821 6821 G6ET Geyl LOET 001 00T - | 0009

*CH1-€01 | HOSHC)-201 | 1-d¥-2071 | SHED-C01 | ¥HI-C01 | HWW-C01 | YHEN-201 Mq\mv Amwmav (3q1~*4) (wqy)
YHEN-YOCN d 1snayy 01

ojut

039 ojutL 3ybLap 1ybLap

vHeN bBuisn psziwixel s

‘0D 03UuT 3IYbTSM *g9-¢ S[qel

19



engines of 100 1bf thrust (operating at 100 psia chamber
pressure) were utilized for this application. Two engines
operate simultaneously for each maneuver and the other two
engines provide redundancy. The results of the system
analyses are presented in Table 3-7 and indicate LO,-N,H, is
the system of choice as it provides the lightest initial
vehicle/system weight and highest bulk density and mass
fraction over the other candidates.

3.2.3.3 CRAF Application

System analyses were conducted to determine the best
propellant combination for a typical planetary mission and
the CRAF mission was selected - current plans show the use of
a typical bipropellant system similar to our system studies.
The four best fuels were evaluated using the same regulated
pressure-fed configuration of Figure 3-3 but using only one
100 1lbf thrust radiation cooled engine operating at 100 psia
chamber pressure. The initial spacecraft weight is 11,305
lbm. The results of the system analyses are presented in
Table 3-8 and indicate LO,-N,H, is the best system as it
provides the maximum payload weight with the lightest system
and maximum bulk density and mass fraction over the other
candidates.

3.2.3.4 Summary/Conclusion

Based on the system analyses, the overall mission/system
capability is summarized in Table 3-9. Using the Figure of
merit defined and presented in Table 3-9, LO,-Ny,H, is the
best propellant combination.

3.3 Fuels Evaluation
The seven selected fuels were evaluated to select the best
engine and system to achieve the mission applications. Eight
evaluation factors were considered in the evaluation.
® Mission/System Capability
The evaluation factor considered weight and volume
considerations of engine and system. The figure of
merit and evaluation of Table 3-9 were the basis of
evaluation of this factor.
e Safety Considerations
The safety considerations included three factors--

flammability, explosive potential and system safety
were the major considerations.
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® System Integration

System integration considered two primary
considerations--RCS and fuel integration. The RCS
must be integrated to achieve minimum weight and
complexity while achieving high reliability with the
necessary control. In all cases, hydrazine RCS was
used as the system due to its high reliability and
demonstrated flight data base. Fuel integration
considered insulation of cryogenic tanks and lines
and design of regulators and valves.

e Plume Contamination

The exhaust products at the nozzle exit were
evaluated based on the engine operating conditions.
The major toxic constituent was determined to be CO
although the amine fuels had traces of NO. The
exhaust products are summarized in Table 3-10.

® Logistics

The logistics considerations were based on the use
of the fuel for flight at the launch facilities.
This factor considered shipping, storage,
availability of fuel, ground support at the launch
facilities and validated operating procedures at the
launch facilities.

® Materials Compatibility

This factor considered seals and materials that are
compatible with the fuels.

e Cost of System

The cost assessment included development, recurring
and life cycle cost of system/engine.

e System Risk

The risk assessment included development and
recurring cost and schedule risk.

The evaluation of the eight factors is presented in Table
3-11. The results indicated that LO,-N Hy is the best
propellant combination of the eight evaluated. Therefore,
TRW recommends the use of LO,-NyH, in the development of the
Space Storable Test Bed Rocket Engine.
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3.4 System Requirements

A preliminary set of system and engine requirements have been
established based on the system studies and TRW experience
with systems and engines. The system analyses indicated that
the payload to orbit optimized at 200 1lbf thrust and 200 psia
chamber pressure. Therefore, this was the recommended design
point pending further testing. The preliminary system
requirements are shown in Table 3-12. The engine preliminary
requirements are shown in Table 3-13. These requirements
will be updated as test results necessitating change become
available.

3.5 Applications Evaluation Conclusions

The maximum mission potential usage for the Space Storable
engine is placement of satellites into GEO for NASA, military
and commercial applications for communication, surveillance,
tracking, earth observation and meteorology.

To achieve this mission potential, an evaluation of the
various candidate fuels indicated that LO,-N,H, is the best
propellant combination and provides the maximum mission/
system capability. The preliminary system and engine
requirements provided the basis for the preliminary design
and indicated the nominal engine design as follows:

Propellants LO,=-NyH,
Thrust (F) 200 1bf
Chamber Pressure (P.) 200 psia

Specific Impulse (ISpy) 340 lbf-sec/lbm
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Thrust (Fe)-1bf
Mixture ratio (O/F)

Specific impulse (Ispw)-1bf-s/1bm

Inlet pressure - psia
Fuel inlet temperature - °F
Oxidizer inlet temperature - °F

System mixture ratio

Life - sec

Maximum continuous firing - sec
Operation

Operating voltage - Vdc

Engine length - inches

Engine diameter - inches

Heaters

Valve seat ]eakége (scc/hr GHe)
Random vibration

Qual - 14.1 g-rms
20 Hz

20-50 Hz
50-800 Hz
800-2000 Hz
2000 Hz

Oxidizer-fuel inlet pressure
varjation

Alignment
Engine weight - 1bm

Contamination control

0.026 g2/Hz
- +6 dB/oct
- 0.16 g2/Hz
-6 dB/oct
0.026 g2/Hz

Engine Requirements

200 +10 (890 + 45 N)

0.75 +0.03

2340 nominal (> 3334 N-sec/kg)
350*0, (241 19, wyen?)

70 +10 (excluding heat soakback) (21 + 6°C)
-285 (excluding heat soakback) (- 176°C)

0.75 +0.08 (includes pressure and
temperature variations)

10,000 (qual - 15,000)

3000

Steady state (performance at >30 s)
24-34

29 maximum (74 cm)

12 maximum (30.5 cm)

Required to prevent fuel from
freezing

5 per valve seat

A/T - 10.0 g-rms
20 Hz - 0.01 g2/Hz

20-160 Hz - +3 dB/oct
160-250 Hz - 0.08 gZ/Hz
250-2000 Hz - -3 dB/oct
2000 Hz - 0.01 g2/Hz

Fuel = +5 psia of oxidizer pressure

+0.5 degree
11 maximum (5 kq)
PR2-2-12

Valve must have 25 micron inlet
filters
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Table 3-13.

Valve characteristics
Pull-in voltage (Vdc)
Dropout voltage (Vdc)
Open response (ms)
Close response (ms)
Maximum pressure (psia)

Engine starts (cold)

Engine roughness

Gas ingestion

Oxidizer depletion

Heat shield

Engine Requirements (Continued)

19 maximum
22
<30
<30
400

25

+12%

2 i3 (33 cnd)

Must have capability

Minimum impact on engine
temperatures
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4.0 ANALYSES

The two major categories of analyses emphasized during the
Basic program were performance and thermal. The performance
analysis objectives were to establish a model to predict
sensitivity to design variables and assess ability to meet
performance goals. The thermal analyses objectives were to
establish a model to assess thermal operating characteristics
of the injector and thrust chamber.

4.1 Performance Analyses
4.1.1 Analysis of Injector

A model of the coaxial pintle injector was developed by

Dr. Richard Priem to calculate the performance based on
combustion characteristics using LO,-N,H;. The prime
consideration was the model should pregict sensitivity of
various combustion parameters to design variables. The model
for the fuel centered injector incorporates the following
elements:

® Injection velocity - treat fluids as columns that
intersect each other. First spray is caused by slots
of fuel impinging with oxidizer. Second spray is
caused by fuel gap flow between slots impinging on
oxidizer.

® Jet size and drop size - jet size of each stream is
calculated on the basis of a round jet having the same
area as the impinging streams. Drop size is
calculated using impinging jet correlation curve of
TR 67.

e Vaporization
= Prior to impingement of first spray

Assume a gas velocity of flow out of the dome
through the spray.

Using assumed velocity calculate momentum balance
to determine radial gas velocity of this flow that
would balance a decrease in liquid velocity of the
first spray to the point where the radial gas
velocity equals the resultant spray velocity.

Then calculate drag and deceleration of the spray
along with the amount vaporized of the fuel and
oxidizer as a function of radial position.

- Vaporization of second spray - determine amount
vaporized before spray impinges on wall
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- Vaporization in chamber

Assumes spray bounces off chamber wall with
average angle

Break spray into five sections having varying mass
and bounce angle

Calculate the amount vaporized in ten annular
sections of the chamber

With the angle, calculate the length prior to
movement out of the annular section

Use this length to determine effective length
Mass average all the different parts of the spray
and sum each for the various annuli

e Mixing in the chamber - simulate mixing by
transferring 10% of each flow from adjacent annuli
into each other. This is done on a flux difference
basis and area of smaller annuli.

e Final performance - based on O/F ig each annuli and
mass flow, sum the mass averaged C  to obtain engine
C” and resultant combustion efficiency.

The results of this model were used to predict the trends for
combustion efficiencies (C*) of the various elements. The
model was established based on the results obtained on the
first element tested (-3) with LO,-NoH,. These results were
used to anchor the model. The model was then used on
subsequent elements to predict the performance. Table 4-1
shows the results of the analyses and test results.
Increa51ng the number of slots is the most effective way of
increasing combustion efficiency (C*)

4.1.2 Nozzle Performance

A two dimensional kinetic analysis was conducted to assess
the thrust coefficient and potentlal vacuum specific impulse
achievable for the LOZ-N2H4 engine. The analysis was based
on a two zone model operating at mixture ratios (O/F) of
0.875 in the core and 0.5 at the wall to produce an overall
engine mixture ratio (O/F) of 0.8. The overall engine
characteristics are as summarized follows:

Thrust (Fe) 200 1lbf
Chamber Pressure (P_) 200 psia
Nozzle Expansion (€) 204
Mixture Ratio (O/F) 0.8

The results indicated a vacuum thrust coefficient (Ce )
including boundary layer losses of 1.89. Based on 94 V6%
combustion efficiency, the vacuum specific impulse (Isp,)
would be 340 seconds. The effect of combustion efflclency on
specific impulse for the two zone TDK analysis is shown in
Figure 4-1.
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4.2 Thermal Analyses

Thermal analyses of the injector and thrust chamber which are
shown in Figures 5-1 and 5-2 were conducted to assess areas
requiring modifications to the initial design. Thermal
models were developed and anchored to test data prior to
assessing design capabilities.

4.2.1 Injector Thermal Analyses

A SINDA model of the injector dome/neck region was developed
to assess combustion gas heating loads from test data.
Figure 4-2 shows the locations of the injector thermocouples
utilized in test and Figure 4-3 shows a sketch of the model
with the thermocouple locations indicated.

The general approach used is presented as follows;

® Film coefficients for the liquid oxygen in the annulus
and cone passages were calculated for the forced
convection, nucleate boiling, transitional, and film
boiling regions using published empirical relations
(e.g., Sieder & Tate, Rohsenow, Gambill, and
Rocketdyne cryogenic data).

® A heating load was applied from the combustion gases
such that the resulting temperatures agreed with
measured values.

Results for three cases - low, moderate, and high

performance - are presented in the following paragraphs.
Higher performance was accompanied by higher heating loads as
expected.

® Low Performance. The correlation between measured and
predicted dome temperatures for test number, HA2A-4000
(80% C*) is shown in Figure 4-4. The calculated
curves were applied to the noted mode numbers of the
SINDA model of Figure 4-3. Injector neck temperatures
are shown in Figure 4-5. The imposed gas temperature
for all zones are shown in Figure 4-6. The higher
initial gas temperature (1650°F) resulted due to the
N,04-NoH, ignition; it then decreased to 450°F at 6.5
seconds when chamber pressure stabilized. The local
film coefficients required for the outer zone (Zone 1
in Figure 4-3) was significantly higher than for the
other zones. However, Figure 4-7 which shows the
transient heat flows, indicated that the LO, heat
absorption requirement at steady-state was only 0.5
Btu/sec.

® Moderate Performance. The correlation of dome and

neck temperatures for test number HA4-3999 (87% C*) is
shown in Figures 4-8 and 4-9, respectively. The
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initial effective gas temperature was the same as of
test -4000 (1650°F) but the steady-state value
decreased to only 1300°F (Figure 4-10). Local film
coefficients on the gas side were the same as for test
-4000. Resulting heat flows are shown in Figure 4-11.
For a 400°F dome (~ 10 secs. into the run, Figure 4-
8), the LO, would have to remove 1.7 Btu/sec in the
present injector design. The LO, was able to absorb
only ~ 0.5 Btu/sec due in part to film boiling over a
considerable cooling area.

e High Performance. Test number, HA2A-4061, with a
different injector element and at a higher pressure
than -4000 and -3999, had high performance (95.1% C").
Measured vs. calculated dome and neck temperatures for
this case are shown in Figure 4-12 and 4-13
respectively. The imposed gas temperature is shown in
Figure 4-14. Reflecting an improved ignition design,
the initial temperature was 1300°F for -4000 and
-3999). Steady-state gas temperature, however,
doubled to 2600°F. Gas-side film coefficients for
zones 1 and 2 (see Figure 4-3) were an order of
magnitude higher then over the rest of the area, but
approximately the same as those used for zone 1, tests
-4000 and -3999. Corresponding heat flows are shown
in Figure 4-15. For a dome temperature of 400°F
(about 4 secs. into test), the LO, would have to
absorb 4 Btu/sec to stabilize the temperatures. The
onset of film boiling was clearly seen in the sharp
decrease in the heat absorbed by the LO, at 7 seconds.

The above results indicated boiling of LO, in the injector
passage will be difficult to prevent in the present
configuration. Therefore, preliminary investigations were
conducted to identify various methods of avoiding film
boiling. Table 4-2 presents these concepts including
advantages and disadvantages/concerns. Further evaluation of
the best of these concepts and critical experiments will be
conducted in Option 1 to assess their capabilities prior to
incorporation into the design.

4.2.2 Thrust Chamber Thermal Analyses

Thermal analyses were conducted to assess the wall
temperatures of the thrust chamber using the high performance
tests with the -11 hybrid element. The results are shown in
Figures 4-16 and 4-17 which indicate a wall zone combustion
gas temperature of 2900°F. Using a columbium thrust chamber
coated with R512E silicide coating, the maximum temperature
is 2444°F (outside) and 2573°F (inside) which is slightly
upstream of the throat. The throat temperatures are 2553°F
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(inside) and 2410°F (outside). Therefore, the columbium

thrust chamber is the primary approach. Rhenium (iridium
coated internally) is the backup approach to the thrust
chamber design which may allow even higher performance.
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5.0 EXPLORATORY TESTS
5.1 Design Approach

The engine design approach was to maximize design and
operational flexibility to allow cost effective evaluation of
the range of engine parameters. The injector was designed to
offer flexibility in test to evaluate the changes necessary
to achieve high performance. The goal was to maximize test
information for minimum cost. The TRW coaxial injector was
ideal for these evaluations as it allowed variations in
velocity and geometry of the basic design to be readily
tested and assessed.

The exploratory test engine utilized an injector which
allowed shimming of the oxidizer and fuel gaps to change
velocities and replaceable extensions to change fuel
geometry. The thrust chamber for this engine was a robust
copper heatsink thrust chamber using thermocouple
instrumentation. The injector and thrust chamber were bolted
together for ease of testing. Test stand valves were used at
this point in the program to eliminate the valve development
prior to understanding the specific requirements and
interfaces. Pre and post test GN, purges were used on all
propellants. Since the propellants were non-hypergolic, an
igniter was required. The igniter used was N,0, injected
through a port in the injector to ignite with the fuel prior
to introduction of LO,. This concept was selected based on
ease of design and test.

5.2 Engine Design Point

The applications evaluation as discussed in 3.0 evaluated the
various fuels and system requirements to maximize payload
into orbit. The results indicated the system should be
designed to the preliminary requirements of Table 3-12.

Based on these preliminary requirements, the engine
preliminary requirements of Table 3-13 were developed and
provided the design point for the exploratory tests. These
requirements also provided the design for the test bed engine
as modified based on the exploratory test results.

5.3 Design Description and Fabrication

The TRW coaxial injector for the SSRT program was based on
the DM-LAE qualified and flying successfully on ANIK
satellites (E-1 and E-2). These engines produce an average
specific impulse of 314.5 lbf-sec/lbm (€ = 204) and have
demonstrated almost 25,000 seconds operating life during
qualification with N204-N2H4 .
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The SSRT injector consisted of the following elements:

® Body of columbium with aluminide coated face
(oxidation protection)

® Sleeve of 15-5 pH incorporating thermal isolation
of L02 and N2H4

e Pintle of 15-5 PH

e Extensions of 15-5 PH incorporating various slot
geometries

e Igniter to inject N,0, to react with N,H, prior to
10, injection.

The injector in the copper heatsink thrust chamber is shown
in Figure 5-1 and photographs of hardware are shown in Figure
5-2. Injector configurations are changed by replacing sleeve
extensions to assess variations in fuel slot geometry.
Additionally velocity changes can be varied by independently
shimming the oxidizer and fuel gaps. Six fuel geometries
were evaluated using five different configuration sleeve
extensions with the standard pintle. The highest performance
sleeve with a pintle incorporating three doublets (designated
hybrid) which bleeds fuel into the center of the engine was
tested to enhance performance. The slot configurations
varied from 36-60 slots with slot widths of 8-16 thousands of
an inch and aspect ratios (slot depth/slot width) of
0.67-4.8. These wide variations in fuel geometry along with
variations in fuel gaps and oxidizer gaps provided the
ability to test over a range of large variations to assess
performance characteristics. This flexibility provided a
method to obtain affordable test costs with major geometry
changes in the injector.

The thrust chamber used during this basic program was a
robust heatsink copper chamber with type K thermocouples
brazed into the wall at three axial locations and four
thermocouples at each station (90° apart). This
instrumentation allowed an assessment of the thermal
conditions of the thrust chamber.

5.4 Test Summary
5.4.1 Test Plan

As part of the SSRT basic program, exploratory hot fire tests
were defined to provide input to the engine design. These
tests were performed using the TRW IR&D hardware that was
tested in 1990.

The exploratory tests performed in the basic program were
structured to provide basic engineering information relating
to the performance and thermal aspects of the design. Some
of the issues addressed were:
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Engine combustion performance characteristics
Stable operation

Engine thermal characteristics

Injector characteristics

Comparison of LO,/No,H, to hypergolic earth
storable propellants

Ignition characteristics with N,0,

Hardware and system chill

Two test series were performed during the basic program. The
first series addressed the differences between the LO,/NoH,
propellant combination and the hypergolic propellant engines
using the -8 fuel element. Also included in the first series
was testing of the -7 fuel element, which is the baseline 200
1lbf thrust fuel element (see table 4-1).

A second test series was performed, incorporating hardware
modifications based on the initial test series results.
Three new 200 1bf equivalent fuel elements were evaluated in
this series, as was a modification to the injector pintle.

5.4.1.1 Test Facility

All hot fire testing of the SSRT engine in the basic program
was performed at TRW's Capistrano Test Site (CTS) Facility in
the HEPTS HA2A vacuum capsule. A facility schematic is shown
in Figure 5-3. A mechanical pumping system maintained the
test cell at less than 50 torr absolute pressure for all hot
fire testing.

The fuel propellant tank was an 80 gallon hydrazine tank with
an outer glycol jacket that allowed thermal conditioning of
the propellant. Liquid oxygen propellant tankage included a
150 gallon run tank, fed from a 300 gallon LO, storage tank.
Both LO, tanks were vacuum insulated. The L0, in the run
tank was kept at its normal boiling point (-238F) by venting
the tank to atmospheric pressure between tests. LO
propellant lines to the test capsule were insulated, and were
chilled prior to a test by bleeding LO, from the run tank to
the fire valve. The line downstream of the L0, fire valve
and the injector were pre-chilled by liquid nitrogen prior to
each test.

The igniter fluid was supplied by a small N204 tank and
controlled by a cavitating venturi. Propellant line heaters
were used on the fuel and igniter lines to prevent freezing
of the propellants during engine start-up. Aall propellant
lines were purged with GN2 during the start up and shutdown
transients. All valve timing was controlled by an IBM PC
based timer that allowed millisecond timing resolution of the
valve command signals.
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5.4.1.2 Test Instrumentation and Data Recording

Performance evaluation of the SSRT engine was based on C*
performance measurements. Redundant instrumentation was used
on all performance related parameters, including propellant
flow rates, chamber pressure transducers, and venturi inlet
pressures. Cavitating venturis were used to control the flow
rates to the engine. These venturis have been water flow
calibrated. Three calibrated flowmeters in series were used
to measure the fuel flow rate. The oxidizer flow rate was
determined by use of a cavitating venturi.

Thermocouple instrumentation included 12 type K thermocouples
brazed into the copper chamber. Also, 12 thermocouples were
located at key locations on the injector to allow an
assessment of the thermal characteristics of the injector
head end. Other thermocouple instrumentation included
propellant temperatures at the flowmeters, venturi inlets and
engine inlets. An instrumentation list is presented in Table
5-1.

Critical temperature measurements such as chamber and
injector dome temperatures were displayed on strip charts for
real time monitoring during testing. Early shutdown of a
test was determined by strip chart trends. Oscillograph
recording of critical parameters was available for quick look
and transient analysis of each test. All instrumentation was
recorded on digital tape and printed in numeric format for
data reduction analysis.

5.4.2 Test Summary of -8 Fuel Element

Initial hot fire testing of the SSRT engine was performed
with the -8 fuel element. This extension was designed based
on the TRW Dual Mode Liquid Apogee Engine (DM-LAE) fuel
geometry. The -8 element was designed to match the fuel
injection geometry and flow characteristics of the DM-LAE
engine as closely as possible. This allowed a direct
comparison of the operating trends of the non-hypergolic
LO,/NyH, propellant combination verses the well characterized
N;04/NyH4 propellant combination utilizd by the DM-LAE
engine. The nominal flow rate for this element was
established at an equivalent thrust of 125 1lbf to match the
fuel injection characteristics of the DM-LAE engine.

Twenty-five tests were performed with the -8 element, ac-
cummulating 306.5 seconds of hot fire duration. The test
results for the -8 element are summarized in Table 5-2.
Performance of the element was approximately 83% C*
efficiency, compared to approximately 95% C* efficiency for
the DM-LAE Engine. Many of the DM-LAE performance trends
were non existent or not as clearly defined during testing of
the SSRT engine with the -8 element.
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TABLE 5-1
SSRT INSTRUMENTATION LIST

RECORD/DISPLAY
METHOD

ID RANGE S/c | osc | DVM PARAMETER
PC-1 0-300 PSIA X X X |CHAMBER PRESSURE
PC~2 0-300 PSIA CHAMBER PRESSURE
PIO-1 |0-1000 PSIA X X OXID INLET PRESSURE
PIO-2 [0-750 PSIA OXID INLET PRESSURE
PID 0-500 PSIA OXID DISTRIBUTION PRESSURE
PIF-1 |0-1000 PSIA X X FUEL INLET PRESSURE
PIF-2 |0-750 PSIA FUEL INLET PRESSURE
POVI-1 [0-1000 PSIA X OX VENTURI INLET PRESSURE
POVI-2 |0-1000 PSIA OX VENTURI INLET PRESSURE
PFVI-1 [0-1000 PSIA X FU VENTURI INLET PRESSURE
PFVI-2 |0-1000 PSIA FU VENTURI INLET PRESSURE
Wo-1 0.15-0.30 LBM/S X X |OXID FLOWRATE
Wo-2 0.15-0.30 LBM/S OXID FLOWRATE
Wo-3 0.15-0.30 LBM/S OXID FLOWRATE
WF-1 0.20-0.40 LBM/S X X |FUEL FLOWRATE
WF-2 0.20-0.40 LBM/S FUEL FLOWRATE
WF-3 0.20-0.40 LBM/S FUEL FLOWRATE
TOF -350 to -200°F OXID FEEDLINE TEMP
TFF 40-100°F FUEL FEEDLINE TEMP
TFI 40-100°F X |FUEL INLET TEMP
TOI -350 to -200°F X |OXID INLET TEMP
TOVI -350 to 60°F OXID VENTURI TEMPERATURE
PIGT 0-1000 PSIA X |IGNITION TANK PRESSURE
PIGFV [0-1000 PSIA IGNITION FIRE VALVE PRESS
PIGI-1 |[0-500 PSIA X X IGNITION INLET PRESSURE
PIGI-2 [0-500 PSIA IGNITION INLET PRESSURE
TIGN 40-100°F INGITION INLET TEMP
PA-1 0-50 TORR X |CELL PRESSURE
PA-2 0-50 TORR CELL PRESSURE
POT 0-1000 PSIA X |OXID TANK PRESSURE
PFT 0-1000 PSIA X |FUEL TANK PRESSURE
TR-1 0-2000°F X CHAMBER/NOZZLE TEMPS
THRU | ! !
TR-12 |[0-2000°F X CHAMBER/NOZZLE TEMPS
TI-1 -300-1000°F X INJECTOR TEMPS
THRU ! !
TI-12 |-300-1000°F X INJECTOR TEMPS
TC-1 0-2500°F X TC PROBE TEMPS
THRU : : I
TC-16 [0-2500°F X TC PROBE TEMPS
ACCEL |0-100 Gs X HEA ACCELEROMETER

*ALL PARAMETERS TO BE RECORDED ON DIGITAL TAPE.
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-8 Fuel Element Test Summary

Table 5-2

Tost # Duration Wt PC C* Fuel OX
HA2A- sec OfF Ib/sec psia ft/sec Gap (df) Gap (do)
3992 5.0 0717 0.3592 1144 5443 0.0031 0.0083
3993 10.0 0.575 0.3126 84.8 4636 0.0031 0.0083
3994 10.0 0.550 0.3080 87.5 4856 0.0051 0.0083
3996 10.0 0.839 0.3601 111.4 5288 0.0031 0.0083
3998 10.0 0.786 0.3634 108.5 5124 0.0031 0.0063
3999 15.0 0.796 0.3641 112.8 5345 0.0031 0.0083
4000 15.0 0.776 0.3607 1034 4926 0.0031 0.0103
4001 15.0 0.806 0.3674 106 4960 0.0042 0.0083
4002 15.0 0.832 0.4473 141.9 5490 0.0042 0.0083
4003 15.0 0.808 0.3674 109.1 5120 0.0024 0.0083
4004 14.8 0.830 0.4476 127.5 4912 0.0024 0.0093
4005 13.0 0.827 0.4498 129.2 4958 0.0042 0.0093
4006 15.0 0.782 0.3650 101.9 4798 0.0007 0.0093
4007 15.0 0.791 0.3634 105.7 5011 0.0007 0.0093
4008 15.0 0.789 0.3630 101.5 4805 0.0007 0.0093
4009 15.0 0.832 0.4475 125.6 4843 0.0007 0.0093
4010 15.0 0.799 0.3656 108.4 5112 0.0053 0.0062
4011 15.0 0.786 0.3628 109.5 5207 0.0082 0.0043
4012 8.9 0.787 0.3635 110.3 5215 0.0007 0.0043
4013 14.8 0.754 0.3544 105.6 5142 0.0031 0.0083
4014 15.0 0.780 0.3247 94.9 5029 0.0019 0.0083
4015 15.0 0.616 0.3653 106.9 5033 0.0019 0.0083
4016 15.0 0.841 0.4869 145.5 5185 0.0019 0.0083
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Difficulties in obtaining single phase liquid oxygen flow to
the injector caused poor repeatability of the test data, and
resulted in no clear-cut performance trends with varying
injector parameters. The most significant factor affecting
performance was the amount of pre-chill to the injector and
LO, run line bleed. Injector pressure drops and discharge
coefflclents on the oxidizer circuit varied by $35% during
testing and averaged 20% lower than the oxidizer Cd measured
during water flow of the injector, indicating vapor
generation and two phase flow conditions.

Incomplete fuel vaporization was evidenced by the chamber
wall thermocouple data. Row 1 measurements showed a tendency
to operate near the fuel saturation temperature, indicating
liquid fuel impingement at the wall. Throat thermocouple
data also corresponded to a low wall zone mixture ratio.

Test durations for all -8 testing was limited by injector
dome redline temperatures (500F) rather than chamber
thermocouple redline (1000F).

The igniter for these tests was the same configuration tested
in the 1990 IR&D program; a single N204 stream directed
through the fuel spray pattern. This configuration caused a
high heat load to one side of the dome during the igniter
stage, resulting in a thermal maldistribution in the injector
at the start of the test.

On test HA2A-4002, a reaction of fuel and N>04 in the igniter
line (located at 6 o'clock) caused the line to rupture. The
engine was removed from the stand and a new igniter
configuration was employed. The old igniter port was welded
shut and two new ports, located 180 degrees apart (at 9 and 3
o'clock), were machined into the injector dome (see Figure 5-
1 for both configurations). These igniter ports created a
fine spray fan directed axially down the chamber, through the
fuel spray pattern. The ignition sequence with this igniter
configuration was improved, resulting in less thermal
maldistribution to the injector during ignition. The
original igniter would cause a thermal maldistribution of
approximately 100F durlng the ignition stage, while the new
configuration had a maximum maldistribution of approximately
30F. The igniter stage heat load to the injector was also
reduced for the new configuration.

5.4.3 Test Summary of 200 1lbf Elements

The remainder of the hot fire testing of the SSRT engine was
conducted with fuel elements designed for 200 1lbf equivalent
flow rates. These elements( -7, -9, -10 and -11) all have

equal slot flow areas, with the number of slots varying from
36 to 60. Performance was improved dramatically over the -8
fuel element, and test reproducibility and performance trend
definition was also better. The higher oxidizer flow rate
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allowed a colder oxidizer inlet temperature, resulting in
fewer problems with vapor generation and two phase flow
conditions. This was subtantiated by the 20% higher average
oxidizer Cd measured during the -7 testing as compared to the
-8 element testing, and by the lower oxidizer Cd variation of
+10% for the -7 compared to +35% for the -8 element.

5.4.3.1 -7 Element Results

Fourteen tests were performed with the -7 element,
accumulating 147.3 seconds of hot fire duration. The test
data for the -7 element is summarized in Table 5-3.
Performance of this element was in the 90% to 92% C*
efficiency range. Although the performance was much more
repeatable than with the -8 element, there was still some
scatter that probably related to the injector and LO, line
pre-chill conditions. Performance was relatively insensitive
to flow rates and injector parameters, usually within the
scatter of the data points. The -7 element performance
verses total flow at fixed gap conditions is shown in Figure
5-4. The performance was essentially unchanged over the
entire flow range tested. Performance verses mixture ratio
for the same injector gaps is shown in Figure 5-5. A slight
increase in performance with increasing mixture ratio is
indicated, although the trend is within the data scatter.

The performance trends verses fuel gap and oxidizer gap is
presented in Figure 5-6 and 5-7. Again, the trend was
slight, indicating maximum performance at a fuel gap of
approximately 0.0020 inch and for an oxidizer gap of 0.0185
inch.

The injector gaps presented here are the gaps set prior to
the test based on shim changes. However, differential
thermal expansion between the fuel pintle and the oxidizer
sleeve caused a post-chill growth of about 0.0040 inch in the
fuel gap during the burn. Thus, a set fuel gap of 0.0020
inch resulted in an actual gap of approximately 0.0060 inch
during the test. The magnitude of the change was determined
by comparing hot fire fuel pressure drops to the water flow
data on the fuel injector. A thermal analysis of the
injector predicted a gap change of .0035 to .0040 inch based
on the sleeve outer diameter being chilled to -280F (from
60F) prior to the run. The expansion of the fuel gap will be
minimized in later hardware designs where the shim location
is moved from its present location (shown in Figure 5-1) to
the end of the sleeve near the fuel extension. This will
greatly reduce the free length for thermal expansion.

The oxidizer gap also experienced a gap increase, although
the magnitude of the change was more difficult to assess
because of differences in injector body chill and LO, density
from test to test. It was also likely that the oxidizer gap
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Table 5-3
-7 Fuel Element Test Summary

Test # Duration Wt PC C* Fuel 0).¢
HA2A- Sec O/F 1b/sec psia ft/sec  Gap (df) Gap (do)

4017 11.4 0.809 0.5814 188.0 5617 0.0019  0.0163
4018 11.4 0.799 0.5802 189.1 5662 0.0019  0.0163
4019 11.2 0.803 0.5776 186.0 5594 0.0019  0.0143
4020 11.2 0.798 0.5814 190.2 5687 0.0019  0.0183
4022 12.0 0.822 0.5861 184.4 5471 0.0000  0.0183
4025 10.0 0.785 0.5733 184.8 5584 0.0034  0.0183
4026 10.0 0.788 0.5789 184.2 5513 0.0019  0.0213
4027 10.0 0.789 0.5773 187.0 5618 0.0019  0.0183
4028 10.0 0.808 0.6400 204.8 3556 0.0019  0.0183
4029 10.0 0.810 0.5824 190.2 5667 0.0019  0.0183
4030 10.0 0.828 0.5394 174.2 5593 0.0019  0.0183
4031 10.0 0.679 0.5673 181.2 5531 0.0019  0.0183
4032 10.0 0.942 0.5729 186.2 5644 0.0019  0.0183

4033 10.0 0.817 0.6009 194.0 5607 0.0019  0.0183
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was changing slightly during the test due to the injector
body warming up while the injector sleeve remained at the 1O,
temperature. Comparing test data to water flow data of the
oxidizer delta P indicates an average change in the oxidizer
gap of about 0.0020 inch during injector chill, which agrees
well with thermal analysis of the injector. With the dome
cooling concepts incorporated the oxidizer gap change should
be significantly reduced.

Chamber thermocouple data indicated a considerably higher
heat load to the chamber for the -7 element compared to the -
8. Throat thermocouples were reaching redline temperatures
of 1000F in 11 to 12 seconds for the -7 element, while they
were below 500F after 15 seconds duration for the -8 element.
A trend of increasing chamber heating rate for higher mixture
ratios is presented in Figure 5-8. A wall zone gas
temperature of about 2500F was calculated by comparing the
throat thermocouple data with predictions using the thermal
model of the copper chamber. This corresponded to a wall
zone mixture ratio of about 0.2, which indicated that steady
state operation with a columbium chamber with a comfortable
thermal margin is feasible.

5.4.3.2 Test Series Number 2: -9, =10 and -11 Results

After testing and data analysis of the -7 element was
completed, three new elements, -9 through -11, were designed
and built. These elements were based on the -7 geometry,
with modifications to some of the geometrical parameters (see
sections 5.3 and 4.1), with emphasis on increasing the fuel
vaporization rate.

All previous testing of the SSRT engine demonstrated that the
fuel element geometry was the primary factor in engine
performance. For all fuel element geometries tested,

the engine attained a certain level of performance, and only
secondary changes in performance were observed by changing
injector and flow parameters (aside from the detrimental
effects of two phase flow in the oxidizer circuit). Based on
this assessment, the test plan for the last three elements
included a limited number of tests for each element. If the
element tested didn't indicate increased performance in the
range of parameters covered by these tests, the assessment
was that no further gap or flow changes would make a
significant improvement in performance for that injector
geometry.

The hot fire testing performed with the -9, -10 and -11
elements are summarized in Table 5-4. The performance trend
verses fuel gap for the three elements (-9, -10 and -11) is
presented in Figure 5-9. This trend was similar to that
demonstrated by the -7 element, although the -11 element did
perform better at larger fuel gaps than the other elements.
The -9 and -11 elements matched the -7 performance element
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Table 5-4

-9 Fuel Element Test Summary

Test # Duration Wit PC C* Fuel 0),¢
HA2A- Sec O/F Ib/sec psia ft/sec  Gap (df) Gap (do)
4034 10.0 0.808 0.5737 184.6 5511 0.0020  0.0185
4035 10.0 0.759 0.5738 187.6 5654 0.0020  0.0185
4037 10.0 0.819 0.5913 189.3 5538 0.0033  0.0185
4038 10.0 0.812 0.5895 192.3 5641 0.0007  0.0185
4039 10.0 0.802 0.5897 190.8 5595 0.0007  0.0140
4041 10.0 0.801 0.5894 185.7 5445 0.0007  0.0210

-10 Fuel Element Test Summary
Test # Duration Wit PC C* Fuel OX
HA2A- Sec O/F 1b/sec psia ft/sec  Gap (df) Gap (do)
4042 10.0 0.783  0.5848 187.9 5555  0.0020  0.0185
4043 10.0 0.801  0.5883 187.6 5517  0.0034  0.0185
4044 10.0 0.795  0.5848 184.9 5470  0.0007 0.0185
4045 5.0 0.807 0.5913 193.2 5609  0.0020  0.0140
-11 Fuel Element Test Summary
Test # Duration Wt PC C* Fuel OX
HA2A- Sec O/F Ib/sec psia ft/sec_ Gap (df) Gap (do)
4046 10.0 0791  0.5848 190.9 5647  0.0018 _ 0.0185
4047 10.0 0.809 0.5917 194.9 5710 0.0033  0.0185
4048 10.0 0.798  0.5878 189.1 5572 0.0045 0.0185
4049 5.0 0.800 0.5932 198.9 5769  0.0033  0.0140
4050 6.2 0.808  0.5935 197.0 5708  0.0033  0.0160
4052 9.8 0.802  0.5881 187.9 5534 0.0033  0.0120
4053 8.6 0.651  0.5894 193.6 5672 0.0033  0.0140
4054 5.0 0.923  0.6062 202.1 5741 0.0033  0.0140
4055 6.2 0.821  0.5944 197.4 5723 0.0033  0.0140
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closely, but the -10 element operated at a lower pe;formance
level. This demonstrated that high slot aspect ratio was not
the key to higher performance.

The performance of the elements verses oxidizer gap at the
nominal flow conditions is shown in Figure 5-10. Once again
the ~9 element showed the same performance trend as the -7,
preferring the 0.0185 oxidizer gap. The =10 and -11 elements
demonstrated higher performance at smaller oxidizer gaps.

The -11 element was tested at the 0.0120 inch oxidizer gap,
but the performance decreased dramatically at this condition.
Uneven injector dome heating and unsteady chamber pressure
during this test indicated that there may have been a problem
with the oxidizer injection distribution.

A mixture ratio survey was conducted with the -11 element at
the 0.0033 inch fuel gap and the 0.0140 oxidizer gap. The
results of this survey, Figure 5-11, indicated a trend of
increasing performance with mixture ratio, similar to the -7
element. Performance verses injector momentum ratio is shown
in Figure 5-12. A general trend of increasing performance
with higher momentum ratio was observed for all the elements,
with the exception of the test with highest oxidizer velocity
(do = 0.0120) as discussed above.

Chamber heating rates for the -9 through -11 elements were
very similar to the -7 element, but the injector dome heating
rate was very rapid with the -11 element, especially at
smaller oxidizer gaps. At a 0.0140 inch oxidizer gap and
high mixture ratio, the injector dome reached the 500F red
line temperature in about five seconds. The dome thermal
distribution was uneven, with a higher heating rate on one
side of the injector.

5.4.3.3 =11 Hybrid Results

The combination of relatively low wall zone mixture ratio and
increasing performance trends at higher over all mixture
ratios led to the conclusion that the core combustion zone of
the engine was operating at a high mixture ratioc. This
assessment was also confirmed by the Priem model of the
injector. A simple two-zone performance analysis indicated
that if the wall zone was at a mixture ratio of 0.2, the core
mixture ratio was approximately 1.3. Since the theoretical
optimum mixture ratio for this propellant combination is
approximately 0.73, the assessment was made that a
significant increase in performance could be gained if more
fuel could be directed into the core combustion zone,
decreasing the core mixture ratio toward optimum. This would
also result in increased performance at a lower over all
mixture ratio.

Increasing the fuel flow to the combustion core zone was the
reasoning behind the hybrid injector. A spare pintle was
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SSRT Hot Fire Tests
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Figure 5-10. C* verses oxidizer gap for 200 Ibf elements
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SSRT Hot Fire Tests
200 Ibf Elements, O/F = 0.8, Wt = 0.59
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modified by drilling three like-on-like doublets into the
tip, yielding a hollow cone spray pattern oriented axially
down the centerline of the chamber. Figure 5-13 shows the
pintle tip with the doublets installed. The doublets were
designed to direct about 10% of the total fuel flow into the
core. This pintle was tested with the -11 element, since
this element gave the highest performance.

The performance summary for the =11 hybrid injector is
presented in Table 5-5. C* efficiencies over 95% of
theroretical (ODK) were obtained, corresponding to a
projected vacuum Isp of >340 lbf-sec/lbm. However, as
discussed below, problems with oxidizer injector delta P
variations prevented a complete characterization of the
injector.

The performance trend of the hybrid injector compared to the
basic -11 element tests is shown in Figure 5-14. At a
mixture ratio of 0.8, performance of the two injectors was
approximately equal. As the mixture ratio was decreased by
increasing the fuel flow rate, the performance of the hybrid
injector increased, producing the highest performance at a
mixture ratio of 0.70. Decreasing the mixture ratio even
further, however, caused variations in the oxidizer

delta P that resulted in operation at a lower performance
level. The onset of this condition appeared primarily at low
mixture ratios, even though the oxidizer flow conditions were
essentially unchanged from other higher mixture ratio tests
where the condition was not observed.

Post test examination of the oxidizer metering geometry
revealed a contour downstream of the minimum area that could
allow the oxidizer to diffuse to a lower velocity with
attendant pressure recovery. Apparently the attachment of
the oxidizer to this surface was not complete, resulting in
variations in the injection delta P. All future SSRT
injector hardware will incorporate modifications to the
oxidizer metering geometry to eliminate this condition.

The throat wall zone gas temperature verses momentum ratio
for all of the 200 1bf elements is presented in Figure 5-15.
This was derived from the chamber thermal model. The gas -
temperature increased with momentum ratio for all of the
elements except for the hybrid injector, where the data was
distorted by the oxidizer delta P variations discussed above.
The -7 element had the lowest gas temperatures at a given
momentum ratio, even though it had equivalent or even higher
performance than the -9 and -10 elements.

Dome and chamber thermocouple heating rates during testing
with the hybrid injector were about 20% higher than with the
-11 element testing. This was expected, since the hybrid
pintle diverted some of the fuel flow from the wall zone to
the core, resulting in a higher wall zone mixture ratio. It
also created a higher effective momentum ratio (oxidizer to

80



Table 5-5
-11 Hybrid Element Test Summary

Test # Duration Wt PC C*

HA2A- Sec O/F Ib/sec psia ft/sec
4056 54 0.794  0.5864 193.2 5672
4057 5.0 0.724  0.6201 207.9 5769
4058 7.8 0.796  0.5872 194.7 5732
4059 5.0 0.733  0.6214 207.0 5739
4060 6.6 0.712  0.6146 204.4 5743
4061 7.2 0.702  0.6388 216.2 5858
4062 7.4 0.674  0.6474 215.5 5764
4063 5.8 0.728  0.6375 214.5 5807
4064 8.8 0.685  0.6588 210.1 5531
4065 8.2 0.717  0.6424 204.9 5510
4066 6.2 0.720  0.5902 196.5 5737
4067 9.8 0.675  0.5931 193.4 5613

Fuel OX

Gap (df) Gap (do
0.0033  0.0140 |
0.0033  0.0140
0.0010  0.0140
0.0010  0.0140
0.0021  0.0140
0.0021  0.0140
0.0021  0.0140
0.0021  0.0140
0.0021  0.0140
0.0033  0.0140
0.0021  0.0140
0.0021  0.0140
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SSRT Hot Fire Tests

Performance Verses Mixture Ratio
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fuel) at the primary impingement point, which caused a hotter
dome heating condition. As discussed in section 4, analysis
of thermocouple data from the highest performing teste (HA2A-
4061 and 4063) indicated that operation with a columbium
thrust chamber at a maximum steady state temperature of 2500F
is feasible.

The heat load to the injector during testing with the -11
hybrid element was too high to allow steady state operation
of the engine in the current configuration (see section
4.2.1). Analysis indicated that the oxidizer will experience
film boiling in the injector, leading to an unacceptable
thermal condition. Additional work is needed with injector
cooling concepts to reduce the heat load into the oxidizer
main flow.

Post test hardware condition was excellent, with no signs of
excessive heating or distortion. The copper chamber was in
excellent condition, with no signs of damage or erosion.

5.5 Test Conclusions

Overall, the exploratory test series of the SSRT was very
successful. A total of 76 tests was performed, accumulating
over 700 seconds of hot fire duration. The performance goal
of a vacuum specific impulse (Isp) of >340 lbf-second/lbm

(€ = 204) was demonstrated, while maintaining a wall
environment compatible w1th long duration operation of a
radiation cooled columbium thrust chamber. The thermal load
to the injector was defined, yielding information for the
design of a thermally adequate injector in the next program
option. Reliable ignition and stable operation of the engine
was demonstrated.

Testing of an injector fuel element geometry that ylelded
high performance with hypergolic propellants resulted in a
lower level of performance with the LO,/N o2H, combination.
Significant differences in operating characterlstlcs between
the hypergolics and LO 2/NoH, were observed. Also, it was
found that operation at lower flow rates (F = 125 1bf)
resulted in difficulties in attaining single phase liquid
oxygen flow to the engine.

Testing at the 200 1bf thrust equivalent flow rate allowed
more control over the LO, inlet temperature, allowing single
phase flow and improved 1njector cooling for short duration
testing. The results of the testing with five 200 1bf
injector element conflguratlons indicated that the fuel
element geometry is the primary performance driver for this
engine. The engine was relatively insensitive to other
injection parameters such as total flow and injection
velocities, especially compared to the hypergolic engines.
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The results of the testing indicated that an increased number
of fuel slots resulted in highest performance. The smaller
slots produced a finer drop size, resulting in better
vaporization of the fuel.

Although significant accomplishments were achieved in this
test series, additional development is required. A method of
cooling the injector to allow steady state thermal operation
of the engine is required. The impacts of the injector
cooling approach on performance must be assessed. More
extensive performance mapping of the injector is required, as
well as the demonstration of long duration operation.

86



6.0 TEST PLANS

A preliminary logic plan was developed for Option 1 of the
SSRT Program. This logic plan is shown in Figure 6-1.

6.1 Option 1

The major emphasis on the Option 1 program is evaluation of
of the most promising methods of dome cooling for
determination of the effectiveness of these concepts and
their impact on performance and thrust chamber wall
temperatures. A preliminary design of the injector
integrating the cooling concept for generation of maximum
performance will be accomplished at the conclusion of Option
1.

New injector hardware will be designed using a thermally
isolated dome. This dome is designed to have the capability
of using replaceable auxiliary sections incorporating thermal
blockage and film cooling dome cooling concepts.

Pintle, sleeve, oxidizer gap and fuel gap changes are
incorporated into the injector design similarly to the Basic
program design. This injector is designed and manufactured
to allow for wide flexibility of testing in a cost effective
manner. In addition a study will be conducted to assess
ignition methods so it can be incorporated into the
preliminary design.

Testing will be accomplished in the same test cell as the
Basic program tests (HA2A). The preliminary logic matrix is
presented in Figure 6-2. The detailed test plan will be
prepared upon completion of design. The test program is
configured to obtain the data required to determine the dome
cooling concept for integration into the Option 2 injector.
The test program will utilize two injector elements and test
varying oxidizer (o) and fuel (6¢) gaps and mixture ratio
(O/F) and total flow (Wp). Analy51s of the test data with
correlations of performance and thermal considerations will
be generated to allow an understanding for further design and
test.

A preliminary design of an injector integrating the best
cooling concept and the high performance mechanisms will be
accomplished by the completion of the Option 1 program. The
basis of the Option 2 detailed design will be provided by
this preliminary design developed based on the test results
of Option 1.
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7.0 CONCLUSIONS

Several conclusions were reached as a result of completion of
the basic SSRT program.

e The greatest potential usage for the Space Storable engine
is utilization as an advanced dual mode apogee/perigee
engine in a dual mode propulsion system for placement and
maintenance of satellites in GEO. The best propellant
combination to achieve this usage is LO,-N,H, as it
provides the best system/engine capability including
maximization of payload into orbit and achieved the best
overall rating of the characteristics of the fuels
evaluated.

e Thermal and performance analyses indicated that high
performance of 340 lbf-sec/lbm (€ = 204) could be achieved
with operation in a columbium thrust chamber.

® Testing confirmed the analyses. Six injector geometries
indicated the need to redesign the injector dome to prevent
two-phase LO, The testing demonstrated that high
performance (95% c* ) (Isp > 340 l1lbf- sec/lbm with € = 204)
could be achieved and that operation in a columbium thrust
chamber is feasible. The use of a rhenium thrust chamber
is another alternative which would allow even higher
performance (approaching 97% c* to yield Isp — 350
l1bf-sec/1bm).
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8.0 RECOMMENDATIONS

The major recommendation based upon the basic program results
is to continue the development of the LO,-N,H, Space Storable
engine with Option 1. The emphasis on the Option 1 program
is resolving the dome heating issues by incorporating dome
cooling concepts and evaluation of these concepts by test to
determine cooling capability and its impact on performance.
Ignition concepts should also be studied to determine the
concept to be incorporated into the integrated injector of
Option 2. The output of the Option 1 program should be the
preliminary design of the best cooling concept in the
injector providing maximum performance.

The recommendations for the Option 2 and Option 3 programs
are to complete development of the Space Storable engine to
allow verification and qualification beyond Option 3. The
recommendation for the Option 2 program is to develop the
integral injector incorporating high performance and dome
cooling and demonstrate its characteristics by test. The
results of the Option 2 program are factored into Option 3.
The recommendation for the Option 3 program is to develop a
flight-type engine and demonstrate its characteristics by
test prior to shipment to NASA-LeRC.
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