
%

//Y -6 _ - 7/,v...,

°

_y

Iterative Repair for Scheduling
and Rescheduling

MONTE ZWEBEN

AI RESEARCH BRANCH, MAIL STOP 269-2

NASA AMES RESEARCH CENTER

MOFFETT FIELD, CA 94035

(415) 604-6527

(415) 604-699T FAX

(NASA-TM-107871) ITERATIVE

SCHEDULING AND RESCHEOULING

REPAIR FOR

(NASA) 22 P

G3/63

N92-26095

Unclas

0091486

N/I_A Ames Research Center

Artificial Intelligence Research Branch

Technical Report FIA-91-16

September, 1991

__T •

II

Iterative Repair for Scheduling and

Monte Zweben

Eugene Davis* •
Michael Dealer

NASA Ames Research Center

M.S. 244-17

Moffett Field, California 94035

zweben@kronos.arc.nasa.gov

Rescheduling

September 30, 1991

Abstract

This paper describes an iterative repair search method called constraint-based sim-

ulated annealing. Simulated annealing is a hill climbing search technique capable of

escaping local minima. We demonstrate the utility of our constraint-based framework

by comparing search performance with and without the constraint framework on a suite

of randomly generated problems. We also show results of applying the technique to

the NASA Space Shuttle ground processing problem. These experiments demonstrate

that the search method scales to complex, real-world problems and reflects interesting

anytime behavior.

1 introduction

Iterative repair scheduling techniques typically hill-climb through a space of complete sched-

ules repeatedly making patches or fixes to the schedule's weak points [Zwe90, Ming0, Bie91].

The informedness of individual repairs can range from weak, random repairs to very knowl-

edge intensive repairs. This paper presents a search framework for incorporating repair

knowledge and investigates the continuum of repair informedness by empirically contrasting

different repair strategies on randomly generated rescheduling problems.

The fundamental questions addressed by our experiments are:

"Recom Software

t Lockheed Space Operations Company

• Is it faster to perform many weak, but cheap to compute repairs as opposed to fewer,

more computationally intensive, smart repairs.

• Can a knowledge intensive repair strategy scale to a real-world problem?

Our results bear evidence that knowledgeable repairs do converge overwhelmingly faster

than weaker repairs. Additionally, experiments with knowledgeable repairs on the Space

Shuttle ground processing domain indicate that the informed strategy can scale to complex,

real-world problems.

The specific iterative repair method we use is constraint-based simulated annealing. Sim-

ulated annealing [Kit83] enables a hill-climbing search technique to escape local minima. The

technique has been applied to design problems, scheduling problems, and traditional com-

binatoric problems [Kit83, Joh90a, Joh90b, Ott89]. Annealing begins with a rough (but

complete) solution to a problem and then iteratively modifies the solution until it is of ac-

ceptable quality. It escapes local minima by conservatively considering poor solutions that

eventually lead to more desirable schedules.

The main contribution of our work is the constraint-based representation that enables

one to exploit knowledge within the simulated annealing framework. This modular and

extensible representation scheme results in a more informed search when compared to the

stochastic methods generally utilized by simulated annealing systems. The organization of

this paper is as follows. First we formulate rescheduling as constraint satisfaction and then

present the constraint-based simulated annealing algorithm. We then report our empirical

results and finally attempt to portray our work in the context of previous work.

2 Fixed Preemptive Scheduling

Scheduling is the process of assigning times and resources to the activities of a plan. Fixed

preemptive scheduling is a specialization of classical scheduling, where each activity is pre-

empted when it intersects an illegal time interval specified by an activity work calendar.

An activity work calendar designates when work is prohibited. Holidays and overtime shifts

are typical examples. Fixed preemptive schedulers split activities into the shortest sequence

of contiguous subtasks, such that each subtask is legal with respect to the parent's work

calendar. Fixed preemptive scheduling is distinguished from flexible preemptive scheduling

because of the shortest contiguous sequence restriction. In other words, fixed preemptive

problems prohibit idle time between the split subtasks of an activity, if that idle time is legal

with respect to the task calendar.

Scheduling assignments must satisfy a set of domain constraints. Generally, these in-

clude temporal constraints, milestone constraints, and resource requirements. Temporal

constraints relate tasks 1 to other activities (e.g., end(T1) < start(T2)) and milestone con-

straints relate tasks to fixed metric times (e.g., end(T1) <_ 11/23/90 12 00 00). A resource

requirement consists of a type and quantity of a resource (e.g., 4 mechanical technicians, 3

iWe use the terms task and activity interchangeably.

2

cranes).Eachresourcerequirementhasa correspondingcapacity constraint. The constraint
assertsthat the resource must not be overallocated.

We also model the state requirements and effects for each activity A state requirement

asserts that a state variable must have a certain value over a period of time (e.g., the

payload bay doors must be open during an activity, the power and the hydraulics must be

off during a task, or an area must be clear during an activity). Each state requirement

has a corresponding constraint that forces the state variable to have the correct value over

the specified time interval. State effects model how activities change state variables (e.g., an

activity opens the payload bay doors from the end of an activity and persists until something

else closes them, or an activity makes an area hazardous during the activity, etc.). Figure 2

summarizes the definition of fixed preemptive scheduling problems.

2.1 Rescheduling

In real-world apphcations, schedules rarely execute as planned because of the inherent un-

certainty of operational environments. This uncertainty is typically manifested as:

1. modifications to the start and end of activities,

2. modifications to the quantity of resources required,

3. modifications to the work durations of activities,

4. unavailable or defective resources,

5. unexpected state conditions,

6. the addition of new activities that have become relevant, and

7. the removal of existing activities that have become obsolete.

As originally described in [Ow,88], any rescheduling algorithm must be sensitive to the

speed of rescheduling, the domain optimization criteria, and the amount of perturbation to

the original schedule. Typical optimization criteria include the minimization of flow time

(work-in-process time), the minimization of labor overtime, and the minimization of deadline

tardiness. In our presentation of constraint-based simulated annealing below, we will discuss

how our heuristics address optimization criteria.

3 Constraint-Based Simulated Annealing

We have extended traditional simulated annealing with a constraint framework that is used

to both evaluate solutions and to improve solutions. In the following sections we describe

our constraint language, give examples of the specific constraints used in our experiments,

and finally present the role of constraints during search.

Given a set of tasks, each with:

1. a work duration

2. a work calendar

3. a set of temporal constraints

4. set of resource requirements

5. a set of state requirements

6. a set of state effects

Find:

1. a splitting of each task into subtasks,

2. a metric start and end time for each subtask, and

3. an assignment of a specific resource pool for each resource request,

Such that:

1. the subtasks of each task are consistent with its preemption work calendar,

2. the aggregate duration of subtasks sums to their parent task's work duration,

3. all temporal constraints are satisfied,

4. all state requirements are satisfied, and

5. no resource is overallocated or prematurely depleted (i.e, all resource capacity con-

straints are satisfied).

Figure 1: Fixed Preemptive Scheduling

4

3.1 Constraints

Constraints are defined by the functions depicted in Figure 3.1.4. Every constraint has a

penalty function, a weight, and a repair function. The penalty function measures the degree

of violation for the constraint. The constraint weight is a measure of utility or importance

for the constraint. Both the weight and penalty contribute to the goodness evaluation of a

schedule called the cost function (see Figure 3.1.4). The repair function modifies a sched-

ule with the intention of improving the constraint's penalty. Repairs usually improve the

penalties, but occasionally they inflict further constraint violations (that get repaired in later

iterations of the search). Repair functions either replace resource assignments or reassign

activity times. Tasks that are temporally reassigned must also be re-split according to their

work calendars. Before discussing the repair functions in more detail, we present the MOVE

operator that performs temporal reassignment.

3.1.1 MOVE Operator

The MOVE operator places the given task at a given time, and then if necessary, moves

other tasks to satisfy temporal constraints. It takes a state, a task, a time, and a direction

and then finds anewstate: MOVE : S × Task ×time × direction _ S j. A state is an

assignment of values to all variables constituting a schedule. If direction is one, then the start

of the task is placed at the given time, otherwise, the end of the task is placed at that time.

The MOVE operator is implemented as a Waltz constraint propagation algorithm over time

intervals [Wa175, Day87]. In constraint satisfaction terminology, this algorithm enforces arc-

consistency [Mac77, Fre82]. The algorithm recursively enforces temporal constraints until

there are no outstanding violations.

After every schedule modification, the MOVE operator is employed to preserve temporal

constraints. For example, if a task is delayed by the user, the Waltz algorithm will reas-

sign each postrequisite that has violated temporal constraints. This in turn causes further

violations that are recursively resolved until temporal quiescence.

Repair strategies also rely on the MOVE operator and are described in the next sections.

It is important to note that the penalty, weight, and repair functions for temporal constraints

are unnecessary because these constraints are preserved by the MOVE operator.

3.1.2 Resource Capacity Constraints

The resource capacity constraint is a relation among the start time, end time, and a resource
pool variable of a task. It states that the resource assigned to the request must not exceed

its capacity during the task. For example, the first resource request of a task has the corre-

sponding constraint:

holds(ST(?T), ET(?T),

TU(Pool(ResourceRequest(?T, 1))) _<

Capacity(Pool(ResourceRequest(?T, 1))))

where ST stands for the start time, ET for the end time, and TU for total aggregate usage

of the resource pool assigned to the request The penalty of the constraint is boolean - it is

one if the condition is violated and zero otherwise. The weight of the constraint is one.

The repair for a resource capacity constraint initially attempts to substitute a new re-

source pool. If this does not satisfy the constraint, it selects an activity contributing to

the overaUocation and reassigns it to another time. This reassignment exploits the MOVE

operator to preserve temporal constraints.

The computational complexity of this repair is proportional to the cost of selecting a task

to move. One viable strategy is to move the task associated with the constraint which yields

a constant time selection. Another strategy is to move a different task that is simultaneously

using the resource. Any heuristic used for this choice should consider the following criteria:

Fitness: Move the task that is using an amount closest to the amount that is overallocated.

A task using a smaller amount is not likely to have a large enough impact and a task

using a far greater amount is likely to be in violation wherever it is moved.

Temporal Slack: Any task that is highly constrained (i.e., few legal times) temporally

is likely to cause temporal constraint violations and therefore could result in large

perturbations to the schedule.

Temporal Dependents: Similar to temporal slack, a task with many dependents is likely

to cause temporal constraint violations, if moved.

Severity of Bottleneck: Prefer tasks that do not need to be moved drastically to avoid

extending flow time and to mimize perturbation.

Priority: The system should avoid delaying important tasks, but prefer moving them ear-
lier.

In-Process: A task that has already begun should be completed as soon as possible, rather

than temporarily stopping it, and then continuing later.

Chronological Proximity: It is better to move activities that start later in the schedule

than those that are about to begin.

Cycles: It is better to avoid moving tasks that have been moved frequently in previous

iterations because the iterative improvement algorithm can potentially cycle.

We address the speed of scheduling with the above criteria by considering only the next

available time for each move, rather than by exploring many possible times. This same

criteria also avoids extending flow time because later available times are not immediately

considered

In our current implementation, we consider only fitness, temporal dependents, severity of

bottleneck, in-process, and chronological proximity. Let T be the set of tasks that are using

the resource during the time corresponding to a constraint. We calculate two probabifities

I?

for each member of T: the probability of moving the activity to the next later available time

and the probability of moving the activity to its next earlier time. These probabilities are

calculated by combining scores based on the criteria above. We disregard scores for criteria

that are not very discriminatory with the hope of improving the effectiveness of this scoring.

For example, if all the culprits have a comparable number of temporal dependents, then the

scores for this criterion are discarded when calculating the move probabilities. The repair

then chooses the move randomly with respect to the probabilities calculated.

The use of probabilistic repairs that are biased by heuristic knowledge is an important

attribute of this technique because it circumvents infinite cycling and myopic side effects.

For example, suppose the system resolves a resource constraint by delaying the best activity

according to its heuristics. Then suppose a milestone is violated and the activity is returned

to its initial time in the next iteration. Without probabilities, this would infinitely recur.

Myopic side effects axe also avoided because sometimes the system will disregard its local

heuristic and result in better schedules. Section 5.3.2 discusses the effects of this stochastic

behavior.

The complexity of this repair is dependent on the data structure representing resource

availability. The aggregate usage of a resource pool is represented as a history [Wil86] or

time line implemented as lists of tuples. The first element of the tuple represents a time

interval, the second represents a value, and the third is the set of tasks using the resource.

For example,

(([0 100] 16 nil)

([tO0 200] i0 (Tt T2))

([200 :pos-infinity] 16 nil))

indicates that tasks T1 and T2 use six units of the resource from time 100 to 200 and no

other utilizations exist. Using this data structure, the worst-case complexity of the resource

capacity repair is O(T 2) where T is the number of tasks. This is the case where all tasks use

the same resource and every task must loop down the entire history to score the severity of
bottleneck criterion.

3.1.3 State Constraints

The state constraint is a relation among a time interval, a state variable and a state. The

constraint indicates that the state variable must be in the given state over the given interval.

For example, a task requiring that the main landing gear of the space shuttle be deployed

during the activity would be:

holds(ST(?T), ET(?T),

MainLandingGear(Atlantis) = DOWN)

The penalty of this constraint is boolean with a weight of one. To repair this constraint,

the task with the requirement is reassigned to the next point in time when the state variable is

assigned the desired value. Again the MOVE operator is used to shift a task and to preserve

.7

• Let S = {sl, s2, ..., sn} be the set of possible states where each si is a unique assignment

of values to all variables (i.e., a schedule).

• Let C = {cl, c2, ..., c_} be the set of constraints.

• Penalty,_ : S --* [0, 1] is a function defining the cost of a single constraint violation

given a state.

• Weight¢_ :4 [0, 1] is a function defining the importance or utifity of a constraint.

• Repair_ : S _ S' is a function that modifies a state to improve a constraint violation.

Figure 2: Constraints: A representation of generation and test knowledge.

temporal constraints. In the future, we plan on extending this repair with options resembling

the modal truth criterion of non-linear planners [Cha87]. One option is to introduce a new

activity that satisfies the state requirement. Another is to move a task that sets the state

variable appropriately, before the task with the requirement 2. The final option is to move

an activity that clobbers the required state to another time where it does not interfere. In

future work, we intend to tackle planning problems with a probabilistic decision function

analogous to the resource constraint repair. While this approach sacrifices the completeness

properties that many non-linear planners enjoy, we believe that the anytime characteristics

(see Section 4) of our search will be appealing. Since state variables are also represented as

histories, searching for the next time with the correct state is of complexity O(T), where T

is the set of tasks that change the state variable.

3.1.4 Milestone Constraints

The milestone constraint enforces a relationship between a task and a metric time. For

example, holds(end(?T) < 11 23 90 12 00 00). The penalty of the constraint is boolean and

the weight of the constraint is one. The repair uses the MOVE operator to shift the violated

activity to satisfy the milestone.

3.2 Search Algorithm

Resch a ng beginswhena userenterssched,aemodificationsvia a graphicaluser inter-
face. Then, for each modification, the MOVE operator is enforced. This provides the

initial scheduling assignment for annealing. The goodness of this assignment is calculated

by the cost function. The specific cost function for our experiments is simply the number

of constraints violated for the given assignment. Then, by repairing penalized constraints,

it suggests a new solution and evaluates its cost. If the new cost is an improvement, it

2This option was included in an earlier prototype of the system but it is not used in these experiments.

adopts the newassignmentand continues.If the newsolution is worse,the algorithm adopts
it accordingto the escapeprobability. This last step allows the algorithm to escapelocal
minima. The basicalgorithm is asfollows (whereS is a full schedule):

Solve(S){

Old = Cost(S);

Repeat until Old <= *THRESHOLD* {

S' = New(S);

NewC = Cost(S');

If NewC < Old

Then Old = NewC; S _ S';

Else { With probability Escape do

Old = NewC; S = S';

};

SaveBest Solut ionIfNeces sary ;

During each iteration, a subset of the outstanding violations is retrieved and then re-

paired. Currently, we repair the ten earliest availability constraints, and all the violated

state-variable constraints. We plan to experiment with these parameters to determine how

they affect the convergence to a solution. We bound the search by a maximum number of

iterations and a maximum cumulative time. Generally, we use a very large time bound and

a limit of 40 iterations per run.

3.2.1 Noise: Escaping Local Minima

In the algorithm presented above, we accept "worse" solutions with the Escape probability

function specified in Figure 3.2.1. This permits the algorithm to follow paths that are

undesirable with respect to the cost function. These paths are later repaired and usually

result in much improved solutions. The Escape temperature 3 parameter (T) controls the

likelihood that poor solutions will be accepted; higher temperatures are more aggressive.

For example, consider the case where the temperature is high (T=100) and the new solution

is similar to the current solution (i.e., their costs differ by 5). In this case, the probability

that the new solution will be accepted is .95123. However, if we lower the temperature to 5,

the probability is only .36787. In addition to being sensitive to the temperature parameter,

the escape function is also sensitive to the degradation in solution quality. Even if the

temperature were aggressively set to 100, when the cost of new solution differs by 100, the

probability of acceptance would only be .36787.

The algorithm begins with a high temperature and is reduced according to a "cooling"

schedule. As a result, the algorithm initially jumps around the search space but then makes

more careful repairs. Currently, we begin with a temperature of 100 and reduce it after

3The name of this parameter is reminiscent of the algorithm's physical chemistry origin.

9

Cost(s) = PenaUyo,(s)• Weight°,
ci_C

is a function indicating the goodness of a state.

• New : S _ S' is a function that transforms a state into a new state by a sequence of

repairs:

Repairc,(s) o Repairc, (s) o ...nepair_. (s)

• Escape(s, s', T) = e -Ic°'t(s)-C°st(s')l/T is the probability that the system will transition

into a worse state in order to escape a local minimum.

Figure 3: The basic functions of constraint-based simulated annealing.

several iterations to 75. When the cost is low, we then reduce the temperature to 25. After

many iterations, the temperature is further reduced to 10.

As stated previously, we introduce noise in the search process to escape local minima.

One explanation for this is that the cost function does not accurately reflect how "close" a

candidate solution is to the actual solution; it is only a measure of the flaws in a candidate

solution. For example, a logical assumption is that if only one availability constraint is

violated, then the algorithm is quite close to a solution, however this is misleading. It may

require over 20 repairs to achieve the overall goal of zero cost, because 20 tasks must be

reassigned. In fact, all paths that lead to a solution may need to transition through a state

of higher cost.

4 Anytime Characteristics

When searching for a solution, the annealing algorithm saves its best solution to date and

returns it when the algorithm is interrupted. This approach meets the criteria put forth in

[Dea88] to be classified as an anytime algorithm. Their criteria classifies anytime algorithms
as those that:

1. can be interrupted and restarted

2. can be terminated at any time and will output an answer

3. return answers that improve in a well-behaved manner over time.

An additional consideration is that the solution output must be useful to the user. It

makes no sense to be anytime if the solution can not be utilized effectively.

10

Our algorithm is interruptible, restartable, and outputs a solution when terminated.

The solution quality increases as a step-function of time. Figure 4. is an actual run of

our algorithm that demonstrates the relationship between the cost and best cost over time.

Interim solutions are useful in our application domains because human schedulers can man-

ually resolve conflicts in the schedule, especially when there are few conflicts that tend to

be over-allocations of resources. Usually, the remaining conflicts can be resolved by allowing

proximate activities to share resources. Our system is not capable of modeling this sharing

capacity at this time.

5 Experiments

Our experiments show that constraint-based simulated annealing is practically useful on

large scale, complicated problems, and that it converges to acceptable schedules faster than

the weaker repair techniques. We show that constraint penalties focus the search on the

weak areas of the schedule, and that the heuristic knowledge embodied in constraint repair

functions accelerate convergence.

5.1 NASA Application - Space Shuttle Processing

To prepare the Space Shuttle for launch, a plethora of inspection, repair, and installation

activities take place around the clock, for about 60 days, by a large team technicians, engi-

neers, and supervisors at the Kennedy Space Center (KSC). In cooperation with the Lock-

heed Space Operations Company, we are investigating the use of our rescheduling system to

help coordinate this process. We have modeled the Space Shuttle processing environment

with about 500 activities that are split into a approximately 4000 subtasks. There are 900

temporal constraints, 3600 resource constraints, and 3900 state requirements. The orbiter

processing environment is rife with uncertainty and reactive decisions are made quickly.

Suppose a scheduling change causes many conflicts for a particular schedule. It would be

unacceptable for technicians and other personnel to remain idle while the system resolves

every conflict. An anytime solution must be adopted, at least for the activities slated for
immediate execution.

Figure 5. presents the results of simulating rescheduling scenarios using actual Space

Shuttle processing data. We modify a random number of activities and then initiate reschedul-

ing. The graph plots best cost aganist cumulative time. These graphs indicate that the

algorithm scales to very large problems and maintains its anytime characteristics.

5.2 Artificial Problem Generation

In order to contrast constraint-based annealing with weaker repair methods, we have ran-

domly generated a set of 25 rescheduling problems. Randomly generated problems ensure

that our techniques transfer to problems that differ from the application discussed above.

For each, problem we generate the following information:

11

1. the total number of tasks

2. the work-duration for each task

3. the number of resource classes

4. the number of instances per resource class

5. the capacity for each resource instance

6. the number of resource requests for each task

7'. the required quantity for each resource request

We generate a set of tasks and resources with respect to this data and also probabilistically

generate a set of temporal constraints between activities.

To facilitate experimentation, we made many simplifying assumptions when generating

problems. All activities use a contiguous calendar (no holidays, no work shifts). The only

temporal constraints generated assert that the end of a task must be less than or equal to

another task's start. There are no state requirements or effects in the generated problems

and each problem has a fixed start time and a milestone due date at its end.

Given a scheduling problem, we search for a solution using a systematic backtracking

search method [Zwe89, Esk90]. Given this schedule, we generate a rescheduling problem by

moving an arbitrary set of tasks by a random amount and direction.

5.3 Rescheduling Strategies

We hypothesized that constraint-based simulated annealing would converge faster to accept-

able solutions when compared to weaker repair strategies because of two major reasons:

. Constraints focus the search on the weaker areas of the schedule because they provide

a type of local blame assignment. In contrast, traditional annealing applications and

many other hiU-climbing systems rely strictly on the global cost function to judge
solutions.

2. Constraint repairs strongly bias the search towards promising solutions. Weaker repair

methods rely on probability functions that do not offer much heuristic power.

To confirm our hypotheses, we compared three different repair strategies. The first is

Constraint-Based Simulated Annealing (CSA) as described above. The other techniques

are more stochastic in nature and less knowledge-intensive. The second strategy - proba-

bilistic constraint repair (PCR), uses constraints to localize repairs but performs them in a

strict probabilistic manner. The final strategy - random (R), is completely stochastic, in

that it uses constraints only in the _Calculation of the cost function.

The PCR strategy modifies schedules by repairing violated constraints. For each con-

straint drawn from a subset of violated constraints, it probabilistically decides to substitute

B

12

an alternative resource or to move the task involved in the violation. When moving a task, it

probabihstically generates the location of the move. Whenever PCR moves a task, it exploits

the MOVE operator to preserve temporal constraints.

The R strategy probabilistically decides to move a task or to swap a resource pool without

reference to the violated constraints. The selection of which task to move (and the location

of the move) or the selection of the resource to substitute is also probabihstically driven.

The R strategy also exploits the MOVE operator for shifting tasks.

We tested each of the above strategies on 25 problems that were generated in the manner

described in the previous section. Since repair functions are probabihstic, we calculate

average results over repeated trials. 4 The cost threshold was zero and the time bound was

15 minutes. In the next section we analyze the results of these experiments.

5.3.1 Empirical Results

Figure 6. presents the average best cost of each strategy over time. For a more meaningful

presentation, we have normalized cost so that each curve indicates the time it takes to

converge towards zero from a cost of one for every generated problem. Clearly, the constraint-

based simulated annealing techniques converge toward acceptable solutions faster than the

other techniques. Some of the generated test problems were overconstrained and did not have

a zero cost solution. For these problems, all three techniques used the maximum amount

of time. However, the CSA method had superior schedules upon termination. PCR and R

could not reach zero violations within the time bound in many cases where CSA could. As

expected, the use of constraints in the PCR method helped to focus the search but did not

perform as well as the more informed CSA method.

One significant disadvantage of constraint-based simulated annealing is that it is incom-

plete. This implies that when the algorithm reaches its termination bound, there is no way

to ascertain whether a solution actually exists or whether the search would find the solution

if there were more time. Further, if there is no solution, the system will always continue

repairing until it reaches its iteration bound (or is interrupted). Again, we believe that the

average case behavior of the technique is worthy of sacrificing this completeness.

5.3.2 Effects of Randomness

CSA uses heuristic repair knowledge to bias probabilistic choices. We have observed that this

stochastic behavior can result in mixed performance. Figure 7. demonstrates this behavior

as an envelope of convergence. Here we show the average convergence time between the

best and the worst trials. This indicates that the technique is sensitive to the probabilistic

4The constraint-based simulated annealing experiments were repeated 20 times and the other strategies
were repeated 10 times. The convergence characteristics of PCR and R did not vary much between rep-
etitions and therefore were repeated fewer times. We observed that R and PCR were more sensitive to
the temperature parameter than CSA and therefore, with the hope of giving these techniques a boost, we
optimized the cooling strategy for these strategies to the best one we could develop empirically. The cooling
strategy for CSA was not changed.

13

decisionsfor a particular run, but reflects attractive average case behavior. In fact, when the

system is having great difficulty converging, it is feasible that simply restarting the problem

would resolve its difficulty. We plan to experiment with this "forget and retry" strategy in
the future.

5.3.3 Discussion

The convergence properties of constraint-based simulated annealing depend upon the prob-

ability that a conflict will occur after modifying a schedule. This probability has four main

components: 1) the probability that an activity will be concurrent with other activities;

2) the probability that concurrent activities will compete for resources; 3) the tightness of

resource availability; and 4) the probability that the parallel activities will require contradic-

tory states. Unfortunately, our empirical studies have not yet provided ample data to draw

conclusions about the exact effect of these characteristics upon rescheduling. We expect

that future experimentation will reveal these relationships and that they will help assess

the difficulty of a problem before rescheduling. If one were capable of roughly estimating

the difficulty of the problem, the cumulative time bound could be selected more wisely. We

are exploring metrics that measure the connectedness of the temporal constraint graph, the

amount of overlap between the types of resources that tasks request, the fraction of total

resource capacity that tasks request on average, and finally the number of activities vieing for

state conditions. We believe that a combination of these measures will be a useful estimator

of search difficulty.

6 Related Work

Our work was heavily influenced by the criteria put forth in [Ow,88] and by the functionality

of the ISlS,OPIS, and Cortes schedulers [Fox83, Fox84, Sad89]. These systems all exploit

constraint representations but do so within a systematic search framework. In addition

to beam search, OPIS also employs rescheduling repair strategies that resemble dispatch

heuristics. Like ISIS, OPIS, and Cortes, we use constraint-based representations to focus

search but we use our constraints within the basic simulated annealing framework described

in [Joh90a, Joh90b].

Repair-based frameworks date back to the "fixes" used in the Hacker planning system

[Sus73] and are still used in current systems such as GEMPLAN [Lan88]. GEMPLAN

exploits domain locality to improve a systematic search strategy through the repair space

(as opposed to our iterative improvement strategy).

Our experiments corroborate with a parallel study of a repair-based technique called MIN-

CONFLICTS [Min90]. For any violated constraint, the MIN-CONFLICTS heuristic chooses

the repair that minimizes the number of remaining conflicts. However, it is important to

note that MIN-CONFLICTS may be too expensive to use in a preemptive scheduling domain

where the granularity of time is small. This is because of the overhead of re-splitting a task

whenever a new start time is considered multiplied by the large number of possible times.

14

For example,considera violated resource capacity constraint that has only one pool to assign

(i.e., substitution is impossible). For each task contributing to the violation the system must:

1. Search for the next available time given a resource availability history. 5

2. Move the task to that time.

4

.

Re-split the task, inheriting resource and state constraints to the split tasks when

specified.

Repeat for all tasks moved by the Waltz algorithm's enforcement of temporal con-

straints.

5. Test the number of conflicts.

Rough experiments have indicated that pure MIN-CONFLICTS is much slower than our

more local heuristics when tried on the Space Shuttle problems.

Our work is also related to FORBIN [Mil88] in that deadline and resource requirements

are addressed, but our representations and search techniques differ greatly. FORBIN repre-

sents time-changing information as propositions maintained by the TMM - Time Map Man-

ager IDea85] and use traditional graph search algorithms to maintain consistency among

these propositions. Tate et. al. also address planning and scheduling with deadline and re-

source requirements in O-Plan [Be185]. They use a blackboard framework to systematically

search through a space of repairs for outstanding plan flaws.

We also have similar goals as Drummond and Bresina [Dru90]. They are developing an

anytime agent architecture based upon beam search that explicitly represents uncertainty

and disjunctive schedules. Their algorithm is anytime with respect to the certainty of goal

achievement. With more time, the system robustifies its behavior by developing contingency

plans for the likely deviations.

Finally, our technique is also closely related to the Jet Propulsion Laboratory's OMP

scheduling system [Bie89, Bie91]. OMP uses procedurally encoded patches in an itera-

rive improvement framework. It stores small snapshots of the scheduling process (called

chronologies) which allow it to escape cycles and local minima. OMP addresses the flexible

preemptive scheduling problem.

7 Conclusions and Future Work

Our experiments suggest that our constraint framework and the knowledge encoded in this

framework is an extremely effective search aid. The framework is modular and extensible in

that one can declare new constraints as long as their weight, penalty, and repair functions

are provided. We look forward to a more extensive analysis of the sensitivity of our search

method to the parameters of the algorithm and to the characteristics of the given problems.

5A pure interpretation of MIN-CONFLICTS would consider every time point.

15

We areengagingin a rigorousapplicationeffort hopefully resulting in daily use of our system

in support of Space Shuttle processing. We also expect to extend our previous research in

machine learning and scheduling [Esk90] to augment iterative improvement search methods.

We are considering techniques for learning the general conditions under which "worse" solu-

tions should be pursued instead of solely relying upon a probabilistic approach. We are also

investigating the automatic tuning of the parameters of our algorithm as well as learning

temporal abstractions. Finally, we would like to empirically compare and contrast CSA to

other rescheduling systems in a larger set of experiments.

Acknowledgements

Thanks to Brian Daun, Todd Stock, and Ellen Drascher for all their contributions. We

thank Cindy Mollakarimi, Danielle Schnitzius, and Mark Yvanovich for all their help at

KSC. Special thanks to Eric Clanton, Flow Manager of the orbiter Endeavour, and Wayne

Bingham, Vehicle Operations Chief of the orbiter Columbia, for their patience and help in

our Space Shuttle application effort.

References

[Be185]

[Bie89]

[Bie91]

[Cha87]

[Dav87]

[Dea85]

[Den88]

[Dru90]

[Esk90]

Bell, C.,Currie, K., and Tare, A. Time Window and Resource Usage in O-Plan.

Technical report, AIAI, Edinburgh University, 1985.

Biefeld, E. and Cooper, L. Scheduling with Chronology-Directed Search. In Pro-

ceedings of the AIAA Computers in Aerospace VII, Monterey, CA, 1989.

Biefeld, E. and Cooper, L. Bottleneck Identification Using Process Chronologies.

In Proceedings of IJCAI-91, Sydney, Austrailia, 1991.

Chapman, D. Planning for Conjunctive Goals. Artificial Intelligence, 32(4), 1987.

Davis, E. Constraint Propagation with Interval Labels. Artificial Intelligence,

32(3), 1987.

Dean, T. Temporal Imagery: An Approach to Reasoning about Time for Planning

and Problem Solving. PhD thesis, Yale University, January 1985.

Dean, T., and Boddy, M. An Analysis of Time-Dependent Planning. In Proceedings

of AAAI-88, 1988.

Drummond, M. and Bresina J. An Anytime Temporal Projection Algorithm for

Maximizing Expected Situation Coverage. In Proceedings of AAAI-90, 1990.

Eskey, M. and Zweben, M. Learning Search Control for a Constraint-Based

Scheduling System. In Proceedings of AAAI-90, Boston, MA, 1990.

16

[Fox83]

[Fox84]

[Fre82]

[Joh90a]

[Joh90b]

[Kir83]

[Lan88]

[Mac77]

[MilS8]

[Min90]

[Ott89]

[Ow,88]

[Sad89]

[Sus73]

Fox, M. S. Constraint-Directed Search: A Case Study of Job Shop Scheduling. PhD

thesis, Carnegie-Mellon University, 1983.

Fox, M. and Smith, S. A Knowledge Based System for Factory Scheduling. Expert

System, 1(1), 1984.

Freuder, E. C. A Sufficient Condition for Backtrack-Free Search. J. ACM, 29(1),
1982.

Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C. Optimization By Sim-

ulated Annealing:An Experimental Evaluation, Part I (Graph Partioning). Oper-

ations Research, 1990.

Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C. Optimization By Simu-

lated Anneallng:An Experimental Evaluation, Part II (Graph Coloring and Number

Partioning). Operations Research, 1990.

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P. Optimization by Simulated Annealing.

Science, 220(4598), 1983.

Lansky, A. Localized Event-based Reasoning for Multiagent Domains. Computa-

tional Intelligence, 4(4), 1988.

Mackworth, A.K. Consistency in Networks of Relations. Artificial Intelligence,

8(1), 1977.

Miller, D., Firby, R. J., Dean, T. Deadlines, Travel Time, and Robot Problem

Solving. In Proceedings of AAAI-88, St. Paul, Minnesota, 1988.

Minton, S., Phillips, A., Johnston, M., Laird., P. Solving Large Scale CSP and

Scheduling Problems with a Heuristic Repair Method. In Proceedings of AAAI-90,

1990.

Often, R.H J.M., van Ginneken, L.P.P.P . The Annealing Algorithm. Kluwer

Academic, Boston, MA, 1989.

Ow, P., Smith S., Thiriez, A. Reactive Plan Revision. In Proceedings AAAI-88,
1988.

Sadeh, N. and Fox, M. S. Preference Propagation in Temporal/Capacity Constraint

Graphs. Technical report, The Robotics Institute, Carnegie Mellon University,
1989.

Sussman, G.J. A Computational Model of Skill Acquisition . PhD thesis, AI

Laboratory, MIT, 1973.

"17

[w 75]

[Wi186]

[Zwe89]

[Zwe90]

Waltz, D. Understanding Line Drawings of Scenes with Shadows. In P. Winston,

editor, The Psychology of Computer Vision. McGraw-Hill, 1975.

Williams, B.C. Doing Time: Putting Qualitative Reasoning on Firmer Ground. In

Proceedings of AAAI-86, 1986.

Zweben, M. and Eskey, M. Constraint Satisfaction with Delayed Evaluation. In

Proceedings of the Eleventh International Joint Conference on Artificial Intelli-

gence, Detroit, MI, 1989.

Zweben, M., Deale, M., Gargan, M. Anytime Rescheduling. In Proceedings of the

DARPA Workshop on Innovative Approaches to Planning and Scheduling, 1990.

r

18

3O

2O

Cost

I0

Current

1
! !

100 200
Time (seconds)

Figure 4: Best Cost and Current Cost

300

Best Cost

8O

6O

4O

2O

0

0 1000 2000 3000 4000 5000
Time (seconds)

Figure 5: Space Shuttle Rescheduling Problems

6000

Normalized

Average
Best Cost

0.8'

0.4 _L'''"'*|'hJ'''= :_='--*''-''°_''|°l.|ol.l.,.l'. | • | • I • • •
• 'l-l-I • |

0.2 t

0.0 , j
0 300 600 900

Time (seconds)

Figure 6: CSA vs. PCR vs. R

Repair Technique
CSA

----o---- PCR

---o----- R

Best
Cost lO

0
0 200 400 600 800 1000

Time (seconds)

Figure 7: The Effects of Randomness

Average
------0--- Min
----m---- Max

REPORT DOCUMENTATION PAGE J OMeNo 0704-0,_8
|

"-P_ h r oor_,n _ butcher' _or tins :ol_ection of mformat_Hn s est mated to _erage '. hour per resporse rncluaing the t_me for reviewing instructions, searching existing data source'S.
uOI ¢ e . _ h_ ,4_._ _._,_.x _nd comb et na and re_e.'_c; the c_llec..on of mformaDon Send cerements r_garding this burden estimate or any other asPeCt of t_Js

collection of information, ,ncluding suggestions for reducing this burden, to '_Vashlngton HeadQuarters Services, Oqrectorate for information OPerations and epo $, 1 1 fferson
Daws Highway. Suite 1204. Arlington. vt_ 22202-.-1302. and to the Office of Management and Budget. Paperwork Reduction PrO ect (0 704-0188). Washington. DC 20503.

1. AGENCY USE ONLY (Leav_ blank) 2_REPORT DATE
Dates attached

4. TITLE AND SUBTITLE

Titles/Authors - Attached

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Code FIA - Artificial Intelligence Research Branch

Information Sciences Division

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Nasa/Ames Research Center

Moffett Field, CA. 94035-1000

r '_3. REPORT TYPE AND DATES COVERED

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

Attached

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Available for Public

13. ABSTRACT (Maximum 200 words)

D is t r ibut ion

J_///__ BRANCH CHIEF

12b. DISTRIBUTION CODE

Abstracts ATTACHED

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Pre$cribed by ANSI Std Z39-18
29B-102

