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I. INTRODUCTION

This is the final report on a project to develop a theoretical basis for interpreting solar
oscillation data in terms of the interior dynamics and structure of the Sun. Work funded
under this project was carried out principally by Dr. Michael Ritzwoller, Dr. Pawan
Kumar, and Dr. Sylvain Korzennik, under the overall guidance of the Principal Investiga-
tor, from March 1989 through August 1991. In sections II, I, and IV we discus: -heir
three related areas of work, and in section V give references to four papers written with
support from this grant. An Appendix gives complete copies of two of these papers and
abstracts and summaries of the other two.

II. STUDIES OF THE HELIOSEISMIC SIGNATURES OF DIFFERENTIAL ROTA-
TION AND CONVECTION IN THE SOLAR INTERIOR.

The now-traditional method to infer differential rotation in the solar interior is to expand
the rotation rate (r,0) as a power series in cosk0 or in Py (cos0), and relate the expansion
coefficients to the observed helioseismic mode splittings. These splittings may themselves
may be expanded in Legendre polynomials of m//, where m and / are the azimuthal order
and degree, respectively, of the oscillation modes. This expansion has the appeal that
because different terms of the expansion are orthogonal over the sphere, observational
errors in determining the different terms of the expansion are nearly independent. The
internal angular velocity, or differential rotation, is then determined by inversion of the
splitting coefficients. This approach has the difficulties that (1) it is difficult to generalize
to non-axisymmetric flows, (2) it is computationally cumbersome, and (3) there is cross-
talk between the various terms in the expansion of Q.

Ritzwaller and Eugene Lavely, with partial support from this grant, have developed a uni-
fied approach to the helioseismic forward and inverse problem of differential rotation
(Ritzwoller and Lavely 1991). In this approach the differential rotation is represented as
the axisymmetric component of a more general toroidal flow field. A better choice of
basis functions for differential rotation allows determination of a set of vector spherical
harmonic expansion coefficients for the rotation that are decoupled so that each degree of
differential rotation can be estimated independently from all other degrees.

Lavely and Ritzwoller, also with partial support from this grant, have carried out a funda-
mental study of the effect of global-scale steady-state convection on helioseismic oscilla-
tions (Lavely and Ritzwaller 1992). They have derived the basic theory governing the
influence of convection and associated structural asphericities on oscillation frequencies,
without the usual assumptions of an axisymmetric model. They represention the eigen-
functions of a reference spherical model with vector spherical harmonics, and employed



quasi-degenrate perturbation theory to derive general matrix elements governing mode
coupling and splitting caused by convection and structural asphericities. This formalism
may be applied to models of giant-cell convection, allowing determination of whether such
flows bias recently estimated differental rotation profiles. Or, it could be used to test
hypothesized pole-equator differences in temperature near the top of the convection zone
as a source of observed even-degree splitting coefficients.

A complete copy of the first of the two above-referenced papers, and the abstract and
summary of the second, are included in the appendix to this Final Report.

III. WAVE GENERATION BY TURBULENT CONVECTION.

Dr. Pawan Kumar, supported in part by this grant, has studied the generation of solar p-
mode oscillations by turbulent convection in collaboration with P. Goldreich (Goldreich
and Kumar, 1990). They used a simplified model of an adiabatically stratified upper solar
convection zone overlaid by a convectively stable isothermal atmosphere, and studied the
rate at which convective energy is converted into energy of trapped p-modes, f-modes, g-
modes, and travelling acoustic waves. They found that wave generation is concentrated at
the top of the convection zone where the turbulent Mach number M, peaks. The effi-
ciency n of power input into trapped p and f modes, and into travelling acoustic waves,

was found to vary as N=M,>, and that into g modes was found to vary as M. For p- -

modes the energy input depends on frequency as ®* where a=(2m?+7m-3)/(m+3), and m

is the polytropic index. This agrees with the observed finding of Libbrecht (1988,ESA -

SP-286, p 3) that the power input varies as o®, if we set m=4; in fact this value of m is

close to the polytroplc index that fits the density proﬁle in the upper solar convectmn '

ally is the process by whxch p-rnodes are exmtcd in the solar atmosphere.

Also, Dr Kumar, thh partlal support by thxs grant collaboratcd in preparauon of a review -
of theories of excitation of oscillation modes in the Sun (Cox et al 1991). This review —

contains a summary of Kumar and Goldreich’s work on 3-mode coupling, which shows
that such mode couplings, which had previously been considered a good candidate for lim-
iting the energies of overstable p-modes, are not strong enough for that purpose. That
result casts doubt on the idea that the modes are excited by ovcrstability, and therefore
prov1dcs further support for mode excitation by coupling with the motions of convection.

Copies or summanes of thesc two papers are also mcludcd in the Appendxx

IV. STUDY OF ANT[PODAL SUNSPOT IMAGING AN ACTIVE REGION TOMOG-
RAPHY

During the last stages“of this grant, we were joincd by Dr. Sylvain Korzennik. Dr Korzen-

nik has investigated, under partial support of the grant, the signatures of magnetic field -

structures in helioseismic data. Specifically, he carried out a search in Mt. Wilson data
for the helioseismic signature of active regions and sunspots at their antipodal pomt
analogous signals have been seen in gco-selsmology, and mlght be expected in
helioseismology, because (a) acoustic power is known to be absorbed in sunspots, and (b)
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helioseismic waves emanating from a point should interfere constructively at its antipodal
position if the wave lifetime is long enough to establish global coherence and the
wavelength short enough to prevent blurring of the antipodal “"image". Korzennik’s
analysis of high wavenumber data (2 arcsec per pixel) showed no observable antipodal
signature from several data sets where moderate-size sunspots were known to exist on the
invisible hemisphere of the sun. This suggests that there is a lack of global coherence of
high wavenumber acoustic modes. However, the analysis is still in process.

The observed acoustic energy deficit in active regions suggests that "active region tomog-
raphy" will be an important tool for study of the subsurface structure of magnetic active
regions, particularly with very high-resolution (high wavenumber) data such as may be
expected from the SOI investigation on SOHO. Dr. Korzennik, with support from this
grant, began an effort to develop the theoretical and analytical tools to characterize the
acoustic field fully, with particular attention to the phase relations between velocity and
intensity perturbations associated with the waves. This work is now being continued, with
support from the NASA SOI investigation (P. Scherrer, PI), of which Professor Noyes is a
co-investigator.

Publication of the results of Dr. Korzennik’s work on antipodal imaging of sunspots and
active region tomography is currently in preparation.
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ABSTRACT

We present a general, degenerate perturbation theoretic treatment of the helioseismic forward and inverse
problems for solar differential rotation. Our approach differs from previous work in two principal ways. First,
in the forward problem, we represent differential rotation as the axisymmetric component of a general toroidal
flow field using vector spherical harmonics. The choice of these basis functions for differential rotation over
previously chosen ad hoc basis functions (e.g., trigonometric functions or Legendre functions) allows the solu-
tion to the forward problem to be written in an exceedingly simple form (egs. [323-[37])). More significantly,
their use results in inverse problems for the set of radially dependent vector spherical harmonic expansion
coefficients, which represent rotational velocity, that decouple so that cach degree of differential rotation can
be estimated independently from all other degrees (eqs. [56] & [61]-[63]). Second, for use in the inverse
problem, we express the splitting caused by differential rotation as an expansion in a set of orthonormal poly-
nomials that are intimately related to the solution of the forward problem (egs. [5] and [54]). The orthonor-
mal polynomials are Clebsch-Gordon coefficients and the estimated expansion coefficients are called splitting
coefficients. The representation of splitting with Clebsch-Gordon coefiicients rather than the commonly used
Legendre polynomials results in an inverse problem in which cach degree of differential rotation is related to a
single splitting coefficient (eq. [56]). The combined use of the vector spherical harmonics as basis functions for
differential rotation and the Clebsch-Gordon coefficients to represent splitting provides a unified approach to
the forward and inverse problems of differential rotation which will greatly simplify inversion. We submit that
the mathematical and computational simplicity of both the forward and inverse problems afforded by our
approach argues persuasively that helioscismological investigations would be well scrved if the current ad hoc
means of representing differential rotation and splitting would be replaced with the unified methods presented
in this paper.

Subject headings: Sun: oscillations — Sun: rotation

1. INTRODUCTION

An acoustic mode of oscillation of a spherically symmetric, nonrotating, adiabatic. static solar model without magnetic fields is
typically identified by a trio of quantum numbers that represents its displacement field : n, the radial order: /, the spherical harmonic
degree; and m, the azimuthal order of the mode. Because of the rotational symmetries of this model, the modes of oscillation are
21 + | degenerate. That is, the frequencies of the 2! + | modes with different m values but with the same n and | values are identical.
These modes are said to form a multiplet. The real Sun is not so simple. Of particular reievance for this paper is the fact that the Sun
is rotating and is deforming internally so that, for example, the surface rate of rotation at the solar equator is greater than at the
poles. This phenomenon is known as differential rotation.

A number of ways have been chosen to represent differential rotation mathematically. We will argue in this paper that a
representation with exceptionally nice consequences is the solar rotational velocity v, (r, 8, ¢), defined to be the axisymmetric
component of general toroidal flow ficlds in the solar interior. A heretofore more popular, and perhaps more conceptually
appealing, way of looking at this is that the Sun is rotating differentially and that the rotation rate Q(r, 6) is itseif a function of both
radial position and colatitude. Rotational velocity o,.(r, 6, ¢) and rotation rate Q(r, 6) are simply related by

o,o(r, 0. §) = SUr, 6, ) x r = Qr, O)r sin (O 0

where Q = Q3, % is the unit vector which points along the axis of rotation, and r is the position vector from the center of the Sun to
position (r, 6, ¢). The coordinates r = (r, 8, ¢) are spherical polar coordinates (where 6 is colatitude) and 7, 8, ¢ denote unit vectors
in the coordinate directions. However represented, solar differential rotation lifts the degeneracy of the solar acoustic or p-modes,
splitting the frequencies of oscillation of the Sun. This phenomenon is. without doubt, the largest contributor to the splitting of solar
oscillations.

Observations of split solar p-mode frequencies date from Claverie et al. (1981). The quantity and quality of new measurements
have been steadily improving (e.g., Gough 1982 Hill, Bos. & Goode 1982: Duvall & Harvey 1984; Duvall, Harvey, & Pomerantz

! Present address: NCAR. Advanced Study Program. P.O. Box 3000 Boulder. CO 80307.
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1986: Brown 1985: Libbrecht 1986. 1989: Brown & Morrow 1987: Tomczyk 1988; Rhodes et al. 1990). Since p-modes are
dominantly split by differential rotation. a first-order understanding of the data requires the estimation of models of rotation that
predict the data accurately. Furthermore. an understanding of the solar angular momentum budget requires accurate models of
differential rotation (Gilman, Morrow, & DeLuca 1989). For these reasons. the inverse problem of inferring the radial and
latitudinal dependence of differential rotation from observed split frequencies has been a major focus of helioseismology. The reader
is referred to Brown et al. (1989), Christensen-Dalsgaard, Schou, & Thompson (1990), and Thompson (1990) for clear discussions of
the current state of this venture.

A necessary preface to tackling the inverse problem is the solution of the forward problem: i.e., given 2 model of solar differential
rotation, determine the split p-mode frequencies. This problem was first solved by Cowling & Newing (1949) and subsequent
treatments can be found in Ledoux (1951), Hansen. Cox. & Van Horn (1977), Gough (1981), and Brown (1985). Naturally, the form
of the solution of the forward problem is a function of the basis functions chosen to represent differential rotation. Since differential
rotation is axisymmetric and even about the equatorial plane, it admits a very simple mathematical representation.

In helioseismology, there are two popular ways chosen to represent differential rotation, both of which are based on polynomial
expansions of rotation rate  rather than rotational velocity o,,,,. The more popular of these parameterizations is to expand Q(r, 6)
in even powers of cos @ (see Brown et al. 1989):

Qr,)= Y Qr)cos* b @
k=0,2.4,...

where Qq(r) describes the bulk rotation rate of the Sun and the §Q,(r) for k > O describe the radial dependence of latitudinally
dependent differential rotation. The popularity of this representation probably derives from tradition, since it was used in early
studies of differential rotation made from observations of the solar surface (e-g, Howard & Harvey 1970). Thus, the use of these basis
functions cased comparison with direct observations of differential rotation. It is generally recognized that a problem with this
parameterization is that the basis functions are not orthogonal. This is not really an obstacle from a forward theoretic perspective,
but is troublesome inverse theoretically since future inversions for higher degree components must also redo the lower degree
components since, strictly speaking, they are not independent of one another. The use of any set of orthogonal basis functions
overcomes this problem. In particular, Legendre polynomials in cosine colatitude have seen some application (e.g., Korzennik et al.
1988):

Qr.8= 3  QurPycos 6). (3)

k=0,2.4,...

Although the parameterizations of differential rotation given by equations (2) and (3) are intuitively simple and allow straightfor-
ward comparison to other kinds of observations, their use leads to unfortunate consequences that can be entirely circumvented with
a more judicious choice of basis functions. Problems with these basis functions include the following. (1) They do not generalize
easily to general nonaxisymmetric flows. (2) They do not yield conveniently to the elegant generalized sphericai harmonic formalism
of Phinney & Burridge (1973) and are, therefore, computationally cumbersome. There is 2 more significant problem arisimg from the
way observers choose to represent splitting data as a Legendre polynomial expansion in (m/l):

M
wn = wy + 1 Z 81 P{mjl) . 4)
i=1

The expansion coefficients ,a,; are commonly called splitting coefficients. The use of equations (2) or (3) as basis functions for
differential rotation applied to splitting data represented with equation (4) leads to a serious practical problem troubling inversion
namely, (3) they generate a coupled set of inverse problems in which for a given k the estimation of Q,(r) or Q,(r) depends on Q,(r) or
Q. (r), respectively, for all even k' > £.

Problem 3 has been tackled in a number of ways, including: (a) by estimating Q,(r) or Q,(r) for all even k < k.. simultaneously,
where k,, = 4 usually (e.g., Thompson 1990): (b) by estimating each Q,(r) or Qy(r) recursively by solving first for each even k' where
kwax > k' > k(e.g., Brown et al. 1989); (c) by forming recombined basis functions that allow, in the high { limit, the inverse problems
for distinct k to decouple (e.g., Korzennik et al. 1988); and (d) by replacing equation (4) with an alternative representation of spiitting
measurements relative to which recombined basis functions decouple in the inverse problems for distinct k (Durmney, Hill, & Goode
1988). There are problems with each of these approaches. Approaches a and b generate models that at different degrees k have
correlated errors. In addition. approach b necessarily performs the recursion in the direction opposite from how a stable and robust
recursive technique should be applied. A robust recursive technique would first estimate the features of the model that have the
largest expression in the data. In this case. these are the longest wavelength features of the model (i.e., small k). Then these shouid be
used in the estimation of shorter wavelength model components (.., higher k) that affect the data more subtly. Approach b does the
opposite of this. By estimating the shorter wavelength features first, it propagates errors from the more poorly constrained to the
better constrained features of the model. Approach ¢ has a limited range of applicability and approach 4 requires observers to
summarize their data in a form they consider suboptimal. ) ’

The common problem with all of these approaches to problem 3 is that the basis functions that have been chosen to represent
both splitting and differential rotation have been ad hoc. In this paper we take a different approach. We define the inverse problem
explicitly in terms of the form of the solution to the forward problem. We show that there exists a natural set of basis functions with
which to represent differential rotation such that the inverse problems for different degrees of differential rotation decoupie with
respect to data represented in the usual way (eq. [4]). Consequently, joint and recursive inversions as well as asymptotic approx-
imations can be entirely circumvented. These basis functions are simply the vector spherical harmonic components of v,,. In

2.
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addition. vector spherical harmonics generalize easily to nonaxisymmetric flow ficlds and yieid to the formalism of Phinney
Burridge; thus. their use also addresses problems (1) and {2). We also show that the inverse problem is simplified further if ,pﬁtﬁn"
data are expressed using a set of natural basis functions intimately related to the solution of the forward probiem. These orthonor-
mal functions are the Clebsch-Gordon coefficients g7 with which the 2I + 1 frequencies of a single split multiplet would be
represented as follows:

W = Wy T DubT (5

||‘-/]';

The expansion coefficients .by; represent a set of new splitting coefficients.

Our approach to the forward problem is motivated by the approach geophysicists have taken to determine the splitting and
coupling of terrestrial oscillations caused by aspherical perturbations in the elastic moduli and density of the Earth (e.g, Dahlen
1968, 1969; Luh 1973, 1974; Woodhouse & Dahlen 1978; Woodhouse 1980; Woodhouse & Girnius 1982). An approximation that
has proven useful in terrestrial applications is to allow modes to couple only if they share the same radial order n and harmonic
degree /!_ This means that if two modes are not degenerate in the absence of asphericities, they will not be considered potential
coupling partners in the presence of the asphericity. In this case, it is appropriate to use degenerate perturbation theory to compute
the split frequencies. This approximation is known to geophysicists as the isolated muitiplet approximation since it is accurate if the
3] + | modes composing a muitiplet are isolated in complex frequency from modes composing other muitiplets. In terrestrial
applications this approximation has proven to be highly useful and quite accurate for calculating split frequencies but is not as
useful for computing modal displaccments. To compute modal displaccments accurately, quasi-degenerate perturbation theory has
been used by geophysicists in which modes are allowed to couple even if they are only neariy degenerate with respect to the spherical
Earth model. For the Sun. the number of significant accidental near degeneracies between modes from different multiplets satisfying
the selection rules that govern coupling for differenual rotation is vanishingly small. Thus, solar multiplets can accurately be
considered isolated in complex frequency and degenerate perturbation theory can be used to compute the split frequencies. The
solution to the forward problem we present is accurate to first order in Q/w In the absence of accidental degeneracies, where  is the
differential rotationai frequency and w is a modal frequency. Due to the spacing of p-modes between and along dispersion branches,
the contribution to splitting caused by quasi-degenerate coupling between modes from different multiplets is an effect of higher
order than first in Q/w. We will discuss this further in a future contribution.

In § 2. we defined the new basis functions for differential rotation mathematically and relate them to the previously used basis
functions given by equations (2) and (3). In § 3, we present the solution to the forward problem for differential rotation using
degenerate perturbation theory. The solution is expressed in terms of Wigner 3-j symbols which are straightforward to compute
numerically. For low-degree differential rotation, we present analytical expressions for the Wigner 3-j symbols in terms of simple
polynomials in m and I. In § 4, we discuss the use of Clebsch-Gordon coefficients for representing splitting data, by using equation
(5) as an alternative to equation (4). These coefficients form an orthonormal basis set and are simply related to the Wigner 3+
symbols found in the solution of the forward problem. The use of the Clebsch-Gordon coeflicients to represent splitting provides a
unified approach to the data analysis and inverse problems. In § 5, we derive the form of the inverse problems relating the basis
functions for v,,, both to the new splitting coefficients b, and to the traditional splitting cocfficients a,. In both formulations, a single
degree of the vector spherical harmonic expansion of rotational velocity can be related to a linear combination of the splitting
coefficients. However, by using the Clebsch-Gordon coefficients, the sum is particularly simple, reducing to a single term. For
completeness, we present formulae for converting solutions back to the rotation rate basis functions for differential rotation. Finally,
to simplify the recommended use of the Clebsch-Gordon coefficients A% for representing splitting, algebraic expressions in m and /

for low-degree i coefficients are presented in the Appendix.
- VECTOR SPHERICAL HARMONIC REPRESENTATION OF DIFFERENTIAL ROTATION
It is useful to decompose a general stationary, laminar velocity field eir, 6. ¢)into poloidal P and toroidal T components:
a6, )= Y 3 [P 6.¢)+ T8 ). 6
s=0 t=~-3

The poloidal and toroidal components can be fully characterized by the radius dependent vector spherical harmonic expansion
coefficients u'(r), vi(r), and wi(r):

Pr, 6. ¢)= u(r)Y'\(6, oW + vV, Y6, ). M
Tr, 6. ¢) = — Wir¥ x V, Y3(0. ), ®
where the surface gradient operator. V,.is given by
N
V, =r[V - HF v)]—068+sin96¢' N

The function Y6, ¢)isa spherical harmonic of degree s and azimuthal order ¢ defined using the convention of Edmonds (1960) as

s+ L= v
T =) - i 1
Yi=i l)\: rrm S”] P'(cos 0" . (10)
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where Y7 = (—[)[Y;/"]*. P| are associated Legendre functions. and the asterisk represents complex conjugation. The normal-
ization constants in equation ([ 0) have been chosen such that

v ~

T | YU, 0]* Y8, ) sin 64640 = 6,5, (11)
(¢}

«O
where integration is over the unit sphere. The poloidal coefficients uy(r) and ri(r) are not independent if the anelastic condition

[V - ipv) = 0]is imposed.
The differential rotation velocity field v.,(r, 8) simply corresponds to the odd-degree. zonal part of the toroidal flow field in

cquation (8) which can be written:

balh )=~ Y wiArd, Y04, (12)
s=1.3.5,...
where. for example:

1 3 1/2

G Y9 = —;(;) sin 8. (13)
31/7 1.2

Go V=~ 1 (;) sin (5 cos? § — 1), (14)

- o IS/ . .

4;,,}5=—R - sin (21 cos* 8 — 14 cos” 0 + 1). (15)

The relationship between the expansion coefficients w°(r) with Q.(r) and Q,(r) can be determined by equating the representations
n equations (1) and (12, expanding each side in terms of irreducible trigonometric functions. and equating the appropropriate
groups of terms. This procedure yieids

7 [~ l 3 n 1
Wil =23 r[ﬂom +3 20+ ﬁ‘m] =1/3 r[no(r; -3 nzm] : (16)
om s X 2 Bamler Bl gm ! 1
wilr) = N7 rI:IS Q.in) + 1S QJr)] =2/5r 3 Q.(r) 5 Q. |, (17)
~ o
om—> X8 —5 (& ! 18
wl(r) 2\/“ r[315 ﬁ‘(r)] 2\/“ r[g Q‘(r)] s (18)

where we have truncated the sums at k = 4 in equations(2)and (3)and ats = Sin equation (12).

3. THE FORWARD PROBLEM

The equations governing the effect of differential rotation on solar oscillation frequencies can be presented naturally in either of
two reference frames: a frame corotating with the average angular velocity of the Sun or an inertial frame roughly identifiable with
the frame of observation. Since differential rotation is stationary relative to both the corotating and inertial frames, solutions to
these equations will separate in both frames. For simplicity of use by observers, we choose the inertial frame in which to represent
and solve the following equations. As a consequence. r,,, will be considered to include the average rotational velocity of the Sun.

Let k =(n. )); then the displacement field for p-modes in the presence of an axisymmetric flow field separates spatially and
temporally:

sir, t) = sT{r)e™’". (19)

We have chosen to introduce an unfortunate notational conflict and let ¢ represent time (as weil as the azimuthal order of a
convective flow field). The radial eigenfunctions are defined as follows:

se(r) = UANYT(0, o + VNV, Y. ¢), (20)

where ,U{r) and ,V{r) denote, respectively, the radial and horizontal eigenfunctions for harmonic degree | and radial order n.

Hereafter, we drop the subscripts n and [ in equation (20) and use instead U = ,U{r), and V = .Vir). The eigenfunctions satisfy an
orthogonality condition given by

fpo ST’ * S:'dsr = Ivam‘m 6n'n 5!'[ ’ (21)
where p, is the density of the equilibrium solar model, and
‘.R(-) )
N=| poU?+ 2Viridr, (22)
J0

where L} = I(l + 1). The scalar constant N depends on the normalization of the eigenfunctions U and V.

.
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We seek equations governing the influence of differenual rotation on p-mode frequencies. The equation of motion for the
oscillations of a spherically symmetric. nonrotating, adiabatic. static solar model without magnertic fields is given by

25) = polisn=0. (23)
where & is a linear, seif-adjoint spatial integro-differenuai operator subject to certain idealized boundary conditions. This equation

can be rewritten using equation (19) as

Plsg) +~ powi s =0 124)
If we perturb the above described model by adding a rotational velocity field o, the equation of motion is altered. In particular, the

local time derivative ¢, must be generalized to the material time derivative D, and the displacements and frequencies of the modes
must be perturbed. Thus, we must make the substitutions

&=D=6+04"V. (25)
5, = S + 0%y, (26)
Wy = Wy + 00, 27

where w, is the degenerate frequency of the unperturbed multipiet. Lynden-Bell & Ostnker (1967) showed that the advection of the
velocity field v, by the displacement eigenfunctions s, can be ignored.

Making the above substitutions into equation (23), retaining only terms first-order in v,,,, dw, and Js,, and using equation (24) to
climinate terms, we obtain the perturbed equauon of motion

21850 — Qi Polio " VS T powi 85, = podw s, =0. 28

In accordance with our discussion 1n § L. we will assume the isolated muitiplet approximation in the remainder of this paper and
apply degenerate perturbation theory 10 calculate the spiit frequencies due to differential rotation. Under this approximation, we
expand the perturbed displacement field s, in terms of the 121 + 1) eigenfunctions of a singie muitiplet of a spherically symmetric
solar model as follows

i
se= Y, aySilr). (29)

m= -1

Inserting equation (29) into equation 128), taking the inner product of the resulting expression with s¢' *. integrating over the volume

of the Sun. and using equation (24) again. we obtain

~ -

. . .

J spe - LOsdir - J LisP*) - o5, dr + Y a,,,{éw2 J PosP* stdPr — 2iwe | PoSt T Tt Vs'{'d’r} =0. (30)
m=—1 -

The first two terms in equation (30) cancel since for an adiabatic solar model & is self-adjoint. Using this fact, together with the

orthonormality of the eigenfunctions given by equation (21), we obtain from equation (30) the shift in squared frequency caused by

differential rotation:
Néw? = 2iw, j.pos;"‘ O VST, (31

where we have used the fact that the right-hand side of equation {31) vanishes unlessm = m since o, is axisymmetric.
Substituting into equation (31) from equations (20) and (12} and using the fact that dw? = Jw, dw. we find that for —l<ms<t:

= Wy~ OWy = Wy T _\: i aCst - (32
s=1.3.5....
where
25 + 1\!"?
om =2+ DB =) HIHTFL (32
W
“R= ‘
L = » wry K lrir- dr . (24
«0
Ky = =por U+ [V [2UV = ists + DVFT/N . (3¢
and where we have defined
s ) {
HPF, =1 —1)"‘"'( ) . (3¢
0 m —m _

I — sy! 12
F,= 2=t ) (3
2! +s5+ 1!

The gradient operator in equation (31) acts on both the scaiar components and unit vectors of sf which yield, respectively, wh
might loosely be called the advection U? = [2V?) and Coriolis [2UV + 4sts + )W) contributions to the integral kernel K.
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The denivation of equation (33) is greatly simplified by use of the generalized spherical harmonic formalism of Phinney &
Burnidge (1973). It is bevond the scope of this paper to describe their formalism in any detail. However. Lavely & Ritzwoller (1991)
dJo describe the formalism as it applies to the problem of splitting caused by a general convective flow field of which, of course.
Jifferenual rotation 1s simply a special case. The form of equation (33), written in terms of Wigner 3-i symbols, follows from the
Phinney & Burridge formalism. The product of the Wigner 3-j symbols is simply related to the integral of three generalized spherical
harmonics over the unit sphere (see. e.g., Edmonds 1960). It is worth noting that the appearance of the | and — | in the lower row of
the 3-j svmbol represented by H! is related to the gradient in equation (31). This reveais one of the beautiful aspects of the
zeneralized spherical harmonic formaiism. that gradients transiate simply to index raising in the 3-j symbols.

Another attractive feature of expressing the solution to the forward problem (eq. [33]) in terms of Wigner 3-j symbols is the
immediacy of selections rules which result, in part, from properties of the 3-j symbols. Under the isolated multiplet approximation
these selection rules are that the frequency perturbation caused by an axisymmetric flow of degree s is nonzero only if (1) the flow is
toroidal. (2) s is odd, and (3) 0 < s < 2I. As a consequence, we have written the sum in equation (32) over only odd s. Thus, under the
isolated multipiet approximation, only zonal toroidal flows with odd degree less than or equal to twice the degree of the multiplet
contribute to the splitting. For the sake of accuracy we should point out that selection rule (1) does not derive from a property of the
3-j symbols. Rather it results from the fact that the integral kernel for a poloidal flow ficld under the isolated multiplet approx-
imation 1s identically zero. We do not show this here since we are explicitly considering only differential rotation which is purely
torotdal. However. this is demonstrated by Lavely & Ritzwoller (1991),

Equation (32) together with equations (33}37) completely specify the forward problem. We have chosen to write equation (32) in
4 way that has proven useful in geophysical applications (e.g., Ritzwoller, Masters, & Gilbert 1986, 1988; Giardini, Li, and
Woodhouse 1988) where the coefficients ,c,, would be recognized as splitting function coefficients or as interaction coefficients. We
argue that these coefficients. being linearly related to the model parameters w?, are what shouid be estimated in any analysis of the
Jata aiming to infer differential rotation. We discuss an alternative method of estimating the ,c,, coefficients in § 4 and their relation
10 the splitting coefficients. ,a,; and b, in § 5.

It is hoped that a major product of this paper will be formulae that are simple and efficient to use both in the forward and inverse
problems of differenual rotation. The coefficients ;7 in equation (33) can be computed numerically and all the resulits in this paper
could be simply stated in terms of them. Numericai methods for computing 3-j symbols are discussed and programs are tabulated in
Zare (1988). However, for ease of use we will rewrite the 3- symbols for s < 5 in terms of polynomials in / and m by using the
recursion relation of Schulten & Gordon (1975). If desired. it is straightforward to extend these formulae to s > 5 by repeated
application of the recursion relation. Setting j, = s. Ji=13=0Lm =0.m; =m, and my = —m in equation {5a) of Schuiten &
Gordon (1975) and using equations (36) and (37), we obtain

Lo
Hr. = — ){2(25 + UmH™ = S[(21 + 1)* — s¥]H™ |} (38)

To initiate the recursion, the polynomial forms of the Wigner 3.j symbols appearing on the right-hand side of equation (38) for s = 1
are required. and can be found in Table 2 of Edmonds (1960). We find by using equation (38) thatfors < 5:

HY =1, (39)
HT =2m . {40)
HT =6m? - 2%, (41
HT =20m> — 4312 — 1'm . (42)
HT = 70m* — 100617 — Sim* + 6[3(12 — 0}, (43)
HY = 252m® — 1400217 - 3m® + [2003(312 — 10) + 487m . (44)
Algebraic expressions for H7-HT, have been tabulated in the Appendix. Using equations (39)}+44), ;7 for s < 5 can be written:

FRNE:

= (E> m. (45)

1:2 2 2 2
1o e
12 3 2 hl

33 e
379N 2 [70m* — 1061 — Sim? + 6[3([* — AL - 10)

di=g (—n) S~ ¥4l — 13) ‘ )
15 (11! 2 282m — 1400212 - 3ym® = [20L431 — 10) + 48]m

A= (3:) S = K4l — 15) ' )

&



e

No. 2. 1991 HELIOSEISMIC FORWARD AND INVERSE PROBLEMS

1. ORTHONORMAL BASIS FUNCTIONS FOR REPRESENTING SPLITTING DATA

Observed frequency splittings are typically represented in terms of a Legendre polvnomial expansion with argument myi where
the expansion coefficients are the spiitting coefficients ,g,; as in equation (4). (For exampie. Libbrecht 1989 measured the sialitting
coefficients of 723 p muitiplets in the range 5 <! < 60.) The sum in equation (4) has usually been truncated at M = § since the
inciusion of higher orders does not significantly improve the fit to the data (Brown et al. 1989). Apparently, Legendre polynomiais
have been chosen to represent the splitting since they are well known basis functions and Legendre functions are orthogonal over
the continuous interval [ — 1. 1]:

- N

P{x)P(x)dx = ——
i

— d .
Zi+1 " (50)

Legendre functions are not orthonormal, but can easily be orthonormalized. There are two problems with their use. First, they are
not an orthogonal basis set for representing discreté data such as split frequencies. If used to represent discrete data they are only
approximately * orthogonal.” However, the accuracy of this approximation improves with harmonic degree { as the sampling of the
interval [ — 1, 1] becomes finer. Second, and much more significantly, their use complicates the inverse problem. As we will show in
§ 5 (eqs. [61]-[63]), by representing split frequencies with splitting coefficients ,a,, based on Legendre polynomials, the interaction
coefficients ¢, are not related to a single splitting coefficient, but are related to a linear combination of the ,ay, .

The purpose of this section is to point out that there exists an orthonormal set of basis functions over the discrete interval
—~1 < m < |, and that these functions are simply related to the y2 functions. These basis functions are Clebsch-Gordon coefficients.
Furthermore, in § 5, we show that the use of Clebsch-Gordon coefficients to represent splitting further simp:ifies the inverse problem
(eq. [56]). '

Inspection of equation (32) suggests that a natural. alternative way to represent splitting caused by differential rotation would be
10 use the functions ;7 as basis functions rather than Legendre polynomials. For fixed /. the 77 functions are orthogonal in s. Their
orthogonality relation can be deduced from the orthogonality property of Wigner 3-j symbols given by equation (3.7.8) of Edmonds
(1960). We rewnte this for our purposes as

! ! 1\/s | [ S
T (7 = s 51
[l (0 m —m)(() m —m) s+ 17 Gh

Combining this with equations (33) and (36), we obtain the orthogonality relation for the y}; functions:

! 4, G,G,
Y SMam = i Sk i 52
W ST E R, 62
where we have defined
G, = yW/HY . (53)

We note that G, is independent of m since the m-dependence of y7 is given by H™ as can be seen in equation (33).

Since the terms on the right-hand side of equation (52) can vary widely in size with s, especially for high /, the y3 should not be
used as basis functions for the splitting. However, equations (51) and (52) suggest a set of basis functions which are orthonormal on
the discrete interval —I < m < |. These orthonormal functions A7 are simply related to the y73 functions as follows:

{2s + DY2F,

n= - w = (25 + N)W2F HT . {54)
U!
where
{

m= —}

Equation (54) can be evaluated explicitly in terms of polvnomials in m and ! for s < 5 by use of equations (39)+44) and (37). Higher
degree 87 can be computed by using the formulae provided in the Appendix. By equation (3.7.3) of Edmonds (1960), it can be seen
that the 87 coefficients are simply Clebsch-Gordon coefficients. Equation (5) would then be used to represent splitting.

5. THE INVERSE PROBLEM

Once the new splitting coefficients ,b,, have been estimated using equation (5), the inverse problem for differential rotation can be
reconstructed immediately since the b, coefficients are simply related to the ¢, coefficients as follows:

Ro 12
S 0 L (4m)
a,—J; w(rK (r)r dr———-——‘21+ DEHE, > (56)

where we have empioyed the notational simplification ¢, = ,¢,, and b, = ,b,,. Given estimates of the interaction coefficients ¢,,
equation (56) defines a linear inverse problem for differential rotation.
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Although estimating the new splitting coeficients b, with the orthonormal basis functions 7, is more stabie than current methods
and resuits in an exceedingly simple inverse problem teq. [56]), some observers may choose to retain the way splitting data have
traditionally been represented. Therefore. we also seek expressions which relate the estimated splitting coefficients ,a, to the
interaction coefficients ,c,,. We do this only for s = 1. 3. 3 here. although the method we empioy can be used to produce higher
degree results. First. identify equations (32) and (4):

IS aPmh= S GH™,, (57
i=t s=1.3.5

where we have set a, = g, and we have defined G, in equation (53). Then, simply equating terms with the same odd power of m
vields:

a, — %ay + 4ag = 2G¢; + (4 — 121Gy c; + [202(312 — 10) + 481G, ¢, (58)
ay — 3ay = 813G, ¢, — S6PQ2L — 3)G,c, | (59)
as = 321G, c, . (60)

Substituting the polynomial representations for 74 (eqs. [451-[49]) and H™ (egs. [391-[44]) into G,, the following identities can be
deduced from equations (58)+60):

R x ay(, 1 acf, 1T 27 9

<y =v’0 wUNK ((rirfdr = 2 -'5[‘]‘ +ﬁ(‘3—7>+:_}(\3 +5—TF?3F>]. (61)
R . 2= N2 + 3) ae (. 21

Uy = Jo WK yirrt dr = —\4’1 3 T ay + 3 (7 - EI-) . (62)
“Ro L r (20— 32 — 12 + 3%2 + 5)

g = ‘ wlr K (ryrs dr = i )(‘ X fa] . (63)
N VI 151

Equations (61}463) constitute three independent inverse problems for the radial functions wa(r), wi(r), and w(r). Equation (63)
follows immediately from equation (60). Equation (62) was obtained by substituting equation 63} into equation (59) and solving for
«3. Equation (61) was obtained by substituting equations (63) and (62) into equation (58) and solving for ¢,. For clarity, it should be
pointed out that the number of terms on the right-hand sides of equations (61){63) depends on the accuracy with which the split
frequencies are estimated. As frequency estimates become more accurate, the number of terms will increase.

This separation into three independent inverse problems, each uniquely identified with a single harmonic degree s of differential
rotation, has been made possible by use of the vector spherical harmonic basis functions given by equations (6) and (12). The
corresponding inverse problems for £, and Q, do not separate so nicely. The advantage of using the Clebsch-Gordon coefficients as
basis functions for splitting is readily apparent by comparing equation (56) with equations (61)~63). The use of the Clebsch-Gordon
coefficients reduces the linear combination on the right-hand side of equations (61)+63) to a single term in equation (56).

It is beyond the scope of this paper to discuss the large and well-known variety of approaches to linear inverse problems. The
reader is directed to the following papers which discuss approaches to these problems in some detail: Backus & Gilbert (1967, 1968,
1970); Parker (1977); Christensen-Dalsgaard et al. (1990). Once wi(r), w(r), and w(r) have been estimated from equation (56) or
from equations (61}463) by whatever inverse method has been chosen, d,, and §, for k = (0, 2, 4) can be computed a posteriori. if
desired. by equations (16)-18):

1 - - —
Qolr) = an [V 3w + W30 +  TIw(n] (64)
A\
5 - —_
Qur) = T [v 7""‘3’({') + v 1wi(n], {65)
. v nr
9 11 w0
Qur) = — [ 1Iws(n], (66)
v 41{"
! s ey = —
Qulr) = —= [ 3wr) — 3, Twir) + 42, TTwl(r)] | (67)
V( nr -
0ir) = - = Twl(r) - 3y, Tiwd] (68)
-V
i 315 —
Qur) = 1 [v 11win)] . (69)
v

<
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From equations (6163). it can be easily seen that in the limit of large L the expansion coetficients witri. wi(r), and wi(r)
oniv on a,. dy, and d.. respectively. Thus.in the large i limit. these equations can be rewritten:

I
C\t..(':;) dy . (70)
S A
[ -g(;) da . (71)
LT -
€8 X7 (“) < (72)

6. SUMMARY AND CONCLUSIONS

At its inception, the motivation for this paper was that there did not appear to have emerged a fully coherent, unified treatment of
the forward and inverse problems for differential rotation. As a resuit a number of practical problems have beset inversions for
differential rotation. In this paper. we present a general formulation of both the forward and inverse problems for differential
rotation as well as specific formulae useful to observers with the intent of simplifying solar differential rotation inversion. There are
two main points of the paper. (1) If differential rotation is represented by rotational velocity, defined as the zonal, odd degree part of
the vector spherical harmonic decomposition of a general convective field in the solar intérior. rather than the commonly used
rotation rate represented with ad hoc basis functions. then several significant problems currently facing inversions for differential
rotation disappear. In particular, the inverse problems for different degrees of rotational velocity are linear and decouple, so that
independent inversions for each degree of structure can be performed without approximation. (2) The inverse problems are
agmificantly simpiified furtherif C lebsch-Gordon coeificients are used as basis functions to represent splitting. The Clebsch-Gordon
basis functions are genuinely orthonormal on the discrete interval —/ < m < { and regression matrices comprising them are
optimalily weli-conditioned. As a consequence. we highly recommend that the vector spherical harmonic representation of rotation-
al velocity and the Clebsch-Gordon coefficient representation of splitting be adopted to replace the ad hoc representations
emploved heretofore. We have presented formulae relating the interaction coefficients ¢, to both the new splitting coefficients b, as
well as to the traditional splitting coeflicients a,.

Geophysical experience has shown that it is useful to tabulate splitting data in terms of the splitting function or interaction
coefficients c, since these coefficients are linearly related to the structures producing the splitting. However, in the Sun, there arc a
number of different kinds of axisymmetric asphericities that couid produce splitting. In addition to differential rotation, phenomena
which have been discussed as potenuaily large enough to affect p-mode frequencies measurably include lateral density variations
caused by large-scale temperature variations, asphericities in the figure of the Sun, and large-scale, dominantly quadrupolar,
magnetic fields. Each of these mechanisms affects splitting differently. However, with the possible exception of the poloidal
component of magnetic fields (D. Gough, 1990, personal communication), in each case the Wigner-Eckart theorem (Edmonds 1960)
guarantees that the solution to the forward problem can be written in a form identical to that of equation (32), but with the yg
coefficients differing in detail for each mechanism of splitting. Thus, an inspection of equation (33) reveals that the interaction
coefficients ¢, should not be tabulated since they differ in detail among the various sources of splitting. However, the y2 coefficients
for the various sources of splitting are similar in that each is linearly related to the same Clebsch-Gordon coefficient. Consequently,
we recommend tabulating the new splitting coefficients b, estimated relative to the Clebsch-Gordon coefficient representation of
splitting. For each of the sources of splitting mentioned here. these coeflicients are linearly and simply related to the appropriate
basis functions representing that mechanism. (For differentiai rotation we have shown that the appropriate basis functions are given
by eq. [12].) Of course. if multiple sources are causing splitting, then models of the various mechanisms would have to be estimated
simultaneously.

Throughout the paper. we have attempted to present formulae that would prove to be easy to use. In conclusion, it is worth
presenting a brief review of the most important of these. The differential rotation basis function v, is defined in equations (8) and
(12). The general solution to the forward problem is given by equation (32) and the equations immediately following. The specific
form of the forward problem for s < 5 is presented in equations (45)+49) where polynomials in m. [, and s replace the Wigner 3-j
symbols of the general solution. [Formulae useful for calculating the solution to the forward problem analytically for higher degrees
(6 < s < 11)are provided in the Appendix.] Equation (34) is the basis for the inverse problem with respect to the ,¢,, coefficients. The
orthonormal basis functions (Clebsch-Gordon coefficients) to represent splitting are defined in equation (54), are tabulated in the
Appendix, and the inverse problem with these coefficients is given by equation (56). Relative to the .a; coefficients, the inverse
problems are given by equations (61)463). Once v,,, has been estimated. the rotation rate can be computed. if desired, with equations

164)+69).
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APPENDIX

We have argued in this paper for the following representation of splitting data:
M
"’J:; = wnl T S nbls/j:; ' (Al)

s=1

where ,5,, are the new splitting coefficients and #7 are Clebsch-Gordon coefficients defined as

m=(2s+ )2F, HT (A2)
(2 =51 ]2

Fo=|——22 |

: [(2]+s+ m] (A3)

Expressions for A7 for 1 <5 < S are given by equations (40)«44) in the body of the text and for 6 < s < 11 below by equations
(A4HA9). We note that with the H7 coefficients provided below, it is straightforward to calculate the y7 coefficients fora > § by use

of equation (33).
The HT coefficients for 6 < s < 11 are given by
HE =924m® — 420m*(3L2 — 7) + 84m*(S[* — 2512 + 14) — 20[X(I* — 812 + 12y, (A4)
H? =3432m’ — 1848m*(31} — 10) + 168m*(15[* — 1052 + 101) — 8m(35L° — 385" + 882[% — 180), (AS)
HT = 12870m® — 12012m5(2L2 — 9) + 2310m™(6L* — S612 + 81)
= 2m*(210L> — 30451 + 98981 — 4566) + TOLXI® — 01* ~ 1081% — 144) | (A6)
HY = 48620m’ = 17160m 1612 — 33) + [2012m*(61% — 72[* ~ 145) — 140m?
<d2l0 = 7771 + 34021 — 2630) + 12m 10518 — 26601° + 18844 — 3652812 + 6720, (A7)

HTo = 184756m'° — 145860m®(3 12 —

22) + 12012m°(30L* — 45012 + 1199) — 2860m*

x (4210 — 966L" + 548117 — 6248) + 132m*(105L° — 32901° + 29680[* — 78900£% + 32208)

~252LXL% — 40L° + 508L* — 23041 + 2880), (AB)
HT =705432m'" — 1847560m°(L* ~ 9) + 38344m (301* ~ 550I* + 1869) — 120120m*

<(6L" — 168L + 119912 — 1873) + 1144m>(105L® — 39901° + 44730L — 1562001 + 105228)

—24mi231L° — [11651° + 17432815 — 1006764L* + 1771440L* — 302400) . (A9)
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ABSTRACT

In rhis paper we derive a theory. based on quasi-{ezenerate perturbation theory. that governs the effect of global-
scale. steady-state convection and associated static asphericities in the elastic-gravitational variables (adiabatic bulk
modulus «. density p. and zravitational potential o) on helioseismic eigenirequencies and eigenfunctions and present
1 formalism with which this theory can be applied computationaily. Eigenfunctions are simply seismic displacement
patterns. The theory r2sts on thires tormal assumprions: (1) that convection is temporally steady in a {rame corotating
with the Sun. (2) that accurate eizenirequencies and eigeniunctions can be determined by retaining terms in the
seismically perturbed equations of motion only to first order in p-mode displacement. and () that we are justified in
retaining terms only to first-order in ccnvective velocity as well (this assumption is tantamount to the requirement
that the convective flow is anelastic). The most physically unrealistic assumption is (1}, and we view the results of this
paper as the first steps toward a more general theory governing the seismic effects of time-varying fields. Although
the theory does not govern the seismic effects of nonstationary flows, it can be used to approximate the effects of
unsteady flows on the seismic wavefield if the flow is varving smoothly in time. The theory does not attempt to
model seismic modal amplitudes since these are governed. in part. by the exchange of energy between convection and
acoustic motions which is not a part of this theory.

The basic reference model that will be perturbed by rotation, convection, structural asphericities, and seismic
oscillations is a spherically symmerric. non-rotating, non-magnetic, isotropic, static solar model that. when subject to
seismic oscillations. oscillates adiabatically. We call this the SNRNMAIS model. An acoustic mode of the SNRNMAIS
model is denoted by k = (n.!, m), where n is the radial order. { is the harmonic degree. and rm is the azimuthal order
of the mode.

The main resuit of the paper is the general matrix element HT™,, for steady-state convection satisfving the
anelastic condition with static structural asphericities. It is written in terms of the radial. scalar eigenfunctions of
the SNRNMAIS model. resulting in equations (92)-(112). We prove Rayleigh's principle in our derivation of quasi-
degenerate perturbation theory. which. as a by-product yields the the general matrix element. Within this perturbative
method. modes need not be exactly degenerate in the SNRNMAIS model in order to couple. oniy nearly so. General
matrix elements compose the Hermitian supermatrix Z;.,. The eigenvalues of the supermatrix are the eigenfrequency
perturbations of the convecting, aspherical model and the eigenvector components of Z,.; are the expansion coefficients
in the linear combination forming the perturbed eigenfunctions in which the eigenfunctions of the SNRNMAIS model
act as basis functions. We show how helioseismic synthetic seismograms can be computed using the supermatrix.

The properties of the Wigner 3-j symbols and the reduced matrix elements composing H) ™., produce selection
rules governing the coupling of SNRNMAIS modes that hold even for time-varying lows. ¥e state selection rules for
both quasi-degenerate and degenerate perturbations theories. For example, within degenerate perturbation theory,
only odd-degree s toroidal flows and even degree structural asphericities, both with s < 2[, will affect the splitting and
coupling of acoustic modes with harmonic degree [. In addition, the frequency perturbations caused by a toroidal flow
display odd symmetry with respect to the degenerate frequency when plotted from the minimum to the maximum
perturbation. -

We consider the special case of differential rotation. the odd-degree. axisymmetric, toroidal component of general
convection, and present the general matrix element and selection rules under quasi-degenerate perturbation theory.
We argue that due to the spacing of modes that satisfy the selection rules, quasi-degenerate coupling can, for all
practical purposes. be neglected in modeling the effect of low-degree differential rotation on helioseismic data. In
effect, modes that can couple through differential rotation are too far separated in frequency to couple strongly. This
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5 not the case witen we consuder nonaxisymmetric fiows and asphericitics. [n this case. near degeneracies wiil reculariy
wcur. and coupiings can be refativeiy <trong - soeciaily among SNRNMAIS modes within the same multipler.

All derivations are performed and ail soiutions are presented in the corotating frame. Equation (18) shows how ro
‘ransterm the ergenirequencles and =iz-ntunctions in tie corotating rame wito an inertial frame. The transformation
nas the etfect that each eigenfuncuion in the ineruial frame is itself time-varying. That is. a mode of oscillation. which
s Jorined ro have asingie frequency in the corotating frame. becomes multiply periodic in the inertial frame.

[.INTRODUCTION

Helioseismic images of the acoustic velocity field of the Sun are providing new and unique information about solar
-tructure and dynamics. To continue to utilize effectively the information provided by the continually improving data
sets wiil require a thorough understanding of the way in which a number of solar structures and processes atfect
helioseismic data. [t is upon such an understanding of these forward problems that any future inversions will rest.

We consider here the helioseismic etfect of one such solar process: convection. In particular, the purpose of this
maper is to present a theory that governs the effect of large-scale. steady-state convection, with associated asphericities
:n the structural elastic-gravitational vanables (adiabatic bulk modulus ~. density p. and gravitational potential o),
>n helioseismic oscillations. Many studies have been compieted concerning differential rotation. the lonz-wavelenzth
wisymimetrie component of convection te.g.. Duvall and Harvey [984: Brown 1985: Duvall ef o/ 1936: Libbrecht
2035, 1230 Brown and Merrow 1037 Rhodes ez 2l 1990: Brown et af. 1989: Thompson 1990: and Ritzwoller and
Lavely 1091). However. 1o date. studies of the seismic effects of non-axisyvinmettic convection are rather sparse. In an
3VMpLotic treatment. Gough ana [oomre (1083) calculated the frequency shift of an acoustic mode due to advection
sy a purely horizontal flow. Brown (1034} calculated the influence of turbulent convection on modal degenerate
requencies. The scattering of sound by an 1solated. steady laminar compact vortex was considered by Bozdan (1939).
till (1983. 1088, 1089) has used a ray-theoreric method and has attempted to infer horizontal convective velocities
near the solar surface using helioseismic data. All of these studies make restrictive assumptions about the geometry
of the flow field including either that the flows are horizontal in a plane-parallel medium or demonstrate cylindrical
symmetry, and none attempts to model wavefront distortion and deflection caused by convection. [n summary, to the
best of our knowledge no general theory for the etfect of convection on helioseismic oscillations currently exists.

The theory presented in this paper differs (rom these previous studies in the following ways. (1) Qur theory is
nonasymptotic. In principle. the results are accurate for all wavelengths and frequencies of helioseismic oscillation. (2)
It is derived within a spherical geometry. Previous investigations that modeled convective effects within a nonspherical
geometry are appropriate for short-wavelength convection but inappropriate for the largest scales of convection which
1re the subject of this paper. (3) The theory presented here makes no assumptions about the geometry of the flow. We
represent general non-axisymmietric flow fields comprising both poloidal and toroidal components in terms of vector
spherical harmonics, which are complete basis functions for a vector field in a sphere. (4) Our approach is modal-
“heoretic rather than ray-theoretic. From a traveling wave perspective this means that both wavetront deformation
s well as the perturbation in local sound speed by convection are modelled. In modal-theoretic language. convection
results in modal coupling as well as splitting.

[n a later paper we will implement the theory presented in this paper using a numerical simulation of large-scale
:onvection and discuss the observational consequences of the theory. In particular, we will show that the helioseismic
frequencies. displacement patterns. and line-widths of an aspherical solar model are appreciably altered relative to
the corresponding quantities calculated from a model with differential rotation alone.

a) Modal NVotation and Termanolugy

The basic reference model to which all subsequent structural perturbations and processes will be added is a solar
model that is spherically symmetric. nonrotating, nonmagnetic, isotropic, and static, subject to adiabatic acoustic
oscillations. We refer to this as the SNRNMAIS solar model. An acoustic mode of oscillation of any solar model is
defined to be a characteristic spatial displacement pattern that oscillates with a single frequency.

An acoustic mode of a SNRNMAIS model is uniquely identified by a single triple of quantum numbers (n,l,m)
that denote, respectively, the radial order, harmonic degree. and azimuthal order of the mode. A modal frequency
for such a model is simply the degenerate frequency of the multiplet ,5; that comprises the (2{ + 1) modes with
identical n and ! values. Any symmetry-breaking agent such as rotation, magnetic fields. or convection will lift this
{21 + 1) degeneracy and split the frequencies of the modes composing the multiplet. We call any model with such a
symmetric-breaking perturbation a non-SNRNMAIS model. A major goal of this paper is to provide formulae with
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wnich to caiculate the modal ergeniunctions and eizenrrequencies of both the SNRNMAIS and non-SNRNMAIS solar
~10dels. As we suall later see. the perturbations of the non-SNRNMAIS solar model wiil be assumed to have smiail
magnitude and be stationary in a {rame corotating with the Sun. If the symmetry-breaking agent is axisymmetrie.
-5 15 Jitferential rotation. then to a good APPIAXIMALon the spatal structure of each mode wiil remain specified by
“tie same tripiet of quantum numpers. For a suneral, non-axisymmetric perturbation such as the convective fields we
--=nsider here. the perturbed eizenlunction ror snatial displacement pattern) of each mode 1s a linear combination of
“iie =igenrunctions of the SNRNMAIS moael. W cail this phenomencn osciilation-oscillation coupling or interaction
-5 distinguisn it from osciilation-convection coupiing. the exchange of cnerzy between seismic and convective modes.
The acoustic modes that are said to coupie as a resuit of a convective tlow or an asphericity in the elastic-gravitational
variaples are SNRNMAIS modes. The modes of the non-SNRNMAIS solar model do not couple.

Two modes of the SNRNMAIS solar modei whose spatial eigenfunctions are orthogonal are said to be isolated
“rom one another. Two or more modes that are not isolated from one another can couple when the reference madel is
nerturbed either by a structural perturbation or a convective flow. A muitiplet composed of modes whose combinel
»igzenspace is orthogonal to the combined eigenspace of the modes composing all other multiplets is said to be isolated
ar <eif-coupled. The dearee of coupling hetween SNRNMAIS modes is a function of a number of factors. among which
~ze the strength of the asphericity or ccnvective field producing the coupling, the proximity of the eigenfrequencies
»{ the modes. the relation between the geometries of the perturbing field and the oscillations which is encoded in a
<=t of analvtical angular selection ruies. and the similarity of the radial eigenfunctions of the two modes. When two

SNRNMAIS modes £ = in.l.myand & = :n".{'.m’) ouple. the strength of interaction is described by the general
matnx eiement 577, The matrix Haoq o composed of all the general matrix elements for the multiplets 231 and
..y is of dimenston (2 = 1) x (2! = i} and is caiied the general matrix. The square general matrix Han i1 is called the

splitting matrix and governs self-coupiing. The eigentrequencies of non-isolated modes that couple within or across n
o1 { are the eigenvalues of an assemblage of block diagonal splitting matrices and off-block diagonal zeneral matrices.
he entire assemblage is called the supermatrix Zi.
Since the seismic modes of the SNRNMAIS solar model are spheroidal. their spatial vector eigenfunctions se(r)
ror displacement patterns) may be written in the form

ser = U m Y ME o) = 1{r) T, Y8 0) (n

where oL(r) and ,Vi(r) are the scalar radial eigenfunctions for harmonic degree ! and radial order n. With the
gravitational potential scalar eigenfunction. ,oi(r), and its radial derivative, 2Ui(r) and ,Vi(r) and their radial
derivatives form the set of scalar radial eigenfunctions. The coordinates (r.4, ) are spherical polar coordinates
{(where 8 is colatitude) and r, .o denote unit vectors in the coordinate directions. The surface gradient operator is
given by

T, =V =1r{(r- ). (M
The function ;™ is a spherical harnmonic of degree { and azimuthal order m defined using the convention of Edmonds
11060):

2T Y
/ j ’ ":" (9~O]]-Y’1m{9,o)sin Gdgdo = ém‘mdl’l (3)

where integration is over the unit sphere. Henceforth, we drop the subscripts n and [ in equation (1) and use instead
L =a L3(r), U =4/ Ue(r) and so on. The SNRNMAIS spatial vector eigenfunctions satisfy an orthogonality condition
given by

/ /),,SZ, : Skdsr = ‘\"(sm’m5n‘n‘si’l (4)
where
RG ' ! “
_\':/ p[CU + 11+ L)VV |ridr, (3)
. ,
and dr = r7sinddfdodr. IHenccforth. an integral sign withoyt limits, as in equation (), will denote a three-

dimensional intezration over the volume of the solar model. The scalar normalization constant .V depends on the
normalization convention of the eigenfunctions " and V.

Perturbation theoretic techniques are usually employed to calculate split acoustic mode eigenfrequencies and
perturbed eigenfunctions. In this paper, we wiil show how quasi-degenerate perturbation theory can be applied to
determine these quantities for a convecting solar model with associated aspherical perturbations in the structural
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-1ASTIC-rAVITAtION Al pArameters (densiy p and adiabatic bulk modulus &, [u particular. we will use the etzenfunctions
e SNRNMAIS meodel as basis fuactions 1o represent the perturbed =1zenfunctions s.ir. th:

- b

N sy e (8)

vl =

,T

>

NE

Ve wiil show now 1o «determine the appropriate »igenspace A required to represent the perturbed eigenfunction, will
ieriva the expausion coetficient ay for »ach component of the eigenspace to calculate the perturbed sizenfunction. and
will derive expressions {or the spiit eigenfrequency of the mode w; = wr.y + dws.

The major theoretical resuit of the paper is analvtical expressions for the general matrix elements that compose
'he supermatrix (or splitting matnx in the case of self-coupling). The perturbed modal frequency ¢é«; is simply
in eigenvalue of the supermatrix {or splitting natrix). and the expansion coefficients are simply the eigenvector
romponents a;. ‘Ve wish to emphasize at this point that we will not attempt to present a theory that accurately
nredicts modal amplitudes. but only modal eigenfrequencies and perturbed eigenfunctions (or displacement patterns).
The fermal assumptions of the theory discussed in §1.b wiil reflect this point.

5) Assumptions and their Implications

Althoughn rhe theory we present in this paper is more zeneral than previous work. its application is restricted both by
-ractical consideranions and by fhe st of Assumptions upon which it is formaily basea. The major pracuicai fimitation
s that the ccnvective structures constdered <nouid be giobal in extent. For example. although it is theoreticaily
~rssiple to represent a single smaii-scale convective vortex in terms of vector spherical harmonics. rhere are better
-epnresentations and doing so would probably be a mususe of this theory. Thus. though the theory holds for ail but very
short wavelength. turbulent convection. it will be most usefully applied to long wavelength flows. There is a caveat:
:patially repetitive smail-scale structures. such as the solar granulation. can be well represented by vector spherical
harmonics and are not beyond the practical limitations of this theory. Another practical limitation is that the theory
is not particularly useful for g-modes since they have very small amplitudes in the convection zone. Therefore. though
-he theory gzoverns the etfect of convection on y-modes our discussion wiil center on p-modes.

Much more restrictive are the tollowing set of formal assumptions. (1) The convection is steady in time. As we
will discuss in §II, this assumption i1s necessary for the perturbed equations of motion to separate. The asphericities
in the structural elastic-gravitational variables will also be assumed to be time invariant. (2) We retain terms in the
setsmically perturbed equations of motion only to first-order in p-mode displacement and quantities that depend on
it. Thus. we derive and use linearized equations of motion. (3) e also retain terms in the seismically perturbed
squations of motion only to first-order in convective velocity. This is done so that acoustic oscillations and convection
do not exchange energy and to this extent can be considered independently. This is tantamount to the requirement
+hat the convective flow feld is anelastic. We wiil discuss briefly the implications of each of these assumptions in turn.
Arzuments are presented to justify assumptions (2} and (3) in §l.e.

i 1) If convection is steady in time. each identically directed acoustic wave that propagates through a given region
wiil experience the same convective eifect. [n particular. multiply orbiting waves propagating along near great-circles
wiil experience a constructively accumulating efect in that region. In this case, the split modal frequency associated
with the propagating wave will be time invaniant. If the convective state changes appreciably during the time it takes
an acoustic wave to execute a sinzle orbit. then the convective effect will vary between orbits. In fact. the effect may
destructively accumulate. Consequently. modal frequencies would be time varying, leading to an effective spectral
line-broadening. This line-broadening is not a part of the theory presented in this paper and the seismic effect of
aspects of convection that are rapidly evolving in time cannot be determined from the results presented here. Of
particular significance is the fact that the effect of the shearing of sectoral or banana ceil modes of convection by
differential rotation cannot be modeled within this theory. Rather, the results in this paper represent the first steps
toward constructing a more general theory that governs time-varying fields.

Although the resuits in this paper are correctly applied only to steady-state convection, they may be most use-
ful if seen to provide instantancous frequencies and displacement patterns for a time-varying convective field. These
instantaneous frequencies would be accurate over the lifetime of the convection cell which. for long-lived modes of con-
vection. may be appreciable. In this case, the steady-state assumption would amount to a short-time approximation. ]
For exampie. since the shearing of convective patterns takes time to develop, the results presented here are applicable
until the shearing offects accumulate. The numerical simulations of Glatzmaier and Gilman (1931. 1932) show that
some components of flow have lifetimes on the order of weeks. Furthermore. there are certain observable solar features,

et
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.1 particuiar acuve longitudes ana coronal heles. that appear to evoive reiativeiy unsneared by differential rotation.
"7 rhese [eatures are somehow anciiorad at depth in convective struetnres.-then their existence is further evidence for
» relativeiv stable component of ilow deep in the convection zone. Fvidence for the existence of solar giant cells is
dscussed i Aldl

From the view of the stemdy-<tate Assumption as a sihort-time approximation. it is straightforward to implement a
~umerical formaiism 1o Approxtmate the time-varying seismic wavefield if we asume that the variations in convection
ire temporaily smooth. We would caiculate a tine sequence of instantaneousiy vaiid eigenirequencies and eigenvectors
‘n A coarse set of time knots witere At +ach knot the dow field is assumed to be stationary. We would then interpolate
“ne eizenfrequencies and eigenvectors onto A iner time grid and allow the waveneld to evolve continuously through
~ach of the intervals between the knots.

(2) Neglecuing higher order rerms than first in the seismically perturbed quantities amounts to neglecting seismic
<if-advective effects evidenced through acoustic three-mode coupling. [n particular. the seif-advection of the dis-
placement field is neglected which is tantamount to assuming that the total seismic displacement in a region is much
<mailer than the displacements produced by convection during the passage of a wave. (We also neglect all source
-erms sucil as entropy and internai energy Huctuations caused by the oscillations.} As we will discuss in §§l.c and L.e.
:he accuracy of this assumption improves with depth. The application of the theory will be most accurate for seismic
paths below the strongly super-adiabatic layer near the solar surface where turbulence is most vigorous.

) We neslect ail rerms second-crder in the convective velocity. There are two main tvpes ol second-order terms
“nat we discard. advective rerms and Revnoid's stresses. Discarding the former amounts o assuming that convective
apgeities are relanveiv smail. [znorinz Reynoid’s stresses. which are proportionai to the Lapiacian of the convective
weiocity. requires that convective waveiengths be relatively large. and implies that convection-ascillation coupling
.5 neuiected so that there is no mecnanism by which sonvection and the acoustic oscillations can exchange energy.
[n particular. we assume that ronvective lows do_not generate seismic waves and. therefore. we require that the
Jows satisfy the unperturbed continuity equation commonly called the anelastic condition. This condition eliminates
sotential sources. sinks. and cavitation in the How field. Thus. we view convection as a sort of passive background on
which acoustic osciilations are superposed. [t deforms seismic wavetronts and perturbs local sound speeds. but does
not exchange energy with acoustic waves. The assumption that second-order terms in convective velocity and the
Revnold's stresses can be ignored is poor near the surface but. as with formal assumption {2), improves with depth
below the photosphere.

In summary, the implications of these assumptions are that the convective fields to which the theory is applicable
should be global in extent. relatively long wavelength, steady in time or at least relatively long-iived. and well below
the photosphere. Giant-cell convection satisfies these criteria and provides the best target for the application of the
theory presented herein. In the remainder of this section we will discuss solar convection, review the evidence for the
existence of giant-cell convection. and attempt to justify the use of linearized equations of motion to determine the

seismic effect of giant-ceils.
¢J Solar Convection and ils Seismic Effects

Observation of the distinct ceilular motions of zranules and supergranuies suggests that there are preferred scales
of motion for thermai convection. The common picture of convection is that the Sun contains a multiplicity of scales
of motion ranging from the Kolmogoroff microscales at the short end to differential rotation which is global in extent.
At intermediate length scales. convective modes are thought to be organized into granules. supergranules, giant cells,

.and energy-bearing eddies. Temporal scales also range from a few minutes for cranule overturn times to weeks for

the larzest scale of ziant cells deep in the convection zome. Goldreich and Kumar {1933) present a recent review
of turbuience. Bray et al. (1984) and Gilman (1937) provide overviews of the physics and morphology of granules,
supergranules, and glant cells.

In order to discuss qualitatively the likely general characteristics of convection below the photosphere, we look
to mixing-length theory for guidance. In the mixing-length picture of convection one would take the mixing length,
\ach number. and the tinie and velocity scales of convection to be given, respectively, by
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wnere L 15 the solar luminosity. We have waed =quation (14.38) of Cox and Giuil (1968) ro obtain equation (&).

tigure | is a piot of the ~haractenstic length, vejocity. and time scales of convection predicted by equations (7). (9).
ind 110) using the solar model of Podanauloumx 1239) with o taken to be 1.305. The predicted time and velocity
~-ales near the surface correspond well with oi:servations of solar granulation.

“onvection at all depths in the convertion zone will affect helioseismic oscillations. The solar p-modes have scales
h1at range in size from rhe smailest to the larzest of the convective motions and the dominant modal frequencies
Jincige with tile cnaracrerstic Svartyrn Gines for convective motions near the solar surface. Since the energy and
-he characteristic length nd time scales of convection vary with depth, the physics of interaction between acoustic
modes and convection wiil necessartiv also vary. For example. granule and sub-granule scale motions are thought to

= "ne source of the acousrie ssaitiauons (Goidreich and Kumar 193381, To model the total effect of convection at this
-rale on tie Acoustic sscuianions wouid be very ifficuit as it would involve modeling convection-oscillation coupling
n aaditien to oscliiation-wsciilation coupiing. .As the formal assumptions indicate. we have set {or ourseives a simpler
"1k 1o model the »dect »f i2eper. long-waveizngtn sonvection such as giant cetls that. we argue in jl.e, exchange
vary lirtle energy with acoustic sailatuons.

Thoughn. as Fizure ! <hows. 1t is likely that the characteristic temporal and spatial scales of convection vary
conunuously across the convection zone. :onvective processes can be thought to be segregated into two concentric
neils ran outer sheil and an inner sheill. with convection in each sheil being dominated by distinct processes. In §l.e
we ailempt to quanuty the extent ot each shell: here we discuss qualitatively the characteristics of the convection and
irs likelv seismice effects in eacn <heil.

The outer shell occupies rhe top few scale neights where the acoustic and convective physics are most complex.
Convection is most vigorous in this shell, being highly turbulent and with relatively short characteristic convective
lifetimes and length scales. [n this shell. the convective velocity is an appreciable {raction of the local sound speed
v M ~ 9.3). the time scales ot the turbulence and of the acoustic radiation are commensurable. and the amplitudes of
the p-modes and the convective waves are largest. Goldreich and Keely (1977a. b) and Goldreich and Kumar (1938,
1989) calculated the ampiitudes and enerzies of the p-modes under the assumption they are excited by stochastic
rurbulent convection. Results of (Goldretch and Kumar {1988) show that seismic wave emission and absorption in the
Sun principaily take place through interaction with turbulence in the top few scale heights of the convection zone. Ve
iefine the radial extent of the outer shell as the region of significant interaction between the p-modes and convection.
Ve argue in §l.e that this region also marks the extent of significant three-mode coupling and attempt to approximate
:ts depth extent as well.

In the outer shell. convective ceils evoive rapialy (Stein and Nordlund 1989: Title ef al. 1989). If, in addition.
cells are distributed isotropicaily in space. then they will produce little accumulated splitting effect on globally
propagating waves. There will be local acoustic effects, but the isotropic assumption guarantees that the net global
=ffect on frequency will be small. However, acoustic modal amplitudes, line-widths. and degenerate frequencies will be
affected by outer shell processes (¢.). Brown 1034; Christensen-Dalszaard and Fransden 1983: Christensen-Dalsgaard
#¢ al. 1989) such as convection-osaiilation coupling, three-mode coupling (Kumar and Goldreich 1089), and radiative
Jamping.

The inner shell is much larger than the outer shell and lies directly beneath it. occupying, as we argue below,
more than ~ 99.8% in radius of the convection zone. By definition, the emission and absorption of seismic waves
by turbulence in this shell is negligible. and convection-oscillation coupling can be ignored accurately. Consequently,
the anelastic condition can be applied. Furthermore. p-mode ampplitudes are much smaller than in the outer shell
and the solar gas in this shell is optically thick so radiative damping is negligible. Thus. the contribution to the
interaction coetficient describing three-mode coupling in the inner shell is relatively small (Kumar and Goldreich
1989). Therefore. we argue that splitting and the global distortion of seismic wavefronts dominantly result from
convection that is relatively coherent temporally and spatially. [f long-lived. long wavelength features of convection
do exist. they would possess characteristic signatures in p-mode frequencies, line-widths. and displacement patterns
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-hat could be computed from the theory presented herein. [n principle. once we have identified these signatures.
‘heir observation wouid place consrraints on rhe causative convective structures. For example. we show in a future
~antribution that because of the wav helioseismic images are reduced and analyzed. the effect of aspherical structure
s 1o broaden iine-widths. This etfect ran b <ignificant for modes with low intrinsic damping rates. The value of
soiioseismological constraints such as these wouid be enhanced by the fact that large-scale convection has been linked
with the dynamic structure of the differential rotation {e.g. Gilman 1937) and with the solar dynamo (e.g. Stix 1981).
'n aadition. magnetic activity observed at the solar surface probably is controlled by 1ts subsurface expression that is
numately involved with tlows at depth.

Next. we address two questions in 350L.d and Le, (1) What is the evidence that large-scaie convection exists in
‘he inner shell? (2) What is the extent of the outer shell where we do not accurately model the convective effect of
convection?

d) On the Exnistence of Giant-Cells

A problem for the utility of the theory presented here is that giant cells have not been unambiguously observed
«¢ the soiar surface. If they do exist at the surface of the Sun. their amplitudes are less than 10 ms~' (Howard and
Labonte 1980: Labonte ef al. 1931: Brown and Gilman 1984). Nevertheless. the evidence for their existence is strong,
rhough circumstantial. {1) First. the Sun displays a number of features that are suggestive of sustained large-scale
mouons (Gilman 1987). These mciude persistent large-scale patterns in the solar magnetic field. the coronal holes
hich survive several solar rotation periods without being sheared apart by differential rotation. and the existence of
.ctive longitudes where new active regions preferentially arise. (2) Second. the observed distinct ceilular convection
a2y continue well below the surface. In the mixing length picture of convection {e.g.. Fig. 1). the scale of the
-onvective eddies is set by the pressure scale-height so that one would expect layers of convection with monotonically
increasing vertical scale with depth. In addition. both linear and nonlinear models (e.g.. Gough et al. 1976) have
shown that even when the tluid is compressible. and the stratification includes several scale heights, convection
spanning the entire unstable layer 15 favored. Thus, for the Sun, patterns of motion with horizontal dimensions up
to the depth of the convection zone (i.e. A ~ 200.000 km or harmonic degrees of I ~ 20) would be expected. (3)
Third. the space-lab expertment of thermal convection (Hart et al. 1986) and the numerical simulations of Glatzmaier
11984) and Gilman and Miller (1986) have suggested that large and sustained patterns of motion may exist in the
Sun with scales approaching the depth of the convection zone. (4) Fourth, Hill (1988) constructed three-dimensional
spectra (ks, ky,w) of helioseismic images of small rectangular regions near the solar equator and discovered relatively
large-scale horizontal, poleward flows of approximately 100 m/s that may be the surface expression of giant-cells. (5)
Finally, a possible explanation of the small vertical velocities of the supergranules and the absence of a strong signature
of giant-cells in the data of Howard and Labonte (1980) may be found in the work of Latour et al. (1981) and van
Ballegooijen (1086). Latour et al. (1931) found that buoyancy breaking in A-type stars may occur in upward-directed
flows that have horizontal scales large compared to the pressure scale height of the region into which they penetrate.
This leads to lateral deflection and strong horizontal shearing motions. If this result applies as weil to G-type stars
such as the Sun. it may provide the explanation for the lack of surface observations of giant-cells. In addition, van
Ballezooijen (1986) found that density stratification screens out periodic components of the near surface flow pattern
in his convection model so that periodic motions that exist at depth would not be observed at the surface.

e) Justification of Linearization for Application to Giant Cell Convection

We now attempt to quantify the extent of the outer shell, defined to be that region where convection-oscillation
~oupling is appreciable. The extent of energy exchange between osciilations and turbulent convection depends on their
relative time and velocity scales. Perhaps the best available measure of the coupling between convection and acoustic
oscillations is the flux of energy F, pumped into to the acoustic modes from the convective motions. Goldreich and
Kumar (1989) derive an expression for £, given by

Fp=M%F, ‘ (12)

~
where F. is the convective {lux given by equation (11). F, depends primarily on the Reynolds stresses.

An inspection of Figure 2. which plots the radial dependence of Fy, reveals that convection-oscillation coupling is
relatively insignificant below the top ~ .153% of the convection zone. Thus, as a mechanism of oscillation-convection
coupling, Reynolds stresses and entropy fluctuations act far more efficiently in the top few scale heights than in the
deeper layers where the characteristic velocities are smaller and the length scales are larger.
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Kumar and Goldreich (1089) also discuss rhe »ifect of nonlinear interactions among solar acoustic modes. Thev
arzue that these interactions are stronzest in he ontermost layers of the Sun. Indeed. an inspection of their Fizur'e
5 inaicates that the coupiing coerficients are sensttive to three-mode interactions only in the outer ~ 2% by radius
*{ *he convection zone. Ccnsequently. we infer that three-mode interactions can be ignored in the determination of
szismic erfects of convective tlows below this depth.

In criticism of the lineanization in hoth couvective veiocity and seismic displacement. it might be suggested on
ntuinve grounds that a theory governing the »ifect of convection on seismic waves must be accurate along the entire
nath of the seismic wave. and since all seismic waves propagate through the outer shell the theory must be general
~nough to govern outer shell physics. This wouid certainiy be true if we were interested in describing all of the seismic
=ffects of convection. However. as discussed in al.c. turbulent convection and other nonlinear processes in the outer
shell wiil dominantly affect modal amplitudes and Jegenerate frequencies. We are only interested here in determining
split frequencies and perturbed eigenfunctions (or displacement patterns) of acoustic modes. Consequently. outer shell
physics will be subsequently ignored.

In conclusion. we define the outer shell to have a depth of ~ .2% of the convection zone and we argue that the
seismic effect of convection can be modeled accurately with a linearized theory for flows within the the inner ~ 99.3%
of the convection zone by radius.

11 Overview

n 3IT we discuss reference frames and the separability of the <quations of motion. and present a means of transter-
sing the theoretical results presented in this paper from a frame corotating with the Sun to an inertial lrame that can
e roughly identified as the observer’s {rame. [n 311l we present mathematical representations for convection and for
the asphericities in the elastic-gravitational variables, The equations of motion governing the setsmic oscillations in
the presence of a steady-state globai-scale velocity field and the associated static structural perturbations to density
and bulk modulus are derived in §IV. We derive in §V the quasi-degenerate perturbation theory needed to calculate
the influence of a velocity field and structural perturbations on solar oscillations. In §VI, we derive the general ma-
trix elements that determine the displacement field and split frequencies caused by an anelastic model of convection
represented with scalar and vector spherical harmonics by using the perturbation operator derived in §IV and the
perturbation theory derived in 3V. The application of quasi-degenerate perturbation theory to the acoustic modes of
the Sun and the derivation of the general matrix elements are presented in §VI. In §VII we discuss properties of the
supermatrix. In §VIIL. we consider differential rotation. In §IX we show how the the supermatrix may be used to
generate theoretical seismograms. The principal conclysions of the paper are summarized in §X.

The system of equations that governs the modal eigenfucntions and eigenfrequencies of the SNRNVMAIS solar
model is presented in Appendix A. The equation of motion of the non-SNRNMAIS solar model is derived in Appendix
B. In Appendix C, we present a mathematical method adapted from Phinney and Burridge (1973) that considerably
stmplifies the application of differential operators to vector and tensor fields in a spherical geometry which are common
in helioseismology. This technique is used to calculate the general matrices presented in §VI. Appendix D contains
a discussion of the incorporation of the anelastic condition into the general matrix and a derivation of the matrix
2lements for the Coriolis force, centripetal acceleration. and for general convection. Appendix E presents detailed
expressions for the matrix elements for aspherical perturbations in the elastic-gravitational variables.

[Sections II-IX omitted.]

X. SUMMARY AND CONCLUSIONS

The purpose of this paper has been to derive a theory that governs the effect of steady-state convection and
associated asphericities in the elastic-gravitational variables (adiabatic bulk modulus %, density p, and gravitational
potential ¢) on seismic frequencies and displacement patterns and to present a formalism with which this theory can be
applied computationally. The theory is not intended to predict mddal amplitudes since these are governed, in part, by
the exchange of energy between convection and seismic waves, which is excluded by our theory since it is linear and since
the convective flow is defined to be anelastic. To the best of our knowledge, every global-scale study of the helioseismic .
effect of convection or structural asphericities, to date, has assumed an axisymmetric model. We have made no such
assumption, and have represented convective flow (a vector field) and structural asphericities (a scalar field) with
general global basis functions, vector and scalar spherical harmonics, respectively. We also represent the eigenfunctions
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={ rhe spherical reterence model 11he SNRNMALS colar model) with vector spherical harmonics. These representations
iilow us 1o employ quasi-dezencrate perturoation theory in a straightforward manner to derive the general matrix
weemments 7 that govern the modal coupiing and splitting caused by convection and the structural asphericities.
We present formuiae for the general matrix elements explicitly in terms of the scalar eigenfunctions of the SNRNMAIS
->iar model. Thus. the use of thus theory requires oniv the following quantities: 11} 2 SNRNMAIS sciar model (~(r)
~nya otr1), DY the setsmic scalar erzenfunctions of the SNRNMAIS solar model (R0h(rm) 2 80(r). 2 Vim0 L), adoir)
wd 220 7). and (3) the spnericat harmonic representation of convection v} (r). vi(r). and wi(rl) and/or asphericities
n the elastic-gravitational vanabies (¢n}(r) nud &pj(r)) at each radial knot of the SNRNMAIS inodel. The general
matrix elements compose the Hermitian supermatrix Z. whose eigenvalues are the eigenfrequency perturbations of the
reneral non-SNRNMAIS solar model and whose eigenvector components are the expansion coefficients in the linear
-ombination forming the perturbed eigenfunctions (or displacement patterns) in which SNRNMAIS eigenfunctions
ire basis functions.

Optimally. the next stage of this research would be the application of this formalism to a realistic global model

-t long-waveiength convection with associated asphericities in the elastic-gravitational variables. A major aspect of
tius effort would be the :ietermination of the accuracy of degenerate perturbation theory relative to quasi-degenerate
perturbation theory. We have arzued in SVTII that due to the spacing of modes that satisfy the selection rules.
quasi-degenerate coupling ~an. for ail practical purposes. be neglected in modeling the effect of differential rotation
“n ueiioseismic data. [n -tfect. modes that can couple through differential rotation are too far separated in frequency
-3 voupie strongiy. This 15 not the case when we consider Tionaxisymmetric flows and asphericities. In this case, near
regeneracies wiil reguiariy nccur. and voupiings can be relativeiy strong especially among SNRNMAIS modes within
“ne same multiplet. However, since solar convection is dominantly axisymmetric, complete hybridization of modes
would be rare. and the prrturbed mode wonld retain many of the characteristics of a mode of the SNRNMAIS model.
Most importantly, a perturbed rigenfunction. on average, would resemble a slightly perturbed SNRNMAIS eigenfunc-
-ion: w.e.. a single spherical harmonic. However. these perturbations to the eigenfunctions and eigenirequencies will
be systematic and it should prove interesting to investigate the cumulative effect on splitting data. In particular, one
could compute the perturbed »igenirequencies for a given model of giant-cell convection (¢e.g.. Gilman and Glatzmaier
1081: Glatzmaier and Giiman 1951, [982: Glatzmaier 1984) and then invert for the input differential rotation profile
using currently standard inethods that assume that nonaxisymmetric components of flow are nonexistent. If the flow
model were realistic. one would uncover any bias in the recently estimated differential rotation profiles.

Another use of the theory would be to determine whether general asphericities in the elastic-gravitational variables
could appreciably affect helioseismic data. For example, Kuhn et al. (1088) observed a surface temperature variation
of several degrees Celsius from the solar south pole to the solar equator and hypothesized that this or a similar
structure may be responsible for the non-zero even-degree frequency splitting coefficients. Given an equation of state,
these temperature variations could be expressed in terms of the perturbations §p(r) and éx3(r). Although the depth
»xtent of the observed temperature variation is unknown. different hypothesized depth structures could be constructed.
I'sing the theory presented here. the general matrix elements and, hence. the splitting caused by each temperature
model could be computed and used to test the hypothesis of Kuhn ef al. (1938).

The major constraint on the application of the theory presented here is that we have assumed that the convective
flows and asphericities are stationary in time. Consequently, we view this paper as the first step toward a more
general theory governing time-varying flows. Nevertheless, a number of the consequences of the theory will hold for
time-varying flows as well. Most importantly, the selection rules listed in §VII wiil hold for non-stationary flows.
For example. under self-coupling (or within degenerate perturbation theory), by Selection Rules 1,. and 3,., only
odd-degree s toroidal flows and even degree structural asphericities with s < 2{ will affect the splitung and coupling
of acoustic modes with harmonic degree /.

In closing, since this paper is long, it is worthwhile to present a road map through the major results. Modal
notation and terminology are discussed in §1.a and model notation and terminology are presented in §IV.b.i. The major
assumptions of the theory are presented and discussed in §1.b, and are justified in £$1.c and l.e. The mathematical
representation of convection is in equations (23)-(25) and the representation of the elastic-gravitational variables is in
equations (29)-(31) and (333)-(37). The general equation of motion is equation (B.11) and the equation of motion for
the perturbed model with first-order perturbations including rotation, ellipticity in the structural variables, centripetal
force. convective flow. and asphenicities in the elastic-gravitational variables is equation (30). The general forms of
the general matrix element and the supermatrix are shown in equations (67) and (68), respectively, and the general
matrix element for the perturbations listed in the previous sentence is in equation {77). The explicit form of the
general matrix eletnents suitable for computation. written in terms of the scalar eigenfunctions of the SNRNMAIS
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soiar model. can be found in equation (22) with notation and the inteqral kernels defined in equations (33)-1 1 [2). W
:onsider tiiis the main resuit of this paper. Tlires seiection ruies governing coupiing are listed in equations (120), (122)
cand (1233, with the seif-counling forn o the seiection ruies in equations 11210 (122), and 1124). The Diazonal Sum
Rule and the Superdiagonal Sum Rule are stated and proved in VL4, The g-neral matrix element and s=lection rules
‘or differential rotation are in equations 1 137 1ad 141}, respectiveiyv. All results of the paper are preseuted in a frame
-orotating with the Sun. Equation (13} zan be used 1o construct the perturbed eigenirequencies and ergenfunctions
>0 2 non-SNRNMAIS solar model in an inernai frame. The Generalized Spherical Harmonic formaiism. which wns
used to derive the explicit form of the zeneral matrix =lements. is discussed in Appendix C. The incorporation of
ineiasticity constraint into the general matrix eiement for convection is the subject of Appendix D.
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ABSTRACT

We consider wave generation by turbulent convection in a plane parallel, stratified atmosphere that sits in a
gravitational field, g. The atmosphere consists of two semi-infinite layers, the lower adiabatic and polytropic
and the upper isothermal. The adiabatic layer supports a convective energy flux given by mixing length
theory; F, ~ pv}, where p is mass density and vy is the velocity of the energy bearing turbulent eddies.

Acoustic waves with w > w,, and gravity waves with o < 2k, H; w, propagate in the isothermal layer whose
acoustic cutoff frequency, w,., and Brunt-Viisilid frequency, w,, satisfy w’?. = yg/4H; and wi = (y — 1)g/yH,,
where y and H,; denote the adiabatic index and scale height. The atmosphere traps acoustic waves in upper
part of the adiabatic layer (p-modes) and gravity waves on the interface between the adiabatic and isothermal
layers (f~modes). These modes obey the dispersion relation

wzzigk,<n+2),
m 2

for w < w,.. Here, m is the polytropic index, k, is the magnitude of the horizontal wave vector, and n is the
number of nodes in the radial displacement eigenfunction; n = 0 for f-modes.

Wave generation is concentrated at the top of the convection zone since the turbulent Mach number, M =
vy/c, peaks there; we assume M, < 1. The dimensionless efficiency, n, for the conversion of the energy carnied
by convection into wave energy is calculated to be n ~ M!*/2 for p-modes, f-modes, and propagating acoustic
waves, and n ~ M, for propagatmg gravity waves. Most of the energy going into p-modes, f~-modes, and prop-
agating acoustic waves is emitted by inertial range eddies of size h ~ M}*H, at w ~ w,, and k, ~ I/H,. The
energy emission into propagating gravity waves is dominated by energy beanng cddws of size ~H, and ls_

“concentrated at w ~ v/H,~ M, 0, and k, ~ 1/H,. '

We find the power input to individual p-modes, E,, to vary as o2 * ™" 3m+3) a¢ frequencies @ < v/H,.
Libbrecht has shown that the amplitudes and linewidths of the solar p-modes imply E < w® for
@ <2 x 1072 571 The theoretical exponent matches the observational one for m = 4, a value obtained from
the density profile in the upper part of the solar convection zone. This agreement supports the hypothesis that
the solar p-modes are stochastically excited by turbulent convection.

Subject headings: convection — Sun: atmosphere — Sun: oscillations — turbuience — wave motions

I. INTRODUCTION

Lighthill (1952) wrote the seminal paper on the generation of acoustic waves by turbulence in homogeneous fluids. Stein (1967)
extended Lighthill's techniques to stratified fluids and also treated the emission of gravity waves. We reconsider Stein’s problem for
a more realistic model atmosphere and relate the turbulent spectrum to the convective energy flux via the Kolmogorov scaling and
the mixing length hypothesis. Our goal is to estimate efficiencies for the conversion of the convective energy flux into both trapped
and propagating waves. We treat mode excitation but not mode damping. Thus, we cannot estimate the energies of trapped modes
which depend upon the balance between these two effects.

The plan of our paper is as follows. In § II we describe the model atmosphere and its eigenmodes. Next, in § III, we derive
expressions for the rates at which individual modes gain energy from turbulent convection. In § IV, we estimate the total emissivities
for the different wave types, p-modes, f~-modes, propagating acoustic waves, and propagating gravity waves. A comparison of our
results with those obtained in earlier studies, and a discussion of their implications, is givenin § V.

II. ATMOSPHERE AND EIGENMODES

a) Static Atmosphere

Our model atmosphere is plane parallel, sits in a constant gravitational field, g, and consists of two semi-infinite layers, the lower
adiabatic and polytropic and the upper isothermal. The pressure, p, density, p, and temperature, T, are continuous across ttgc
interface between the two layers. In the lower layer the adiabatic and polytropic indices are related by I' = | + 1/m. The adiabatic

! The National Center for Atmospheric Research is sponsored by the National Science Foundation.
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WAVE GENERATION BY TURBULENT CONVECTION 695

index in the upper layer, y, may differ from I'. The z coordinate measures depth below the level at which the adiabatic layer would
terminate in the absence of the isothermal layer. We denote quantities evaluated at the top of the adiabatic layer by a subscript .
Parameters in the isothermal layer are distinguished by a subscript i. Note, the ratio of the sound speeds c;/c, = (y/[)'/2.

In the adiabatic layer the thermodynamic variables exhibit a power-law behavior with depth:

> \m*i L\m -
P=Pr(:;) , P=P.(';'> . T = T,(:;). (n

The sound speed. ¢, and the pressure scale height, H, satisfy ¢? = gz/mand H = z/{m + 1).
The isothermal atmosphere is still simpler: T = T,, ¢ = ¢,, and H = H, are all constant, whereas p and p are proportional to
exp (z/H)).
b) Normal Modes
We choose the Eulerian enthalpy perturbation, Q = p,/p, as the dependent variable in the linear wave equations. These read

sz mdQ 2)
2 T4z +(c -k 10=0, 2)
in the adiabatic layer, and
d’Q 1 dQ
0. 442 [5 (oo

in the isothermal layer (Kumar and Goldreich 1989). Here, w is the wave frequency and k, is the horizontal wavevector (I = k, R).
The displacement vector, §, is related to Q by

ch=‘w—2Qy g¢=wzgy (4)
in the adiabatic layer, and by
i K :__ 1 Q -1
f,.-lle, s'—(wz—wf)l:é’z-# vH, 2l )

in the isothermal layer.

The normal modes are obtained by solving equations (2) and (3) subject to § — 0 as z — oo, Q and ¢, continuous across the
interface at z,, and the appropriate boundary conditions as z - — . The continuity of §, follows from that of Q.

The modes are classified as trapped or propagating, and as composed of acoustic or gravity waves. The adiabatic layer supports
acoustic waves, but not gravity waves. Moreover, it refracts acoustic waves upward. Thus, propagating modes must be traveling
waves in the isothermal atmosphere.

Solutions of the wave equation in the isothermal atmosphere are proportional to exp (— x4 z), with

ke = {2;1 * \/[(w_a;)z ](2;1 7t [(Z)z" 1]"5}’ ©

where w,, and w, are the acoustic cutoff and Brunt-Viisili frequencies:

: _ 19
Ve =4H, 7
and
y—1)g
2
=—— 8
wy +H, - ®
Thus wi = 4(y - l)cu;,/,2 There are two branches to the dispersion curve for traveling waves. For 2k, H; < 1, these are a high

frequency, acoustic wave, branch with o > w,,, and a low-frequency, gravity-wave, branch with @ < 2k, H; w,.

Wave excitation by turbulent convection is concentrated in the upper adiabatic layer where the convective velocity peaks. We
seek analytic expressions for the normalized eigenfunctions in this region. Since the dominant interactions are proportional to
820/92* (see § I1Ib), we explicitly evaluate this quantity for each mode. In doing so, we drop factors of order unity including, in
places. 7, I, and m.

i) Trapped Modes

Trapped modes correspond to evanescent solutions in the isothermal layer and are restricted to a discrete set of eigenfrequencies
for fixed k,. In the limit that the adiabatic layer extends to vanishing surface pressure, the eigenfunctions may be expressed in terms
of associated Laguerre polynomials and the dispersion relation reads

wt=2 gk,,(n + —"3> . 9
m 2
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where the integer n denotes the number of nodes in the radial displacement eigenfunction (Christensen-Dalsgaard 1980:
Christensen-Dalsgaard and Gough 1980). Trapped acoustic modes, or p-modes, correspond to n # (. Modes with n = 0 are surface
gravity waves, or f-modes. Trapped g-modes with n # 0 do not exist since the adiabatic layer is neutrally stratified, that Is, its
Brunt-Viisili frequency vanishes. Equation (9) remains a good approximation for w < w,, even with finite surface pressure.
Only the physical solution, the one that grows less rapidly with height in the isothermal layer, is normalizable. The normalization
condition reads
o
I=w? J dzpl, &% =0,, (10)
-
at fixed &,. For modes with 2k, H; < 1, most of the contribution to the energy integral comes from the adiabatic layer. This enables
us to reexpress the normalization condition, using equation (2), in terms of the enthalpy perturbation as

sz dz§ 008 =0y, . (11)
For w = o', this integral evaluates the potential energy of a trapped mode in the adiabatic layer. The potential energy is equal to the
kinetic energy for all modes, This accounts for the relation between equations ( I0)and (11).

L. P-Modes

A p-mode is a standing acoustic wave trapped between an upper reflecting layer at z,, where w/c(z,) = 1/2H(z,), and a lower
turning point at z,, where @/c(z,) = k. The requirement that there be an upper reflecting layer restricts p-modes to frequencies
below w,_. S

It is easily shown that

- 2
1.\,(&) , (12)
b w

. 2
;—2~(n+g) . (13)
1

Outside the interval 21 $ 2 < z,, the mode is evanescent. Both Q and § increase siowly with height above z,. Below 2z, thek, term in
equation (2) dominates and Q xexp (—k,z).

We study the p-mode eigenfunctions in the dual limit o <w, and 2k, H, < 1. In a polytropic layer with vanishing surface
pressure, the eigenfunctions are solutions of equation (2) that are analytic at z = 0. These solutions may be expressed in terms of
associated Laguerre polynomials. When the polytropic layer is overlane by an isothermal layer, the cigenfunctions include a
contribution from the solution that is singular at z = 0. However, the boundary conditions at the interface between the two layers
ensure that the contribution from the singular solution is small for » < W,,.

We can approximate the eigenfunction in the region of propagation, z, < z < 25, by the WKB solution

m=1)/2 1/2
0~ (%’)‘ ’ B, sin [20(—"5) ", ¢,] . (14)

Below the lower turning point at z,, the eigenfunction is exponentially small. In the evanescent zone above z, the atmosphere
responds stiffly. Thus B, is approximately equal to the surface amplitude, Q(z,), for v < w,,.

The z derivaties of Q in the €vancscent region enter into the expressions we derive for wave generation. For < w,., 0/0z has
magnitude w?/g ~ (w/w )*H ™!, as follows directly from equation (2). This equation has a singular point at z = 0, and its regular
solution is given by a power series in w?z/g. This verifies our assertion about the magnitude of d/éz. Of course, the polytropic
atmosphere does not extend to z = 0. However, this is of little Consequence for the eigenfunctions that become evanescent well
below z = z,.

_Given the properties of the eigenfunction described above, it follows from the normalization equation (11) that

wm 2(m- 1)
gt L r@ k,
14 (m—2)

g P

and

(15)

Evaluating 32Q/d22 we obtain

=2 2\2
£Q (‘”—) B, (16)
cz* g
forz, <z <z,
2. F-Modes
Direct substitution into equations (2) and (3) verifies that Q = B, exp (—k,z), with w? = gk,, is an exact solution of the wave
equations in both the adiabatic and the isothermal layers. Moreover, ¢. formed from equations (4) and ( 5) is continuous across z,.
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The f-modes are incompressible, V - & = 0. which accounts for their simple dispersion relation. The amplitude, B, is determined
from the normalization equation (11) to be

-m, 2im—1)
Tw k,

B~ a7n

(m=2)
t

g P

For all z,

~2
%;?:kga, exp (—ky2) . (18)

ii} Propagating Waves
Modes that propagate in the isothermal layer have continuous spectra. They are chosen to have no net flux in the isothermal
layer; that is, they are composed of pairs of inward- and outward-propagating waves of equal amplitude. This choice ensures that
propagating modes have real frequencies and are orthogonal to trapped modes. These modes are normalized such that

k]
o .[ dzp§, §5 = dw — @), (19)
bl ]
at fixed k,. The upper limit on the integral in equation (19) may be taken to be z,, since the contribution from the adiabatic layer is
finite, and therefore negligible.
[. Acoustic Waves

These modes have w > w,. and propagate in the isothermal atmosphere and in the upper part of the adiabatic layer. They are
evanescent below the lower turning point at =, ~ w?/gk?. We deduce the properties of the eigenfunctions in the joint limitw » w,
and k, <€ w/c;.

In the isothermal layer

Q =C,sin [K,(z, — 2) + (] exp [‘z—'—’] , (20)
2H,;
where K. x> w/c,. Application of the normalization condition given by equation (19) to equation (20) yields
1/2,1)2
c~ = (21)
P
We approximate the eigenfunctions in the adiabatic layer by the WKB solutions
z (m—1)/2 m 1/2
o~ (;’) B, sin [2w(;) (2 =z} + ¢,,] , (22)

for z, < z < z,. The continuity of @ and ¢, across z, is used to relate B, and ¢, to C, and {,. The phase, ¢,, is determined by the
condition that Q oc exp (—k, z) for z — . For w just above w,., B,(w, k,) displays sharp ridges along extensions of the p-mode
dispersion curves. These correspond to resonances for the scattering of incoming waves by the atmosphere. These ridges flatten for
w » w, and

B? re. (23)
¢ L+ (T =y cos® ¢,]
For later use we record
*Q ma?
= 24
éz? gz e (24)

forz, < z <€ z;.
2. Gravity Waves
Gravity modes with w < 2k, H, w, propagate in the isothermal atmosphere but are evanescent in the neutraily stable adiabatic
layer. We detail their properties in the double limit w < 2k, H;w, and 2k, H; < 1.
In the isothermal atmosphere

Q = C,sin [K.(z, - 2) + {,] exp [(iz;—’] , (25)

where K, > (w,/wk,.
The amplitude C, is determined by the normalization equation (19) to be
1/2
ct~t (26)

~—
9 1/2 M
Pizy 'k
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In the adiabatic layer. for z, < = < k.. the last term in the wave

may be ignored. The reduced wave equation yields

Vol. 363
equation (2) is much smaller than the first and second terms and
= \m-1)
Q= Bg(j') +D,. (27)
The ratio D,/ B, is determined by fitting Q in the upper part of the adiabatic layer to Q x exp (—k,z) at = » ky ! For 2k, H, < 1,
D,/B, < 1.
gThge continuity of Q and ¢, across z, is used to relate B,and D, to C,and {,. We find
. wk), 232
tan {, ~ — ','1/2 (28)
g
. The small value of tan {, o is due to the change in orientation of the velocity field from almost vertical in the top of the adiabatic layer
to almost horizontal in the isothermal layer. From equation (28) it follows that
-5/2 Zk
B2~ 2T (29)
g gl,ZP,
For later use we note that

-2 _ l

9 mm-10 (30)

¢z z

holds for z « &, !

¢) Turbulent Convection
In the absence of a reliable theory for turbulent conv
hypothesis, the convective energy flux, F_,

height, H(z) = z/tm + 1). The velocity and

ection, we are guided by the mixing tength hypothesis. According to this
is carried by turbulent eddies whose dimensions are of order the local pressure scale
entro
related to the mean entropy gradient, ds/dz, by

py fluctuations associated with these energy bearing eddies, vy{z) and s,(z), are

, gH*ds
Vi ~ -

¢, dz
where ¢, is the specific heat at constant pressure per unit mass, and

(31

ds
sy ~H—,
# dz
These relations lead to

(32
Since F_ is independent of z,

Fe~pToysy ~ pojy

(33)
)MIS

(34)

=
where v, = vylz,).

In treating the convection zone as adiabatic we have been ne
¢, ' T ds/dz, with respect to the adiabatic tem
may be expressed as

e |0

glecting the superadiabaticity of the temperature gradient,
perature gradient, g/c,. From equation (32) it follows that the ratio of these gradients

(35)
where the Mach number of the turbulence, M = vy/c. Appeal to equation (33) establishes that

v~ F )"
pcc)

We assume that the turbulent velocities are substantiall

these conditions we are justified in a

modes.

(36)
y subsonic even near the top of the convection zone, that is. M, < 1. Under
pproximating the convection zone as adiabatic when calculating eigenfunctions for the normal
The characteristic time scale of the energy bearing eddies is

TH""_‘
Uy

37
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It is smallest at the top of the convection zone where

1
T, ~ .
‘wf wﬂf

(38)

The velocities of smaller, h < H, inertial range eddies are related to those of the energy bearing eddies by the Kolmogorov scaling
{Tennekes and Lumley 1972),
(i h\13
o U . 39
Uy (H ) ' 39

at fixed z. The Kolmogorov spectrum applies to turbulent convection because, below the scale of the energy bearing eddies, the
Reynolds stress provides greater accelerations than the buoyancy forces (Goldreich and Keeley 1977a). This implies that entropy
mixes like a passive scalar contaminant in the inertial range. Thus,

Sy h 1/3

—~|= . 40

SH (H ) “0
The depth dependence of the properties of eddies of fixed size h follows from equations (32), (34), (37), and (40). We find

u 113
hzy
vplZ) ~ vy Tt D

[ oim+ DR 27L3
WD) ~ o T ] . (41)
L -t

'hz12m+ 3}]1/3

~2({m+ 2}
-

sWz) ~ s

1. MODE EXCITATION

a) Source Terms

We begin this section by adding source terms due to turbulent convection to the linear wave equation (2) for the adiabatic layer.
Next, we classify the individual terms as sources of monopole, dipole, and quadrupole radiation. Then we evaluate the excitation of
wave modes by these sources.

We distinguish three principal sources of wave excitation by turbulent convection. They are, the expansion and contraction of
fluid due to the gain and loss of specific entropy, buoyancy force variations associated with these entropy changes, and momentum
transport by the fluctuating Reynold's stress.

We derive the inhomogeneous wave equation from the linearized versions of the equations for mass and momentum conservation
supplemented by the equation of state for a perfect adiabatic gas. We augment the momentum equation by the divergence of the
turbulent Reynolds stress, and the adiabatic equation of state by the entropy fluctuations associated with turbulent convection.
These equations now read:

é
2LV =0, 2
-
cpr)
L Vp —pg= -V pem)=F, (43)
and
I s
p_’___EL__._' (44)

PP C

where p,, p,, v. and s are the Eulerian density, pressure, velocity, and entropy perturbations associated with the turbulent
convection and the waves it generates. The subscript | attached to the density and pressure perturbations denotes that only the
lowest order variations of these quantities need be retained. Equation (44), the Eulerian form of the perturbed equation of state,
holds because the background state is isentropic.

Eliminating p, and o from the left-hand sides of equations (42)+(44), we obtain the inhomogeneous wave equation

g 5Q 1 aZQ S(l)+s(2)

Vet TEwm s, @
where
~2
R o Z(®). svever (46)
ct? \e, éz \c,
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The interpretation of equation (45) is somewhat subtle. Provided we drop the final ¢ ~282Q/dt? term on the left-hand side as a first
approximation in the limit of subsonic turbulence, it determines the near field turbulent pressure perturbations from the turbulent
velocity and entropy perturbations. The ¢ ~222Q/6¢? term connects the near field perturbations to the wave field perturbations. The
latter may be expanded in terms of the normal modes.

The identification of sources by multipole order is a useful device in estimating wave emission by turbulent convection. It helps to
separate the sources that must be retained from those that may be safely discarded. For homogeneous and isotropic turbulence the
multipole expansion may be carried out in several equivalent ways. In our application the turbulence is z-dependent, and therefore
inhomogeneous, and the atmosphere is stratified, and therefore anisotropic. Under these circumstances the method of choice is to
identify sources according to whether they involve a change in fluid volume (monopole terms), a source of external momentum
(dipole terms), or merely internal stresses (quadrupole terms).?> Classification based on the angular dependence of the wave
amplitude in the radiation zone is not useful, because the anguiar dependence results, in part, from the anisotropy of the medium.?
Identification of sources by the number of their spatial derivatives also leads to ambiguity, since it differs according to the choice of
dependent variable.

The first term in S arises directly from the volume change due to an entropy change at fixed pressure. It is a monopole source.
The second term in S reflects the buoyancy force variation associated with this volume change. It involves a variation of the
density of momentum supplied by the external gravitational force and is a dipole source. The double divergence of the Reynolds
stress in S reflects the redistribution of momentum by internal stresses. It is a quadrupole source.

One might suspect that the monopole and dipole terms in S’ produce more acoustic radiation than the quadrupole term in S'2.
Treating these three terms independently appears to confirm this suspicion; the monopole and dipole terms are found to excite
comparably greater amounts of acoustic radiation than the quadrupole term. However, the correct solution is more subtle. As we
demonstrate shortly, destructive interference causes the total monopole plus dipole acoustic emission to be of the same order as the
quadrupoie emission.

b) Amplitude Eguation
The total enthalpy perturbation, Q(x, t), is expanded in terms of the normal modes, Q,(z), as

Q=;Z [4:Qq exp (—iwt + ik, - x) + A} QF exp (iwt ~ ik, - x)] (47)

V2 s
where .o is the horizontal cross section of the atmosphere.* The mode amplitudes, A(t), are slowly varying functions of time,
|dA,/dt| < w|A,]. Substituting this expansion into equation (45), multiplying both sides by Q¥ exp (iwt — ik, - x), and integrating
over space and time, we obtain

f

_-l— ( 3 *¢ (1} {2) i — 1 .
AdD) = 5—3 J._mdtjde,(S‘ + $ exp (iwt — ik, * x) . (48)

Taking —oco for the lower limit on the integral over ¢ involves the implicit assumption that damping erases the memory of
excitations from the distant past.

Next, we integrate by parts to transfer all time and space derivatives to the eigenfunctions. The contributions due to the individual
source terms are discussed separately below.

The monopole plus dipole terms contribute

1 ! ;Q?
AN = PRI f dt f d3x ? (w’Q: +9 CCQ) exp (iwt — ik, - x) . (49)
- » 2
With the aid of the homogeneous wave equation (2), we transform equation (49) to
1 ! ’ c3s [820* ,
AN = —Wf dtJ dsxgg—(—c_zQTa—ka:> exp (iwt — ik, " x) . (50)
» -

The contribution due to the quadrupole term is
l t
AP x> 5——5 | dt | d*xpov:VVQF exp (iwt — ik, - x) . (51)
: Qdiwsa/? j_,

The normal mode eigenfunctions share the property that k,[Q,| < 16Q,/0z] near the top of the adiabatic layer. Mpre precisely,
other than the f-modes for which 6Q,/0z = —k, Q,, the approximate mode eigenfunctions calculated in § IIb satisfy the strict

inequality. This implies that
a20*

1 ' 2
AN~ — m J. dt J.dlx ? 62Q2 exp (iwt — ik, - x) , (52)
-z I3

* This method preserves the ordering of source terms by the efficiency with which they generate radiation.
* For example, a spherically symmetric point source radiates anisotropically in a stratified atmosphere.
* For the moment we are treating the atmosphere as being of finite horizontal extent.
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and

~t

A3 = 1 J

RITAY AL ¢z
provide order of magnitude estimates for 4}"(t) and A, However, AV(1) = 0 for f~-modes as a consequence of their incompress-
ibility.

Now we compare the relative sizes of A\)(t) and A}?(r). We start with the contributions made by energy bearing eddies and go on
to investigate those due to smaller, inertial range eddies.

According to equations (31}{32), c*sy/c, ~ vy. Thus, except for the f-modes, the entropy and the Reynolds stress sources
associated with energy bearing eddies make comparable contributions to A,(t). This illustrates the destructive interference between
the monopole and dipole amplitudes to which we referred earlier; for energy bearing eddies and acoustic modes with @ ~ vg/H, the
monopole and dipole terms in equation (49) are each larger by a factor ~(c/vy)? than the combined term in equation (50). The
destructive interference between monopole and dipole amplitudes is a consequence of the anisotropy of the adiabatic layer. This is
expressed by the anisotropic form of equation (2) which transforms equation (49) into equation (50).

For inertial range eddies, csy/c, ~ vi(H/h)'"*. This suggests that, unlike energy bearing eddies, inertial range eddies might excite
waves more by their entropy sources than by their Reynolds stress sources. In fact, this is not the case. From equation (50) we sece
that wave excitation by the entropy source depends upon the time variability of the Eulerian entropy field. Inertial range eddies
contribute to this time variation in different ways. The kinetic energy in an eddy of size h < H may dissipate raising the local value of
s,. Neighboring eddies of similar size having opposite signs of s, may collide and mix their fluid thereby smoothing the spatial
variation of the entropy field on scale h. An eddy of size h carrying an entropy fluctuation s, may be advected at speeds up to vy. Of
these possibilities, the dissipation of kinetic energy into heat produces the largest entropy source. However, this source is just equal
to that provided by the Reynolds stress. Thus, from here on we use equation (53) to estimate the total excitation rate of normal
modes.

Destructive interference between monopole and dipole radiation fields holds the acoustic emissivity of turbulent convection at the
level characteristic of free turbulence® for which the emissivity is dominated by acoustic quadruples. We did not appreciate this
point in our earlier treatment of acoustic emission by turbulent fluids (Goldreich and Kumar 1988). There we discussed the
emissivity of turbulent pseudo-convection, a surrogate for turbulent convection. Since this model has acoustic dipoles but not
acoustic monopoles, its emissivity is greater than that of free turbulence.

-2 -
dt Jd%pv_f < QZ’ exp tiwt — ik, * x) (53)

c) Excitation Rate
Turbulent convection consists of a hierarchy of critically damped eddies. Different eddies of similar size are assumed to be
uncorrelated. This assumption enables us to divide into several steps the calculation of the rate at which turbulent convection

pumps energy into a wave mode.
To begin, we estimate the magnitude of the incremental amplitude, AA" produced by a single eddy of size h located at depth z

over its lifetime 1, ~ h/v,.

pu b Q2
Jimaft? 622
In arriving at the above equation we have assumed that the eigenfunction does not vary dramatically over Az = h < H. This is a
good approximation for all the modes we are concerned with. At frequencies much greater than 1,7 ', A4} declines exponentially

with increasing w.
Next, we note that

AA" ~ o<yt (59)

18431

E}~——, (55
Th
is the mean rate at which one eddy supplies energy to mode «.
Then, summing over eddies of all sizes and depths, we obtain
1 ] ~2 2 hmax dh
E,*-;f dzp* 0.%’ f - wht (56)
HY 0
where
H(z)

Honax(2) (57)

1+ [wrl2)]3? . - Sl

In dcrivingréquétion (56) frdfﬁ ( 55)7,7 we includé a faétor a/dz/h?, the number of eddies in the horizontal slice of cross-sectional area of
between vertical depths = and  + dz. The appearance of dh/h in equation (56) denotes that each inertial range eddy accounts for a
finite range of scale size dh/h ~ 1. Carrying out the integration over h yields -

(B[
w tl Zy -1 “t

* Free turbulence is turbulence that is not subject to external forces.

220 |2
o,
2

(58)

]
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where the weight factor, W. is given by

umv‘

Wi(u) = - .
(u) [1 + (wmslzuunwz]s (59)
The weight factor is sharply peaked about

1

u‘ ~ 1 + (wtt)sf‘m,:“ L] (60)
where

1

Wiu,) = (61)

(wt')J{m+4)/(m+3)[l + (wr')3(3m+ 7),*2(!"#3)] *

itdecays asu™** foru < u,andasu""*"2foru » u,.

The peak in W is so sharp that E, is dominated by contributions from z ~ z, for all wave modes. Physically, this means that the
excitation is concentrated in the layer where the turnover time of the energy bearing eddies is most nearly equal to the mode period.
This enables us to further simplify the expression for £, to

pz Hﬂ 1
¢
2 1, (wt')(5m¢21)/(m+3)[l + (wt,)""""”/z""* 3,]

2

3*Q.z,)

E
oz?

(62)

IV. FLUXES OF ENERGY

To evaluate the total excitation rate for each type of mode. we substitute the relevant expression for ¢2Q,(z,)/@z* given in § IIb)
into equation (62). Following that, we integrate £, over all modes of the family to determine the fraction of the convective energy
flux that family receives. '

The frequencies of trapped modes satisfy equation (9). The flux of energy going into modes of a given family is

1 1
F1=;§El=-2-7;;J.dkhkkEl! (63)

where the sum over « includes all modes in the family, the sum over n includes all dispersion ridges in the family, and | dk, is over all
modes along a ridge. The last equality follows because the spacing between adjacent k, modes in a box of horizontal area, &, is
equal to 2n/./ /. Therefore, the number of modes in dk, is &/d?k,/(2n)? = (//2n)dk, k,.

For propagating modes, w and k, are independently specified. The flux of energy into a family of modes is computed from

1 1
ﬂ=;§5=§f“fﬂﬂﬁv 64)

where the double integral is over all modes in the family.

a) P-Modes
From equations (16) and (62), we obtain

——f—ﬁjgr‘)i'zml +Tm = 3)im+ 3)
L2

E, ~ p, H3c3 M2+, (65)

- IHIm+ S5 2Um~+ 3) "
1 + (wr)

At fixed k,, E, varies as @3™** 7m0+ D for 1, < 1 and as @™~ 72 for wr, > L. To obtain the energy input rate per mode along
the n'th p-mode ridge, we eliminate k, from equation (65) by using equation (9). This procedure yields

2,3 2im+ 3 2m2+9m+ 3)/(m+3)
~P:Hrvt A”rml ! (M:)(m e

. 66
? n + m2) 1 + (1, 0me SV2m+3) (66)
The total flux of energy going into p-modes follows from substitutin equation (66) into equation (63): 7
E F~pmi3 2 MiYE -

From equation (66), we note that for wr, > | 'thé;:e'nergy'ihbuf iﬁfﬁ;ﬁf&;&nional to (wr,)¥™ 32 which increases with increasing @
for m > 1. Since the maximum frequency for trapped p-modes is w,., most of the energy flux goes into modes whose frequencies lie
just below the acoustic cutoff, w < w,, and is emitted by inertial range eddies withh ~ M22H, located in the top scale height of the
convection zone. o ’ o i
. 'bb) F-Modes

The calculations for the f-modes are similar to those for the p-modes. We substitute equation (18) into equation (62) and find

(wt )(2m2 +Tm = 3)/(m+3)
1.
L] 1 + ((Uf )3(3M+5)/2(M?3} '
t.

E; ~p H)cIMIm* Dk (68)
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where we have set exp (—k, z,) ~ | since k, z, ~ MA(wt)*" """ I + (01)*™*¥] £ 1 forw < w,,. The rate of energy input per
mode along the f~mode ridge reads

e ((DT )12M1*9m+3\/(m¢3i
EI ~ p, HlIMIm™Y TS - (69)
| +(wt)
The total flux of energy going into f~modes is
Fr~ pyeiMIPE = MISOF, (70)
¢} Acoustic Waves
From equations (24) and (62), we obtain )
w]
i
E, ~ p H}? (w‘r_);‘_” , an
2

after averaging over the phase ¢,. Substituting equation (71) into equation (64), we derive the total flux of energy carried by the
acoustic waves:

F,~pupM}32 = MI¥2F (72
Most of this energy is emitted by inertial eddies of size h < M} 2H, located in the top scale height of the convection zone. It is carried
by waves withw 2 w,. and k, < I/H,.
d) Gravity Waves
Equations (30) and (62) yield

(wt,)J‘"' = 3l(m+ )

[[ + ((DT )347n*9)/2(m+3)] ’
T

so the power input into gravity waves peaks for wt, ~ I. Equation (73) holds for k, in the range w/w, < 2k, H, < (wt,)*/™* 3/
(1 + (wr,)¥™ 3, Substituting equation (73) into equation (64), we find the total flux of energy carried by the gravity waves:

F,~p,vM, = M,F,. (74)

Most of this energy is emitted by energy bearing eddies located in the top scale height of the convection zone. It is carried by waves
with wt, ~ 1 and k, < 1/H,. The vertical wave vector of these waves in the isothermal layer is k, ~ 1/(M H)).

E, ~ p, H*v M, k, (73)
[

V. DISCUSSION

a) Previous Results

Our principal results are dimensional efficiencies, #, for the conversion of the convective energy flux into the energy flux in
different types of wave modes; n, ~ n, ~ n, ~ M}*? andn, ~ M,. It is illuminating to compare these efficiencies to those obtained
in previous investigations.

The classic result for the efficiency of emission of acoustic waves by homogeneous, isotropic turbuience is that of Lighthill (1952).
Translated into our notation it isy, ~ M. Here we are thinking of the acoustic emission from a layer of turbulent fluid of thickness,
H,, embedded in an otherwise uniform atmosphere. The energy bearing eddies are characterized by size, H,, and velocity, v,. In this
system, the acoustic emission is dominated by the energy bearing eddies, and is concentrated at w ~ v/H,, k ~ M, H,. We find
1, ~ N, ~ M52 with the emission dominated by inertial range eddies of size k ~ M;'?H, and concentrated atw ~ c/H,, k, ~ 1/H,.
There are two relevant comparisons between our results and those of Lighthill.

First, we can redo the estimate for #, from Lighthill’s treatment restricting attention to emission from inertial range eddies having
h < M>*H,. These eddies, whose lifetimes 1, < w,.', dominate the emission of energy into p-modes and acoustic waves in the
stratified atmosphere. A simple calculation yields n, ~ M!3/2. This result agrees with ours showing that the acoustic emission from
eddies with h < M}/2H, is not affected by stratification.

Second, we can modify our calculation of n, so that only the emission by energy bearing eddies is included. This is accomplished
by repeating the procedure described in § IVa) but now limiting the integration over frequency along the p-mode ridges to
w < v,/H,. This exercise yields n, ~ M}°. The factor M; by which this result differs from Lighthill's may be accounted for as follows.
Both in a homogencous atmosphere and in our stratified atmosphere, the acoustic emissivity is proportional to | VVQ |*. However,
for w ~ v/H,, |VVQ|* ~ (M,/H)*| Q|? in the homogeneous atmosphere, whereas | VVQ|? ~ (MZ/H)*| Q|* in the stratified atmo-
sphere. This difference, which accounts for four factors of M,, arises because p-modes with w ~ v,/H, ~ M, w,. are evanescent near
the top of the convection zone in the stratified atmosphere.5 The fifth factor of M, arises from differences in phase space mode
densities. In a uniform atmosphere, the number density of modes having w ~ v,/H, is approximately (M,/H,)>. This becomes M}/H}
per unit area for a layer H, thick. The corresponding area density of p-modes in the stratified atmosphere is M;/H?, just one power
of M, smaller.

* For acoustic waves withw 2 w,, | VV@|? is of the same order in the stratified atmosphere as in a homogeneous atmosphere.
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Stein (1967) investigated the emission of acoustic and gravity waves by turbulent convection in a stratified atmosphere. He paid
proper attention to the roles of @, and w, and to the shapes of the mode eigenfunctions. However, Stein considered an isothermal
atmosphere whereas we treat a two level atmosphere with the turbulent convection confined to the lower, adiabatic layer. Finally,
we relate the properties of the turbulence to the convective energy flux using the mixing length hypothesis and the Kolmogorov
scaling. The differences between out model assumptions and those of Stein preclude a meaningful comparison between his results
and ours.

Milkey (1970) commented on the relation between Stein’s calculation of acoustic spectral emissivity, €,{w), and that for free
turbulence.” He showed that the Kolmogorov spectrum implies €,  ©~"'? in the dual limit @ > w, and w » 1/1,. Equation (13)in
Goldreich and Kumar (1988) confirms this simple result and, written in our notation, reads

M}

N 2 {
€w) ~ p, v} —— . 75
( ) pl t (wn)hz ( )

Our equation (71) giving £, also leads to equation (75) since € (w) ~ (w/c)*E/H, ~ (Wt )*MZE H}.

b) Solar p-Modes

Libbrecht (1988) has determined E () from his solar p-mode observations. He finds E,xw®forw <2 x 10-2 s~!. Equation
(65) gives E, oc ¥+ 7m=3ytm+3) g0 @1, < 1,in agreement with the observational result for m x 4, the polytro_Pic index that fits the
average density profile in the hydrogen ionization zone. Our formula fails for wr, > 1 it gives E, oc o@m-Tne o E, c 0*3 for
m = 4, while Libbrecht finds E,cw > forw» 2 x 10-2 s~ L. The resolution of this discrepancy is in hand. It involves modification
of the eigenfunctions in the polytropic layer for w close to @, by the boundary conditions imposed at the interface with the
isothermal layer. These modifications, which are ignored here, will be described in a subsequent paper devoted to a detailed
examination of the excitation of the solar p-modes.

Even the limited success of our theoretical calculations in matching the frequency dependence of E, lends support to the
hypothesis that the solar p-modes are stochastically excited by turbulent convection (Goldreich and Keeley 1977b).

) General Applications

Wave emission by turbulent convection is a common process in stellar and planetary atmospheres. It is clearly implicated in the
heating of stellar chromospheres and coronas, Our results provide a foundation for the theory of wave emission in stratified
atmospheres. However, several additional factors need to be examined before serious applications to real systems are contemplated.
Several of these are mentioned below.

Real atmospheres differ from our model atmosphere in ways that may have important practical implications. The upper part of
the convective zone, where much of the wave generation occurs, may not be well approximated by an isentropic layer of constant
adiabatic index. Instead, as in the Sun, i i i 1oni

The scope of our investigation is restricted to linear waves in unmagnetized media. Wave heating depends upon the behavior of
nonlinear waves. It may also involve the coupling of acoustic and gravity waves to magnetosonic and Alfven waves. These issues
remain to be addressed by future studies.

The authors are indebted to T. Bogdan, A. Ingersoll, N. Murray, and R. Stein for much helpful advice. This research was
supported by NSF grants AST 89-13664 and PHY 86-04396 and NASA grants NAGW 1303, 1568, and 5951. Part of it was
performed while P. G. and P. K. held visiting appointments at the Harvard-Smithsonian Center for Astrophysics. P. G. thanks the
Smithsonian Institution for a Regents Fellowship and P. K. thanks W. Press, W. Kalkofen, and R. Noyes for financial support.

" Spectral emissivity is the ENCIgy emission rate, per unit volume, per unit frequency.
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