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I. INTRODUCTION

This is the final report on a project to develop a theoretical basis for interpreting solar

oscillation data in terms of the interior dynamics and structure of the Sun. Work funded

under this project was carried out principally by Dr. Michael Ritzwoller, Dr. Pawan

Kumar, and Dr. Sylvain Korzennik, under the overall guidance of the Principal Investiga-

tor, from March 1989 through August 1991. In sections II, IIl, and IV we discus: -heir

three related areas of work, and in section V give references to four papers written with

support from this grant. An Appendix gives complete copies of two of these papers and
abstracts and summaries of the other two.

H. STUDIES OF THE HELIOSEISMIC SIGNATURES OF DIFFERENTIAL ROTA-

TION AND CONVECTION 1N THE SOLAR INTERIOR.

The now-traditional method to infer differential rotation in the solar interior is to expand

the rotation rate f_(r,0) as a power series in eosk0 or in Pk(COS0), and relate the expansion

coefficients to the observed helioseismic mode splittings. These splittings may themselves

may be expanded in Legendre polynomials of m/l, where m and I are the azimuthal order

and degree, respectively, of the oscillation modes. This expansion has the appeal that

because different terms of the expansion are orthogonal over the sphere, observational

errors in determining the different terms of the expansion are nearly independent. The

internal angular velocity, or differential rotation, is then determined by inversion of the

splitting coefficients. This approach has the difficulties that (1) it is difficult to generalize

to non-axisymmetrie flows, (2) it is computationally cumbersome, and (3) there is cross-

talk between the various terms in the expansion of f_.

Ritzwaller and Eugene Lavely, with partial support from this grant, have developed a uni-

fied approach to the helioseismic forward and inverse problem of differential rotation

(RitzwoUer and Lavely 1991). In this approach the differential rotation is represented as

the axisymmetric component of a more general toroidal flow field. A better choice of
basis functions for differential rotation allows determination of a set of vector spherical

harmonic expansion coefficients for the rotation that are decoupled so that each degree of

differential rotation can be estimated independently from all other degrees.

Lavely and Ritzwoller, also with partial support from this grant, have carried out a funda-

mental study of the effect of global-scale steady-state convection on helioseismic oscilla-

tions CLavely and Ritzwaller 1992). They have derived the basic theory governing the

influence of convection and associated structural asphericities on oscillation frequencies,

without the usual assumptions of an axisymmetric model. They represention the eigen-

functions of a reference spherical model with vector spherical harmonics, and employed

-1-



-2-

quasi-degenratc perturbation theory to derive general matrix elements governing mode

coupling and splitting caused by convection and structural asphericities. This formalism

may be applied to models of giant-cell convection, allowing determination of whether such
flows bias recently estimated differential rotation profiles. Or, it could be used to test

hypothesized pole-c.quator differences in temperature near the top of the convection zone

as a source of observed even-degree splitting coefficients.

A complete copy of the first of the two above-referenced papers, and the abstract and
summary of the second, are included in the appendix to this Final Report.

11/. WAVE GENERATION BY TURBULENT CONVECTION.

Dr. Pawan Kumar, supported in part by this grant, has studied the generation of solar p-

mode oscillations by turbulent convection in collaboration with P. Goldreich (Goldreich

and Kumar, 1990). They used a simplified model of an adiabatically stratified upper solar

convection zone overlaid by a convectively stable isothermal atmosphere, and studied the

rate at which convective energy is converted into energy of trapped p-modes, f-modes, g-

modes, and travelling acoustic waves. They found that wave generation is concentrated at

the top of the convection zone where the turbulent Mach number M t peaks. The effi-

ciency 11 of power input into trapped p and f modes, and into travelling acoustic waves,

was found to vary as ¢I-M 7"s, and that into g modes was found to vary as M. For p-
modes the energy input depends on frequency as coa where oc--(2m2+7m-3)/(m+3), and m

is the polytropic index. This agrees with the observed f'mding of Libbrecht (1988,ESA :

SP-286, p 3) that the power input varies as ms_ if we set m=4; _ fact-this value of m is

close to the polytropic index that fits the density profile in the upper solar convection

zone. The agreement is strong evidence that wave emission by turbulent convection actu-

ally is the process by which p-modes are excited in the solar atmosphere.

Also, Dr. Kumarl with partial support by this grant, collaborated in preparation of a review
of theories of excitation of oscillation modes in the Sun (Cox et al 1991). This review--

contains a summary of Kurnar and Goldreich's work on 3-tactic coupling, which shows

that such mode couplings, which had previously been considered a good candidate for lim-

iting the energies of overstable p-modes, arc not strong enough for that purpose. That
result casts doubt on the idea that the modes are excited by overstability, and therefore

provides further support for mode excitation by coupling with the motions of convection.

Copies or summadesof these two papers are also included in the Appendix.

IV. STUDY OF ANTIPODAL SUNSPOT IMAGING AN ACTIVE REGION TOMOG-

RAPHY

During the last stages of this grant, we were joined by Dr. Sylvain Korzennik. Dr Korzen-

nik has investigated, under partial support of the grant, the signatures of magnetic field

structures in helioseismic data. Specifically, he carded out a search in Mt. Wilson data

for the helioseismic signature of active regions and sunspots at their antipodal point;

analogous signals have been seen in geo-seismology, and might be expected in

helioseismology, because (a) acoustic power is known to be absorbed in sunspots, and (b)
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helioseismicwavesemanatingfrom a point should interfere constructively at its antipodal

position if the wave lifetime is long enough to establish global coherence and the

wavelength short enough to prevent blurring of the antipodal "image". Korzcnnik's

analysis of high wavenumber data (2 arcsec per pixcl) showed no observable antipodal

signature from several data sets where moderate-size sunspots were known to exist on the

invisible hemisphere of the sun. This suggests that there is a lack of global coherence of

high wavenumber acoustic modes. However, the analysis is still in process.

The observed acoustic energy deficit in active regions suggests that "active region tomog-

raphy" will be an important tool for study of the subsurfac_ structure of magnetic active

regions, particularly with very high-resolution (high wavenumber) data such as may be

expected from the SOI investigation on SOHO. Dr. Korzennik, with support from this

grant, began an effort to develop the theoretical and analytical tools to charac_dze the

acoustic field fully, with particular attention to the phase relations between velocity and

intensity perturbations associated with the waves. This work is now being continued, with

support from the NASA SOI investigation (P. Scherrer, PI), of which Professor Noyes is a

co-investigator.

Publication of the results of Dr. Korzennik's work on antipodal imaging of sunspots and

active region tomography is currently in preparation.
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ABSTRACT

We presenta general,degenerateperturbationtheoretictreatmentof the helioseismicforward and inverse

problems forsolardifferentialrotation.Our approach differsfrom previouswork intwo principalways.First,

in the forward problem, we represent differential rotation as the axisymmetric component of a general toroidal
flow field using vector spherical harmonics. The choice of these basis functions for differential rotation over
previously chosen ad hoc basis functions (e.g., trigonometric functions or Legendre functions) allows the solu-
tion to the forward problem to be written in an exceedingly simple form (eqs. [32]-[_37]). More significantly,
their use results in inverse problems for the set of radially dependent vector spherical harmonic expansion
coefficients, which represent rotational velocity, that decouple so that each degree of differential rotation can
be estimated independently from all other degrees (eqs. [56] & [61]-C63]). Second, for use in the inverse
problem, we express the splitting caused by differential rotation as an expansion in a set of orthonormal poly-
nomials that are intimately related to the solution of the forward problem (eqs. [_5"Jand [54"[). The orthonor-
real polynomials are Clebsch-Gordon coefficients and the estimated expansion coefficients are called splitting
coefficients. The representation of splitting with Clebsch-Gordon coefficients rather than the commonly used
Legendre polynomials results in an inverse problem in which each degree of differential rotation is related to a
single splitting coefficient (eq, [56]). The combined use of the vector spherical harmonics as basis functions for
differential rotation and the Clebsch-Gordon coefficients to represent splitting provides a unified approach to
the forward and inverse problems of differential rotation which will greatly simplify inversion. We submit that
the mathematical and computational simplicity of both the forward and inverse problems afforded by our
approach argues persuasively that helioseismologlcal investigations would be well served if the current ad Isoc
means of representing differential rotation and splitting would be replaced with the unified methods prez_wcl
in this paper.

Subject headings: Sun: oscillations- Sun: rotation

I. INTRODUCTION

An acousticmode ofoscillationofa sphericallysymmetric,nonrotating,adiabatic,staticsolarmodel withoutmagneticfieldsis
typicallyidentifiedby a trioofquantum numbers thatrepresentsitsdisplacementfield:n,theradialorder;Lthesphericalharmonic
degree;and n_ the azimuthalorderofthe mode. Becauseoftherotationalsymmetriesofthismodel, themodes ofoscillationare
21+ ldegenerate.That is,thefrequenciesofthe21+ Imodes withdifferentm valuesbut withthesame n and Ivaluesareidentical.

These modes aresaidtoform a multiplet.The realSun isnot sosimple.Of particularrelevanceforthispaperisthefactthattheSun
isrotatingand isdeforminginternallyso that,forexample,the surfacerateofrotationatthe solarequatorisgreaterthan atthe
poles.Thisphenomenon isknown asdifferentialrotation.

A number of ways have been chosen to representdifferentialrotationmathematically.We willargue in thispaper that a

representationwith exceptionallyniceconsequencesisthe solarrotationalvelocityv,_r,O,_),definedto be the axisymmetric
component of generaltoroidalflow fieldsin the solarinter/or.A heretoforemore popular,and perhaps more conceptually
appealing,way oflookingatthisisthattheSun isrotatingdifferentiallyand thattherotationrateD(r,0)isitselfa functionofboth

radialpositionand colatitude.Rotationalvelocityv,_(r,0,_b)and rotationrateD(r,0)aresimplyrelatedby

_,o,(r, O, 4_)= [l(r, 0, c_) x r --- fl(r, O)r sin (0)_ (I)

where _ ,= D_, _ is the unit vector which points along the axis of rotation, and • is the position vector from the center of the Sun to
position (r, 0, _b).The coordinates • = (r, 0, _b)are spherical polar coordinates (where 0 is colatitude) and _, 0, 4[ denote unit vectors
in the coordinate directions. However represented, solar differential rotation lifts the degeneracy of the solar acoustic or p-modes,
splitting the frequencies of oscillation of the Sun. This phenomenon is. without doubt, the largest contributor to the splitting of solar
oscillations.

Observations of split solar p-mode frequencies date from Claverie et al. (1981_. The quantity and quality of new measurements
have been steadily improving (e.g., Gough 1982: Hill, Bos, & Goode 1982: Duvall & Harvey 1984; Duval[, Harvey, & Pomerantz

' Present addr_s: NCAR. Advanced Study Program. PO. Box 3000 Boulder. CO 80307
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1986: Brown 1985: Libbrecht 1986. 1989: Brown & Morrow 1987; Tomczyk 1988; Rhodes et aL 1990). Since p-modes are
dominantly split by differential rotation, a first-order understanding of the data requires the estimation of models of rotation that
predict the data accurately. Furthermore. an understanding of the solar angular momentum budget requires accurate models of
differential rotation (Gilman, Morrow. & DeLuca 1989). For these reasons, the inverse problem of inferring the radial and
latitudinal dependence of differential rotation from observed split frequencies has been a major focus of helioseismology. The reader
is referred to Brown et al. (1989), Christensen-Dalsgaard, Schou, & Thompson (1990), and Thompson (.1990) for clear discussions of
the current state of this venture.

-_ necessary, preface to tackling the inverse problem is the solution of the forward problem: i.e., given a model of solar differential
rotation, determine the split p-mode frequencies. This problem was first solved by Cowling & Newing (1949) and subsequent
_reatments can be found in Ledoux (1951), Hansen. Cox. & Van Horn (1977), Gough (1981), and Brown (1985). Naturally, the form
ot"the solution of the forward problem is a function of the basis functions chosen to represent differential rotation. Sin_ differential
rotation is axisymmetric and even about the equatorial plane, it admits a very simple mathematical representation.

In helioseismoiogy, there are two popular ways chosen to represent differential rotation, both of which are based on polynomial
expansions of rotation rate fl rather than rotational velocity yr,,. The more popular of these parameterizations is to expand £1(r, 0)
in even powers of cos 0 (see Brown et al. 1989):

f_tr, 0) = _ fit(r) cop 0 (2)
k=0,2,4 ....

where _o(r) describes the bulk rotation rate of the Sun and the _(r) for k > 0 describe the radial dependence of latitudinally
dependent differential rotation. The popularity of this representation probably derives from tradition, since it was wed in early
studies of differential rotation made from observations of the solar surface (e.g., Howard & Harvey 1970). Thus, the use of these basis
functions eased comparison with direct observations of differential rotation. It is generally recognized that a problem with this
parameterization is that the basis functions are not orthogonal. This is not really an obstacle from a forward theoretic perspective,
but is troublesome inverse theoretically since future inversions for higher degree components must also redo the lower degree
components since, strictly speaking, they are not independent of one another. The use of any set of orthogonal basis functions
overcomes this problem. In particular, Legendre polynomials in cosine colatitude have seen some application (e.g., Kor-_-nmk et al.
t988):

fl(r, 0) = _ fl_(r)P_(cos 0). (3)
;c=0.2.4 ....

Although the parameterizations of differential rotation given by equations (2) and (3) are intuitively simple and allow straightfor-
ward comparison to other kinds of observations, their use leads to unfortunate consequences that can be entirely circumvented with
a more judicious choice of basis functions. Problems with these basis functions include the following. (1) They do not generalize
easily to general nonaxisymmetric flows. (2) They do not yield conveniently to the elegant generaliz_ spherical _formaJism
of Phitmey & Burridge (1973) and are, therefore, computationaily cumbersome. There is a more significant problem _fa'om the
way observers choose to represent splitting data as a Legendre polynomial expansion in (m/0:

M

co,"t = o.),,,+ I _ ,au P,.(m/l) . (4)
iml

The expansioncoefficients_a_iare commonly calledsplittingcoefficients.The use ofequations(2)or (3)as basisfunctionsfor

differentialrotationappliedtosplittingdata representedwithequation(4)leadstoa senons practicalproblem troublinginversion:
namely,(3)theygeneratea coupledsetofinverseproblemsinwhich fora givenk theestimationoffldr)or_2_(r)dependson fit,(r)or
_t,(r),respectively,forallevenk'> k.

Problem 3 has been tackledina number ofways.including:{a)by estimatingQ_(r)or_(r) forallevenk < k,,_,simultaneously,
where k_,_= _,usually(e.g.,Thompson 1990):(b)by estimatingeach f_(r)or_(r) recursivelyby solvingfirstforcacb even k'where

k_.,> k'> k(e.g.,Brown etal.1989);(c)by formingrccombinedbasisfunctionsthatallow,inthehighIlimit,theinverseproblems
fordistinctk todecouple(e.g.,Kor'zenniketal.1988);and (at)by replacingequation(4)withan alternativerepresentationofsplitting
measurementsrelativetowhich recombined basisfunctionsdecoupleintheinverseproblems fordistinctk(Durney,Hill,& Goode

1988).There are problems with each of theseapproaches.Approaches a and b generatemodels thatatdifferentdegreesk have
_correlatederrors.Inaddition,approach b necessarilyperformstherecursioninthedirectionoppositefrom how a stableandrobust

recursivetechniqueshouldbe applied.A robustrecursivetechniquewould firstestimatethe featuresofthe model thathave the
largestexpressioninthedata_In thiscase.thesearethelongestwavelengthfeaturesofthemodel (i.e.,smallk).Then theseshould be

usedintheestimationofshorterwavelengthmodel components (i.e.,higherk)thataffectthedatamore subtly.Approach b does the
oppositeofthis.By estimatingtheshorterwavelengthfeaturesfirst,itpropagateserrorsfrom the more poorlyconstrainedtothe
betterconstrainedfeaturesof the model. Approach c has a limitedrange ofapplicabilityand approach d requiresobserversto
summarize theirdatainaform theyconsidersuboptimal.

The common problem with alloftheseapproachestoproblem 3 isthatthe basisfunctionsthathave b_n chosen torepresent

bothsplittingand differentialrotationhave been ad hoc.Inthispaper we takea differentapproach.We definetheinverseproblem
explicitlyintermsoftheform ofthesolutiontotheforwardproblem.We show thatthereexistsa naturalsetofbasisfunctionswith
which torepresentdifferentia]rotationsuch thatthe inverseproblems fordifferentdegreesofdifferentialrotationdccouple with

respecttodata representedinthe usualway (eq.E4]).Consequently,jointand recursiveinversionsaswellasasymptoticapprox-
imationscan be entirelycircumvented.These basisfunctionsare simply the vectorsphericalharmonic components of v,o,.In
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addition, vector spherical harmonics generalize easity to nonaJusymmetric flow fields and yield to the formalism of
Burndge; thus, their use also addresses problems ( 1_and (21. We also show that the inverse problem is simplified further if Sl_ill_
data are expressed using a set of natural basis functions intimately related to the solution of the forward problem. "[_1i_ orthonor,
real functions are the Clebsch-Gordon coefficients /J_ with which the 21 + I frequencies of a single split multiplet would be
represented as follows:

4=[

The expansion coefficients ,b u represent a set of new splitting coefficients.
Our approach to the forward problem is motivated by the approach geophysicists have taken to determine the splitting and

coupling of terrestrial oscillations caused by aspherical penurbations in the elastic moduli and density of the Earth (e.g., Dahlen
1968, 1969; Luh 1973, 1974; Woodhousc & Dahlen 1978; Woodhouse 1980; Woodhou._ & Girnius 1982}. An approximation that
has proven useful in terrestrial applications is to allow modes to couple only if they share the same radial order a and Imrmonic
degree i. This means that if two modes are not degenerate in the absence of asphericities, they will not be co_--"_xed potential
coupl_ partnersinthepresenceoftheasphericity.Inthiscase,itisappropriatetousedegenerateperturbationtheorytocompute
thesplitfrequencies.Thisapproximationisknown togeophysicistsastheisolatedmultipletapproximation sinceitisaccurateifthe
21 + 1 modes composing a muitiplet are isolated in complex frequency from modes composing other multiplets. In tm'r_trial
applications this approximation has proven to be highly useful and quite accurate for calculating split frequencies but is not as
useful for computing modal displacements. To compute modal displacements accurately, quasi-degenerate perturbation theory has
been used by geophysicists in which modes arc allowed to couple even if they are only nearly degenerate with respect to the spherical
Earth model. For the Sun, the number of significant accidental near degeneracies between modes from different multiplets satisfying
the selection rules that govern coupling for differentia[ rotation is vanishingly small. Thus. solar multip[ets can accurately be
considered isolated in complex frequency and degenerate perturbation theory can be used to compute the split frequencies. The
solution to the forward problem we present is accurate to first order in _/eo in the absence of accidental degeneracies, where fJ is the
differential rotational frequency and oJ is a modal frequenc% Du_e to the spacing of p-modes between and along dispersion branches,
the contribution to splitting caused by quasi-degenerate coupling between modes from different muitiplets is an effect of higher
order than first in f_/w. We will discuss this further in a future contribution.

In § 2, we defined the new basis functions for differential rotation mathematically and relate them to the previously used basis
functions given by equations (2) and (3). In § 3, we present the solution to the forward problem for differential rotation using
degenerate perturbation theory. The solution is expressed in terms of Wiener 3-j symbols which are straightforward to compute
numerically. For low-degree differential rotation, we present analytical expressions for the Wiener 3-j symbols in terms of simple
polynormals in m and 1. In § 4, we discuss the use of Clebsch-Gordon coefficients for representing splitting data, by using equation
(5) as an alternative to equation (4). These coefficients form an orthonormal basis set and arc simply related to the Wiener 3-j
symbols found in the solution of the forward problem. The use of the Clcbsch-Gordon coefficients to represent splitting provides a
unified approach to the data analysis and inverse problems. In § 5, we derive the form of the inverse problems _ the basis
functions for e,_ both to the new splitting coefficients b_and to the traditional splitting coefficients av In both formulations, a singic
degree of the vector spherical harmonic expansion of rotational velocity can be related to a linear combination of tim splitting
coefficients. However, by using the Clcbsch-Gordon coefficients, the sum is particularly simple, reducing to a single term. For
completeness, we present formulae for converting solutions back to the rotation rate basis functions for differential rotation. Finally,
to simplify the recommended use of the Clebsch-Gordon coefficients fl_ for representing splitting, algebraic expressions in m and 1
for low-degree i coefficients are presented in the Appendix.

2. VECTOR SPHERICAL HARMONIC REPRESENTATION OF DIFFERENTIAL ROTATION

Itisusefultodecompose ageneralstationary,laminarvelocityfield_r, 0.¢5)intopoloidalP and toroidal/'components:

,,(,,_,4,)= _. _,..[e:(,-,o,_,)+ P,(r,o,,/,)]. (S
J=O t _ -.I

The poloidaland toroidalcomponents can be fullycharacterizedby the radiusdependent vectorsphericalharmonic expansion
coefficients£,(r),d)(r),and _(r):

g',(r, O, e_)= u_r)Y',(e, _ + v',(r)V_Y',(O,¢_), (7)

Plr, O, q_)= - _r_ x v_ Y',(O._) . (8)

where the surface gradient operator. V. is given by

V, = r[V - 8_" V)] = 0 _ + sin'-OO"_'

The function Y',(O,(p) is a spherical harmonic of degree s and ammuthai order _defined using the convent/on of Edmonds (1960) as

l),V2s +l (t- s)!]"=
Y"='- k _7 (_-_s)!j P',(cosO)e"*. (10)
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where Y,-' = (-IY[Y/']*, P', are associated Legendre funcuons, and the asterisk represents complex conjugation. The normal-
_zatlon constants in equation ! 10) have been chosen such that

I i [Y'_tO. c_]*Y'dO. O)sin OdOdO = 6:,6,,, (11)
_0 .0

where integration is over the unit sphere. The poloidat coefficients u',lr) and v',(r) are not independent if the anelastic condition
.V • tpvj = 0] is imposed.

The differential rotation velocity field V,o,tr, O! simply corresponds to the odd-degree, zonal part of the toroidal flow field in
equation t8) which can be written:

v,o,(r, t)) = _ ,._" wO(r)d, yo 6 , (12)
sffi 1.3.3 ....

where, for example:

6eyo = _ -_ sinO. (13)

?e yo = _ 4 sin 0(5 cos _ 0 - I), (14)

15 (ll) '2-. yo = _ _ ..-_'_: sin 0121 cos* 0 - 14 cos-" 0 + 1). (15)

The relationship between the expansion coefficients w°lr) with _t(r) and t'2dr) can be determined by equating the representations
in equations Ill and 112). expanding each side in terms of irreducible trigonometric functions, and equating the appropropriate
groups of terms. This procedure yields

w°{r) = 2\/ r holr} + _ hz(r ) 4- h,(r) "V 3 r _ fl2(r) , (16)

-V 7 _-_ h.lr) + 3-_ h,(r) = ./7 r _ f/:(rt - _ f_,(r) . (17)

14112j'rt 8 _ 1= Ti ' = 2 ' n,(,) , (18)

where we have truncated the sums at k = ,* in equations (2) and (3) and at s = 5 in equation (12).

3. THE FORWARD PROBLEM

The equations govermng the effect of differential rotation on solar oscillation frequencies can be presented naturally in either of
two reference frames: a frame corotating with the average angular velocity of the Sun or an inertial frame roughly identifiable with
the frame of observation. Since differential rotation is stationary relative to both the corotating and inertial frames, solutions to
these equations will separate in both frames. For simplicity of use by observers, we choose the inertial frame in which to represent
and solve the following equations. As a consequence, v,., will be considered to include the average rotational velocity of the Sun.

Let k = !n. h; then the displacement field for p-modes in the presence of an axisymmetric flow field separates spatially and
temporally:

s{r, t) = s_r)e_7 ' . (19)

We have chosen to introduce an unfortunate notational conflict and let t represent time (as well as the azimuthal order of a
convective flow field). The radial eigenfunctions are defined as follows:

s'_(r) =_ U_(r)Y?(O, 4)i" + , V_r)V t Y_'(O. dp), (20)

where ,U_{r) and ,V_r) denote, respectively, the radial and horizontal eigenfunctions for harmonic degree l and radial order n.
Hereafter. we drop the subscripts n and I in equation (20) and use instead U = ,Ut(r), and V = ,V_r). The eigenfunctions satisfy an
orthogonality condition given by

f pos_ . s'_d3r = Nf,,,.,,3,,.,,6n, (21)
s

where P0 is the density of the equilibrium solar model, and

,_R O[

N = _-!o P°(U2 + LZV2)rZdr' (22)

where L2 = I(l + I). The scalar constant N depends on the normalization of the eigenfunctions U and V.
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We seek equations governing the influence of differential rotation on p-mode frequencies. The equation of motion for the
oscillations of a spherically symmetric, nonrotating, adiabatic, static solar model without magnetic fields is given by

-_(sO - Po _st = 0 , (23)

where .2' is a linear, self-adjoint spatial integro-dtfferentlai operator subject to certain idealized boundary conditions. This equation
can be rewritten using equation 119) as

"Ptsd _ Poua_st= 0 (24)

If we perturb the above described model by adding a rotational velocity field V,o,, the equation of motion is altered. In particular, the
local time derivative 6, must be generalized to the material time derivative D, and the displacements and frequencies of the modes
must be perturbed. Thus,we must make the substitutions

?, "-+D, = _},+ v,,,, " V ,

St "* St "+" _$k ,

_t _ _t + _ ,

(25)

(26)

(273

where cokis the degenerate frequency of the unperturbed multiplet. Lynden-Bell & Ostnker 11967) showed that the adv_'tion of the
velocity field v_,, by the displacement eigenfunctions sk can be ignored.

Making the above substitutions into equation 123), retaining only terms first-order in v,=, 6o_, and 6s,, and using equation (24) to
eliminate terms, we obtain the perturbed equatxon of motion

- _z_pO_,o, • V_ _ po_O_Sk -_ po&oZs_ = 0 , (28)

In accordance with our discussion in _ 1. we will assume the isolated multiplet approximation in the remainder of this paper and
apply degenerate perturbation theory to calculate the split frequencies due to differential rotation. Under this approximation, we
expand the perturbed displacement field st in terms of the q21 + I ) eigerffunctions of a single multiptet of a spherically symmetric
solar model as follows

t

s_= _ a,.s'_(r) (29)
nvml --J

Inserting equation (29) into equation (28k taking the inner product of the resulting expression with _ *, integrating over the volume
of the Sun. and using equation 424) again, we obtain

J i }sr ". '.e(_s_ - _(,r "1-_s,d'_..2__. 6,o_ post * • ,r_ - "__,o_J po_' ""_.°, •vsrd', = 0 (301

The first two terms in equation (30) cancel since for an adiabatic solar model _ is self-adjoin(. Using thi_ fact, together with the
orthonormality of the eigenfunctions given by equation (21), we obtain from equation (30) the shift in squared frequency caused by
differential rotation:

.V fiw_, = 2io& f po¢* • n,=• Vs'_d3r, (31_

where we have used the fact that the right-hand side of equation (31) vanishes unless m = m since e,., is axisymmetric.
Substituting into equation 131) from eq uations |20) and _12) and using the fact that boa" _ 2wt &o. we find that for - l < m < l:

_v_' = to_ - 6_., = to,_ -t- 7" "" c 132
S= 1,._.$ ....

where

and where we have defined

.ca = I %°(rt,Kl,lrlr: dr. {3.1
,0

.K_,lr) = -,oor-_IU _ _ GV 2 - [2UV "- ½sts+ I}Va]_,'N . 135

H"'F' = _- l)"-"'(s_0 ml _mr) . (3¢

V (21-s)! 3_ (3"F, = Li2i=-; 7_ll_

The gradient operator in equation _3 I_ acts on both the scalar components and unit vectors of _ which yield, respectively, wh_
might loosely be called the advectton _U: .- L" V'_ and Coriolis [2U V + ½s_s + I)V _] contributions to the integral kernel .K_,.
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The derivation of equation t33) is greatly simplified by use of the generalized spherical harmonic formalism of Phinney &
Burridge i 1973_. It is beyond the scope of this paper to describe their formalism in any detail. However. Lavety & Ritzwoiler 11991)
do describe the formalism as it applies to the problem of splitting caused by a general convective flow field of which, of course.
differential rotation is simply a special case. The form of equation 133), written in terms of Wigner 3-j symbols, follows from the
Phinney & Burtadge formalism. The product of the Wigner 3-_/"symbols is simply related to the integral of three generalized spherical
harmonics over the unit sphere tsee. e.g., Edmonds 1960.1.It is worth noting that the appearance of the 1 and - 1 in the lower row of
:he 3-j symbol represented by H_ is related to the gradient in equation 131). This reveals one of the beautiful aspects of the
generalized spherical harmomc formalism, that gradients translate simply to index raising in the 3-j symbols.

Another attractive feature of expressing the solution to the forward problem leq. [33]) in terms of Wigner 3-./symbols is the
immediacy of selections rules which result, in part, from properties of the 3-j symbols. Under the isolated multiplet approximation
these selection rules are that the frequency perturbation caused by an axisymmetric flow of degree s is nonzero only if (1) the flow is
toroidal. 12) s is odd, and (3) 0 < s < 21. As a consequence, we have written the sum in equation (32) over only odd s. That, under the
isolated multiptet approximation, only zonal toroidal flows with odd degree less than or equal to twice the degree of the multiplet
contribute to the splitting. For the sake of accuracy we should point out that selection rule (1) does not derive from a properly of the
3-j symbols. Rather it results from the fact that the integral kernel for a poloidal flow field under the isolated multiplet approx-
imation is identically zero. We do not show this here since we are explicitly considering only differential rotation whida is purely
toroidal. However. this is demonstrated by Lavely & Ritzwoller 11991 ).

Equation | 32) together with equations t33'v--(37")completely specify the forward problem. We have chosen to write equation (32) in
a way that has proven useful in geophysical applications {e.g., Ritzwoller, Masters, & Gilbert 1986, 1988; Giardini, LL and
Woodhouse 1988.1where the coefficients ,c a would be recognized as splitting function coefficients or as interaction coefficients. We
argue that these coefficients, being linearly related to the model parameters w °, are what should be estimated in any analysis of the
data aiming to infer differential rotation. We discuss an alternative method of estimating the ,cr, coefficients in § 4 and their relation
:o the splitting coefficients. ,a, and ,b, in § 5.

[t is hoped that a major product of this paper will be formulae that are simple and efficient to use both in the forward and inverse
problems of differential rotation. The coetIicients :,._ in equation 433_ can be computed numerically and all the results in this paper
could be simply stated in terms of them. Numerical methods for computing 3-j symbols are discussed and programs are tabulated in
Zare t 1988). However, for ease of use we will rewrite the 3-)"symbols for s < 5 in terms of polynomials in 1 and m by using the
recursion relation of Schulten & Gordon 11975.1. If desired, it is straightforward to extend these formulae to s > 5 by repeated
application of the recursion relation. Setting )_ = s. J2 = J3 = l. m, = 0. m 2 = m, and m3 = -m in equation _5a) of Schulten &
Gordon 119751 and using equations 136) and 137.1,we obtain

1 /

),212s + l)mH_' - s[(21 + 1)'_ - s2]H',_, } . (38)HT.t -s+ l (

To initiate the recursion, the polynomial forms of the Wigner 3-] symbols appearing on the right-hand side of equation (38) for s = I
are required, and can be found in Table 2 of Edmonds 119601. We find by using equation 138) that for s < 5:

= 1, (39)

/_t = 2m. (40)

H? = 6m i 'L" {41)

H_ = 20m J - .-q3Lz - l)m. (42)

H_' = 70m _ - 10_6L" - 5Jm; -.¢-6L:(L 2 - 21. (43)

H7 = 252m _ - 14.0_2L:'- 3)m "_+ [20/.,2[3L 2 - 10) + 48]m. (44)

Algebraic expressions for H_-H"_ have been tabulated in the Appendix. Using equations (39)--(44), 7_ for s < 5 can be written:

., tt = m . 145)

;'_'t = 4L2 - 3

3(7t L2 -'Orn3_'6L_-21m;'_ = 2 . -1L2 - 3 147)

"" 3(9) ' "- [70m'_ - IOc6L' - 51m2 a" 6L2(L2 - 21](L' - tO' (481:'i = 8 . 14L2 - 3_4L 2 - 15)

15 (11_ t: Z52m -_ 140_2Lz - 3)m a + [20L:'I3L 2 - 10.1+ 48]m _49)
:'7, = 76 \_/ _4E - 3M4L' - 1.5)
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.t. ORTHONORMAL BASIS FUNCTIONS FOR REPP.ESEIWI"_G SPLITTING DATA

Observed frequency splittings are typically represented in terms of a Legendre polynomial expansion with argument re�l, where
the expansion coefficients are the splitting coefficients _a, as in equation 14). (For example. Libbrecht 1989 measured the splitting
coefficients of 723 p multiplets in the range 5 < I < 60.1 The sum in equation 14) has usually been truncated at M = 5 since the
inclusion of higher orders does not significantly improve the fit to the data IBrown et al. 1989). Apparently, Legendre polynomials
have been chosen to represent the splitting since they are well known basis functions and Legendre functions are orthogonal over
the continuous interval [- l. l] :

"1 2

. - t P'_x}Pv(x)dx = 2i + 1 6,, . (50)

l.,cgendre functions are not orthonormal, but can easily be onhonormalized. There are two problems w_th their use.. Fir,t, they are
not an orthogonal basis set for representing discrete data such as split frequencies. If used to represent discrete dam they are only
approximately _ orthogonal." However, the accuracy of this approximation improves with harmonic degree t as the sampling of the
interval [- 1, 1] becomes finer. Second, and much more significamly, their use complicates the inverse problem. As we will thow in

§ 5 (eqs. [61]-[63]), by representing split frequencies with splitting coeffcients ,an based on Lcgendre polynomial_ the interaction
coefficients ,c, are not related to a single splitting coefficient, but are related to a linear combination of the ,a,.

The purpose of this section is to point out that there exists an orthonormal set of basis functions over the discrete interval
- l < m < l, and that these functions are simply related to the _ functions. These basis functions are Clebsch-Gordon eoefftcicnts.
Furthermore, in § 5, we show that the use of Clebsch-Gordon coefficients to represent splitting further simF.:Afics the inverse problem
_eq.E56]).

Inspection of equation 132) suggests that a natural, alternative way to represent splitting caused by differential rotation would be
',o use the functions 7,_as basis functions rather than Legendre poivnomials.. For fixed I. the -,",,functions are orthogonal in s. Their
orthogonality relation can be deduced from the orthogonality property of Wigner 3-j symbols given by equation (3.7.8) of Edmonds
t1960). We rewrite this for our purposes as

(0 ' ' 'o) '-X _ -- (51)
,,=__ m -m 0 m - 2s+ 1

Combining this with equations 133) and (36), we obtain the orthogonality relation for the ./_ functions:

1

S" ..... 6,,. G,G,,_ ,,, 7,.1= , (52)
,,. __ 2.s + 1 F,F,,

where we have defined

G, -- ./_'dl-l_, . (53)

We note that G, is independent ofm since the m-dependence ofy_ is given by _ as can be seen in equation (33).
Since the terms on the right-hand side of equation 152) can vary widely in size with s, especially for high 1, the "_ should not be

used as basis functions for the splitting. However. equations (51) and (52) suggest a set of basis functions which are orthotmrmal on
the discrete interval - I < m < I. These orthonormal functions B_ are simply related to the y,_ functions as follows:

where

fl_ _ _2s + l)V2F, ;-'_ = q2s + I)t'2F_H_' . i54)
G,

!

x" #,,e,._ = 3.. (55)

Equation t54) can be evaluated explicitly in terms of polynomials in m and I for s < 5 by use of equations t39)-(44) and (37). Higher
degree B_ can be computed by using the formulae provided in the Appendix. By equation (3.7.3) of Edmonds (1960), it can be seen
that the B_ coefficients are simply Clebsch-Gordon coefficients. Equation (5) would then be used to represent splitting.

5. THE INVERSE PROBLEM

Once the new splitting coefficients _b,, have been estimated using equation (5), the inverse problem for differential rotation can be
reconstructed immediately since the _b,l coeffcients are simply related to the ,c,_ coefficients as follows:

,_o (4nlIi2c, = w_(r)K,(r)r: dr = b, (56)
.o _21+ I)LZH_,F, '

where we have employed the notational simplification c, = _c,_ and b, = _b,_. Given estimates of the interaction coefficients c,,

equation 156) defines a linear inverse problem for differential rotation.
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Although estimating the new splitting coefficients b, with the orthonormai basis functions _ is more stable than current methods
and results in an exceedingly simple inverse problem leq. E56]), some observers may choose to retain the way splitting data have
"raditionally been represented. Therefore. we also seek expressions which relate the estimated splitting coefficients ,a, to the
interact/on coefficients ,c,_. We do this only for s = I. L 5 here. although the method we employ can be used to produce higher
degree results, First. identify equations i32) and (4):

5

l V a_P,(m/h = V" G_H'_c,, (57)
i=1 $=1.3.5

where we have set at = ,a, and we have defined G, in equation (53). Then, simply equating terms with the same odd power of m
ields:

at - _a_ + _a s = 2Gtc t + t4 - 12L2)G3c3 + [20La(3U - 10) + 48]G5c s , (58)

a_ -- _.as = 812Gs c 3 - 5612(2La - 3)G 5cs , (59)

as = 32/`)Gs cs . (60)

Substituting the polynomial representations for 7_ (eqs. [45]-[49]) and H_, (eqs. [39]-[44]) into G,, the following identiti_ can be
deduced from equations (55)--(60):

ct=.o ,,'Tlr)K,lr)r'dr=_/. 3 at+2- _ .3- . +5 .3+2_-"tl'-5-r '

c_ = _(rlKs(r)r dr .... as +
.o "v' 7 312 _/ 7- . 162)

"_'_ 0 , ir-_- I2I - 3X21 - 1X21 + 3X21 + 5)c_ = w_(r)K_lr)r" dr = /_ [as] (63)
.o _:1 i 151̀ ) "

Equations (61)--(63) constitute three independent inverse problems for the radial functions w°(r), w°(r), and w_(r). Equation (63)
follows immediately from equation 1601. Equation 162) was obtained by substituting equation 163) into equation (59) and solving for
%. Equation 1611was obtained by substituting equations 163) and (62) into equation 158) and solving for ct. For clarity, it should be
pointed out that the number of terms on the right-hand sides of equations (61)--(63) depends on the accuracy with which the split
frequencies are estimated. As frequency estimates become more accurate, the number of terms will increase.

This separation into three independent inverse problems, each uniquely identified with a single harmonic degree s of differential
rotation, has been made possible by use of the vector spherical harmonic basis functions given by equations (6) and (12). The
corresponding inverse problems for _k and _ do not separate so nicely. The advantage of using the Clebsch-Gordon c.x)eff_ents as
basis functions for splitting is readily apparent by comparing equation (56) with equations (61)--(63). The use of the Cl¢l_da-.Gordon
coefficients reduces the linear combination on the right-hand side of equations (61)--(63) to a single term in equation (56).

It is beyond the scope of this paper to discuss the large and well-known variety of approaches to linear inverse problems. The
reader is directed to the following papers which discuss approaches to these problems in some detail: Backus & Gilbert (1967, 1968,
1970); Parker (1977); Christensen-Dalsgaard et al. (1990). Once w°(r), w3(r ), and w°(r) have been estimated from equation (56) or
from equations I6D--(63_ by whatever inverse method has been chosen. _ and t"2t for k = (0, 2, 4) can be computed a posteriori, if
desired, by equations 116)--(18):

= ] Ev,_o(,) + _%_(,) + ,/q%o(,)] (64)

5 - --

_,=(r) = v 4-_r [w 7w°(r) -(" w llw°(r)] , (65)

9

f2,{r) = _ [,v 1 I ws°(r)] , (66)
_/4nr

_°(r) = w _n----_l[v:3w°(r) - _w- 7w°(r) + a_'v' l==_wO(r)], (67)

.(r) = 15 - --
" 2.v 4n---"-_r[-v 7w°(r) - _x/I lw°], 168)

(2,(r)- 315 --
8V 4-_r [V 1 lws°(r)] . (69)
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Fromequauons_6l_63).itcan be easily seen that in the limit of large l. the expansion coeificients w°(r _ w'_(r), and wc,
only on a;. a3, and a,. :espectiveb'. Thus. m the large i limit, these equations can be rewritten :

_'l _ 2( d, .

c, -_ "_ a, . 172)

6. SUMMARYANt) CONCLUStOIqS

At its inception, the motivation for this paper was that there did not appear to have emerged a fully coherent, unified treatment of
the forward and inverse problems for differential rotation. As a result a number of practical problems have bc_t inv_'sions for
differential rotation. In this paper, we present a general formulation of both the forward and inverse problems for diff_'cntial
rotation as well as specific formulae useful to observers with the intent of simplifying solar differential rotation inver_on. There are
two main points of the paper. (l) If differential rotation is represented by rotational velocity, defined as the zonal, odd degr_ part of
the vector spherical harmonic decomposition of a general convective field in the solar interior, rather than the commonly
rotation rate represented with ad hoc basis functions, then several significant problems currently facing inversions for differential
rotation disappear. In particular, the inverse problems for different degrees of rotational velocity are linear and decouple,, so that
indet3endent inversions for each degree of structure can be performed without approximation. (2) The inverse problems are
<_gmficantly simplified further if Clebsch-Gordon coefficients are used as basis functions to represent splitting. The Clebsch-Gordon
basis functions are genuinely orthonormal on the discrete interval -[ < m <_ I and regression matrices comprising them are
optimally well-conditioned. As a consequence, we highly recommend that the vector spherical harmonic representation of rotation-
al velocity and the Clebsch-Gordon coefficient representation of splitting be adopted to replace the ad hoc representations
employed heretofore. We have presented formulae relating the interaction coefficients c, to both the new splitting coeffwients b, as
well as to the traditional splitting coefficientsa,.

Geophysical experience has shown that it is useful to tabulate splitting data in terms of the splitting function or interaction
coefficients c, since these coefficients are linearly related to the structures producing the splitting. However, in the Sun, there are a
number of different kinds of axisymmetric aspherichies that could produce splitting. In addition to differential rotation, phenomena
which have been discussed as potentially large enough to affect p-mode frequencies measurably include lateral density variations
caused by large-scale temperature variations, asphericities in the figure of the Sun, and large-scale, dominantly quadrupolar,
magnetic fields. Each of these mechanisms affects splitting differently. However, with the possible exception of the poloidal
component of magnetic fields (D. Gough, 1990, personal communication), in each case the Wigner-Eckart theorem (Edmonds 1960)
guarantees that the solution to the forward problem can be written in a form identical to that of equation (32), but with the _,_
coefficients differing in detail for each mechanism of splitting. Thus, an inspection of equation (33) reveals that the interaction
coefficients c, should not be tabulated since they differ in detail among the various sources of splitting. However, the _ coefficients
for the various sources of splitting are similar in that each is linearly related to the same Clebsch-Gordon coefficient. Consequently,
we recommend tabulating the new splitting coefficients b, estimated relative to the Clebsch-Gordon coefficient representation of
splitting. For each of the sources of splitting mentioned here. these coefficients are linearly and simply related to the appropriate
basis functions representing that mechanism. (For differential rotation we have shown that the appropriate basis functions arc given
by eq. [ 12].) Of course, if multiple sources are causing splitting, then models of the various mechanisms would have to be estimated
simultaneously.

Throughout the paper, we have attempted to present formulae that would prove to be easy to use. In conclusion, it is worth
presenting a brief review of the most important of these. The differential rotation basis function _,0, is defined in equations (g) and
112). The general solution to the forward problem is given by equation (327 and the equations immediately following. The specific
form of the forward problem for s < 5 is presented in equations (45)--(49) where polynomials in m, 1,and s replace the Wigner 3-j
symbols of the general solution. [Formulae useful for calculating the solution to the forward problem analytically for higher degrees
16 _< s _< 11) are provided in the Appendix.] Equation (34) is the basis for the inverse problem with respect to the,c,_ coefficients. The
orthonormal basis functions (Clebsch-Gordon coefficients) to represent splitting are defined in equation (54), are tabulated in the

Appendix, and the inverse problem with these coefficients is given by equation (56). Relative to the ,a_ coefficients, the inverse
problems are given by equations (61)-q 63). Once r,o, has been estimated, the rotation rate can be computed, if desired, with equations
(64)-469L
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_,PPENDIX

We have argued in this paper for the following representation of splitting data:

Lf

' m
". X-" _o J3,t (AI)

$=1

'.vhere ,bt_ are the new splitting coefficients and fl_ are CIebsch-Gordon coefficients defined as

35 = 12s + 1)I'2F, H m, , (A2)

V ,21_s,, ],;2

r, = LtffT" g+ i) j " (A3)

Expressions for H_ for I < s < 5 are gtven by equations (40)-(44) in the body of the text and for 6 < s < 11 below by equations

I A4bqA9). We note that with the H, _ coefficients provided below, it is straightforward to calculate the y_ coefficients for a > 5 by use

of equation (33).

The H," coefficients for 6 < s _< I i are given by

H_ = 924m 6 - 420m'_(3L z - 7) + 84mZ!5L 4 - 25L 2 + 14) - 20L_(L " - 8L _ + 12), (A4)

H_ = 3432m r - I848m_(3L _ - 10) + 168m_l15L " - 105L _ + t01_ - 8m135L 6 - 385/,4 + 882L _ - 180). (AS)

H_' = 12870m s - 12012m6(2L _ - 9_ * 2310ra'_(6L 4 - 56L _ + 811

" " _ _ 20/-." .- t_m 1,10/2 - 3045L" -.- 9898/," - 2,566t + 70LZtL " - -.- 108/.," - I,_t (A6t

hr_ = 48620m _ - 17160m-16L-' - 35_ -.- 12012m-'t6L'* - 72/.,-' -- 145) - -h_m J

< 142E' - 777/_,4 + 3402L z - 26301 + 12_105L a - 2660/_,* -;- 18844L 4 - 36528L 2 ÷ 6720), (A7)

H_' o = 184756m *° - 145860mSt3L z - 22) + 12012m6(30D - 450L 2 + 1199} - 2860m'*

× 142E' - 966D + 5481L 2 - 6248) + 132m-'(105L s - 3290L _ + 29680D - ":8900L 2 -_ 32208)

-252L21L s - 40L 6 _- 508L 4 - 2304L 2 + 2880). (AS)

H_t = 705432m _t - 1847560m_lL 2 - 9) + 583,_m't30L z - 550L z + 1869)- 120120m _

,_I6L _ - 168/,4 + 1199L 2 - 1873)+ l144m3(105L s -3990L 6 + 44730L 4 - 156200L 2 + 105228)

- 24m_231L _° - 11165L s + 174328L 6 - 1006764/.," + I771440L z - 302400). (A9)
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A BSTRACT

In this paper we derive a theory, b_e,l on quasi-,legenerate perturbation theory, that governs the effect of global-

scale, steady-state convection and associated stanc asphericities in the elastic-gravitational variables (adiabatic bulk

modulus _:. density p. and _ravitational potential o) on hetioseismic eigenfrequencies and eigenfunctions and present

-t formalism with wilich this th,_orv ,:an be applied computationaily. Eigenfunctions are simply seismic displacement

patterns. The theory rests on three formal ._smnprions: t 1 ) that convection is temporally steady in a frame corotating

with the Sun. t2) that accurate ei._en"roquencies and eigenfunctions can be determined by retaining terms in the

__eismically perturbed equations of motion onl.v to first order in p-mode displacement, and (3) that we are justified in

retaining terms only to first-order in ccnvective velocity as well (this assumption is tantamount to the requirement

that the convective flow is anet_tic). The most physically unrealistic assumption is (1), and we view the results of this

paper as the first steps toward a more general theory governing the seismic effects of time-varying fields. Although

the theory does not govern the seismic effects of nonstatiouary flows, it can be used to approximate the elfects of

unsteady flows on the seismic wavefield if the flow is varying smoothly in time. The theory does not attempt to

model seismic modal amplitudes since these are governed, in part., by the exchange of energy between convection and

acoustic motions which is not a part of this theory.

The basic reference model that will be perturbed by rotation, convection, structural asphericities, and seismic

oscillations is a spherically symmetric, non-rotating, non-magnetic, isotropic, static solar model that. when subject to
- r - rseismic oscillations, oscillates adiabatically. V,) call this the _NR.NMAIS model. An acoustic mode of the SNRNMAIS

model is denoted by k = (n. 1, ml. where n is the radial order. I is the harmonic degree, and m is the azimuthal order
of the mode.

The main result of the paper is the general matrix element _"_ .hrn,,_.el for steady-state convection satisfying the

anelastic condition with static structural asphericities, h is written in terms of the radial scalar eigenfunctions of

the SNRN.MAIS model, resulting in equations (92)-(11-'2). _,_,_prove Rayleigh's principle in our derivation of quasi-

degenerate perturbation theory, which, as a b.v-product yields the the general matrix eiement. Within this perturbative

method, modes need not be exactly degenerate in the SNRSMAIS model in order to couple, oniy nearly so. General

matrix elements compose the Hermitian supermatrix Z_,_. The eigenvalues of the supermatrix are the eigenfrequency

perturbations of the convecting, aspherical model and the eigenvector components of Z_,_ are the expansion ¢oet_cients

in the linear combination forming the perturbed eigenfunctions in which the eigenfunctions of the SNRNMAIS model

act as basis functions. We show how hetioseismic synthetic seismograms can be computed using the supermatrix.
• r_." rrl

The properties of the Wigner 3-J symbols and the red,ted matrix elements composing Y,,,,.m produce selection

rules governing the coupling of S.XRN.MAIS modes that hold even for time-varying flows. We state selection rules for

both quasi-degenerate and degenerate perturbations theories. For example, within degenerate perturbation theory,

only odd-degree s toroidal flows and even degree structural asphericities, both with s <_ 21, will affect the splitting and

coupling of acoustic modes with lmrmonic degree 1. In addition, the frequency perturbations caused by a toroidal flow

display odd symmetry with respect to the degenerate frequency when plotted from the minimum to the maximum

perturbation. ,.,.

We consider the special c_se of differential rotation, the odd-degree, axisymmetric, toroidal component of general

convection, and present the general matrix element and selection rules under quasi-degenerate perturbation theory.

We argue that due to the spacing of modes that satisfy the selection rules, qu_i-degenerate coupling can. for all

practical purposes, be neglected in modeling the effect of low-degree differential rotation on helioseismic data. In

effect, modes that can couple through differential rotation are too far separated in frequency to couple strongly. This

3
w

-" PR1ECEDING PAGE BLANK NOT FILMED

_L PAGE IS

OF POOR QUALITY



.s not the case wilen w_ consider nonaxIsymmetnc flow_ anti _phericities. in this case. near degeneracies w_t[ r_,guiariy
<cur. -_nd couplings can b÷ r,qattw'iy -_tron,..- , _peclailv amon_ SNRNM:\IS modes within the same rnultipler.

All derivations are p,.r;brmed and nit .-.oiuttons are presented in tile cerotating frame. Equation t i_) _i_ows how r_

-:ansfc, rm the e'_enftequenc!es a_d ,:__','ntunct_o,,s in ri_e ,:orotatm_ h'ame mto an mertiaI frame. Th,., trm_sformat,on

::_s tile e!f,?ct that each ei_enfuncnon in the mertml frame is itself time-varvmg. That is. a mode of oscillation, which

.s d.gfined ro have a sin_ie iro,tuency in [he <orotatin_ frame, becomes multiply periodic in the inertial frame.

I. INTRODUCTION

tIelioseismic images of the acoustic "¢tocit.v field of the Sun are providing new and unique information about solar

-tructure and dynamics. To continue to utilize effectively the information provided by the continualI.v improving data

_;ets will require a thorough understanding of the way in which a number of solar structures and processes affect
heiioseismic data. It is upon such an uuderstanding of these forward problems that any future inversions will rest.

We consider here the hetioseismic effect of one such solar process: convection. In particular, the purpose of this

?aper is to present a theory that governs the e_Fect of large-scale, steady-state convection, with associated aspherieities

:n the structural elastic-gravitational variables (adiabatic bulk modulus _. density p. and gravitational potential o),

"n helioseismic oscillations. Many studies have been completed concerning differential rotation, the long-wavelength
:xisvmmetric component of convection I e.,2.. Duvall and Harvey I984: Brown 198,5: Duvall et al. I!)86: Libbrecht

10_;,6. h)S9: Brown and .\lorrow [9S7: Rhodos et al. i0g0: Brown et _1. [_)89: Thompson 1990: aud Ritzwoller and

2.a,,eiv !!)9J.)_ Howewr. ro date. studies o[ the _e_smlc effects of non-axisymmetric convection are rather sparse. In an

.svmptottc treatment. Gougil and Toomre t t_ _..)) caicular.ed the frequency shift of an acoustic mode due to advection

!:.v a pureiy horizontal flow. I3rown 1[9S4) calculated the influence of turbulent convection on modal degenerate
:requencies. The scattering of sound by an i_oiated, steady laminar compact vortex was considered by Bogdan (1989).

Hiil i_%3. t988, 1980) has used a ray-theorf, ric method and has attempted to infer horizontal convective velocities

near the solar surface using helioseismic data. All of these studies make restrictive assumptions about the geometry

of the flow field including either that the flows are horizontal in a plane-parallel medium or demonstrate cylindrical

<vmmetry. and none attempts to model wawfront distortion and deflection caused by convection. In summary, to the

best of our knowledge no general theor.v for the effect of convection on helioseismic oscillations currently e._ts.

The theory presented in this paper differs from these previous studies in the following ways. (l.) Our theory is

nonasymptotic. In principle, the results are accurate for all wavelengths and frequencies of helioseismic oseillat, ion. (2)

It is derived within a spherical geometry. Previous investigations that modeled convective effects within a normpherical

geometry are appropriate for short-wavelength convection but inappropriate for the largest scales of convection which

"_re the subject of this paper. (3) The theory presented here makes no assumptions about the geometry of the flow. We

represent general non-a, cis.vmmetric flow fields comprising both poloidal and toroidal components in terms of vector

spherical harmonics, which are complete basis functions for a vector field in a sphere. (4) Our approach is modal-

theoretic rather than ray-theoretic. From a traveling wave perspective this means that both wave(ront deformation

well as the perturbation in local sound speed by convection are modelled. In modal-theoretic language, convection

:esults in modal coupling _ well as splitting.

In a later paper we will implement the theor.v presented in this paper using a numerical simulation of large-scale

:onvection and discuss the observational consequences of the theory. In particular, we will show that the he[ioseismic

frequencies, displacement patterns, and line-widths of an aspherical solar model are appreciably altered relative to
rhe corresponding quantities calculated from a model with differential rotation alone.

_) Modai .Votation and Terrn:aotoyy

The basic reference model to which all subsequent structural perturbations and processes will be added is a solar

model that is spherically symmetric, nonrotating, nonmagnetic, isotropic, and static, subject to adiabatic acoustic
oscillations. We refer to this as the SNRNMAIS solar model. An acoustic mode of oscillation of any solar model is

defined to be a characteristic spatial displacement pattern that oscillates with a single frequency

An acoustic mode of a SNR.N.MAIS model is uniquely identified by a single triple of quantum numbers (n,l, rn)

that denote, respectively, the radial order, harmonic degree, and azimuthal order of the mode. A modal frequency

_or such a model is simply the degenerate frequency of the muhiplet .S1 that comprises the (21 + l) modes with

identical n and I values. Any symmetry-breaking agent such as rotation, magnetic fields, or convection will lift this

(2l + t) degeneracy and split the frequencies of the modes composing the multiplet. We call any model with such a

symmetric-breaking perturbation a non-SNRNMAIS model. A major goal of this paper is to provide formulae with
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v:mcil to caiculate the modal eigen(unctions and eigenfrequencies of both the SNRNMAIS and non-SNRN),IA.IS solar

.-:._odeis..:is we snail later see. tile p,_rturbations of the non-SNRNY, IAIS _olar model wiiI be _sumed to have small

'.na_mtucle and be stationary in a [tame corota_m,z with the Sun. tf ;he symmetry-breaking agent is a.xisymmetri,'.

-._ ts differential rotation, tlmn to a ..... _,i aDr, r_,xlmation the spattai ,tructure of eacit mode wiil remain specified },v
5" . ,

"',_e same tr:piet of quantum numbers. For a _e:_cral, non-axisymmetric perturbation such as the convective fiehls w,.

:-.nsider ilere. :he perturbed ei:enfunc_ion _or spatial displacement patternl of each mode is a iinear combination of
"ile e,,:entunetions of the SNRNM:\IS wood. _,_,'ecail this pilenomenon osciitation-oscdlation coupling or interaction

".; ,iistinguash it from osciilation-couwetlon coupiing, the excnanee of ,energy" between seismic and convective modes.
T!le acousnc modes that are said to couple as a :esuit of a convective tlow or an asphericity in the eiasuc-gravitational

varmMes are SNR.N.MAIS modes. The modes of the non-SNRN.MAIS solar model do not couple.

Two modes of the SNRNY, IAIS solar model whose spatial eigenfunctions are orthogonal are said to be isolat,*d
:tom one another. Two or more modes that are not isolated from one another can couple when the reference model is

perturbed either by a structural perturbation or a convective flow. A muhiplet composed of modes whose combine,[

eigenspace is orthogonal to the combined eigenspace of the modes composing all other multiplets is said to be isolated

or _.eif-,:oupted. The degree of coupling between S.NRNMAIS modes is a function of a number of factors, among which

-:re the strength of the asphericity or ,:¢nvective field producing the coupling, the proximity of the eigenfrequencies
.)f the modes, the relation between the geometries of the perturbing field and the oscillations which is encoded in a

_et of analytical angular selection rules, and the similarity of the radial eigenfunctions of the two modes. When two
";NRNMAIS modes k = I n.l. rn_ and <': = _n' ;'. mq couple, the strength of interaction is described b.v the general

.._atr:x e!emen_ I_'._'2.,'_,:. The matrix H._.'* ,,: ,:omposed of all the general matrix elements for tile muhipiets ,,..71 and

-...-<l, is of dimension 1.2t' -,- t) × _'2! - £} and is ,:ailed the eenera[ matrix. The square general matrix H,,,,, is called the

-.piitting mamx and governs seif-coupiing. The elgenfrequencies of non-isolated modes that couple within or across n

or l are the eigenvatues of an assemblage of block diagonal splitting matrices and off-block diagonal general matrices.

Tile entire assemblage is called the supermatrix Z_,i..
Since the seismic modes of the SNRNMAIS solar model are sptleroidat, their spatial vector eigenfunctions stir)

, or displacement patterns) may be written in the form

s_r' = .,Ui(r_}i_(9. o)_. ,, _i(r)V_ }']"*(& o) (t)

where ,,Ul(r) and ,_](r) are the scalar radial eigenfunctions for harmonic degree I and radial order n. With the

gravitational potential scalar eigenfunction. ,_ot(r), and its radial derivative. =Ut(r) and ,,_,}(r) and their radial
derivatives form the set of scalar radial mgenfunctions. The coordinates (r,O, o) are spherical polar coordinates

(where _) is colatitude) and /', _. o denote unit vectors in the coordinate directions. The surface gradient operator is

given by
% = r(V" - i'(i". V')). (2)

The function _)"* is a spherical harmonic of degree l and azimuthal order m defined using the convention of Edmonds
t 1960):

f2= _'[5[i, _ (O.o)]'?]_(O,o)sinedOdo = _-vm&', (3)

where integration is over the unit sptwre. Henceforth, we drop the subscripts n and I in equation (1) and use instead

U = Ul(r), (." Up(r) and so on. The SNRNY, IAIS spatial vector eigenfunctions satisfy an orthogonality condition

given by

f ;_S_' l = .Xr'a.,' _ _. ' _ a*'l

s_dar (4)

where
rRr_ , .

.V = /o po[UU'+l(l+ llVVlr'dr, (5)

and dar = r: sin SdOdodr. Henceforth. an integral sign without limits, as in equation (.t), will denote a three-
dimensional integration over the volume of the solar model. The scalar normalization constant N depends on the

normalization convention of the eigenfunctions U and V.

Perturbation theoretic techniqt,es are usually employed to calculate split acoustic mode eigenfrequencies and

perturbed eigenfunctions. In this paper, we will show how qu_i-degenerate perturbation theory can be applied to

determine these quantities for a conveeting solar model with associated aspherical perturbations in the structural
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.,._StlC-__ravltationai parameters ,i,_l_sit.v p lnd adiabatic buik modulus _. [,1 particular. ,re wdl use the ei_enfunctions
-( "_,e 5.x,'R.x3[.\l_ too(re! .as i_a_,ts _'unc_iOl_S r() re_re_ent the Dertlzrb,_d ÷l_enfunctIons _,L r. t'_:

)

_,'_'_w_ii_how i:ow ro,ieterminetileapproprlateet@enspace [( requiredto representthe perturbed eigenfunction,will

!erivethe expansion coon_cienta\.for_acn component ofthe eigenspacetocalculatethe perturbed eigenfunction,and

•.-'_ii Jerlve exDressmns for the spilt eigenfrequency of the mode wj = w_:! _ 0_a;.
The major theoretical resuit of the paper is analytical expressions for the general matrLx elements that compose

:he supermatrix (or splitting matrix in the ,:ase of self-coupling). The perturbed modal frequency ._._'j is simply

,.n eizenvalue of _he supermatrix (or splhting matrixj, and the expansion coefficients are simply the eigenvector

,:omponents ai. We wish to emphasize at Hfis point that we will not attempt to present a theory that accurately
_redicts modal ampiitu,les, but only modal eigenfrequencies and perturbed eigenfunctions (or displacement patterns).

ix. t_rmai assumpuons of the theory discussed in g,I.b wiil reflect this point.

,_) A s._trnpttons and the:r implications

.\Ithou=h ".he t heor.v :v_ present in tixL- paper _<more _enerai than previous work. its application is restricted both by

-:_,:ticai ,:ons_derat'ons and bv rae .-:t of ._._sumptions upon which it is formaily base(/. Tile maior practical limitation

._- "ilat zhe ,:.:nvective structures cons_,iered <nouid be giobal in extent. For example, aithou__h it is theoretically

:cssibie to reoresent .'_stngle smaii-_,:aie convective vortex in terms of vector spherical harmonics, there are better
:,,presentations and doing; so would probably i>e a misuse of this tixeory. Thus. though the theory holds for all but very

,hort wavelength, turbulent convection, it will be most usefully applied to long wavelength flows. There is a caveat:

_patiatly repetitive smail-scale structures, such az tt_e solar granulation, can be well represented by vector spherical

harmonics and are not beyond the practical limitatt0ns of this theory. Another practical limitation is that the theory

is not particularly useful for g-modes since they trove very small amplitudes in the convection zone. Therefore. though

"ixe theory governs the effect of _onvectmn on ,/-modes our discussion will center on p-modes.

.',Iuch more restrictive are the tbllowing set of formal assumptions. (1) The convection is steady in time. As we
will discuss in _II. this assumption is necessary for the perturbed equations of motion to separate. The aspherieities

in the structural elastic-gravitational variables will also be assumed to be time invariant. (2) We retain terms in the

seismically perturbed equations of motion onl.v to first-order in p-mode displacement and quantities that depend on
it. Thus. we derive and use linearized equations of motion. (3) We also retain terms in the seismically perturbed

equations of motion only to first-order in convective velocity. This is done so that acoustic oscillations and convection

do not exchange energy and to this extent can be considered independently. This is tantamount to the requirement

:hat the convective flow field is anetastic. We wiil discuss briefly the implications of each of these assumptions in turn.

Arzuments are presented to justify _sumptions (2) and (3) in _I.e.

I) If convection is steady in time. each identically directed acoustic wave that propagates through a given region

will experience the same convective effect. In particular, multiply orbiting waves propagating along near great-circles
,,viii experience a constructively accumulating effect in that region. In this case, the split modal frequency associated

',vitix the propagating wave will be time invartant. If the convective state changes appreciably during the time it takes
an acoustic wave to execute a single orbit, then the convective effect will vary between orbits. In fact, the effect may

destructively accumulate. Conseque,atl.v. modal frequencies would be time varying, leading to an effective spectral

line-broadening. This line-broadening is ;_ot a part of the theory presented in this paper and the seismic effect of

aspects of convection that are rapidl.v evoiving in time cannot be determined from the results presented here. Of

particular significance is the fact that the effect of the shearing of sectoral or banana cell modes of convection by
differentia[ rotation cannot be modeled within this theory. Rather, the results in this paper represen_ the first steps

toward constructing a more general theory that governs time-varying fields.

Although the results in this paper are correctly applied only to steady-state convection, they may be most use-

ful if seen to provide instantaneous frequet_cies and displacemen/,,patterns for a time-varying convective field. These

instantaneous frequencies would be accurate over the lifetime of the convection cell which, for long-lived modes of con-

vection, may be appreciable. In this ca.se, the steady-state assumption would anaount to a short-time approximation.

For example, since the shearing of convective patterns takes time to develop, the results presented here are applicable

until the shearing ,:fleets accumulate. The numerical simulations of Glatzmaier and Gilman ( 1981. 1982) show that

some components of flow have lifetimes on the order of weeks. Furthermore. there are certain observable solar features,
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:a partLcuiar active longitudes an,i _:oronai hoies, that appear to evoive reiatLveiy unsneared bv differential rotation.
::" _'b,ese (eatures are s,_mehow -mcner_d ,at de_pth in ,_'onvect_vo srru,'_ Ires i_wn their existence is further evidence t'or

_. reiatlvoiy s_able c._mponent _( dew ,l_ep in tile convection zone. [:vidence t'or the existence of solar :_iant ceils is
:lscussed in }i.d.)

From the view o( t_,v__t,?a_LV-_tate _ssumpt_on _ a simrt-tlme approximation, it is straightforward to implement a

::umenca[ formalism _c) approx:mate the time-varying seismic wavefieid if we asume that the variations in convection

_re temporally smooth. We would caicuia_e a _ime sequence of instantaneously valid eigenfrequencies and eigenvectors

n a ,:Garse set of time knots wilere at ..acil knot ;tie flow field is ,assume,] to be stationary. \Ve would then interpolate

"ae eia_enfrequenctes and ei_envectors onto a finer time grid and allow the wavefieM to evolve continuously through
_ach o( the intervals between the knots.

12) Neglecting higher order terms than first in the seismically perturbed quantities amounts to neglecting seismic

_,?if-advective effects evidenced thrcm,gh acoustic three-mode coupling. In particular, the setf-advection of the dis-

piacement field is neglected t'.'iliC_l is tantamount to assuming tha_ the to_a[ seismic displacement in a region is much

smailer than the displacements produced by convection during the passage of a wave. {We also neglect all source

,erms sucil as entropy and internal energy fluctuations caused by the oscillations.} .-ks we will discuss in §§I.c and I.e.

:_e accuracy of this assumption improves w_th depth. The application of the theory will be most accurate foF seismic

paths beiow the strongly _uper-adiabatic laver near the solar surface where turbulence is most vigorous.

31 \Ve neglect ai! temps s÷cond-order in the convective velocity. There are two main _.vpes of second-,0rder terms

"ant .re discard, advect_ve terms anti Reynoids s_resses. Discarding the tormer amounts to assuming that convectiw

'._lo,:mes are rotat_vei.v _matl. I.:norm:_ Reynoids stresses. "xt_ich are propomonai to the Lapiacmn ,_t"the convective

voiocitv, requires _hat convect_v÷ _vav,qen_tils be r_tativ_tv far,i.e, and implies that convection-oscdlation coupling

:s ne,-qecteci so tha_ :i_ere _s no mecimn_sm by "vi_ich ,'onvection and the acoustic oscillations can excilange ener_.v.

In particular, we assume that ,,onvective ttows do not. generate seismic waves and. therefore, we require that the

_ows satisfy the unperturbed contmmt.v equataon commonly called the anelastic condition. This condition eliminates

potential sources, sinks, and cavitation m the ttow field. Thus, we view convection as a sort of passive background on

which acoustic oscillations are superposed. It deforms seismic reavefronts and perturbs local sound speeds, bu_ does

not exchange energ.v w_th acoustic waves. The assumption that second-order terms in convect*ve velocity and the

Reynold's stresses can be ignored is poor near the surface but. as with formal assumption t2). _mproves with depth

below the photosphere.

In summary, the implications of these assumptions are that the convective fields to which the theory is applicable

should be global in extent, relatively long wavelength, steady in time or a_. least relatively long-iiwd, and well below
the photosphere. Giant-cell convection satislies these criteria and provides the best target for the application of the

theory presented herein. In the remainder of this section we will discuss solar convection, review the evidence for the

existence of giant-cell convection, and attempt to justify the use of linearized equations of motion to determine the
seismic effect of giant-ceils.

c/ Solar Convection and its Seismic Effects

Observation of the distinct cellular motmns of granules and supergranuies suggests that there are preferred scales

,of motion for thermal convection. The common picture of convection is that the Sun contains a multiplicity of scales

of motion ranging from the Kolmogoroff microscales at the short end to differential rotation which is global in extent.

At intermediate length scales, convective modes are thought to be organized into granules, supergranules, giant cells,

and energy-bearing eddies. Temporal scales also range from a few minutes for granule overturn times to weeks for

the largest scale of giant c,:tls d,:ep in the convection zone. -Goldreici_ and Kumar ([9S8) present a recent review

of turbulence. Bray et aL il!)84):rod Gilman (1987) provide overviews of the physics and morphology of granules.

supergranules, and giant cells.

In order to discuss qualitatively the likely general characteristics of convection below the photosphere, we look

to mixing-length theory for guidance. In the mL,dng-length picture of convection one would take the mi.'dng length,

Maci_ number, and the time and velocity scales of convectiou to be given, respectively, by
• _ ,.%

H .-- aH_ (7)

ru HQp /., ]
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v_, ~ c.ll (9)



.qere ,_ .... _;_pg) '.s ,no :,r_._ure s,:aie ii.'t-::'.. .* is the ratio o[ :ile mixln_ ien_th to H_. P is pressure, 7- is

:::>_.:ar',::e. a' is the ,_,,.-.-_VlrV.::..,_ _.h,: >>,,c'fic i;eat ._[ constant p:._ssure, and c :s the sound spe.,:.,,i. \Ve have set

' ' = : ! - .i..]'i.d-' ",vt_ere ._ ;s _he ,'%Ito of :he :_a.s pressure to the totat p_essure. The convective flux can be calculated
.5in ,r

:-- - --' 4Ill

v.'nere L = is the solar luminosity. \%',_i:avo u.-,',i equation t14.581 of Cox and Giuii i1968) to obtain equation (8).

F!:ure _. is a piot of the .'haracter:srlc b.mgth, v.eioctty, and time scales of convection predicted by equations (7). (9),

",nd _7L0) using the solar modei of Podstadtow_ki ! I989) with c_ taken to be 1.305. The predicted time and velocity
-_,:aies near the surface correspond 'a'oll v.'ith observations of solar granulation.

Convection at all depths in the conv_'rtion zone wdl affect helioseismic oscillations. The solar p-modes have scales

,ha_ range in size from the smallest to the largest of the convective motions and the dominant modal frequencies

':mcxie with the characteristic c,vorturn tm_es for convective motions near the solar surface. Since the energy and
"he characteristic iength md tlme scads of convection vary with depth, the physics of interaction between acoustic

:nodes and convection w,il neressani.v also vary. For exampte, granule and sub-granule scale motions are thought to
:',_ -no source at" the acoustic cselii:_tlons qGohirelci_ and Kumar !'.)%'_. To model the total effect of convection at this

-.'aie on tae acoustic :,sc:_iarmns .vc,uid be v,,rv ii_cuit _ It would involve modelin._ convection-oscillation coupling

:: :.,adition to osciiiation-,_,_,ctilat;on ,:oUDiin:..\a _rle formai assumptmns indicate, we have set for ourseives a simpler

"as_:: :o model the effect :,( ,]e_,per. lon_,z-wav_iengtb. :onvectmn such as giant ceils that. we argue in {l.e, exchange

v._rv iitt!e energy with acoustic :sclilations.

Thou__n. as Figure ! dmw_. it is [ikel.v that _he characteristic temporal and spatial scales of convection vary

.:ontmuousty across the ,:onv,ction zone. ,:onv_,ctive processes can be thought to be segregated into two concentric

_aeiIs (an outer shell and an inner si_eili. '.vltin c_nvection in each shell being dominated by distract processes. In §l.e
•.v_ attempt to quantify the extent of each shell: here we discuss qualitatively the characteristics of the convection and

:rs likety seismic effects in ,,acn shell.

The outer shell occuptes the .'op few scale heights where the acoustic and convective physics are most complex.

Convection is most vigorous ia _his shell, bmng highly turbulent and with relatively short characteristic convective

lifetimesand lengthscales.In finisshell,the convectivevelocityisan appreciablefractionof the localsound speed

,3[ "=_'3.3).the time scads of the turbulenceand ofthe acousticradiationare commensurable, and the amplitudes of

_he p-modes and the convective waves are largest. Goldreich and Keely (1977a, b) and Goldreich and Kumaz (1988.

t989} calculated the amplitudes and energies of the p-modes under the assumption they are excited by stochastic

:urbulentconvection.Resultsof Goldreichand Kumar (1988) show :hat seismicwave emission and absorptionin the

Sun principailytake placethrough interactionwith turbulenceinthe top few scaleheightsofthe convectionzone. \Ve

iefinethe radialextentof the outer shell_ the regionofsignificantinteractionbetween the p-modes and convection.

',X'eargue in {l.ethat thisregmn alsomarks the extentofsignificantthree-mode couplingand attempt toapproximate

'.ts depth extent as well.

In the outer shell, conv#ctive ceils evoive rapidly {Stein and Nordlund 1989: Title et aL 1989_. If, in addition.

ceils are distributed isotropicaily in space, then they will produce little accumulated splitting effect on globally

propagating waves. There will be local acoustic effects, but the isotropic assumption guarantees that the net global
effect on frequency will be small. [towever. acoustic modal amplitudes, line-widths, and degenerate frequencies will be

affected by' outer shell procc_-ses ( _.]. Brown I984: Christensen-Datsgaard and Fransden 1983: Christensen-Dalsgaard

et al. 1989) such as conv,_ction-osciilation coupling, three-mode coupling (Kumar and Goldreich 1989), and radiative
damping.

The tuner shell is much larger than the outer shell and lies directly beneath it, occupying, as we argue below,

more than -,- 99.8% in radius of the convection zone. By definition, the emission and absorption of seismic waves

by turbulence in this shell is negligible, and convection-oscillation coupling can be ignored accurately. Consequently,

the anelastic condition can be applied. Furthermore. p-mode a._aplitudes are much smaller than in the outer shell

and the solar gas in this si_etl is optically thick so radiative damping is negligible. Thus. the contribution to the
interaction coefficient describing three-mode coupling in the inner shell is relatively small (Kumar and Goidreich

t.989]. Therefore. we argue that splitting and the global distortion of seismic wavefronts dominantly result from

convection tha_, is relatively coherent temporally and spatially'. If long-lived, long wavelength features of convection

do exist, they would possess characteristic signatures in p-mode frequencies, line-widths, and displacement patterns
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"ilat could be computed from the theory presented herein, in principle, once we have identified these signatures.

'heir observation would place ,:onsrraints on the causative convective structures. For example, we sllow in a future

•cntribution that because of the way ilelioseismic images are reduced and analyzed, the effect of asoherical structure

s re broaden [me-wiciths. Fhi_ ,_ffect ,'an t,, <_znificant for modes with low intrinsic damping rates. The value of

i:eiioseismological constraints sueil _ th,:_-e wcmid be enhanced by the fact that large-scale convection has been linked

.vltit the dynamic structure of tile ,.iiffer-ntlal rotation (e.j. Gihnan 1987) and with the sotar dynamo (e.g. StLx I981).

',n acldition, magnetic activity ob_,_rved at the solar surface probably is controlled by its subsurface expression that is

numately involved with ltows at ,tepth.

Next, we address two questions in :_,:]l.d and I.e. 11/ What is the evidence that large-scale convection e.',dsts in

"tie inner shell? (2) What is the ,_xtent of the outer shetl where we do not accurately model the convective effect of

convection?

d) O, the Eztstence of Giant-Cells

A problem for the utility of the theory pr,,sented here is that giant cells have not been unambiguously observed

tr the soiar surface. If they do exist at the surface of the Sun. their amplitudes are less than 10 ms -1 froward and

Labonte 1980: Labonte et at. 1981: Brown amt Gilman 1984). Nevertheless, the evidence for their existence is strong,

_hou=h circumstantial. (I) First. the Sun displays a number of features that are suggestive of sustained large-scale

monons !Gilman J.987_. These m,:iude persistent large-scale patterns in the solar magnetic field, the coronal holes

':hich survtve severai solar rotatmn periods without being sheared apart by differential rotation, and the ex.mtence of

:cure longltudes where new acnv," regions prPferentially arise, i2) Second. the observed distinct cellular convection

:nay continue well below the _urfaee. In the mixing length picture of convection (e.g.. Fig. l}. the scale of the

-onvecuve eddies is set b.v the pressure scale-lleight so that one would expect layers of convection with monotonically

increasing vertical scale with depth. In addition, both linear and nonlinear models (e4.. Gough et al. 1976) have
shown that even when the ttuid is compressible, and the stratification includes several scale heights, convection

spanning the entire unstable laver Is favored. Thus, for the Sun, patterns of motion with horizontal dimensions up

to the depth of the convection zone (i.e. A -,, 200.000 km or harmonic degrees of l -,- 20) would be expected. (3)

Third. the space-lab experiment of thermal convection (Hart et aL 1986) and the numerical simulations of Glatzmaier

J 1984) and Gilman and Miller [ 19S6) have _uggested that large and sustained patterns of motion may exis& in the

Sun with scales approaching the depth of the convection zone. (4) Fourth, Rill (1988) constructed three-dimensional

spectra (kr, k_, w) of helioseismic images of small rectangular regions near the solar equator and discovered tel_ively

large-scale horizontal, poleward ilows of approximately 100 m/s that may be the surface expression of giant-cells. (5)
Finally, a possible explanation of the small vertical Velocities of the supergranules and the absence of a strong signature

of giant-cells in the data of tloward and Labonte (1980) may be found in the work of Latour et al. (1981) and van

Ballegooijen (1986). Latour et al. (1981) found that buoyancy breaking in A-type stars may occur in upward-directed

flows that have horizontal scal_s large compared to the pressure scale height of the region into which they penetrate.

This leads to lateral deflection and strong horizontal shearing motions. If this result applies as well to G-type stars

such as the Sun. it may provide the explanation for the lack of surface observations of giant-cells. In addition, van

Ballegooijen (1986) found that density stratification screens out periodic components of the near surface flow pattern

in his convection model so that periodic motions that exist at depth would not be observed at the surface.

e) Justzficat,on of Linearization for Application to Giant Cell Convectmn

-- _,_,_ now attempt to qnantify the extent of the outer shell, defined to be that region where convection-oscillation

.:oupling is appreciable. The extent of energy exchange between oscillations and turbulent convection depends on their
relative time and velocity scales. Perhaps the best available measure of the coupling between convection and acoustic

oscillations is the flux of energy F., pumped into to the acoustic modes from the convective motions. Goldreich and

Kumar (1989) derive an expression for Fp given by

F. = at, &, (12)

where F¢ is the convective flux giv,'n by equation (11). Fp depends primarily on the Reynolds stresses.

An inspection of Figure 2. which plots the radial dependence of F v, reveals that convection-oscillation coupling is

relatively insignificant below tile top -,- . 15% of the convection zone. Thus, as a mechanism of oscillation-convection

coupling, Reynolds stresses and entropy fluctuations act far more efficiently in the top few scale heights than in the

deeper layers where the characteristic velocities are smaller and the length scales are larger.
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Kumar and Goldreich (19_9i atso discuss rhr effect of nonlinear interactions among solar acoustic modes. They

_.rzue tilat these interactmns are stronaest in the outermost layers of the .Sun. Indeed. an inspection of th,_ir Figure
' iaqtcates that the coupiinz coerticients are ._e,,smw, ,o three-mode interactions only in the outer -,- T._-. bv radius

:[ "he convection zone. Cc.ns,'quentty. '.v_, infer chat rilree-mode interact,ons can be _gnored in the determination of

_eismlc effects of convective flows beiow this depth.

in criticism of the tinearizat_on in both ,'onwcuve velocity and seismic displacement, it might be. suggested on

mtuiuve zrounds that a theor.v governing the _l['ect o( convection on seismic waves must be accurate along the entire

7,ath of the seismic wave. and since nil _eismic ".vav_,s propagate through the outer shell the theory must be general
enough to govern outer sileil physics. This would :ertainiy be true if we were interested in describing nil of the seismic

_ri'ects of convection. However. _ discussed in II.c. turbulent convection and other nonlinear processes in the outer

shell will dominantly affect modal amplitudes and degenerate frequencies. We are only interested here in determining

_plit frequencies and perturbed eigenfunctions _,_r displacement patterns) of acoustic modes. Consequently. outer shell
physics will be subsequently ignored.

In conclusion, we define the outer shell to tlave a depth of "-- .2,% of the convection zone and we argue that the

seismic effect of convection can be modeled accurateiy with a Iinearized theory for flows within tile the inner ,-, 99.8%
of the convection zone b,v radius.

/) Oe'em'_ew

[a !iII we discuss reference frames and the separability' of the equations of motion, and present a means of transfer-

:rag the theoretical results presented in this paper from a frame corotating with the Sun to an inernal frame that can

i3e roughly identified as the observ_'rs frame. In _,IIl we present mathematical representations tbr convecuon and for

the asphericities in the ela.suc-gravttational variables. The equations of motion governing the seismic oscillations m

the presence of a steady-state global-scale wtoc_ty field and the associated static structural perturbations to density

and bulk modulus are derived in _IV. We derivP in {V the quasi-degenerate perturbation theory needed to calculate

the influence of a velocity" fietd and structural perturbations on solar oscillations. In §VI, we derive the general ma-

trix elements that determine the displacement field and split frequencies caused by an anela.stic model of convection

represented with scalar and vector spherical harmonics by using the perturbation operator derived ira _[V and the

perturbation theory derived in {V. The application of quasi-degenerate perturbation theory to tile acoustic modes of
the Sun and the derivation of the general matrbc elements are presented in §VI. In §VII we discuss properties of the

supermatrix. In _VIII. we consider differential rotation. In §IX we show how the the supermatrix may be used to

generate theoretical seismograms. The principal conclusions of the paper are summarized in §X.

The system of equations that governs the modal eigenfucntions and eigenfrequencies of the SNRN.MAIS solar
model is presented in Appendix A. The equation of motion of the non-SNRNMAIS solar model is derived in Appendix

B. In Appendix C, we present a mathenaatical method adapted from Phinney and Burridge (1973) that considerably
simplifies the application of differentml operators to vector and tensor fields in a spherical geometry which are common

in helioseismology. This technique is used to calculate the general matrices presented in §VI. Appendbc D contains

a discussion of the incorporation of the anela,stic condition into the general matrix and a derivation of the matrix

dements for the Coriolis force, centripetal acceleration, and for general convection. Appendix E presents detailed

expressions for the matrLx elements for a,spherical perturbations in the elastic-gravitational variables.

[Sections II-IX omitted.]

X. SUMMARY AND CONCLUSIONS

The purpose of this paper has been to derive a theory that governs the effect of steady-state convection and

associated asphericities in the elastic-gravitational variables (adiabatic bulk modulus _;, density p, and gravitational

potential o) on seismic frequencies and displacement patterns and to present a formalism with which this theory can be

applied computationally. The theory is not intended to predict m'_dal amplitudes since these are governed, in part, by

the exchange of energy between convection and seismic waves, which is excluded by our theory since it is linear and since

the convective flow is defined to be anelastic. To the best of our knowledge, every global-scale study of thehelioseismic
effect of convection or structural _phericities, to date, has assumed an axisymmetric model. We have made no such

assumption, and have represented convective flow (a vector field) and structural asphericities (a scalar field) with

general global basis functions, vector and scalar spherical harmonics, respectively We also represent the eigenfunctions
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:_rhe spherical reference mo,iel i_ he _.NR.X.'q.\[S .,oLaf modell with w'ctor spherical harmonics. These representatioqs

_iiow us to employ ,].u_i-,ie_'t),'rate porturDat,on theory in a straightforward manner to derive the general matrix

-:,:ments H._'_._'h: _imt _ov,,rtl ,h,. mo,ial coupiin_ and .-piitting caused by ,convection and the structural _phericities.

\Ve present formulae for the _._'nerai matrix elem_.nts c._:p_icitlv in terms of the _-calar eigenfunctions of the S.YRN.MAIS

-:iar model. Thus. the u.-,_ of this Iheor.v requires olliv the following quantities: _l) a Sh'RN._,[.\IS soiar model (,,-(r)

o,ild ;(r!). ,'2_ the seismi," -.caiar ,,:_enl'unctlons ot the ":NR.N'},IAIS solar model (nUl(r], _L'a(r). _ ;i(r!. _ _](r), ,_¢_ot(r)

::l_ -._o:i r!). and !3 _ the spnerlcai harmon lc r¢:present,',tion of convection i ,_ (v), _,: (v). and _z,:_(v)) and/or asphericities

:a t i_e elastic-gravitational varmbles (e,_::lr) .u_d _<p:,(r)) at, each radial knot of the SNRNMAIS model. The general
matrix elements compose the Iiermitian ._upermatrix Z. whose eigenvalues are the eigenfrequency perturbations of the

_enerai non-SNR..NMAIS .-olar model and wtlose eigenvector components are the expansion coefficients in the linear
.:ombination forming _h(: perturb,?d eigenfunctions (or displacement patterns) in which SNRNY, IAIS eigenfunctions
xre basis functions.

Optimally. the next stage of this research would be the application of this formalism to a realistic global model

:r" Ions-wavelength conw,-tlon with _sociated _phericities in the elastic-gravitational variables. A major aspect of

_;_is effort would be the ,ieterminatmn or" the accuracy of degenerate perturbation theory relative to quasi-degenerate

perturbation theory. \V_, have arFue,J in _%'III that due to the spacing of modes that satisfy the selection rules.

quasi-degenerate couplin',' -nn. for all practical purposes, be neglected in modeling the effect of differential rotation
-u i_eiioseismic data. In. I_'ect. moJes that can couple through differential rotation are too far separated in frequency

-.._ COuDie stron_iy This _ )_ot ti_e ,case wi_en we consider nonaxisymmetric flows and asphericides. In this case. near

ie_eneracies wiil reguiarty occur, and ,:oupiin_s can b_ relatively strong especially among SNRN.XIAIS modes within
,ice same multipiet. How,,ver. _mce solar (':onv_rtton is dominantly axisymmetric, complete hybridization of modes

;vouid be rare. and the p,.rturbed mode would retain many of the characteristics of a mode of the SNRN.XIAIS model.

.Xlost importantly, a perturbed ,:ieenfunct,on. on average, would resemble a slightly perturbed S.N'RNMAIS eigenfunc-

:ion: z.e.. a single spheri,'at harmonic, ftowewr, these perturbations to the eigenfunctions and eigenfrequencies will

be systematic and it should prove interesting to investigate the cumulative effect on splitting data. In particular, one

could compute the perturbed eigenfrequencies for a given model of giant-cell convection (e.g., GHman and Glatzmaier

t981: Glatzmaier and Gilman l'J_t. 19_2: Gtatzmaier 1984) and then invert for the input differential rotation profile

using currently standard methods that assume that nonaxisymmetric components of flow are nonexistent, if the flow

model were realistic, one would uncover any bias in the recently estimated differential rotation profiles.

Another use of the theory would be to determine whether general asphericities in the elastic-gravitationM variables

could appreciably affect helioseismic data. For example, Kuhn et at. (1988) observed a surface temperature variation

of severat degrees Celsius from the solar south pole to the solar equator and hypothesized that this or a similar

structure may be responsible for the non-zero even-degree frequency splitting coefficients. Given an equation of state,

_hese temperature variations could be expressed in terms of the perturbations 6p°_(r) and 6_(r). Although the depth
extent of the observed temperature variation is unknown, different hypothesized depth structures could be constructed.

Using the theory presented here. the general matrix elements and, hence, the splitting caused by each temperature

model could be computed and used to test the hypothesis of Kuhn e¢ al. (1988).

The major constraint on the application of the theory presented here is that we have assumed that the convective

ttows and asphericities are stationary in time. Consequently, we view this paper as the first step toward a more

general theory governing time-varying flows. Nevertheless, a number of the consequences of the theory will hold for

time-varying flows as well. Most importantly, the selection rules listed in §VII will hold for non-stationary flows.

For example, under self-couplin_ (or within degenerate perturbation theory), by Selection Rules 1,, and 3,,, only

odd-degree storoidai flows and ,:v,,n degree structural asphericities with _ _< 21 will affect the splitting and coupling

of acoustic modes with harmonic degree I.

In closing, since this paper is long, it is worthwhile to present a road map through the major results. Modal

notation and terminology are discussed in _l.a and model notation and terminology are presented in _IV.b.i. The major

assumptions of the theory are presented and discussed in _I.b, and are justified in _l.c and I.e. The mathematical

representation of convection is in equations (23)-(25) and the representation of the elastic-gravitational variables is in

equattons (29)-(31) and (:1.3)-(37). The general equation of motio_a is equation (B.II) and the equation of motion for

the perturbed model with (irst-order perturbations including rotation, eilipticity in the structural variables, centripetal

force, convective flow. and asph,'ncities in the elastic-gravitational variables is equation (50). The general forms of

th e general matrix element and the supermatrix are shown in equations (67) and (68), respectively, and the general

matrix element for the p,'rturbatto||s Listed in the previous sentence is in equation (77). The explicit form of the

generM matrix elements suitable for computation, written in terms of the scalar eigenfunctions of the SNRNMAIS
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_-,oiar model, can be found in ,,quat;on , 0'2.1 ',,-,th notation and the integral kernels defined in equations _!)3M i .[2). W,.
:onslder this the main resmt of this paper. Three selection rules _overnin_ coupiin_ are listed in equations t I20). (1221

• and i i_2L_), with the seif-.:ouptmg "+rnl _'f the ::election r':ies in equations !i_[+J. _22_, and 11_4t. f]te Dia+onal Sum

Ruie and the Superdiagona[ Sum R_i,: at,, _ta',,,i and proved in _VII.J. The _enera[ matrix element and s_tectiou rules

:'or differential rotation are in equation,, _137) .:mi , !41), :espectiveiy. All results of the paper are presezlted in a frame

.:Drotatin_ with the Sun. Equation t l _'! ,:an i.,_.:t_.,ed _o ,'onstruct "he perturbed ei._enhequenczes and ei_enfunctions
_f :_ non-SNRSMAIS solar model in an inerrmi frame. Tl_e Generalized Spherical Harmonic formalism, which w_

"sed to derive the explicit form of the '_eneral matrix _tements. is discussed in Appendix C. The incorporation of

-tneiasLicity constraint into the gent-rai matrix ,dement for convection ts the subject of Appendix D.
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ABSTRACT

We consider wave generation by turbulent convection in a plane parallel, stratified atmosphere that sits in a
gravitational field, g. The atmosphere consists of two semi-infinite layers, the lower adiabatic and polytropic

and the upper isothermal. The adiabatic layer supports a convective energy flux given by mixing length
theory; Fc ~ pv3s, where p is mass density and vs is the velocity of the energy bearing turbulent eddies.

Acoustic waves with to > co., and gravity waves with ca < 2kh Ht cab propagate in the isothermal layer whose
2acoustic cutoff frequency, ca,., and Brunt-V_iis_il_i frequency, cab, satisfy ca., = _,g/4Hi and cab2 = (y - 1_7/7Hi,

where _ and H_ denote the adiabatic index and scale height. The atmosphere traps acoustic waves in upper

part of the adiabatic layer (p-modes) and gravity waves on the interface between the adiabatic and isothermal
layers (f-modes). These modes obey the dispersion relation

_--gk n+ ,
m

for ca < ca,,. Here, m is the polytropic index, kh is the magnitude of the horizontal wave vector, and n is the

number of nodes in the radial displacement eigenfunction; n = 0 for f-modes.

Wave generation is concentrated at the top of the convection zone since the turbulent Mach number, M --

vn/c, peaks there; we assume M, _ 1. The dimensionless efficiency, r/, for the conversion of the energy carried
by convection into wave energy is calculated to be _ ~ M, as/2 for p-modes, f-modes, and propagating acoustic
waveS, and _ ~ M t for propagating gravity waves. Most of the energy going into p-modes,./=modes, and prop-

agating acoustic waves is emitted by inertial range eddies of size h ~ M3/2Ht at ca ~ ca.. and kh ~ 1/Hv The

energy emission into propagating gravity waves is donated by energy bearing eddies of size ~ H, and it
concentrated at ca ~i_Jll,.-. M, ca,, and kh ~ I/H,. :_

We find the power input to individual p-modes, _p, to vary as cat,,2+_,,-a)/_,+3) at frequencies co ,f vdH,.
Libbrecht has shown that the amplitudes and linewidths of the solar p-modes imply _p acoJ' for

co _ 2 x 10 -2 s -t. The theoretical exponent matches the observational one for m _ 4, a value obtained from

the density profile in the upper part of the solar convection zone. This agreement supports the hypothesis that

the solar p-modes are stochastically excited by turbulent convection.

Subject headinqs: convection -- Sun: atmosphere -- Sun: oscillations -- turbulence -- wave motions

i. INTRODUCTION

Lighthill (1952) wrote the seminal paper on the generation of acoustic waves by turbulence in homogeneous fluids. Stein (1967)

extended Lighthill's techniques to stratified fluids and also treated the emission of gravity waves. We reconsider Stein's problem for

a more realistic model atmosphere and relate the turbulent spectrum to the convective energy flux via the Kolmogorov scaling and

the mixing length hypothesis. Our goal is to estimate efficiencies for the conversion of the convective energy flux into both trapped
and propagating waves. We treat mode excitation but not mode dampinf_ Thus, we cannot estimate the energies of trapped modes

which depend upon the balance between these two effects.

The plan of our paper is as follows. In § II we describe the model atmosphere and its eigenmodes. Next, in § III, we derive

expressions for the rates at which individual modes gain energy from turbulent convection. In § IV, we estimate the total emissivities

for the different wave types, p-modes, f-modes, propagating acoustic waves, and propagating gravity waves. A comparison of our

results with those obtained in earlier studies, and a discussion of their implications, is given in § V.

II. ATMOSPHERE AND EIGENMODES

a) Static Atmosphere

Our model atmosphere is plane parallel, sits in a constant gravitational field, g, and consists of two semi-infinite layers, the lower

adiabatic and polytropic and the upper isothermal. The pressure, p, density, p, and temperature, T, are continuous across the
interface between the two layers. In the lower layer the adiabatic and polytropic indices are related by r = 1 + l/m. The adiabatic

The National Center for Atmospheric Research is sponsored by the National Science Foundation.
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WAVE GENERATION BY TURBULENT CONVECTION 695

index in the upper layer, 7, may differ from 1-. The z coordinate measures depth below the level at which the adiabatic layer would
terminate in the absence of the isothermal layer. We denote quantities evaluated at the top of the adiabatic layer by a subscript t.
Parameters in the isothermal layer are distinguished by a subscript i. Note, the ratio of the sound speeds cjc, = (),/F) _/:.

In the adiabatic layer the thermodynamic variables exhibit a power-law behavior with depth:

p = p, , p = p, . T = T, . (1)

The sound speed, c, and the pressure scale height, H, satisfy c: = #z/ra and H = :/(m + 1).
The isothermal atmosphere is still simpler: T = T,, c = c,, and H = H_ are all constant, whereas p and p are proportional to

exp tz/H_).

b) Normal Modes

We choose the Eulerian enthalpy perturbation, Q = pl/p, as the dependent variable in the linear wave equations. These read

d2QmdQ( co2 )Tz2 + --_z + -'_ - k_ Q = O , (2)

in the adiabatic layer, and

dz"-T+ -_i + -_i - k_ l - co2/ J

in the isothermal layer _Kumar and Goldreich 1989). Here, co is the wave frequency and kh is the horizontal wavevector (1 = kh Ro).
The displacement vector, ¢, is related to Q by

k 1 aQ
¢, = i _'_ Q, ¢" - co: az ' (4)

in the adiabatic layer, and by

¢_ = i k__,O _, - - + Q (5)
co: , ,

in the isothermal layer.
The normal modes are obtained by solving equations (2) and (3) subject to Q ---, 0 as z ---, oo, Q and _, continuous across the

interface at z,, and the appropriate boundary conditions as z ---, - oo. The continuity of _h follows from that of Q.
The modes are classified as trapped or propagating, and as composed of acoustic or gravity waves. The adiabatic layer supports

acoustic waves, but not gravity waves. Moreover, it refracts acoustic waves upward. Thus, propagating modes must b¢ traveling
waves in the isothermal atmosphere.

Solutions of the wave equation in the isothermal atmosphere are proportional to exp ( - x± z), with

x±= "_i+i -I + --I k_- "q Lkco,./ _
(6)

where co,, and cos are the acoustic cutoff and Brunt-V/iis/ii/i frequencies:

and

2 7a (7)
_*" - 4Hi '

co__ (r - 1)a (8)
7H_

Thus ca/', "" "'-: "'2' = '_7 - t_O,,,r, . There are two branches tO the d_spersion curve for travelingwaves_For 2/qH_ < 1, these are a high
frequency, acoustic wave, branch with to > to,,, and a low-frequency, gravity-wave, branch with to < 2k_ H_ coB.

Wave excitation by turbulent convection is concentrated in the upper adiabatic layer where the convective velocity peaks. We
seek analytic expressions for the normalized eigenfunctions in this region. Since the dominant interactions are proportional to
d:Q/dz: (see § Illb), we explicitly evaluate this quantity for each mode. In doing so, we drop factors of order unity including, in
places. 7, F, and m.

i) Trapped Modes

Trapped modes correspond to evanescent solutions in the isothermal layer and are restricted to a discrete set of eigenfrequencies
for fixed kh. In the limit that the adiabatic layer extends to vanishing surface pressure, the eigenfunctions may be expressed in terms
of associated Laguerre polynomials and the dispersion relation reads

= -- 9kh n + , (9)
/91
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where the integer n denotes the number of nodes in the radial displacement eigenfunction (Christensen-Dalsgaard 1980;
Christensen-Dalsgaard and Gough 1980). Trapped acoustic modes, or p-modes, correspond to n # 0. Modes with. = 0 are surface
gravity waves, or f-modes. Trapped g-modes with, # 0 do not exist since the adiabatic layer is neutrally stratified, that is, its
Brunt-V{iis/il_i frequency vanishes. Equation (9) remains a good approximation for co < c%c even with finite surface pressure,

Only the physical solution, the one that grows less rapidly with height in the isothermal layer, is normalizable. The normalization
condition reads

Fs_

I = cot | dzpf,,. _*. = ,_,.,_., (10)
J _ea0

at fixed kh. For modes with 2k, H, ,_ 1, most of the contribution to the energy integral comes from the adiabatic layer. This enables
us to reexpress the normalization condition, using equation (2), in terms of the enthalpy perturbation as

i_ az _ Q.Q:.= 6_... (11)
•)Z_ C

For co = co', this integral evaluates the potential energy of a trapped mode in the adiabatic layer. The potential energy is equal to the
kinetic energy for all modes. This accounts for the relation between equations (10) and (11).

1.P-Modes

A p-mode isa standingacousticwave trappedbetween an upper reflectinglayeratz_,where co/c(zt)= I/2H(zO,and a lower
turning point at z2, where co/c(z2) = k_,. The requirement that there be an upper reflecting layer restricts p-modes to frequencies
below co_.

It is easily shown that

_ ... , (12)
2 t

and

z_ ... n + . (13)
Zt

Outside the interval z_ _< z _<z2, the mode is evanescent. Both Q and _ increase slowly with height above z,. Below z2 the kh term in
equation (2) dominates and Q oc exp ( - kh z).

We study the p-mode eigenfunctions in the dual limit co ,_ co., and 2kh H, ,_ 1. In a polytropic layer with vanishing surface
pressure, the eigenfunctions are solutions of equation (2) that are analytic at z = 0. These solutions may be expressed in terms of
associated Laguerre polynomials. When the polytropic layer is overlane by an isothermal layer, the eigenfunctions include a
contribution from the solution that is singular at z = 0. However, the boundary conditions at the interface between the two layers
ensure that the contribution from the singular solution is small for co 4 co_.

We can approximate the eigenfunction in the region of propagation, z, ,( z ,_ z 2, by the WKB solution

+o-- o.] ..,
Below the lower turningpointatz2,the eigenfunctionisexponentiallysmall.In the evanescentzone above :, the atmosphere
respondsstiffly.Thus B,isapproximatelyequaltothesurfaceamplitude,Q(zO,forco,_co_.
The z derivatiesofQ inthe evanescentregionenterintotheexpressionswe deriveforwave generation.For co_ co_,c_/azhas

magnitude co2/0~ (co/co_)2H-_,as followsdirectlyfrom equation(2).Thisequationhas a singularpointatz _=0,and itsregular
solutionisgivenby a power seriesinco2:/g.This verifiesour assertionabout the magnitude of _/_z.Of course,the polytropic

atmosphere does not extendto z = 0.However, thisisof littleconsequence fortheeigenfunctionsthatbecome evanescentwell
belowz = zr

Given thepropertiesoftheeigenfunctiondescribedabove,itfollowsfrom thenormalizationequation(II)that

:_'co:"-"kh (15)
BZp g(,,,-2_p,

Evaluating O2Q/63z 2 we obtain

for z,< z _ z v

_.0_(_z: B_ , (16)

2. F-Modes

Direct substitution into equations (2) and (3) verifies that Q = B r exp (--khz), with co2 = gkh, is an exact solution of the wave
equations in both the adiabatic and the isothermal layers. Moreover, _, formed from equations _4) and (5) is continuous across zv
This family of normal modes consists of gravity waves confined near the surface of the convection zone; they are known as f-modes.
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The f-modes are incompressible, V • _ = 0. which accounts for their simple dispersion relation. The amplitude, B r, is determined
from the normalization equation (11) to be

B_ -_ "Tto:('- t)kh
y..-2)p, (17)

For all z,

_Q
?z" - k,: B, exp (-k,-). (18)

ii) Propagatin9 Waves

Modes that propagate in the isothermal layer have continuous spectra. They are chosen to have no net flux in the isothermal
layer; that is, they are composed of pairs of inward- and outward-propagating waves of equal amplitude. This choice ensures that
propagating modes have real frequencies and are orthogonal to trapped modes. These modes are normalized such that

m

f;®dzp_ "_:. = _(ca -
092 ca'), (19)

at fixed kh. The upper limit on the integral in equation (19) may be taken to be z,, since the contribution from the adiabatic layer is
finite, and therefore negligible.

I. Acoustic Waves

These modes have to > to,, and propagate in the isothermal atmosphere and in the upper part of the adiabatic layer. They are
evanescent below the lower turning point at :2 ~ to'_/g k2. We deduce the properties of the eigenfunctions in the joint limit ca _. ca,,
and kh < to/cl.

In the isothermal layer

F - (20)
Q = C° sin [K:(z, - z) + ¢,] exp C 2Hi J'

where K= _ co/c_. Application of the normalization condition given by equation (19) to equation (20) yields

C_ g._:_1_... (21)
P,

We approximate the eigenfunctions in the adiabatic layer by the WKB solutions

lQ
- sin L2co_-) (z '/'- ,x,,)+ 0,j, (22)

for =, < z < zz. The continuity of Q and _: across z, is used to relate Bo and 0, to C, and _°. The phase, _°. is determined by the
condition that Q oc exp (- k, z) for z --, _. For to just above co,,, B°(ca, kh) displays sharp ridges along extensions of the p-mode
dispersion curves. These correspond to resonances for the scattering of incoming waves by the atmosphere. These ridges flatten for
to ,> to_, and

B,_ ~ 1-c'_ (23)
[1 + (F - 7) cos 2 4_°]"

For later use we record

for 2, < : < z,.

_2Q rrlca2

_z z ~ gz Q' (24)

2. Gravity Waves

Gravity modes with ca < 2k, H_ to_ propagate in the isothermal atmosphere but are evanescent in the neutrally stable adiabatic
layer. We detail their properties in the double limit to < 2k_H_ tob and 2k, H_ < 1.

In the isothermal atmosphere

F - =)l
Q = Cg sin [K:(z, - z) + _,] exp L 2H_ J ' (25)

where K= _ (todto)kh.
The amplitude Cg is determined by the normalization equation (19) to be

g1,.2 (26)C_-,_
p, zltiZkh
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In the adiabatic layer, for z r < - ,_ k_ t, the last term in the wave equation (2) is much smaller than the first and second terms and
may be ignored. The reduced wave equation yields

/-,V'-- i,
Q _, B,tT) + O o . (27)

The ratio Dg, Bg is determined by fitting Q in the upper part of the adiabatic layer to Q :c exp (-kh:) at z ,> k_- t. For 2k, H, _ 1,
Dg/B o _ 1.

The continuity of Q and _, across z, is used to relate Bg and Dg to Cg and <_g.We find

_ok_z 3'2 (28)
tan C_ "" 9t;2

The small value of tan Cgis due to the change in orientation of the velocity field from almost vertical in the top of the adiabatic layer
to almost horizontal in the isothermal layer. From equation (28) it follows that

z_/2t_2kh
B2q gli2p, (29)

For later use we note that

holds for z _ kh-L

_'Q _m- I)42
-., (30)

_z 2 z 1

c) Turbulent Convection

In the absence of a reliable theory for turbulent convection, we are guided by the mixing length hypothesis. According to this
hypothesis, the convective energy flux, F<, is carried by turbulent eddies whose dimensions are of order the local pressure scale
height, H(z) = zi(m + 11.The velocity and entropy fluctuations associated with these energy bearing eddies, vn(z) and sn(z), are
related to the mean entropy gradient, ds/dz, by

v_ ~ oH 2 ds
cp dz' (31)

where cp is the specific heat at constant pressure per unit mass, and

ds

sn ~ H d"z ' (32)

These relations lead to

Since F< is independent of z,

Fc ~ pTvu st_ ~ pv_ . (33)

/Z \,./3

v.t7) .
where v, - v_z,).

In treating the convection zone as adiabatic we have been neglecting the superadiabaticity of the temperature gradient,
c_ 'T dstdz, with respect to the adiabatic temperature gradient, g/cp. From equation (32) it follows that the ratio of these gradients
may be expressed as

Tds
----. M _ , (35)
9 dz

where the Mach number of the turbulence, M - vn/c. Appeal to equation (33) establishes that

M ~ \pc3j . (36)

We assume that the turbulent velocities are substantially subsonic even near the top of the convection zone, that is, M, _ 1. Under
these conditions we are justified in approximating the convection zone as adiabatic when calculating eigenfunctions for the normal
modes.

The characteristic time scale of the energy bearing eddies is

H
ru ~ -- • (37)

t' H
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It is smallest at the top of the convection zone where

I

r, ._, co=_" (38)

The velocities of smaller, h < H, inertial range eddies are related to those of the energy bearing eddies by the Kolmogorov scaling
{Tennekes and Lumley 1972),

(h)',Uh
-- = , (39)
t,'H

at fixed :. The Kolmogorov spectrum applies to turbulent convection because, below the scale of the energy bearing eddies, the
Reynolds stress provides greater accelerations than the buoyancy forces (Goldreich and Keeley 1977a). This implies that entropy
mixes like a passive scalar contaminant in the inertial range. Thus,

-- ~ . (40)
SH

The depth dependence of the properties of eddies of fixed size h follows from equations (32), (34), (37), and (40). We find

F hz'_ ql:3

_(:) ~ r,[Tj . (41)

Fh=_'-+,,l,,_
_,I_)~ S,L_ j

IIL MODE EXCITATION

a) Source Terms

We begin this section by adding source terms due to turbulent convection to the linear wave equation (2) for the adiabatic layer.
Next, we classify the individual terms as sources of monopole, dipole, and quadrupole radiation. Then we evaluate the excitation of
wave modes by these sources.

We distinguish three principal sources of wave excitation by turbulent convection. They are, the expansion and contraction of
fluid due to the gain and loss of specific entropy, buoyancy force variations associated with these entropy changes, and momentum
transport by the fluctuating Reynoid's stress.

We derive the inhomogeneous wave equation from the linearized versions of the equations for mass and momentum conservation
supplemented by the equation of state for a perfect adiabatic gas. We augment the momentum equation by the divergence of the
turbulent Reynolds stress, and the adiabatic equation of state by the entropy fluctuations associated with turbulent convection.
These equations now read:

and

Op1
-- + V • (pv) = O, (42)
2t

2(pvt
0"-_--+ vpt -Ptg = -V "(pry) - F, (43)

p, l-p, _ Z (44)
P P eL,'

where Pl, Pt, v, and s are the Eulerian density, pressure, velocity, and entropy perturbations associated with the turbulent
convection and the waves it generates. The subscript 1 attached to the density and pressure perturbations denotes that only the
lowest order variations of these quantities need be retained. Equation (44), the Eulerian form of the perturbed equation of state,
holds because the background state is isentropic.

Eliminating p t and e from the left-hand sides of equations 142)-(44), we obtain the inhomogeneous wave equation

O c_Q I t?2Q S(l) + S_2) (45)"
VZQ + c2 dz c2 _t 2 p '

where

-"(L)SH_ = -P ?t 2 -# _z
S_2) = V • F. (46)
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The interpretation of equation (45) is somewhat subtle. Provided we drop the final c- 2d2Q/Ot2 term on the left-hand side as a first
approximation in the limit of subsonic turbulence, it determines the near field turbulent pressure perturbations from the turbulent
velocity and entropy perturbations. The c-_d2Q/dt: term connects the near field perturbations to the wave field perturbations. The
latter may be expanded in terms of the normal modes.

The identification of sources by multipole order is a useful device in estimating wave emission by turbulent convection. It helps to
separate the sources that must be retained from those that may be safely discarded. For homogeneous and isotropic turbulence the
multipole expansion may be carried out in several equivalent ways. In our application the turbulence is z-dependent, and therefore
inhomogeneous, and the atmosphere is stratified, and therefore anisotropic. Under these circumstances the method of choice is to
identify sources according to whether they involve a change in fluid volume (monopole terms), a source of external momentum
(dipole terms), or merely internal stresses (quadrupole terms)? Classification based on the angular dependence of the wave
amplitude in the radiation zone is not useful, because the angular dependence results, in part, from the anisotropy of the medium)
Identification of sources by the number of their spatial derivatives also leads to ambiguity, since it differs according to the choice of
dependent variable.

The first term in S(I) arises directly from the volume change due to art entropy change at fixed pressure. It is a monopole source.
The second term in S (') reflects the buoyancy force variation associated with this volume change. It involves a variation of the
density of momentum supplied by the external gravitational force and is a dipole source. The double divergence of the Reynolds
stress in S (2) reflects the redistribution of momentum by internal stresses. It is a quadrupole source.

One might suspect that the monopole and dipole terms in S (t) produce more acoustic radiation than the quadrupole term in S(z).
Treating these three terms independently appears to confirm this suspicion; the monopole and dipole terms are found to excite
comparably greater amounts of acoustic radiation than the quadrupole term. However, the correct solution is more subtle. As we
demonstrate shortly, destructive interference causes the total monopole plus dipole acoustic emission to be of the same order as the
quadrupole emission.

b) Amplitude Equation

The total enthalpy perturbation, Q(x, t), is expanded in terms of the normal modes, Q=(z), as

Q = _ _ [A= Q. exp ( - iogt + ik h • x) + A * Q: exp (i_ot - ik," x)'], (47)

where ,z/ is the horizontal cross section of the atmosphere. 4 The mode amplitudes, A=(t), are slowly varying functions of time,
IdAJdt I '_ a) ] A=I. Substituting this expansion into equation (45), multiplying both sides by Q=*exp (ieot - ik, • x), and integrating
over space and time, we obtain

A,(t) = d3xQ*=(S(1) + S (2)) exp (ioJt - ik_ • x) (48)
2itosd t,,2

Taking -oo for the lower limit on the integral over t involves the implicit assumption that damping erases the memory of
excitations from the distant past.

Next, we integrate by parts to transfer all time and space derivatives to the eigenfunctions. The contributions due to the individual
source terms are discussed separately below.

The monopole plus dipole terms contribute

a:1'(O-' ,49)2io.)M 1'2 = c) _, /

With the aid of the homogeneous wave equation (2), we transform equation (49) to

dt dax _c. \'-_z _ - k_, Q*_ exp 0t.ot -- iit, • x) . (50)

The contribution due to the quadrupole term is

A__2)(t)_ 2ic_.._t,2 _ d3xp_e:VVQ *=exp (io_t - ik_ • x) . (51)

The normal mode eigenfunctions share the property that khl Q=I _< [OQ,,/Oz I near the top of the adiabatic layer. More precisely,
other than the f-modes for which dQ=/dz = -k, Q=, the approximate mode eigenfunctions calculated in § lib satisfy the strict

inequality. This implies that

at f .x C Q= exp (icot - ikh "x) (52)
I d a pc2s _2 .

A_-t)(t) _ 2iahz¢ lj2 cp t_z2 '

z This method preserves the ordering of source terms by the efficiency with which they generate radiation.

3 For example, a spherically symmetric point source radiates anisotropically in a stratified atmosphere.
" For the moment we are treating the atmosphere as being of finite horizontal extent,
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and

3 , _2Q____.exp (kot - ik h x) (53)
.4_2_(t)_ 2i_o._¢1_2 d xpv- _z 2

,o_,:, -- we A_ t_(t} 0 for f-modes as a consequence of their incompress-provide order of magnitude estimates for A_,t_(t)and _, v/. t-to vet, =
ibility.

Now we compare the relative sizes of A_,Z_(t)and A_b(t). We start with the contributions made by energy bearing eddies and go on
to investigate those due to smaller, inertial range eddies.

According to equations (31)--(32), c2sn/cp ~ v_. Thus, except for the f-modes, the entropy and the Reynolds stress sources
associated with energy bearing eddies make comparable contributions to A,(t). This illustrates the destructive interference between
the monopole and dipole amplitudes to which we referred earlier; for energy beating eddies and acoustic modes with oJ --, on/H, the
monopole and dipole terms in equation (49) are each larger by a factor ~(c/vn) _ than the combined term in equation (50). The
destructive interference between monopole and dipole amplitudes is a consequence of the anisotropy of the adiabatic layer. This is
expressed by the anisotropic form of equation (2) which transforms equation (49) into equation (50).

For inertial range eddies, c2sdcp ~ v2(H/h) u3. This suggests that, unlike energy bearing eddies, inertial range eddies might excite
waves more by their entropy sources than by their Reynolds stress sources. In fact, this is not the case. From equation (50) we see
that wave excitation by the entropy source depends upon the time variability of the Eulerian entropy field. Inertial range eddies
contribute to this time variation in different ways. The kinetic energy in an eddy of size h < H may dissipate raising the local value of
s,. Neighboring eddies of similar size having opposite signs of sh may collide and mix their fluid thereby smoothing the spatial
variation of the entropy field on scale h. An eddy of size h carrying an entropy fluctuation s, may be advected at speeds up to vu. Of
these possibilities, the dissipation of kinetic energy into heat produces the largest entropy source. However, this source is just equal
to that provided by the Reynolds stress. Thus, from here on we use equation (53) to estimate the total excitation rate of normal
modes.

Destructive interference between monopole and dipole radiation fields holds the acoustic emissivity of turbulent convection at the
level characteristic of free turbulence _ for which the emissivity is dominated by acoustic quadruples. We did not appreciate this
point in our earlier treatment of acoustic emission by turbulent fluids (Goldreich and Kumar 1988). There we discussed the
emissivity of turbulent pseudo-convection, a surrogate for turbulent convection. Since this model has acoustic dipoles but not
acoustic monopoles, its emissivity is greater than that of free turbulence.

c) Excitation Rate

Turbulent convection consists of a hierarchy of critically damped eddies. Different eddies of similar size are assumed to be
uncorrelated. This assumption enables us to divide into several steps the calculation of the rate at which turbulent convection

pumps energy into a wave mode.
To begin, we estimate the magnitude of the incremental amplitude, AAh,, produced by a single eddy of size h located at depth z

over its lifetime x, ~ h/vh.

pvh h___._4 _2Q____. co <, z;' (.54)
AA h,~ 2ie_._/u2 0z _ '

In arriving at the above equation we have assumed that the eigenfunction does not vary dramatically over Az = h < H. This is a
good approximation for all the modes we are concerned with. At frequencies much greater than T,- t, AA _,declines exponentially
with increasing to.

Next, we note that

%'11

is the mean rate at which one eddy supplies energy to mode _t.
Then, summing over eddies of all sizes and depths, we obtain

x_ -2 2 [qhmu

oJ" L, I cz
(56)

where

n(z) (57)
hm_(7") "" 1 + [co'cH_g}] 3(2 '

In deriving equation (56):from (55)i we include a factor _ldz/h', the number of eddies in the horizontal slice of cross-sectional area .._¢
between vertical depths z and z + dz. The appearance of dh/h in equation (56) denotes that each inertial range eddy accounts for a
finite range of scale size dh/h ~ 1. Carrying out the integration over h yields

E., P2tHSt f: _dz (_)I _2
~- -- w , (58)

O92l"? , 2r

-'Free turbulenceis turbulence that isnot subjectto external forces.
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where the weight factor, W. is given by

The weight factor is sharply peaked about

where

W(u)=
Um "_ 4

[1 + (tOtr)3'2ttu"÷3)/2] 5 "
(59)

I

u, _ I + (co1.)3/(..,.3) , (60)

I

W(u,) ._ (coz,)3(m+,)/(. + 3)[i + (tot,)3(3. + 7)j:(_+ 3)] , (61)

it decays as u ('+() for u < u. and as u -(3"+ 7)12for u >>u,.
The peak in W is so sharp that/_, is dominated by contributions from z ~ z. for all wave modes. Physically, this means that the

excitation is concentrated in the layer where the turnover time of the energy bearing eddies is most nearly equal to the mode period.
This enables us to further simplify the expression for/_= to

,92Q,(z,)
/_" ~ P':r,H-====_"(co_,)("+ 2t)/"+3)[ i I+ (to_,)3,3.+ ,)/2,.+ 3)] ?z 2 (62)

IV. FLUXES OF ENERGY

To evaluate the total excitation rate for each type of mode, we substitute the relevant expression for _2Q,('..)/dz2 given in §IIb)
into equation (62). Following that, we integrate/_ over all modes of the family to determine the fraction of the convective energy
flux that family receives.

The frequencies of trapped modes satisfy equation (9). The flux of energy going into modes of a given family is

F, ='_ _ _. = 9-_n_ dk, k,[_, , (63)

where the sum over a includes all modes in the family, the sum over n includes all dispersion ridges in the family, and S dk, is over all
modes along a__ridge. The last equality follows because the spacing between adjacent kh modes in a box of horizontal area, _¢, is
equal to 2rr/_/._¢. Therefore, the number of modes in d2k, is dd'kd(2n)" = (,n'/2n)d/q kh.

For propagating modes, to and kh are independently specified. The flux of energy into a family of modes is computed from

l ,ff (64)

where the double integral is over all modes in the family•

a) P-Modes

From equations (16) and (62), we obtain

_12m2 + 7m- 31f1 m÷3)

r.43,.3 _tar2(,.÷2) k _ 'OytrF .............
/_p _ v,.., -, ,'., _ I + (_T,) 3(3"+ _)j2('+_) " (65)

At fixed k,,/_p varies as to(2.z + 7.- 3)/(. + 3) for cot, < I and as o (')'-7)/2 for oJx, > I. To obtain the energy input rate per mode along
the n'th p-mode ridge, we eliminate kh from equation (65) by using equation (9). This procedure yields

n /42), 3 _t4"2(_÷3) (O.1'[))12_2÷9m÷3)I(_+3)
_p _ vt'-f -t ,)mr(n + m/2) I + (tozr)3(3"+s)la('+3) " (66)

The total flux of energy going into p-modes follows from substituting equation (66) into equation (63):

F "p;v_M: _'; 2:Mt,_/2F, . (67)

From equation (66), we note that for mr, ,> [ theenergy input i'_igei-spf0_l_0rtional to (artr)i'*" - 3)/2 which increases with increasing to
for m > _. Since the maximum frequency for trapped p-modes is to,,. most of the energy flux goes into modes whose frequencies lie
just below the acoustic cutoff, to < to.,, and is emitted by _ertm_ah_e-_ddies with h ~ M_,/2H, located in the top scale height of the
convection zone. .............

b) F-Modes

The calculations for the f-modes are similar to those for the p-modes. We substitute equatton(18) into equation (62) and find

/_f ,,_ 3_2(,.+2)_ (to_)(2.,_+7.,-3)/(.,+3)
~ p,n, v, ,,,, ,., i=+ (==_,)ji_XT_3), (68)
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where we have set exp ( - k_ z.) ~ 1 since kh :. ~ M_(og_,) 12"_"3_/I,,-,3_[1 + (_o%)3.._,,+ 3_] < 1 for co < co_. The rate of energy input per
mode along the f-mode ridge reads

/.1"2 ,3_t/lr21m*3) (O)'[z) _2m24.grn_3_/(ms'3_
_'f _ Pt--r tf .-.t 1 + (ogr,)3_3,,-, _b.,z,.+ 3_• (69)

The total flux of energy going intoJ:modes is

Yy ~ p, r 3M_ _,2 = M_ _;2F, . (70)

c) Acoustic Waves

From equations (24) and (62), we obtain

M?
G " P, H?v,_ (on,)_,_, (71)

after averaging over the phase $.. Substituting equation (71) into equation (64), we derive the total flux of energy carried by the
acoustic waves:

F. ~ p, v?Ml, s/2 = MI,_/2F, . (72)

Most of this energy is emitted by inertial eddies of size h < M,3/2H, located in the top scale height of the convection zone. It is carried
by waves with ca > w., and k_ < 1/Hr

d) Gravity Waves

Equations (30) and (62) yield

{c0rt)3im - 31l(m + 3)

£g _ P'n4'v{M'kh [I + (¢o_,)31_'.9_/2_'+3_] ' (73)

so the power input into gravity waves peaks for oJz, -.. 1. Equation (73) holds for k_ in the range oJ/cob < 2khH, < (arc,)3/("+3)/
[ 1 + (o_r,) 3/" _"3_]. Substituting equation (73) into equation 164), we find the total flux of energy carried by the gravity waves:

Fg ~ p, v3,M, = M, F_ . (74)

Most of this energy is emitted by energy bearing eddies located in the top scale height of the convection zone. It is carried by waves
with ¢oz, _ I and k s < I/H,. The vertical wave vector of these waves in the isothermal layer is k, ~ 1/(M, H,).

V. DISCUSSION

a) Previous Results

Our principal results are dimensional efficiencies. _, for the conversion of the convective energy flux into the energy flux in
different types of wave modes; r/p~ _r ~ r/, ~ M, Ls/2, and % ~ M,. It is illuminating to compare these etticiencies to those obtained
in previous investigations.

The classic result for the efficiency of emission of acoustic waves by homogeneous, isotropic turbulence is that of Lighthill (1952).
Translated into our notation it is _/° ~ M,_. Here we are thinking of the acoustic emission from a layer of turbulent fluid of thickness,
H,, embedded in an otherwise uniform atmosphere. The energy bearing eddies are characterized by size, H,, and velocity, v,. In this
system, the acoustic emission is dominated by the energy bearing eddies, and is concentrated at o_ ~ vdH,, k ~ M,H r We find
% _ % _ M_ s/2, with the emission dominated by inertial range eddies of size h ~ M_2H, and concentrated at to ~ cJH, k_ ~ l/H r
There are two relevant comparisons between our results and those of Lighthill.

First, we can redo the estimate for r/, from Lighthiil's treatment restricting attention to emission from inertial range eddies having
h < M_/2H,. These eddies, whose lifetimes r_ < _o,__, dominate the emission of energy into p-modes and acoustic waves in the
stratified atmosphere. A simple calculation yields rt, ~ M,_s_:. This result agrees with ours showing that the acoustic emission from
eddies with h < M3,/:H, is not affected by stratification.

Second, we can modify our calculation of % so that only the emission by energy bearing eddies is included. This is accomplished
by repeating the procedure described in § IVa) but now limiting the integration over frequency along the p-mode ridges to
o_ < vdH ,. This exercise yields ff_ ~ M, t°. The factor M,_ by which this result differs from Lighthill's may be accounted for as follows.
Both in a homogeneous atmosphere and in our stratified atmosphere, the acoustic emissivity is proportional to t_iZQ I_. However,
for co .-- v,/H,, IVVQ I_ ~ (M,/H,)_I Q 12 in the homogeneous atmosphere, whereas I VVQ 12~ (M_,/H,) _ lQ 1_ in the stratified atmo-
sphere. This difference, which accounts for four factors of M,, arises because p-modes with o_ ~ v,/H, _ M, _o,, are evanescent near
the top of the convection zone in the stratified atmosphere. 6 The fifth factor of M, arises from differences in phase space mode
densities. In a uniform atmosphere, the number density of modes having co ~ v,/H, is approximately (M,/H,) _. This becomes M_/H _,
per unit area for a layer H, thick. The corresponding area density of p-modes in the stratified atmosphere is M_,/H_,, just one power
of M_ smaller.

_' For acoustic waves with to _ ca,,, t WQ [z is of the same order in the stratified atmosphere as in a homogeneous atmosphere.
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Stein (1967) investigated the emission of acoustic and gravity waves by turbulent convection in a stratified atmosphere. He paid

proper attention to the roles of COo_and tob and to the shapes of the mode eigenfunctions. However, Stein considered an isothermal

atmosphere whereas we treat a two level atmosphere with the turbulent convection confined to the lower, adiabatic layer. Finally,

we relate the properties of the turbulence to the convective energy flux using the mixing length hypothesis and the Kolmogorov

scaling. The differences between out model assumptions and those of Stein preclude a meaningful comparison between his results
and ours.

Milkey (1970) commented on the relation between Stein's calculation of acoustic spectral emissivity, E,(ta), and that for free

turbulence. 7 He showed that the Kolmogorov spectrum implies Eo _ to- 7,2 in the dual limit to ,> tooc and to ,> l/T,. Equation (13) in

Goidreich and Kumar (! 988) confirms this simple result and, written in our notation, reads

E_(to)~ p,v_ (to,:,)7,2" (75)

Our equation (71) giving/_o also leads to equation (75) since (a(to) "" (co/c,):_jH, .,, (tozr)2M,2/_/H_.

b) Solar p-Modes

Libbrecht (1988) has determined/_p(to) from his solar p-mode observations. He finds _p _: ton for to <_ 2 x 10 -2 s -_. Equation

(65) gives/_p ac to(2,z + 7,,- a)/(,, + 3) for art r ¢ I, in agreement with the observational result for m _ 4, the polytropic index that fits the

average density profile in the hydrogen ionization zone. Our formula fails for toz, >> l; it gives/_p _: to(_,,,-q)/4 or/_p _: co4"5 for
m = 4, while Libbrecht finds/_p oc to- 5 for to _, 2 x 10- 2 s- _. The resolution of this discrepancy is in hand. It involves modification

of the eigenfunctions in the polytropic layer for co close to to_, by the boundary conditions imposed at the interface with the

isothermal layer. These modifications, which are ignored here, will be described in a subsequent paper devoted to a detailed
examination of the excitation of the solar p-modes.

Even the limited success of our theoretical calculations in matching the frequency dependence of/_p lends support to the

hypothesis that the solar p-modes are stochastically excited by turbulent convection (Goldreich and Keeley 1977b).

c) General Applications

Wave emission by turbulent convection is a common process in stellar and planetary atmospheres. It is clearly implicated in the

heating of stellar chromospheres and coronas. Our results provide a foundation for the theory of wave emission in stratified
atmospheres. However, several additional factors need to be examined before serious applications to real systems are contemplated.
Several of these are mentioned below.

Real atmospheres differ from our model atmosphere in ways that may have important practical implications. The upper part of
the convective zone, where much of the wave generation occurs, may not be well approximated by an isentropic layer of constant

adiabatic index. Instead, as in the Sun, it may be significantly superadiabatic and possess ionization zones through which F

undergoes substantial variations. The model atmosphere makes an abrupt transition from an adiabatic layer to an isothermal layer.

The emission of gravity waves is likely reduced by the gradual rise of to b with height in a real atmosphere. Moreover, radiative
smoothing of temperature perturbations may damp waves and also modify their propagation by lowering the effective adiabatic
index. Both effects are most likely to be relevant for the dominant gravity waves because of their low frequencies and short vertical

wavelengths.
The scope of our investigation is restricted to linear waves in unmagnetized media. Wave heating depends upon the behavior of

nonlinear waves. It may also involve the coupling of acoustic and gravity waves to magnetosonic and Alf_en waves. These issues
remain to be addressed by future studies.
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" Spectral emissivity is the energy emission rate, per unit volume, pet unit frequency,
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