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Abstract

Researchers in the area of knowledge compilation are

developing general purpose techniques for improving the

efficiency of knowledge-based systems. In this article, I

attempt to define knowledge compilation, to characterize

several classes of knowledge compilation techniques, and to

illustrate how some of these techniques can be applied to

improve the performance of model-based reasoning systems. I

also review and respond to recent criticism of such efforts.
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1. Introduction

Over the past five years, a small community of Artificial Intelligence researchers has regrouped and emerged
under the banner of "knowledge compilation". This formative community is highly interdisciplinary, and
includes researchers from software engineering, automatic programming, expert systems, machine learning, and
problem solving. What this diverse collection of researchers shares in common is a set of general programming
techniques for improving the efficiency of software systems. Understandably, the focus of these AI researchers
has been on improving the performance of "knowledge-based" (rather than conventional) software systems, but
the techniques being developed are potentially applicable across the wide spectrum of software systems.

To date, most work reported in this area has described some particular system that employs knowledge

compilation techniques. Relatively little effort has gone into cataloging and characterizing these techniques
across systems. In this ,article, I attempt both to characterize several classes of knowledge compilation
techniques and to illustrate how some of these techniques can be applied. In particular, I illustrate the
application of knowledge compilation techniques to the specialized class of knowledge-based systems known as

model-based reasoning (MBR) systemsl,2. MBR systems use a comprehensive model of some system or device to
perform "first-principles" reasoning about its structure, behavior, and causality. (In contrast, traditional

expert systems use purely pattern-directed associational reasoning, without regard to underlying causal or
behavioral mechanisms.) MBR systems have been used principally in the context of various diagnosis, design,
and simulation tasks.

Before discussing knowledge compilation in the context of MBR systems, Section 2 introduces knowledge

compilation techniques in general, and Section 3 provides some motivation for applying these techniques to
MBR. Section 4 illustrates these ideas concretely with some examples from my own work in this area. Finally,
in Section 5 I review some recent provocative arguments challenging the wisdom of applying knowledge
compilation to MBR.

2. What is "knowledge compilation"?

The term "knowledge compilation" was first coined by Neves and Anderson in 1981 to refer to specific cognitive

phenomena in their work on human skill acquisition. The term later took on broader meaning with the
convening of"the 1986 Workshop on Knowledge Compilation. Although there is no single, universally-accepted
definition of the term, there are a number of alternatives to be found in the literature:

Definition #1 (based on Neves & Anderson 3 ): Knowledge compilation is the process of shifting from a
declarative to a procedural form of knowledge representation.

Definition #2 (based on preface to the 1986 Workshop4): Knowledge compilation is the process of

automatically transforming explicit, but inefficient, knowledge representations into implicit,
but more efficient forms.

Definition #3 (based on Tong5): Knowledge compilation is the process of producing knowledge-based

systems from higher level specifications.

On the surface, these alternative definitions may appear to have little in common. But what these definitions

share at a deeper level is summarized well by Brown 6, who characterizes knowledge compilation as the
process of automatically restructuring existing software systems to produce new systems with:

• Increased efficiency or usability;
• Altered representation level; and

•Reduced or "short-circuited" reasoning;

To these characteristics, I add:

• Decreased transparency or explicitness.



It is instructive to compare the notion of knowledge compilation with more traditional programming language

compilation by drawing an explicit analogy in terms of the above characteristics. In particular, the

"compilation" analogy can be drawn by identifying high-level source code with explicit but inefficient

knowledge structures, and target machine code with implicit but more optimized structures. This is depicted in

the following table:

Analogy between
Programming language compilation

and Knowledge compilation:

programming language

high-level source code ---compilation-> machine code

initial ..... knowledge "optimized"

knowledge structure --compilation-> knowledge structure

decreased

explicitness:

increased

usability/efficiency:

altered

representation level:

• explicit representation

• not directly executable
(or inefficient to execute)

• machine-neutral (or task-

neutral) representation

• implicit representation

• directly executable
and efficient to execute

• machine-specific (or task-

specific) representation

So in more concrete terms, knowledge compilation can be viewed as a method of improving the run-time.

efficiency of a reasoning system by optimizing its knowledge structures. To accomplish knowledge compilation,

a sequence of transformations is applied to a "source" knowledge structure to produce an efficiently-usable

"target" structure. (More generally, note that compilation can affect system efficiency by modifying either the

knowledge structures or procedures of a reasoning system. In fact, for those working on compilation within the

logic programming paradigrn7, 8 the distinction between knowledge structures and procedures is meaningless.)

The following are just a few examples of transformations used in knowledge compilation. I divide these

transforms into two categories based on the effect that their application has on the "knowledge-level "9 content

of the source structure. Some of the transforms maintain the "knowledge-level" content, and achieve their

speed-up by reformulating and optimizing what the system already "knows". Other transforms alter the

"knowledge-level" content of a reasoning system by adding to, or subtracting from the system's overall

knowledge in order to improve its performance.

Content-._reservin_ transforms: (maintain "knowledge-level" content)

• Simplification - Eliminates redundancies and extraneous syntactic detail. For example:

° In a program, moving the assignment of a constant outside of a loop10;

o Eliminating a replicated disjunctive subexpression or collapsing nested conjunctive expressions 11.

• Macro-operator formation - Creates a single problem solving operator that has the effect of applying

several existing operators in sequence 12.



• Fre-computation - Stores and reuses the results of a computation to avoid subsequent re-execution; a type

of caching or chunking 13.

• Partial evaluation - Produces a specialized version of a program by incorporating knowledge about

restrictions on the program inputs 14.

Cantent-raadifyin_ transforms: (change "knowledge-level" content)

• Threshold application - Converts a real-valued variable into a binary feature by applying a numerical
cut-off 15.

• Qualitative transformation - Converts a quantitative equation into a qualitative equation based on

assumptions about the signs of variables 16.

• Information elimination - Ignores information that is cosily to use, yet contributes litre to accuracy 17,18.

• Functional approximation -Treatsa function as invariant with respect to one or more of its arguments 19.

3. Motivation for applying knowledge compilation
to Model-Based-- Reasoning

As previously mentioned, knowledge compilation techniques are general, and can be applied to any type of
software system. Recently, there has been interest in applying these techniques to systems developed in
several AI subareas, including MBR, planning, and problem solving. The particular focus of this article is on
knowledge compilation as applied to MBR systems. As such, the source knowledge structure to be compiled
consists of a model of the structural, behavioral, and/or causal properties of some device or system.
Compilation of the source model into a variety of target knowledge structures has been explored, including

diagnostic rules 13,20,2.1,22,23, design plans 13,24, design rules ZS, "specialist" hierarchies for diagnosis 26 and

design 27, and decision trees 28.

The primary motivation for applying knowledge compilation techniques to MBR systems is to improve their
run-time efficiency on tasks such as diagnosis, design, and simulation. For devices of only moderate complexity,
MBR procedures can be computationally intractable, and this presents a significant barrier to their adoption in
practical applications. For example, candidate generation for multiple-point-of-failure diagnosis has been
shown to be IN'P-complete. Model-based design and simulation tasks run into similar complexity barriers. The

compilation approach attempts to improve efficiency by customizing and streamlining the general, but
inefficient-to-use, models of structure and behavior typically employed in MBR. Specifically, the approach

advocates automatically compiling these models into special-purpose, customized, task-specific models that
can be used efficiently to solve a restricted subclass of problems. Thus, in applying knowledge compilation, we
may sacrifice some generality for efficiency. Fortunately, if the special-purpose compiled models fail to cover
a specific problem at hand, underlying models can still be accessed and reasoned about using traditional MBR
techniques.

Now that I have provided some background on knowledge compilation, I turn to an example that illustrates

more concretely the application of knowledge compilation techniques to model-based reasoning.
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4. An Illustration

In this section, I describe a prototype knowledge compilation system capable of compiling both diagnosis and
design rules from a general-purpose structure/behavior model of an engineered device - the Reaction Wheel
Assembly of NASA's Hubble Space Telescope. First, I briefly describe the Reaction Wheel Assembly and our
general-purpose model of the device. Then, I describe one of our two knowledge compilers - a diagnostic rule
compiler, which transforms the structure/behavior model into a specialized set of fault localization rules for
troubleshooting. Due to space limitations, I will not describe the second compiler, which produces abstract
redesign plans from the same structure/behavior model. However, the interested reader is referred elsewhere

for a more complete discussion13, 29.

4.1 The Reaction Wheel Assembly

The Reaction Wheel Assembly (RWA) is part of the pointing and control subsystem aboard NASA's Hubble
Space Telescope (HST). The function of the RWA device is to point the Space Telescope at its visual target. The
RWA houses a spinning rotor that is accelerated to induce a torque on the telescope, thus causing the telescope
to turn. A cross-sectional view of the RWA is presented in Figure 1.

m 1,
Exterior-doorf _ Ezlmior-Senso¢

T_WA.C._W.,,, _ ""_"/..'.'.',',:'.:':_""_ I..._.=

-1 [ .....

_ Tunnel-door%.;, m m'sTunnel'Sens°r

Figure 1: RWA cross-sectional view (adapted from Perkins & Austin 30, used with permission). The

outside shell consists of a metal casing, which mounts directly to the telescope bay walls. Inside the
casing is a hollow aluminum rotor with a steel rim, mounted on a rotating shaft. The shaft is connected
to a motor at the top of the assembly. The Rotor Control Electronics (RCE) and the Power Control
Electronics (PCE) supply power and control signals to the motor. Each end of the rotor shaft is supported
by a bearing. Near each of the heat-generating components within the RWA (e.g., the bearings) there
is a small temperature sensor used to monitor the device's functioning.

Our model of the RWA device was constructed using a frame-based, object-oriented knowledge representation

tool. The model consists of two basic parts: a structural representation, and a behavioral representation. The
structural part of the device representation consists of information about the component/subcomponent structure
of the device, including the physical connectivity of the components and the spatial relationships among the
components. For the purposes of our initial prototype, we utilized a simple two-dimensional, bounding box
spatial representation to capture shape and layout of the components. Device behavior is represented by a set
of behavioral equations. These equations specify constraints among numeric quantities associated with device

components. The behavioral equations are represented in both quantitative and qualitative format to

facilitate different degrees of precision in reasoning.
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4.2 Compiling Diagnosis Rules

This section describes how the general-purpose RWA model described above can be compiled into a set of

special-purpose "fault localization" rules for diagnosis. Following is an example of a fault localization rule
that the diagnostic compiler can produce." (This rule was extracted from an actual "shallow" RWA telemetry

monitoring expert system built by Lockheed28.)

R2: if
and
and
then

Temperature of RCE-Bearing-Sensor is High
Temperature of RCE-Sensor is OK
Temperature of Tunnel-Sensor is OK
set Malfunction of RCE-Bearing to True.

To understand this rule, refer back to Figure 1. The rule says that if the sensor for the RCE-Bearing is
abnormally high, and nearby sensor readings are normal, then there must be a malfunction within the RCE-
Bearing. On first analysis this rule appears incomplete because it only checks the sensor readings for the RCE
and the tunnel, and omits other nearby components that could potentially influence the reading on the RCE-
Bearing-Sensor. For example, the motor generates considerable heat, and so do the PCE and the exterior door
(which heats up due to the sun). Why aren't these heat sources checked in the compiled rule? The answer is
that the experts consider the influence of these heat sources to be negligible.

To produce R2, the rule compiler makes use of a simple, but general diagnostic fault localization rule. Suppose
{SRC1, SRC2, .... SRCn} is a set of source components that produce some substance S (e.g., thermal energy), and

suppose {SEN1, SEN2, ..., SENn} is a set of corresponding sensors that measure the amount of S at each source

component. Here is a general diagnostic rule that captures the fault localization idea:

RI: If
and

then

Reading of SENi is Abnormal

(forall k_i I influences(SRCk, SENi))

Reading of SEN k is Normal

set Malfunction of SRCi to True.

Notice how the predicate influences captures the notion that only certain sources are capable of influencing the
reading of a given sensor. To automatically compile rule R2 from rule R1, the compiler incorporates domain
knowledge about specific source components and sensors. By "folding" this specific knowledge into R1 (i.e., by
partially evaluating R1) we get the following intermediary rule, with the substituted terms from R1
underlined:

R1.5: If
and

then

Temperature of RCE-Bearinf-Sensor is
(forall k_i I influences(SRCk, RCE-Bearinf-Sensor))

ReadingofS NkisOK
setMalfunctionofRCE-Bear_ng toTrue.

The final step from R1.5 to R2 can be achieved if we know the identity of all heat sources in the RWA, and

know whether each heat source is capable of influencing RCE-Bearing-Sensor or not. The necessary thermal
influence model can be derived from the general-purpose RWA device model using the sequence of two
compilation steps described below.

1. Thermal Resistance Model Compilation: The first compilation step is to produce a simple, quantitative
thermodynamic model of the RWA by associating a numeric thermal resistance value with each heat
flow path linking a heat source and a heat sensor within the device. The thermal resistance between
two components is calculated as a weighted average of the thermal constants associated with the

materials of the components in the heat flow path. In the resulting compiled model, determination of
thermal resistance can be accomplished with a lookup of a single cached value, as opposed to the
lengthy computation that would be required with the original device model.



2. Thermal Influence Model Compilation:Oncethe compilerhasproduceda quantitativethermal
resistancemodel,the next stepis to convertit into a morequalitativethermodynamicmodel that
capturesthe expert'snotion of thermal"influence".Intuitively, the amount"of thermal influence
imposedbya givenheatsourceona given heat sensor can be considered inversely proportional to the
amount of thermal resistance along the heat flow path. One way of deriving a binary thermal
influence model from the scalar thermal resistance model is to threshold the thermal resistance value.

The compiler considers any heat flow path with a resistance below a preset expert-defined threshold
to be a path of thermal influence. Determining thermal influences is very efficient using this

qualitative model, although influences could be computed - at increased computational cost - from
either the quantitative resistance model or the original device model.

The thermal influence model can now be used to evaluate the influences predicate in R1.5 above, yielding the
final compiled rule, R2. The rule compilation process is summarized in Figure 2.

RWA Structure/Behavior ]Device. Model .......

Thermal resistance
computation

_ Influence Threshold_

Generalized Fault_
ocalization Rule,)

I

RWA Thermal Resistance Model I
I

_ Thermal resistancethresholding

IRWA Thermal Influence Modell

Partial ruleevaluation

I RWA Fault Localization Rules I

Figure 2: Compilation of diagnosis rules

4.3 Discussion

This example illustrates how knowledge compilation techniques can be applied to derive "shallow" rules from
an underlying device model. The information content of the original RWA device model is reduced with each

successive step taken by the diagnostic compiler. Each successive model generated is, in turn, more specially
tuned and more efficient for the requirements of the troubleshooting task. As a result, troubleshooting with the
compiled rules is more efficient than with the original model.

Furthermore, by compiling the diagnostic rules from an underlying device model, and generating a sequence of
derivative models along the way (see Figure 2), we have provided additional knowledge that can be used to
enhance the robustness of the entire reasoning system. In particular, if any information in the underlying model
changes, the rules can be recompiled to reflect those changes. Using techniques from explanation and truth
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maintenance,if anyOftheshallowrulesis foundto performpoorly,thesystemshouldbeableto constructa
justificationfor thesuspectrule in terms of one or more of the derivative models, and then isolate potentially
incorrect assumptions or approximations used in producing those models. This approach has been examined in
detail by Swartout. 31

Although the run-time costs are clearly decreased by rule compilation, we cannot ignore the cost of compiling
the rules when considering efficiency. Knowledge compilation trades off increased compile-time costs for
decreased run-time costs. For this trade to be worthwhile in the long run, the compile-time costs must be
successfully amortized over the system's performance lifetime. If the compiled rules are used only once before
they become invalid due to changes in the underlying device model, then compilation will have turned out to be
an expensive gamble. On the other hand, if the device remains stable, and the rules are used frequently,
compilation will pay off handsomely.

Note that compilation is not an all-or-nothing decision. If compilation is expensive, we might choose to
compile only a subset of the rules - e.g., the small subset that covers 95% of the troubleshooting problems.
First-principles reasoning can be used to handle the remaining 5%, without incurring the high compilation
overhead. Of course determining which subset of rules to compile, and which troubleshooting problems are
likely to occur may be extremely difficult. Estimating costs and benefits remains one of the most important and
challenging research issues in knowledge compilation.

5. Dissenting Voices

Currently, the knowledge compilation subfield is in the midst of a developmental "identity crisis", struggling
to identify the common purpose or set of unifying principles that unite its eclectic group of researchers. As a
natural outcome of this self-examination process, some critical opposing views have been expressed. In

particular, Davis 32 has criticized attempts to apply knowledge compilation to MBR. Although I have

addressed these criticisms thoroughly elsewhere 33, I will briefly summarize his critique and my response here.

Davis' main contention is that although compilation research focuses on a laudable goal - improving the
computational tractability of MBR - the basic approach to achieving that goal is fundamentally flawed.
According to Davis, compilation work seeks to improve tractability by changing the form of a model - rather
than its content. The emphasis on form is misplaced, Davis contends, because "... speed is primarily a property
of model content (level of detail), not form (conditional statements or causal models)." Davis sees no advantage

to compiling structure, behavior, and causal models into associational rules because rules are not intrinsically
more efficient than other representational forms. Moreover, rules tend not to be as compact or transparent as
typical MBR models. Davis suggests that rather than concentrating on form-changing compilation techniques
to improve tractability, researchers ought to focus on the development of automated methods for reducing the
information content of causal, structural, and behavioral models - i.e., "techniques for producing [from a
detailed model] a series of ever more abstract and approximate ... models".

A secondary set of Davis' claims focus on the alleged inapplicability of knowledge compilation techniques to
MBR. Davis claims that the attempt to compile diagnosis rules is "largely futile" because it involves
precomputing all potential diagnostic outcomes, and that this is infeasible except in the most trivial cases.

Furthermore, Davis contends that any attempt to reduce deliberation and search using precomputation or
related techniques is "simply not applicable" to MBR, because MBR employs only "sharply focused" (i.e., not
excessively deliberative) procedures.

A rebuttal to Davis involves responding to several fundamental fallacies about knowledge compilation that
underlie his conclusions:



1. The "compilation as change-in-form" fallacy:

Contrary to Davis' contention, the knowledge compilation paradigm encompasses not only changes in
the form of models, but changes in their content, as well. Traditional compilers are restricted to
applying only content-preserving transforms, and thus do not alter the semantic meaning of the source
code during the compilation process. In contrast, the knowledge compilation paradigm fully supports
such changes by permitting the use of content-modifying transforms, as discussed in Section 2. Thus, for
example, a knowledge compiler can produce an abstraction or an approximation of an input device
model.

2. The "form is irrelevant" fallacy:

While I heartily, agree that methods which reduce a model's information content (such as

approximation and abstraction) are important weapons in the war on intractability, they are not the
only methods at our disposal. In principle, there is every reason to believe that significant efficiency
improvements in MBR can be derived from changes in the form of a model. In practice, whether content-
preserving compilation methods produce significant efficiency improvements is still largely an open
empirical question. Insufficient empirical experimentation has been done to answer this question with
any authority. Furthermore, a purely content-level analysis of a model reveals nothing about its
efficiency characteristics. Any claims about the efficiency properties of a model must be made in the

context of a particular representational form and an interpreter for that model.

3. The "rule emphasis" fallacy:

Rules appear to be the scapegoat in Davis" critique of MBR knowledge compilation techniques.
Actually, the use of rules in MBR compilation work is only incidental. The production of rules, per se, is
not intrinsic to compilation, nor is it the aim of that process. Compilation seeks to produce an efficient,

usable representation in whatever target form is suited to the available reasoning engine. Rules are just
one possible target representation; others are mentioned in Section 3. No claim has been made by.
compilation researchers that rules in general are better, faster, more expressive, or more transparent;
certainly such a claim is false. The objective of researchers in this area is not to 'turn models into rules',
as Davis claims, but rather to develop automated methods to 'turn MBR systems with relatively

unacceptable run-time behavior into systems with more acceptable behavior'.

4. The "MBR special exemption" fallacy:

Despite Davis' claims, MBR systems are not exempt from the types of benefits afforded by knowledge

compilation techniques. In particular, precomputing model predictions and embedding them into
diagnostic rules is an effective technique for reducing run-time costs - provided that compile-time costs
are not prohibitive and can be successfully amortized over the lifetime of the system. If the compile-
time costs are prohibitive, then selective (rather than exhaustive) compilation may be appropriate. A
decision about which predictions to precompile depends on characteristics of the problem solving
environment, such as the frequency of repeated problems and the cost of producing a prediction.

Despite many points of disagreement, I concur wholeheartedly with Davis" main conclusion that a key research

issue for MBR is the development of techniques for generating a series of successively more abstract and
approximate models. And if one agrees that research on approximation and abstraction is central to MBR, it
follows that research on compilation is also central because compilation provides a set of techniques for
generating new (and possibly more abstract or more approximate) models from existing models.



6. Conclusions

Knowledge compilation is an emerging area of research within Artificial Intelligence. The aim of this
research is to devise methods for automatically or semi-automatically improving the performance of
knowledge-based systems. In general, knowledge compilation methods improve the performance of systems by
tailoring their knowledge structures and/or procedures to a more narrowly-scoped class of tasks. Thus

knowledge compilation techniques often (but not always) trade generality for efficiency.

In terms of model-based reasoning, it seems clear that both compiled reasoning approaches and model-based
approaches have their place in the next generation of knowledge based systems: efficient, compiled
approaches for "routine" reasoning, with a fall-back to more comprehensive model-based approaches for
"extraordinary" reasoning. The challenge is to integrate these two types of approaches seamlessly. An
integrative perspective on these two reasoning approaches is illustrated in Figure 3, where associational
reasoning and model-based reasoning are identified as opposite endpoints along an spectrum of approaches
ranging from more compiled to less compiled. Taking thi s perspective effectively shifts the discussion away
from talk about which approach is superior, and toward a more fruitful dialogue about what the two
approaches have to offer each other, and how they may be successfully integrated.

Less More

compiled compiled

lira,,--

Model-based Associational

systems systems

Figure 3: Spectrum of reasoning approaches
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