

DECEMBER 1990
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA
(NASA-CR-190UOY) SPACECRAFT OESIGN PR
MULTIPURFOSF SATELLIIE BUS MPS (NAVGI
postgraduate School) 270 p
N92-27555

1990 SPACECRAFT PROJECT TEAM

Lyle Kellman
John Riley
Michael Szostak
Joseph Watkins
Joseph Willhelm

Gary Yale

COURSE
AE 4871
Advanced Spacecraft Design
Fall 1990
Course Instructor
Prof Brij Agrawal

This project was sponsored in part by NASA / University Space Research Association Advanced Design Program

ACKNOWLEDGEMENTS

The 1990 design project team would like to thank Prof Brij Agrawal for his guidance and assistance throughout the 11 week quarter. His continuous support was sincerely appreciated and ensured the success of the project. We are also indebted to Profs G. Myers, T. Ha, D. Wadsworth, and R. Adler of the Naval Postgraduate School, who consistently made themselves available to answer our questions. Mike Brown, Charlie Merk, Shannon Coffey, Mike Zedd, Robert Morris, Paul Carey, and Nick Davinic of the Naval Research Laboratory also contributed to the success of the project. Bill Cummings of MIT Lincoln Laboratory and Lin Flinn, Richard Sudol and Perri-Anne Stiffler of Space Applications also made significant contributions. Finally, we appreciate the continued interest of Mr. J. Burke, our NASA representative from the Jet Propulsion Laboratory.

IABLE OF CONTENTS

1990 SPACECRAFT PROJECT TEAM ii
ACKNOWLEDGEMENTS iii
iv
TABLE OF CONTENTS
X
X
LIST OF TABLES xii
LIST OF FIGURES 1
I. INTRODUCTION
2
2
A. BUS DESCRIPTION
5
5
B. PAYLOAD OVERVIEW
5

1. Advanced Very High Resolution Radiometer (AVHRR)
.6
2. Extremely High Frequency (EHF) Mission.
8
C. LAUNCH VEHICLE DESCRIPTION
8
3. PEGASUS Air Launched Vehicle (ALV)
9
4. TAURUS Single Stage Launch Vehicle (SSLV) 9
II. BUS CONFIGURATION 11
A. EQUIPMENT LAYOUTS 13
5. Earth Face 13
a. AVHRR 13
b. EHF 14
15
15
6. Anti-Earth Face 16
7. North Face
17
8. South Face
18
9. East Face
19
10. West Face 20
a. AVHRR 20
22b. EHF
B. SPACECRAFT BUS CONFIGURATIONS/SUMMARIES 24
11. Mass Summaries 24
12. Electrical Power Summaries 25
13. Propellant Budget/Summary 27
. Propellant BudgelSumary... 28
III. PAYLOADS 28
A. AVHRR
28
28
14. Functional Description
33
B. Extremely High Frequency (EHF)
34
15. EHF Bandwidth Allocation36
16. EHF Antenna
42
17. Pointing Losses
46
18. EHF Communications Repeater49
19. Dehop Circuit
51
20. Command Check Circuit
52
21. Hopping Circuit
54
IV. ORBITAL DYNAMICS
54
A. SELECTION OF ORBITS
54
22. AVHRR
56
23. EHF
57
B. ORBIT ANALYSIS 57
24. AVHRR
57
a. Sun Angles on the Satellite
63
b. Sun Angles on the Solar Arrays
70
c. Eclipse Periods
25. EHF 7272
a. Worst Case Eclipse 73
b. Altitude as a Function of Time 74
C. ORBIT MAINTENANCE 76
V. SUBSYSTEMS
76
76
A. ELECTRICAL POWER SUBSYSTEM 76
26. Functional Description 77
a. Solar Array Design 79
b. Battery Design 81
27. Detailed Mass Summary
82
82
B. ATTITUDE CONTROL SUBSYSTEM
82
82
28. Attitude Determination and Control System
29. Attitude Determination and Control System
82
82
a. Precision Sensor Subsystem 83
b. Basic Sensor System 84
c. Attitude Control Subsystem 85
30. Design Considerations
86
86
31. Basic and Precision Subsystem Summary 87
32. System Parameters 87
33. System Performance 88
34. Detailed Mass Summary
89
89
C. THERMAL CONTROL SUBSYSTEM 89
35. Design Considerations
90
90
36. Optical Solar Radiator Sizing 91
37. Solar Array Temperature
93
93
38. Thermal Analysis Using PC-ITAS 98
39. Conclusions 99
D. PROPULSION SUBSYSTEM 99
40. Functional Description
a. Requirements 99
b. Summary of Subsystem 100
c. Summary of Subsystem Operations 103
41. Detailed Mass/Power Summary 104
E. TELEMETRY AND TRACKING SUBSYSTEM 105
42. Functional Description 105
F. STRUCTURAL SUBSYSTEM 112
43. Functional Description 112
44. Requirements 112
45. Summary of Subsystem Operations 113
a. Frame Construction 113
b. Honeycomb Panels 113
c. Payload Mechanical Interface 114
d. Earth Face 115
e. Fuel Tank Support 115
46. Margins of Safety 116
47. Detailed Mass Summary 116
REFERENCES 118
APPENDIX A 120
ORBITAL DYNAMICS 120
Appendix A. 1 120
Appendix A. 2 147
Appendix A. 3 165
Appendix A. 4 178
APPENDIX B 184
A. BATTERY DESIGN 184
B. SOLAR ARRAY DEGRADATION 186
48. EHF Payload 186
49. AVHRR Payload 190
C. SOLAR ARRAY PANEL SIZING 192
APPENDIX C 193
ATTITUDE CONTROL CALCULATIONS 193
50. Moment of Inertia Calculations 193
51. Disturbance Torques 196
a. Solar Torque 196
b. Magnetic Torque 199
c. Aerodynamic Torque 200
52. Equations of Motion 200
APPENDIX D 209
THERMAL CONTROL CALCULATIONS 209
APPENDIX E 224
PROPULSION CALCULATIONS 224
APPENDIX F 225
AXIAL LOADS 225
53. Frame Beams 225
54. Honeycomb Panel 225
BENDING LOADS 226
55. Maximum Deflection 226
56. Maximum Bending Stress 227
57. Maximum Shear Stress 228
HONEYCOMB PANELS 228
58. Fundamental Natural Frequency Calculations 228
59. Stress Due to Dynamic Acceleration 229
APPENDIX H 230
COMMUNICATIONS SUBSYSTEM TABLES 230
APPENDIX J. 235
LINK ANALYSIS 235
APPENDIX K 251
DEFENSE ADVANCED RESEARCH PROJECTS AGENCY STATEMENT
OF WORK 251

LIST OF TABLES

TABLE 1.1 Molniya Type Orbits for SSLV Ballasted Vehicle9
TABLE 2.1 Mass Summary Comparison 24
TABLE 2.2 Electrical Power Summary - AVHRR 25
TABLE 2.3 Electrical Power Summary - EHF Comm 26
TABLE 2.4 Propellant Budget Summary 27
TABLE 3.1 AVHRR Channels 29
TABLE 4.1 Summary of Orbital Parameters 54
TABLE 4.2 Sun Angles on Satellite Faces for an 8:30 PM Orbit. 60
TABLE 4.3 Sun Angles on Satellite Faces for a 3:30 PM Orbit 62
TABLE 4.4 Eclipse Duration for EHF Mission 73
TABLE 4.5 Perturbations on EHF Mission Orbit 75
TABLE 5.1 System Power Summaries (Normal Operations) 76
TABLE 5.2 Solar Cell Characteristics 78
TABLE 5.3 Solar Array Summaries 78
TABLE 5.4 Battery Summary 80
TABLE 5.5 Radiation Annual Fluence Summary 81
TABLE 5.6 Detailed Mass Summary of EPS 81
TABLE 5.7 Reaction Wheel Parameters (AVHRR) 87
TABLE 5.8 Mass Summary of ADCS 88
TABLE 5.9 Typical Equipment Temperature Limits 90
TABLE 5.10 Solar Array Operating Temperatures 92
TABLE 5.11 AVHRR Model and Node Assignment. 94
TABLE 5.12 EHF Model and Node Assignment 94
TABLE 5.13 AVHRR Material Selection and Heat Dissipation 96
TABLE 5.14 EHF Material Selection and Heat Dissipation 97
TABLE 5.15 Thruster Operations 99
TABLE 5.16 Summary of Propulsion Equipment 102
TABLE 5.17 Propellant/Pressurant Tank Characteristics 103
TABLE 5.18 Mass/Power Summary of Propulsion Subsystem 104
TABLE 5.19 Accelerations at Payload Interface 112
TABLE 5.20 Margins of Safety 116
TABLE 5.21 Mass Summary of Structural Subsystem 117

LIST OF FIGURES

FIGURE 1.1 MPS Bus in AVHRR Configuration6FIGURE 1.2 MPS Bus in EHF Configuration. 7
FIGURE 1.3 Pegasus Dynamic Shroud 8
FIGURE 1.4 Taurus Dynamic Shroud 10
FIGURE 2.1 Multiple Purpose Satellite Bus 11
FIGURE 2.2 Earth Face With the AVHRR Mounted. 13
FIGURE 2.3 Earth Face With the EHF Payload Mounted 14
FIGURE 2.4 Anti-Earth Face 15
FIGURE 2.5 North Face 16
17
FIGURE 2.6 South Face 18
FIGURE 2.7 East Face 19
FIGURE 2.8 West Face
FIGURE 2.9 Side view of MPS Bus w/AVHRR Payload in Folded Configuration.FIGURE 2.10 Top view of MPS Bus w/AVHRR Payload in Folded21
Configuration
22
22
FIGURE 2.11 Side view of MPS Bus w/EHF Payload in Folded Configuration
23
FIGURE 2.12 MPS Bus with Solar Array Deploying 30
FIGURE 3.1 Microstrip Element
32
32
FIGURE 3.2 Six-Element Microstrip Array
33
33
FIGURE 3.3 EHF Payload Configuration
35
FIGURE 3.4 EHF Bandwidth Allocation
37
FIGURE 3.5 Feedhorn Arrangement39
FIGURE 3.6 Gain Versus Beamwidth
FIGURE 3.7 Beamwidth versus Altitude 40
FIGURE 3.8 Beamwidth versus Time After Perigee 41
FIGURE 3.9 Gain Versus Altitude 41
FIGURE 3.10 Gain Versus Time After Perigee 42
FIGURE 3.11 Pointing Losses 43
FIGURE 3.12 Gain Versus Off Axis Angle 45
FIGURE 3.13 Gain Versus Scan Angle 45
FIGURE 3.14 TWTA Characteristics 47
FIGURE 3.15 Communications Repeater 48
FIGURE 3.16 Dehopping Circuit 50
FIGURE 3.17 Command Check Circuit 52
FIGURE 3.18 Hopping Circuit 53
FIGURE 4.1 First Day of Winter Sun Angles on S/C Faces vs Orbital Position 58
FIGURE 4.2 Sun Angle on +Roll Face vs Orbital Position 59
FIGURE 4.3 Solar Array Illumination Geometry 65
FIGURE 4.4 Solar Array Rotation Angle vs Orbital Position and Season 66
FIGURE 4.5 Solar Array Sun Angle vs Orbital Position and Season 68
FIGURE 4.6 Worst Case Solar Array Sun Angles vs Time of Year 69
FIGURE 4.7 Eclipse Duration vs Time of Year 70
FIGURE 4.8 Eclipse Location in the S/C Orbit vs Time of Year 71
FIGURE 4.9 Time Since Perigee vs True Anomaly 74
FIGURE 5.1 Functional Diagram of Precision Sensor Subsystem 83
FIGURE 5.2 Functional Diagram of Basic Sensor Subsystem 84
FIGURE 5.3 Functional Diagram of Attitude Control Subsystem 85
FIGURE 5.4 Location of Thrusters 100
FIGURE 5.5 Schematic Diagram of Propulsion System 101
FIGURE 5.6 TT\&C Package 106
FIGURE 5.7 Remote Tracking Unit 107
FIGURE 5.8 Remote Command Unit 109
FIGURE 5.9 Cross-section of Tubular Frame 113
FIGURE 5.10 Typical Honeycomb Panel 114
FIGURE 5.11 Marmon Clamp Design 115

L. INTRODUCTION

This spacecraft design project is the output of AE 4871, an advanced spacecraft design course taught as the culmination of the Space Engineering Curriculum at the Naval Postgraduate School (NPS). The intent of the course is to provide students with both satellite system and subsystem design experience as well as the experience of working on a project team. Due to the small number of students taking the course in 1990 (6), each student was given responsibility for one primary subsystem and to assist in at least one other subsystem. The Naval Research Laboratory, Washington D.C., was again asked to augment the Naval Postgraduate School faculty. Analysis and design of each subsystem was done to the extent possible within the constraints of an eleven week quarter and considering the limited number of team members.

Rather than pursue an academic design for this year's course, the project team at the suggestion of the instructor, Professor Brij Agrawal, decided instead to design a multimission spacecraft bus based on a Statement of Work issued by Defense Advanced Research Projects Agency (DARPA). The SOW called for a " proposal to design a small, low cost, lightweight, general purpose spacecraft bus capable of accommodating any of a variety of mission payloads. Typical payloads envisioned include those associated with meteorological, communication, surveillance and tracking, target location, and navigation mission areas". The two payloads chosen for the Multipurpose Satellite (MPS) bus design were a multi-spectral meteorological payload called the Advanced Very High Resolution Radiometer (AVHRR), and an EHF communications package. MPS was designed with excess internal volume to expand easily and also to be able to accommodate future, unspecified payloads in the other mission areas.

A. BUS DESCRIPTION

The thrust of this project was to design not a single spacecraft, but to design a multimission bus capable of supporting several current payloads and unnamed, unspecified future payloads. Spiraling costs of spacecraft and shrinking defense budgets necessitated a fresh look at the feasibility of a multimission spacecraft bus. The design team chose two very diverse and different payloads, along with them two vastly different orbits, to show that multimission spacecraft buses are an area where indeed more research and effort needs to be made. Tradeoffs, of course, were made throughout the design, but optimization of subsystem components limited weight and volume penalties, performance degradation, and reliability concerns. Simplicity was chosen over more complex, sophisticated and usually more efficient designs. Cost of individual subsystem components was not a primary concern in the design phase, but every effort was made to chose flight tested and flight proven hardware. Significant cost savings could be realized if a standard spacecraft bus was indeed designed and purchased in finite quantities.

Throughout this document, justification for subsystem choices will be made where clarification is necessary. Detailed analyses in all subsystem areas can be found in the appendices. The AVHRR and the EHF comm payloads previously mentioned were suggested by DARPA as typical payloads and the launch vehicle was given as PEGASUS, the new air-launched vehicle built by Orbital Science Corporation and the Hercules Aerospace Company. This choice of launch vehicle constrained the volumetric dimensions of the bus. In order to get the AVHRR payload to its design altitude of 450 NM and 98.75° inclination, Pegasus performance characteristics limited the bus and payload to 350 lbs. This fact constrained the MPS bus mass to approximately 285 lbs. Every effort was made to get the EHF package into the Pegasus shroud and to boost it to an 8 hour Molniya type orbit. Unfortunately however, performance limitations would not allow this to be done without launching a marginally capable spacecraft. Orbital Sciences Corporation
has already recognized this need and has a fourth stage/perigee kick motor for Pegasus in the works. Until the advent of this modification though, design work on the EHF payload assumed that TAURUS, the small Standard Launch Vehicle (SSLV) would be the launch platform.

The Multipurpose Satellite bus is modular in the fact that the various payloads would "bolt on" the earth face and several other components could also be removed, added or modified according to the payload's needs. Because of the SOW's requirement that the spacecraft be able to launch within 72 hours, this modularity is limited to select equipment. Equipment such as the one million dollar plus celestial sensor and the solar array panels are examples. The expensive star sensor would be installed only on missions that necessitated high degree of pointing accuracy. The number of solar array panels would depend on the power requirements of the mission payload and the orbit. Fuel would be added in the amount required, if any, just prior to launch.

The MPS bus, regardless of the payload, is a 3 axis stabilized, nadir pointing, dual solar array spacecraft. The various payloads would attach to the earthface of the bus in the orientation necessary for that payload. The basic bus is a rectangular aluminum frame 32" $\times 28^{\prime \prime} \times 23^{\prime \prime}$ with five load supporting panels (four sides and anti-earth face). Attitude control is maintained with a 4 reaction wheel system to accommodate the vast number and types of possible orbits. One wheel is placed on each of the primary axes and a standby wheel 45° from each axis is also installed. Two magnetic torque rods are installed to unload the reaction wheels.

Pointing accuracy to $\pm .01^{\circ}$ is necessitated by the AVHRR payload. This degree of accuracy can only be accomplished with a celestial star sensor. This extremely expensive sensor could be removed for the EHF payload where a sun/earth sensor combination could achieve $\pm 0.5^{\circ}$ pointing accuracy. The solar array subsystem consists of two 34 in . $\mathbf{x} 32$ in. panels per side for these two payloads. An additional panel can be added on each side for a future payload; if additional power is required. The arrays are single degree of
freedom positioned along the roll axis, and can rotate about this axis to maximize sun angle. With the EHF package installed, the satellite rotates about its yaw axis so as to maintain the solar panel axis (roll axis) normal to the sun while providing maximum solar power efficiency. This yaw motion provides a second degree of freedom for the solar arrays.

The Electric Power Subsystem (EPS) is taken from the High Latitude Communication Satellite design, NPS's 1989 design course project, with few exceptions. The 28 volt single bus, the sixteen 12 Amp-hour batteries and the power converter equipment remain the same. The solar array area has changed however because of the different orbits, the different power requirements, and the different launch vehicle influencing the stowed configuration. Thermal control was designed to be completely passive. Because most of the support equipment is on continually, thought was given to distribute high power dissipators so that the bus's internal temperature was uniform. The payloads are by far the biggest power dissipators and are provided with their own radiators. The AVHRR radiator is part of the payload and is positioned to radiate to deep space 180° from the sun. There is an additional radiator mounted on the bus to radiate thermal energy from the internal equipment to supplement the radiator on the AVHRR. The EHF payload, on the other hand, is configured with optical solar reflectors (OSR) along the north face of its Earth face panel. Because of the different orbits, various coverings/paint schemes and insulation will have to be used.

The propulsion system consists of a single 16 inch diameter hydrazine tank with a nitrogen diaphragm blow down system. Six 0.2 lb thrusters are located to desaturate the reaction wheels (secondary to magnetic torque rods), for orbit maintenance, for orbit stationkeeping, minor orbit changes or ASAT avoidance. The weight penalty incurred if the payload does not require a propellant/propulsion system is considered minimal.

B. PAYLOAD OVERVIEW

1. Advanced Very High Resolution Radiometer (AVHRR)

The AVHRR is an operational radiometer designed to provide meteorological data from the year 1990 to the year 2000. The AVHRR scans the earth's surface several times each day in the spectral regions from 0.7 to 0.12 microns. These six spectral bands can be downlinked in either high or low resolution modes. Operating 24 hours a day, the AVHRR can provide land, water, and cloud imaging; sea surface temperature; and ice concentration and coverage.

The AVHRR would be launched by Pegasus into a $450 \mathrm{NM}(833 \mathrm{~km}) 0830$ descending or 1530 ascending sun synchronous orbit at a 98.75° inclination. Orbit period is 101 minutes with worst case 37 minute eclipse occurring during the summer. Average eclipse time is on the order of 33 minutes. The AVHRR is mounted on the earth face so that the bus is nadir pointing and the bus is 'flown' so that the solar arrays are positioned along the roll axis. Rather than incurring an increase in the cost and complexity of two degree of freedom solar arrays, the solar arrays are single degree of freedom and oversized to to compensate for the cosine effect of the sun's rays in relation to the orbit plane. Although the AVHRR requires only a nominal amount of power, the fact that it is in eclipse for greater than one third of its orbit necessitates a large power requirement for battery charging. Negligible radiation damage and orbit altitude degradation is experienced at 450 NM. The MPS bus with the AVHRR mounted is depicted in Figure 1.1.

FIGURE 1.1 MPS Bus in AVHRR Configuration

2. Extremely High Frequency (EHF) Mission

The EHF payload is to be used to supplement the existing communication facilities of the operational forces in time of crisis. The payload was designed to be quickly mated with the MPS bus and launched within 72 hours. The antenna/feedhorn arrangement was designed and provided by Lincoln Laboratory.

The EHF communications payload is to be launched by Taurus (SSLV) into a six, eight, or twelve hour Molniya type orbit. For this design, an eight hour Molniya type orbit was chosen with a 500 km perigee and a $27,000 \mathrm{~km}$ apogee. Worst case eclipse for this orbit is 52 minutes. The EHF payload consists of a $32^{\prime \prime} \times 28^{\prime \prime} \times 6^{\prime \prime}$ structural box that supports the EHF antenna structure and houses the EHF R/T and the TT\&C equipment. The EHF and TT\&C antennas and the earth sensor are located on the earth face of this box that is affixed to the earth face of the MPS bus. Optical solar reflectors are mounted on the
north face of the structural box and provide the necessary cooling for the travelling wave tube amplifiers (TWTA). The solar array configuration for the EHF consists of the same panels as the AVHRR. The MPS bus with the EHF payload is depicted in Figure 1.2.

FIGURE 1.2 MPS Bus in EHF Configuration

C. LAUNCH VEHICLE DESCRIPTION

1. PEGASUS Air Launched Vehicle (ALV)

The Pegasus air launched booster is a three stage solid propellant winged rocket designed specifically for the insertion of small payloads into orbit. The 50 foot long, 50 inch diameter booster weighs $42,000 \mathrm{lbs}$ and is carried aloft by a conventional transport/bomber-class aircraft (B-52, B-747, L-1011). Once oriented along the desired orbit direction, level at approximately 42,000 feet, and flying at high subsonic speed, the parent aircraft releases the Pegasus booster. The booster freefalls with active guidance to clear the carrier aircraft while executing a pitch-up maneuver to place it in the proper attitude for motor ignition. After first stage ignition, the vehicle follows a lifting-ascent trajectory to orbit. The dynamic payload envelope is detailed in Figure 1.3

FIGURE 1.3 Pegasus Dynamic Shroud

2. TAURUS Standard Small Launch Vehicle (SSLV)

Taurus is a four-stage, inertially-guided, 3-axis stabilized, solid propellant launch vehicle proposed by Orbital Science Corporation. The design incorporates a Pegasus first, second, and third stage atop a Peacekeeper ICBM. Taurus is fully transportable with rapid launch site establishment and launch call up. Initial performance estimates are described in

Table 1.1.

Perigee	Apogee	Period	Payload	Enhanced
270 nm	21400 nm	12 Hrs	194 Lb	458 Lb
270 nm	14773 nm	8 Hrs	277 Lb	573 Lb
270 nm	10945 nm	6 Hrs	362 Lb	694 Lb
270 nm	6658 nm	4 Hrs	542 Lb	953 Lb

TABLE 1.1 Molniya Type Orbits for SSLV Ballasted Vehicle

Because Pegasus is unable to propel an EHF payload into an 8 hour Molniya type orbit, Taurus would be the launch vehicle of choice for this payload. The 50 inch diameter x 90 inch long dynamic envelope of the shroud allows for the addition of a third solar array panel per side if needed (the 46 "diameter shroud of Pegasus allows only two panels per side). The Taurus dynamic shroud is depicted in Figure 1.4.

FIGURE 1.4 Taurus Dynamic Shroud

U. BUS CONFIGURATION

The MPS bus as previously mentioned, is not alone an operational spacecraft, but a vehicle used in conjunction with a number of various payloads to form a spacecraft. The bus itself as depicted in Figure 2.1, is a 270 lb rectangular box with all the subsystems necessary to fly a variety of orbits and missions.

FIGURE 2.1 Multiple Purpose Satellite Bus

The choice of equipment and its location within the bus will be detailed in the various subsections to follow. The main feature of the bus is its ability to support a variety
of 'bolt on' payloads. With the advent of programmable circuitry, equipment such as reaction wheels, solar array drive motors and power control electronics can be adapted to almost any orbit or mission. It is feasible to program the entire bus to support the payload, regardless of the desired orbit. This programing would be performed after payload mating to the bus and just prior to launch. Figures 2.2 and 2.3 show the earth faces of both the AVHRR and the EHF payloads while the five load supporting panels standard to the MPS bus are depicted in Figures 2.4 to 2.8. A side view of the folded configuration of both payloads as well as the top view of the AVHRR is depicted in Figures 2.9 to 2.11. Lastly, a view of the solar arrays unfolding is depicted in Figure 2.12.

A. EQUIPMENT LAYOUTS

1. Earth Face

a. AVHRR

Figure 2.2 shows the earth face in the AVHRR configuration. Mounted also on the earth face are the earth sensor, two dipole antenna and a six element microstrip array antenna. Mounted on the underside of the face are the RTU and the RCU.

FIGURE 2.2 Earth Face With the AVHRR Mounted

b. EHF

Figure 2.3 depicts the EHF antenna structure mounted on its $6^{\prime \prime} \times 32^{\prime \prime} \times 28^{\prime \prime}$ frame. Seen are the 22 and 44 Ghz feedhorns, the variable beamwidth antenna, two earth coverage feedhorns and the scanning earth sensor. Unseen on the underside are the RTU and RCU units and the EHF travelling wave tube amplifiers. Also not shown in this diagram are the optical solar reflectors located on the north face of this frame.

FIGURE 2.3 Earth Face With the EHF Payload Mounted

2. Anti-Earth Face

Mounted on the anti-earth face are the yaw reaction wheel assembly and the 16 inch diameter fuel tank. The fuel tank supports attach to a waistband on the fuel tank and then again to the rectangular frame. Not depicted is a 22 inch diameter, one sixteenth inch thick disk used to transmit the axial load of the fuel tank to the Marmon clamp assembly directly below this panel. Also not shown on the underside of this panel is a digital sun sensor and four thrusters. The anti-earth face is depicted in Figure 2.4.

FIGURE 2.4 Anti-Earth Face

3. North Face

Affixed to the north face are the Global Positioning System microreceiver, the second digital sun sensor, and the backup reaction wheel. The backup reaction wheel is skewed 45° to the primary axes of the spacecraft. The north face is shown in Figure 2.5.

FIGURE 2.5 North Face

4. South Face

Attached to the south face are the celestial sensor assembly and pitch reaction wheel assembly. The south face is depicted in Figure 2.6.

FIGURE 2.6 South Face

5. East Face

Mounted on the east face are the roll reaction wheel assembly, a solar array drive motor (SADM), the gyro assembly, and the attitude control computer. In addition, two thrusters are mounted through this face. The east face is depicted in Figure 2.7.

FIGURE 2.7 East Face

6. West Face

The west face has mounted to it a SADM, the power control electronics, and sixteen NiH 2 battery cells. The batteries are contained in eight common pressure vessels but are depicted as a box for simplicity. The west face is depicted in Figure 2.8.

FIGURE 2.8 West Face

7. Stowed Configuration

a. AYHRR

The launch vehicle for the AVHRR is Pegasus. A stowed AVHRR is shown in the Pegasus dynamic shroud in Figure 2.9. A top view of the AVHRR in the Pegasus dynamic shroud is depicted in Figure 2.10.

FIGURE 2.9 Side view of MPS Bus w/AVHRR Payload in Folded Configuration

FIGURE 2.10 Top view of MPS Bus w/AVHRR Payload in Folded Configuration
b. EHF

FIGURE 2.11 Side view of MPS Bus w/EHF Payload in Folded Configuration

Figure 2.12 depicts the MPS bus deploying its solar arrays. The solar arrays are affixed to the east and west faces of the bus, but are folded over onto the north and south faces while in the stowed configuration. The two solar panels per side are stowed such that the solar cells are positioned outboard, in the event that electrical power is needed prior to their deployment. The Y shaped yokes provide a 16 inch clearance from the bus. This view is looking at the anti-earth face, with the marmon clamp assembly clearly visible.

FIGURE 2.12 MPS Bus with Solar Array Deploying

B. SPACECRAFT BUS CONFIGURATIONS/SUMMARIES

The basic spacecraft bus just described is used with payloads that will have different power, structural and propulsion requirements. A mass, electrical power, and propellant summary is provided in Table 2.1 through Table 2.4 describing the requirements for the AVHRR and EHF payloads. Fuel loads are assumed to be nominal.

1. Mass Summaries

	AVHRR	EHF COMM
SUBSYSTEM	Mass (kg/lb)	Mass (kg/lb)
Mass of S/C structure	$20.75 / 45.75$	$27.13 / 59.81$
Dry Mass Reaction Control System	$15.20 / 33.51$	$15.20 / 33.51$
Mass of Attitude Control System	$24.72 / 54.50$	$21.55 / 47.51$
Mechanical Integration Mass	$1.00 / 2.20$	$1.00 / 2.20$
Electrical Power Subsystem Mass	$37.06 / 81.70$	$37.06 / 81.70$
Thermal Control Subsystem Mass	$2.54 / 5.60$	$5.50 / 12.13$
Telemetry and Control Mass	$4.50 / 9.92$	$4.50 / 9.92$
Payload	$29.32 / 64.64$	$38.18 / 84.17$
Mass Margin	$13.51 / 29.78$	$15.01 / 33.09$
Dry Spacecraft Mass	$135.09 / 297.82$	$150.12 / 330.96$
Propellant/Pressurant	$11.02 / 24.29$	$13.02 / 28.70$
Spacecraft Mass At Separation	$159.62 / 351.89$	$178.15 / 392.75$

TABLE 2.1 Mass Summary Comparison

2. Electrical Power Summaries

	Normal Ops (\mathbf{W})	Launch/Ascent (\mathbf{W})	Activation (\mathbf{W})	Eclipse (\mathbf{W})
Battery Charging	76.0	0.0	0.0	0.0
TT\&C	11.2	11.2	11.2	11.2
Attitude Control	54.0	4.1	54.0	54.0
Sun/Earth/Star Sensors	4.4	0.0	4.4	4.4
Propulsion	6.1	42.1	42.1	0.0
Solar Array Drives	10.0	0.0	10.0	0.0
Power Control	4.1	2.0	4.1	4.1
Bus Harness Losses	4.0	3.0	3.0	3.0
Payload	28.0	4.0	4.0	28.0
System Reserve	4.0	0.0	0.0	0.0
Total	201.8	66.4	132.8	104.7
EOL w/ cosine effect	313.9			

TABLE 2.2 Electrical Power Summary - AVHRR

	Normal Ops (\mathbf{W})	Launch/Ascent (\mathbf{W})	Activation (\mathbf{W})	Eclipse (\mathbf{W})
Battery Charging	25.0	0.0	0.0	0.0
TT\&C	11.2	11.2	11.2	11.2
Attitude Control	54.0	4.1	54.0	54.0
Sun/Earth/Star Sensors	4.4	0.0	4.4	4.4
Propulsion	6.1	42.1	42.1	6.1
Solar Array Drives	10.0	0.0	10.0	10.0
Power Control	4.1	2.0	4.1	4.1
Bus Harness Losses	4.0	3.0	3.0	3.0
Payload	115.0	4.0	4.0	57.5
System Reserve	4.0	0.0	0.0	0.0
Total	237.8	66.4	132.8	150.3

TABLE 2.3 Electrical Power Summary - EHF Comm

3. Propellant Budget/Summary

The propellant budgets were estimated as:

	AVHRR	EHF
Maneuver	$(\mathbf{k g})$	$\mathbf{(k g)}$
Stationkeeping	6.0	8.0
Orbit Maintenance	3.42	3.42
Desaturation	1.0	1.0
Margin	0.1	0.1
Orbit Deboost	0.5	0.5
Total	11.02	13.02

TABLE 2.4 Propellant Budget Summary

I.. PAYLOADS

A. AVHRR

1. Functional Description

The Advanced Very High Resolution Radiometer (AVHRR) provides data for transmission to both Automatic Picture Transmission (APT) and High Resolution Picture Transmission (HRPT) users. The AVHRR is a scanning radiometer which is sensitive in six spectral regions. In these spectral regions, the payload monitors data for day and night cloud mapping, sea surface temperature mapping, and other oceanographic and hydrologic applications. The HRPT data is full resolution (1.1 km) while APT data is at a reduced resolution to maintain allowable bandwidth. The APT transmission is maintained for use by ground terminals that do not have HRPT capability (i.e. third world countries).

Specific design considerations (such as pointing accuracy and thermal control) that are driven by the AVHRR payload are discussed later in appropriate subsystem sections. Communications:

For the communications design considerations of the AVHRR payload; HRPT, APT, and TT\&C data must be transmitted and received in a format that is compatible with existing TIROS HRPT ground stations. Also, the TT\&C and command uplink channels are designed to be more rigid to insure that control could always be maintained even in the event of an attitude control failure resulting in a tumbling satellite. In order to accomplish this, data had to formatted at the following frequencies, data rates, and modulation formats:

Type	Data Rate	Carrier Freq	Modulation
HRPT	665 kbps	1.707 GHZ	BPSK
APT	2 kbps	137.5 MHz	AM/FM
TT\&C	8.32 kbps	136.77 MHz	BPSK
COMMAND	1 kbps	148.56 MHz	FSK/AM

TABLE 3.1 AVHRR Channels

Table J. 2 in Appendix J shows the link analysis for each of these data channels. The design is for a 10^{-6} BER with a 2 dB link margin (The command uplink and TT\&C use a 3 dB margin). Free space losses at these frequencies are relatively low due to the lower orbit of the AVHRR payload. This allowed an ample margin in the link analysis and led to lower gain antennas and lower transmitted powers.

To transmit and receive at these frequencies, two antennas were needed because no one antenna has a bandwidth wide enough to cover all of the carrier frequencies.

1. One antenna can cover all three of the VHF frequencies from $136-149 \mathrm{MHz}$. It will have to have a wide beamwidth so that the satellite will be able to receive a command uplink if the attitude control system fails and the satellite starts tumbling. Because the wavelengths at these frequencies are on the order of two meters and because a very low gain antenna was acceptable, two whip antennas mounted in such a way that they would be orthogonal to each other but parallel to the earth face were chosen as shown in Figure 2.1. The whips are 23 inches long in order to resonate at a quarter wavelength. This gives a low gain, lightweight antenna system with an omnidirectional beam pattern that could be completely stowed for launch.
2. The second antenna had to be able to transmit at 1.7 GHz with a gain of 4 dB . (See Table 3.1 and Table J.2) The beamwidth did not have to be wide nor was a high antenna gain needed. The design criteria was weight. With this in mind, a Microstrip Antenna was chosen. Figure 3.1 shows one element of this antenna.

FIGURE 3.1 Microstrip Element
(dimensions in inches)

The advantages of a microstrip antenna are:

1. Low cost due to inexpensive mass production procedures.
2. Very thin and conformal to the earth face of the satellite.
3. Negligible weight
4. Surprisingly efficient (typically $80 \%-90 \%$)
5. Very reliable since the antenna is essentially one continuous piece of copper. The most common failure
is at the point where the feed pin is soldered to the microstrip element.

The metal ground plate for this antenna is simply the aluminum earth face of the satellite. The dielectric substrate is teflon-fiberglass which is commonly used. The microstrip element is copper etched from one side of a printed circuit board. The dimensions and characteristics of this antenna follow:

Bandwidth: The bandwidth is a function of the thickness of the dielectric substrate by the following formula:

$$
\begin{equation*}
\mathrm{BW}=4 \mathrm{f}^{2} \frac{\mathrm{t}}{1 / 32} \tag{3.1}
\end{equation*}
$$

With a thickness of .005 inches, the bandwidth is 1.849 MHz which more than adequately covers the signal bandwidth of 1.33 MHz .

Length (L): The Length of the microstrip element is roughly one-half of the wavelength through the dielectric substrate as calculated with the following formula:

$$
\begin{equation*}
\mathrm{L} \approx 0.49 \frac{\lambda_{\mathrm{o}}}{\sqrt{\varepsilon_{\mathrm{T}}}} \tag{3.2}
\end{equation*}
$$

where $\varepsilon_{r}=2.45$ and $\lambda_{0}=6.69$ inches. Therefore $L=2.095$ inches.
Width (W): The width of the microstrip element must be less than a wavelength in the dielectric. The width was chosen to be 1 inch.

Array Dimensions: In order to get sufficient gain, six microstrip elements were needed in an array as shown in Figure 3.2.

FIGURE 3.2 6-Element Microstrip Array (dimensions in inches)

Gain (G): The gain of the antenna can be approximated with the following formula:

$$
\begin{equation*}
\text { Gain } \approx 10 \log \frac{4 \pi \mathrm{~A}}{\lambda_{0}^{2}}-\frac{\alpha}{2}\left(\mathrm{D}_{1}+\mathrm{D}_{2}\right) \tag{3.3}
\end{equation*}
$$

where $A=D_{1} * D_{2}, D_{1}=$ effective width of array, $D_{2}=$ height of array, and $a=$ attenuation ($0.4 \mathrm{~dB} / \mathrm{ft}$ for a 50 W microstrip line on $1 / 32$ in Teflon fiberglass at 2.2 GHz) $D_{1}=4.2$ inches
$\mathrm{D}_{2}=3.02$ inches

$$
\mathrm{A}=12.684 \text { inches }
$$

therefore $\mathrm{G}=4.072 \mathrm{~dB}$ which is adequate to close the link.

B. Extremely High Frequency (EHF)

The basic design for the EHF Payload is shown in Figure 3.3. It includes the antennas required to support the communications payload, an attitude control package receiving commands from the RCU , a communications repeater and a TT\&C package.

FIGURE 3.3 EHF Payload Configuration

1. EHF Bandwidth Allocation

The payload was designed to be compatible with MIL STD 1582 at the unclassified level. This drove the selection of uplink and downlink frequencies as well as bandwidth, modulation techniques and several other circuit parameters. Figure 3.4 shows what the signal waveform will look like. The signal has a bandwidth of 7.84 MHz . This waveform will be hopping at a rate of 3000 hops per second over 255 different hop frequencies. This fills a bandwidth of 2 GHz as illustrated in Equation 3.4 where B is the total bandwidth and b is the bandwidth of a single hop. The resulting processing gain is 24.06 dB as shown in Equation 3.6. This translates as immunity to jamming since, even though the signal only takes up a bandwidth of 7.84 MHz , the jammer would have to jam a significant portion of the 2 GHz bandwidth in order to cause real damage to the integrity of the link. Frequency hopping also provides protection from multipath fading since, by the time a signal could reach the antenna by an altemate path to introduce fading, the transmitter will have already hopped to a different frequency.

$$
\begin{align*}
& \text { Number of hop frequencies }=\frac{B}{b}=255 \tag{3.4}\\
& b=245 \mathrm{KHz} * 32 \text { channels }=7.84 \mathrm{MHz} \tag{3.5}\\
& \text { Processing gain }=10 \log \frac{B}{b}=24.06 \mathrm{~dB} \tag{3.6}
\end{align*}
$$

FIGURE 3.4 EHF Bandwidth Allocation

Figure 3.4 shows that the signal will contain 32 channels where the center frequencies are spaced 245 KHz apart. This gives a channel bandwidth of 7.84 MHz as shown in Equation 3.5. With a data rate of 2.4 kbps , this will give a substantial guard band and inter-symbol interference will be negligible. Of these 32 channels, 30 of them will be used by the customer to transmit data from one earth terminal to another by a "Bent Pipe" approach.

The satellite will not transform the data channels. However, the customer should use FSK modulation to transmit the data. PSK requires that coherent phase knowledge be maintained and this is very difficult in a Frequency Hopping channel. MLL STD 1582 should be consulted for the requirements for low data rate transmission. Encryption, error correction coding, and other safeguards are required and are the responsibility of the customer.

The lowest frequency channel will be partitioned in half for telemetry downlink signals and command uplink signals. The command check circuit pulls out the command channel and checks for a command signal. Then the telemetry signal is inserted.

The remaining channel is used for channel acquisition so that the customer may gain access to the link and be assigned a channel to use. Acquisition is done using acquisition codes contained in MIL STD 1582. The Net Control Unit (NCU) monitors the acquisition channel and reads all incoming acquisition messages. When link access is requested, the NCU will assign the next open data channel. The customer will be given a channel which is his to use until either party terminates the link or the link is preempted by higher priority traffic.

2. EHF Antenna

A number of studies are ongoing in the field of EHF antennas. For example, Electro Magnetic Sciences is building a Spherical Lens Multi-beam Antenna that will operate 271 separate feeds. These feeds will travel through extensive switch trees to 211 ports at the lens assembly. The interesting thing about this project is that the discovery of a flangeless interconnect method for lightweight, smaller sized switches has made it possible to package many feeds into a much smaller package for more detailed beamforming than was ever before possible.

Another example is the Variable Beamwidth Antenna (VBWA) that is under study by MIT Lincoln Lab. The MPS EHF payload was designed to accommodate the Variable Beamwidth Antenna both in weight and power requirements. The data for the Variable Beamwidth Antenna as presented by MIT Lincoln Lab is listed below:

```
Weight = 14.57 lbs
Power required = 20 watts
Efficiency =0.75%
Gain Versus Beamwidth = See Figure 3.6
```

The basic idea behind this antenna assembly is to allow the capability to vary the beamwidth of the antenna with a cluster of feedhorns in order to maintain a constant coverage area on the earth while maximizing the gain of the antenna. For a circular orbiting satellite with a nadir-pointing antenna there will be little advantage while onstation, but if the satellite is in an elliptical orbit or the beam is scanning away from a nadir position, the VBWA will allow for higher antenna gains at higher altitudes and wider beamwidths at lower altitudes.

FIGURE 3.5 Feedhorn Arrangement

The MIT assembly as shown in Figure 2.3 has a feedhorn cluster of 19 feedhorns arranged as shown in Figure 3.5. When the center feedhorn is the only one in operation, the beamwidth will be 4° (to the -3 dB point) and the gain will be 32 dB . As the satellite draws closer to the earth, a wider beamwidth will be needed to maintain the same swath width. As this happens, power will be switched to the middle ring of feedhorns to gradually widen the beamwidth and maintain the swath width. At some point in the orbit, the middle ring of feedhorns will reach a maximum power and it will become necessary to
begin switching power to the outer ring of feedhorns. Once the outer ring of feedhoms have reached maximum power, the antenna will be at a maximum beamwidth of 28° and a minimum gain of 20 dB . The following paragraphs will discuss the operation of the Variable Beamwidth Antenna in an 8 hour Molniya orbit as designed for the MPS EHF payload.

The following points of operation for beamwidth versus gain were given.

Beamwidth	Gain
4°	32 dB
8°	27 dB
12°	24 dB
22°	22 dB
28°	20 dB

The above data was assumed to be piecewise linear and Figure 3.6 was generated. In actuality, the plot of beamwidth versus gain will not be linear, but this approximation will serve to illustrate the advantages of having a variable beamwidth antenna.

FIGURE 3.6 Gain Versus Beamwidth

FIGURE 3.7 Beamwidth versus Altitude

Figure 3.7 shows a plot of the beamwidth vs. altitude needed to maintain various swath widths. The plot assumes a flat earth and clips at the maximum and minimum beamwidths. It can be seen that certain swath widths can not be maintained from an apogee of $27,358 \mathrm{~km}$ to a perigee of 500 km . The best case scenario appears to be the 2000 km swath width. It can be achieved at a 4000 km altitude and maintained all the way to apogee at a 4.19° beamwidth. The 1000 km swath width will reach the minimum beamwidth at 14500 km altitude, while the 6000 km swath width can not be achieved until a 12000 km altitude and will never take advantage of the minimum beamwidth.

Beamwidth VS Time after Perigee (for several Swath Widths)

FIGURE 3.8 Beamwidth versus Time After Perigee

Figure 3.8 illustrates the requirements for beamwidth versus time after perigee that will have to be programed into an onboard processor to maintain a desired swath width. This processor can receive a command uplink from a ground terminal to update the antenna operation or perhaps change to a different mode of operation.

FIGURE 3.9 Gain Versus Altitude

FIGURE 3.10 Gain Versus Time After Perigee

Using the information from Figure 3.6 about the behavior of the antenna gain with changing beamwidth, Figure 3.9 and 3.10 are generated to show what will happen to the gain as a function of altitude and time after perigee.

3. Pointing Losses

One problem that should be considered when designing an antenna satellite system is the possibility of losses due to pointing inaccuracies or pointing losses. These losses are usually considered in the earth station, but they should also be considered in the satellite.

FIGURE 3.11 Pointing Losses

Figure 3.11 shows an illustration of what constitutes pointing losses. From this illustration, it can be seen that pointing losses are a function of the off axis angle from the target. For the VBWA, the shape of the beam obeys a Gaussian equation (as calculated in Equation 3.7) for each feedhorn. Therefore this equation can be used to analyze the
pointing losses for the satellite operating at its minimum beamwidth. The wider beamwidths will exhibit a flatter beamshape giving lower pointing losses and therefore the minimum beamwidth will be the worst case.

$$
\begin{equation*}
\mathrm{G}=\mathrm{G}_{\mathrm{o}} \mathrm{e}^{-\mathrm{k} \theta^{2}} \tag{3.7}
\end{equation*}
$$

Figure 3.12 shows the shape of the beam as a function of off axis angle. It can be seen that an off axis angle of 2° gives 3 dB of pointing losses. The pointing accuracy should be maintained at less than 1° to ensure a good link margin. In satellite design it is easier to maintain low roll and pitch errors than it is to maintain low yaw errors. MPS is designed to have a roll error of 0.1°, a pitch error of 0.1°, and a yaw error of 0.5°. Most of the pointing losses for MPS will be due to yaw error. Since the satellite will most often be nadir pointing and since the beamshape is symmetric about its center axis, yaw error will have no effect on pointing losses most of the time. However, the antenna reflector assembly does have two degrees of freedom and can scan up to 50° off the nadir. When the reflector is not nadir pointing, yaw error will give some pointing losses. To see this effect, first use Equation 3.8 to convert max yaw error (ϕ) and scan angle (ψ) into off axis angle (θ). Figure 3.13 shows the pointing losses as a function of scan angle for various yaw errors. The worst case scenario for MPS is when yaw error is at 0.5° and the antenna reflector is scanning out to 50°. From Figure 3.13, this translates to a pointing loss of $-3.3\left(10^{-5}\right) \mathrm{dB}$. Therefore, pointing losses from the MPS Bus should not be a problem.

$$
\begin{equation*}
\sin ^{2}(\psi)(1-\cos \varphi)=(1-\cos \theta) \tag{3.8}
\end{equation*}
$$

FIGURE 3.12 Gain Versus Off Axis Angle

FIGURE 3.13. Gain Versus Scan Angle

4. EHF Communications Repeater

The Communications Repeater will perform the following functions:

1. Receive a 44 GHz signal with a $2 \mathbf{G H z}$ bandwidth.
2. Down convert the signal to an IF frequency that will still allow for 2 GHz bandwidth.
3. Demodulate the frequency hopping pattern.
4. Down convert to another IF frequency.
5. Check the signal for a command uplink signal and send it to the TT\&C package.
6. Check the signal for an acquisition control message and act accordingly.
7. Incorporate a telemetry downlink signal.
8. Up convert the signal to 20 GHz .
9. Frequency hop the signal back to 2 GHz bandwidth.
10. Amplify the power up to 20 watts.
11. Transmit a 20 GHz signal with a 2 GHz bandwidth.

Figure 3.15 shows a simple block diagram of the communications repeater. It can be seen that each of the above requirements are met. The signal is received from the antenna and amplified. Then it is downconverted to 8 GHz where it is dehopped to 100 MHz at a 7.98 MHz bandwidth. Then the command channel is filtered out and sent to the RTU in the TT\&C package. At this point, telemetry information will be inserted into the telemetry channel of the signal for downlink to the earth station. Then the signal is upconverted to 20 GHz . The signal is then frequency hopped back to 2 GHz bandwidth and amplified for transmission to earth.

The repeater has two Traveling Wave Tube Amplifiers (TWTA's) for redundancy. Figure 3.14 shows the operating characteristics of this amplifier. It can be seen from the figure that the optimum operating point is at the peak of the curve. If the input power
varies either way (especially to the right), a loss of efficiency will result. For this reason, each TWTA is preceded by a hard limiter to insure that the input power stays at the operating point.

FIGURE 3.14 TWTA Characteristics

Within the Communications Receiver are several more complicated circuits that are shown in Figures 3.16, 3.17, and 3.18. These circuits are discussed in more detail.
Communications Repeater

5. Dehop Circuit

Figure 3.16 shows a block diagram of the dehopping circuit. The hopping signal comes into the circuit with a bandwidth of 2 GHz which consists of 255 different hop frequencies. The trap filter is a narrow band filter that is waiting for one particular hop to occur. When the target hop occurs, the signal is sent to the envelope detector which is essentially a low pass filter where the signal will become a pulse that is the same duration as the target hop. The threshold detector takes the energy present within the target hop band and sends a short pulse to the feedback shift register (FSR) that will reset it to the location in the hop code that corresponds to the target hop. The incoming signal is now synchronized.

FIGURE 3.16 Dehopping Circuit

The FSR is an 8 bit device which is constructed using a modulo two addition between the output and input to create an 8 bit pseudorandom code that is non repeating for a 255 step cycle. This 8 bit code is sent through a digital to analog converter (DAC) where it becomes a 255 level voltage hopping signal. This signal is sent to the voltage controlled oscillator (VCO) which operates around 8.1 GHz to convert the signal that is hopping in voltage to a signal that is hopping in frequency. This signal is mixed with the received
signal. Since the hops are perfectly synchronized, the difference frequency out of the mixer will occur at 100 MHz and will be dehopped.

6. Command Check Circuit

Figure 3.17 shows a block diagram of the command check circuit. This circuit filters out the the command channel.and modulates it to 1.763721 GHz before sending it to the TT\&C package On the telemetry side of the circuit, the telemetry data from the TT\&C package is modulated to 96.21 MHz and inserted in the received signal. The RCU in the bus will have an algorithm that is dedicated to the control of the switches in the command check circuit. This will allow the ground terminals to switch the mode of operation of the TT\&C package from the VBWA to the E/C antennas. This switching should take place at the SHF frequencies so that further modulation is not required.

FIGURE 3.17 Command Check Circuit

7. Hopping Circuit

Figure 3.18 shows a block diagram of the frequency hopping circuit which is similar to the dehopping circuit except that synchronization is not necessary. The FSR simply sends the 8 bit pseudorandom code to the DAC which sends a hopping voltage to the VCO. The VCO (centered about 4 GHz) sends a frequency hopping signal to the mixer
where the signal is frequency hopped to 2 GHz bandwidth and upconverted to 20 GHz for transmission.

FIGURE 3.18 Hopping Circuit

IV. ORBITAL DYNAMICS

A. SELECTION OF ORBITS

\(\left.\begin{array}{|l|c|c|}\hline Payload \& AVHRR \& EHF

Communications\end{array}\right]\)| Molniya | | |
| :--- | :---: | :---: |
| Orbit Type | Sunsynchronous | 8 hr |
| Period | 101.5 min | $20,307 \mathrm{~km}$ |
| Semimajor Axis | 7212 km | 0.661 |
| Eccentricity | 0.0 | 63.43 deg |
| Inclination | 98.75 deg | N / A |
| Ascending Node | $3: 30 \mathrm{PM} / 8: 30 \mathrm{PM}$ | 270 deg |
| Argument of Perigee | N / A | |

TABLE 4.1 Summary of Orbital Parameters

1. AVHRR

Orbit choices are naturally driven by the mission. In the case of the AVHRR, the mission is IR scanning and the sensor is designed to operate at 450 nautical miles altitude. To make the sensor useful everywhere in the orbit, the altitude has to be constant. These requirements dictate a circular orbit. Table 4.1 contains values for the period, semimajor axis, and eccentricity of this orbit. Because the orbit is circular, argument of perigee is undefined. The desire for global coverage coupled with the low altitude lead to a highly inclined orbit. Careful selection of the inclination produces a sunsynchronous orbit. Finally, spacecraft currently performing missions similar to the AVHRR mission locate
their ascending nodes within a couple of hours of the earth's terminator line (the line which separates the sunlit side from the dark side). This design follows suit and is within two and a half hours of the terminator line. This information is also provided in Table 4.1.

2. EHF

The EHF Communications mission produced an entirely different orbit. The statement of work required a Molniya type orbit. Guidance from DARPA indicated that at least tentatively, DARPA was most interested in the 8 hr orbit. Consequently, that is the orbit that we focused on. Although geosynchronous communications satellites provide continuous coverage over regions of the earth, their performance degrades at the higher latitudes. This shortcoming is more noticeable as one moves along the spectrum of radio frequencies towards higher frequencies. Therefore, we envision our EHF Communications mission as one that addresses this deficiency in geosynchronous missions. In order to provide high latitude coverage, we have a high inclination, a very eccentric orbit, and perigee located at the southern most point in the orbit. The high eccentricity gives us a longer loiter time over the northern hemisphere. In fact, the satellite will spend nearly 90% of its time in the northern hemisphere and almost two thirds of its time at a high enough altitude and latitude to be providing communications service (see the section on EHF Payload for a specific discussion). Parameters of this orbit are summarized in Table 4.1. The orbit has a 500 km perigee altitude. The choice of inclination was based on the critical inclination to remove rotation of the line of apsides. Such a choice minimizes the effects of perturbations on the orbital elements making the orbit easier to maintain. Although perigee is at 270 deg, it can just as easily be located at 90 deg if one wants coverage at the extreme southern latitudes. For purposes of this design, northern hemisphere coverage is assumed. If one wants southern hemisphere coverage instead, the general conclusions from the northern hemisphere analysis still apply but the specific points in the orbit where significant events occur are rotated 180 degrees.

B. ORBIT ANALYSIS

1. AVHRR

The AVHRR orbit analysis focused of the relationship between the satellite and the sun. This mission uses a sunsynchronous orbit. However, such an orbit does not imply that the geometry between the satellite and the sun is a constant. Sunsynchronous indicates that the longitude of the ascending node moves along the earth's equator rather than remaining fixed in inertial space. The rate of change in the longitude of the ascending node is such that in the course of one year, the node will travel once around the equator. .If the plane of the equator and the plane of the ecliptic were coplanar, then the sun would remain in the same relative location with respect to the orbit. Since these planes are not coplanar the location of the sun depends on the season. The AVHRR orbit analysis was directed at determining sun angles on the satellite, sun angles on the solar arrays, and eclipse periods.

a. Sun Angles on the Satellite

The primary motivation for this analysis is to ensure that the placement of the AVHRR payload on the spacecraft will prevent sunlight from shining in the sensor field of view and to prevent illumination of the thermal radiator. The basic approach is to define vectors normal to each of the satellite's faces. These vectors are essentially the roll, pitch, and yaw axes and their negatives. Another vector is defined to point from the satellite directly at the sun. The angle of incidence of sunlight striking a satellite face is the angle between the sun vector and the vector normal to the satellite face. This angle shall be referred to as the sun angle of a particular face. If the sun angle is zero degrees, then the sun is shining directly on the satellite face. If the sun angle is greater than 90 degrees, then the satellite face is oriented away from the sun and has no incident sunlight.

The program developed to perform this investigation propagates the satellite through one revolution around the earth on the first day of each season. The most extreme
values for sun angles are not guaranteed to occur on any of these four days. However, these days do illustrate the seasonal variation of the sun angles. Because the duration of one orbit is 101.5 minutes and the ascending node moves 360 degrees in one year, we made the simplifying assumption that the orbit is fixed in inertial space for the interval of time defined by one orbit. The consequences of this assumption is that the angle between the sun vector and the vector normal to the orbital plane remains constant. Since the satellite's pitch axis is parallel to the orbit normal vector, the sun angle on the satellite's pitch and negative pitch faces remains constant for that orbit. The sun angles on the remaining four faces vary sinusoidally. All four faces experience the same sun angle profile with the only difference being a shift in time. Table 4.2 summarizes the results on all six faces and for all four seasons. Figure 4.1 illustrates how the sun angles on the satellite faces vary as the satellite moves through one revolution.

FIGURE 4.1 First Day of Winter Sun Angles on S/C Faces vs Orbital Position (8:30 PM Ascending Node)

Figure 4.1 is for the first day of winter and the orbit's ascending node is at 8:30 PM. The plots for the other seasons are similar in general shape but contain a phase shift and a change in amplitude. Figure 4.2 examines these changes by plotting the sun angle profile on the + Roll face for the first day of all four seasons.

Sun Angle vs Orbital Position and Season

FIGURE 4.2 Sun Angle on +Roll Face vs Orbital Position
(8:30 PM Ascending Node)

The data in Table 4.2 is for an 8:30 PM ascending node orbit.

TABLE 4.2 Sun Angles on Satellite Faces for an 8:30 PM Orbit

Argument of latitude is the angle from the ascending node to the satellite position measured in the direction of satellite motion. Table 4.2 lists four values for argument of latitude for each of the four orbits. The values listed in the table are the locations in the orbit where one face experiences a minimum sun angle for that orbit and its opposite face experiences a maximum sun angle. Notice that the orbit locations of the minimum and maximum sun angles vary with season as well as the values of the sun angles. This behavior is because the orbit does not maintain constant geometry with respect to the sun. The orbit is precessing around the earth's spin axis while the motion of the sun with respect to the earth is inclined 23.5 degrees. This disparity is irrelevant at the equinoxes when the earth's spin axis is perpendicular to the sun vector which lies in the plane of the equator. Notice that the table entries are identical for the equinoxes. In addition, the plots for Spring and Fall in Figure 4.2 lie one on top of the other. The most surprising data is that at the solstices. Because the orbit is sunsynchronous and retrograde, the orbit plane is closer to being parallel with the plane of the ecliptic during summer than during winter. That geometry makes the minimum and maximum sun angles more extreme in summer. One might expect that winter would represent the other end of the spectrum. However, the values for winter are very nearly the same as those for the equinoxes. This result is caused by a combination of the sunsynchronous nature of the orbit and the ascending node's displacement away from the terminator line. If the displacement had been zero, then winter would represent the other extreme.

Season	Arg. of Latitude (deg)	Sun Angle on			Face (deg)		
		+ Pitch	- Pitch	+ Roll	- Roll	+ Yaw	- Yaw
First Day of Winter	65	141.2	38.8	128.7	51.3	88.8	91.2
	155	141.2	38.8	88.8	91.2	51.3	128.8
	245	141.2	38.8	51.3	128.7	91.2	88.8
	335	141.2	38.8	91.2	88.8	128.8	51.3
First Day of Spring	10	141.6	38.4	89.3	90.7	128.4	51.7
	100	141.6	38.4	128.4	51.7	90.7	89.3
	190	141.6	38.4	90.7	89.3	51.7	128.4
	280	141.6	38.4	51.7	128.4	89.3	90.7
First Day of Summer	40	131.2	48.8	88.4	91.6	138.8	41.2
	130	131.2	48.8	138.8	41.2	91.6	88.4
	220	131.2	48.8	91.6	88.4	41.2	138.8
	310	131.2	48.8	41.2	138.8	88.4	91.6
First Day of Fall	10	141.6	38.4	89.3	90.7	128.4	51.7
	100	141.6	38.4	128.4	51.7	90.7	89.3
	190	141.6	38.4	90.7	89.3	51.7	128.4
	280	141.6	38.4	51.7	128.4	89.3	90.7

TABLE 4.3 Sun Angles on Satellite Faces for a 3:30 PM Orbit

Table 4.3 presents the same information as Table 4.2, but the orbit under consideration has its ascending node at 3:30 PM. The two possible locations for the ascending node are symmetrical with respect to the terminator line. This geometry causes the values for the sun angles to be the same regardless of which of the ascending nodes is being used. The orbit locations for the specific sun angles vary but not the values for the sun angles. Close comparison of the values in the two tables will turn up some differences in the tenth's digit. One can attribute this to the method for generating the data rather than the physics of the problem. The data was generated by propagating the satellite through its orbit in five degree steps. The sun angles are only available at these points. Rerunning the program with a finer resolution should produce identical sun angles for orbits that are symmetrical about the terminator line.

b. Sun Angles on the Solar Arrays

The next area of investigation concerns the sun angles on the solar arrays. The solar arrays can rotate freely about the roll axis. To obtain the maximum amount of power out of the solar arrays, they need to rotate in a manner that minimizes their sun angles. These calculations were performed by the same program as was used to generate the sun angles in the previous section. At each evaluated point in the orbit, the same sun vector is still valid. That sun vector and the satellite roll axis define a plane. Let's refer to that plane as the sun vector roll axis plane (SVRA Plane). The solar arrays have a normal vector hereafter referred to as the solar array normal vector (SAN Vector). The sun angle on the solar arrays is minimized when the SAN Vector lies in the SVRA Plane. A vector normal to this plane is easily obtained by crossing the + Roll Axis Vector with the Sun Vector.

$$
\text { SVRA Normal }=(+ \text { Roll Axis) } X \text { (Sun Vector) }
$$

These vectors and the other elements of the solar array sun angle geometry are presented in Figure 4.3.

The two angles that are desired are 1) the angle that the solar arrays should rotate to bring the SAN Vector into the SVRA Plane and 2) the sun angle on the solar arrays that results from that rotation. The angle that the solar arrays should rotate is the angle between the SAN Vector and its projection in the SVRA Plane. This angle is complementary with the angle between the SAN Vector and the SVRA Normal Vector. Once the rotation angle is found, the program rotates the solar arrays and then measures the resulting sun angle. This angle is the minimum sun angle possible for that orbit location. Notice that this angle is smaller than the original sun angle on the unrotated solar arrays. Two situations of interest can be seen from Figure 4.3. The first is when the SAN Vector is in the SVRA Plane to begin with. Under these circumstances the rotation angle will be zero degrees. The second interesting situation is when the + Roll Axis is perpendicular to the Sun Vector. When that happens, it is possible to rotate the solar arrays so that the resulting sun angle is zero degrees. Because the angle between Sun Vector and the + Roll Axis is constantly changing as the satellite moves through one orbit, the solar array rotation angle will change as well. The profile of how the solar array rotation angle changes is illustrated in Figure 4.4.

FIGURE 4.3 Solar Array Illumination Geometry

FIGURE 4.4 Solar Array Rotation Angle vs Orbital Position and Season

As one can see in Figure 4.4, for every orbit, there are two locations in the orbit where the solar array rotation angle is zero. These are the locations where the SAN Vector is already in the SVRA Plane. These locations are on opposite sides of a given orbit. Furthermore, these locations are not fixed with respect to the equator. They occur in different places depending on the time of year. This necessitates at least a phase shift in rotation angle profiles. There is also a change in amplitude that is seasonally dependent. All of the plots are centered with respect to zero rotation angle. The reference orientation for zero rotation is when the SAN Vector is parallel to the Negative Pitch Axis. Positive rotation is defined by the right hand rule and the + Roll Axis. The lack of a constant rotation angle profile dictates either a sensor on board the solar arrays to minimize the sun angle or regular contact with the satellite to upload a new rotation angle profile before the current one reduces solar array output beyond an acceptable level. Once again, the plots for
the equinoxes are identical. The season with the largest rotation angles is Summer. This is still because that is the season when the orbital plane is most nearly parallel to the plane of the ecliptic. Although there are still two locations requiring no rotation, the orbital positions 90 degrees away are worse than for any other season.

Figure 4.5 shows what the resulting sun angles are on the solar arrays if the rotation profiles from Figure 4.4 are used. As before, Spring and Fall produce the same plot and Summer has the largest excursion away from zero. Each orbit has two locations where the resulting sun angle is zero degrees. The only circumstances that permit this situation are when the Sun Vector and + Roll Axis are perpendicular to each other. Referring back to Figure 4.2 confirms that the orbital positions that produce a sun angle of 90 degrees on the + Roll Axis are the same orbital positions that have a rotation angle of zero for the solar arrays. Furthermore, because the plots in Figure 4.2 are centered vertically about 90 degrees, every orbit, not just the four representing the first day of each season, will have two points where the angle of incidence after rotation is zero. Of course, one of those points may be in eclipse, but that issue is discussed later. When comparing Figures 4.4 and 4.5 , it is also interesting to note that the points in the orbit requiring zero rotation of the solar arrays are also the points with the worst sun angles for that orbit. At these points, there is not any rotation about the + Roll Axis that can improve the sun angle. Conversely, the points that require the most rotation correspond to the locations with a resulting sun angle of zero degrees. Finally, the values for maximum rotation in a given orbit and worst case solar array sun angle in the same orbit are equal to each other but are staggered 90 degrees apart. A quick check back in Table 4.2 reveals that the sun angle on the -Pitch Face is also the same value as the maximum rotation angle and the worst case solar array sun angle for a given day.

These scenarios can be summarized by defining a new plane. This plane contains the Sun Vector and the Pitch Axis. Because the Pitch Axis is assumed to remain fixed in inertial space during one orbit, this plane is also fixed. The Roll Axis completes a full 360
degree rotation around the Pitch Axis during one orbit. Whenever the Roll Axis is perpendicular to Sun Vector Pitch Axis Plane, the solar array rotation angle will be a maximum and the resulting solar array sun angle will be zero. Whenever the Roll Axis is in the Sun Vector Pitch Axis Plane, rotation of the solar arrays away from their reference only makes the sun angle worse. The rotation angle is zero but the solar array sun angles are a maximum. This consequence is used in developing the next program to investigate the orbit.

FIGURE 4.5 Solar Array Sun Angle vs Orbital Position and Season

To ensure that the solar arrays are sized large enough, the absolute worst case sun angle on the solar arrays is required. To provide this information, a different program had to be developed. This program propagates the earth around the sun and the orbit's ascending node around the earth's equator. For each point in the earth's orbit, the worst case solar array sun angle is tabulated. As mentioned above, this worst case angle is the
same as the sun angle on the -Pitch Axis. This avoids the need to propagate the satellite through its orbit at each of the locations of the earth. Figure 4.6 summarizes the results. It is essentially a plot of the maximum values from the four plots in Figure 4.5 plus intermediate values for days other than the first day of each season. The data still represents the 8:30 PM ascending node orbit. The data points are in five degree increments of the earth's orbit around the sun.

FIGURE 4.6 Worst Case Solar Array Sun Angles vs Time of Year

Figure 4.6 illustrates that for solar array sizing purposes, the worst case sun angles occur slightly before the first day of summer. However, the value for the worst case angle is only 0.4 degrees more than the value on the first day of summer.

c. Eclipse Periods

Eclipse duration influences design of the satellite most directly in terms of sizing the batteries and the solar arrays. The same program that calculated the worst case solar array sun angles also calculated the length of the eclipses. The program propagates the satellite through an orbit. At each step, the program looks to see if the satellite is over the sunlit side or the dark side of the earth. This is determined by looking at the angle between the Sun Vector and the Satellite Position Vector. If this angle is less than 90 degrees the satellite is above the sunlit side. If the angle is greater than 90 degrees, the satellite is above the dark side. If the satellite is over the dark side, it is in eclipse only if the component of the Position Vector perpendicular to the Sun Vector is less than the radius of the earth. This model assumes that the earth's shadow is a uniform cylinder parallel to the Sun Vector. By keeping track of when the satellite enters eclipse as well as when it exits, the eclipse duration is found. The program then propagates the earth one step in its orbit around the sun and performs the same series of eclipse calculations for this new geometry. Results for the 8:30 PM ascending node orbit are in Figure 4.7.

FIGURE 4.7 Eclipse Duration vs Time of Year

These results were obtained by stepping the satellite through its orbit in 0.5 degree increments. This produces a potential error in the predicted duration of just under the amount of time required to move through one degree in the orbit. This value is less than 20 seconds. Smaller step sizes should smooth out the curve. Figure 4.8 shows how the location of the eclipse in the satellite's orbit varies through the year. This is attributable to the apparent motion of the sun 23.5 degrees above and below the equator.

FIGURE 4.8 Eclipse Location in the S/C Orbit vs Time of Year

2. EHF

The analysis of the EHF Communications orbit does not require the same level of analysis as the AVHRR orbit. The advantage that the EHF mission enjoys is that the satellite is free to rotate around the Yaw Axis. This being the case, it is possible for the satellite to position its solar arrays with zero angle of incidence everywhere in the orbit. An analysis that has not been performed that probably should be done is to see what that angle of rotation around the Yaw Axis should be as a function of where the satellite is in its orbit. This analysis would be analogous to the solar array rotation profile for the AVHRR mission. The analysis that was done was to find the worst case eclipse and to find the time spent in specific altitude windows.

a. Worst Case Eclipse

Unlike the circular orbit of the AVHRR, the EHF mission's elliptical orbit means that the satellite travels at a nonconstant angular rate. The worst case eclipse in terms of duration is when the portion of the orbit in eclipse passes directly through the center of the earth's shadow cylinder. This condition is a function of longitude of the ascending node. Since we have no way of knowing in advance where a user will want the orbit placed, we must assume that our orbit may pass through the center of the cylinder. Another necessary condition for the worst possible eclipse is when the eclipse is centered around apogee. We can never create that geometry because we have assumed an inclination of 63.43 degrees and an argument of perigee of 270 degrees. Our worst case is when the portion of the orbit in eclipse is as close to apogee as the geometry will allow. With perigee at the southern most point in the orbit, the worst case scenario is created on the first day of winter. The center of the eclipse occurs 113.5 degrees past perigee. The shadow cylinder cannot be any farther north because the sun cannot be any farther south.

The program uses an iterative approach to find the values for true anomaly which correspond to eclipse entry and eclipse exit. At both of these points, the component of the satellite position vector perpendicular to the sun line is equal to the radius of the earth. Time spent in eclipse is found by converting the true anomalies of eclipse entry and eclipse exit into eccentric anomalies and then using Kepler's equation. Specific values for the EHF orbit are in Table 4.4.

True Anomaly at Eclipse Entry (deg)	70.587
True Anomaly at Eclipse Exit (deg)	131.715
Eclipse Duration (min)	52.079

TABLE 4.4 Eclipse Duration for EHF Mission

b. Altitude as a Function of Time

The principle motivation behind this analysis is to permit an estimate of the radiation environment on the solar arrays. This analysis is necessary because the radiation environment is dependent on altitude and on the amount of time the spacecraft spends at that altitude. This program simply accepts an altitude step size from the user and then breaks the orbit from perigee to apogee into segments. Each segment, with the possible exception of the first and last, represents a change in altitude specified by the user. Similar to the eclipse calculations, these satellite position radii can be converted into true anomaly, eccentric anomaly, and a time from a reference. Results are depicted in Figure 4.9.

FIGURE 4.9 Time Since Perigee vs True Anomaly

As the slope of the curve in Figure 4.9 increases, so does the time spent near that altitude. Obviously, near apogee represents the longest loiter time. Since the figure is valid from perigee to apogee, total time spent in an altitude window during one orbit is twice the value off of the graph. Time spent in an altitude window during one day is six times the graph value, and so on.

C. ORBIT MAINTENANCE

Orbit selection for both missions was done so as to eliminate the orbit maintenance requirements. The AVHRR mission is patterned after an existing system. The Defense Meteorological Satellite System (DMSP) uses the same orbit as the AVHRR mission. DMSP has several payloads, one of which is very similar to AVHRR. DMSP performs no orbit maintenance during its lifetime. Because any changes in the orbit as a result of natural
perturbations seem to be acceptable to the present DMSP user community, the AVHRR mission will also include no orbit maintenance.

The EHF communications mission has an inclination of 63.435 degrees. This value is the critical inclination that prevents the line of apsides from changing. Perigee is located at the orbit's southern most point to give good coverage in the northern hemisphere. Perturbation analysis was performed using zonal harmonics J_{2} through J_{7}. The results of this analysis indicate that the orbit changes very little over the course of a satellite's lifetime. Perigee will rotate completely around the orbit in about 500 years. Our mission design life is only three years. During the mission lifetime, perigee will move less than 2.5 degrees. The change in inclination and eccentricity are likewise very small during a satellite's lifetime. Both of these changes are periodic. Results are summarized in Table 4.5. The table shows how the values are altered if inclination is within 0.1 degrees of nominal. The delta columns show how far inclination and eccentricity will change from their original values. Orbit maintenance fuel is not needed to counter any of these perturbations.

Inclination	Period (years)	$\Delta \mathrm{i}$ (deg)	$\Delta \mathbf{e}$
63.335	243.2	0.2	0.006
63.435	377.4	0.3	0.002
63.535	262.9	0.15	0.004

TABLE 4.5 Perturbations on EHF Mission Orbit

Y. SUBSYSTEMS

A. ELECTRICAL POWER SUBSYSTEM

1. Functional Description

The electrical power subsystem (EPS) will provide power to the spacecraft for the AVHRR and EHF payloads. The AVHRR payload will require continuous power during all phases of the mission, while the EHF communications equipment requires operating power when the spacecraft is 20° above the horizon and housekeeping power during the entire orbit. In addition to supplying power for the payloads, the EPS will be required to support electrical accessories such as the power control electronics; telemetry, tracking, and control (TT\&C); sensors; and propulsion systems.

In general, the electrical subsystem will consist of solar panels of silicon photovoltaic cells and $\mathrm{Ni}-\mathrm{H}_{2}$ batteries. The spacecraft bus will operate off a single 28 volt bus. Power summaries of each configuration are listed in Table 5.1.

ELEMENT	AVHRR (W)	EHF (W)
MPS Bus Subtotal	166.4	114.8
Mission Instruments	28.0	115.0
MMS Harness Loss	4.0	4.0
System Reserve	4.0	4.0
Satellite Total	201.8	237.8
With cosine effect	313.9	n / a

TABLE 5.1 System Power Summaries (Normal Operations)

a. Solar Array Design

The MPS bus was designed to have two symmetric solar arrays of either two or three panels each. The Pegasus shroud will only be able to accommodate two panels per side while the Taurus shroud will accommodate three. The AVHRR and EHF configurations require two solar arrays of two panels each. The solar arrays on the EHF payload will be sun tracking to maintain panel orientation perpendicular to the sun's rays. This is accomplished through freedom of movement about the longitudinal axis of the arrays and through satellite rotation about the yaw axis. The AVHRR solar panels will, as nearly as possible, be oriented perpendicular to the sun's rays. The AVHRR operational requirements do not allow for the rotation of the spacecraft about the yaw axis. Therefore some loss of potential power is introduced due to the effect of the angle of incidence which reaches a maximum of 50°.

Silicon cells were chosen for cost and reliability, the cells selected were the same as those used in INTELSAT VI and are described in Table 5.2.

CHARACTERISTICS	K7 SILICON CELL
Power BOL $\left(28^{\circ} \mathrm{C}\right)(\mathrm{mW})$	307.8
Power EOL $\left(28^{\circ} \mathrm{C}\right)(\mathrm{mW})$	230.8
BOL	
$\mathrm{I}_{\text {mp }}(\mathrm{A})$	0.644
$\mathrm{~V}_{\mathrm{mp}}(\mathrm{V})$	0.478
$\mathrm{I}_{\text {sc }}(\mathrm{A})$	0.6887
$\mathrm{~V}_{\mathrm{c}}(\mathrm{V})$	0.590
Size (cm)	2.5 X 6.2
Thickness (cm)	0.02
Material	Si
Base Resistivity	$10 \mathrm{~N} / \mathrm{P}$
Ω-cm/type	
Front junction depth $(\mu \mathrm{m})$	0.2
Back surface field	Yes
Back surface reflector	Yes
Contact metallization	TiPdAg
Front contact width (cm)	0.06
Antireflective coating	$\mathrm{T}_{\mathrm{i}} \mathrm{O}_{\mathrm{x}} \mathrm{Al} \mathrm{I}_{2} \mathrm{O}_{3}$
Cover type	cmx microsheet with
antireflective coating	
Cover thickness (cm)	0.021
Cover adhesive	$\mathrm{DC} 93-500$
Cover front surface	Textured

TABLE 5.2 Solar Cell Characteristics

Using the data from Table 5.1 and the cell characteristics from Table 5.2, the actual array panel area was determined and the results are summarized in Table 5.3. Supporting calculations can be found in Appendix B.

	AVHRR	EHF
Number cells series	22	22
Number cells parallel	68	80
Total number cells	1496	1760
Area needed $\left(\mathrm{ft}^{2}\right)$	24.9	29.3
Area available $\left(\mathrm{ft}^{2}\right)$	30.2	30.2

TABLE 5.3 Solar Array Summaries

b. Battery Design

The battery for eclipse power is the same as selected for HILACS, that is, 12 amp hour nickel hydrogen battery manufactured by Eagle Picher. The battery are made in a two cell common pressure vessel (CPV). Dimensions of each CPV are approximately 3.5 inches in diameter and 6 inches in height. Utilizing a 28 volt bus with constant current charge, the number of CPV cells is limited to eight. NiH_{2} battery were chosen because of the high number of charge/discharge cycles the bus may experience. The AVHRR payload because of its 450 NM low earth orbit (LEO), for example, will experience over 15,000 cycles in its three year design life. The number of charge/discharge cycle this EHF payload will experience on the other hand may only be 1000 . Because the bus was designed to accommodate these and other payloads in various orbits, the battery recharge requirements will vary. For this reason, the recharge circuitry must have the capability to be selectable or be comprised of modular components.

The AVHRR payload configuration draws 100.6 Watts during eclipse. Because this eclipse is roughly one third of the orbit, the recharge rate must be high enough to replenish the amount of power removed during the sunlight period. For a low earth orbit satellite with numerous charge and discharge cycles, an additional 10% on top of that power removed should also be replaced. For example, if 10 amps are drawn from the battery for 1 hour, the recharge cycle must provide an equivalent 11 amp hour for the charge period. Knowing the duration of the sunlight period and the power removed determines the recharging rate. Assuming that 90% of the sunlight period was used to recharge the battery, the AVHRR charge rate was chosen to be $C / 4$, this is only slightly below the maximum recommended charge rate of $C / 3$, where C is the battery capacity in amp-hours.

The EHF payload utilizes only 80.7 Watts during eclipse. Because of the longer sunlight periods and smaller power drawn, the charging rate of this configuration is only $\mathrm{C} / 10$. There are seasons where the Molniya type orbit would have no eclipse and then the battery would be trickle charged.

	AVHRR	EHF
Charge required	76.8 W	30.7 W
Charging rate	$\mathrm{C} / 4$	$\mathrm{C} / 10$
Charge time	59 min	6.5 hrs
Available sun	64 min	7.1 hrs
Battery capacity	$12 \mathrm{~A}-\mathrm{hr}$	$12 \mathrm{~A}-\mathrm{hr}$

TABLE 5.4 Battery Summary

Radiation effects and shielding requirements were examined for the AVHRR's circular orbit and the EHF's eight hour Molniya orbit. The degradation for the AVHRR configuration was based on an annual equivalent of 1 MeV electron fluence assuming solar maximum for the three year mission. The eight hour Molniya orbit posed significant challenges to the analysis of the radiation effects. Apogee for this orbit extended into the Van Allen belts exposing the solar cells to large fluences. Appendix B lists the equivalent 1 MeV fluences in five minute increments of orbital time for this orbit. Total fluence per orbit, per year, and three year lifetime were derived and the impact on the solar cells calculated. The radiation effect on both orbits are summarized in Table 5.5.

	AVHRR		EHF	
	Isc	Voc, Pmax	Isc	Voc, Pmax
Trapped electrons	$4.59 \mathrm{E}+11$	$4.59 \mathrm{E}+11$	$3.18 \mathrm{E}+13$	$3.18 \mathrm{E}+13$
Trapped protons	$8.64 \mathrm{E}+12$	$1.47 \mathrm{E}+13$	$3.82 \mathrm{E}+15$	$1.59 \mathrm{E}+15$
Totals	$9.10 \mathrm{E}+12$	$1.52 \mathrm{E}+13$	$3.85 \mathrm{E}+15$	$1.62 \mathrm{E}+15$

TABLE 5.5 Radiation Annual Fluence Summary

Power control electronics will maintain bus voltage at 28 volts. The bus will be fully regulated by employing a shunt regulator for periods of solar array operations and will utilize a boost regulator during periods of battery operations. This arrangement is discussed in detail in the HILACS project report.

2. Detailed Mass Summary

A detailed mass summary of the Electrical Power Subsystem components is listed in Table 5.6.

Components	Mass (kg)
Array Structural and Cells	13.00
Batteries	7.12
Wire Harness	3.00
Mechanical Integration	2.00
Solar Array Drive Electronics	1.00
Solar Array Drive Motors	8.00
Power Electronics	2.00
Shunt Resistor Bank	0.94
Total	37.06

TABLE 5.6 Detailed Mass Summary of EPS

B. ATTITUDE CONTROL SUBSYSTEM

1. Attitude Determination and Control System

The function of the attitude determination and control system, (ADCS), is to provide precise attitude pointing for the AVHRR or similar payload in a low (450 NMI) circular orbit, and a less accurate determination for the EHF or other communications payload in a Molniya-type orbit. This dual objective is met by using two subsystems for the different requirements, the Precision Sensor Subsystem, PSS, and the Basic Sensor Subsystem or BSS. The PSS and BSS are used for precise positioning, whereas the BSS alone can be used for less stringent requirements. Both subsystems consists of sensors to determine attitude, an on-board processor for control, and an inertial reference system consisting of an assembly of 3 orthogonal gyros, (GA). The BSS and PSS share the same components where possible. The Attitude Control Subsystem,(ACS), is driven by either the PSS or BSS and consists of 3 primary reaction wheel assemblies, (RWA), with a fourth skewed wheel to provide redundancy, and two magnetic torque rods, (MTR), for momentum dumping. The six 0.2 lb thrusters can be utilized for momentum dumping in case of failure of the MTR's or if excessive momentum buildup occurs. The two subsystems are described below.

a. Precision Sensor Subsystem

The Precision Sensor Subsystem relies primarily on a Celestial Sensor Assembly, (CSA), for attitude determination. Figure 5.1 provides a functional block diagram of the system. The CSA is a strap-down star mapper with a 10.4 degree field of view. The CSA is the same sensor used aboard the DMSP Block 5D-3 satellite, (ref DMSP). The star sensor measures star transits across a detector and provides an input to the attitude control computer, (ACC). The user will be required to uplink to the satellite, approximately once per day, the 80 brightest stars that will be in view of the CSA. The ACC also receives input from the GA and an on-board GPS receiver. The ACC uses the

b. Basic Sensor System

The Basic Sensor Subsystem consists of a conical scanning earth sensor, (ES), a digital sun sensor, (DS), the GA, RWAs, ACC, GPS receiver, and MTRs. A scanning ES is required by the great range of possible altitudes that the satellite may achieve. The ES scans the 14 to 16 micrometer infrared radiance profile of the earth to determine pitch and roll error, while the DS determines the angle between the pitch axis and the sun. This information together with the ephemeris data from the ACC and GPS receiver provides yaw error. The BSS can provide better than 0.5 degree accuracy in each of the three axis. Figure 5.2 is a functional block diagram of the subsystem.

FIGURE 5.2 Functional Diagram of Basic Sensor Subsystem

c. Atitude Control Subsystem

The Attitude Control Subsystem, (ACS), is driven by the output of the ACC. The ACC sends commands to the RWAs to correct attitude errors. The RWAs' input to the ACC is the load current and wheel speed. The current is used to determine if an overload condition exists in which case the ACC shuts down the wheel and starts the backup RWA. The wheel speed is used as feedback and to determine if momentum dumping is required. When the momentum reaches the maximum for the wheel, the torque coils are commanded on to dump the excess momentum. In case of excessive rate buildup, as determined by differentiators in the circuitry, thrusters are fired to slow the rate to within acceptable limits. The block diagram for the ACS is given below.

FIGURE 5.3 Functional Diagram of Attitude Control Subsystem

2. Design Considerations

For the first order accurate approximation, the spacecraft is modeled as a rigid body with nonrotating and rigid solar arrays. During the on-orbit mode, the disturbance torques are solar, gravity gradient, magnetic, and aerodynamic. The calculations, programs and resulting wheel speeds and attitude errors are given in Appendix C. The yaw motion of the satellite in the Molniya-type orbit is modeled as in HILACS, (see ref HILACS). The attitude control of the meteorological payload is treated in this report.

During the acquisition mode, the sun sensor on the anti-earth face acquires the sun. After the ACC commands the RWAs accordingly, the earth is acquired and the BSS begins operation. This is accomplished as follows: first, the RWAs are commanded to null the yaw rate, this fixes the yaw axis in inertial space in an unknown attitude, next, the spacecraft begins a slow rotation about the pitch axis until a sun observation occurs. If a sun observation does not occur in 5 revolutions, the pitch rate is nulled and the spacecraft begins a rotation about the roll axis. Utilizing this sun line and GPS receiver data, attitude is determined and error correction by the ACC commences. Once the pitch, yaw, and roll rates are nulled, the solar arrays are deployed. After sun and earth sensor updates to the GA occurs, the system is switched over to the PSS if precision is required, otherwise the BSS continues to control attitude. In the EHF payload the PSS is not available and the BSS will be the on-orbit mode.

3. Basic and Precision Subsystem Summary

The following is a break-down of the components of the BSS and the PSS. The AVHRR payload will require both the BSS and the PSS while the EHF payload will require only the BSS.

Component	AVHRR	EHF	PWR	Manufacturer
	(kg)	(kg)	(W)	
Attit. Ctrl. Computer	2.5	2.5	6	Barnes
Roll RWA	2.4	2.4	18	Honeywell
Pitch RWA	2.4	2.4	18	Honeywell
Yaw RWA	2.4	2.4	18	Honeywell
Backup RWA	2.4	2.4	N/A	Honeywell
Spring Restraing Gyro Assembly	1.2	1.2	19	INTELSAT V Heritage
Earth Sensor	3.77	3.77	4	Barnes
Sun Sensor North Face	0.04	0.04	1	Adcole
Sun Sensor Anti-Earth Face	0.04	0.04	1	Adcole
Roll-Yaw Torque Rods	0.40	0.40	0.6	Ithaco
Pitch Torque Rods	0.4	0.4	0.6	Ithaco
GPS Receiver	3.6	3.6	4	Motorola
Celestial Sensor	3.17	N/A	2.15	DMSP Heritage
Total	24.72	21.55	92.35	

Note: the EHF payload will require 2.15 W less of power than the AVHRR payload.
TABLE 5.7 Basic and Precision Subsystem Summary

4. System Parameters

The system parameters are computed in Appendix C. The RWAs are mounted so as to provide torque along each of the spacecraft's principle axis of inertia with the backup wheel mounted to provide torque equally along each of the principle axes. The worst case disturbance torque in the normal mode of operations is the interaction of the magnetic torque rods with the Earth's magnetic field during desaturation of the RWAs. The RWA parameters for the AVHRR payload are given below:

	Roll	Pitch	Yaw
Momentum Storage	1.9 Nms	1.9 Nms	1.9 Nms
Gain	$0.885 \mathrm{Nm} / \mathrm{rad}$	$0.710 \mathrm{Nm} / \mathrm{rad}$	$0.621 \mathrm{Nm} / \mathrm{rad}$
Time Constant	4 sec	8 sec	8 sec

TABLE 5.8 System Constants

5. System Performance

The wheels will be desaturated at approximately 100 RPM. The torque rods will provide a 10 AMP-m ${ }^{2}$ magnetic dipole which will result in $0.006 \mathrm{~N}-\mathrm{m}$ of torque over the earth's geomagnetic poles for the 450 nmi altitude of the circular orbit. The pitch torque rod will be energized within $+/-30$ deg of the north and south geomagnetic poles and the roll-yaw rod when within $+/-30$ deg of the geomagnetic equator. The desaturation scheme for the Molniya-type orbit is dependent upon the longitude of the ascending node. Basically, the roll-yaw rod will be used near the equatorial crossing and the pitch rod near perigee. As can be seen from the plot of the wheel speeds in Appendix C, the pitch wheel will require periodic desaturation. The roll - yaw wheels should rarely, if ever, require desaturation due to the cyclic nature of the disturbance torques. The satellite will maintain a 0.01 deg pointing accuracy during desaturation.

C. THERMAL CONTROL SUBSYSTEM

Thermal analysis of a spacecraft requires precise information concerning equipment placement, operating temperature limits, structural materials, and amount of power dissipated by the equipment. The conceptual EHF and AVHRR payloads for the MPS bus proposed in this study will not necessarily determine the final configuration. Because of this, the analysis performed on these configurations will be considered as an initial analysis with the understanding that as more detailed information and configuration revisions are incorporated, the analysis will be updated.

1. Design Considerations

The thermal control of each configuration is to be done utilizing passive techniques. The requirements to conserve mass in the design of the spacecraft were such that if passive techniques could be employed the impact on the mass of the spacecraft would be minimal. Therefore the goal is to use optical solar reflectors (OSR's), insulation, conductive transfer, and paints and coatings to regulate the temperature of the equipment.

The typical equipment operating limits listed in Table 5.9 were used as guidelines in the thermal analysis procedures:

	Thermal Design Temperature Limits (${ }^{\circ} \mathrm{C}$), Min/Max	
Subsystem/Equipment	Nonoperating/Turnon	Operating
Communications		
Receiver	-301+55	+10/+45
Input multiplex	-30\%+55	-10/+30
Output muláplex	$-30 /+55$	$-10 /+40$
TWTA	-30/+55	-10/+55
Antenna	-170/+90	$-170 /+90$
Electric power		
Solar array wing	$-160 /+80$	$-160 /+80$
Battery	-10/+25	0/+25
Shunt assembly	$-45 /+65$	$-45 /+65$
Attitude control		
Earth/sun sensor	-30/+55	$-30 /+50$
Angular rate assembly	$-30 /+55$	+1/+55
Momentum wheel	-15/+55	+1/+45
Propulsion		
Solid apogee motor	+5/+35	--
Propellant tank	+10/+50	+10/+50
Thruster catalyst bed	+10/+120	+10/+120
Structure		
Pyrotechnic mechanism	-170/+55	$-115 /+55$
Separation clamp	-40/+40	-15/+40

TABLE 5.9 Typical Equipment Temperature Limits

2. Optical Solar Radiator Sizing

Based on the power summaries of the spacecraft an initial analysis was conducted to determine the approximate area required to radiate the thermal energy generated. The thermal energy dissipated by the EHF payload was estimated to be 148 Watts and for the AVHRR payload, 115 Watts. It is felt that these estimates are conservative and would reflect lower temperatures than might actually be encountered. Because space is such a good heat sink, any additional thermal load could be removed by limiting the insulation and/or altering the surface coatings.

The heat balance equation is:

$$
\varepsilon \sigma T^{4} \eta A=\alpha_{S} A S \sin (\theta)+P
$$

where

$$
\begin{aligned}
& \varepsilon=\text { emittance of the radiator }(0.8) \\
& \sigma=\text { Stefan-Boltzmann constant } \\
& \eta=\text { efficiency } \\
& A=\text { area of the radiator } \\
& T=\text { maximum desired operating temperature }(310 \mathrm{~K}) \\
& \alpha_{S}=\text { solar absorptance EOL }(0.12) \\
& S=\text { solar intensity at winter solstice }\left(1397 \mathrm{~W} / \mathrm{m}^{2}\right) \\
& \theta=\text { solar aspect angle }\left(23.5^{\circ}\right) \\
& P=\text { thermal load to be dissipated in Watts }
\end{aligned}
$$

The area required for the radiator for the EHF configuration is $744 \mathrm{in}^{2}$ and for the AVHRR configuration it is $573.5 \mathrm{in}^{2}$. It should be noted that the AVHRR assembly comes with approximately $300 \mathrm{in}^{2}$ in OSR's installed.

3. Solar Array Temperature

The solar arrays of the EHF configuration will remain perpendicular to the solar flux. The AVHRR solar arrays will, as nearly as possible, be perpendicular to the solar flux. The positioning of the EHF solar arrays is accomplished by rotation about the roll axis by the solar array drive motors and about the yaw axis by attitude control of the spacecraft. The AVHRR solar array, due to equipment requirements, only has rotation about the roll axis by use of the solar array drive motors. This introduces some loss in power but is compensated for in the sizing of the arrays. The greatest angular displacement is approximately 50° inclination from perpendicular.

The effective solar absorptance ($\alpha_{S E}$) is:

$$
\alpha_{S E}=\alpha_{S}-F_{p} \eta
$$

where

$$
\alpha_{S}=\text { average solar cell array absorptance }(0.8)
$$

$$
F_{p}=\text { solar cell packing factor }(0.95)
$$

$$
\eta=\text { solar cell operating efficiency }
$$

The steady state operating temperature (T_{op}) of the solar array is given by:

$$
T_{o p}=\left[\frac{\alpha_{S E} A_{F} S \cos (\alpha)}{\left(\varepsilon_{F} A_{F}+\varepsilon_{B} A_{B}\right) \sigma}\right]^{1 / 4}
$$

where

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{F}}=\text { array front side area }\left(30.2 \mathrm{ft}^{2}\right) \\
& \mathrm{A}_{\mathrm{B}}=\text { array back side area }\left(30.2 \mathrm{ft}^{2}\right) \\
& \varepsilon_{\mathrm{F}}=\text { emittance of array front side }(0.8) \\
& \varepsilon_{\mathrm{B}}=\text { emittance of array back side }(0.7) \\
& \mathrm{S}=\text { solar constant } \\
& \sigma=\text { Stefan-Boltzmann constant } \\
& \alpha=\text { angle of incidence of sunlight }
\end{aligned}
$$

The operating temperatures of each of the solar arrays are summarized as follows:

$\mathbf{T}_{\mathbf{o p}}$	EHF	AVHRR
Summer Solstice	$45.3^{\circ} \mathrm{C}$	$12^{\circ} \mathrm{C}$
Winter Solstice	$50.4^{\circ} \mathrm{C}$	$34.6^{\circ} \mathrm{C}$

TABLE 5.10 Solar Array Operating Temperatures

4. Thermal Analysis Using PC-ITAS

The Integrated Thermal Analysis System for personal computers (PC-ITAS) is a menu driven software package produced by ANALYTIX Corporation. The thermal analyzer has the ability to accept various inputs conceming the spacecraft. Among these inputs are spacecraft configuration, operations, and orbital parameters. After entering this data the analyzer will generate steady state or transient output temperatures. It can be used to rapidly analyze changes in configuration or material properties during the design phase.

PC-ITAS allows the user to represent the spacecraft with a model. The model building menu has various geometric shapes which can be dimensioned to satisfy any requirements. Each geometric shape will constitute one or more surfaces. The software limits the user to 550 surfaces although expanded versions are available. Caution must be exercised in choosing geometries as the more surfaces used, the more memory and computer running time are needed. It was determined that, for the computer system currently in use by the design team, approximately 165 surfaces could be generated for analysis without any overflow problems. Because this is a preliminary design analysis this did not pose a significant problem. Some equipment was not modelled in detail due to this limitation so there was a trade off between computer capability and depth of analysis. To get an accurate, in depth analysis would require a final design and complete thermal characteristics of each piece of equipment.

Each surface constitutes a node in the thermal analysis phase. A box, for example, would have six surfaces therefore it has six nodes. The following tables outline the components modelled and the geometric shapes selected to represent them, as well as the number of each nodes assigned to that component.

Component	Geometric Model	Assigned Nodes
MPS Bus	5 sided box	$1-5$
Power control	Box	$6-11$
Batteries	Box	$12-17$
Attitude control	Box	$18-23$
Fuel tank	18 sided sphere	$24-41$
AVHRR	5 sided box	$42-46$
RTU	Box	$47-52$
RCU	Box	$53-58$
OSR shield	Polygon	59
AVHRR side panels (2)	Polygon	60,61
AVHRR OSR's	Polygon	62
Bus OSR's	Polygon	63
Yaw RWA	12 sided cylinder, capped	$64-87$
Pitch RWA	12 sided cylinder, capped	$88-111$
Roll RWA	12 sided cylinder, capped	$112-135$
MPS Bus south panel	Polygon	136
Solar array drive motor - east	5 5ided box	$137-141$
Solar array drive motor - west	5 sided box	$142-146$

TABLE 5.11 AVHRR Model and Node Assignment

Component	Geometric Model	Assigned Nodes
MPS Bus	5 sided box	$1-4$
Power control	Box	$5-10$
Batteries	Box	$11-16$
Atitude control	Box	$17-22$
Fuel tank	18 sided sphere	$23-40$
Yaw RWA	12 sided cylinder, capped	$41-64$
Pitch RWA	12 sided cylinder, capped	$65-88$
Roll RWA	12 sided cylinder, capped	$89-112$
Solar array drive motor - east	5 sided box	$113-117$
Solar array drive motor - west	5 sided box	$118-122$
OSR's	Polygon	123
MPS Bus south panel	Polygon	124
Connector	5 sided box	$125-129$
EHF Feedhorn assembly	Box	$130-135$
RF reflector	6 sided disc	$136-141$
Reflector support	EHF Electronic I	Box
EHF Electronics II	Box	$142-149$

TABLE 5.12 EHF Model and Node Assignment

After generating the model, the orbital parameters were entered. PC-ITAS will generate graphics so that the user may see the spacecraft in the orbit specified and will use this data in the generation of view factors and shadow factors. The EHF payload was analyzed for a Molniya orbit and the AVHRR payload for a circular, nearly polar orbit. Orbit parameters are entered through the orbital analysis parameters menu and can be rapidly changed to conduct analysis for any number of orbits the user desires.

Included with the PC-ITAS software are physical and optical properties of numerous materials. The user may select from these tables or enter the requirements in the appropriate blocks within the menu. Optical properties of the surfaces modelled must be selected for analysis. The analyzer will automatically calculate view factors between surfaces for use in the radiative heat transfer equation. The user may, if it is so desired, link nodes by either radiation or conduction. Unless there is a specific need to do so, radiation links need not be established as they are generated automatically. Conduction transfers, where known, should be entered as part of the data. Should certain equipment be operated for a set time duration and off for other periods, the analyzer is capable of handling this condition. The power profile definitions menu will allow the entering of these equipments along with a listing of their on and off times.

Equipment which dissipates heat can be indicated at the time the optical parameters are designated. Any heat dissipated will become part of the environment and incorporated into the thermal analysis. Because detailed information on the thermal energy generated by the equipment and specific locations of that generation is not available, the heat dissipated by a piece of equipment was estimated and then applied equally to all surfaces of the geometric representation of that component.

The following table lists the materials selected, optical properties, and heat dissipated per surface (node) of each payload.

AVHRR		Optical Properties		Heat Dissipated Per Surface (W)
Component	Material	α	ε	
Bus	Anodized Aluminum 7075-T6	0.30	0.80	
Power control	Sandblasted Aluminum 2024	0.42	0.21	0.1
Batteries	Polished Stainless Steel 302	0.38	0.19	9.0
Attitude control	Sandblasted Aluminum 2024	0.38	0.19	0.3
Fuel tank	Polished Nickel Coating	0.44	0.05	0.2
AVHRR	Anodized Aluminum Low A/E	0.25	0.72	1.5
RTU	$\begin{aligned} & \text { Sandblasted Aluminum } \\ & 2024 \\ & \hline \end{aligned}$	0.38	0.19	0.3
RCU	Sandblasted Aluminum 2024	0.38	0.19	0.3
Shield	Bare, Clean Aluminum	0.19	0.08	
OSR's	$\mathrm{Ag}-\mathrm{SiO} 2$	0.05	0.8	
RWA's	Anodized Aluminum 2024	0.68	0.48	0.5
SADM's	Anodized Aluminum 2024	0.68	0.48	0.7

TABLE 5.13 AVHRR Material Selection and Heat Dissipation

EHF		Optical Properties		Heat Dissipated Per Surface (W)
Component	Material	α	ε	
Bus	Anodized Aluminum 7075-T6	0.30	0.80	
Power control	Sandblasted Aluminum 2024	0.38	0.19	0.1
Batteries	Polished Stainless Steel 302	0.38	0.19	3.0
Attitude control	Sandblasted Aluminum 2024	0.38	0.19	0.3
Fuel tank	Polished Nickel Coating	0.44	0.05	0.2
RWA's	Anodized Aluminum 2024	0.68	0.48	0.5
SADM's	Anodized Aluminum 2024	0.68	0.48	0.7
OSR's	$\mathrm{Ag}-\mathrm{SiO} 2$	0.05	0.8	
Connector	Anodized Aluminum 7075-T6	0.30	0.80	
EHF Feedhorn	Anodized Aluminum7075-T6	0.30	0.80	0.16
RF reflector	Reflector	0.10	0.10	
Reflector Support	Flame Sprayed Aluminum Oxide Rokide A	0.27	0.75	
EHF Elex I	Anodized Aluminum, Gray	0.56	0.60	3.3
EHF Elex II	Anodized Aluminum, Gray	0.56	0.60	10.0

TABLE 5.14 EHF Material Selection and Heat Dissipation

After all parameters have been entered the thermal analysis can be initiated. The results are placed in an output file and will include the parameters entered, all default settings, and steady state temperatures for each node at the end of one orbit. The output for each payload can be found in Appendix D.

5. Conclusions

The results of the thermal analysis on both payloads are indicative of a specific set of conditions with estimations by the available data. This preliminary analysis indicates that, with proper selection of coatings and materials, the temperatures of the various equipments can be maintained within operating ranges. There are specific nodes which are too cold or too hot, but since these are identified corrective action can be implemented. Corrective action in these cases would be to insulate or link by conduction to the radiator. To do this next step would require more detailed information in order to calculate path lengths to be used in the conduction linking. Before a more refined analysis and implementation of any corrective action there is a need to select the individual pieces of equipment which will actually be used in the spacecraft systems.

D. PROPULSION SUBSYSTEM

1. Functional Description

The propulsion subsystem consists of one propellent tank with a 20 kg capacity, six .2 lbf thrusters and associated values and tubing. Installed primarily as a backup system for reaction wheel desaturation, orbit maintenance, and orbit stationkeeping, the system is provided with no redundancy. The fuel is hydrazine monopropellant with catalytic beds. The center mounted spherical tank is filled to the amount required by the mission just prior to launch.

a. Requirements

After separation from the Pegasus launch vehicle, the propulsion system will be used to correct minor errors in the orbit. On orbit the system will provide delta V for stationkeeping. See Table 5.15 for thruster operation and axis effect and Figure 5.4 for thruster location..

Operation	Thruster Number
Delta V Yaw	$1 \mathrm{~A} / 2 \mathrm{~A} 1 \mathrm{C} / 2 \mathrm{C}$
Delta V Roll	$1 \mathrm{~B} / 2 \mathrm{~B}$
Positive Roll $(+\mathrm{X})$	1 A
Negative Roll $(-\mathrm{X})$	2 A
Positive Yaw $(+\mathrm{Z})$	1 B
Negative Yaw $(-Z)$	2 B
Positive Pitch $(+\mathrm{Y})$	1 C
Negative Pitch $(-\mathrm{Y})$	2 C

TABLE 5.15 Thruster Operations

FIGURE 5.4 Location of Thrusters

b. Summary of Subsystem

The propulsion subsystem consists of six 0.2 lbf thrusters. The thrusters recommended are the Rocket Research MR103C. These particular thrusters were chosen for the design because the MR103C has a design that minimizes space required for mounting. The MR103C is also the lightest of the .2 lbf thrusters considered for the requirements of the satellite. The six thrusters along with the rest of the propulsion system are depicted in a schematic in Figure 5.5. Note also that a 8 micron filter is incorporated to screen the impurities remaining in the fuel. There is one pressure transducer and one pressure regulator to monitor the pressure throughout the system.

FIGURE 5.5 Schematic Diagram of Propulsion System

Thruster characteristics are detailed in Table 5.16.

Design Characteristic	
Catalyst	Shell 405
Thrust, steady state (lbf)	$.252-.042$
Feed press (psia)	$420-70$
Chamber press (psia)	$370-60$
Expansion Ratio	$100: 1$
Flow rate (lbm/sec)	$.001-.0002$
Valve	Wright
Valve power	9 Watts
Weight	0.73
Engine	0.28
Valve	0.45
Demonstrated Performance	SATCOM
Specific impulse	$227-206$
Total impulse (lbf - sec)	35625
Total pulses	410000
Minimum impulse bit	.001
Steady state firing (sec)	64800

TABLE 5.16 Summary of Propulsion Equipment

The 16 inch diameter tank is made of titanium alloy and made by TRW Pressure Systems Inc. An elastomeric diaphragm inside the tank separates the nitrogen gas pressurant from the propellant. Maximum capacity of the tank is 20 kgs . Table 5.17 lists the characteristics of the tank.

Intemal Volume	1352 sq in
Operating Pressure	480 psia
Operating Temp	70 degree F
Proof Pressure	590 psia
Burst Pressure	960 psia

TABLE 5.17 Propellant/Pressurant Tank Characteristics

The fill and drain valves are used to service the propulsion subsystem during system functional evaluation to include leakage and cleanliness tests, loading and unloading, and prelaunch operations. The valves are manually operated and self contained.

The lines consist of titanium alloy tubing and fittings and interconnect the tank and thrusters via a pressure transducer and regulator. The transducer and regulator measure and maintain the proper inlet pressure to the operating thruster.

c. Summary of Subsystem Operations

Thruster operations can be performed with or without the solar arrays deployed. Thrust can be applied to desaturate the reaction wheels along any axis but ΔV for orbit maintenance can only be provided in the positive yaw or the positive roll directions. The positive roll thrusters are placed to provide ΔV for orbit maintenance without the need for reorientation of the spacecraft. Major orbit changes will require reorientation of the spacecraft to align the flight path of the spacecraft along the positive Z axis. Mission instrument deactivation may be required during major orbit corrections. The two thrusters along the east face could possibly impinge on the solar panels, depending on the angular position of the arrays. A electronic cutout cam would have to installed to prevent accidental firing and subsequent damage to the arrays. It is unlikely that this would effect AVHRR operations as the arrays operate $\pm 50^{\circ}$ degrees of the roll / yaw plane. The EHF payload however, sometimes requires the arrays to rotate $\pm 90^{\circ}$ roll / yaw plane necessitating close
management of solar array and thruster operations. As an additional precaution, the thrusters along the positive roll axis are canted out at an angle of 8°.

2. Detailed Mass/Power Summary

A detailed mass/power summary of the propulsion subsystem is provided in Table
5.18.

Element	Mass/kg	Power/W
0.2 lb Thruster (6)	4.4	54 (max)
Propellant Tank	5.9	0
Transducer/ Regulator	1.4	4
Tubing	1	0
Electronics	1.5	4
Drain/Fill Valves	1	0
Total	15.2	62

TABLE 5.18 Mass/Power Summary of Propulsion Subsystem

E. TELEMETRY AND TRACKING SUBSYSTEM

1. Functional Description

The TT\&C package for the MPS Bus is designed to be compatible with the Air Force SGLS system for satellite control. TT\&C is designed in the bus to operate at SHF frequencies that correspond to channel 1 of the SGLS ground terminal as follows:

Command Uplink: 1.763721 GHz
Telemetry Downlink: 2.2 GHz
Carrier 1: 2.2025 GHz
Carrier 2: 2.1975 GHz
The TT\&C package sends and receives data from the payload and/or the anti-earth face antenna through command controlled switches that allow the ground terminal to shift between payload antennas and the anti-earth face antenna. The anti-earth face antenna is a four element microstrip antenna that uses the same elements as the AVHRR antenna shown in Figure 3.2 and has a gain of 2.5 dB . The switches will probably be aligned so that during launch and activation, TT\&C will be accomplished with the SGLS system channel 1 to the anti-earth face antenna. Once the satellite is on station, the payload TT\&C will have been activated and the anti-earth face telemetry downlink can be put in standby. The antiearth face command receiver will remain active to provide a failsafe in case the satellite attitude control system fails.

FIGURE 5.6 TT\&C Package

The TT\&C consists of two major components as shown in Figure 5.6. These components are the remote tracking unit (RTU) and the remote command unit (RCU). The RTU is the interface between the TT\&C antenna systems and the RCU. The function of
the RTU is to take commands from the antennas and payload in the SGLS format and demodulate and decode them to the point where they can be handled by the RCU. The RTU also takes telemetry signals from the RCU, modulates and encodes them and sends them on to antennas.

FIGURE 5.7 Remote Tracking Unit

Figure 5.7 shows a block diagram of the RTU. On the command side of the circuit, the first function performed by the circuit is to check for a signal. The antennas and/or payload have filtered the command channel and modulated it to 1.763721 GHz . If the channel contains energy, the envelope detector and sample and hold circuit will use this energy to hold open an electronic switch to send the command signal on to the FSK demodulater. It is demodulated and decoded and sent on to a small processor that will check the error correction coding (ECC) of the signal.

ECC is a process in which bits are added to each symbol to provide redundancy in the data. A primary goal of ECC is to recognize a bit error in order to prevent improper commands being executed, but for low bit error rates the ECC could be redundant enough to actually correct bit errors. An example of ECC is the Hamming Code. The Hamming code is a process in which check bits are inserted in a data stream that tell whether a group of bits has an odd or even number of 1's. (odd or even parity). If the check bit says that a group of data bits should have even parity and the receiver counts an odd number of l's in that group, then a bit error has occured. With redundant check bits, the bit in error may be deduced and corrected. If there are not enough check bits or too many bit errors, then the data will have to be retransmitted. MIL STD 1582 requires that ECC be used to allow for higher bit error rates and prevent improper TT\&C commands. This report will not explore them in detail.

On the telemetry downlink side of the RTU, the telemetry signal comes from the RCU. ECC is inserted in the data, the data is encoded and the FSK modulater prepares it to be sent to the antennas at 2.2 GHz . The RTU only handles data that is compatible with channel 1 of SGLS. Therefore, if another format or frequency is desired, the payload will have to modulate and process the data itself. This allows for the MPS bus to be somewhat modular.

FIGURE 5.8 Remote Çommand Unit

Figure 5.8 shows a block diagram of the RCU. On the command side of the circuit, the signal comes from the RTU and goes through a processor that contains all the recognizable command algorithms. The signal will be compared to these algorithms and, when a match is found, the CPU executes the command. On the telemetry side of the circuit. Data is gathered from all the sensors throughout the satellite (including the payload) and compiled into a telemetry downlink signal that is sent to the RTU.

The MPS bus has a GPS microreceiver onboard that operates with the GPS satellite system to triangulate the position of the receiver using a method known as Time Difference
of Arrival. If four GPS satellites are in view, the position of the satellite can be determined to as close as 50 ft . This means that a tracking beacon will not be necessary and the navigation of the satellite will be autonomous. One problem with GPS is that it is a downlooking satellite and is designed to link with ground based systems. A satellite system will have to lock onto the GPS satellites while they are pointed at the earth. The satellite will most likely be receiving lower powered side-lobs and will require a significant antenna gain in order to achieve the 34 dB C/N ratio that is required to receive analog data. If one GPS satellite can be tracked then a solution can be determined, but it may take some time. Also, MPS with an EHF payload will spend some time above the orbital altitude of GPS and,therefore, may not be able to provide navigation information while the satellite is above 20000 Km . The orbit determination will have to be done at lower altitudes.

In the event that the GPS receiver is not accurately predicting the position of the satellite, a tracking beacon in the RCU can be turned on with a command signal and manual range and range rate tracking can be accomplished. For manual tracking, the accuracy is ranging to 50 ft and range rate to $.120 \mathrm{ft} / \mathrm{sec}$. The tracking beacon is a pseudonoise code which is transmitted by the ground station, downconverted in the satellite, and retransmitted. It is anticipated that the GPS microreceiver will be reliable and the tracking beacon will remain in standby for most of the design life.

Table J.1 shows the link analysis data for the telemetry and command signals. For the EHF payload, the payload sends TT\&C data through either the VBWA or two earth coverage feedhoms mounted on the earth face of the payload with the VBWA assembly as shown in Figure 2.3. One E/C feedhorn is sized for 1.763721 GHz and the other is sized for 2.2 GHz . If the variable beamwidth antenna fails, TT\&C can be accomplished with the E / C antennas. The link margin at apogee for the E / C feedhorns is 6.31 dB on the uplink and 16.66 dB on the downlink. The link margin for the Variable Beamwidth Antennas is above 20 dB for almost all of the orbit.

For the AVHRR payload, the link analysis is shown in Table J. 2 and is compatible with the TIROS-N earth station. The analysis shows that the satellite will have excess margin to close the link.

F. STRUCTURAL SUBSYSTEM

1. Functional Description

The spacecraft bus structure was designed to fit within the 46 inch diameter Pegasus shroud with two folding solar panels and to fit within the Taurus shroud with three. Pentagonal, hexagonal, and octagonal shapes for the bus were explored, but a rectangular design was chosen for simplicity and ease of assembly. The bus is built on a rectangular frame that is comprised of hollow rectangular cross-section tubing made from 6061-T6 aluminum. Fastened to this frame are five load supporting honeycomb panels with aluminum faceskins, one panel being the Anti-earth face. The sixth side of the spacecraft bus is the earth/payload face. The entire spacecraft is mounted to Pegasus with a standard Marmon clamp assembly. Total weight of the dry standard bus structure is 45 pounds for the AVHRR configuration and 59 pounds for the EHF configuration.

2. Requirements

The goal of modularity was balanced with the requirement to launch within 72 hours. This requirement to be launched within 72 hours severely limited the amount of modularity to interchanging the payload face and perhaps removing or adding very select equipment. Therefore, the panels are not removable and are permanently fastened to the frame. The frame and panel construction was designed to withstand Pegasus launch loads as depicted in Table 5.19.

	$\mathrm{X}($ Roll $)$ (g)	$\mathrm{Y}($ Pitch $)$ (g)	Z (Yaw) (g)
Flight Mode	+.9	+.822	+3.5
Captive Carry	-.68	-.922	-1.4
Powered Flight	+0	+.5	+2.8
	-8.5	-.5	-1.0

TABLE 5.19 Accelerations at Payload Interface

3. Summary of Subsystem Operations

a. Frame Construction

The rectangular frame is comprised of aluminum rectangular tubing. The frame is designed to withstand the axial and lateral loads of the Pegasus launch while the honeycomb panels are designed for equipment mounting only. The axial tubing has a cross sectional area of $11 / 2 \times 2$ inches O.D. and an average wall thickness of .125 inches. The lateral tubing has cross sectional dimensions of $1 \times 11 / 2$ O.D. with .125 inch thickness. The factor of safety used for both lateral and axial loads was 1.5. The axial tubing is oriented so the 2 inch length is parallel to the +Z direction. This is to maximize the area moment of inertia and to minimize deflection of the beam. A cross sectional view of an axial frame member is depicted in Figure 5.9

FIGURE 5.9 Cross-section of Tubular Frame

b. Honeycomb Panels

The 0.375 inch honeycomb panels with 0.004 inch faceskins are designed to meet design criteria for minimum natural frequency and for stress due to dynamic loads. The
primary purpose of the panel design is to be have the surface area to mount equipment. The honeycomb panels are not designed to absorb either the axial or lateral loads of launch. The honeycomb panels are simply supported along their four sides. A typical honeycomb panel is depicted in Figure 5.10.

FIGURE 5.10 Typical Honeycomb Panel

c. Payload Mechanical Interface

For the separable payload interface, the MPS bus uses a slightly modified Orbital Science Corporation Marmon clamp design. The OSC design was modified to allow clearance for thrusters on the anti-earth face. The design still attaches directly to the Pegasus Stage 3 avionics deck, but the clearance between the avionics shelf and the payload attachment plane is increased from three to five inches. The design uses a standard bolt cutter separation system with four springs supplying an initial push-off force of 330 N (75 lbf). The Marmon clamp is depicted in Figure 5.11.

FIGURE 5.11 Marmon Clamp Design

d. Earth Face

The mass and structural requirements of this face are dependent of the payload chosen. The 62 lb AVHRR is affixed directly to a 1 inch honeycomb panel whereas the 85 lb EHF payload is supported by a $6^{\prime \prime} \times 32^{\prime \prime} \times 28^{\prime \prime}$ aluminum frame. The thickness of the aluminum face skin is .1 mm . The frame for the EHF configuration supports the EHF feedhorn assembly, the variable beam antenna, the EHF and TT\&C R/Ts, and the Optical Solar Reflectors.

e. Fuel Tank Support

The fuel tank is supported at its base and by four structural members attached to a waistband. The base support affixes the fuel tank to the anti-earth face of the bus. It is a 22 inch diameter flat disc that transmits the axial force of the fuel tank during launch
directly to the Marmon clamp. The support members are 1 inch aluminum round tubing capable of supporting the lateral loads of launch.

4. Margins of Safety

The margins of safety for the frame/panel design are summarized in Table 5.20.

Component	Expected Max Load	Yield Load	Margin of Safety
Aluminum Frame	$12,600 \mathrm{psi}$ (compression)	$37,000 \mathrm{psi}$	32
Aluminum Frame	900 psi (bending)	$37,000 \mathrm{psi}$	1.9
Aluminum Frame	$1,000 \mathrm{psi}$ (shear)	$30,000 \mathrm{psi}$	29
Honeycomb panel	20 g	$37,000 \mathrm{psi}$	1.1
Honeycomb panel	$11,406 \mathrm{psi}$ (facing stress)	$24,000 \mathrm{psi}$	1.1

TABLE 5.20 Margins of Safety

5. Detailed Mass Summary

The components of the structural subsystem are listed in Table 5.21. Figures listed with an asterisk are to be read AVHRR/ EHF

Component	Mass (kg)
Lateral Rectangular Tubing (8)	6.01
Axial Rectangular Tubing(4)	3.40
Honeycomb panels (5)	.85
Fuel tank waist band	.68
Fuel tank base	1.36
Fuel tank structural supports (4)	.73
Marmon clamp assembly	5.27
Earth Face	$.18 / 6.61 *$
Misc.Hardware	2.27
Total	$20.75 / 27.13 *$

TABLE 5.21 Mass Summary of Structural Subsystem

REFERENCES

Koczor, Ronald J., Multispectral Sensing with the AVHRR, ITT Aerospace/Optical Division, Fort Wayne, IN, Presented at the North American NOAA Polar Orbiters Users Group Meeting, Boulder, CO, July 14-16, 1987.

Owens, Larry; Cechowski, Donald; and Ames, Alan J., Characteristics of the AVHRR/3 and HIRS/3 for NOAA-K,L,M, ITT Aerospace/Optical Division, Fort Wayne, IN,Presented at the Fourth Conference on Satellite Meteorology and Oceanography, San Diego, May 16-19, 1989.

Thompson, W. David, Spectrum Research, Inc., The Mini METSAT: A Small Low-Cost Advanced Technology Weather System, Presented at the Third Annual AIAA/USU Conference on Small Satellites, Utah State University, Logan, UT, September 26-28, 1989.

Jackson, John H. and Wirtz, Harold G., Theory and Problems of Statics and Strength of Materials, McGraw-Hill, 1983.

Agrawal, Brij N., Design of Geosynchronous Spacecraft, Prentice-Hall,1986.

Ha, Tri T.., Digital Satellite Communications, New York, Macmillan, 1986.

Johnson, Richard C. and Jasik, Henry, Antenna Engineering Handbook, 2d Ed, New York, 1984

Tada, H. Y., et. al., Solar Cell Radiation Handbook, Third Edition, JPL Publication 8269. November 1, 1982.

JPL and NASA, Solar Cell Array Design Handbook, Volumes 1 and 2., JPL Publication SP 43-38. October 1976.

Josefson, C. et. al.,Spacecraft Design Project; High Latitude Communications Satellite, Naval Postgraduate School, December 1989.

National Oceanic and Atmospheric Administration Technical Report NESDIS, Final Report On The Modulation And EMC Considerations For The HRPT Transmission System In The Post NOAA-M Polar Orbiting Satellite Era., U.S. Dept. of Commerce, Washington D.C., June 1989.

Hussey, W. John, The Tiros-NINOAA Operational Satellite System., U.S. Dept of Commerce, NOAA, Washington D.C., May 1979

Air Force Military Standard 1582, Low Data Rate EHF Communication Standards, 18 April, 1990

Space Systems Control Division, Space Flight Operations, Air Force Satellite Control Facility Space/Ground Interface, Aerospace Report No. TOR-0059(6110-01)-3 Reissue H., June 1987

APPENDIX_A

ORBITAL DYNAMICS

Appendix A. 1

Program SUN_ANGLE2

Listing and Sample Output

PROGRAM SUN_ANGLE2

00

C
C AUTHOR: Gary E. Yale
C
C DATE: Nov 90
C
C OBJECTIVE:
C Computes the sun angle on each face of a S / C for up to 360 points
C in the S/C orbit. The first set of calculations are for the orbit
C geometry on the first day of Winter. The next three sets of C calculations are for the first day of each of the other seasons in order.
C
C ASSUMPTIONS:
C Circular sunsynchronous orbit
C The solar arrays are free to rotate around the S / C roll axis
C
C SUPPORT MODULES: ANGLE
CAOSS
DOT
MAG
ROT1
ROT2
ROT3
SUNANGLES

INPUTS:

1) S / C orbit inclination
2) Longitude of the Ascending Node on the first day of Winter
3) The number of points to evaluate in the S/C orbit on the first day of each season. This number cannot exceed 360 (evaluate the angles at intervals of as small as every one degree in the S / C orbit) without changing the variable declarations for the arrays containing the angles.
C
C
C
C VARIABLE DEFINITIONS:
C
C All vectors have three components and their magnitude is in the
C fourth position
C
C INCL: Orbit Inclination
C OMEGA: Longitude of the Ascending Node on the first day of winter
C POINTS: The number of locations to evaluate in one orbit
C SEASON: Counter to indicate the season
C
C
C COORDINATE SYSTEMS:
C
C System: Sun (Denoted by "S")
C Origin: Center of Earth
C Principle Axis: Directly at sun

OPEN (UNIT $=8$, FILE $=$ 'Sun Angle2.Out', STATUS $=$ 'NEW')
000

C

C Useful Constants
C
C DEG2RAD: Conversion Factor from Degrees to Radians
C RAD2DEG: Conversion Factor from Radians to Degrees
C TILT: Tilt of Earth's spin axis wrt normal to the ecliptic
C NEGTILT: Negative of TILT
C
000

$$
\begin{aligned}
& \text { DEG2RAD }=\mathrm{PI} / 180.0 \mathrm{DO} \\
& \text { RAD2DEG }=180.0 \mathrm{DO} / \mathrm{PI} \\
& \text { TILT }=23.5 \mathrm{D} 0^{*} \text { DEG2RAD } \\
& \text { NEGTILT }=-1.0 \mathrm{DO} * \mathrm{TILT}
\end{aligned}
$$

00

C
C Get the input values
C Echo check them to the output file
C
00
5 WRITE(*,*)'Orbit Inclination (deg)?'
READ(*,") INCL
WRITE(*, ${ }^{*}$)'Orbit Longitude of the Ascending Node (deg)'
WRITE $\left(*,{ }^{*}\right)^{\prime}$ on the first day of winter?'
READ(*,*) OMEGA
WRITE $\left({ }^{*}, *\right)^{\prime}$ 'Number of points to evaluate in one orbit'
READ(**)POINTS
WRITE $(8,1000)$
WRITE $(8,1020)$ INCL
WRITE $(8,1030)$ OMEGA
WRITE $(8,1040)$ POINTS
00
C
C Convert the angles to radians
C
00
INCL = INCL * DEG2RAD
OMEGA = OMEGA * DEG2RAD

C
C Write the header information to the output file
C
000

```
WRITE(*,1090)
```

WRITE $(8,1090)$

000 C
C Initialize the season counter

SEASON = 0
000
C
C The next line begins the loop that cycles through the seasons
C beginning with Winter
C 000
100 SEASON = SEASON + 1
GO TO (1, 2, 3, 4), SEASON
1 CONTINUE
000 C
C WINTER Calculations
C
00
00
C
C Direction of the sun vector expressed in sun coordinates
$\mathrm{C} \quad$ SunS $=(1) \mathrm{S} 1+(0) \mathrm{S} 2+(0) \mathrm{S} 3$
C Define the sun vector for the first day of Winter
C 00
SunS(1) $=1.000$
SunS(2) $=0.000$
SunS(3) $=0.0 \mathrm{DO}$
CALL MAG(SunS)
CALL ROT2(SunS, NEGTILT, SunSeason)
GOTO 10

2 CONTINUE
00
C
C SPRING Calculations
C 00
00

C

C Direction of the sun vector expressed in sun coordinates
C \quad SunS $=(1) \mathrm{S} 1+(0) \mathrm{S} 2+(0) \mathrm{S} 3$
C Define the sun vector for the first day of Spring
C 000
SunS(1) $=1.000$
SunS(2) $=0.0 \mathrm{DO}$
$\operatorname{SunS}(3)=0.000$
CALL MAG(SunS)
CALL ROT1 (SunS, NEGTILT, SunSeason)
GO TO 10
3 CONTINUE
00 C
C SUMMER Calculations

C

000
00
C Direction of the sun vector expressed in sun coordinates
C \quad SunS $=(1) S 1+(0) S 2+(0) S 3$
C Define the sun vector for the first day of Summer
C
000
SunS(1) $=1.0 \mathrm{DO}$
SunS(2) $=0.0 \mathrm{DO}$
SunS(3) $=0.0 \mathrm{DO}$
CALL MAG(SunS)
CALL ROT2(SunS, TILT, SunSeason)
GO TO 10
4 CONTINUE

C
C FALL Calculations
C
00
00
C
C Direction of the sun vector expressed in sun coordinates
C \quad SunS $=(1) S 1+(0) S 2+(0) S 3$
C
C Define the sun vector for the first day of Fall

C

000
SunS(1) $=1.000$
SunS(2) $=0.000$
SunS(3) $=0.0 \mathrm{DO}$
CALL MAG(SunS)
CALL ROT1(SunS, TILT, SunSeason)
10 CALL SUNANGLES(SunSeason, INCL, OMEGA, POINTS, SunLeft, SunRight,
$+$
SunFront, SunRear, SunTop, SunBot, SARotate, SunSA)
00 C
C Choose the appropriate write statement based on the season
C
$000 c$
GO TO (11, 12, 13, 14), SEASON
11 WRITE(*,1045)
WRITE $(8,1045)$
GO TO 30
12 WRITE(*,1046)
WRITE $(8,1046)$
GO TO 30
13 WRITE(*, 1047)
WRITE $(8,1047)$
GOTO 30

```
14 WRITE(*,1048)
    WRITE(8,1048)
    GOTO 30
```


00

C

C Convert sun angle to the S / C left side to degrees before writing.
C Do same for S/C right side.
C
C These two angles are constant as the S / C progresses through one
C revolution in its orbit
C
000

30 WRITE(*,1050)SunLeft * RAD2DEG
 WRITE(8,1050)SunLeft * RAD2DEG

WRITE(*,1060)SunRight * RAD2DEG
WRITE $(8,1060)$ SunRight * RAD2DEG
WRITE(*,1070)
WRITE $(8,1070)$

00
C
C The sun angles to the other S/C faces vary with the location in C the orbit. The next DO LOOP converts those angles at the various
C orbit locations to degrees before writing. The following angles
C are written to a table:
C THETA: Location of S/C in orbit measured in direction of S/C motion from the point where the S/C crosses the plane of the ecliptic in a northerly direction
Sun angle to the S/C front face
C TOP: Sun angle to the S/C top face
C BOT: Sun angle to the S / C bottom face
C SAROT: Angle the solar arrays should rotate to maximize
C power output
C SA: Sun angle to the solar arrays after they have rotated
C
00
DO $401=1$, POINTS
THETA $=1 * 360.000 /$ POINTS
Front = SunFront(I) * RAD2DEG
Rear = SunRear(I) * RAD2DEG
Top = SunTop(1) * RAD2DEG
Bot = SunBot(I) * RAD2DEG
SARot = SARotate(I) * RAD2DEG
SA = SunSA(1) * RAD2DEG
WRITE(*,1080) I,THETA,Front,Rear,Top,Bot,SARot,SA
WRITE $(8,1080)$ I,THETA,Front,Rear,Top,Bot,SARot,SA
40 CONTINUE
000
C
C Check to see if the season just calculated was the last season
C for this case
C
000
IF (SEASON .NE. 4) THEN
GO TO 100
ENDIF
00
C
C See if there is another case to run
C
$000 c$
WRITE(*: *)' Do You have another case? Y/N'
READ(*,*)AGAIN
IF ((AGAIN .EQ. "Y") .OR. (AGAIN .EQ. "y")) THEN

GOTO5
ENDIF
1000 FORMAT(II/)
1020 FORMAT(15X,F7.3,' Orbit Inclination (deg)')
1030 FORMAT(15X,F7.3,' Orbit Longitude of the Ascending Node (deg) $\% / /$,
$+\quad 14 \mathrm{X}, \quad$ on the first day of Winter')
1040 FORMAT($15 \times, 17$, Number of points to evaluate in one revolution')
1045 FORMAT (IIIII,15X,'The following angles apply for WINTER')
1046 FORMAT (IIIII,15X,'The following angles apply for SPRING')
1047 FORMAT (IIII,15X,'The following angles apply for SUMMER')
1048 FORMAT ($/ 1 / 1 / 1,15 X$,'The following angles apply for FALL')
1050 FORMAT(l,15X,F7.3,' Sun Angle to S/C Left Side')
1060 FORMAT (15X,F7.3,' Sun Angle to S/C Right Side')
1070 FORMAT $\langle, 15 X$,'Point OrbAng SunFront SunRear SunTop', +5X,'SunBot S/A Rotate SunSA')
1080 FORMAT(15X,14,7F10.3)
1090 FORMAT(/,21X,'DEFINITIONS:',/,26X,
+'OrbAng: Angle between equator and S / C in orbital plane',/, +26X,'SunFront: Sun Angle to S/C Front Side',/, +26X,'SunRear: Sun Angle to S/C Rear Side',/, +26 X','SunTop: Sun Angle to S/C Top Side',', +26X,'SunBot: Sun Angle to S/C Bottom Side',/,
+26X,'S/A Rotate: Angle S/A Should Rotate for min Sun Angle',/, +26X,'SunSA: Sun Angle to Solar Array after Array Rotation')

END

SUBROUTINE SUNANGLES(SunStart, INCL1, OMEGA1, TRIALS, LEFT, RIGHT, $+\quad$ FRONT, REAR, TOP, BOTTOM, ROTATE, ARRAY

000
C
C AUTHOR: Gary E. Yale
C
C DATE: Nov 90
C
C OBJECTIVE:
C Computes the sun angle on each face of a S / C for up to 360 points
C in the S/C orbit.
C
C ASSUMPTIONS:
C Circular sunsynchronous orbit
C The solar arrays are free to rotate around the S / C roll axis
C
C SUPPORT MODULES:
ANGLE
C CROSS
C
DOT
C
C
C
C

IIIIIIIII VARIABLE DEFINITIONS IIIIIIIII

All vectors have three components and their magnitude is in the fourth position

INPUT VARIABLES:
SunStart: Sun vector expressed in season system
INCL1: S/C orbit inclination (rad)
OMEGA1: S/C orbit longitude of the ascending node on the first day of Winter (rad)
TRIALS: Number of evenly spaced points to evaluate in one S / C orbit

OUTPUT VARIABLES:
LEFT: Sun angle to the S / C left face
RIGHT: Sun angle to the S / C right face
FRONT: Array of sun angles to the S / C front face
REAR: Array of sun angles to the S / C rear face
TOP: Array of sun angles to the S / C top face
BOTTOM: Array of sun angles to the S / C bottom face
ROTATE: Array of angles the solar arrays should rotate to provide maximum power
ARRAY: Array of sun angles to the solar arrays after they rotate
LOCAL VARIABLES:
Sunl: Sun vector expressed in intermediate coordinate system
SunO: Sun vector expressed in orbit normal coordinate system
SunB: Sun vector expressed in body coordinate system
SVRAN: Vector normal to plane containing sun vector and roll axis
SANF: Vector normal to solar array face
BETA: Dummy variable for various angles
CHECK: Determines whether two vectors are perpendicular
COORDINATE SYSTEMS:
System: \quad Sun (Denoted by "S")
Origin: Center of Earth
Principle Axis: Directly at sun
Third Axis: Perpendicular to Ecliptic (+ "North")
Second Axis: Complete Right Hand Coordinate System
Principle Plane: Ecliptic
System: Season (Denoted by "Start")
Origin: Center of Earth
Principle Axis: Sun vector projected into equatorial plane
Third Axis: Perpendicular to equator (North)

C System: Intermediate (Denoted by "I")
C Origin: Center of Earth
C Principle Axis: Intersection of S/C orbit plane and equator C (Ascending Node)
C Third Axis: Perpendicular to equator (North)
C Second Axis: Complete Right Hand Coordinate System
C Principle Plane: Equatorial plane
$\begin{array}{ll}\mathrm{C} & \text { System: } \\ \mathrm{C} & \text { Orbit Normal (Denoted by "O") } \\ \mathrm{C} & \text { Origin: }\end{array} \quad$ Center of Earth
C Origin
C
C
Third Axis: Perpendicular to S/C orbit plane

EXTERNALANGLE

 EXTERNALDOTINTEGER TRIALS, I
REAL*8 ANGLE, DOT
REAL* 8 LEFT, RIGHT
REAL"8 FRONT(180), REAR(180), TOP(180), BOTTOM(180)
REAL*8 ROTATE(180), ARRAY(180)
REAL*8 SunStart(4), Sunl(4), SunO(4), SunB(4), SVRAN(4), SANF(4)
REAL*8 LeftB(4), RightB(4), FrontB(4), RearB(4), TopB(4), BotB(4)
REAL"8 BETA, INCL1, OMEGA1, CHECK

000

C
C Express Sun Vector in the Intermediate Coordinate System, Sunl.
C BETA: Angle between SunStart Vector and Ascending Node.
C 000
000
$B E T A=(P I / 2.0 D 0)+$ OMEGA1
CALL ROT3(SunStart, BETA, Sunl)
000
C
C Express Sun Vector in the Orbit Normal Coordinate System, SunO C

CALL ROT1(Sunl, INCL1, SunO)

000

C Because of the way the Orbit Normal Coordinate System is defined,
C and because the spacecraft is presumed to keep one face pointing
C toward the Earth, the angle between the sun vector and the vector
C normal to the spacecraft's left face is independent of motion
C in the orbital plane. The vector normal to the left face has
C only one component which is the same whether expressed in Body or
C Orbit Normal Coordinate Systems. The same can be said of the
C angle between the sun vector and the normal to the spacecraft's
C right face.
C
LeftB: Vector Normal to S / C 's Left side expressed in Body Coordinate System (along the positive B3 axis)
C RightB: Vector Normal to S/C's Right side expressed in Body
$\mathrm{C} \quad$ Coordinate System (along the negative B3 axis)
C LEFT: Angle between Sun Vector and the S/C's Left side
C RIGHT: Angle between Sun Vector and the S/C's Right side
C
00

```
LeftB(1) = 0.0D0
LeftB(2) = 0.000
LeftB(3) = 1.0D0
CALL MAG(LeftB)
LEFT = ANGLE(SunO, LeftB)
RightB(1) \(=0.0 \mathrm{DO}\)
RightB(2) \(=0.0 \mathrm{DO}\)
RightB(3) \(=-1.0 \mathrm{DO}\)
CALL MAG(RightB)
RIGHT = ANGLE(SunO, RightB)
```

000
C
C The other faces have the following Body Coordinate System definitions
C
FrontB: Vector Normal to S/C's Front side expressed in Body
Coordinate System (along the positive B2 axis)
Leading Face
RearB: Vector Normal to S/C's Rear side expressed in Body Coordinate System (along the negative B2 axis)
Trailing Face
TopB: Vector Normal to S/C's Top side expressed in Body Coordinate System (along the positive B1 axis) Face away from Earth
BotB: Vector Normal to S/C's Bottom side expressed in Body Coordinate System (along the negative B1 axis) Earth Face

FrontB(1) $=0.000$
FrontB(2) $=1.0 \mathrm{DO}$
FrontB(3) $=0.0 \mathrm{DO}$
CALL MAG(FrontB)
RearB(1) $=0.0 \mathrm{DO}$
RearB(2) $=-1.0 \mathrm{DO}$
$\operatorname{RearB}(3)=0.0 \mathrm{DO}$
CALL MAG(RearB)
$\mathrm{TopB}(1)=1.0 \mathrm{DO}$
TopB(2) $=0.000$
$\mathrm{TopB}(3)=0.0 \mathrm{DO}$
CALL MAG(TopB)
$\operatorname{Bot} B(1)=-1.000$
$\operatorname{BotB}(2)=0.0 \mathrm{DO}$
$\operatorname{BotB}(3)=0.0 \mathrm{DO}$
CALL MAG(BotB)
00
C
C Rotate the spacecraft through one orbit to find the angles between
C the sun vector and the other spacecraft faces. The rotation begins
C at the ascending node. The rotation actually converts the sun
C vector from the orbit normal coordinate system to the body
C coordinate system.
C
C BETA: Location of the S/C measured from the ascending node
C FRONT: Angle between Sun Vector and the S/C's Front side
C REAR: Angle between Sun Vector and the S/C's Rear side
C TOP: Angle between Sun Vector and the SIC's Top side
C BOTTOM: Angle between Sun Vector and the S/C's Bottom side
C
00
DO $101=1$, TRIALS
BETA $=I^{*}\left(2.00^{*} \mathrm{PI} /\right.$ TRIALS $)$
CALL ROT3(SunO, BETA, SunB)
FRONT(I) $=$ ANGLE(SunB, FrontB)
REAR $(1)=$ ANGLE(SunB, RearB)
TOP(I) = ANGLE(SunB, TopB)
BOTTOM $(I)=$ ANGLE(SunB, BotB)
00
C
C Find the vector normal to the plane containing
C the roll axis and the sun vector
C
000
CALL CROSS(FRONTB, SunB, SVRAN)

SUBROUTINE ROT1(VIN, T, VOUT)

00
C
C AUTHOR: Gary E. Yale
C
C DATE: Nov 90
C
C OBJECTIVE: Expresses a vector in a coordinate system which is
C rotated T radians around the first axis as compared to the
C original coordinate system
C
C SUPPORT MODULES: MAG
C IIIIIIII VARIABLE DEFINITIONS IIIIIIII
C
C All vectors have three components and their magnitude is in the
C fourth position
C
C INPUT VARIABLES:
C
C VIN: Input vector
$\mathrm{C} \quad \mathrm{T}$: Angle of rotation (rad)
C
C OUTPUT VARIABLES:
C
C VOUT: Output vector
C
C LOCAL VARIABLES:
C
C C. Cosine of the input angle, T
C $\quad \mathrm{S}$: \quad Sine of the input angle, T
C TEMP: Temporary storage location
C
$00 c$

```
REAL"8 VIN(4), T, VOUT(4)
REAL*8 C, S, TEMP
TEMP = VIN(3)
C = DCOS(T)
S = DSIN(T)
VOUT(3) = C * VIN(3) - S * VIN(2)
VOUT(2) = C * VIN(2) + S* TEMP
VOUT(1) = VIN(1)
CALL MAG(VOUT)
RETURN
END
```

SUBROUTINE ROT2(VIN, T, VOUT)
000
C
C AUTHOR: Gary E. Yale
C
C DATE: Nov 90
C OBJECTIVE: Expresses a vector in a coordinate system which is
C rotated T radians around the second axis as compared to the
C original coordinate system
C
C SUPPORT MODULES: MAG
C $\quad / I I I I I I I$ VARIABLE DEFINITIONS IIIIIIIII
C
C
All vectors have three components and their magnitude is in the
C fourth position
C
C INPUT VARIABLES:
C
C VIN: Input vector
$\mathrm{C} \quad \mathrm{T}$: Angle of rotation (rad)
C
C OUTPUT VARIABLES:
C
C VOUT: Output vector
C LOCAL VARIABLES:
C
$C \quad$ C. Cosine of the input angle, T
$\mathrm{C} \quad \mathrm{S}: \quad$ Sine of the input angle, T
C
TEMP: Temporary storage location
C
000
REAL*8 VIN(4), T, VOUT(4)
REAL*8 C, S, TEMP
TEMP $=\operatorname{VIN}(3)$
$C=\operatorname{DCOS}(T)$
$\mathrm{S}=\mathrm{DSIN}(\mathrm{T})$
$\operatorname{VOUT}(3)=C * \operatorname{VIN}(3)+S * \operatorname{VIN}(1)$
$\operatorname{VOUT}(1)=C * \operatorname{VIN}(1)-S * T E M P$
$\operatorname{VOUT}(2)=\operatorname{VIN}(2)$
CALL MAG(VOUT)
RETURN
END

SUBROUTINE ROT3(VIN, T, VOUT)

000
C
C AUTHOR: Gary E. Yale
C
C DATE: Nov 90
C
C
OBJECTIVE: Expresses a vector in a coordinate system which is
C rotated T radians around the third axis as compared to the C original coordinate system
C
C
SUPPORT MODULES: MAG
IIIIIIIII VARIABLE DEFINITIONS IIIIIIII
All vectors have three components and their magnitude is in the
C fourth position
C INPUT VARIABLES:
C
C VIN: Input vector
C
T : Angle of rotation (rad)
C OUTPUT VARIABLES:
C VOUT: Output vector
C LOCAL VARIABLES:
C
$\mathrm{C} \quad \mathrm{C}$ Cosine of the input angle, T
$\mathrm{C} \quad \mathrm{S}: \quad$ Sine of the input angle, T
C TEMP: Temporary storage location
C 000
00

```
REAL*8 VIN(4), T, VOUT(4)
REAL* 8 C, S, TEMP
TEMP = VIN(2)
\(\mathrm{C}=\mathrm{DCOS}(\mathrm{T})\)
\(S=\operatorname{DSIN}(T)\)
\(\operatorname{VOUT}(2)=C * \operatorname{VIN}(2)-S^{*} \operatorname{VIN}(1)\)
\(\operatorname{VOUT}(1)=C^{*} \operatorname{VIN}(1)+S^{*}\) TEMP
\(\operatorname{VOUT}(3)=\operatorname{VIN}(3)\)
CALL MAG(VOUT)
RETURN
END
```


SUBROUTINE MAG(VECT)

00
C
C AUTHOR: Gary E. Yale
C
C DATE: Nov 90
C
C OBJECTIVE: Find the magnitude of a vecior and store that value
C as the fourth element of the vector array
C SUPPORT MODULES: NONE
C IIIIIIIII VARIABLE DEFINITIONS IIIIIII!
C All vectors have three components and their magnitude is in the C fourth position
C INPUT VARIABLES:
C VECT: Vector with an unknown value for its magnitude
C
C OUTPUT VARIABLES:
C VECT: Vector with its magnitude as the fourth element
C LOCAL VARIABLES: NONE
C 00
000
REAL* $8 \mathrm{VECT}(4)$
$\operatorname{VECT}(4)=\operatorname{DSQRT}\left(\operatorname{VECT}(1)^{* *} 2+\operatorname{VECT}(2) * 2+\operatorname{VECT}(3)^{* *} 2\right)$
RETURN
END

SUBROUTINE CROSS(A, B, C)
$00<$
C
C AUTHOR: Gary E. Yale
C
C DATE: Nov 90
C
C OBJECTIVE: Find the cross product of two vectors
C
$C=A X B$
C
C
SUPPORT MODULES: MAG
C
C
C
IIIIIIIIII VARIABLE DEFINITIONS IIIIIIIII
C
C
All vectors have three components and their magnitude is in the

C fourth position
C
C INPUT VARIABLES:
C
C A. First vector in the vector cross product
C B: Second vector in the vector cross product
C
C OUTPUT VARIABLES:
C
C C. Result of the vector cross product
C
C LOCAL VARIABLES: NONE
C
$00<$
REAL*8 $\mathrm{A}(4), \mathrm{B}(4), \mathrm{C}(4)$
$C(1)=A(2) * B(3)-A(3) * B(2)$
$C(2)=A(3) * B(1)-A(1) * B(3)$
$C(3)=A(1) * B(2)-A(2) * B(1)$
CALL MAG(C)
RETURN
END

FUNCTION ANGLE (VECTA, VECTB)
000
C
C AUTHOR: Gary E. Yale
C
C
DATE: Nov 90
C
C
C
OBJECTIVE: Find the angle between two vectors using the property
C of the dot product (the angle is the inverse cosine of the dot product divided by the product of their magnitudes)
C
C SUPPORT MODULES: DOT
IIIIIIIII VARIABLE DEFINITIONS IIIIIIIII
C
C All vectors have three components and their magnitude is in the
C fourth position
C
C INPUT VARIABLES:
C
C VECTA: One of the vectors defining an angle
C VECTB: Second vector defining an angle
C
C OUTPUT VARIABLES:
C
C ANGLE: The angle between the two vectors (rad)
C
C LOCAL VARIABLES: NONE

C
000
EXTERNAL DOT
REAL* 8 VECTA(4), VECTB(4)
REAL*8 ANGLE
ANGLE = DACOS(DOT(VECTA, VECTB) / (VECTA(4) * VECTB(4))) RETURN END

FUNCTION DOT (VECTA, VECTB)
$00 c$
C
C AUTHOR: Gary E. Yale
C
C DATE: Nov 90
C
C OBJECTIVE: Find the dot product of two vectors
C
C SUPPORT MODULES: NONE
C
C IIIIIIIII VARIABLE DEFINITIONS IIIIIIII
C
C All vectors have three components and their magnitude is in the
C fourth position
C
C INPUT VARIABLES:
C VECTA: First vector
C VECTB: Second vector
C
C OUTPUT VARIABLES:
C
C DOT: Dot product of two vectors
C
C LOCAL VARIABLES: NONE
C
$00 c$
REAL*8 VECTA(4), VECTB(4)
REAL*8 DOT
DOT $=\operatorname{VECTA}(1)^{*} \operatorname{VECTB}(1)+\operatorname{VECTA}(2)^{*} \mathrm{VECTB}(2)+\operatorname{VECTA}(3)^{*} \mathrm{VECTB}(3)$ RETURN
END

98.750	Orbit Inclination (deg)	
37.500	Orbit Longitude of the Ascending Node (deg) on the first day of Winter	
72	Number of points to evaluate in one revolution	
	DEFINITIONS: OrbAng:	Angle between equator and S/C in orbital plan
	SunFront:	Sun Angle to S/C Front Side
	SunRear:	Sun Angle to S/C Rear Side
	SunTop:	Sun Angle to S/C Top Side
	SunBot:	Sun Angle to S/C Bottom Side
	S/A Rotate:	Angle S/A Should Rotate for min Sun Angle
	SunSA:	Sun Angle to Solar Array after Array Rotation

The following angles apply for WINTER
38.763 Sun Angle to S/C Left Side
141.237 Sun Angle to S/C Right Side

Point	OrbAng	SunFront	SunRear	SunTop	SunBot	S/A Rotate	SunSA
1	5.000	103.515	76.485	125.510	54.490	36.683	13.515
2	10.000	100.497	79.503	126.799	53.201	37.532	10.497
3	15.000	97.428	82.572	127.778	52.222	38.155	7.428
4	20.000	94.324	85.676	128.429	51.571	38.559	4.324
5	25.000	91.200	88.800	128.737	51.263	38.747	1.200
6	30.000	88.070	91.930	128.696	51.304	38.722	1.930
7	35.000	84.949	95.051	128.307	51.693	38.484	5.051
8	40.000	81.852	98.148	127.578	52.422	38.029	8.148
9	45.000	78.794	101.206	126.525	53.475	37.354	11.206
10	50.000	75.790	104.210	125.168	54.832	36.452	14.210
11	55.000	72.858	107.142	123.531	56.469	35.314	17.142
12	60.000	70.016	109.984	121.641	58.359	33.932	19.984
13	65.000	67.283	112.717	119.525	60.475	32.294	22.717
14	70.000	64.681	115.319	117.212	62.788	30.389	25.319
15	75.000	62.232	117.768	114.725	65.275	28.210	27.768
16	80.000	59.962	120.038	112.090	67.910	25.748	30.038
17	85.000	57.897	122.103	109.330	70.670	23.002	32.103
18	90.000	56.064	123.936	106.465	73.535	19.976	33.936
19	95.000	54.490	125.510	103.515	76.485	16.684	35.510
20	100.000	53.201	126.799	100.497	79.503	13.151	36.799
21	105.000	52.222	127.778	97.428	82.572	9.414	37.778
22	110.000	51.571	128.429	94.324	85.676	5.523	388.429
23	115.000	51.263	128.737	91.200	88.800	1.538	38.737
24	120.000	51.304	128.696	88.070	91.930	-2.473	38.696
25	125.000	51.693	128.307	84.949	95.051	-6.442	38.307
26	130.000	52.422	127.578	81.852	98.148	-10.302	37.578
27	135.000	53.475	126.525	78.794	101.206	-13.995	36.525
28	140.000	54.832	125.168	75.790	104.210	-17.475	35.168
29	145.000	56.469	123.531	72.858	107.142	-20.706	33.531
30	150.000	58.359	121.641	70.016	109.984	-23.668	31.641
31	155.000	60.475	119.525	67.283	112.717	-26.348	29.525
32	160.000	62.788	117.212	64.681	115.319	-28.743	27.212

33	165.000	65.275	114.725	62.232	117.768	-30.858	24.725
34	170.000	67.910	112.090	59.962	120.038	-32.699	22.090
35	175.000	70.670	109.330	57.897	122.103	-34.277	19.330
36	180.000	73.535	106.465	56.064	123.936	-35.601	16.465
37	185.000	76.485	103.515	54.490	125.510	-36.683	13.515
38	190.000	79.503	100.497	53.201	126.799	-37.532	10.497
39	195.000	82.572	97.428	52.222	127.778	-38.155	7.428
40	200.000	85.676	94.324	51.571	128.429	-38.559	4.324
41	205.000	88.800	91.200	51.263	128.737	-38.747	1.200
42	210.000	91.930	88.070	51.304	128.696	-38.722	1.930
43	215.000	95.051	84.949	51.693	128.307	-38.484	5.051
44	220.000	98.148	81.852	52.422	127.578	-38.029	8.148
45	225.000	101.206	78.794	53.475	126.525	-37.354	11.206
46	230.000	104.210	75.790	54.832	125.168	-36.452	14.210
47	235.000	107.142	72.858	56.469	123.531	-35.314	17.142
48	240.000	109.984	70.016	58.359	121.641	-33.932	19.984
49	245.000	112.717	67.283	60.475	119.525	-32.294	22.717
50	250.000	115.319	64.681	62.788	117.212	-30.389	25.319
51	255.000	117.768	62.232	65.275	114.725	-28.210	27.768
52	260.000	120.038	59.962	67.910	112.090	-25.748	30.038
53	265.000	122.103	57.897	70.670	109.330	-23.002	32.103
54	270.000	123.936	56.064	73.535	106.465	-19.976	33.936
55	275.000	125.510	54.490	76.485	103.515	-16.684	35.510
56	280.000	126.799	53.201	79.503	100.497	-13.151	36.799
57	285.000	127.778	52.222	82.572	97.428	-9.414	37.778
58	290.000	128.429	51.571	85.676	94.324	-5.523	38.429
59	295.000	128.737	51.263	88.800	91.200	-1.538	38.737
60	300.000	128.696	51.304	91.930	88.070	2.473	38.696
61	305.000	128.307	51.693	95.051	84.949	6.442	38.307
62	310.000	127.578	52.422	98.148	81.852	10.302	37.578
63	315.000	126.525	53.475	101.206	78.794	13.995	36.525
64	320.000	125.168	54.832	104.210	75.790	17.475	35.168
65	325.000	123.531	56.469	107.142	72.858	20.706	33.531
66	330.000	121.641	58.359	109.984	70.016	23.668	31.641
67	335.000	119.525	60.475	112.717	67.283	26.348	29.525
68	340.000	117.212	62.788	115.319	64.681	28.743	27.212
69	345.000	114.725	65.275	117.768	62.232	30.858	24.725
70	350.000	112.090	67.910	120.038	59.962	32.699	22.090
71	355.000	109.330	70.670	122.103	57.897	34.277	19.330
72	360.000	106.465	73.535	123.936	56.064	35.601	16.465

The following angles apply for SPRING
38.361 Sun Angle to S/C Left Side 141.639 Sun Angle to S/C Right Side

			SunRear	SunTop	SunBot	S/A Rotate	SunSA
Point	Orbang 5.000		99.979	126.579	53.421	37.235	9.979
2	5.000 10.000	77.023	102.977	125.349	54.651	36.421	12.977
2	10.000 15.000	74.090	105.910	123.834	56.166	35.378	15.910 18.761
4	20.000	71.239	108.761	122.058	57.942	34.094 32.561	21.509
5	25.000	68.491	111.509		62.169	30.769	24.136
6	30.000	65.864	114.136	117.831	64.568	28.709	26.618
7	35.000	63.382	116.618	115.432 112.877	64.568 67.123	26.372	28.931
8	40.000	61.069	118.931	112.877	67.123		31.051
9	45.000	58.949	12	110	69.811	63	32.951
10	50.000	57.049	122.951	10	75.504	17.704	34.603
11	55.000	55.397	124.603	104.496	78.471	14.299	35.983
12	60.000	54.017	125.983	101.529	78.47	10.681	37.066
13	65.000	52.934	127.066	98.505	81.495	6.894	37.830
14	70.000	52.170	127.830	95.44	87.651	2.992	38.262
15	75.000	51.738	128.262	9	87.651	-0.960	38.350
16	80.000	51.650	128.350	89.24	93.852	-4.896	38.095
17	85.000	51.905	128.095	86.14	96.932	-8.750	37.500
18	90.000	52.500	127.500	83.068	96.932	-12.462	36.579
19	95.000	53.421	126.579	80.021	99.979	-12.462	35.349
20	100.000	54.651	125.349	77.023	102.9	-19.270	33.834
21	105.000	56.166	123.834	74.090	105.9	-19.2702	32.058
22	110.000	57.942	122.058	71.239	108.761	-25.061	30.048
23	115.000	59.952	120.048	68.491	111.509	25.061	27.831
24	120.000	62.169	117.831	65.864	114.618	3	25.432
25	125.000	64.568	115.432	63.382	116.618	-31.672	22.877
26	130.000	67.123	112.877	61.069	121.051	-33.337	20.189
27	135.000	69.811	110.189	58.949	121.051	-34.748	17.389
28	140.000	72.611	107.389	57.049	122.951	-35.914	14.496
29	145.000	75.504	104.496	55.397	124.603	4	14.4929
30	150.000	78.471	101.529	54.017	125.983	. 37.548	8.505
31	155.000	81.495	98.505	52.934		-38.032	5.440
32	160.000	84.560	95.440	52.170	127.836	-38.300	2.349
33	165.000	87.651	92.349	51.738	128.262	-38.354	0.753
34	170.000	90.753	89.247	51.650	128.350	-38.354	3.852
35	175.000	93.852	86.148	51.905	127.500	-37.824	6.932
36	180.000	96.932	83.068	52	127.500	-37.235	9.979
37	185.000	99.979	80.021	53.421	126.579	-36.421	12.977
38	190.000	102.977	77.023	54.651	125.349	-35.378	15.910
39	195.000	105.910	74.090	56.166	123.834	-35.378	18.761
40	200.000	108.761	71.239	57	122.058	-32.561	21.509
41	205.000	111.509	68.491	59	120.048	-30.769	24.136
42	210.000	114.136	65.864	62.169	117.831 115432	-28.709	26.618
43	215.000	116.618	63.382	64.568	115.432	-26.372	28.931
44	220.000	118.931	61.069	67.123	112.877 110.189	-26.372	31.051
45	225.000	121.051	58.949	69.811	110.189	-20.863	32.951
46	230.000	122.951	57.049	72.611	107.389	-17.704	34.603
47	235.000	124.603	55.397	75.504		-14.299	35.983
48	240.000	125.983	54.017	78.471	101.529	-14.299	35.983

49	245.000	127.066	52.934	81.495	98.505	-10.681	37.066
50	250.000	127.830	52.170	84.560	95.440	-6.894	37.830
51	255.000	128.262	51.738	87.651	92.349	-2.992	38.262
52	260.000	128.350	51.650	90.753	89.247	0.960	38.350
53	265.000	128.095	51.905	93.852	86.148	4.896	38.095
54	270.000	127.500	52.500	96.932	83.068	8.750	37.500
55	275.000	126.579	53.421	99.979	80.021	12.462	36.579
56	280.000	125.349	54.651	102.977	77.023	15.981	35.349
57	285.000	123.834	56.166	105.910	74.090	19.270	33.834
58	290.000	122.058	57.942	108.761	71.239	22.302	32.058
59	295.000	120.048	59.952	111.509	68.491	25.061	30.048
60	300.000	117.831	62.169	114.136	65.864	27.541	27.831
61	305.000	115.432	64.568	116.618	63.382	29.743	25.432
62	310.000	112.877	67.123	118.931	61.069	31.672	22.877
63	315.000	110.189	69.811	121.051	58.949	33.337	20.189
64	320.000	107.389	72.611	122.951	57.049	34.748	17.389
65	325.000	104.496	75.504	124.603	55.397	35.914	14.496
66	330.000	101.529	78.471	125.983	54.017	36.844	11.529
67	335.000	98.505	81.495	127.066	52.934	37.548	8.505
68	340.000	95.440	84.560	127.830	52.170	38.032	5.440
69	345.000	92.349	87.651	128.262	51.738	38.300	2.349
70	350.000	89.247	90.753	128.350	51.650	38.354	0.753
71	355.000	86.148	93.852	128.095	51.905	38.196	3.852
72	360.000	83.068	96.932	127.500	52.500	37.824	6.932

The following angles apply for SUMMER

$$
\begin{aligned}
48.820 & \text { Sun Angle to S/C Left Side } \\
131.180 & \text { Sun Angle to S/C Right Side }
\end{aligned}
$$

Point	OrbAng	SunFront	SunRear	SunTop	SunBot	S/A Rotate	SunSA
1	5.000	56.529	123.471	120.807	59.193	37.877	33.471
2	10.000	53.554	126.446	117.525	62.475	35.064	36.446
3	15.000	50.796	129.204	114.117	65.883	31.823	39.204
4	20.000	48.296	131.704	110.607	69.393	28.126	41.704
5	25.000	46.098	133.902	107.016	72.984	23.962	43.902
6	30.000	44.251	135.749	103.361	76.639	19.339	45.749
7	35.000	42.802	137.198	99.658	80.342	14.295	47.198
8	40.000	41.795	138.205	95.923	84.077	8.907	48.205
9	45.000	41.263	138.737	92.167	87.833	3.287	48.737
10	50.000	41.225	138.775	88.405	91.595	-2.421	48.775
11	55.000	41.682	138.318	84.647	95.353	-8.064	48.318
12	60.000	42.619	137.381	80.908	99.092	-13.496	47.381
13	65.000	44.004	135.996	77.200	102.800	-18.598	45.9996
14	70.000	45.793	134.207	73.537	106.463	-23.288	44.207
15	75.000	47.941	132.059	69.934	110.066	-27.523	42.059
16	80.000	50.398	129.602	66.411	113.589	-31.290	39.602
17	85.000	53.120	126.880	62.986	117.014	-34.599	36.880
18	90.000	56.064	123.936	59.683	120.317	-37.476	33.936
19	95.000	59.193	120.807	56.529	123.471	-39.951	30.807
20	100.000	62.475	117.525	53.554	126.446	-42.058	27.525
21	105.000	65.883	114.117	50.796	129.204	-43.830	24.117

22	110.000	69.393	110.607	48.296	131.704	-45.297	20.607
23	115.000	72.984	107.016	46.098	133.902	-46.483	17.016
24	120.000	76.639	103.361	44.251	135.749	-47.410	13.361
25	125.000	80.342	99.658	42.802	137.198	-48.095	9.658
26	130.000	84.077	95.923	41.795	138.205	-48.550	5.923
27	135.000	87.833	92.167	41.263	138.737	-48.784	2.167
28	140.000	91.595	88.405	41.225	138.775	-48.801	1.595
29	145.000	95.353	84.647	41.682	138.318	-48.600	5.353
30	150.000	99.092	80.908	42.619	137.381	-48.179	9.092
31	155.000	102.800	77.200	44.004	135.996	-47.530	12.800
32	160.000	106.463	73.537	45.793	134.207	-46.640	16.463
33	165.000	110.066	69.934	47.941	132.059	-45.495	20.066
34	170.000	113.589	66.411	50.398	129.602	-44.072	23.589
35	175.000	117.014	62.986	53.120	126.880	-42.349	27.014
36	180.000	120.317	59.683	56.064	123.936	-40.294	30.317
37	185.000	123.471	56.529	59.193	120.807	-37.877	33.471
38	190.000	126.446	53.554	62.475	117.525	-35.064	36.446
39	195.000	129.204	50.796	65.883	114.117	-31.823	39.204
40	200.000	131.704	48.296	69.393	110.607	-28.126	41.704
41	205.000	133.902	46.098	72.984	107.016	-23.962	43.902
42	210.000	135.749	44.251	76.639	103.361	-19.339	45.749
43	215.000	137.198	42.802	80.342	99.658	-14.295	47.198
44	220.000	138.205	41.795	84.077	95.923	-8.907	48.205
45	225.000	138.737	41.263	87.833	92.167	-3.287	48.737
46	230.000	138.775	41.225	91.595	88.405	2.421	48.775
47	235.000	138.318	41.682	95.353	84.647	8.064	48.318
48	240.000	137.381	42.619	99.092	80.908	13.496	47.381
49	245.000	135.996	44.004	102.800	77.200	18.598	45.996
50	250.000	134.207	45.793	106.463	73.537	23.288	44.207
51	255.000	132.059	47.941	110.066	69.934	27.523	42.059
52	260.000	129.602	50.398	113.589	66.411	31.290	39.602
53	265.000	126.880	53.120	117.014	62.986	34.599	36.880
54	270.000	123.936	56.064	120.317	59.683	37.476	33.936
55	275.000	120.807	59.193	123.471	56.529	39.951	30.807
56	280.000	117.525	62.475	126.446	53.554	42.058	27.525
57	285.000	114.117	65.883	129.204	50.796	43.830	24.117
58	290.000	110.607	69.393	131.704	48.296	45.297	20.607
59	295.000	107.016	72.984	133.902	46.098	46.483	17.016
60	300.000	103.361	76.639	135.749	44.251	47.410	13.361
61	305.000	99.658	80.342	137.198	42.802	48.095	9.658
62	310.000	95.923	84.077	138.205	41.795	48.550	5.923
63	315.000	92.167	87.833	138.737	41.263	48.784	2.167
64	320.000	88.405	91.595	138.775	41.225	48.801	1.595
65	325.000	84.647	95.353	138.318	41.682	48.600	5.353
66	330.000	80.908	99.092	137.381	42.619	48.179	9.092
67	335.000	77.200	102.800	135.996	44.004	47.530	12.800
68	340.000	73.537	106.463	134.207	45.793	46.640	16.463
69	345.000	69.934	110.066	132.059	47.941	45.495	20.066
70	350.000	66.411	113.589	129.602	50.398	44.072	23.589
71	355.000	62.986	117.014	126.880	53.120	42.349	27.014
72	360.000	59.683	120.317	123.936	56.064	40.294	30.317

The following angles apply for FALL
38.361 Sun Angle to S/C Left Side
141.639 Sun Angle to S/C Right Side

Point	OrbAng	SunFront	ear	p	SunBot	S/A Rotate	SunSA
1	5.000	80.021	99.979	126.579	53.421		9.979
2	10.000	77.023	102.977	125.349	54.651	36.421	12.977
3	15.000	74.090	105.910	123.834	56.166	35.378	15.910
4	20.000	71.239	108.761	122.058	57.942	34.094	18.761
5	25.000	68.491	111.509	120.048	59.952	32.561	21.509
6	30.000	65.864	114.136	117.831	62.169	30.769	24.136
7	35.000	63.382	116.618	115.432	64.568	28.709	26.618
8	40.000	61.069	118.931	112.877	67.123	26.372	28.931
9	45.000	58.949	121.051	110.189	69.811	23.756	31.051
10	50.000	57.049	122.951	107.389	72.611	20.863	32.951
11	55.000	55.397	124.603	104.496	75.504	17.704	34.603
12	60.000	54.017	125.983	101.529	78.471	14.299	35.983
13	65.000	52.934	127.066	98.505	81.495	10.681	37.066
14	70.000	52.170	127.830	95.440	84.560	6.894	37.830
15	75.000	51.738	128.262	92.349	87.651	2.992	38.262
16	80.000	51.650	128.350	89.247	90.753	-0.960	38.350
17	85.000	51.905	128.095	86.148	93.852	-4.896	38.095
18	90.000	52.500	127.500	83.068	96.932	-8.750	37.500
19	95.000	53.421	126.579	80.021	99.979	-12.462	36.579
20	100.000	54.651	125.349	77.023	102.977	-15.981	35.349
21	105.000	56.166	123.834	74.090	105.910	-19.270	33.834
22	110.000	57.942	122.058	71.239	108.761	-22.302	32.058
23	115.000	59.952	120.048	68.491	111.509	-25.061	30.048
4	120.000	62.169	117.831	65.864	114.136	-27.541	27.831
25	125.000	64.568	115.432	63.382	116.618	-29.743	25.432
26	130.000	67.123	112.877	61.069	118.931	-31.672	22.877
27	135.000	69.811	110.189	58.949	121.051	-33.337	20.189
28	140.000	72.611	107.389	57.049	122.951	-34.748	17.389
29	145.000	75.504	104.496	55.397	124.603	-35.914	14.496
30	150.000	78.471	101.529	54.017	125.983	-36.844	11.529
31	155.000	81.495	98.505	52.934	127.066	-37.548	8.505
32	160.000	84.560	95.440	52.170	127.830	-38.032	5.440
33	165.000	87.651	92.349	51.738	128.262	-38.300	2.349
34	170.000	90.753	89.247	51.650	128.350	-38.354	0.753
35	175.000	93.852	86.148	51.905	128.095	-38.196	3.852
36	180.000	96.932	83.068	52.500	127.500	-37.824	6.932
37	185.000	99.979	80.021	53.421	126.579	-37.235	9.979
38	190.000	102.977	77.023	54.651	125.349	-36.421	12.977
39	195.000	105.910	74.090	56.166	123.834	-35.378	15.910
40	200.000	108.761	71.239	57.942	122.058	-34.094	18.761
41	205.000	111.509	68.491	59.952	120.048	-32.561	21.509
42	210.000	114.136	65.864	62.169	117.831	-30.769	24.136
43	215.000	116.618	63.382	64.568	115.432	-28.709	26.618
44	220.000	118.931	61.069	67.123	112.877	-26.372	28.931
45	225.000	121.051	58.949	69.811	110.189	-23.756	31.051
46	230.000	122.951	57.049	72.611	107.389	-20.863	32.951
47	235.000	124.603	55.397	75.504	104.496	-17.704	34.603
48	240.00	125.983	54.017	78.471	101.529	-14.299	35.983

49	245.000	127.066	52.934	81.495	98.505	-10.681	37.066
50	250.000	127.830	52.170	84.560	95.440	-6.894	37.830
51	255.000	128.262	51.738	87.651	92.349	-2.992	38.262
52	260.000	128.350	51.650	90.753	89.247	0.960	38.350
53	265.000	128.095	51.905	93.852	86.148	4.896	38.095
54	270.000	127.500	52.500	96.932	83.068	8.750	37.500
55	275.000	126.579	53.421	99.979	80.021	12.462	36.579
56	280.000	125.349	54.651	102.977	77.023	15.981	35.349
57	285.000	123.834	56.166	105.910	74.090	19.270	33.834
58	290.000	122.058	57.942	108.761	71.239	22.302	32.058
59	295.000	120.048	59.952	111.509	68.491	25.061	30.048
60	300.000	117.831	62.169	114.136	65.864	27.541	27.831
61	305.000	115.432	64.568	116.618	63.382	29.743	25.432
62	310.000	112.877	67.123	118.931	61.069	31.672	22.877
63	315.000	110.189	69.811	121.051	58.949	33.337	20.189
64	320.000	107.389	72.611	122.951	57.049	34.748	17.389
65	325.000	104.496	75.504	124.603	55.397	35.914	14.496
66	330.000	101.529	78.471	125.983	54.017	36.844	11.529
67	335.000	98.505	81.495	127.066	52.934	37.548	8.505
68	340.000	95.440	84.560	127.830	52.170	38.032	5.440
69	345.000	92.349	87.651	128.262	51.738	38.300	2.349
70	350.000	89.247	90.753	128.350	51.650	38.354	0.753
71	355.000	86.148	93.852	128.095	51.905	38.196	3.852
72	360.000	83.068	96.932	127.500	52.500	37.824	6.932

Appendix A. 2

Program SUN_ANGLE3

Listing and Sample Output

PROGRAM SUN_ANGLE3

OBJECTIVE:

Calculate the eclipse duration for a sunsynchronous orbit at various times during the year

ASSUMPTIONS:

C Circular sunsynchronous orbit
C Earth's shadow is a uniform right cylinder
SUPPORT MODULES: ANGLE
DOT
MAG
ROT1
ROT2
ROT3

VARIBALE DEFINITIONS:

C All vectors have three components with their magnitude in the
C fourth element of the array.

ALT: \quad Altitude of the S / C orbit (km)
INCL: Inclination of the S/C orbit (deg)
OMEGA: Longitude of the ascending node on the first day of winter (deg)

OUTPUT VARIABLES: Results are in a file named "Sun Angle3.Out" as well as printed to the screen

POINT: \quad Counter that indicates which of the particular earth locations is being evaluated now Location of S / C in its orbit measured from the
BETA: Location of S/C in its orbit measured from the the equator (rad). BETA is converted to degrees before being printed.

CC		The array contains POINTS number of values
	BEGECL:	S/C location counter that indicates when eclipse be
		Converted to a time in minutes since crossing the
		ascending node before being printed.
	ENDECL	S/C location counter that indicates when eclipse end
		Converted to a time in minutes since crossing the
		ascending node before being printed.
	LOCAL VARIABLES:	
	LASTECL: Ch	Character variable
		Y: Previous S/C location was in ecipse N. Previous S/C location was not in eclipse
		Character variable
	ECLBEG: C	Ci. Hold a location as a possible eclipse entry
		Y . Hold a location
		N : No eclipse entry has been found so far in this orbit
	ECLEND: C	Character variable
		Y: Hold a location as a possible eclipse exit
		N : No eclipse exit has been found so far in this
		orbit
	ANYECL:	Character variable
		Y: At least a portion of an eclipse has been found
		in this S/C orbit
		N: No eclipse has been found so far in this orbit
	SAVEND:	Character variable
		Y: Eclipse end has been found. Do not update
		its counter anymore
		N: Eclipse end has not been found. Continue to
		update its counter
	ECLANG:	Number of S/C location step sizes that make up eclipse
	$1:$	Loop counter. Indicates earth's location wrt sun
	J:	Loop counter. Indicates S/C's location wrt to earth
	DEG2RAD:	Conversion Factor from degrees to radians (rad/deg)
	RAD2DEG:	Conversion Factor from radians to degrees (deg/rad)
	TILT:	Tilt of Earth's spin axis wrt normal to ecliptic (rad) (km/nm)
	NM2KM:	Conversion Factor from nautical miles to kilometers ($\mathrm{km} / \mathrm{nm}$)
	RE:	Radius of Earth (km)
	MU:	Gravitational Parameter of Earth (km^3/sec^2)
	SUNS(4):	Vector from S/C to sun in "Sun Coordinates"
	SUN1(4):	Sun Vector in an intermediate coordinate system
	SUN2(4):	Sun Vector in an intermediate coordinate system
	SUN3(4):	Sun Vector in an intermediate coordinate system
	SUN4(4):	Sun Vector in an intermediate coordinate system
	SUNB(4):	Sun Vector in body coordinate system
	R(4):	S/C position vector (km)
	LEFTB(4):	: Vector normal to S/C left face (negative pitch face)
	STEP:	Angular displacement between consecutive evaluation locations of the earth (rad)
	THETA:	Dummy angle used in several coordinate rotations (rad)
	PERIOD:	S/C orbital period (min)
	ORBRATE:	S/C angular velocity ($\mathrm{rad} / \mathrm{min}$)
	INCREM:	Angular displacement of earth from the first day of
		winter in its orbit around sun (rad)

$\begin{aligned} & c \\ & c \\ & c \end{aligned}$	PHI: RPERP:	between S / C position vector and sun vector ponent of S / C position vector perpendicular to sun r
C		
C	COORDINATE SYSTEMS:	
C		
C	System:	Sun (Denoted by "S")
C	Origin:	Center of Earth
C	Principle Axis:	Directly at sun
C	Second Axis:	Complete Right Hand Coordinate System
C		Perpendicular to Ecliptic (+ "North")
C	Principle Plane:	Ecliptic
C		
C	System:	Sun (Denoted by "1")
C	Origin:	Center of Earth
$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	Principle Axis:	Intersection of Ecliptic and Equator (where one dips below ecliptic when traveling eastward along equator
C	Second Axis:	Complete Right Hand Coordinate System
C	Third Axis:	Perpendicular to Ecliptic (+ "North")
C	Principle Plane:	Ecliptic
C	System:	
C		Sun (Denoted by "2")
C	Origin:	Center of Earth
$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	Principle Axis:	Intersection of Ecliptic and Equator (where one dips below ecliptic when traveling eastward along equator
C	Second Axis:	Along North Pole
C	Third Axis: Principle Plane:	Complete Right Hand Coordinate System
$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$		Contains earth's spin axis and the intersection of the ecliptic plane with the equatorial plane
C	System:	
C		Sun (Denoted by ${ }^{\text {3") }}$
C	Origin:	Center of Earth
C	Principle Axis:	Ascending Node
C	Second Axis:	Along North Pole
C	Third Axis:	Complete Right Hand Coordinate System
C	Principle Plane:	Contains earth's spin axis and the ascending node
C	System:	Sun (Denoted by "4")
C	Origin:	Center of Earth
C	Principle Axis:	Ascending Node
C	Second Axis:	Complete Right Hand Coordinate System
C	Third Axis:	Perpendicular to S/C Orbital Plane (along orbit angular momentum vector)
C	Principle Plane:	S/C orbit plane
C	System:	Body (Denoted by "B")
c	Origin:	Center of S/C
C	Principle Axis:	Out S/C Top (Away from Earth) (Yaw)
C	Second Axis:	Out S/C Front (Along velocity vector) (Roll)
C	Third Axis:	Out S/C Left (Pitch)
C	Principle Plane:	Local Horizontal
C		

000

EXTERNALANGLE EXTERNAL DOT

CHARACTER* 1 LASTECL ECLBEG, ECLEND, ANYECL, SAVEND
INTEGER I, J, POINTS, ORBTRIALS
REAL*8 ANGLE, DOT
REAL*8 TILT, DEG2RAD, RAD2DEG, NM2KM, RE, MU
REAL*8 ALT, INCL, OMEGA
REAL** SunS(4), Sun1(4), Sun2(4), Sun3(4), Sun4(4), SunB(4)
REAL*8 R(4), ECLDUR(180)
REAL"8 LeftB(4)
REAL"8 SunLeft(180)
REAL*8 BETA, STEP, THETA, PERIOD, OrbRate, INCREM, PHI
REAL"8 RPERP, ECLANG, BEGECL, ENDECL
OPEN (UNIT $=8$, FILE $=$ 'Sun Angle $3 . O u t$ ', STATUS $=$ ' $N E W$ ')
000
C
C Initialize useful constants
C
00
DEG2RAD $=$ PI / 180.0D0
RAD2DEG $=180.0 \mathrm{DO} / \mathrm{PI}$
TILT $=23.5$ D0 * DEG2RAD
NM2KM $=1.852 \mathrm{DO}$
$R E=6378.135 \mathrm{DO}$
$M U=398600.8 D 0$
00
C
C Get input values
C
00
WRITE(*,*)'Orbit Altitude (nm)?'
READ(**) ALT
WRITE(***)'Orbit Inclination (deg)?'
READ(*,*) INCL
WRITE(*,")'Orbit Longitude of the Ascending Node (deg)'
WRITE(*,")' on the first day of winter?'
READ(*,*) OMEGA
WRITE(*,")'Number of points to evaluate in one year'
READ(*,*)POINTS
WRITE(*, ${ }^{*}$)'Number of points to evaluate in one S/C orbit'
READ(*,*)ORBTRIALS

C Echo check input values to output file and screen
C
000
WRITE $(8,1000)$
WRITE $(8,1010)$ ALT
WRITE $(8,1020)$ INCL
WRITE $(8,1030)$ OMEGA
WRITE $(8,1040)$ POINTS
WRITE $(8,1050)$ ORBTRIALS

00

C
C Convert units
C
00
ALT = ALT * NM2KM
INCL $=\operatorname{INCL}$ * DEG2RAD
OMEGA = OMEGA * DEG2RAD
$000 c$
C
C Initialize the S/C position vector.
C Express it in body coordinates.
C
$000<$
$R(1)=R E+A L T$
$R(2)=0.0 D 0$
$R(3)=0.000$
CALL MAG(R)

00

C
C Calculate the orbital period (min) and angular velocity ($\mathrm{rad} / \mathrm{min}$)
C
000
PERIOD $=(2.0 \mathrm{DO} * \mathrm{Pl} / 60.0 \mathrm{D} 0)^{*} \operatorname{SQRT}\left(R(4)^{* *} 3 / \mathrm{MU}\right)$
OrbRate $=2.000^{*} \mathrm{PI} /$ PERIOD
$00 c$
C
C Initialize the vector normal to S/C left face
C
$000 c$
LeftB(1) $=0.0 \mathrm{DO}$
LeftB(2) $=0.0 \mathrm{DO}$
LeftB(3) $=1.0 \mathrm{DO}$
CALL MAG(LeftB)

C
C Direction of the sun vector expressed in sun coordinates
C

$$
\text { SunS }=(1) S 1+(0) S 2+(0) S 3
$$

C
000
SunS(1) $=1.0 \mathrm{DO}$
SunS(2) $=0.0 \mathrm{DO}$
SunS(3) $=0.0 \mathrm{DO}$
CALL MAG(SunS)
000
C
C Find the interval between earth locations (rad)
C
00
STEP $=2.0 \mathrm{DO}$ * $\mathrm{PI} /$ POINTS
00
C
C Write the output header
C
00
WRITE(*,1070)
WRITE $(8,1070)$
00
C
C Begin the loop that advances the earth in its orbit around sun
C
00
DO $401=1$, POINTS
00
C
C Perform the rotations necessary to express the sun vector in body
C coordinates at the ascending node. Refer to the coordinate
C system definitions in the header block. The rotation about the
C second axis from System "2" to System "3" accounts for the sun-
C synchronous motion of the orbit around the equator.
C
000
THETA = PI/2.0DO - STEP *
CALL ROT3(SUNS, THETA, SUN1)
THETA $=$ PI/2.0D0 - TILT
CALL ROT1(SUN1, THETA, SUN2)
THETA = OMEGA + STEP * I
CALL ROT2(SUN2, THETA, SUN3)
THETA $=\mathbb{I N C L}-\mathrm{Pl} / 2.0 \mathrm{DO}$
CALL ROT1(SUN3, THETA, SUN4)

C The vector out the S/C left face remains in the same inertial
C direction as the S/C moves in its orbit. Once the sun vector
C is expressed in the "4" coordinate system, it can be compared to
C the vector out the left face. The angle between these two vectors
C is the sun angle on the S/C left face for this earth location.
C
$000 c$

```
SUNLEFT(I) = ANGLE(SUN4, LEFTB)
```

$000 c$
C Initialize Eclipse markers and counters for this earth location
C
$000 C$

```
BEGECL = 0.0D0
ENDECL = 0.0DO
LASTECL = 'N'
ECLBEG = 'N'
ECLEND ='N'
ANYECL = 'N'
SAVEND = 'N'
```

00
C
C Begin the loop that advances the S/C in its orbit around earth
C
000

$$
\text { DO } 20 \mathrm{~J}=1 \text {, ORBTRIALS }
$$

000
C
C Express the sun vector in body coordinates for this S/C location.
C
00
INCREM $=\mathrm{J} *(2.0 \mathrm{DO}$ * PI / ORBTRIALS)
CALL ROT3(SUN4, INCREM, SUNB)
000
C
C In order for the S/C to be in eclipse, it must be:
C 1) over the dark side of the earth
C and 2) in the earth's shadow
c 00
00
000

C
C Find the angle between the sun vector and the S/C position vector.
C
00

$$
\text { PHI }=\text { ANGLE }(R, \text { SUNB })
$$

00 C

Is the S/C over the dark side of the earth?
Yes if Phi is greater than 90 degrees
No if Phi is less than 90 degrees
C
C
000
IF (PHI .GT. PI/2.0DO) THEN
$00<$
C
C Find the component of S/C position perpendicular to sun vector.
C
000

$$
\operatorname{RPERP}=R(4) * D S I N(P H I)
$$

00
C
C Is the S / C in the earth's shadow?
C
C
Yes if RPerp is less than or equal to the radius of the earth
C
00

> IF(RPERP .LE. RE) THEN
$000<$
C The remaining logic in this DO Loop, updates the appropriate
C eclipse markers and counters to determine the start and stop
C locations of the eclipse.
C
$000 c$

```
IF (LASTECL .EQ. 'Y') THEN
    IF (SAVEND .EQ. 'N') THEN
        ECLEND = 'Y
        ENDECL = J
        ENDIF
ELSE
        IF (ANYECL .EQ. 'N') THEN
            ANYECL = 'Y
            ECLEND = 'Y'
            ENDECL = J
ENDIF
```

```
                        ECLBEG = ' }
                        BEGECL = J
                        LASTECL = ' }
    ENDIF
    EISE
    LASTECL = 'N'
    IF(ECLEND .EQ. 'Y') THEN
                SAVEND = ' }
    ENDIF
    ENDIF
ENDIF
```

000
C
C Return to inner DO LOOP (advance S/C in orbit around earth)
C
000

20 CONTINUE

000

C
C Determine the length of eclipse using the begining \& end markers.
C If the difference is negative, the S / C is in eclipse as it crosses
C the ascending node. Adding the number of S / C locations evaluated
C to the negative value converts the duration to an equivalent
C positive value. Eclipse duration is found by dividing the number
C of S/C locations involved in eclipse by the angular displacement
C between consecutive locations and the angular velocity.
C
$00 c$

```
ECLANG = ENDECL - BEGECL
IF ( DABS(ECLANG) .LT. 0.0001) THEN
    ECLDUR(I) = 0.0D0
ELSE
    IF (ECLANG .LT. O.ODO) THEN
    ECLANG = ECLANG + ORBTRIALS
    ENDIF
    ECLDUR(I) = ECLANG * 2.0DO * PI / (ORBTRIALS * ObrRate)
ENDIF
```

00
C
C Convert output angles to degrees
C Convert eclipse markers to times since crossing the ascending node
C Output values
C

30 WRITE(*,1080) I, BETA*RAD2DEG, SunLeft(I)*RAD2DEG, ECLDUR(I), + BEGECL*360.0d0/ORBTRIALS, ENDECL"360.0d0/ORBTRIALS WRITE $(8,1080)$ I, BETA*RAD2DEG, SunLeft(I)*RAD2DEG, ECLDUR(I),

+ BEGECL*360.0d0/ORBTRIALS, ENDECL*360.0d0/ORBTRIALS

C Return to outer DO LOOP (advance earth in orbit around sun)
C

00

40 CONTNUE

1000 FORMAT(III)

1010 FORMAT(15X,F7.3,' Orbit Altitude (nm)')
1020 FORMAT(15X,F7.3,' Orbit Inclination (deg)')
1030 FORMAT(15X,F7.3,' Orbit Longitude of the Ascending Node (deg)', ,
$+\quad 14 \mathrm{X}$, on the first day of Winter')
1040 FORMAT (15X,17; Number of points to evaluate in one year')
1050 FORMAT(15X,I7,' Number of points to evaluate in one S/C orbit') 1070 FORMAT $/, 15 X$, 'Point OrbAng SunLeft Eclipse (min)',
$+\quad$ Entry (deg) Exit (deg)')
1080 FORMAT(15X,I4,3F10.3,7X,F10.3,F11.3)
END

SUBROUTINE ROT1(VIN, T, VOUT)
00
C
C AUTHOR: Gary E. Yale
C
C DATE: Nov 90
OBJECTIVE: Expresses a vector in a coordinate system which is
C rotated T radians around the first axis as compared to the
C original coordinate system
C
C SUPPORT MODULES: MAG
C
C
IIIIIIIII VARIABLE DEFINITIONS IIIIIIIII
C All vectors have three components and their magnitude is in the
C fourth position
C
C
C INPUT VARIABLES:
C
C VIN: Input vector
C T: Angle of rotation (rad)
C
C
C OUTPUT VARIABLES:
C VOUT: Output vector
C
C

C LOCAL VARIABLES:

C
C C: Cosine of the input angle, T
C S: Sine of the input angle, T
C TEMP: Temporary storage location
C
00
REAL*8 VIN(4), T, VOUT(4)
REAL*8 C, S, TEMP
TEMP $=\operatorname{VIN}(3)$
$\mathrm{C}=\mathrm{DCOS}(\mathrm{T})$
$S=\operatorname{DSIN}(T)$
$\operatorname{VOUT}(3)=C \cdot \operatorname{VIN}(3)-S * \operatorname{VIN}(2)$
$\operatorname{VOUT}(2)=C * \operatorname{VIN}(2)+S^{*}$ TEMP
$\operatorname{VOUT}(1)=\operatorname{VIN}(1)$
CALL MAG(VOUT)
RETURN
END

SUBROUTINE ROT2(VIN, T, VOUT)

00
C
C AUTHOR: Gary E. Yale
C
C DATE: Nov 90
C
C OBJECTIVE: Expresses a vector in a coordinate system which is
C rotated T radians around the second axis as compared to the
C original coordinate system
SUPPORT MODULES: MAG
/IIIIIII/I VARIABLE DEFINITIONS IIIIIIII
C All vectors have three components and their magnitude is in the
C fourth position

C INPUT VARIABLES:
C
C VIN: Input vector
C T: Angle of rotation (rad)
C
C
C OUTPUT VARIABLES:
C
C VOUT: Output vector
C
C
C LOCAL VARIABLES:

C C
$\begin{array}{lll}\mathrm{C} & \text { C: } & \text { Cosine of the input angle, } \\ \mathrm{C} & \mathrm{S}: & \text { Sine of the input angle, } T\end{array}$
C TEMP: Temporary storage location
C
00
REAL* 8 VIN(4), T, VOUT(4)
REAL* 8 C, S, TEMP
TEMP $=$ VIN(3)
$C=\operatorname{DCOS}(T)$
$S=\operatorname{DSIN}(T)$
$\operatorname{VOUT}(3)=C * \operatorname{VIN}(3)+S * \operatorname{VIN}(1)$
$\operatorname{VOUT}(1)=C$ * $\operatorname{VIN}(1)-S^{*}$ TEMP
$\operatorname{VOUT}(2)=\operatorname{VIN}(2)$
CALL MAG(VOUT)
RETURN
END

SUBROUTINE ROT3(VIN, T, VOUT)
00
C
C AUTHOR: Gary E. Yale
C
C DATE: Nov 90
C
OBJECTIVE: Expresses a vector in a coordinate system which is
C original coordinate system
C
C SUPPORT MODULES: MAG
C
C
IIIIIIIII VARIABLE DEFINITIONS IIIIIIII
C
C All vectors have three components and their magnitude is in the
C fourth position
C INPUT VARIABLES:
C
C VIN: Input vector
C T: Angle of rotation (rad)
C
C OUTPUT VARIABLES:
C
C VOUT: Output vector
C LOCAL VARIABLES:
C C: Cosine of the input angle,
C S : \quad Sine of the input angle, T
C TEMP: Temporary storage location

C

```
REAL*8 VIN(4), T, VOUT(4)
REAL"8 C, S, TEMP
TEMP = VIN(2)
C = DCOS(T)
S = DSIN(T)
VOUT(2) = C*VIN(2) - S*VIN(1)
VOUT(1) = C**VIN(1) + S* TEMP
VOUT(3) = VIN(3)
CALL MAG(VOUT)
RETURN
END
```

SUBROUTINE MAG(VECT)

C
C AUTHOR: Gary E. Yale
C
C DATE: Nov 90
C OBJECTIVE: Find the magnitude of a vector and store that value
C as the fourth element of the vector array
C SUPPORT MODULES: NONE
C /IIIIII! VARIABLE DEFINITIONS IIIIIIII
C All vectors have three components and their magnitude is in the
C fourth position
C INPUT VARIABLES
C VECT: Vector with an unknown value for its magnitude
C OUTPUT VARIABLES:
C VECT: Vector with its magnitude as the fourth element
C
C LOCAL VARIABLES: NONE
C 000
00

```
REAL*8 VECT(4)
\(\operatorname{VECT}(4)=\operatorname{DSQRT}\left(\operatorname{VECT}(1)^{* *} 2+\operatorname{VECT}(2)^{* *} 2+\operatorname{VECT}(3)^{* *} 2\right)\)
RETURN
END
```


FUNCTION ANGLE (VECTA, VECTB)

C
C AUTHOR: Gary E. Yale
C
C DATE: Nov 90
C OBJECTIVE: Find the angle between two vectors using the property
C of the dot product (the angle is the inverse cosine of the dot
C product divided by the product of their magnitudes)
C
C
SUPPORT MODULES: DOT
IIIIIIIIII VARIABLE DEFINITIONS IIIIIIIII
C
C All vectors have three components and their magnitude is in the
C fourth position
C INPUT VARIABLES:
C VECTA: One of the vectors defining an angle
C VECTB: Second vector defining an angle
C
C OUTPUT VARIABLES:
C ANGLE: The angle between the two vectors (rad)
C
C LOCAL VARIABLES: NONE
C

EXTERNALDOT
REAL*8 VECTA(4), VECTB(4)
REAL"8 ANGLE
ANGLE $=\operatorname{DACOS}($ DOT(VECTA, VECTB) $/(\operatorname{VECTA}(4) * \operatorname{VECTB}(4))$)
RETURN
END

FUNCTION DOT (VECTA, VECTB)
00
C
C AUTHOR: Gary E. Yale
C
C DATE: Nov 90
C
C
OBJECTIVE: Find the dot product of two vectors
C
C SUPPORT MODULES: NONE
C
C IIIIIIIII VARIABLE DEFINITIONS IIIIIIII

C
C All vectors have three components and their magnitude is in the C fourth position
C
C INPUT VARIABLES:
C
C VECTA: First vector
C VECTB: Second vector
C
C OUTPUT VARIABLES:
C
C DOT: Dot product of two vectors
C
C
LOCAL VARIABLES: NONE
C 00
REAL"8 VECTA(4), VECTB(4)
REAL"8 DOT
DOT $=\operatorname{VECTA}(1)^{*} \operatorname{VECTB}(1)+\operatorname{VECTA}(2)^{*} \operatorname{VECTB}(2)+\operatorname{VECTA}(3)^{*} \operatorname{VECTB}(3)$ RETURN
END

450.000	Orbit Altitude (nm)		
98.750	Orbit Inclination (deg)		
37.500	Orbit Longitude of the Ascending Node (deg) on the first day of Winter		
72	Number of points to evaluate in one year		
360	Number	points to	valuate in one S/C orbit
Point	OrbAng	SunLeft	Eclipse (min)
1	5.000	38.340	23.137
2	10.000	37.878	22.573
3	15.000	37.391	22.009
4	20.000	36.895	21.726
5	25.000	36.410	21.444
6	30.000	35.954	20.598
7	35.000	35.549	20.316
8	40.000	35.215	20.034
9	45.000	34.971	19.751
10	50.000	34.834	19.469
11	55.000	34.819	19.469
12	60.000	34.935	19.751
13	65.000	35.189	20.034
14	70.000	35.581	20.316
15	75.000	36.105	20.880
16	80.000	36.753	21.444
17	85.000	37.510	22.291
18	90.000	38.361	23.137
19	95.000	39.285	23.702
20	100.000	40.262	24.266
21	105.000	41.272	25.112
22	110.000	42.292	25.959
23	115.000	43.302	26.241
24	120.000	44.281	26.805
25	125.000	45.212	27.370
26	130.000	46.077	27.934
27	135.000	46.862	27.934
28	140.000	47.552	28.216
29	145.000	48.138	28.498
30	150.000	48.608	28.781
31	155.000	48.958	29.063
32	160.000	49.182	29.063
33	165.000	49.279	29.063
34	170.000	49.249	29.063
35	175.000	49.094	29.063
36	180.000	48.820	28.781
371	185.000	48.434	28.781
381	190.000	47.945	28.498
391	195.000	47.365	28.216
40	200.000	46.707	27.934
41	205.000	45.986	27.652
422	210.000	45.217	27.370
43	215.000	44.419	27.088
44	220.000	43.609	26.241
45	225.000	42.806	25.959
46	230.000	42.027	25.395

47	235.000	41.290	25.112
48	240.000	40.612	24.548
49	245.000	40.006	24.266
50	250.000	39.484	23.702
51	255.000	39.055	23.702
52	260.000	38.725	23.419
53	265.000	38.494	22.855
54	270.000	38.361	23.137
55	275.000	38.318	23.137
56	280.000	38.357	22.855
57	285.000	38.465	22.855
58	290.000	38.628	23.137
59	295.000	38.829	23.419
60	300.000	39.051	23.419
61	305.000	39.279	23.702
62	310.000	39.496	23.984
63	315.000	39.687	23.984
64	320.000	39.839	23.984
65	325.000	39.939	24.266
66	330.000	39.980	24.266
67	335.000	39.954	24.266
68	340.000	39.856	24.266
69	345.000	39.686	23.984
70	350.000	39.444	23.702
71	355.000	39.134	23.419
72	360.000	38.763	23.137

Appendix A. 3

Program ALTTTUDE

Listing and Sample Output

PROGRAM ALTITUDE

C Low: Integer number of altitude windows from the surface of C Lhe earth to perigee

C the earth to apogee

00
CHARACTER*1 Again
INTEGER Low, High, Index
REAL*8 Period, Altp, Step
REAL"8 Alt, Nu, DT, Totalt
REAL*8 Re, Mu, DEG2RAD
REAL*8 Semi, Ecc, TO, T1, T2, EAnom, Alta
00 C
C Open the output file.
C

OPEN (Unit $=8$, File $=$ 'Altitude.$O u t$ ', Status $=$ 'New')
000
C
C Initialize useful constants.
C
000
$R e=6378.135 \mathrm{do}$
$\mathrm{Mu}=398600.8 \mathrm{~d} 0$
DEG2RAD $=$ PI / 180.0D0
00
C
C Get the orbital period, perigee altitude, and altitude window
C size. Echo check them to the output file.
C

10 Write(**)'Enter the orbital period in hours'
Read(*: Period
Write(*, ')'Enter the perigee altitude in kilometers'
Read(*,")Altp
Write(*, ")'Enter the altitude step size to use (km)'
Read(*, ')Step
Write(*,900)
Write (*, 910) Period
Write (*, 920)Altp
Write(*,930)Step
Write(*,900)
Write $(8,900)$

Write $(8,910)$ Period
Write (8,920)Altp
Write $(8,930)$ Step
Write (8,900)
00
C
C Calculate:
C semimajor axis (km)
C eccentricity
C apogee altitude (km)
C
000
Semi $=\left(\left(\left(\left(3600.0 d 0^{*} \text { Period }\right) /\left(2.0 d 0^{*} \mathrm{Pi}^{\prime}\right)\right)^{*} 2\right){ }^{*} \mathrm{Mu}\right)^{* *}(1.0 d 0 / 3.0 \mathrm{~d} 0)$
Ecc $=\langle$ Semi $-($ Re + Altp $)\rangle /$ Semi
Alta $=2.0 \mathrm{~d} 0$ * Semi $-2.0 \mathrm{~d} 0^{*}$ Re - Altp
000
C
C Determine the index on the "DO" loop for calculating the output
C parameters.
C
000
Low $=$ DINT(Altp/Step)
High = DINT(Alta/Step)
Index $=1+($ High - Low $)$
000
C
C Define the time of perigee passage to be the start of the orbit
C by setting TO equal to zero.
C Initialize the Mean Anomaly at the low altitude portion of an
C altitude window to zero. The low altitude portion of the first
C window is perigee.
C
00
$T 0=0.0 \mathrm{~d} 0$
$T 1=0.080$
00
C
C Write the header for the output table.
C
000
WRITE(*,1000)
WRITE $(8,1000)$
$000 c$ C
C Initialize True Anomaly for the first point (perigee).
C Zero out the time spent in an altitude window.
C
000
$\mathrm{Nu}=0.0 \mathrm{dO}$
DT $=0.0 \mathrm{~d} 0$

00

C
C Convert true anomaly from radians to degrees.
C Write the output variables to the output file for the first
C point (perigee).
C
00
WRITE(*,1010)Altp, Nu/DEG2RAD, DT, T0
WRITE $(8,1010)$ Altp, Nu/DEG2RAD, DT, T0

00

C
C Begin the iteration to find the output variables for each of the
C altitude windows.
C
00
DO $5001=1$, Index

00

C
C Look to see if this iteration is the last one or not.
C If it is the last iteration:
C - the upper limit on the altitude window is the apogee altitude
C \quad - the true anomaly is π rad
$C \quad$ - the mean anomaly is π rad
C If it is not the last iteration:
c

- the upper limit on the altitude window is the altitude step
C size times the number of steps from the surface of the earth
C - calculate the true anomaly at the upper altitude limit (rad)
C - calculate the eccentric anomaly for the same point (rad)
C - calculate the mean anomaly for the same point (rad)
C
00

```
IF (I EQ. Index) THEN
    Alt = Alta
    \(\mathrm{Nu}=\mathrm{Pi}\)
    \(T 2=P i\)
ELSE
    Alt \(=\) Step * (Low +1 )
    \(R=R e+A l t\)
    \(\mathrm{Nu}=\mathrm{DACOS}\left(\left(\right.\right.\) Semi* \(\left.\left.^{*}(1.0 \mathrm{~d} 0-E c c * * 2) / R-1.0 \mathrm{~d} 0\right) / \mathrm{Ecc}\right)\)
```

```
    EAnom = DACOS((Ecc + DCOS(Nu))/(1.0d0 + Ecc*DCOS(Nu)))
    T2 = EAnom - Ecc * DSIN(EAnom)
ENDIF
```


C Calculate the time spent in this altitude window and convert to
C minutes. (change in mean anomaly divided by mean motion)
C Calculate the time since perigee to reach the upper limit of this
C altitude window and convert to minutes. (change in mean anomaly
C from perigee divided by mean motion)
C

> DT $=\operatorname{DSQRT}\left(\right.$ Semi $\left.{ }^{*} 3 / \mathrm{Mu}\right) *(\mathrm{~T} 2-\mathrm{T} 1) / 60.0 \mathrm{dO}$
> TotalT $=\operatorname{DSQRT}($ Semi* $3 / \mathrm{Mu}) *(\mathrm{~T} 2-\mathrm{T}) / 60.0 \mathrm{~d} 0$

C
C Convert true anomaly to degrees.
C Write the the output variables to the output file.
C
000
WRITE(*, 1010)Alt, Nu/DEG2RAD, DT, TotalT
WRITE $(8,1010)$ Alt, Nu/DEG2RAD, DT, TotalT
00
C
C The mean anomaly at the upper limit of this altitude window
C becomes the mean anomaly at the lower limit of the next altitude
C window.
C
00
$T 1=T 2$
 C
C Repeat the iteration.
C

500 CONTINUE

C
C See if there is another case.
C
000
Write(*,900)
Write(*:)'Do you have another case?'

```
            Write(*,*)' Enter "y" or "n"'
            Read(*,*)Again
            IF ((AGAIN .EQ. "Y") .OR. (AGAIN .EQ. "Y")) THEN
                GOTO 10
            ENDIF
    900 FORMAT (III)
    910 FORMAT (10X,' Orbital Period (hrs) =',F9.3)
    920 FORMAT (10X,' Perigee Altitude (km) =',F9.3)
    930 FORMAT (10X,'Altitude Step Size (km) =',F9.3)
1000 FORMAT (26X,'True Delta Elapsed'/,12X,
    +'Altitude Anomaly Time Time',/,11X,
    +' (km) (deg) (min) (min)')
1010 FORMAT (11X,F9.3,4X,F7.3.4X,F5.2,4X,F7.3)
    END
```

Orbital Period (hrs) =
8.000

Perigee Altitude (km) $=500.000$
Altitude Step Size (km) $=100.000$

Altitude	True Anomaly (deg)	Delta Time (min)	Elapsed Time (min)
500.000	0.000	0.00	0.000
600.000	15.421	3.17	3.175
700.000	21.718	1.34	4.515
800.000	26.491	1.04	5.559
900.000	30.466	0.89	6.454
1000.000	33.926	0.80	7.255
1100.000	37.019	0.74	7.990
1200.000	39.830	0.69	8.677
1300.000	42.417	0.65	9.326
1400.000	44.820	0.62	9.944
1500.000	47.069	0.59	10.538
1600.000	49.184	0.57	11.111
1700.000	51.184	0.56	11.666
1800.000	53.083	0.54	12.207
1900.000	54.891	0.53	12.735
2000.000	56.617	0.52	13.251
2100.000	58.271	0.51	13.757
2200.000	59.858	0.50	14.255
2300.000	61.384	0.49	14.744
2400.000	62.855	0.48	15.227
2500.000	64.273	0.48	15.704
2600.000	65.644	0.47	16.175
2700.000	66.971	0.47	16.640
2800.000	68.256	0.46	17.102
2900.000	69.502	0.46	17.559
3000.000	70.712	0.45	18.013
3100.000	71.888	0.45	18.464
3200.000	73.032	0.45	18.911
3300.000	74.145	0.44	19.356
3400.000	75.230	0.44	19.799
3500.000	76.288	0.44	20.239
3600.000	77.319	0.44	20.677
3700.000	78.326	0.44	21.114
3800.000	79.310	0.43	21.549
3900.000	80.272	0.43	21.982
4000.000	81.212	0.43	22.415
4100.000	82.132	0.43	22.846
4200.000	83.033	0.43	23.276
4300.000	83.915	0.43	23.706
4400.000	84.780	0.43	24.134
4500.000	85.627	0.43	24.563
4600.000	86.458	0.43	24.990
4700.000	87.273	0.43	25.418
4800.000	88.073	0.43	25.845
4900.000	88.859	0.43	26.272
5000.000	89.631	0.43	26.698

5100.000	90.389	0.43	27.125
5200.000	91.134	0.43	27.552
5300.000	91.866	0.43	27.979
5400.000	92.587	0.43	28.406
5500.000	93.295	0.43	28.833
5600.000	93.992	0.43	29.261
5700.000	94.679	0.43	29.689
5800.000	95.354	0.43	30.117
5900.000	96.020	0.43	30.546
6000.000	96.675	0.43	30.975
6100.000	97.321	0.43	31.405
6200.000	97.957	0.43	31.836
6300.000	98.585	0.43	32.267
6400.000	99.203	0.43	32.699
6500.000	99.813	0.43	33.131
6600.000	100.415	0.43	33.565
6700.000	101.009	0.43	33.999
6800.000	101.594	0.44	34.434
6900.000	102.173	0.44	34.870
7000.000	102.743	0.44	35.307
7100.000	103.307	0.44	35.745
7200.000	103.863	0.44	36.184
7300.000	104.413	0.44	36.625
7400.000	104.956	0.44	37.066
7500.000	105.493	0.44	37.508
7600.000	106.023	0.44	37.951
7700.000	106.547	0.44	38.396
7800.000	107.065	0.45	38.842
7900.000	107.578	0.45	39.289
8000.000	108.084	0.45	39.737
8100.000	108.585	0.45	40.186
8200.000	109.081	0.45	40.637
8300.000	109.571	0.45	41.089
8400.000	110.056	0.45	41.543
8500.000	110.536	0.45	41.998
8600.000	111.011	0.46	42.454
8700.000	111.482	0.46	42.912
8800.000	111.947	0.46	43.372
8900.000	112.408	0.46	43.832
9000.000	112.865	0.46	44.295
9100.000	113.317	0.46	44.759
9200.000	113.765	0.47	45.224
9300.000	114.209	0.47	45.691
9400.000	114.648	0.47	46.160
9500.000	115.084	0.47	46.630
9600.000	115.515	0.47	47.102
9700.000	115.943	0.47	47.576
9800.000	116.367	0.48	48.051
9900.000	116.788	0.48	48.528
10000.000	117.204	0.48	49.007
10100.000	117.618	0.48	49.488
10200.000	118.027	0.48	49.970
10300.000	118.434	0.48	50.455
10400.000	118.837	0.49	50.941

10500.000	119.237	0.49	51.429
10600.000	119.633	0.49	51.919
10700.000	120.027	0.49	52.411
10800.000	120.418	0.49	52.905
10900.000	120.805	0.50	53.400
11000.000	121.190	0.50	53.898
11100.000	121.572	0.50	54.398
11200.000	121.951	0.50	54.900
11300.000	122.327	0.50	55.404
11400.000	122.700	0.51	55.910
11500.000	123.071	0.51	56.418
11600.000	123.440	0.51	56.928
11700.000	123.805	0.51	57.441
11800.000	124.169	0.51	57.956
11900.000	124.530	0.52	58.472
12000.000	124.888	0.52	58.991
12100.000	125.244	0.52	59.513
12200.000	125.598	0.52	60.036
12300.000	125.950	0.53	60.562
12400.000	126.299	0.53	61.091
12500.000	126.647	0.53	61.621
12600.000	126.992	0.53	62.154
12700.000	127.335	0.54	62.690
12800.000	127.676	0.54	63.228
12900.000	128.015	0.54	63.768
13000.000	128.352	0.54	64.311
13100.000	128.688	0.55	64.856
13200.000	129.021	0.55	65.404
13300.000	129.353	0.55	65.955
13400.000	129.682	0.55	66.508
13500.000	130.010	0.56	67.064
13600.000	130.336	0.56	67.622
13700.000	130.661	0.56	68.184
13800.000	130.984	0.56	68.747
13900.000	131.305	0.57	69.314
14000.000	131.625	0.57	69.884
14100.000	131.943	0.57	70.456
14200.000	132.260	0.58	71.031
14300.000	132.575	0.58	71.609
14400.000	132.889	0.58	72.190
14500.000	133.201	0.58	72.774
14600.000	133.512	0.59	73.361
14700.000	133.821	0.59	73.951
14800.000	134.130	0.59	74.544
14900.000	134.436	0.60	75.140
15000.000	134.742	0.60	75.739
15100.000	135.046	0.60	76.341
15200.000	135.350	0.61	76.947
15300.000	135.651	0.61	77.556
15400.000	135.952	0.61	78.168
15500.000	136.252	0.62	78.783
15600.000	136.551	0.62	79.402
15700.000	136.848	0.62	80.024
15800.000	137.144	0.63	80.650
10			

15900.000	137.440	0.63	81.279
16000.000	137.734	0.63	81.911
16100.000	138.028	0.64	82.548
16200.000	138.320	0.64	83.188
16300.000	138.612	0.64	83.831
16400.000	138.903	0.65	84.478
16500.000	139.192	0.65	85.130
16600.000	139.481	0.65	85.784
16700.000	139.770	0.66	86.443
16800.000	140.057	0.66	87.106
16900.000	140.344	0.67	87.772
17000.000	140.630	0.67	88.443
17100.000	140.915	0.67	89.118
17200.000	141.199	0.68	89.797
17300.000	141.483	0.68	90.480
17400.000	141.767	0.69	91.167
17500.000	142.049	0.69	91.859
17600.000	142.331	0.70	92.555
17700.000	142.613	0.70	93.256
17800.000	142.894	0.71	93.961
17900.000	143.174	0.71	94.670
18000.000	143.454	0.71	95.384
18100.000	143.734	0.72	96.103
18200.000	144.013	0.72	96.827
18300.000	144.292	0.73	97.556
18400.000	144.570	0.73	98.289
18500.000	144.848	0.74	99.028
18600.000	145.126	0.74	99.772
18700.000	145.403	0.75	100.521
18800.000	145.680	0.75	101.275
18900.000	145.957	0.76	102.034
19000.000	146.234	0.76	102.799
19100.000	146.510	0.77	103.570
19200000	146.786	0.78	104.346
19300000	147.063	0.78	105.128
19400000	147.339	0.79	105.916
19500.000	147.615	0.79	106.709
19600.000	147.891	0.80	107.509
19700.000	148.167	0.81	108.315
19800.000	148.443	0.81	109.127
19900.000	148.719	0.82	109.946
20000.000	148.995	0.83	110.771
20100.000	149.271	0.83	111.603
20200.000	149.548	0.84	112.441
20300.000	149.824	0.85	113.287
20400.000	150.101	0.85	114.139
20500.000	150.378	0.86	114.999
20600.000	150.656	0.87	115.866
20700.000	150.933	0.87	116.740
20800.000	151.212	0.88	117.622
20900.000	151.490	0.89	118.512
21000.000	151.769	0.90	119.411
21100.000	152.049	0.91	120.317
21200.000	152.329	0.91	121.231

21300.000	152.609	0.92	122.155
21400.000	152.890	0.93	123.086
21500.000	153.172	0.94	124.027
21600.000	153.455	0.95	124.978
21700.000	153.738	0.96	125.937
21800.000	154.022	0.97	126.906
21900.000	154.308	0.98	127.886
22000.000	154.594	0.99	128.875
22100.000	154.881	1.00	129.875
22200.000	155.169	1.01	130.886
22300.000	155.458	1.02	131.907
22400.000	155.748	1.03	132.940
22500.000	156.040	1.04	133.985
22600.000	156.333	1.06	135.042
22700.000	156.628	1.07	136.111
22800.000	156.923	1.08	137.194
22900.000	157.221	1.10	138.289
23000.000	157.520	1.11	139.398
23100000	157.821	1.12	140.521
23200.000	158.124	1.14	141.659
23300.000	158.428	1.15	142.812
23400.000	158.735	1.17	143.980
23500.000	159.044	1.18	145.165
23600.000	159.355	1.20	146.367
23700.000	159.669	1.22	147.586
23800.000	159.985	1.24	148.823
23900.000	160.304	1.26	150.080
24000.000	160.626	1.28	151.356
24100.000	160.951	1.30	152.653
24200.000	161.279	1.32	153.971
24300.000	161.611	1.34	155.312
24400.000	161.946	1.36	156.677
24500.000	162.286	1.39	158.066
24600.000	162.629	1.42	159.482
24700.000	162.977	1.44	160.925
24800.000	163.329	1.47	162.398
24900.000	163.687	1.50	163.901
25000.000	164.050	1.54	165.437
25100.000	164.419	1.57	167.007
25200.000	164.794	1.61	168.615
25300.000	165.176	1.65	170.262
25400.000	165.566	1.69	171.952
25500.000	165.963	1.74	173.687
25600.000	166.369	1.78	175.472
25700.000	166.785	1.84	177.310
25800.000	167.211	1.90	179.207
25900.000	167.649	1.96	181.167
26000.000	168.100	2.03	183.199
26100.000	168.566	2.11	185.309
26200.000	169.048	2.20	187.507
26300.000	169.549	2.30	189.805
26400.000	170.071	2.41	192.218
26500.000	170.619	2.54	194.762
26600.000	171.197	2.70	197.462

26700.000	171.811	2.89	200.351
26800.000	172.471	3.12	203.471
26900.000	173.189	3.42	206.890
27000.000	173.987	3.82	210.712
27100.000	174.902	4.41	215.120
27200.000	176.015	5.39	220.510
27300.000	177.582	7.64	228.152
27358.544	180.000	11.85	240.000

Appendix A. 4

Program ECLIPSE

Listing and Sample Output

PROGRAM ECLIPSE

C ASSUMPTIONS:
C Molniya type orbit.
C Critical Inclination (63.43 deg).
C Longitude of Ascending Node is unknown.
C Argument of Perigee $=270 \mathrm{deg}$ (maximum Northern Hemisphere coverage).
C Earth's shadow is a cylinder with radius equal to radius of Earth.
C SUPPORT MODULES: None.
C INPUTS:
C Altp: Perigee altitude (km)
C Period: Orbit period (hrs)
C OUTPUTS:
C Eclpdur: Eclipse duration (min)
C NuEnter: Value for Nu at eclipse entry (rad)
C NuExit: Value for Nu at eclipse exit (rad)
C LOCAL VARIABLES:
C Re: Radius of the Earth (km)
C Mu: Gravitational Parameter for the Earth ($\mathrm{km}^{\wedge} 3 / \mathrm{sec}^{\wedge} 2$)
C DEG2RAD: Conversion factor from degrees to radians (rad/deg)
C Semi: Semimajor axis (km)
C Eœ: Eccentricity
C Test: Value to determine if iteration has converged (km)
C NuLow: Low end marker when converging on a value for Nu (rad)
C NuHigh: High end marker when converging on a value for Nu (rad)
C NuTest: Test value for Nu (rad)
C NuCenter: Value for Nu at the center of the earth's shadow (rad)
C RTest: Radius evaluated at NuTest (km)
C RPerp: Portion of RTest perpendicular to sun line (km)
C EAnomB: Eccentric anomaly at eclipse entry (rad)
C EAnomF: Eccentric anomaly at eclipse exit (rad)
C 00

REAL" $8 \mathrm{Re}, \mathrm{Mu}$
REAL*8 Period, Altp
REAL"8 Eclpdur
REAL*8 Semi, Ecc, Test
REAL*8 Nulow, Nuhigh, Nutest, NuCenter, NuEnter, NuExit REAL*8 RTest, RPerp, EAnomB, EAnomF

CHARACTER*1 Again

OPEN (Unit $=8$, File $=$ 'Eclipse.Out', Status $=$ 'New')
000
C
C Initialize useful constants.
C
000
$R e=6378.135 \mathrm{~d} 0$
$M u=398600.8 \mathrm{~d} 0$
DEG2RAD $=$ PI $/ 180.0 \mathrm{DO}$

00

C
C Get the orbital period and perigee allitude.
C Echo check them to the output file.
C
000
10 Write(*,*)'Enter the orbital period in hours'
Read(*,")Period
Write(**)'Enter the perigee altitude in kilometers'
Read(*,")Altp
Write(*,900)
Write(*,910)Period
Write(*,920)Altp
Write $(8,900)$
Write $(8,910)$ Period
Write $(8,920)$ Altp

C
C Calculate semimajor axis and eccentricity
C
00

$$
\begin{aligned}
& \text { Semi }=\left(\left(\left(\left(3600.0 d 0^{*} \text { Period }\right) /\left(2.0 d 0^{*} \mathrm{Pi}\right)\right) * * 2\right) * M u\right) *(1.0 \mathrm{~d} 0 / 3.0 \mathrm{~d} 0) \\
& \mathrm{EcC}=(\text { Semi }-(\operatorname{Re}+\text { Altp })) / \text { Semi }
\end{aligned}
$$

000

C
C Worst case eclipse occurs when the vector from the center of the
C earth toward the sun lies in the same plane as the orbit plane.
C Under these circumstances, the S/C must pass through the center
C of the Earth's shadow. The situation gets worse when the point
C of the orbit that passes through the center of the shadow
C approaches apogee. Consequently, the geometry of the Earth's
C tilt with respect to the plane of the ecliptic coupled with the
C restriction that argument of perigee be at 270 deg lead to the
C longest duration eclipse occurring when the point 113.5 deg from
C perigee ($90+23.5$ for the tilt of the Earth's spin axis) passes

C through the center of the shadow.
C
000
000
C
C Iterative solution for true anomaly at eclipse entry.
C
C Because the center of the eclipse is for $\mathrm{Nu}=113.5$ deg, eclipse
C entry must occur for some value of Nu such that
23.5 deg < NuEnter < 113.5 deg

C
C
Markers are used to hold low and high values for Nu. NuTest is
C half way between the low and high values. The radius is calculated
C for this value of NuTest. The solution has converged if the
C portion of the radius vector perpendicular to the sunline is
C within one kilometer of the radius of the earth. If the solution
C has not converged yet, the program selects which marker to update.
C If the portion of the radius vector perpendicular to the sunline is
C greater than the radius of the earth, the S / C is not in eclipse and
C the marker to update is the low value for Nu. The marker for the
C high value of Nu is updated if the portion of the radius vector
C perpendicular to the sunline if is less than the radius of the
C earth. Finally, the eccentric anomaly at eclipse entry is
C calculated.
C
$000 c$

```
    NuCenter = 113.5d0 * DEG2RAD
    NuEnter = NuCenter - Pi/2.0d0
    NuLow = NuEnter
    NuHigh = NuCenter
    100 NuTest = (NuHigh + NuLow)/2.0d0
    RTest = Semi * ( 1.0d0 - Ecc**) / (1.0d0 + Ecc * DCOS(NuTest))
    RPerp = RTest * DSIN(NuCenter - NuTest)
    Test = RPerp - Re
    IF (DABS(Test) .GT. 1.0d0) THEN
            IF (Test .GT. 0.0) THEN
                NuLow = NuTest
            ELSE
                NuHigh = NuTest
            ENDIF
            GOTO 100
        ELSE
            NuEnter = NuTest
        ENDIF
    EAnomB = DACOS((Ecc + DCOS(NuEnter))/(1.0d0 + Ecc*DCOS(NuEnter)))
0000000000000000000000000000000000000000000000000000000000000000000000
C
C Iterative solution for true anomaly at eclipse exit.
C
C Because the center of the eclipse is for Nu=113.5 deg, eclipse
C exit must occur for some value of Nu such that
C }\quad113.5 deg < NuExit < 203.5 deg
```

C Remaining logic parallels that for eclipse entry case.
C
00

NuExit $=$ NuCenter + Pi/2.0d0
NuLow $=$ NuCenter
NuHigh $=$ NuExit

200 NuTest $=($ NuHigh + NuLow $) / 2.0 \mathrm{do}$
RTest $=$ Semi * (1.0d0 - Ecc**2 $\left.^{2}\right) /(1.0 \mathrm{dO}+$ Ecc * DCOS(NuTest))
RPerp $=$ RTest * DSIN(NuTest - NuCenter)
Test = RPerp - Re
IF (DABS(Test) .GT. 1.0d0) THEN
IF (Test .GT. O.0) THEN
NuHigh = NuTest
ELSE
NuLow $=$ NuTest
ENDIF
GOTO 200
ELSE
NuExit $=$ NuTest

ENDIF

EAnomF $=\operatorname{DACOS}((E c c+\operatorname{DCOS}($ NuExit $)) /(1.0 d 0+E c c * D C O S(N u E x i t)))$
00
C
C Eclipse duration is based on the difference between the eccentric
C anomalies of eclipse entry and exit. Eclpdur holds temporary
C values for the eclipse duration because the equation is lengthy.
C The last line contains the true value for eclipse duration
C expressed in minutes.
C
000

```
Eclpdur = EAnomB - Ecc * DSIN(EAnomB)
Eclpdur = EAnomF - Ecc*DSIN(EAnomF) - Eclpdur
Eclpdur = DSQRT(Semi**3/Mu)* Eclpdur / 60.0d0
```

000
C
C Write eclipse duration to output file.
C Write true anomaly at eclipse entry and exit to output tile.
C
00
Write (*,1001) Eclpdur
Write (*,1002) NuEnter/DEG2RAD
Write (*,1003) NuExit/DEG2RAD
Write $(8,1001)$ Eclpdur
Write $(8,1002)$ NuEnter/DEG2RAD
Write $(8,1003)$ NuExit/DEG2RAD
00
C
C See if there is another case.

C

Write(*,")'Do you have another case?'
Write(*,*)' Enter " y " or " n "'
Read(*,*)Again
IF ((AGAIN .EQ. "Y") .OR. (AGAIN .EQ. " y " $)$) THEN GOTO 10
ENDIF
900 FORMAT (III)
910 FORMAT (1 X,'Orbital period (hrs) $=$ ',F6.3)
920 FORMAT (1X,'Perigee altitude (km) $=^{\prime}, F 8.3$)
1001 FORMAT (1X,'Eclipse duration (min) $\varepsilon^{\prime}, F 8.3$)
1002 FORMAT (1X,'True Anomaly at eclipse entry (deg) x ',F7.3)
1003 FORMAT (1X,'True Anomaly at eclipse exit (deg) $=$ ',F8.3)
END

$$
\text { Orbital period (hrs) }=8.000
$$

Perigee altitude $(\mathrm{km})=500.000$
Eclipse duration $(\mathrm{min})=52.079$
True Anomaly at eclipse entry $(\mathrm{deg})=70.587$
True Anomaly at eclipse exit $(\mathrm{deg})=131.715$

APPENDIX B

A. BATTERY DESIGN

The batteries were sized on the eclipse load of the AVHRR payload. Having the requirement to operate the AVHRR 24 hours a day, it is not possible to turn off the mission instrument during eclipse to reduce power consumption. Therefore, the battery must supply all the power necessary to run the AVHRR and the bus during the 37 minute eclipse. The solar array must replace this 100.6 W in the approximately one hour of sunlight the AVHRR experiences. The equation used is:

$$
\begin{equation*}
P_{\text {in }}=\frac{\left(P_{\text {discharged }}\right)\left(t_{\text {discharged }}\right)}{(\eta)(\mu)\left(t_{\text {recharge }}\right)} \tag{B.1}
\end{equation*}
$$

where

$$
\begin{aligned}
P_{i n} & =\text { Power required for recharge } \\
\eta & =\text { efficiency of charging equipment } \\
\mu & =10 \% \text { margin for Low Earth Orbit }
\end{aligned}
$$

For the AVHRR:

$$
\begin{equation*}
P_{\text {in }}=\frac{(100.6)(37 / 60)}{(0.9)(0.9)(1)}=76.5 \mathrm{~W} \tag{B.2}
\end{equation*}
$$

To calculate the charging rate the amp-hours utilized must first be determined. For the AVHRR, a discharge of 100.6 W at 17.6 V minimum consumes 3.52 amp -hours. The charging current required is then determined by dividing the amp-hours consumed by the amount of time the sun is available for charging. It was assumed that 90% of the sunlit portion of the orbit was used for recharging. For the AVHRR the charging current is 3.52 amps. The charging rate is then computed by dividing the cell capacity of the battery by the
charging current. The resultant charge rate is $C / 3.4$ where C is the battery capacity in amp-hours. This charge rate is only slightly lower than the maximum recommended rate of C/3.

For the EHF payload the above procedures resulted in the following calculations:

$$
\begin{equation*}
P_{\text {in }}=\frac{(150.3)(52 / 60)}{(0.9)(0.9)(6.5)}=24.7 \mathrm{~W} \tag{B.3}
\end{equation*}
$$

The amp-hours used are:

$$
\begin{equation*}
\frac{(150.3 \mathrm{~W})(52 / 60)}{(17.6 \mathrm{~V})}=7.4 \mathrm{Amp}-\text { hour } \tag{B.4}
\end{equation*}
$$

The charge current is:

$$
\begin{equation*}
\frac{7.4 \mathrm{Amp} \text {-hour }}{6.5 \text { hours }}=1.1 \mathrm{Amps} \tag{B.5}
\end{equation*}
$$

The charge rate is: $\frac{\mathrm{C}}{11}$

B. SOLAR ARRAY DEGRADATION

The solar cell radiation degradation was performed using the JPL Solar Cell Radiation Handbook. Analysis was done for both the circular low earth orbit and the 8hour Molniya orbit. For the circular orbit, the first step was to determine the 1 MeV equivalent fluences for trapped protons and electrons at a 450 nm orbit. With the equivalent 1 Mev fluence, the electric power circuit parameters can be the obtained from graphs in the radiation handbook. This data is shown in Tables B.6 TO B.9. For the 8hour Molniya orbit, the satellite is traveling through several different altitudes at a changing speed. In order to determine the equivalent 1 MeV fluence, a summation must be performed in time increments over one orbit. The summation is shown in Equation B.6.

$$
\begin{equation*}
\phi T=\sum \phi(h) \Delta t \tag{B.6}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \phi_{T}=\text { total fluence in one orbit } \\
& \phi(\mathrm{h})=\text { fluence interpolated for the average altitude } \mathrm{h} \\
& \Delta t=\text { time increment (} 5 \text { minutes) }
\end{aligned}
$$

The 8 -hour orbit was broken up into 5 minute increments. At each of these time increments, the equivalent fluence was determined for the average altitude during that time increment. This represents the fluence that the satellite sees during that 5 minutes. The fluence is multiplied by 5 minutes and then the product for each increment is summed to determine the equivalent fluence for the orbit. Then it is a simple matter to determine the equivalent fluence for 1 year and 3 years in order to enter the graphs and obtain circuit parameters. The numbers are shown in Tables B. 1 TO B. 5 .

1. EHF Payload

Solar Cell: $\quad 10$ Ohm-cm resistivity
$0.0203 \mathrm{~cm}(.008 \mathrm{in})$ thick

Dual AR, BSR, BSF, TEX

Coverglass:	$0.015 \mathrm{~cm}(.006$ in) thick
	Fused silica, UV filter
	Anti-reflecting coating

Backshielding: Infinite

Orbit:

8 hour Molniya (63.4 degree inclination)
Apogee $=2758 \mathrm{~km}$
Perigee $=500 \mathrm{~km}$
Eccentricity $=.6612992$
Assumptions:
Solar maximum
3 year life

Time (min)	Alt (km)	$\begin{gathered} \text { AIt } \\ (\mathrm{nm}) \end{gathered}$	Electrons (all)	$\begin{aligned} & \text { Protons } \\ & \left(\text { V }_{0 c}, P_{m}\right) \end{aligned}$	$\begin{gathered} \text { Protons } \\ \left(I_{S c}\right) \\ \hline \end{gathered}$
0	500	273.40	$2.57 \mathrm{E}+11$	$2.98 \mathrm{E}+12$	$1.76 \mathrm{E}+12$
5	725	396.43	$4.27 \mathrm{E}+11$	$1.46 \mathrm{E}+13$	$8.31 \mathrm{E}+12$
10	1415	773.73	$1.96 \mathrm{E}+12$	$1.79 \mathrm{E}+13$	$1.05 \mathrm{E}+14$
15	2355	1287.73	$9.42 \mathrm{E}+12$	$2.11 E+15$	1.15E + 15
20	3448	1885.39	$1.61 E+13$	$1.15 E+16$	$5.68 \mathrm{E}+15$
25	4605	2518.04	$1.80 \mathrm{E}+13$	$2.81 E+16$	$1.27 E+16$
30	5775	3157.81	$1.62 \mathrm{E}+13$	$3.57 \mathrm{E}+16$	$1.52 \mathrm{E}+16$
35	6948	3799.21	$1.51 E+13$	$3.27 E+16$	$1.33 E+16$
40	8090	4423.67	$1.62 E+13$	$2.61 E+16$	$1.03 E+16$
45	9151	5003.83	$1.82 E+13$	$1.84 \mathrm{E}+16$	$7.08 \mathrm{E}+15$
50	10215	5585.63	2.17E + 13	$1.26 E+16$	$4.79 \mathrm{E}+15$
55	11210	6129.70	$2.60 \mathrm{E}+13$	$7.57 \mathrm{E}+15$	$2.83 \mathrm{E}+15$
60	12190	6665.57	$3.16 \mathrm{E}+13$	$4.40 \mathrm{E}+15$	$1.63 \mathrm{E}+15$
65	13145	7187.77	$3.63 \mathrm{E}+13$	$2.06 E+15$	$7.51 \mathrm{E}+14$
70	14025	7668.96	$3.94 \mathrm{E}+13$	$1.14 E+15$	$4.14 \mathrm{E}+14$
75	14875	8133.75	$4.28 \mathrm{E}+13$	$4.48 \mathrm{E}+14$	$1.60 \mathrm{E}+14$
80	15690	8579.40	$4.66 \mathrm{E}+13$	$2.47 \mathrm{E}+14$	$8.84 \mathrm{E}+13$
85	16485	9014.11	$5.04 \mathrm{E}+13$	$5.73 \mathrm{E}+13$	$2.01 \mathrm{E}+13$
90	12745	9429.68	$5.26 \mathrm{E}+13$	$3.52 \mathrm{E}+13$	$1.24 \mathrm{E}+13$
95	17948	9814.09	$5.49 \mathrm{E}+13$	$1.48 \mathrm{E}+13$	$5.18 \mathrm{E}+12$
100	18648	10196.85	$5.51 \mathrm{E}+13$	$4.04 \mathrm{E}+12$	$1.39 \mathrm{E}+12$
105	19285	10545.17	$5.40 \mathrm{E}+13$	$2.38 \mathrm{E}+12$	$8.18 \mathrm{E}+11$
110	19915	10889.65	$5.29 \mathrm{E}+13$	$7.44 \mathrm{E}+11$	$2.55 \mathrm{E}+11$
115	20505	11212.27	$5.11 \mathrm{E}+13$	$1.73 \mathrm{E}+11$	$5.87 \mathrm{E}+10$
120	21065	11518.48	$4.89 \mathrm{E}+13$	$1.05 \mathrm{E}+11$	$3.59 \mathrm{E}+10$
125	21610	11816.49	$4.68 \mathrm{E}+13$	$4.02 \mathrm{E}+10$	$1.37 \mathrm{E}+10$
130	22110	12089.9	$4.51 E+13$	8.76E-03	8.76E-03
135	22590	12352.36	$4.38 \mathrm{E}+13$	6.24E-03	6.42E-03
140	23060	12609.36	$4.26 E+13$	3.76E-03	$3.76 \mathrm{E}-03$
145	23495	12847.22	$4.14 \mathrm{E}+13$	$1.47 \mathrm{E}-03$	$1.47 \mathrm{E}-03$
150	23895	13065.94	$4.01 \mathrm{E}+13$	$3.80 \mathrm{E}+00$	$3.80 \mathrm{E}+00$
155	24278	13275.37	$3.81 \mathrm{E}+13$	$2.59 \mathrm{E}+00$	$2.95 \mathrm{E}+00$
160	24648	13477.69	$3.62 \mathrm{E}+13$	$2.13 \mathrm{E}+00$	$2.13 \mathrm{E}+00$
165	24975	13656.50	$3.45 \mathrm{E}+13$	$1.40 \mathrm{E}+00$	$1.40 \mathrm{E}+00$
170	25295	13831.47	$3.28 \mathrm{E}+13$	6.86E-01	6.86E-01
175	25575	13984.58	$3.13 \mathrm{E}+13$	6.28E-02	6.82E - 02
180	25849	14134.41	$2.98 \mathrm{E}+13$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$
185	26080	14260.72	$2.86 \mathrm{E}+13$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$
190	26310	14386.48	$2.73 \mathrm{E}+13$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$
200	26695	14597.00	$2.52 \mathrm{E}+13$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$
205	26847	14680.12	$2.43 \mathrm{E}+13$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$
210	26995	14761.05	$2.35 \mathrm{E}+13$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$
215	27098	14817.37	$2.29 \mathrm{E}+13$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$
220	27197	14871.50	$2.24 \mathrm{E}+13$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$
225	27260	14905.95	$2.20 \mathrm{E}+13$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$
230	27340	14949.69	$2.16 E+13$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$
235	27354	14957.35	$2.15 E+13$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$
240	27358	14959.54	$2.15 \mathrm{E}+13$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$
	TOTALS	(per orbit)	$2.90 \mathrm{E}+10$	$3.48 \mathrm{E}+12$	$1.45 \mathrm{E}+12$
	TOTALS	(per year)	$3.18 \mathrm{E}+13$	$3.82 \mathrm{E}+15$	$1.59 \mathrm{E}+15$
	TOTALS	(life)	$9.54 \mathrm{E}+13$	$1.15 \mathrm{E}+16$	$4.76 \mathrm{E}+15$

TABLE B. 1 Fluence Calculation for 8 -hour Molniya Orbit

1 Me V Electron Fluence (per year)

Particle Type	$\mathbf{I}_{\mathbf{s c}}$	$\mathbf{V}_{\text {oc }}, \mathbf{P}_{\mathrm{max}}$
Trapped Electrons	$3.18 \mathrm{E}+13$	$3.18 \mathrm{E}+13$
Trapped Protons	$3.82 \mathrm{E}+15$	$1.59 \mathrm{E}+15$
TOTAL FLUENCE $\quad \mathrm{e} / \mathrm{cm}^{2}-\mathrm{yr}$	$3.85 \mathrm{E}+15$	$1.62 \mathrm{E}+15$
FOR 3 YEARS $\quad \mathrm{e} / \mathrm{cm}^{2} \mathrm{yr}$	$1.15 \mathrm{E}+16$	$4.86 \mathrm{E}+15$

TABLE B. 2 Total 1 Mev Fluence for 8-hour Molniya Orbit

Solar Cell Output for EHF
a. BOL

Eq Fluence $=0$

	Absolute	Relative
I_{sc}	44	1
$\mathrm{~V}_{o c}$	584	1
$\mathrm{P}_{\max }$	19.8	1
$\mathrm{~V}_{\mathrm{mp}}$	492	1
I_{mp}	40.24	1

TABLE B. 3 BOL Solar Cell Parameters
b. After 1 Year

Eq Fluence: $\mathrm{I}_{\mathrm{sc}}=3.85 \mathrm{E}+15$
$\mathrm{V}_{o c}, \mathrm{P}_{\mathrm{m}}=1.62 \mathrm{E}+15$

	Absolute	Relative
I_{sc}	32.4	0.736
$\mathrm{~V}_{\mathrm{oc}}$	502	0.860
$\mathrm{P}_{\max }$	13.1	0.663
$\mathrm{~V}_{\mathrm{mp}}$	410	0.834
I_{mp}	31.9	0.792

TABLE B. 4 One Year Solar Cell Parameters
c. After 3 Years

Eq Fluence: $\begin{array}{ll} & I_{s c}=1.15 \mathrm{E}+16 \\ & \mathrm{~V}_{o c}, P_{m}=4.86 \mathrm{E}+15\end{array}$

	Absolute	Relative
$\mathrm{I}_{\text {sc }}$	29.5	0.670
$\mathrm{~V}_{\mathrm{oc}}$	483	0.827
$\mathrm{P}_{\text {max }}$	11.3	0.571
$\mathrm{~V}_{\text {mp }}$	391	0.795
$\mathrm{I}_{\text {mp }}$	28.9	0.72

TABLE B. 5 EOL Solar Cell Parameters

2. AVHRR Payload

Solar Cell:	10 Ohm-cm resistivity $0.0203 \mathrm{~cm}(.008$ in) thick Dual AR, BSR, BSF, TEX
Coverglass:	$0.015 \mathrm{~cm}(.006$ in) thick Fused silica, UV filter Antireflecting coating
Backshielding:	Infinite
Orbit:	450 NM Circular (Assumed 90° inclination)
Assumptions	Solar Maximum 3 Year Life

Particle Type	$\mathbf{I}_{\mathbf{s c}}$	$\mathbf{V}_{\mathbf{o c}}, \mathbf{P}_{\mathbf{m} \mathbf{a x}}$
Trapped Electrons	$4.59 \mathrm{E}+11$	$4.59 \mathrm{E}+11$
Trapped Protons	$8.64 \mathrm{E}+12$	$1.47 \mathrm{E}+13$
TOTAL FLUENCE $\quad \mathrm{e} / \mathrm{cm}^{2}-\mathrm{yr}$	$9.10 \mathrm{E}+12$	$1.52 \mathrm{E}+13$

TABLE B. 61 MeV Fluences for 450 NM Orbit

Solar Cell Output for AVHRR
a. BOL

Eq Fluence $=0$

	Absolute	Relative
$\mathbf{I}_{\text {sc }}$	44	1
$\mathrm{~V}_{\mathrm{oc}}$	584	1
$\mathrm{P}_{\max }$	19.8	1
$\mathrm{I}_{\text {mp }}$	492	1
I_{mp}	40.24	1

TABLE B. 7 BOL Solar Cell Parameters
b. After 1 Year

Eq Fluence

$$
\begin{aligned}
& I_{\mathrm{sc}}=9.1 \mathrm{E}+12 \\
& \mathrm{~V}_{\mathrm{oc}}, \mathrm{P}_{\mathrm{m}}=1.52 \mathrm{E}+13
\end{aligned}
$$

	Absolute	Relative
I_{sc}	43.7	0.993
$\mathrm{~V}_{\mathrm{oc}}$	571	0.978
$\mathrm{P}_{\max }$	19	0.959
$\mathrm{~V}_{\text {mp }}$	474	0.963
I_{mp}	39.8	0.989

TABLE B. 8 One Year Solar Cell Parameters
c. After 3 Years

Eq Fluence

$$
\begin{array}{r}
\mathrm{I}_{\mathrm{sc}}=2.73 \mathrm{E}+13 \\
\mathrm{~V}_{\mathrm{oc}}, \mathrm{P}_{\mathrm{m}}=4.55 \mathrm{E}+13
\end{array}
$$

	Absolute	Relative
$I_{\text {sc }}$	42.7	0.97
$V_{\text {oc }}$	556	0.952
$\mathrm{P}_{\max }$	18	$0-.909$
$\mathrm{~V}_{\operatorname{mp}}$	461	0.937
I_{mp}	39	0.969

TABLE B. 9 EOL Solar Cell Parameters

C. SOLAR ARRAY PANEL SIZING

	AVHRR	EHF
Cells in Series		
I_{mp}	0.624	0.624
$\alpha_{\text {I }}$	0.00024	0.00024
$\mathrm{K}_{\mathrm{a}}^{1}$	0.96	0.96
$\mathrm{K}_{\mathrm{d}}^{\mathrm{i}}$	0.969	0.72
$\mathrm{K}_{\text {s }}$	0.8885	0.8885
I	0.517334	0.384397
I_{1}	11.25	8.5
Power	315	238
Bus voltage	28	28
T	33	33
$N_{p}=\frac{I_{1}}{I}$	21.74609	22.11256
Cells in Parallel		
V_{mp}	0.492	0.492
$\Delta \mathrm{V}$	0.005	0.005
α_{V}	-0.0022	-0.0022
T	33	33
$\mathrm{K}_{\mathrm{e}}^{\mathrm{V}}$	0.937	0.795
V	0.439828	0.373173
Bus voltage	28	28
Bus voltage drop	1.8	1.8
$N_{S}=\frac{\text { bus }+ \text { busdrop }}{V}$	67.75379	79.85572
Total \# Cells	1473.38	1765.814
Cell width cm	2.5	2.5
Cell height cm	6.2	6.2
Cell area sq in	2.403101	2.403101
Area needed sq ft	24.58806	29.46826

TABLE B. 10 Summary of Solar Array Sizing

APPENDIX C

ATTITUDE CONTROL CALCULATIONS

1. Moment of Inertia Calculations

The spacecraft is modeled as a simple assembly of individual components. Each component is represented as a simple geometric solid. Worst case is beginning of life with solar arrays deployed. The cross-products of inertia have been determined to contribute less than $0.5 \mathrm{~kg}-\mathrm{m}^{2}$ and are not shown here. The coordinate system is taken as the geometric center of the main body with the positive Z direction out of the earth face, positive X direction out of the west face and the positive Y direction out of the south face. The center of mass is measured from this reference.

Payload	mass kg	x cm	y cm	cm	$\begin{gathered} \mathrm{I}_{\mathrm{xx}} \\ \mathrm{~kg}-\mathrm{m}^{2} \end{gathered}$	$\begin{gathered} \mathrm{I} Y Y \\ \mathrm{~kg}-\mathrm{m}^{2} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{zz}} \\ \mathrm{~kg}-\mathrm{m}^{2} \\ \hline \end{gathered}$
AVHRR	157.01	1.68	4.47	13.23	14.16	45.4	39.75
EHF	175.51	-3.02	1.83	15.39	15.38	91.90	83.06

TABLE C. 1 Mass and Inertia Summary

The component break-down and contribution to the total inertia is given in the following:

ltem	a	b	c	mass (lbs)	x	y	\mathbf{z}
RTU	8	8	8	5	11.5	-9.5	8.5
RCU	8	6	6	5	-12.5	-9.5	8.5
ESA	3.64	13.5	0	9	0	-8	10.75
Earth Face	0.375	28	32	0.786	0	0	11.5
Yaw RWA	4.5	0	4.7	5.23	-10.5	8.5	-9.15
AntEarth Face	0.375	28	32	0.786	0	0	-11.5
Tank	8	0	0	8.16	0	0	-3.5
East SADM	3.15	4	0	8.8	-14	0	2
Roll RWA	4.63	4.7	0	5.23	-13.15	-1.58	-6.76
Gyros	4.49	2.95	0	2.64	-14	-11.25	2.88
ADACS	14.25	2.5	5.87	5.5	-14.25	6.38	8.57
East Face	0.375	23	28	0.565	-15.5	0	0
West SADM	3.15	4	0	8.8	14	0	2
Batteries	11.81	9.06	10.23	15.7	11	7.5	-6.38
Power	15.75	5.9	5.9	13.22	12.5	6	8.5
Electronics							
West Face	0.375	23	28	0.565	15.5	0	0
BU RWA	4.63	4.7	0	5.23	10.18	-7.83	-5.18
SSE	4.2	4	2	1.1	-2.3	-12.5	-2.16
SSU	5.2	5.5	1.6	0.98	-2.3	-15.13	-2.16
North Face	0.375	23	32	0.646	0	-13.5	0
Pitch RWA	4.63	4.7	0	5.23	-10.5	11.15	0
CSA	3	8.16	0	7	9.68	9.89	2.1
South Face	0.375	23	32	0.646	0	13.5	0
West Array	0.685	64	34	11.72	62	0.38	2
East Array	0.685	64	34	11.72	-62	0.38	2
Propellant	8	0	0	22	0	0	-3.5
AVHRR	11.5	31.5	14.5	62.4	-0.25	8.25	18.75

TABLE C. 2 AVHRR Component Breakdown

ltem	a	b	c	mass (lbs)	x	y	\mathbf{z}
RTU	8	8	8	5	11.5	-9.5	8.5
RCU	8	6	6	5	-12.5	-9.5	8.5
ESA	3.64	13.5	0	9	0	-8	10.75
Earth Face	0.375	28	32	0.786	0	0	11.5
Yaw RWA	4.5	0	4.7	5.23	-10.5	8.5	-9.15
AntiEarth Face	0.375	28	32	0.786	0	0	-11.5
Tank	8	0	0	8.16	0	0	-3.5
East SADM	3.15	4	0	8.8	-14	0	2
Roll RWA	4.63	4.7	0	5.23	-13.15	-1.58	-6.76
Gyros	4.49	2.95	0	2.64	-14	-11.25	2.88
ADACS	14.25	2.5	5.87	5.5	-14.25	6.38	8.57
East Face	0.375	23	28	0.565	-15.5	0	0
West SADM	3.15	4	0	8.8	14	0	2
Batteries	11.81	9.06	10.23	15.7	11	7.5	-6.38
Power	15.75	5.9	5.9	13.22	12.5	6	8.5
Electronics							
West Face	0.375	23	28	0.565	15.5	0	0
BU RWA	4.63	4.7	0	5.23	10.18	-7.83	-5.18
SSE	4.2	4	2	1.1	-2.3	-12.5	-2.16
SSU	5.2	5.5	1.6	0.98	-2.3	-15.13	-2.16
North Face	0.375	23	32	0.646	0	-13.5	0
Pitch RWA	4.63	4.7	0	5.23	-10.5	11.15	0
CSA	3	8.16	0	7	9.68	9.89	2.1
South Face	0.375	23	32	0.646	0	13.5	0
West Array	0.685	64	34	11.72	62	0.38	2
East Array	0.685	64	34	11.72	-62	0.38	2
Propellant	8	0	0	22	0	0	-3.5
Feed Horn $\&$	10	18.78	13.68	10.73	-9.91	0	21.5
Supports							
Reflector	$\&$	0	0	0	5.4	13.34	0
Pedestal*					31.36		
EHF Electronics	20	6	6	69.4	-12.63	-2.5	14.13
Box East	0.375	6	28	0.032	-15.63	0	14.31
Box West	0.375	6	28	0.032	15.63	0	14.31
Box North	0.375	6	32	0.032	0	-13.63	14.31
Box South	0.375	6	32	0.032	0	13.63	14.31

* Reflector and Pedestal considered as a point mass.

TABLE C. 3 EHF Component Breakdown

2. Disturbance Torques

The disturbance torques consists of the solar pressure torque, the torque due to aerodynamic drag, the gravity gradient torque, internal torques, and the torques provided by the magnetic torque rods. The attitude control system senses these torques as a change in attitude and body rates from the sensors and gyros. The compensating torques are then provided by the RWA's. Cyclic torques will result in no net increase in wheel speeds, however the secular torques will. These secular torques will result in unacceptably high wheel speeds unless a desaturation scheme is used.

a. Solar Torque

In order to determine the effect of the solar torque over the orbut period, some simplifying assumptions are first made. The orbit is assumed to be exactly polar with a 3:30 PM ascending node. The 8:30 AM descending node case will be symmetric and is not modeled here. The spacecraft axis are frozen at the equatorial crossing and then considered 'inertial', (in fact, it is rotating at 1 deg per day). The vector from the sun to this axis is:

$$
\mathbf{S}=\sin (\delta) \mathbf{I}_{0}+\cos (37.5) \mathbf{J}_{0}+\sin (37.5) \mathbf{K}_{\mathbf{o}}
$$

The antinormal vector to the solar arrays is (in body coordinates):

$$
\mathrm{n}=\cos \left(38.766 \cos ^{2}\left(\alpha-25^{\circ}\right)\right) \mathrm{J}+\sin \left(38.766 \cos \left(\alpha-25^{\circ}\right)\right) \mathbf{K}
$$

The solar radiation pressure moment, M_{s}, is (see ref AGR):

$$
\mathbf{M}_{\mathrm{s}}=\operatorname{PA}(\mathbf{n} \cdot \mathbf{S}) \mathbf{r} \times\left(\left(1-\rho_{\mathrm{s}}\right) \mathbf{S}+2\left(\rho_{\mathrm{s}}+\frac{1}{3} \rho_{\mathrm{d}}\right) \mathbf{n}\right)
$$

The solar vector is then transformed into the body coordinates resulting in the solar pressure moment (in body coordinates):

$$
\begin{array}{r}
y(B D+C \sin (38.766 \cos (\alpha-25))-z(B H+C F) I \\
\mathbf{M}_{s}=(\mathrm{PA}(H F+\sin (38.766 \cos (\alpha-25)) \mathrm{D}) \mathbf{z}(\mathrm{BE})-\mathrm{x}(\mathrm{BD}+\mathrm{C} \sin (38.766 \cos (\alpha-25))) \mathbf{J} \\
x(\mathrm{BH}+\mathrm{CF})-y(\mathrm{BE}) \mathbf{K}
\end{array}
$$

where:
$B=\left(1-\rho_{s}\right)$
$C=2\left(\rho_{s}+\frac{1}{3} \rho_{d}\right)$
$D=-\sin (\alpha) \sin (\delta)+\cos (\alpha) \sin (37.5)$
$E=\cos (\alpha) \sin (\delta)+\sin (\alpha) \sin (37.5)$
$F=\cos (38.766 \cos 2(\alpha))$
$\mathrm{G}=\sin (37.5)$
$\mathrm{H}=\cos (37.5)$
$\alpha=$ orbit angle measured from equatorial crossing
$\delta=$ declination of the sun
$\rho_{\mathrm{s}}=$ coefficient of specular reflection
$\rho_{d}=$ coefficient of diffuse reflection

Figure C. 1 Coordinate System

The solar pressure induced torque is plotted below for one orbit. Start time for the plot is at the ascending node.

FIGURE C. 2

b. Magnetic Torque

The magnetic torque rods provide a torque about the pitch and roll axis. Due to the roll-yaw coupling, this will be sufficient to desaturate all three RWA's. For this simulation, the earth's magnetic field is modeled as constant over the poles (within ± 30 degree), at 60 micro-Tesla and constant over the geomagnetic equator, (within ± 30 degree) at 30 micro-Tesla. The torque rods provide a $10 \mathrm{AMP}-\mathrm{m}^{2}$ dipole. This results in a torque about the pitch axis of $0.006 \mathrm{~N}-\mathrm{m}$ and $0.003 \mathrm{~N}-\mathrm{m}$ about the roll. Since this is the worst case disturbance torque, the RWA gain and time constants are determined using these values. The closed loop transfer function for the wheel is derived in ref Agrawal and is provided below:

$$
\frac{\theta(s)}{\mathrm{M}_{\mathrm{sy}}(\mathrm{~s})}=\frac{1}{\mathrm{I}_{\mathrm{yy}}\left(\mathrm{~s}+\sqrt{\frac{\mathrm{K}_{\theta}}{\mathrm{I}_{\mathrm{yy}}}}\right)}
$$

Imposing a constant torque results in the time domain equation for the error:

$$
\theta(t)=\frac{M_{0}}{I_{y y}}\left[\tau^{2}-\exp \left(-\frac{t}{\tau}\right)\left(1-3 \frac{t}{\tau}\right)\right]
$$

This equation is solved analytically for tau for a 0.01 degree error. The gain is then calculated by the formula:

$$
\mathrm{K}_{\theta}=\frac{\mathrm{I}_{y y}}{\tau^{2}}
$$

The results for each axis is provided in the attitude control section of the report.

c. Aerodynamic Torque

The aerodynamic drag of the spacecraft results in a torque that is essentially about the positive pitch axis due to the displaced center of mass. The center of pressure for the spacecraft is again assumed to be the volumetric center of the main body. The atmospheric density is assumed to be constant at the value during solar maximum. The results are presented below:

Pressure	Area	Force	Moment
$1.5 \mathrm{E}-08 \mathrm{~N}-\mathrm{m}^{2}$	$0.415 \mathrm{~m}^{2}$	$6 \mathrm{E}-09 \mathrm{~N}$	$8 \mathrm{E}-10 \mathrm{~N}-\mathrm{m}$

TABLE C. 4 Summary of Aerodynamic Torque

3. Equations of Motion

The equations of motion of a three-axis stabilized spacecraft have been derived by several authors. The ones presented here have been derived in ref Agrawal. These equations account for the gravity gradient torque in the right-hand side with the other disturbance torques on the left. The equations are presented below:

$$
\begin{aligned}
M_{x d i s t} & =I_{x x} \frac{d^{2} \phi}{d t^{2}}+\left(4 \omega_{0}^{2}\left(I_{y y}-I_{z z}\right)-\omega_{o} h_{y}\right) \phi+\left(-h_{y}-\omega_{o}\left(I_{x x}-I_{y y}+I_{z z}\right)\right) \frac{d \psi}{d t} \\
& +h_{z} \frac{d \theta}{d t}-\omega_{0} h_{z}+\frac{d h_{x}}{d t} \\
M_{y d i s t} & =I_{y y} \frac{d^{2} \theta}{d t^{2}}+3 \omega_{0}^{2} \theta\left(I_{x x}-I_{z z}\right)+\omega_{o} h_{x} \phi-h_{z} \frac{d \phi}{d t}+\omega_{o} h_{z} \psi+h_{x} \frac{d \psi}{d t} \\
& +\frac{d h_{y}}{d t} \\
M_{z d i s t}= & I_{z z} \frac{d^{2} \psi}{d t^{2}}+\left(\omega_{o}^{2}\left(I_{y y}-I_{x x}\right)-\omega_{0} h_{y}\right) \psi+\left(h_{y}+\omega_{o}\left(I_{x x}+I_{z z}-I_{y y}\right)\right) \frac{d \phi}{d t} \\
& -h_{x} \frac{d \theta}{d t}+\omega_{0} h_{x}+\frac{d h_{z}}{d t}
\end{aligned}
$$

where:
ϕ, θ, ψ are the attitude errors
ω_{0} is the orbital rate
h_{x}, h_{y}, h_{z} are the wheel momentum
$\mathrm{I}_{\mathrm{xx}}, \mathrm{I}_{\mathrm{yy}}, \mathrm{I}_{\mathrm{zz}}$ are the spacecraft moment of inertias

The satellite's attitude control system is then modeled using the equations above and the disturbance torques previously described. The model is a PC-Matlab program given below:
\% initialize variables for run
$\mathrm{w}_{\mathrm{\prime}} \mathrm{o}=1.032 \mathrm{e}-3 ; \%$ orbital rate for 450 nmi circular, $\mathrm{rad} / \mathrm{sec}$
\%
\% coefficients of specular and diffuse reflections
rhos $=0.2 ; \operatorname{rhod}=0.0 ;$
b_rho $=(1-$ rhos $) ; ~ c _r h o ~=~ 2 *\left(\right.$ rhos $+1 / 3^{*}$ rhod $) ;$
\%
\% read in inertia and center of mass (convert to MKS)
\% note: inertia must be in $\mathrm{lbm}-\mathrm{ft}^{\wedge} 2$
load a:\avhrr.spt; itot = avhrr.*0.04214;
load a: \avhrr.cen; cen = avhrr.*0.0254;
\% coefficients for solar torque calcs
\%
$\mathrm{g}_{\mathrm{s}} \mathrm{s}=\sin (0.6545) ; \%$ offset of 37.5 deg ;
$h_{-} \mathrm{s}=\cos (0.6545)$;
\%
\% input declination here in rads

\%

\mathbf{s}_{-}del $=\sin (0.4102) ; \% \max$ declination
$p_{-} s=4.644 \mathrm{e}-6 ; \%$ solar pressure at 1 AU in $\mathrm{N} / \mathrm{m}^{\wedge} 2$
\% input solar array area
$a_{-} s=4352 ; \%$ area of solar arrays for AVHRR in sq. in.
$a_{-} s=a_{-} s * 6.4516 e-4 ; \%$ convert to MKS
\%
$x_{-} c=\operatorname{cen}(1) ; y_{-} c=\operatorname{cen}(2) ; z_{-} c=\operatorname{cen}(3) ;$
\%
$i_{-} x=\operatorname{itot}(1) ; i_{-} y=\operatorname{itot}(2) ; i_{-} z=\operatorname{itot}(3) ;$
\%
$i_{-} 1=4^{*} w_{-} \alpha^{\wedge} 2^{*}\left(i_{-} y-i_{-} z\right) ; i_{-} 2=w_{-} o^{*}\left(i_{-} x-i_{-} y+i_{-} z\right) ;$
$i_{-} 3=3^{*} w_{-} \gamma^{\wedge} 2^{*}\left(i_{-} x-i_{-} z\right) ; i_{-} 4=w_{-} o^{\wedge} 2^{*}\left(i_{-} y-i_{-} x\right) ;$
$i_{-} 5=w_{-} o^{*}\left(i_{-} x+i_{-} z-i_{-} y\right)$;
torq_ $x=0 ;$ torq_ $_{-}=0 ;$
\%
\% define global variables (underscores)
global w_o g_sh_s s_del p_s $a_{-} s x_{-} c y_{-} c z_{-} c i_{-} x i_{-} y i_{-} z \ldots$
$i_{-} 1 i_{-} 2 i_{-} 3 i_{-} 4 i_{-} 5 b_{-} r h o c_{-} r h o k_{-} p h i k_{-} t h e t a . .$.
k_psi t_phi t_theta t_psi torq_x torq_y;
function $\mathbf{x d o t}=\operatorname{eqnmot}(t, x)$
\% functions for solar torque
\%
$\mathrm{d}=\cos \left(\mathrm{w}_{-} \mathrm{o}^{*} \mathrm{t}\right) .{ }^{*} \mathrm{~g}_{-} \mathrm{s}-\sin \left(\mathrm{w}_{-} \mathrm{o}^{*} \mathrm{t}\right) .{ }^{*} \mathrm{~s}$ _del;
$e=\cos \left(w_{-} o^{*} t\right) .{ }^{*} s_{-} d e l+\sin \left(w_{-} o^{*} t\right) .{ }^{*} g_{-} s ;$

```
f}=\operatorname{cos}(0.67659434.* cos(w_o*t)-0.436332313);
g= 交(0.67659434 .* cos(w_o*t)-0.436332313);
r = p_s* a_s .* (h_s .* f + g.*d);
aeroy = 8.e-10;
%
% solar and aero torque calculation
%
msx = r .* (y_c .* (b_rho .* d + c_rho .* g) - z_c .* ...
        (b_rho * h_s + c_rho .* f));
msy = r .* (z_c .* (b_rho .*e) - x_c .* (b_rho .* d +...
        c_rho .* g)) + aeroy;
msz = r .* (x_c .* (b_rho * h_s + c_rho .* f) - y_c .*...
        (b_rho .* e));
%
    % dete - rine if in eclipse and set Ms to zero
    %
    n=fix(w_o* / (2*pi));
    if ((w_o*t>(2.98+2*n*pi)) & (w_o*t < (4.76+2*n*pi))),
        msx = 0; msy = 0; msz = 0;
    end
    %
    % check wheel speeds and desat if necessary
    %
    if }x(7)>10.47
        torq_x = 1;
    end
    if }x(8)>10.47
```

```
    torq_y = 1;
    end
if }\mathbf{x}(7)<0.1
    torq_x = 0;
end
if }x(8)<0.1
    torq_y = 0;
end
if torq_x == 1,
    if ((w_o*t > (5.76+2*n*pi)) & (w_o*t < (0.52+2*n*pi))),
        mmx = -0.0003;
    elseif ((w_o*t > (2.6+2*n*pi)) & (w_o*t < (3.67+2*n*pi))),
        mmx =-0.0003;
    else
        mmx = 0;
    end
    else
        mmx = 0;
    end
    if torq_y == 1,
        if ((w_o*t >(1.0+2*n*pi)) & (w_o*t < (2.1+2*n*pi))),
        mmy = -0.0006;
        elseif ((w_o*t > (4.2+2*n*pi)) & (w_o*t < (5.2+2*n*pi))),
        mmy = -0.0006;
        else
        mmy = 0;
        end
```

else

$$
\mathrm{mmy}=0 ;
$$

end
\%
\% differential equation matrix
\%
$\% \mathbf{x}(1)=$ phi $\quad x(3)=$ theta $\quad x(5)=p s i$
$\% x(2)=d / d t(p h i) \quad x(4)=d / d t$ (theta) $x(6)=d / d t(p s i)$
$\% \quad x(7)=$ roll wheel speed
$\% x(8)=$ pitch wheel speed
$\% \mathbf{x}(9)=$ yaw wheel speed
$\%[x d o t]=\mathrm{d} / \mathrm{dt}(\mathrm{x})$
\%
\% roll error
\%
$x \operatorname{dot}(1)=x(2) ;$
$x \operatorname{dot}(2)=\left(i_{-} x^{\wedge}(-1)\right) . *\left(\left(\left(-i_{-} 1\right)+w_{-} o . * x(8)\right) . * x(1)+\ldots\right.$
$\left(x(8)+i _2\right) . * x(6)-x(4) . * x(9)+$ w_o .* $x(9)-\ldots$
k_{-}phi $\left..{ }^{*}\left(t _p h i .{ }^{*} x(2)+x(1)\right)+m s x+m m x\right) ;$
\%
\% pitch error
\%

$$
\begin{aligned}
& x \operatorname{dot}(3)=x(4) ; \\
& x \operatorname{dot}(4)=\left(i_{-} y^{\wedge}(-1)\right) . *\left(\left(\left(-i _3\right) . * x(3)\right)-w _o .^{*} x(7) .{ }^{*}\right. \text {... } \\
& x(1)+x(9) .{ }^{*} x(2)-\text { w_o .* } x(9) .{ }^{*} x(5)-x(7) \ldots \\
& \text { * } \left.x(6) \text { - k_theta } .^{*}\left(t_{\text {_theta }} . * x(4)+x(3)\right)+m s y+m m y\right) \text {; }
\end{aligned}
$$

\%

```
% yaw error
%
xdot(5)=x(6);
xdot(6) = (i_z^(-1)) .* (((-i_4) +w_o .* x(8)) .* x(5) - ...
    (x(8) +i_5) .* x(2)+x(7) .* x(4) - w_o .* x(7)...
    -k_psi .* (t_psi .* x(6) + x(5)) + msz);
%
% wheel control
% wheel inertias in kg-m^2
%
iwx =0.009; iwy = 0.009; iwz = 0.009;
xdot(7) = k_phi .* (t_phi .*x(2) + x(1))./iwx;
xdot(8) = k_theta .* (t_theta .* }x(4)+x(3))./iwy
xdot(9) = k_psi .* (t_psi .* x(6) + x(5))./iwz;
```

These equations are integrated using a Runge-Kutta-Fehlberg integration method provided with Matlab. The results are plotted for one orbit on the following pages. The simulation shows that the pitch wheel absorbs the angular momentum of the rotation of the spacecraft about the pitch axis due to its orbital motion. The roll and yaw wheel should only need desaturation if a change in the orbit is required.

Pointing Error for AVHRR Payload

Yau Error vs. Time

Wheel speed for AVHRR Payload

Pilch wheel Speed vs. Time

Yau Whee) Speed vs. Time

APPENDIX D

THERMAL CONTROL CALCULATIONS

The thermal control appendix contains a partial ITAS output for the AVHRR configured spacecraft. This partial output is in the form of steady state temperatures and is provided to show a sampling of the ITAS program's capability. The payload and the bus were modeled by approximately 150 nodes and several runs were completed for various orbits. Because the majority of the inputs into the ITAS model were assumed, the run should be considered as a bulk analysis. Very specific and detailed heat data, down to the circuit board level, would be required for more accurate temperatures. This data was unobtainable in the short time this project was completed.
$\star \cdots$ Time: 09:43:28.10-e: 12/15/90
***********/90
$\begin{aligned} &== \\ & \text { Thermal Analysis Parameters }\end{aligned}$
$======================-$ Solution Method:1.Steady-State 2.Transient 1 0.10
2. Solution Time Step(minutes)
2. Solution Time Step(minutes)
3. Final Time (minutes);if <0 then no of orbs 123.80
4. Starting Temperature(Kelvin)
4. Starting Temperature(Kelvin) 300.00 300.00
5. Temperature Print Interval (minutes)
5. Temperature Print Interval (minutes) 20 20 9999
6. Heat-Flow Print Interval (Iterations)
2
2
7. Temperature Unit 1:K, 2:C, 3:F, 4:R
130
130
8. Solution Accuracy Parameter
1.30
1.30
9. Solution Convergence Parameter 0.00010
10. Solution Tolerance 0.850
11. Transient Solution Stability Factor Y
12. Include User-Defined Network
12. Include User-Defined Network (X / N) (X / N) N
13. Print RADK, POWER (Y/N)
N
14. Print Transient Temperatures Forced (No.4) (Y/N) Y
=
=
$=$
 *ITAS THERMAL ANALYSIS**ITAS ABSORBED HEAT RATES FROM ORBITAL INCIDENT \& IR AND UV MARICES
Date: 12/15/90
Date: 12/15/90
Time: 09:43:28.10*ITAS ABSORBED HEAT-LOAD COMPUTATIONS*

Date: 12/15/90
Time: 09:43:28.10

Script-F Control Parameters349

1. SPACE (SINK) Node Number
2. Cutoff Limit For Area*Script-F (Sq.cm.) $00 \mathrm{E}+01$0.0000
3. Cutoff Limit For Blackbody Viewfactors
4. SPACE (SINK) Node Emissivity 0.9999
5. SPACE (SINK) Node Temperature (Kelvin) 0.00006. SINDA Interface File To Be Generated (Y/N)Y1000007. SINDA Radiation Conductor Number At start.
0
6. Print control: 0:No, do not print, 1:Yes, print all$======$
int, 1 Yes, print all

Seq	Surface No	Node No	Alpha	Emiss	T/Mass	Dissip	Matr ID
1	1.01	1	0.30	0.80	1.00	0.00	153
2	1.02	2	0.30	0.80	1.00	0.00	153
3	1.03	3	0.30	0.80	1.00	0.00	153
4	1.04	4	0.30	0.80	1.00	0.00	153
5	1.05	5	0.30	0.80	1.00	0.00	153
6	2.01	6	0.42	0.21	1.00	0.10	118
7	2.02	7	0.42	0.21	1.00	0.10	118
8	2.03	8	0.42	0.21	1.00	0.10	118
9	2.04	9	0.42	0.21	1.00	0.10	118
10	2.05	10	0.42	0.21	1.00	0.10	118
11	2.06	11	0.42	0.21	1.00	0.10	118
12	3.01	12	0.38	0.19	1.00	9.00	210
13	3.02	13	0.38	0.19	1.00	9.00	210
14	3.03	14	0.38	0.19	1.00	9.00	210
15	3.04	15	0.38	0.19	1.00	9.00	210
16	3.05	16	0.38	0.19	1.00	9.00	210
17	3.06	17	0.38	0.19	1.00	9.00	210
18	4.01	18	0.42	0.21	1.00	0.30	118
19	4.02	19	0.42	0.21	1.00	0.30	118
20	4.03	20	0.42	0.21	1.00	0.30	118
21	4.04	21	0.42	0.21	1.00	0.30	118
$\bigcirc ?$	4.05	22	0.42	0.21	1.00	0.30	118
,	4.06	23	0.42	0.21	1.00	0.30	118
24	5.01	24	0.44	0.05	1.00	0.20	34
25	5.02	25	0.44	0.05	1.00	0.20	34
26	5.03	26	0.44	0.05	1.00	0.20	34
27	5.04	27	0.44	0.05	1.00	0.20	34
28	5.05	28	0.44	0.05	1.00	0.20	34
29	5.06	29	0.44	0.05	1.00	0.20	34
30	5.07	30	0.44	0.05	1.00	0.20	34
31	5.08	31	0.44	0.05	1.00	0.20	34
32	5.09	32	0.44	0.05	1.00	0.20	34
33	5.10	33	0.44	0.05	1.00	0.20	34
34	5.11	34	0.44	0.05	1.00	0.20	34
35	5.12	35	0.44	0.05	1.00	0.20	34
36	5.13	36	0.44	0.05	1.00	0.20	34
37	5.14	37	0.44	0.05	1.00	0.20	34
38	5.15	38	0.44	0.05	1.00	0.20	34
39	5.16	39	0.44	0.05	1.00	0.20	34
40	5.17	40	0.44	0.05	1.00	0.20	34
41	5.18	41	0.44	0.05	1.00	0.20	34
42	6.01	42	0.25	0.72	1.00	1.50	173
43	6.02	43	0.25	0.72	1.00	1.50	173
44	6.03	44	0.25	0.72	1.00	1.50	173
45	6.04	45	0.25	0.72	1.00	1.50	173
46	6.05	46	0.25	0.72	1.00	1.50	173
47	7.01	47	0.42	0.21	1.00	0.30	118

	7.02	48	0.42	0.21	1.00	0.30	118
18	7.03	49	0.42	0.21	1.00	0.30	118
50	7.04	50	0.42	0.21	1.00	0.30	118
51	7.05	51	0.42	0.21	1.00	0.30	118
52	7.06	52	0.42	0.21	1.00	0.30	118
53	8.01	53	0.42	0.21	1.00	0.30	118
54	8.02	54	0.42	0.21	1.00	0.30	118
55	8.03	55	0.42	0.21	1.00	0.30	118
56	8.04	56	0.42	0.21	1.00	0.30	118
57	8.05	57	0.42	0.21	1.00	0.30	118
58	8.06	58	0.42	0.21	1.00	0.30	118
59	9.00	59	0.19	0.08	1.00	0.00	175
60	10.00	60	0.25	0.72	1.00	0.50	173
61	11.00	61	0.25	0.72	1.00	0.50	173
62	12.00	62	0.05	0.80	1.00	0.00	36
63	13.00	63	0.05	0.80	1.00	0.00	36
64	14.01	64	0.68	0.48	1.00	0.50	116
65	14.02	65	0.68	0.48	1.00	0.50	116
66	14.03	66	0.68	0.48	1.00	0.50	116
67	14.04	67	0.68	0.48	1.00	0.50	116
68	14.05	68	0.68	0.48	1.00	0.50	116
69	14.06	69	0.68	0.48	1.00	0.50	116
70	14.07	70	0.68	0.48	1.00	0.50	116
71	14.08	71	0.68	0.48	1.00	0.50	116
72	14.09	72	0.68	0.48	1.00	0.50	116
73	14.10	73	0.68	0.48	1.00	0.50	116
74	14.11	74	0.68	0.48	1.00	0.50	116
$;$	14.12	75	0.68	0.48	1.00	0.50	116
76	14.13	76	0.68	0.48	1.00	0.50	116
77	14.14	77	0.68	0.48	1.00	0.50	116
78	14.15	78	0.68	0.48	1.00	0.50	116
79	14.16	79	0.68	0.48	1.00	0.50	116
80	14.17	80	0.68	0.48	1.00	0.50	116
81	14.18	81	0.68	0.48	1.00	0.50	116
82	14.19	82	0.68	0.48	1.00	0.50	116
83	14.20	83	0.68	0.48	1.00	0.50	116
84	14.21	84	0.68	0.48	1.00	0.50	116
85	14.22	85	0.68	0.48	1.00	0.50	116
86	14.23	86	0.68	0.48	1.00	0.50	116
87	14.24	87	0.68	0.48	1.00	0.50	116
88	15.01	88	0.68	0.48	1.00	0.50	116
89	15.02	89	0.68	0.48	1.00	0.50	116
90	15.03	90	0.68	0.48	1.00	0.50	116
91	15.04	91	0.68	0.48	1.00	0.50	116
92	15.05	92	0.68	0.48	1.00	0.50	116
93	15.06	93	0.68	0.48	1.00	0.50	116
94	15.07	94	0.68	0.48	1.00	0.50	116
95	15.08	95	0.68	0.48	1.00	0.50	116
96	15.09	96	0.68	0.48	1.00	0.50	116
97	15.10	97	0.68	0.48	1.00	0.50	116
98	15.11	98	0.68	0.48	1.00	0.50	116
99	99	0.68	0.48	1.00	0.50	116	

CONTROL CARD VALUE SET TO ITAS (148)
SCRIPT-F CALC CPU TIME (second) 223.820

********************* * * * * * * * * * * *Date: 12/15/90Time: 09:47:15.10
Date
$====================$Orbital Control Parameters
0. Print:0:Summary;1:Detail;2:Individual Tables;3:Options $1+2$ 0 2

1. Power Units In The Output 0:Watt, 1:Btu/hr, 2:Btu/min......
2. Orbit And Attitude Remain Constant Throughout Run (Y/N) Y
3. Spacecraft Is 0:Stationary, 1:Spinning 0
4. Spacecraft Geometry Is:0: Fixed, or 1:Changing Throughout Orbit0
5. Shadow Entry/Exit Point Calculation Accuracy Factor 5
6. Earth and Albedo Flux Computation Accuracy Factor-1 6
7. Earth and Albedo Flux Computation Accuracy Factor-2 10
Spacecraft Attitude:
8. Spacecraft Is 1:Earth-Oriented, 2:Sun-Oriented 1
9. Spacecraft Is Orbiting Around 1:Earth, or 2:Moon 1
Select Option (A or B) For Beta Angle:
Option Selected A
Option A:
-. . Longitude of the Ascending Node (Degrees) 52.50
.. Sun Declination (Degrees) 0.00
10. Sun Right Ascension (Degrees) 0.00
11. Orbit Inclination (Degrees) 98.75 98.75
12. Argument of Perifocus (Degrees) 0.00
option B:
13. Beta Angle (Degrees), Orbit Normal \& Sun Vector 90.00
14. Cigma Angle (Degrees), 0.00 0.00 (Orbit xo \& Sun vector Projection in Orbit Plane)
15. Angular Increment of the True Anomaly (Degrees) 30.00
16. Starting Point in the Orbit (Degrees) 0.00
17. Rotation Angles (Degrees):
0.00
0.00
X -ROT
X -ROT
0.00
0.00 0.00
Y-ROT
Y-ROT
18. Radiation Constants:Solar, Albedo, Earth-IR:
SOLAR 429.50
ALBEDO 0.30
EARTH-IR 75.12
19. Orbit Altitude At Apogee (=0 Circular orb) NM (-ve for KM). 0.00
20. Orbit Altitude At Perigee (Closest Point); NM (-ve for KM) 450.00
21. Satellite Travelling 1:North, 2:South At Perigee 1Earth-Effects (IR and Albedo) Computation Options:
22. Altitude Above Which All Earth Inputs Are Ignored 225.00
3). Albedo \& Earth-IR Computation options (A/B/C).............

A: Detailed (Accurate) Computation, The Real Thing!
B: Approximation (Faster), No Blockage, For Parametric
C: Approximation (Fastest), No Alb/E-IR, For parametric studies ONLY $/ \backslash / \backslash \backslash / / \backslash / \backslash / / \backslash / \backslash / \backslash / / / \backslash / \backslash$ *ITAS ORBITAL INCIDENT FLUX COMPUTATIONS*
 ITAS ORBIT CONTROL PARAMETERS:
NUMBER OF SURFACES $=146$
ENERGY UNITS $\quad=\quad 2$ REF. ITAS ORBITAL SETUP MENU
SPIN $=\quad \cdot 0=0 \mathrm{NO} ;=1$ YES
VARIABLE GEOMETRY $=\quad 0=0$ NO; $=1$ YES
NUMBER OF SURFACES IDENTIFIED IN THE BLOCKAGE TABLES= 146
NOTE: SURFACE AREAS ARE IN CENTIMETERS
DP \& TP CALCULATED FROM THE ST CARD: 80.170 -8.500
ITAS ORBITAL PARAMETERS INITIAL CONDITIONS:
$\begin{array}{lllll}\text { S/C ORIENTATION MODE }= & 1=1 \text { EARTH; }=2 & \text { STAR; }=3 & \text { SUN } & 429.50 \\ \text { ALBEDO, EARTH-SHINE, SOLAR CONSTANT }= & 0.30 & 75.12 & 429.5\end{array}$

- Angle from the ascending node to perigee, measured in the orbit plane at the center of the earth $=0.00000 \mathrm{E}+00$ Degrees
o Longitude of the ascending node in X, Y, Z, angle past equinox, measured in the equatorial $=5.25014 \mathrm{E}+01$ Degrees
- Sun position In Celestial Coordinates :
$\cos (A S)=1.00000 \mathrm{E}+00-->$ Equinox
$\operatorname{COS}(B S)=-2.60943 \mathrm{E}-05$
$\operatorname{COS}(G S)=-1.13442 \mathrm{E}-05-->$ North

$$
\begin{aligned}
\mathrm{AS} & =1.63027 \mathrm{E}-03 \text { Degrees } \\
\mathrm{BS} & =9.00015 \mathrm{E}+01 \text { Degrees } \\
\mathrm{GS} & =9.00006 \mathrm{E}+01 \text { Degrees }
\end{aligned}
$$

o Mean anomaly of the sun central angle from perinelion $=7.60605 \mathrm{E}+01$ Degrees

- Approximation to Kepler s solution for the sun central $=-1.63024 \mathrm{E}-03$ Degrees; Measured In The Ecliptic Plane From Line of Nodes

```
O Sun RA = 0.00000E+00 Degrees
O Sun DEC = =0.00000E+00 Degrees
```


* Note: BETA: The Angle Between The Sun Vector And The Orbit Normal, And CIGMA: The Angle Between The Projection of The Sun vector In The Orbit Plane From Perigee ($=0$ for Circular Orb)

ECC	INC(DEG)	LATP(DEG)	LONG(DEG)	RP(NM)
0.0000	98.750	0.000	0.000	450.000

DP (DAY)	TP (HRS)	DT(MIN)	DETA(DEG)	ROT1 (DEG)	ROT2 (DEG)	ROT3 (DEG)	
80.170	-8.500	0.000	30.00	0.00	0.00	0.00	

SURF NODE BTAB

1	1	1
2	2	4
3	3	3
4	4	2
5	5	5
6	6	20
7	7	21
8	8	43
9	9	22
10	10	23
11	11	44
12	12	17
13	13	15
14	14	26
15	15	18
16	16	16
17	17	27
18	18	51
19	19	24
20	20	65
21	21	52
22	22	25
23	23	66
24	24	59
25	25	64
26	26	62

AREA	ABSORB	EMIT	ALPHA	BETA	GAMMA	COMMENT
6.22	1.0	1.0	1.0	0.0	0.0	1.01
4.47	1.0	1.0	0.0	1.0	0.0	1.02
5.11	1.0	1.0	0.0	0.0	1.0	1.03
6.22	1.0	1.0	-1.0	0.0	0.0	1.04
4.47	1.0	1.0	0.0	-1.0	0.0	1.05
0.63	1.0	1.0	1.0	0.0	0.0	2.01
0.63	1.0	1.0	0.0	.1 .0	0.0	2.02
0.25	1.0	1.0	0.0	0.0	1.0	2.03
0.63	1.0	1.0	-1.0	0.0	0.0	2.04
0.63	1.0	1.0	0.0	-1.0	0.0	2.05
0.25	1.0	1.0	0.0	0.0	-1.0	2.06
0.72	1.0	1.0	1.0	0.0	0.0	3.01
0.94	1.0	1.0	0.0	1.0	0.0	3.02
0.58	1.0	1.0	0.0	0.0	1.0	3.03
0.72	1.0	1.0	-1.0	0.0	0.0	3.04
0.94	1.0	1.0	0.0	-1.0	0.0	3.05
0.58	1.0	1.0	0.0	0.0	-1.0	3.06
0.25	1.0	1.0	1.0	0.0	0.0	4.01
0.59	1.0	1.0	0.0	1.0	0.0	4.02
0.10	1.0	1.0	0.0	0.0	1.0	4.03
0.25	1.0	1.0	-1.0	0.0	0.0	4.04
0.59	1.0	1.0	0.0	-1.0	0.0	4.05
0.10	1.0	1.0	0.0	0.0	-1.0	4.06
0.17	1.0	1.0	0.8	0.3	-0.5	5.01
0.17	1.0	1.0	0.8	0.6	0.0	5.02
0.17	1.0	1.0	0.8	0.3	0.5	5.03

				1.0	1.0	0.8	-0.3	0.5	5.04
27	27	63	0.17	1.0	1.0	0.8	-0.6	0.0	5.05
8	28	61	0.17	1.0	1.0	0.8	-0.3	-0.5	5.06
29	29	60	0.17	1.0	1.0	0.8	0.5	-0.9	5.07
30	30	31	0.38	1.0	1.0	0.0	1.0	0.0	5.08
31	31	32	0.38	1.0	1.0	0.0	0.5	0.9	5.09
32	32	29	0.38	1.0	1.0	0.0	-0.5	0.9	5.10
33	33	33	0.38	1.0	1.0	0.0	-1.0	0.0	5.11
34	34	28	0.38	1.0	1.0	0.0	-0.5	-0.9	5.12
35	35	30	0.38	1.0	1.0	-0.0	0.3	-0.5	5.13
36	36	58	0.17	1.0	1.0	-0.8	0.3	0.0	5.14
37	37	57	0.17	1.0	1.0	-0.8	0.3	0.5	5.15
38	38	54	0.17	1.0	1.0	-0.8	-0.3	0.5	5.16
39	39	55	0.17	1.0	1.0	-0.8	-0.3	0.0	5.17
40	40	53	0.17	1.0	1.0	-0.8	-0.6	-0.5	5.18
41	41	56	0.17	1.0	1.0	-0.8	-0.3	-0. 0	6.01
42	42	8	2.52	1.0	1.0	1.0	0.0	0.0	6.02
43	43	13	1.16	1.0	1.0	0.0	1.0	, 0	6.03
44	44	7	3.17	1.0	1.0	0.0	0.0	0.0	6.04
45	45	9	2.52	1.0	1.0	-1.0	-1.0	0.0	6.05
46	46	14	1.16	1.0	1.0	1.0	0.0	0.0	7.01
47	47	35	0.33	1.0	1.0	1.0	1.0	0.0	7.02
48	48	36	0.33	1.0	1.0	0.0	0.0	1.0	7.03
49	49	45	0.25	1.0	1.0	-1.0	0.0	0.0	7.04
50	50	37	0.33	1.0	1.0	-1.0	-1.0	0.0	7.05
51	51	38	0.33	1.0	1.0	. 0	0.0	-1.0	7.06
52	52	46	0.25	1.0	1.0	0.0	0.0	0.0	8.01
53	53	39	0.33	1.0	1.0	1.0	1.0	0.0	8.02
, 4	54	40	0.33	1.0	1.0	0.0	0.0	1.0	8.03
55	55	47	0.25	1.0	1.0	-1.0	0.0	0.0	8.04
56	56	41	0.33	1.0	1.0	-1.0	-1.0	0.0	8.05
57	57	42	0.33	1.0	1.0	0.0	-1.0	-1.0	8.06
58	58	48	0.25	1.0	1.0	0.0	0.0	0.0	9.00
59	59	12	1.19	1.0	1.0	-1.0	0.0	-1.0	10.00
60	60	34	0.35	1.0	1.0	0.0	0.0	-1.0	11.00
61	61	19	0.65	1.0	1.0	0.0	0.0	-1.0	12.00
62	62	10	2.16	1.0	1.0	0.0	0.0	1.0	13.00
63	63	11	1.33	1.0	1.0	0.0	0.3	-1.0	14.01
64	64	93	0.08	1.0	1.0	0.0	0.3	-0.7	14.02
65	65	107	0.08	1.0	1.0	0.0	1.0	-0.3	14.03
66	66	94	0.08	1.0	1.0	0.0	1.0	-0.3	14.04
67	67	101	0.08	1.0	1.0	0.0	1.0	0.7	14.05
68	68	84	0.08	1.0	1.0	0.0	0.7	1.0	14.06
69	69	102	0.08	1.0	1.0	0.0	-0.3	1.0	14.07
70	70	85	0.08	1.0	1.0	0.0	-0.3	0.7	14.08
71	71	103	0.08	1.0	1.0	0.0	-1.0	0.3	14.09
72	72	95	0.08	1.0	1.0	0.0	-1.0	-0.3	14.10
73	73	96	0.08	1.0	1.0	0.0	-0.7	-0.7	14.11
74	74	97	0.08	1.0	1.0	0.0	-0.7	-1.0	14.12
75	75	98	0.08	1.0	1.0	-1.0	0.0	0.0	14.13
76	76	118	0.04	1.0	1.0	-1.0	0.0	0.0	14.14
77	77	139	0.04	1.0	1.0		0.0	0.0	14.15
78	78	135	0.04	1.0	1.0	-1.0			

79	79	136	0.04	1.0	1.0	-1.0	0.0	0.0	14.16
. 0	80	119	0.04	1.0	1.0	-1.0	0.0	0.0	14.17
81	81	120	0.04	1.0	1.0	-1.0	0.0	0.0	14.18
82	82	121	0.04	1.0	1.0	-1.0	0.0	0.0	14.19
83	83	140	0.04	1.0	1.0	-1.0	0.0	0.0	14.20
84	84	122	0.04	1.0	1.0	-1.0	0.0	0.0	14.21
85	85	123	0.04	1.0	1.0	-1.0	0.0	0.0	14.22
86	86	124	0.04	1.0	1.0	-1.0	0.0	0.0	14.23
87	87	125	0.04	1.0	1.0	-1.0	0.0	0.0	14.24
88	88	86	0.08	1.0	1.0	1.0	0.3	0.0	15.02
89	89	87	0.08	1.0	1.0	0.7	0.7	0.0	15.03
90	90	79	0.08	1.0	1.0	0.3	1.0	0.0	15.04
91	91	99	0.08	1.0	1.0	-0.3	1.0	0.0	15.05
92	92	88	0.08	1.0	1.0	-0.7	0.7	0.0	15.06
93	93	100	0.08	1.0	1.0	-1.0	0.3	0.0	15.07
94	94	80	0.08	1.0	0	-1.0	-0.3	0.0	15.08
95	95	108	0.08	1.0	0	-0.7	-0.7	0.0	15.09
96	96	77	0.08	1.0	1.0	-0.3	-1.0	0.0	15.10
97	97	104	0.08	1.0	1.0	0.3	-1.0	0.0	15.11
98	98	89	0.08	1.0	1.0	0.7	-0.7	0.0	15.11
99	99	81	0.08	1.0	1.0	1.0	-0.3	0.0	15.12
100	100	126	0.04	1.0	1.0	0.0	0.0	1.0	15.14
101	101	127	0.04	1.0	1.0	0.0	0.0	1.0	15.15
102	102	128	0.04	1.0	1.0	0.0	0.0	1.0	15.16
103	103	137	0.04	1.0	1.0	0.0	0.0	1.0	15.17
104	104	114	0.04	1.0	1.0	0.0	0.0	1.	15.18
- 25	105	129	0.04	1.0	1.0	0.0	0.0	1.0	15.19
16	106	130	0.04	1.0	1.0	0.0	0.0	1.0	15.20
107	107	141	0.04	1.0	1.0	-0.0	0.0	1.0	15.21
108	108	113	0.04	1.0	1.0	0.0	0.0	1.0	15.22
109	109	142	0.04	1.0	1.0	0.0	0.0	1.0	15.23
110	110	131	0.04	1.0	1.0	0.0		1.0	15.24
111	111	132	0.04	1.0	1.0	0.0	. 0.0	1.0	16.01
112	112	105	0.08	1.0	1.0	1.0	-0.0	0.3	16.02
113	113	82	0.08	1.0	1.0	0.7	0.0	1.0	16.03
114	114	90	0.08	1.0	1.0	0.3		1.0	16.04
115	115	75	0.08	1.0	1.0	-0.3	0.0	0.7	16.05
116	116	110	0.08	1.0	1.0	-0.7	0.0	0.3	16.06
117	117	91	0.08	1.0	1.0	-1.0	0.0	-0.3	16.07
118	118	83	0.08	1.0	1.0	-1.0	0.0	-0.7	16.08
119	119	78	0.08	1.0	1.0	-0.7	0.0	-1.0	16.09
120	120	109	0.08	1.0	1.0	-0.3	0.0	-1.0	16.10
121	121	106	0.08	1.0	1.0	0.3	0.0	-0.7	16.11
122	122	76	0.08	1.0	1.0	0.7	0.0	-0.3	16.12
123	123	92	0.08	1.0	1.0	1.0	0.0	0.3	16.13
124	124	143	0.04	1.0	1.0	0.0	1.0	0.0	16.14
125	125	111	0.04	1.0	1.0	0.0	1.0	0.0	16.15
126	126	138	0.04	1.0	1.0	0.0	1.0	0.0	16.16
127	127	115	0.04	1.0	1.0	0.0	1.0	0.0	16.17
128	128	146	0.04	1.0	1.0	0.0	1.0	0.0	16.18
129	129	133	0.04	1.0	1.0	0.0	1.0	0.0	16.19
130	130	134	0.04	1.0	1.0	0.0	1.0		

131	131	116	0.04	1.0	1.0	0.0	1.0	0.0	16.20
2	132	145	0.04	1.0	1.0	0.0	1.0	0.0	16.21
133	133	144	0.04	1.0	1.0	0.0	1.0	0.0	16.22
134	134	112	0.04	1.0	1.0	0.0	1.0	0.0	16.23
135	135	117	6	0.04	1.0	1.0	0.0	1.0	0.0
136	136	67	3.78	1.0	1.0	0.0	0.0	1.0	22.00
137	137	67	0.08	1.0	1.0	1.0	0.0	0.0	23.01
138	138	49	0.25	1.0	1.0	0.0	1.0	0.0	23.02
139	139	68	0.08	1.0	1.0	0.0	0.0	1.0	23.03
140	140	69	0.08	1.0	1.0	-1.0	0.0	0.0	23.04
141	141	70	0.08	1.0	1.0	0.0	0.0	-1.0	23.05
142	142	71	72	0.08	1.0	1.0	1.0	0.0	0.0
143	143	73	0.08	1.0	1.0	0.0	0.0	1.0	24.01
144	144	73	0.08	1.0	1.0	-1.0	0.0	0.0	24.03
145	145	50	0.25	1.0	1.0	0.0	-1.0	0.0	24.04
146	146	74	0.08	1.0	1.0	0.0	0.0	-1.0	24.05

FINAL ORBITAL TIME-AVERAGED FLUXES ($\mathrm{A}=\mathrm{E}=1$) IN BTU/HR/SQ.FT. or WATT/SqCm部

ORBIT SUN-TIME (PERCENT) $=$
76.95

SURF	NODE	SOLAR(S)	Albedo (A)	EAR-IR(E)	S+A+E	$S+A(A B S)$	IR(ABS)	
SUR 1	1	85.63	0.00	0.00	85.63	85.63	0.00	1.01
2	2	74.04	0.00	0.00	74.04	74.04	0.00	1.02
3	3	259.18	0.00	0.00	259.18	259.18	0.00	1.03
4	4	18.18	0.00	0.00	18.18	18.18	0.00	1.04
5	5	73.78	0.00	0.00	73.78	73.78	0.00	1.05
6	6	0.00	0.00	0.00	0.00	0.00	0.00	2.01
7	7	74.04	0.00	0.00	74.04	74.04	0.00	2.02
8	8	0.00	0.00	0.00	0.00	0.00	0.00	2.03
9	9	8.19	0.00	0.00	8.19	8.19	0.00	2.04
10	10	0.00	0.00	0.00	0.00	0.00	0.00	2.05
11	11	0.00	0.00	0.00	0.00	0.00	0.00	2.06
12	12	85.63	0.00	0.00	85.63	85.63	0.00	3.01
13	13	74.04	0.00	0.00	74.04	74.04	0.00	3.02
14	14	0.00	0.00	0.00	0.00	0.00	0.00	3.03
15	15	0.00	0.00	0.00	0.00	0.00	0.00	3.04
16	16	0.00	0.00	0.00	0.00	0.00	0.00	3.05
17	17	0.00	0.00	0.00	0.00	0.00	0.00	3.06
18	18	0.00	0.00	0.00	0.00	0.00	0.00	4.01
19	19	0.00	0.00	0.00	0.00	0.00	0.00	4.02
20	20	0.00	0.00	0.00	0.00	0.00	0.00	4.03 4.04
21	21	6.02	0.00	0.00	6.02	6.02	0.00	4.04
22	22	73.78	0.00	0.00	73.78	73.78	0.00	4.05
23	23	0.00	0.00	0.00	0.00	0.00	0.00	4.06
24	24	0.00	0.00	0.00	0.00	0.00	0.00	5.01
25	25	0.00	0.00	0.00	0.00	0.00	. 0.00	5.02
26	26	0.00	0.00	0.00	0.00	0.00	0.00	5.03
27	27	0.00	0.00	0.00	0.00	0.00	0.00	5.04
28	28	0.00	0.00	0.00	0.00	0.00	0.00	5.05
29	29	0.00	0.00	0.00	0.00	0.00	0.00	5.06
30	30	0.00	0.00	0.00	0.00	0.00	0.00	5.07
31	31	0.00	0.00	0.00	0.00	0.00	0.00	5.08

32	32	0.00	0.00	0.00	0.00	0.00	0.00	5.09
32	33	0.00	0.00	0.00	0.00	0.00	0.00	5.10
34 34	34	0.00	0.00	0.00	0.00	0.00	0.00	5.11
35	35	0.00	0.00	0.00	0.00	0.00	0.00	5.12
36	36	0.00	0.00	0.00	0.00	0.00	0.00	5.13
37	37	0.00	0.00	0.00	0.00	0.00	0.00	5.14
38	38	0.00	0.00	0.00	0.00	0.00	0.00	5.15
39	39	0.00	0.00	0.00	0.00	0.00	0.00	5.16
40	40	0.00	0.00	0.00	0.00	0.00	0.00	5.17
41	41	0.00	0.00	0.00	0.00	0.00	0.00	5.18
42	42	0.00	0.00	0.00	0.00	0.00	0.00	6.01
43	43	71.85	0.00	0.00	71.85	71.85	0.00	6.02
44	44	172.93	0.00	0.00	172.93	172.93	0.00	6.03
45	45	30.81	0.00	0.00	30.81	30.81	0.00	6.04
46	46	73.78	0.00	0.00	73.78	73.78	0.00	6.05
47	47	0.00	0.00	0.00	0.00	0.00	0.00	7.01
48	48	0.00	0.00	0.00	0.00	0.00	0.00	7.02
49	49	0.00	0.00	0.00	0.00	0.00	0.00	7.03
50	50	30.81	0.00	0.00	30.81	30.81	0.00	7.04
51	51	0.00	0.00	0.00	0.00	0.00	0.00	7.05
52	52	0.00	0.00	0.00	0.00	0.00	0.00	7.06
53	53	0.00	0.00	0.00	0.00	0.00	0.00	8.01
54	54	0.00	0.00	0.00	0.00	0.00	0.00	8.02
55	55	0.00	0.00	0.00	0.00	0.00	0.00	8.03
56	56	30.81	0.00	0.00	30.81	30.81	0.00	8.04
57	57	0.00	0.00	0.00	0.00	0.00	0.00	8.05
58	58	0.00	0.00	0.00	0.00	0.00	0.00	8.06
59	59	30.81	0.00	0.00	30.81	30.81	0.00	9.00
60	60	0.00	0.00	0.00	0.00	0.00	0.00	10.00
61	61	0.00	0.00	0.00	0.00	0.00	0.00	11.00
62	62	0.00	0.00	0.00	0.00	0.00	0.00	12.00
63	63	0.00	0.00	0.00	0.00	0.00	0.00	13.00
64	64	0.00	0.00	0.00	0.00	0.00	0.00	14.01
65	65	0.00	0.00	0.00	0.00	0.00	0.00	14.02
66	66	0.00	0.00	0.00	0.00	0.00	0.00	14.03
67	67	0.00	0.00	0.00	0.00	0.00	0.00	14.04
68	68	0.00	0.00	0.00	0.00	0.00	0.00	14.05
69	69	0.00	0.00	0.00	0.00	0.00	0.00	14.06
70	70	0.00	0.00	0.00	0.00	0.00	0.00	14.07
71	71	0.00	0.00	0.00	0.00	0.00	0.00	14.08
72	72	0.00	0.00	0.00	0.00	0.00	0.00	14.09
73	73	0.00	0.00	0.00	0.00	0.00	0.00	14.10
74	74	0.00	0.00	0.00	0.00	0.00	0.00	14.11
75	75	0.00	0.00	0.00	0.00	0.00	0.00	14.12
76	76	0.00	0.00	0.00	0.00	0.00	0.00	14.13
77	77	0.00	0.00	0.00	0.00	0.00	0.00	14.14
78	78	0.00	0.00	0.00	0.00	0.00	0.00	14.15
79	79	0.00	0.00	0.00	0.00	0.00	0.00	14.16
80	80	0.00	0.00	0.00	0.00	0.00	0.00	14.17
81	81	0.00	0.00	0.00	0.00	0.00	0.00	14.18
82	82	0.00	0.00	0.00	0.00	0.00	0.00	14.19
83	83	0.00	0.00	0.00	0.00	0.00	0.00	14.20

84	84	0.00	0.00	0.00	0.00	0.00	0.00	14.21
85	85	0.00	0.00	0.00	0.00	0.00	0.00	14.22
86	86	0.00	0.00	0.00	0.00	0.00	0.00	14.23
87	87	0.00	0.00	0.00	0.00	0.00	0.00	14.24 15.01
88	88	0.00	0.00	0.00	0.00	0.00 0.00	0.00 0.00	15.02
89	89	0.00	0.00	0.00	0.00	0.00	0.00	15.03
90	90	0.00	0.00	0.00	. 0.00	0.00	0.00	15.04
91	91	0.00	0.00	0.00	0.00	0.00	0.00	15.05
92	92	0.00	0.00	0.00	0.00	0.00	0.00	15.06
93	93	0.00	0.00	0.00	0.00	0.00	0.00	15.07
94	94	0.00	0.00	0.00	0.00	0.00	0.00	15.08
95	95	0.00	0.00	0.00	0.00	0.00	0.00	15.09
96	96	0.00	0.00	0.00	0.00	0.00	0.00	15.10
97	97	0.00	0.00	0.00	0.00	0.00	0.00	15.11
98	98	0.00	0.00	0.00	0.00	0.00	0.00	15.12
99	99	0.00	0.00	0.00	0.00	0.00	0.00	15.13
100	100	0.00	0.00	0.00	0.00	0.00	0.00	15.14
101	101	0.00	0.00	0.00	0.00	0.00	0.00	15.15
102	102	0.00	0.00	0.00	0.00	0.00	0.00	15.16
103	103	0.00	0.00	0.00	0.00	0.00	0.00	15.17
104	104	0.00	0.00	0.00	0.00	0.00	0.00	15.18
105	105	0.00	0.00	0.00	0.00	0.00	0.00	15.19
106	106	0.00	0.00	0.00	0.00	0.00	0.00	15.20
107	107	0.00	0.00	0.00	0.00	0.00	0.00	15.21
108	108	0.00	0.00	0.00	0.00	0.00	0.00	15.22
109	109	0.00	0.00	0.00	0.00	0.00	0.00	15.23
1.10	110	0.00	0.00	0.00	0.00	0.00	0.00	15.24
+11	111	0.00	0.00	0.00	0.00	0.00	0.00	16.01
112	112	0.00	0.00	0.00	0.00	0.00	0.00	16.02
113	113	0.00	0.00	0.00	0.00	0.00	0.00	16.03
114	114	0.00	0.00	0.00	0.00	0.00	0.00	16.04
115	115	0.00	0.00	0.00	0.00	0.00	0.00	16.05
116	116	0.00	0.00	0.00	0.00	0.00	0.00	16.06
117	117	0.00	0.00	0.00	0.00	0.00	0.00	16.07
118	118	0.00	0.00	0.00	0.00	0.00	0.00	16.08
119	119	0.00	0.00	0.00	0.00	0.00	0.00	16.09
120	120	0.00	0.00	0.00	0.00	0.00	0.00	16.10
121	121	0.00	0.00	0.00	0.00	0.00	0.00	16.11
122	122	0.00	0.00	0.00	0.00	0.00	0.00	16.12
123	123	0.00	0.00	0.00	0.00	0.00	0.00	16.13
124	124	0.00	0.00	0.00	0.00	0.00	0.00	16.14
125	125	0.00	0.00	0.00	0.00	0.00	0.00	16.15
126	126	0.00	0.00	0.00	0.00	0.00	0.00	16.16
127	127	0.00	0.00	0.00	0.00	0.00	0.00	16.17
128	128	0.00	0.00	0.00	0.00	0.00	0.00	16.18
129	129	0.00	0.00	0.00	. 0.00	0.00	0.00	16.19
130	130	0.00	0.00	0.00	0.00	0.00	0.00	16.20
131	131	0.00	0.00	0.00	0.00	0.00	0.00	16.21
132	132	0.00	0.00	0.00	0.00	0.00		16.22
133	133	0.00	0.00	0.00	0.00	0.00	0.00	16.22
134	134	0.00	0.00	0.00	0.00	0.00	0.00	16.23
135	135	0.00	0.00	0.00	0.00	0.00	0.00	16.24

					0.00	0.00	0.00	22.00
136	136	0.00	0.00	0.00	0.00	0.00	0.00	23.01
.37	137	0.00	0.00	0.00	0.00	0.00	0.00	23.02
138	138	0.00	0.00	0.00	0.00	0.00	0.00	23.03
139	139	0.00	0.00	0.00	0.00	0.00	0.00	23.04
140	140	0.00	0.00	0.00	0.00	0.00	0.00	23.05
141	141	0.00	0.00	0.00	0.00	0.00	0.00	24.01
142	142	0.00	0.00	0.00	0.00	0.00	0.00	24.02
143	143	0.00	0.00	0.00	0.00	0.00	0.00	24.03
144	144	0.00	0.00	0.00	0.00	0.00	0.00	0.00
145	145	0.00	0.00	0.00	0.00	0.00	0.00	
146	146	0.00	0.00	0.00	0.00	0.00	0.00	24.05

ORBITAL CALC CPU TIME (second)
NO. OF THERMAL NODES=
147
WARNING NO. OF THERMAL NODES CHANGED
temperature (DEGREES CENTIGRADE), POWER IN WATTS

TIME $========================-000$ NO. OF ITERATIONS= 1 (STEADY-STATE SOLUTION)

T	$1=$	26.84		$2=$	26.84 T		$3=$	26.84		$4=$	26.84
T	5=	26.84	T	6=	26.84 T		$7=$	26.84	T	8=	26.84 26.84
T	$5=$ $9=$	26.84	T	$10=$	26.84 T		$11=$	26.84		$12=$ $16=$	26.84 26.84
	$13=$	26.84	T	$14=$	26.84		$15=$	26.84		20=	26.84
	$17=$	26.84	T	$18=$	26.84	T	19=	26.84 26.84	T	$24=$	26.84
T	$21=$	26.84	T	$22=$	26.84	T	23 $27=$ $=$	26.84	T	$28=$	26.84
T	$25=$	26.84	T	$26=$	26.84		$27=$ $31=$	26.84	T	$32=$	26.84
T	29=	26.84	T	$30=$	26.84	T	$35=$	26.84	T	$36=$	26.84
T	$33=$	26.84	T	$34=$	26.84	T	39=	26.84	T	$40=$	26.84
T	$37=$	26.84	T	$38=$	26.84	I	49=	26.84	T	$44=$	26.84
T	$41=$	26.84	T	$42=$	26.84	T	47=	26.84	T	$48=$	26.84
T	$45=$	26.84	T	46=	26.84	T	51=	26.84	T	$52=$	26.84
T	$49=$	26.84	T	$50=$	26.84	T	$55=$	26.84	T	$56=$	26.84
T	53=	26.84	T	$54=$	26.84	T	$55=$ 59	26.84	T	$60=$	26.84
T	57=	26.84	T	58	26.84	T	$63=$	26.84	T	$64=$	26.84
T	$61=$	26.84	T	$62=$	26.84	T	$67=$	26.84	T	$68=$	26.84
T	$65=$	26.84	T	66=	26.84	T	$71=$	26.84	T	$72=$	26.84
T	$69=$	26.84	T	$70=$	26.84	T	$71=$ $75=$	26.84	T	$76=$	26.84
T	$73=$	26.84	T	$74=$	26.84 26.84	T	79=	26.84	T	$80=$	26.84
T	$77=$	26.84	T	$78=$	26.84	T	$83=$	26.84	T	$84=$	26.84
T	$81=$	26.84	T	$82=$	26.84 26.84	T	$87=$ 87	26.84	T	$88=$	26.84
T	$85=$	26.84	T	$86=$	26.84	T	91=	26.84	T	$92=$	26.84
T	$89=$	26.84	T	$90=$	26.84	T	$95=$	26.84	T	$96=$	26.84
T	$93=$	26.84	T	$4=$	26.84	T	$99=$	26.84	T	$100=$	26.84
T	$97=$	26.84	T	98	26.84	T	103=	26.84	T	$104=$	26.84
T	101=	26.84	T	$102=$	26.84 26.84	T	$107=$	26.84	T	$108=$	26.84
T	$105=$	26.84	T	$106=$	26.84 26.84	T	$111=$	26.84	T	112=	26.84
T	$109=$	26.84	T	$110=$ $114=$	26.84	T	$115=$	26.84	T	116=	26.84

T	$117=$	26.84	T	$118=$	26.84	T	119=	26.84	T	$120=$	26.84
	$121=$	26.84	T	$122=$	26.84	T	$123=$	26.84	T	$124=$	26.84
T	$125=$	26.84	T	$126=$	26.84	T	127 $=$	26.84	T	$128=$	26.84
T	$129=$	26.84	T	$130=$	26.84	T	$131=$	26.84	T	$132=$	26.84
T	133=	26.84	T	$134=$	26.84	T	$135=$	26.84	T	136=	26.84
T	$137=$	26.84	T	138=	26.84	T	$139=$	26.84	T	$140=$	26.84
T	$141=$	26.84	T	$142=$	26.84	T	$143=$	26.84	T	$144=$	26.84
T	145=	26.84	T	146=	26.84	T	$147=$	-273.16	T		

TIME $=101.540$ NO. OF ITERATIONS $=17$ (STEADY-STATE SOLUTION)

T	$1=$	-67.59 T	$2=$	-74.95 T	$3=$	-2.03	T	$4=$	-87.84
T	$5=$	-75.10 T	6=	-72.25 T	$7=$	29.37	T	$8=$	-124.71
T	$9=$	-42.48 T	$10=$	-118.11 T	11=	-135.26	T	$12=$	111.86
T	$13=$	92.15 T	$14=$	84.50 T	$15=$	69.34	T	16=	50.35
T	$17=$	80.05 T	$18=$	-58.91 T	$19=$	-96.66	T	$20=$	-37.81
T	21=	-38.39 T	$22=$	31.94 T	$23=$	-47.27	T	$24=$	-4.39
T	25=	-10.66 T	26=	-15.84 T	$27=$	-15.17	T	$28=$	11
T	$29=$	-3.91 T	$30=$	-27.12 T	$31=$	-36.66	T	$32=$	-61.30
T	$33=$	-60.08 T	$34=$	-38.07 T	$35=$	-37.46	T	$36=$	-3.64
T	$37=$	2.02 T	$38=$	-8.54 T	$39=$	-8.90	T	$40=$	-0.38
T	$41=$	4.99 T	$42=$	-101.36 T	$43=$	-68.08	T	$44=$	-22.69
m	$45=$	-107.56 T	$46=$	-68.15 T	$47=$	-101.04	T	48=	-104.12
	49=	-91.68 T	$50=$	9.86 T	$51=$	-99.44	T	$52=$	80.95
T	$53=$	-99.51 T	$54=$	-99.56 T	$55=$	-91.68	T	$56=$	21
T	$57=$	-104.25 T	$58=$	-78.32 T	$59=$	-20.60	T	60=	-134.09
T	$61=$	-154.03 T	$62=$	-143.75 T	$63=$	-117.85	T	64	55
T	$65=$	-32.28 T	$66=$	-34.64 T	$67=$	-36.06	T	68	64
T	69=	-35.83 T	$70=$	-29.52 T	$71=$	-35.19	T	$72=$	-45.76
T	$73=$	-46.20 T	$74=$	-39.63 T	$75=$	-32.61	T	$76=$	30.55
T	$77=$	27.85 T	$78=$	27.70 T	$79=$	26.30	T	$80=$	25.50
T	$81=$	24.59 T	$82=$	23.58 T	$83=$	21.92	T	$84=$	20.42
T	$85=$	26.85 T	$86=$	25.30 T	87=	27.81	T	$88=$	-4.43
T	89=	-27.42 T	$90=$	-30.01 T	91=	-31.14	T	$92=$	-32.36
T	93=	-32.07 T	$94=$	-32.08 T	$95=$	-35.23	T	$96=$	-43.45
T	97=	-44.61 T	98=	-36.85 T	$99=$	-7.86	T	$100=$	34.87
T	101=	26.85 T	$102=$	20.08 T	$103=$	18.90	T	$104=$	22.71
T	105=	21.82 T	$106=$	21.45 T	$107=$	25.91	T	108=	23.58
T	109=	23.72 T	$110=$	27.14 T	$111=$	31.93	T	112=	-47.33
T	$113=$	-47.33 T	$114=$	-47.25 T	115=	-46.41	T	$116=$	-43.77
T	117=	-30.44 T	$118=$	-22.36 T	119=	-26.32	T	$120=$	-26.99
T	$121=$	-27.50 T	$122=$	-38.60 T	$123=$	-46.63	T	$124=$	11.51
T	125=	10.35 T	$126=$	10.38 T	$127=$	11.84	T	$128=$	15.04
T	129=	19.78 T	$130=$	18.58 T	$131=$	20.00	T	$132=$	19.52
T	$133=$	17.46 T	$134=$	18.10 T	$135=$	13.94	T	$136=$	-100.29
T	$137=$	-7.27 T	138=	-73.98 T	$139=$	-28.85	T	$140=$	-15.21
T	$141=$	-17.21 T	$142=$	-3.83 T	$143=$	-30.39	T	$144=$	-12.38
T	$145=$	-63.59 T	$146=$	-12.41 T	$147=$	-273.16	T		

APPENDIX_E

PROPULSION CALCULATIONS

The requirements for the amount of fuel for corrections to the initial orbit insertions were determined using:

$$
V=\sqrt{\frac{\mu}{a}}
$$

where

$$
\begin{aligned}
& \mu=398.602 \\
& \mathrm{a}=\text { altitude in kilometers }
\end{aligned}
$$

The initial insertion altitude is $450 \mathrm{nmi}(7211 \mathrm{~km})$ and the safety margin is 50 nmi (92.6 km). If Pegasus can only get the spacecraft to $400 \mathrm{nmi}(7118.8 \mathrm{~km}$), then using the above equation the following values are calculated:

$$
\begin{aligned}
& V_{450}=7.435 \mathrm{~km} / \mathrm{s} \\
& \mathrm{~V}_{400}=7.483 \mathrm{~km} / \mathrm{s} \\
& \Delta \mathrm{~V}=7.483-7.435=0.048 \mathrm{~km} / \mathrm{s}
\end{aligned}
$$

This value is substituted in the following equation to determine the mass of propellant required:

$$
m_{p}=m_{i}\left[1-\exp \left(\frac{\Delta V}{I_{s p} g}\right)\right]
$$

where

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{p}}=\text { mass propellant } \\
& \mathrm{m}_{\mathrm{i}}=\text { mass spacecraft } \\
& \mathrm{I}_{\mathrm{sp}}=\text { specific impulse }
\end{aligned}
$$

Substituting this value for $\Delta \mathrm{V}$ in the above equation yields the fuel required to be 3.344 kilograms.

APPENDIX_E

AXIAL LOADS

1. Frame Beams

The frame axial members were modelled as columns under compression. A factor of safety of 1.5 was used. Worst case load was the EHF payload structure at 135 lbs . The honeycomb panels were assumed to have an additional 130 lbs load in the axial direction, modeling the weight of the equipment panels.

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{C}}=(8.5 \mathrm{~g})(265 \mathrm{lbs})(1.5)=3378 \mathrm{lbf} \\
& \text { Area }=(4)\left(0.9375 \mathrm{in}^{2}\right)=3.75 \mathrm{in}^{2} \\
& \sigma=\frac{3378 \mathrm{lbf}}{3.75 \mathrm{in}^{2}}=900 \mathrm{psi} \\
& \text { M.S. }=\frac{\text { yield strength }}{\text { limit load }}-1 \\
& \text { M.S. }=\frac{37000 \mathrm{psi}}{900 \mathrm{psi}}-1=40
\end{aligned}
$$

2. Honeycomb Panel

The earth face honeycomb panel with the AVHRR attached was checked for stress during launch loads.

Facing stress

$$
\begin{aligned}
& \mathrm{a}=32 \text { (in.) } \\
& \mathrm{b}=14 \text { (in.) }
\end{aligned}
$$

where a and b are footprint dimensions of AVHRR

$$
\mathrm{K}=\text { constant }
$$

$$
\begin{aligned}
& \quad \mathrm{p}=\text { load (lbs/in} 2) \\
& \mathrm{h}=\text { half thickness of panel (in.) } \\
& \mathrm{t}_{\mathrm{f}}=\text { faceskin thickness (in.) } \\
& \sigma_{\mathrm{f}}=\frac{\mathrm{K} \mathrm{p} \mathrm{~b}}{\mathrm{~h} \mathrm{t}_{\mathrm{f}}}
\end{aligned}{ }^{\sigma_{\mathrm{f}}=\frac{(0.05)\left(\frac{62}{448}\right)(14)^{2}(1.5)(8.5)}{(0.379)(0.004)}} \begin{aligned}
& \sigma_{\mathrm{f}}=11,406 \mathrm{psi} \\
& \text { M.S. }=\frac{24000}{11406}-1=1.1
\end{aligned}
$$

BENDING LOADS

The axial rectangular tubing ($1.5 \mathrm{in} . \times 2 \mathrm{in}$.) was designed to withstand the 3.5 g pullup maneuver the Pegasus performs. The worse case payload was the EHF payload and a factor of safety of 1.5 was used. The tubing was modelled as a cantilever beam rigidly fixed at the anti-earth face.

1. Maximum Deflection

$$
\begin{aligned}
& \delta_{\mathrm{t}}=\delta_{\text {uniform load }}+\delta_{\text {payload }} \\
& \delta_{\mathrm{t}}=\frac{\mathrm{P} \mathrm{I}^{3}}{8 \mathrm{E} \mathrm{I}}+\frac{\mathrm{P} \mathrm{I}^{3}}{3 \mathrm{EI}} \\
& \delta_{\mathrm{t}}=\frac{(1.5)(25)(3.5)(23)^{3}}{8\left(9.9\left(10^{6}\right)\right)(0.442)}+\frac{(1.5)(135)(3.5)(23)^{3}}{3\left(9.9\left(10^{6}\right)\right)(0.442)}
\end{aligned}
$$

$$
\delta_{\mathrm{t}}=0.178 \mathrm{inch}
$$

2. Maximum Bending Stress

For distributed load per beam:

$$
\begin{aligned}
& S_{b_{\perp}}=\frac{M_{\perp} C}{I} \\
& M_{\perp_{\max }}=\frac{W \mathrm{~L}}{2} \\
& M_{\perp_{\max }}=\frac{(25)(23 \mathrm{in.})(3.5)(1.5)}{2} \\
& M_{\perp_{\max }}=1509 \mathrm{lbf}-\mathrm{in} \\
& \quad=\frac{(1509 \mathrm{lbf}-\mathrm{in})(1 \mathrm{in} .)}{0.442}=9219 \mathrm{psi}
\end{aligned}
$$

For concentrated loads per beam:

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{b}_{2}}=\frac{\mathrm{M}_{2} \mathrm{C}}{\mathrm{I}} \\
& \mathrm{M}_{2}=\frac{(135)(3.5)(1.5)(23)}{4}=4075 \mathrm{lbf}-\mathrm{in} \\
& \mathrm{~S}_{\mathrm{b}_{2}}=\frac{(4075 \mathrm{lbf}-\mathrm{in})(1 \mathrm{in} .)}{0.442}=9219 \mathrm{psi} \\
& \mathrm{~S}_{\mathrm{bT}_{\mathrm{T}}}=\mathrm{S}_{\mathrm{b}_{1}}+\mathrm{S}_{\mathrm{b}_{2}}=3414.8+9219=12633 \mathrm{psi} \\
& \text { M.S. }=\frac{37000}{12633}-1=1.9
\end{aligned}
$$

3. Maximum Shear Stress

The general formula for horizontal shearing stress is:

$$
S_{h}=\frac{Q V}{I b}
$$

where

$$
\mathrm{Q}=\text { area moment }
$$

$V=$ vertical shear force
$\mathrm{I}=$ moment of inertia of cross section
$\mathrm{b}=$ width across the beam
therefore:

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{h}}=\frac{\left(0.8026 \mathrm{in}^{3}\right)(800 \mathrm{lbf})}{\left(0.442 \mathrm{in}^{4}\right)(1.5 \mathrm{in})} \\
& \mathrm{S}_{\mathrm{h}}=968 \mathrm{psi} \\
& \text { M.S. }=\frac{30000 \mathrm{psi}}{1000 \mathrm{psi}}-1=29
\end{aligned}
$$

HONEYCOMB PANELS

The honeycomb panels are designed for stiffness to meet design criteria for minimum natural frequency and for stress due to dynamic loads.

1. Fundamental Natural Frequency Calculations

To avoid coupling with the primary structure, the fundamental natural frequency is assumed to be 30 Hz . The fundamental natural frequency of the panel is given by:

$$
f=\frac{1}{2 \pi} \beta \sqrt{\frac{D}{\gamma \mathrm{a}^{4}}}
$$

where

$$
\begin{aligned}
& \mathrm{a}=23 \mathrm{in} . \\
& \mathrm{b}=28 \mathrm{in} . \\
& \beta=19 \\
& \gamma=28.92 \mathrm{~kg} / \mathrm{m}^{2} \\
& \mathrm{D}=3.84\left(10^{10}\right) \mathrm{t} \mathrm{~h}^{2} \\
& \mathrm{~h}=3 / 8 \mathrm{in} \\
& \mathrm{t}=0.1 \mathrm{~mm}
\end{aligned}
$$

2. Stress Due to Dynamic Acceleration

Assuming a uniform dynamic acceleration of 20 g across the panel, the maximum stress in the face skin of the center of the panel is:

$$
\begin{aligned}
& \sigma_{\max }=\beta \frac{W \mathrm{a}^{2}}{6 \mathrm{th}} \\
& =\frac{(0.3453)\left(\frac{(26)(20)}{(28)(32)}\right)(28)^{2}}{(6)(0.004)(0.375)} \\
& \sigma_{\max }=17456 \mathrm{psi} \\
& \text { F.S. }=\frac{37000}{17456}=2.1
\end{aligned}
$$

APPENDIX_H

COMMUNICATIONS SUBSYSTEM TABLES

beam	gain
4	32.00
5	30.75
6	29.50
7	28.25
8	27.00
9	26.25
10	25.50
11	24.75
12	24.00
13	23.80
14	23.60
15	23.40
16	23.20
17	23.00
18	22.80
19	22.60
20	22.40
21	22.20
22	22.00
23	21.67
24	21.33
25	21.00
26	20.67
27	20.33
28	20.00

TABLE H.1. Supplement To Figure 3.6.

Swatr Width $=$ -		9003	2000	4000	60005	Swath Width	$1=7$	1000	2000	4000	606
KT	Time be	beam1 be	ceam2 be	Seam3 be	beam4 A	ATt ${ }_{\text {It }}$	Time bea	beam1 be	beam2 b	beam3 bea	beam4
500	-000	2800	2800	28.00	28.00	14500	72.77	400	789	1571	$23 \overline{313}$
750	506	28.00	28.00	28.00	28.00	14750	74.25	4.00	7.76	15.44	2299
1000	7.25	28.00	28.00	28.00	28.00	15000	75.74	4.00	7.63	15.19	22.62
1250	9.00	28.00	28.00	2800	28.00	15250	77.25	4.00	750	14.94	22.25
1500	10.54	28.00	28.00	28.00	28.00	15500	78.78	4.00	7.38	14.70	21.51
1750	11.94	28.00	28.00	28.00	28.00	15750	80.34	4.00	7.27	1447	2157
2000	13.25	28.00	28.00	28.00	28.00	16000	81.91	4.00	715	14.25	21.24
2250	14.50	25.06	28.00	28.00	28.00	16250	83.51	4.00	7.04	1403	0.92
2500	15.70	2262	28.00	2800	28.00	16500	85.13	4.00	694	13.82	61
2750	16.87	20.61	28.00	28.00	28.00	16750	86.77	4.00	683	1362	20.31
3000	18.01	18.92	28.00	28.00	28.00	17000	88.44	4.00	6.73	13.42	19.73
3250	19.13	17.49	28.00	28.00	28.00	17250	90.14	4.00	6.64	3	1946
3500	20.24	16.26	28.00	28.00	2800	17500	91.86	4.00	6.54	1286	1919
3750	21.33	15.19	28.00	28.00	28.00	17750	93.61	0	6.36	12.68	1892
4000	22.41	14.25	28.00	28.00	28.00	18000	95.38	00	6.27	1251	1867
4250	23.49	13.42	26.48	28.00	28.00	18250	97.19	4.00 4.00	6.19	12.34	1842
4500	24.56	12.68	25.06	28.00	28.00	18500	99.03	4.00 4.00	6.11	12.18	1818
4750	2563	12.02	2378	28.00	28.00	18750	100.90	4.00	603	1202	1795
5000	2670	11.42	22.62	2800	28.00	19000	10280	4.00	595	11.86	1772
5250	2776	10.88	21.57	28.00	28.00	19250	104.74 10671	400	5.87	1171	1749
5500	28.83	10.39	20.61	2800	2800	19500	10671 10872	400	5.80	11.55	17.27
5750	2990	9.94	19.73	28.00	2800	19750	108.72 110.77	4.00	572	11.42	1705
6000	30.97	953	18.92	28.00	28.00	20000	112.86	4.00	565	11.28	1685
6250	3205	9.15	18.18	28.00	20.00	20250	115.00	4.00	5.59	11.14	1665
6500	33.13	880	17.49	2800	28.00	20500	117.18	4.00	5.52	11.01	15.45
6750	34.22	8.47	1685	28.00	28.00	20750	119.41	4.00	545	1088	16.26
7000	3531	8.17	16.26	28.00	28.00	21000	119.41	4.00	539	1075	16.07
7250	3540	7.89	15.71	28.00	28.00	21250	121.69	4.00	533	10.63	1589
7500	37.51	7.63	15.19	28.00	2800	21500	124.03	4.00	526	10.51	1571
7750	3862	738	14.70	28.00	28.00	21750	126.42	4.00	521	10.39	1553
8000	3974	7.15	14.25	28.00	28.00	22000	128.87 13139	4.00	515	-1027	1536
8250	$40 \mathrm{B6}$	694	13.82	27.25	28.00	22250	131.39 13398	4.00	509	+ 1016	1519
8500	4200	6.73	13.42	26.48	2800	22500	13665	400	5.03	31005	1502
8750	43.14	6.54	13.04	2575	28.00	22750	13665 13940	400	4.98	- 994	1489
9000	44.29	636	12.68	2506	28.00	23000	13940	400	493	3983	1470
9250	4545	619	12.34	24.40	2800	23250	14223	4.00	4.87	- 973	14.55
950	4653	6.03	12.02	23.78	2800	23500	145.16	4.00	4.87	963	1440
9750	47.81	587	11.71	23.18	28.00	23750	148.20	4.00	- 482	7053	1425
10000	4901	572	11.42	22.62	28.00	24000	151.35	$4.00{ }^{\circ}$	- 4.77	953	14.25
10250	5021	559	11.14	22.08	28.00	24250	15464	4.00	- 472	$2 \quad 9.43$	14.10
10500	51.43	5.45	10.88	21.57	28.00	24500	158.06	4.00	- 4.67	$7 \quad 933$	13.96
10750	52.66	5.33	10.63	21.08	28.00	24750	161.66	4.400	- 4.63	$3 \quad 924$	1382
11000	5390	521	1039	20.61	2800	25000	16543	3.00	- 4.58	$9 \quad 915$	1359
11250	5515	5.09	10.16	20.15	28.00	25250	16943	3.00	- 4.54	$4 \quad 906$	1355
11500	5542	498	- 994	19.73	28.00	25500	17368	4.4 .00	- 4.49	- 897	1342
11750	5770	487	973	1932	28.00	25750	17825	54.00	- 4.45	5888	132
12000	- 5899	4.77	953	1892	28.00	26000	-18320	+ 4.00	04.41	1880	1310
12250	-6030	4.67	933	1855	- 27.52	26250	-18864	4.4 .00	0 - 436	36871	130
12500	61.62	4.58	- 9.15	1818	2699	26500	- 19476	64.00	0 432	22863	3129
12750	6296	4449	8897	- 17.83	- 26.48	- 26750	- 201.87	700	$0 \quad 428$	8 855	- 128
13000	64.31	441	8.80	- 17.49	2599	27000	- 210.71	1400	$0 \quad 4.24$	$4 \quad 847$	1268
13250	-6568	3432	- 8.63	-17.17	72552	27250	22386	64.00	$0 \quad 4.20$	840 836	-125
13500	-6706	- 424	48.47	716.85	525.06	6 27358	- 238.72	2.4 .00	$1 \quad 4.19$	9 8.30	
13750	-6846	$6 \quad 4.17$	$7 \quad 832$	21655	524.62						
14000	-69.88	4.09	88.17	$7 \quad 1626$	624.19						
14250	- 71.32	2 4.02	28.03	315.98	- 2378						

TABLE H.2. Supplement To Figures 3.7 \& 3.8.

Swath Widitios		1000	2000	4000	8060	Swath Wic	Fhes	1000	2000	4000	6000
AIt	Time	Gain1	Gain2	Gain3	Gain 4	Alt	Fime	Gain1	Gain?	Gan 3	Gain 4
500	0.00	20.00	20.00	20.00	20.00	14250	71.32	31.98	2698	23.20	21.41
750	506	20.00	20.00	20.00	20.00	14500	72.77	32.00	27.14	23.26	2154
1000	7.25	20.00	20.00	20.00	20.00	14750	74.25	32.00	2730	23.31	21.67
1250	9.00	20.00	20.00	20.00	20.00	15000	75.74	32.00	27.46	2336	2179
1500	10.54	20.00	20.00	20.00	2000	15250	77.25	32.00	27.62	2341	21.91
1750	11.94	20.00	20.00	20.00	20.00	15500	78.78	32.00	27.77	2346	22.02
2000	13.25	20.00	20.00	20.00	2000	15750	80.34	32.00	27.92	23.51	22.09
2250	14.50	20.98	20.00	2000	20.00	16000	81.91	32.00	28.06	23.55	22.15
2500	15.70	21.79	20.00	20.00	2000	16250	83.51	32.00	28.20	2359	2222
2750	16.87	22.28	20.00	2000	20.00	16500	85.13	32.00	28.33	23.64	22.28
3000	1801	2262	20.00	20.00	20.00	16750	86.77	32.00	28.46	23.63	22.34
3250	19.13	22.90	20.00	20.00	20.00	17000	88.44	32.00	28.58	23.72	22.40
3500	20.24	23.15	20.00	20.00	20.00	17250	90.14	32.00	28.71	2375	22.45
3750	21.33	23.36	2000	20.00	20.00	17500	91.86	3200	28.82	2379	22.51
4000	22.41	23.55	20.00	2000	20.00	17750	9361	32.00	28.94	2383	22.56
4250	23.49	23.72	20.51	20.00	20.00	18000	9538	32.00	2905	2386	22.62
4500	24.56	23.86	20.98	20.00	20.00	18250	97.19	32.00	2916	23.90	22.67
4750	25.63	24.00	21.41	20.00	20.00	18500	9903	32.00	23.26	2393	22.72
5000	2570	24.43	21.79	20.00	20.00	18750	10090	32.00	29.37	2396	2276
5250	2776	24.84	22.09	20.00	2000	19000	10280	32.00	29.47	2400	22.81
5500	2883	2521	22.28	20.00	20.00	19250	104.74	3200	29.57	24.10	2286
5750	29.90	25.55	22.45	20.00	2000	19500	10671	32.00	29.66	2422	22.90
6000	30.97	25.85	22.62	20.00	20.00	19750	10872	32.00	29.75	2433	22.95
6250	3205	26.14	22.76	20.00	20.00	20000	11077	32.00	29.84	24.43	22.99
6500	33.13	2640	22.90	20.00	20.00	20250	11286	3200	2953	24.54	23.03
6750	34.22	26.65	23.03	20.00	2000	20500	11500	3200	30.02	2464	2307
7000	3531	2687	2315	2000	2000	20750	117.18	32.00	30.10	24.74	2311
7250	3640	2714	2326	2000	20.00	21000	11941	32.00	3018	24.84	2315
7500	37.51	27.46	2336	20.00	2000	21250	121.69	32.00	30.26	24.93	2319
7750	3862	27.77	23.46	20.00	20.00	21500	124.03	32.00	30.34	2503	2322
8000	3974	2806	2355	2000	20.00	21750	126.42	32.00	30.42	2512	2326
8250	4086	28.33	2364	20.25	20.00	22000	128.87	3200	30.49	2521	2329
8500	4200	28.58	23.72	2051	20.00	22250	131.39	3200	30.57	2530	2333
8750	43.14	28.82	23.79	20.75	20.00	22500	13398	32.00	30.64	25.38	2336
9000	44.29	2905	23.86	20.98	20.00	22750	13665	32.00	30.71	2546	2340
9250	4546	29.26	23.93	21.20	20.00	23000	13940	3200	30.78	25.55	2343
9500	4663	29.47	24.00	21.41	2000	23250	14223	32.00	30.84	2563	2346
9750	47.81	29.66	24.22	21.61	20.00	23500	14516	32.00	30.91	2570	2349
10000	4901	29.84	24.43	2179	20.00	23750	14820	32.00	3097	25.78	23.52
10250	50.21	30.02	24.64	21.97	20.00	24000	151.35	3200	31.04	2585	2355
10500	51.43	30.18	24.84	22.09	20.00	24250	154.64	3200	31.10	2593	23.58
10750	52.66	3034	25.03	22.18	2000	24500	15806	3200	31.16	2600	23.61
11000	5390	30.49	25.21	22.28	2000	24750	16166	3200	31.22	2607	2364
11250	5515	30.64	25.38	22.37	2000	25000	16543	3200	31.27	26.14	2305
11500	5642	3078	25.55	22.45	2000	25250	169.43	32.00	31.33	26.21	2369
11750	57.70	3091	2570	2254	20.00	25500	17368	32.00	31.39	26.27	2372
12000	58.99	31.04	25.85	22.62	20.00	25750	178.25	32.00	31.44	2634	2374
12250	60.30	31.16	26.00	22.69	20.16	26000	18320	32.00	31.49	26.40	2377
12500	61.62	31.27	26.14	22.76	20.34	26250	188.64	32.00	31.55	26.46	2379
12750	6296	31.39	2627	22.83	20.51	26500	194.76	32.00	31.60	26.53	2382
13000	64.31	31.49	26.40	22.90	20.67	26750	201.87	32.00	31.65	26.59	23 日4
13250	6568	31.60	26.53	2297	20.83	27000	210.71	32.00	31.70	26.65	23.86
13500	67.06	3170	26.65	23.03	20.98	27250	22386	32.00	31.75	26.70	23.89
13750	6846	31.79	26.76	2309	21.13	27358	238.72	32.00	31.77	26.73	23.90
14000	6988	3189	26.87	23.15	21.27						

TABLE H.3. Supplement To Figures 3.9 \& 3.10.

Gain vs. Off Angle		
Angle	Gain	Relative
0	32.00	0.00
0.1	31.99	-0.01
0.2	31.97	-0.03
0.3	31.93	-0.07
0.4	31.88	-0.12
a.5	31.82	-0.18
0.6	31.73	-0.27
0.7	31.64	-0.36
0.8	31.53	-0.47
0.9	31.40	-0.60
1	31.26	-0.74
1.1	31.11	-0.89
1.2	30.94	-1.06
1.3	30.75	-1.25
1.4	30.55	-1.45
1.5	30.34	-1.66
1.6	30.11	-1.89
1.7	29.87	-2.13
1.8	29.61	-2.39
1.9	29.33	-2.67
2	29.05	-2.95
2.1	28.74	-3.26
2.2	28.43	-3.57
2.3	28.09	-3.91
2.4	27.75	-4.25
2.5	27.39	-4.61
2.6	27.01	-4.99
2.7	26.62	-5.38
2.8	26.21	-5.79
2.9	25.79	-6.21
3	25.36	-6.64
3.1	24.90	-7.10
3.2	24.44	-7.56
3.6	22.43	-9.57
3.3	23.96	-8.04
3.4	23.47	-8.53
3.5	22.96	-9.04
	21.34	-10.11
	20.19	-11.23
	-11.81	

Gain vs. Off Angle			
Angle	Gain	Relative	
4	20.19	-11.81	
4.1	19.59	-12.41	
4.2	18.98	-13.02	
4.3	18.35	-13.65	
4.4	17.71	-14.29	
4.5	17.05	-14.95	
4.6	16.38	-15.62	
4.7	15.69	-16.31	
4.8	14.99	-17.01	
4.9	14.27	-17.73	
5	13.54	-18.46	

TABLE H.4. Supplement To Figure 3.12.

PALVERTOR-:	0.1	0.3	0.5	07	0.9	1	1.5	2	3
Scan Angle (degrees)	GAIN VS SCAN ANGLE OFF OF NADIRFORVARIOUS YAWERRORS (ALL IN dB)								
$\overline{0}$	$0.006+00$	$0.006+\infty$	0.00E +00	0.00E +00	0.00E +00	OOOE +00	0.00E +00]	$0.006+00$	$006+00$
1	-6.9E-10	-6.2E-09	-1.7E-08	$34 \mathrm{E}-08$	-5.5E-08	-6.8E-08	-1.5E-07	-2.7E-07	
2	-2.7E-09	-2.5E-08	-68E-08	-1.3E-07	-2.Ex-07	-2.7E-07	-6.2E-07	-1.1E-06	-2.5E-06
3	-6.2E-09	-5.5E-08	-1.5E-07	-3.0E-07	-5.0E-07	-6æE-07	-1.4E-06	-2.5E-06	-55E.06
4	-1.1E-08	-9.8E-08	-2.7E-07	-5.4E-07	-8.9E-07	-1.1E-06	-2.5E-06	-4.4E-06	-9.8E-06
5	-1.7E-08	-1.5E-07	-43E-07	-8.4E-07	-1.4E-06	-1.7E-06	-3.8E-06	-6.8E-06	-1.5E-05
6	-25E-08	-2.2E-07	-6.1E-07	-1.2E-06	-2.0E-06	-2.5E-06	-5.5E-06	-9.8E-06	2.2.05
7	-3.3E-08	-3.0E-07	-84E-07	-1.6E-06	-2.7E-06	-33-06	-7.5E-06	-1.3F-05	-3.0E-05
8	-4.4E-08	-39E-07	-1.1E-06	-2.1E-06	-3.5E-06	-4.4E-06	-9.8E-06	-1.7E-05	-3.9E-05
9	5.5E-08	-5.0E-07	-1.4E-06	-2.7E-06	-4.5E-06	-5.5E-06	-1.2E-05	-2.25-05	-5.0E-05
10	-6.8E-08	6.1E-07	-1.7E.06	-3.3E-06	-55E-06	-6.8E-06	-1.5E-05	-2.7E-05	-6.1E-05
11	-8.2E-08	-7.4E-07	-2.0E-06	-4.0E-06	-6.6E-06	-8.2E-06	-1.8E-05	-33E-05	-7.4E-05
12	-9.7E-08	-8.7E-07	-2.4E-06	-4.8E-06	-7.9E-06	-97E-06	-2.2E-05	. 3.95 .05	-8.7E-05
13	-1.1E-07	-1.0E-06	-2.8E-06	-5.6E-06	-9.2E-06	-1.1E-05	-2.6E-05	-4.5E-05	-1.0E-04
14	-1.3E-07	-1.2E-06	-3 3E-06	-6.4E-06	-1.1E-05	-1.3E-05	-3.0E-05	-53E-05	-1.2E-04
15	-1.5E-07	-1.4E-06	-3.8E-06	-7.4E-06	-1.2E-05	-1.5E-05	-3.4E-05	-6.0E-05	-1.4E-04
16	-1.7E-07	-1.5E-06	-4.3F-06	-8.4E-06	-1,4E-05	-1.7E-05	-3.8E-05	-68E-05	-1.5E-04
17	-1.9E-07	-1.7E-06	-4.8E-06	-9.4E-06	-1.6E-05	-1.9E-05	-4.3E-05	-7.7E-05	-1.7E. 04
18	2.1E-07	-1.9E-06	-5.4E-06	-1.1E-05	-1.7E-05	-2.1E-05	-4.8E.05	-8.6E-05	-1.9E-04
19	2.4E-07	-21E.06	-6.0E-06	-1.2E-05	-1.9E-05	-2.4E-05	-5.4E-05	-9.5E-05	-21E-04
20	-26E-07	-2.4E-06	-6.6E-05	-1.3E-05	-2.1E-05	-26E-05	-5.9E-05	-1.1E-04	-24E.04
21	2.9E-07	-2.6E-06	-7.2E-06	-1.4E-05	-23E-05	-29E-05	-6.5E-05	-1.2E-04	-2 6E-04
22	-32E-07	-2.8E-06	-7.9E.06	-1.5E-05	-2.6E-05	-3.2E-05	-7.1E.05	-1.3E-04	-2.8E-04
23	-34E-07	31E-06	-8.6E. 06	-1.7E-05	-28E-05	-34E-05	-7.7E-05	-1.4E-04	-31E-04
24	-37E-07	-3.3E-06	-9.3E-06	-1.8E-05	-3.0E-05	-3.7E-05	-8.4E-05	-1.5E-04	-3.3E-04
25	-4 OE-07	-3.6E-06	-1.0E-05	20E-05	-33E-05	-4.0E-05	-9.0E-05	-1.6E-04	-36E-04
25	-4.3E-07	-3.9E-06	-1.1E.05	$21 E 05$	-35E-05	-4.3E-05	-9.7E-05	-1.7E.04	-39E-04
27	-4.6E-07	-4.2E-06	-1.2E-05	-23E-05	-3.8E-05	-4.6E-05	-1. OE-04	-1.9E-04	-4.2E-04
28	-5.0E-07	-4.5E-06	-1.2E-05	-2.4E-05	-4.0E-05	5.0E-05	-1.1E-04	-20E-04	-4.5E-04
29	5.3E-07	-4.8E-06	-1.3E-05	-2.5E-05	-4.3E-05	-5.3E-05	-1.2E-04	-2.1E-04	-4.8E-04
30	-5.6E-07	5.1E-06	-1.4E-05	-2.8E-05	-4.6E-05	-5.6E-05	-1.3E-04	-2.25-04	-51E-04
31	-6.0E-07	-5.4E-06	-1.5E-05	-29E-05	-4.8E-05	-6.0E-05	-1.3E-04	-2.4E-04	-54E-04
32	-6.3E-07	-5.7E-06	-1.6E-05	-3.1E-05	-5.1E-05	-6.3E-05	-1.4E-04	2.5E-04	-57E-04
33	-6.7E-07	-6.0E-06	-1.7E-05	-336-05	-5.4E-05	-6.7E-05	-1.5E-04	-27E-04	-60E-04
34	-7.0E-07	-6.3E-06	-1.8E-05	-3.4E-05	-5.7E-05	-7.0E-05	-1.6E-04	-28E.04	63E-04
35	-7.4E-07	-6.7E-06	-1.8E-05	-3.6E-05	-6.0E-05	-7.4E-05	-1.7E-04	-3.0E-04	6.7E-04
35	-7.8E-07	-7.0E-06	-1.9E-05	-38E-05	-6.3E-05	-7.8E-05	-1.7E-04	-31E-04	-7.0E-04
37	-8.1E-07	-7.3E-06	-2.0E-05	-4.0E-05	-6.6E-05	-8.1E-05	-1.8E-04	-33E-04	-7.3E-04
38	-85E-07	-7.7E-06	-2.1E.05	-4.2E-05	6.5E-05	8.5E-05	-1.9E-04	-34E.04	-7.7E-04
39	-89E-07	-8.0E-06	-2.2E-05	-4.4E - 05	-7.2E-05	-8.9E-05	-2.0E-04	-36E.04	-80E-04
40	-9.3E.07	-8.4E-06	-2.3E-05	-4.6E-05	-7.5E-05	-9.3E-05	21 E-04	-3.7E-04	-84E-04
41	-9.7E-07	-87E-06	-24E-05	-4.7E-05	-7.8E-05	-9.7E-05	-2.E-04	-3.9E-04	-87E-04
42	-1.0E-06	-9.1E-06	-2.5E-05	-4.9E-05	-8.2E-05	-1.0E-04	-2.3E-04	-4.0E-04	-9.1E-04
43	-1.0E-06	-9.4E-06	-2.6E-05	-5.1E-05	8.5E-05	-1.0E-04	-2.4E-04	-4.2E-04	-9.4E-04
44	-1.1E-06	-9.8E-06	-2.7E-05	-53E-05	-8.8E-05	-1.1E-04	-2.4E-04	-4.3E-04	-9.8E-04
45	-1.1E.06	-1.0E-05	-2.8E-05	-55E-05	-9.1E-05	-1.1E-04	-2.5E-04	-4.5E-04	-1.0E-03
46	-1 ¥.06	-1.0E-05	-29E-05	-57E-05	-9.4E-05	-1.2E-04	-2.6E-04	-4.7E-04	-1.05-03
47	-1.2E-06	-1.1E-05	-30E-05	-59E-05	-9.7E-05	-1.2E-04	-2.7E-04	-4.8E-04	-1.1E-03
48	-1.2E-06	-1.1E-05	-31E-05	-61E-05	-1.0E-04	-1.2E-04	-2.8E-04	-5.0E-04	-1.1E.03
49	-1.3E-06	-1.2E-05	32E-05	-63E-05	-1.0E-04	-1.3E-04	-2.9E-04	-5.1E-04	-1.2E-03
50	-1.3E-06	-1.2E-05	-3.3E.05	-65E-05	-1.1E-04	-1.3-04	-3.0E-04	-5.3E-04	-1.25-03

TABLE H.5. Supplement To Figure 3.13.

APPENDIX J

LINK ANALYSIS

Each of the various transmission frequencies, altitudes, modulation techniques and antenna gains must be examined to insure that a proper carrier-to-noise ratio (C / N) is maintained. For the design of the links in this satellite, a maximum bit error rate (BER) of 10^{-6} was desired. In order to achieve this BER, a C / N of 14 dB must be achieved for FSK modulation or 11 dB for PSK modulation. Since the majority of the carriers are FSK due to the Frequency Hopping of the carrier, the link analysis assumes FSK modulation. Along with the 14 dB , a link margin of 4 dB was added for weather and atmospheric attenuation as well as any other losses that may not have been considered. A "Closed Link" in this satellite is one in which a total C / N of 18 dB is achieved.

Several worst case assumptions were made for this analysis. The ground station elevation angle was assumed to be 20° for EHF frequencies and 5° for lower frequencies. The worst case altitude is at apogee except for the variable beamwidth antenna which must be analyzed for the entire orbit. The ground station for the EHF frequencies was assumed to be the SCAMP Terminal. Figure J. 1 shows the EHF link. The ground station for SHF TT\&C was assumed to be channel 1 of the space ground link subsystem (SGLS) of the Air Force Satellite Control Facility (AFSCF) at Thule, Greenland (Thule Tracking Station TTS). The ground station for the AVHRR payload was assumed to be the TIROS-N earth terminals. Data for each earth station follows:

FIGURE J.1. EHF Link Diagram

SCAMP

Data Rate:	2.4 kbps
Rcv Gain:	39.92 dB
Transmit EIRP:	48 dB
Uplink Freq:	44 GHz
Downlink Freq:	20 GHz

SGLS (Thule):

Data Rate: $\quad 300 \mathrm{bps}$

Rcv Gain: $\quad 48.2 \mathrm{~dB}$
Transmit EIRP: $\quad 39.69 \mathrm{~dB}$
Uplink Freq:
Downlink Freq:
2.2 GHz

TIROS-N (HRPT)

Data Rate:
Rcv Gain:
Transmit EIRP:
Uplink Freq:
Downlink Freq:

TIROS-N (APT)

Data Rate:	2000 bps
Rcv Gain:	30 dB
Transmit EIRP:	NA
Uplink Freq:	NA
Downlink Freq:	137.5 MHz

TIROS-N(TT\&C)
Data Rate: $\quad 8.32 \mathrm{kbps}$
Rcv Gain: $\quad 30 \mathrm{~dB}$
Transmit EIRP: NA
Uplink Freq: NA
Downlink Freq: $\quad 137.77 \mathrm{MHz}$

TIROS-N (Command Uplink)
Data Rate: $\quad 1000 \mathrm{bps}$
Rev Gain: NA
Transmit EIRP: $\quad 27 \mathrm{~dB}$
Uplink Freq: $\quad 148.56 \mathrm{MHz}$
Downlink Freq: NA

Given the above data and the orbital information and design characteristics of the MPS satellite bus and payloads, link analysis was done for all channels and is listed in Tables J. 1 and J.2. An example of the link analysis calculations follows:

1. The carrier-to-noise ratio is the amount of signal energy which reaches the receiver divided by the noise level at the receiver. Equation J. 1 is a simple formula for calculating the C / N for the uplink. Equation J. 2 is for the downlink.

$$
\begin{align*}
& \frac{C}{N}=\frac{P_{\mathrm{G}} G_{\mathrm{l}} G_{u}}{\mathrm{~L}_{\mathrm{u}} k T_{\mathrm{u}} B} \tag{J.1}\\
& \frac{C}{N}=\frac{P_{s} G_{d} G_{r}}{L_{d} k T_{d} B} \tag{J.2}
\end{align*}
$$

Equation J. 3 and J. 4 are for calculating C / N when all the data is in decibels.

$$
\begin{align*}
& \frac{C}{N}=P_{t}+G_{t}+G_{u}-L_{u}-k-T_{u}-B \tag{J.3}\\
& \frac{C}{N}=P_{s}+G_{d}+G_{r}-L_{d}-k-T_{d}-B \tag{J.4}
\end{align*}
$$

where:
$P_{\mathbf{t}}=$ power transmitted
$\mathrm{G}_{\mathrm{t}}=$ gain of transmitting antenna
$\mathrm{G}_{\mathrm{u}}=$ gain of uplink antenna
$\mathrm{L}_{\mathrm{U}}=$ free space losses in uplink
$\mathrm{k}=$ Boltzmann's constant (-228.6 dB)
$\mathrm{T}_{\mathrm{u}}=$ noise temperature in uplink
$\mathrm{B}=$ noise bandwidth
$P_{S}=$ transmitted power from satellite
$\mathrm{G}_{\mathrm{d}}=$ gain of downlink antenna
$\mathrm{G}_{\mathrm{r}}=$ gain of receive antenna
$\mathrm{L}_{\mathrm{d}}=$ free space losses in downlink
$T_{d}=$ noise temperature in downlink
2. Before calculating C / N, the different parameters must be obtained. Equation J. 5 is the general formula to obtain the gain of an antenna.

$$
\begin{equation*}
\mathrm{G}=\eta\left(\frac{\pi \mathrm{fD}}{\mathrm{c}}\right)^{2} \tag{J.5}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \eta=\text { efficiency of the antenna } \\
& f=\text { frequency } \\
& D=\text { antenna diameter } \\
& c=\text { speed of light }
\end{aligned}
$$

3. Free space loss can be obtained with equation J.6.

$$
\begin{equation*}
L=\left(\frac{4 \pi \mathrm{fd}}{\mathrm{c}}\right)^{2} \tag{J.6}
\end{equation*}
$$

where:

$$
\begin{gather*}
d=\text { slant range (use Equation J.7) } \\
d^{2}=\left(R_{e}+H\right)^{2}+R_{e}^{2}-2 R_{e}\left(R_{e}+H\right) \sin \left[E+\sin ^{-1}\left(\frac{R_{e} \cos E}{R_{e}+H}\right)\right] \tag{J.7}
\end{gather*}
$$

where:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{e}}=\text { radius of the earth }(6378 \mathrm{~km}) \\
& \mathrm{H}=\text { altitude } \\
& \mathrm{E}=\text { elevation angle earth antenna }
\end{aligned}
$$

4. Once the C / N is known for both uplink and downlink, they are combined with Equation J .8 to determine the total C / N. This number must be higher than 18 dB to close the link and insure a $10^{-6} \mathrm{BER}$.

$$
\begin{equation*}
\left(\frac{C}{N}\right)^{-1}=\left(\frac{C}{N}\right)_{u}^{-1}+\left(\frac{C}{N}\right)_{d}^{-1} \tag{J.8}
\end{equation*}
$$

Table J. 1 and J. 2 show the link analysis for the MPS satellite. None of the C/N's fall below 18 dB and therefore all of the links have suitable margins to insure a maximum BER of 10^{-6}. For the variable beamwidth antenna, the analysis had to be done over the entire orbit. Figure J. 1 shows the C / N versus altitude and Figure J. 2 shows the C / N versus time after perigee.

As a final note on the advantage of variable beamwidth antennas, Figure J. 3 shows a comparison between a fixed beamwidth antenna and a variable beamwidth antenna for maintaining a 2000 km swath width. The fixed beamwidth antenna has a 28° beamwidth for the entire orbit. The variable beamwidth varies from 28° to 4° as necessary. Figure J. 3 shows that the variable beamwidth has a definite advantage that increases with altitude. At apogee, the variable beamwidth antenna has almost a 10 dB advantage over fixed beamwidth antennas.

FIGURE J.1. C/N Versus Altitude

ERF Communications Sample Link Analysis				ERFTIC (VBWA)			$\begin{aligned} & \text { (E/CHorns) } \\ & \hline \text { Apogee } \end{aligned}$	$\frac{(A-E \text { Ant) }}{}$
	Apogee	15000 km	20 degs	Apogee	15000	20 degs		
Freq Up (Hz)	$4.4 \mathrm{E}+10$	$4.4 \mathrm{E}+10$	4.4E +10	$4.3 \mathrm{E}+10$	$4.3 \mathrm{E}+10$	4.3 +10	$1.7 € \pm+09$	7860000000
Freq Down (Hz)	$2 E+10$	2E+10	2E+10	$1.9 E+10$	$1.9 E+10$	$1.9 E+10$	2.20E +09	2200000000
Data Rate (bps)	2400	2400	2400	300	300	300	300	300
Alt (km)	27358	15000	4050	27358	15000	4050	27358	27358
Slant Ang(rads)	0.35	0.35	0.35	0.35	035	0.35	0.35	0.35
Slant Range(km)	3101795	18339.28	6352.225	31017.95	18339.28	635222	31017.95	31017.95
UPUNK (in ©B) EIRPt	48	48	48	48	48	48	39.69	3969
Xrnit Power	1.5	1.5	1.5	1.5	1.5	1.5	-3.01	. 301
Xmit Gain	46.5	46.5	465	46.5	46.5	465	42.7	427
fS LOSS	215.14	210.58	201.37	214.94	210.38	201.17	187.20	187.18
Rev Gain	31.9	27.5	20	31.9	27.5	20	2	2
Boltz Const	-228.6	-228.6	-228.6	-228.6	-228.6	-228.6	-228.6	228.6
Noise Temp	31	31	31	31	31	31	31	31
NOISE BW	36.81	36.81	36.81	27.78	27.78	27.78	27.78	27.78
OOWNLINK (in dB)			1.76	1.76	1.76	1.76	1.76	176
Xmit Powe Xmit Gain	1.76 31.9	1.76 275	1.76 20	31.9	27.5	20	2	2
FSLOSS	20829	20373	194.52	207.85	203.28	194.08	189.12	18912
Rev Gain	39.92	39.92	39.92	39.92	39.92	39.92	482	48.2
BOLTZCONST	-2286	-228.6	-2286	-228.6	-228.6	-228.6	-2286	2286
Noise Temp	29	29	29	29	29	29	29	29
NOISE BW	3681	36.81	3681	27.78	27.78	27.78	27.78	27.78
CNUP	2554	25.71	27.42	34.78	34.94	36.65	24.31	24.32
C/N DOWN	28.07	28.24	29.95	37.55	37.71	39.42	34.66	34.66
CNTOTAL	23.62	23.78	25.49					

TABLE J.1. Link Analysis Data For EHF Payload

	HRPT	APT	TT\&C	Command
Freq Up (Hz)				$1.49 \mathrm{E}+08$
Freq Down (Hz)	$1.71 \mathrm{E}+09$	1.38E+08	1.37E+08	
Data Rate (bps)	665000	2000	8320	1000
Alt (km)	824	824	824	824
Slant Ang (rads)	0.35	0.09	0.09	0.09
Slant Range(km)	1812.15	2835.13	2835.13	2835.13
UPLINK (in dB) EIRPt				27.00
Xmit Power				-3.00
Xmit Gain				30
FS LOSS				144.93
Rcv Gain				0
Boltz Const				-228.6
Noise Flgure				29
NOISE BW				33.01
DOWNLINK (in dB)				
Xmit Power	11.76	-3.01	-3.01	
Xmit Gain	4.05	0	0	
FS LOSS	162.25	144.26	144.21	
Rcv Gain	30	30	30	
BOLTZ CONST	-228.6	-228.6	-228.6	
Noise Figure	29	29	29	
NOISE BW C/N UP	61.24	36.02	42.21	48.66
C/N DOWN	21.92	46.31	40.17	

TABLE J.2. Link Analysis Data For AVHRR Payload

C/N VS Time after Perigee (for Several Swath Widths)

FIGURE J.2. C/N Versus Time After Perigee

C/N VS Altitude
(Swath Width Greater Than 2000 KM)

FIGURE J.3. Comparison of C/N Versus Altitude for Fixed and Variable Antennas

5werhw	$h=>$	1000	2000	4000	6000	1000	2000	4000	6000	1000	2000	4000	0000
\%	Time	CN(4 P) 1	CN(CN(up) ${ }^{\text {a }}$	CN(up) ${ }^{\text {a }}$	CNM(down)	CN(down)2	CN(down) 3	CN(aown) ${ }^{\text {a }}$	CN(10 (1) 1	CN(tot) 2	CN(tol 3	CN(itot ${ }^{\text {a }}$
500	000	41.94	4194	4.94	41.94	44.47	4447	4447	4447	4002	40%	4007	4002
750	506	3899	3899	3899	3899	4151	41.51	41.5	41.51	3706	3700	37000	3706
1000	725	3694	3694	3694	36.94	3947	3947	3947	3947	3502	3502	3502	3502
1250	900	3539	3539	3539	3539	3792	37.92	3792	3792	3346	3346	3346	3346
1500	1054	3413	34.13	3413	3413	3606	3666	3666	3660	3221	3221	3221	3221
1.750	1194	3308	3308	3308	3308	3561	3561	3561	3561	3110	3116	3116	3116
2000	12.5	3218	3218	3218	3218	3471	3471	3471	3471	3025	3025	3025	3025
2250	1450	3236	3138	3138	3138	34.89	3391	3391	3391	3043	2945	2945	2945
2500	1570	3246	3067	3067	3067	3499	3320	3320	3320	3054	2874	2874	2874
2750	1687	32.31	3003	3003	3003	3484	3256	3256	3256	3038	2810	2810	2810
3000	1801	3200	2944	2944	2944	34.69	3197	3197	3197	3013	2752	2752	2752
3:50	1913	3181	28.90	28.90	2890	3433	3143	3143	31.43	2988	2698	2698	2698
3500	2024	3155	2840	2840	2840	3408	3093	3093	3093	2962	2648	2648	2648
3750	2133	3130	27.84	27.94	2794	3383	3047	3047	3047	2937	2601	2601	2601
4000	2241	31.05	27.50	27.50	2750	3358	3003	3003	3003	2913	2558	2558	2558
4250	2349	3081	27.60	27.09	2709	3334	3013	2962	2962	2888	2567	2516	2516
4500	2456	3057	27.68	2670	2670	3310	3021	2923	2923	2864	2570	2478	2478
4750	2563	3033	2774	2634	2634	3286	3027	2887	2887	2841	2582	2441	2441
5000	2670	3042	27.78	2599	2599	3295	3031	2852	2852	2849	2585	2406	2406
5250	2776	3049	27.74	2565	2565	3302	30.27	2818	2818	28.57	2581	2373	2373
5500	2883	3054	2761	2534	2534	3307	3014	2786	2786	2862	2569	2341	2341
5750	2950	3058	27.48	2503	2503	3311	3001	2756	2756	2865	2550	2310	2310
6000	3097	3059	2735	2474	2474	3312	2988	2727	2727	2866	2543	2281	2281
0.50	3205	3060	2722	24.46	2446	3312	2975	2699	2699	2867	2529	2253	2253
6500	3313	3059	2709	2419	2419	3312	2962	2671	$26: 1$	2860	2516	2220	2226
6750	3.122	3057	2695	2392	2392	3310	2948	2645	2645	2864	2503	2200	2200
7000	3531	3054	2682	2367	2367	3307	2935	2620	$26 ¢ 0$	2862	2489	2174	2174
:250	3 u 40	3056	2669	2343	2343	3309	2921	2596	2595	2864	2476	2150	2150
7500	3751	3065	2655	2319	2319	3318	2908	2572	2572	2873	2462	2126	2126
7750	38 c -	3073	2642	2296	2206	3326	2895	2549	2549	28 BO	2449	2103	2103
8000	3974	3080	2629	22.74	2274	3333	2882	2527	2527	2887	2436	2081	2081
8250	4086	3085	2616	2277	2252	3338	2869	2530	2505	2892	2423	2084	2059
8500	4200	3090	2603	2282	2231	3342	28.56	2535	248.4	2897	2410	2089	2038
8750	4314	3093	2590	2286	2211	3346	2843	2539	2464	2900	2397	2093	2018
0000	4489	3096	2577	2289	2191	3349	2830	2542	2444	2903	2384	2096	1908
9250	4546	3098	2564	2291	2171	3351	2817	2544	2424	2905	2372	2099	1979
0500	4663	3099	2552	2293	2152	3352	2805	2545	2405	2906	2359	2100	1960
$\bigcirc 750$	4781	3100	2555	2294	2134	3353	2808	2547	2387	2907	2363	2102	1941
10000	4901	3100	2559	2295	216	3353	2812	2548	2369	2907	2366	2102	1923
10250	5021	3100	2562	22.95	2098	3353	2815	2548	2351	2007	2370	2103	1905
10500	5143	3099	2565	2289	2081	3352	2818	2542	2334	2907	2372	2097	1888
10750	5266	3098	2567	2282	2064	3351	28.0	2535	2317	2905	2374	2090	1871
11000	5390	3097	2568	2275	2047	3350	2821	2528	2300	2904	2375	$208{ }^{2}$	1855
11250	55.5	3095	2569	2268	2031	3348	2822	2521	2284	2902	2377	2075	1838
11500	5642	3093	2570	22.61	2015	3346	2823	2514	22 68	2900	2377	2068	1823
11750	5770	3091	2570	22.53	2000	3343	2823	2506	2253	2898	2377	2061	1807
12000	5899	3088	2570	2246	1984	3341	2823	2409	2237	2895	2377	2053	1792
12250	6030	3085	2569	2239	1985	3338	2822	2492	2238	2892	2377	2046	1793
12500	6162	3082	2569	2231	1988	3335	2822	24.84	2241	2889	2376	2038	1796
12750	6290	3079	2568	2224	1991	3332	2821	2477	2244	2886	2375	2031	1798
13000	6431	3076	2566	2216	19.93	3328	2819	2469	2246	2883	2374	2024	1800
13250	6568	3072	2565	2209	1995	3325	2818	2462	2248	2879	2372	2016	1802
13500	6706	3068	2563	2201	1997	3324	2816	24.54	2250	2876	2370	2000	180.4
13750	6840	3064	2561	2194	1998	3317	2814	2447	2251	2872	2368	2001	1805
14000	6988	3060	2559	21.87	1999	$33: 3$	2812	2440	2252	2868	2366	1994	1806
14250	7132	3056	2557	21.79	2000	3309	2810	2432	2252	2864	2364	1986	1807
14500	7277	3046	2560	2172	2000	3299	2813	2425	2253	2853	2367	1979	1807
14750	7425	3033	2564	21.64	2000	3286	2817	2417	2253	2841	2371	1972	1808
- 5000	7574	3021	2567	2157	2000	3274	2820	2410	2253	2828	2375	1964	1808
15250	7325	3009	2571	2150	2000	3262	2824	2403	2253	2816	2378	1957	1807
15500	7878	2997	2574	21.43	1998	3250	2827	2395	2251	2804	2381	1950	1806
15750	80 34	2985	2576	2135	1993	3238	2829	2388	2245	2792	2384	1942	1801
16000	${ }_{81} \mathrm{~g}_{1}$	2973	2579	21.28	1988	32.26	2832	2381	2241	2780	2386	1935	1700
16250	8351	2961	2581	21.21	1983	3214	2834	2374	2236	2769	2388	1928	1790
16500	8513	2950	25.83	21.14	1978	3203	2836	2367	2231	2757	2390	1921	1785
16750	8677	2939	2585	21.06	1973	31.92	2838	2359	2226	2746	2392	1914	1780
17000	8844	2928	2586	2099	1967	3181	2839	2352	2220	2735	2393	1907	1775
17250	9014	2917	25.87	2092	1962	3170	2840	2345	2215	2724	2395	1900	1769
17500	9180	2906	2588	2085	1957	31.59	2841	23.38	2210	2713	2396	1893	1765
17750	9361	2895	2589	2078	1952	3148	2842	2331	2205	2703	2397	1886	1759
18000	9538	2885	2590	2071	1946	31.38	2843	2324	2199	2692	2397	1879	1754
18250	9719	2875	2590	2064	1941	31.27	2843	2317	2194	2682	2398	1872	1748
18500	9903	2864	2591	2057	1936	3117	2844	2310	2189	2672	2398	1865	1743
18750	10090	2854	2591	2051	1931	3107	2844	2304	2183	2661	2398	1858	1738

TABLE J.1. Supplement To Figures J. 1 \& J. 2.

19000	10280	2844	2591	2044	1925	3097	2844	2297	2178	2051	2398	1851	1733
19250	10474	2834	2591	2045	1920	3087	2844	2297	2173	2642	2398	1852	1727
19500	10071	2824	2591	2046	1915	3077	2844	2299	21.68	2632	2398	1853	1722
19:50	10872	2815	2590	20.47	1900	3068	2843	2300	2162	26.22	2397	1855	1717
20000	11077	2805	2590	2049	1904	3058	28.43	2302	2157	2613	23.97	1856	1711
20250	11286	27.96	2589	2050	1899	3049	2842	2303	2152	2603	2396	1857	1706
20500	11500	27.87	2588	2051	1894	3039	28.41	2304	21.46	2594	2396	1858	1701
20750	117.18	27.77	25.88	2051	1888	3030	28.40	2304	21.41	2585	2395	1859	1696
21000	11941	2768	2587	2052	1883	3021	2840	2305	21.36	2575	2394	1859	1690
21250	121.69	2759	25 B6	2053	1878	3012	2839	2306	2131	2566	2393	1860	1685
21500	12403	27.50	2584	2053	1873	3003	2837	2306	21.25	2558	2392	1860	1680
21750	12642	2741	2583	2053	1867	2994	2836	2306	21.20	2549	2391	1861	1675
22000	12887	2733	2582	2054	1862	2986	2835	2306	21.15	2540	2389	1861	1669
22250	13139	2724	2581	2054	1857	2977	2834	2307	2110	2531	2388	1861	1664
22500	13398	2715	2579	2054	1852	2968	2832	2306	21.05	2523	2387	1861	1659
22750	13665	2707	2578	2053	1847	29.60	2831	2306	2099	2514	2385	1861	1654
こ3000	13940	2699	2576	2053	1841	2952	2829	2306	2094	2506	2383	1860	1649
23250	14223	2690	2575	2053	1836	2943	2828	2306	2089	2498	2382	1860	1643
23500	14516	2682	2573	2052	$183!$	2935	2826	2305	2084	2489	2380	1860	1638
23750	14820	2674	2571	2052	1826	2927	2824	2305	2079	2481	2378	1859	1633
24000	15135	2666	2569	205:	1821	2919	2822	2304	2074	2473	2377	1859	1628
24250	15464	2658	2568	2051	18.16	2911	2820	2304	2069	2465	2375	1858	1623
24500	15806	2650	2566	2050	1811	2903	2819	2303	2064	2457	2373	1857	1618
24750	16166	2642	2564	2049	1806	28.95	2817	2302	2059	2449	2371	1856	1613
25000	16543	2634	2562	2048	1801	2887	2815	2301	2054	2442	2369	1856	1608
25250	16943	2627	2560	2047	1796	2880	28.13	2300	2049	24.34	2367	1855	1603
25500	17368	2619	2558	2046	1791	2872	2811	2299	2044	2426	2365	1854	1598
25750	17825	26.11	2556	2045	1786	2864	2808	2298	2039	2419	2363	1853	1593
26000	18320	2604	2553	2044	178	2857	2806	2297	2034	2411	2361	1851	1588
20250	18864	2597	2551	2043	1776	2850	2804	2296	2029	2404	2358	1850	1583
20500	19476	2589	2549	2042	1771	28.42	2802	22.95	2024	2397	2356	1849	1578
26750	20187	2582	2547	2041	1766	2835	2800	2293	2019	2389	2354	1848	1573
27000	21071	2575	2544	2039	1761	2828	2797	2292	2014	2382	2352	1847	15 GB
27250	22386	2568	2542	2038	1756	2820	2795	2291	2009	2375	2349	1845	1564
27358	23872	2564	2541	2037	1754	2817	27.94	2290	2007	2372	23 48	1845	1561

TABLE J.2. Continuation of Supplement To Figures J. 1 \& J. 2.

alt	$\mathrm{C} / \mathrm{N}(2 \mathrm{2a}$ deg)	C/N(var)	alt	Cin(28 deg)	CAvivar)
500	$4 \overline{2} .06$	42.06	15000	1833	23.75
750	39.10	39.10	15250	1820	23.78
1000	37.06	37.06	15500	1808	23.81
1250	35.51	35.51	15750	17.96	23.84
1500	34.25	34.25	16000	1785	23.86
1750	33.20	33.20	16250	17.73	23.88
2000	32.29	32.29	16500	17.62	23.90
2250	31.50	31.50	16750	17.51	23.92
2500	3079	30.79	17000	17.39	23.93
2750	30.15	30.15	17250	17.29	23.95
3000	29.56	29.56	17500	1718	23.96
3250	29.02	29.02	17750	17.07	23.97
3500	28.52	28.52	18000	1697	23.97
3750	28.06	29.06	18250	16.86	23.98
4000	27.62	27.62	18500	1676	23.98
4250	27.21	27.21	18750	1656	2398
4500	26.82	25.82	19000	1656	23.98
4750	2645	2545	19250	1646	23.98
5000	$26: 10$	26.10	19500	1636	23.98
5250	25.77	2581	19750	1627	23.97
5500	25.45	25.69	20000	1617	23.97
5750	2515	25.56	20250	16.08	23.96
6000	24.85	25.43	20500	15.98	23.96
6250	24.57	25.29	20750	1589	2395
6500	24.30	25.16	21000	1580	23.94
6750	24.04	25.03	21250	15.71	23.93
7000	23.79	24.89	21500	15.62	23.92
7250	2354	24.76	21750	15.53	23.91
7500	2331	24.62	22000	1544	23 日9
7750	2308	24.49	22250	1535	23.88
8000	22.85	24.36	22500	1527	2367
8250	22.64	24.23	22750	1519	2385
8500	22.43	24.10	23000	1510	23.83
8750	22.22	23.97	23250	1502	2382
9000	22.02	2384	23500	1494	23.80
9250	21.83	23.72	23750	1486	23.78
9500	21.64	23.59	24000	1478	2377
9750	21.45	23.63	24250	14.70	23.75
10000	21.27	23.66	24500	1462	2373
10250	21.10	23.70	24750	1454	2371
10500	20.92	23.72	25000	1446	23.69
10750	20.76	23.74	25250	1438	2367
11000	20.59	23.75	25500	1431	2365
11250	20.43	2377	25750	1423	2363
11500	2027	23.77	26000	1416	2361
11750	20.11	23.77	26250	1408	23.58
12000	1996	23.77	26500	1401	2356
12250	19.81	23.77	26750	13.94	23.54
12500	19.66	23.76	27000	1386	2352
12750	1952	23.75	27250	1379	23.49
13000	1938	23.74	27358	13.76	23.48
13250	1924	23.72			
13500	19.10	23.70			
13750	18.97	23.68			
14000	18.83	23.66			
14250	18.70	23.64			
14500	18.58	23.67			
14750	18.45	23.71			

TABLE J.3. Supplement To Figure J.3.

TABLE J.4. Slant Ranges and Free Space Losses Versus Altitude.

Gain $\cdot>$	32			27			24			22					
ALT	TNuT	CNodown ${ }^{\text {a }}$	CNiot	CNTM	CNdown	Vio	\%p	CNdown ${ }^{\text {a }}$			CNdown	CNios	CNup		
600	5487645	61724915	54.06078	49876	5672491	490607	46876	5372491	4606078	4487645	491	4406078	4287645		1200078
		58	d	46	5376647	4610234	02	50	43.102344	4191802		4110234	3991802		
1000	49	56	49	4487653	5172499	4406086	4187653	48	8	3987653	4672499	3906086	3	4472499	
t250	4832179					4250612			3950612	38	4517024	12	3632179		
+500	4706716	5391562	46	4206716	48	41 25149		4591562	3825149	37.06716					
		5286382	45199694	4101536	47	40	3801536	44.86382	3719969	3601536	4286382	3519969			
		5195792	4429379	4010947	4695792	3929379	3710947	43	3629379	35	4195792				
250						3849774	3631341	43	3549774		4116186	3349774	3231341	3916486	
500	1360294							42451393	3478727	336029	4045139	3278727	316029.4	3745130	
6750	42961	4980946	42						3414533	32961	3980946	3214533	30961	3780946	3014533
3000	1237516	4922361	4) 55949	3737516	4422361					3237516					2955939
3F50	4183607	4868452	41020393	3683607	4368452	3602039				3183607					
	41 33654	4818499	40520873	3633654	4318499		3333654		3252087		3818499				
	4087093	4771938	4005525	3587093	4271938	35.05525	3287093	39	3205526			3005525	28.87093		
		4728316	39	3543471	4228316	34.61903	32.43474	39.28316	3161903			2961903	2843471		
				3502422	41.87268	3420855	3202422	38.87268	3120855	30	36	2920855	2802422	3487268	2720855
					414849	33.82077	31.63645	384849	3082071	2963645	36	28		344849	2682077
		4611733						38.11733	304532	2926888	36	284532	27.26888	3411733	
5000	3891939	4576784	38	3391939		33		37.76784	3010372	28.91939	3576784	2810372	2691939		
		4543465	3777052	335862	4043465	3277052	305862	37.43465	2977052	28.5862	3543465	2777052	265862		
			3745208	3326776	4011621	3245208	3026776	3711621	2945208	2826776	3511621	2745208	2626776	3311621	
	37962			3296274	398112	32	2996	36.8112	2914707	279	348112	2714707	5		
				3267	3951846	31	2967	3651846	2885433	27.67	34	2685433	2567	3251846	2485433
						31	2938853	3623698	2857285	2738853	3423698	2657285	2538853	3223698	5
6500	3711743	4396588	3630175				2911743	3596588	2830175	2711743	3396588	2630175	2511743		
6750	3685592	4370438	3604025	31.85592					28.04025	2685592	3370438	2604025	2485592	3170438	
	3660331	4345177	3578764	316033	3845177	30	2860331		2778764			2578764			
			355433	31.3589	38.20743	30.5433	2835898	3520743	275433	2635898	3320743	255433	2435898		
			3530668	3112236	37	30.30668	2812236	34.97081	2730668	2612236	3297081	25	2412236		
				3089295		3007727	27		2707727	2589295	327414	2507727	2389295	307414	7
	356703					2985462	27.6703		2685462	256709	3251875	2485462	236703	3051875	
R250		4230245	3463	30454					2663832	25454	3230245	24.63832	23454		
1500		4209212	3442799	30.24367	37.09212	2942799	27.24367		26	2524367	3209212	2442799	2324367		
8750	3503897	4188743		30	36.8874	292233	27.03897	3388743	262233		31.88743		2303897		
		41.68805		298396	36.68805	2902392	268396	3368805	2602392	24.8396	31.68805	24023	228396		
				2964526			2664526	3349371	2582958	2464526	3149371	2382958	2264526		
2500		41		29	36.3041			33	25.64002	2445569	3130414	2364002	2245569	2930414	
				2927065	361191			33.1191	2545498	2427065	311191		2227065		
1000		4093837						32	25	2408992	3093837		2208992	$289383{ }^{\prime}$	
10250		4076	330976	2891328	35	280976	2591328	32.	250976	2391328	307	230976	21 91328	2876173	
0500			3292487		3558	279248		32.589		2374055	30589	2292487	2174055	28589	?
10750					3541999						3041999	2275586	2157154		
-1000								3225455					2140609		
1250		40	32			27	2524405	32.09251	24	2324405					
									242696	2308527		222696			
			3211394		3477807				2411394		2977807	2211394			
1200							2477695	3162541	2396128	2277695	296	21961			
12250			31.81149		34		2462717	3147562	2381149	2262717				2747562	
12500	3248015				3432		2448015	31.3286	2366448	2248015	293286				
12750	3233579	3918425	315201	2733579		2652012	24.33579	31.18425	2352012	22	2918425	2152012		18485	
1300			3137832		3404245	26378	24.19399	3104245	23		29	2137832		04245	
				27.05466	3390312		24.05466	30.90312	23238	220	28	2123899	20		
	319	38			33			30.76616		21	28.766		19	267	
							2378305	306315			286315			266315	
	316506			26650	3349906		236	3049906	2283493	21650	2849906		19650		
					3336875		23.5203	30	22		2836875				
	31			263920					225	21			1939206		
				26265					2245015	212			1926583		
	31		30			2532585	2314153		2232585	2114153					
						2520343		2986756	2220343	21019	2786756	2020343	19019	2586756	1820343
		3774695	300828	258985	3274695	2508282	228985	2974695	2208282	208985	2774695		1889	2574695	
			2996397	2577965	326281	2496397	22	29.6	21	2077965	27.628	1996397	1877965	256281	
		37	2984684	25662	3251096	2484684	22662	29	21.8	20662	2751096		186625		
		37	297	25	32395	2473136	2254703	2939548	217	20	2739548	1973136	1854703	25	
								2928161	21.617	20	2728161	19	18	2528161	
	3032085	37.1693	29				2232085			2032085	27	1950518	18	251693	1750518
	302100		2939439	25	3205852	24	22		21.						
	301007		2928508	25	31	24	22	28	21.2850						
				24	3184133	241772	2199288	28	17						
7775			2907073			2407073	21.8864	2873486	21	198664					
48000	2978				31629	239656	2178129	2862974	2096561	19	2662974	189656	17781		
	29677		2886182	24.6775	315259		67	285	208	196775	2652595	188618	176775	2452595	1686182
	295749	36			31.423		21.57499	2842345		1957	2642345	1875932	1757499	2442345	1675932
B7				24	31.3	2365808	2147375	28	20	1947375	2632221				
		36			312221	23	21	282	20	1937374	2622219	1855806	173737	4222	
		3612337		24.27492	31123	2345924	212	2812337	204	192	261	18	1727492	241233	16 45924
950		36		2417726	310	2336159	21	280257	2036159	191772	2602572	1836150	17	24025	1636159
550	2908075		282650			232650			2026507	1908075	259292	1826	17	2392	1620507
		358			308338	23	20	27.8338	201	18	258338				1616967
20250	288	35	280	238	307	230	208	27	20	18	25	1807535	1689102		35
20500	2879	3564	27.98209	-	3064	2298	20	276	19982	18797	25	179820	1679775		
075	2870554	355539	2788986	,	305539	2288	207055	275	1988	18705	25	1788980	,	235539	
	2861433	35	2779865	2361433	304627	227	2061433	27.	19798	186143	25	17	1661433	234627	1579865
		35	2770843		30372	227	20.5241	27.3726	19700	1852	2537	177	652	233725	1570893
		352833	27	23	30	22619	2043485	27.28	19619	184348	25283	176	1643485	232833	15
21750	2834654	35194	275	2334	301	225308	2034654	2719495	195308	1834654	2519499	17530	163465	231949	55
2000	2825915	3510761	2744348	2325915	301	22443	20259	2710761	1944348	182594	25	7	8 1625915	5231076	54
	28	3502	27357	2317	3002113	22.35	2017267	27	\| 19357	18	250	17357	11617267	2302113	
								2693553	192	1808708	2493553	1727	160		

		3485081	27.18668	23.00236	2985081	22.18668	20.00236	26.85081	1918668	1800236	2485081	1718668	1600236 1591848	2285081 2276694	$\left\lvert\, \begin{aligned} & 1510668 \\ & 1510281 \end{aligned}\right.$
22750	2800236 2791848	3476694	27.10281	22.91848	29.76694	2210281	19.91848	26.76694	19.10281	17.91848	24.76694 24.6839	81	15.83544	226839	1501977
C3000	27.91848 27.83544	346839	2701977	2283544	296839	22.01977	19.83544	26.6839	19.01977	17.63544 1775322	246839 2460167	17.01977 16.93754	1575322	2260167	1493754
23500	2775322	3460167	2693754	22.75322	2960167	21.93754	19.75322	26.60167	18.93754	5322	24.52024	1685612	1567179	2252024	1485612
\% 3750	2767179	3452024	2685612	22.67179	2952024	21.85612	1967179		18.77547	17.59115	24.4396	1677547	1559115	224396	1477547
24000	2759115	34.4396	2677547	2259115	29.4396	21.77547		26	18.6956	1751127	24.35973	166956	1551127	2235973	146956
24250	27.51127	3435973	266956	2251127	2935973	21.6	215	26.28061	18.61648	1743215	24.28061	1661648	15.43215	2228061	1461648
24500	2743215	3428061	2661648	22.43215	2928061	215381	19.43215	26.20223	18.5381	1735377	24.20223	1653 Bl	1535377	2220223	145381
04750	2735377	3420223	265381	22.35377	29.20223	215381	1927612	2612457	18.46044	1727612	24.12457	16.46044	1527612	2212457	1446044
25000	2727612	3412457	26.46044	2227612	2912	213835	19.19917	2604763	18.3835	1719917	24.04763	163835	15.19917	2204763	143835
05250	2719917	3404763	26.3835	2219917	2904	24 30725	1912292	25.97138	1830725	1712292	23.97138	1630725	1512292	2197138	1430725
E5500	2712292	3397138	2630725	22.12292	289	2123169	1904736	2589582	18.23169	1704736	2389582	1623169	1504736	2189582	1423169
P5750	2704736	3389582	26.23169	2204736	288	21.1568	1897247	2582093	181568	1697247	2382093	16.1568	1497247	2182093	141568
06000	2697247	3382093	26.1568	2197247	28.		1889824	257467	18.08257	16.89824	237467	16.09257	1489824	217467	1408257
26250	2689824	33.7467	2608257	21.89824		2100899	1882466	2567312	1800899	1682466	23.67312	1600899	1482466	2167312	1400899
26500	2682466	3367312	26.00899	21.82466	28.67312	2093604	18.75172	2560017	17.93604	1675172	23.60017	1593604	14.75172	2160017	1393604
26750	2675172	3360017	25.93604	2175172	28.6	2086373	186794	25.52786	17.86373	16.6794	2352786	1586373	146794	2152786	1386373
E7000	266794	3352786	2586373	216794	28.		186077	2545615	17.79202	16.6077	23.45615	1579202	14.6077	2145615	1379202
07250	26.6077	3345615	2579202	216077	28	2076124	1857691	25.42537	17.76124	16.57691	23.42537	15.76124	14.57691	2142537	1376124
27358	2657691	3342537	2576124	21.57691	28	2076124									

TABLE J.5. Carrier -To-Noise Ratios For Fixed Antenna Gains.

APPENDIX K
 defense advanced research projects agency STATEMENT OF WORK

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY (DARPA) ADV ANCED SPACE TECHNOLOGY PROGRAM (ASTP) ADVANCED SATELLITE SUBSYSTEM TECHNOLOGIES DEMONSTRATION STATEMENT OF WORK

1.0 PURPOSE

This Statement of Work (SOW) defines the tasks to be performed by the Contractor to develop the system ucsigns for a multi-mission-capable small standard spacecraft bus and a meteorological satellite based on the standard spacecraft bus. In addition, the Contractor is tasked to develop a system design for a spacecraft io incorporate and demonstrate advanced tecluology spacecraft and payload subsystems and components currenily being developed for DARPA.

2.0 BACKGROUND

The Defense Advanced Research Projects Agency (DARPA) Advanced Space Technology Program (ASTP) is defining, developing and demonstrating high payolf advanced technology applications to improve space system operational support to military commanders. The focus of the program is to advance the state-of-the-art for more capable, smaller and lighter satellite systems, subsystems and components.

The current program includes: the development, launch and demonstration of small, lighweight UIIF communications satellites; the flight test of the PEGASUS Air Launched Vehicle (ALV) to evaluate its launch flexibility, practicality and utility to place small payloads into orbit; and the development and demonstration of the ground hanched Standard Small Lannch Vehicle (SSLV) which is to be capable of placing a minimum payload of 1000 pounds into a 400 natuical mile circular polar orbit. Bod the ALV and SSLV are to enable delivery of a small spacecraft to low carth orbit within 72 hours of the lannch command (i.e., vehicle/spacecraft integration, final vehicle assembly, checkout and launch activities are to oceur within this 72 hour period).

Consistent with the ASTP objectives is the pursuit of advanced space system technologies that will enable the DoD to acquire lightweight, cost-effective military satellites which can be dedicated to Theater commanders to assure availability and ieconstitution after allack. Subsysten and component innovations are included in this pursuit.

Proposats addressing advanced techology space systems, subsystems and components have been received in response to a Broad Agency Announcemen (BAA 188 -13) issued by DARPA. This SOW is a formalization to a propensal selecied for consideration.

The proposal is 10 design a small, low-cost, lightweight, gencral purpose spacecrali bus capable of accommodating any of a variety of mission payloads. Such a bus is expected to provide major benefits to the military, as well as the scientific and technical community. Typical payloads envisioned include those associated with metconological, communcations, surveillance and tracking, arget location, and navigation mission arcas. Specific emphasis is given in the proposal to using a multi-spectral metcorological payboad to demonstrate the military utility and benclus of a general purpose multi-mission capable spacecraft bus.

As separate efforts, DARPA is sponsoring the development of advanced technology spacecraft and payload subsystems and componems. A small standard spacecratt provides the opportunity to integrate the results of these cllorts for subsequent on-orbil system demonstrations.

3.0 SCOPE

The Contractor's activities are directed towards the following objectives:

* Defining lie system requirements for a small, standard spacceraft bus as imposed by potential tactical mission arcas which include meteorology, communications, surveillance and tracking. target location, navigation, and crosslinking,
* Developing die system design for a small, standard spacecraft bus,
* Developing the system design for a metcorological satellite using the small, standard spacecraft bus, and.
* Developing the system design for a communications satellite using subsystem and component technologies being developed by DARPA.
The small, standard spacecraft bus shall be capable of accommodating any of several potential mission payloads. The spacecraft shall be compatible with the ALV and SSLV (and comparable launch vehicles), and capable of being inserted into and operating in any of a variety of potential mission orbits, including low earth circular (i.e., Iess than 400 nautical mile altitude), higher earth circular (i.c., greater than 400 nautical mile altitude), and Molniya-type clliptical orbits.

The spacecraft bus shall possess sufficient space and power to enable implementation of appropriate hardware and software to support duplex crosslink communications with suitably-equipped satellites. The duplex crosslink communications capability shall be inherent in the spacecraft bus design, but shall permit optional implementation of hardware/sofiware. Besides supporting payload and Telenctry, Tracking and Command (TT\&C) operations, the crosslink capability shall also suppon pass-drough relay communications.

The Tr\&C and communications subsysiems shall include appropriate hardware/soliware for embedded encryption/decryption and communications security (COMSEC).

The meteorological satellite portion of the program requires the Contactor to develop the system-level design for a meteorological satellite system using the Advanced Very High Resolution Radiometer (AVIIRR) or equivalent muti-spectal meteorological payload. The satellite shall be capable of being launched using either the ALV or SSLV. The metcorological satellite mission data shall be compatible with the capabilitics of existing tactical weather terminals.

The communications satellite portion of the program requires the Contractor to develop a system-Ievel design for integrating and demonstrating advanced techology spacecraft and payload subsystens and components which are being developed under DARPA sponsorship. The payload techologics, when integrated, comprise an advanced technology Extremely lligh Frequency (EHF) commonications package capable of operating in 6,8 and/or 12 hour Molniya-type clliptical orbits. The satclite shall be capabie of being launched using either the ALV or SSLV.

4.0 CONTAACTOR TASKS

The Contactor shall provide all management, technical and administrative personnel, facilities, equipment. supplies, material and services to accomplish the following tasks:

4.1 TASK 1: MANAGEMENT

The Contractor shall appoint a Program Manager who shall be responsible for all aspects of this program and who shall serve as the single point of contact. The Contractor's Progran Manager shall coordinate all contract activities with the Govermment Project Officer (hereafter referred to as the Project Officer). The Contractor's Program Manager shall be responsible for direction of his Project Staff and for timely submission of CDRL items.
4.1.1 Klck-Off Meeting. Within 30 calendar days following contract intiation, the Contractor shall mect at DARPA with the DARPA Program Manager, the Project Officer, and members of the ASTP Systems Enginecting and Technical Assistance (SETA) tcam. Principle matters to be discussed will include project goals, ASTP-SETAContractor interaction, and resolution of any technical questions.
4.1.2 Monthly Progress And Expenditure Reports. The Contractor shall prepare a monthly Progress Report and an Expenditure Report which summarize the previous montlis resules of all work performed, expenses incurred, problems encountered and recommendations. The Progress Report shall also identify the Contractor's plan/schedule for accomplishing the contract requirements for the next two mondhs. (CDRL A001, A002)
4.1.3 Informal Working Meetlngs. The Contractor shall provide technical participation during informal working meetings to be held monthly (typically, one day per meeting) at the Contractor's facility. These sessions are intended to cause as litue impact as possible to the Contractor's efforts, yet enable sufficient insight to maintain awareness of the program activities and progress, and to assist with the resolution of any problems or issues that may arise.
4.1.4 Advanced Technology Meetings. The Contractor shall provide techinical participation in mectings which are arranged by the Project Officer to address the DARPA-sponsored projects involving advanced icchnology spacecraft and payload subsystems and components. (For planing purposes, approximately 16 one-day meetings are anticipated with 75% being in the Los Angeles area and the remainder being at east coast locations.)
4.1.5 Quarterly Status Revlews. The Contractor shall present oral reports to the Project Orficer and DARPA Program Manager summarizing the status/results of contract activity on a quarterly basis. The Quarterly Sutus Reviews shall alternately be held between the Contractor's facility and DARPA (Arlington, VA). The Contractor shall prepare presentation material and conference minutes for these reviews. (CDRL A003, A004) -
4.1.6 Mid-Term Review. The Contractor shall present an oral Mid-Term Review to the Project Officer and DARPA Program Manager summarizing the technical investigations, status and results since contract stant. The Mid-Term Review shall be held at the Contactor's lacility. The Mid-Term Review will be allended by a larger Government audience to include representatives from the Military Services and other Government agencies. The Contractor shall prepare presentation material and conlerence minutes for this review. (The Quarterly Status Review is not required in the quarter for which the Mid-Tem Review is scheduled.) (CDRL A003, AOOH)
4.1.7 FInal Review. The Contactor shall present an oral Final Review to the Project Oflicer and DARPA Program Manager summarizing the lechnical investigations, status and results since the Mid-Term Review. The Final Review shall be held at the Contractor's facility. The Final Review will be attended by a larger Government audience to inchude representatives from the Military Services and other Government agencies. The Contractor shall prepare presentation material and conference minutes for this review. (The Quarterly Status Review is not required in the quarter for which the Final Review is scheduled.) (CDRL A003, A004)
4.1.8 Final Englneering Report. The Contractor shall prepare a linal enginecring report. (CDRL AOOS)

4.2 TASK 2: SYSTEM REQUIREMENTS DEFINITION

The contractor shall conduct analyses and trade studies to determine the system performance requirements and operational characteristics for a multi-mission adapuble small standard spacecraft bus. The Contactor shall perform tade-offs of the overall system architecture to determine: (1) which payloads, from potential mission areas which include netcorology, communications, surveillance and tracking, target lecation, navigation, and crosslinking can be accommodated by the spacecraft bus; (2) alternative orbits (including circular and Molniya-type clliptical) uscful for the various missions and their effect on spacecraft bus design; (3) one-year (with a goal of eighteen months) and three-year (with a goal of 4 years) design lives on orbit and their impact as schedule and cost drivers: (4) use of ALV. SSLV, and other optional launch vehicles; (5) system adaptability and flexibility for quick-response launch; (6) orbit insertion and orbit transfer requirements; (7) autonomous spacceraft operations; (8) on-board data
handling (including processor and mass memory) to support spacecraft requirements and reserve capacity for payloads; (9) mission data communications requirements; (10) interoperability and compatibility widh the Air Force Satellite Control Network (AFSCN); (11) cinbedded COMSEC for the TT\&C and data links; and (12) any other factors affecting system performance.

The crosslink (including pass-through commonications relay) trades shall include the advantages and disadvantages for alternative frequency bands which as a minimum include S - and K -Bands

The Contractor shall also include the applicable mission ground segments as part of the system requirements trade-off activities. The trade-olfs may consider employment of a multi-mission capable Common Dala Limk (CDL).

4.3 TASK 3: SPACECRAFT BUS SYSTEM DESIGN

Based on the results of the system requirements definition task, the Contractor shall perform systems enginecring and design of a small, standard multi-mission adaptable spacecraft bus. The systems enginecring and design activities shall include, but are not limited to the following:

- Structure and mechanical subsystem
- Altitude Determination and Control
- Orbit Determination and Control
- TT\&C will cmbedded Encryption/Decryption (Including Satellite/AFSCN Interlace and Control for SGLS Compatibility)
- Spacecraft Data Handling
- Software
- Electrical Power
- Payload Interfaces and Integration
- Communications and COMSEC
- Optionally Implemented Crosslinks
- Thermal Control
- Propulsion System
- Orbit Insertion
- Orbil Transfer
- ALV and SSLV Compatibility (and Compatibility wid OUher Launchers)
- Ground Support Equipment (GSE)

The Contractor shall address all external and internal system interfaces. The Contractor shall provide an assessment of the technical, schedule and cost risks of each subsystem and the overall spacecraft.

4.4 TASK 4: METEOROLOGICAL SATELLITE SYSTEM DESIGN

Based upon the spacecraft bus design developed in paragraph 4.3 (including optionally implemented crosslink), the Contractor shall develop the system design for the metcorological satellite, ineluding the design of the following subsystems/segments:

- Any Adaptation of the Spacecraft Bus Unique to the Multi-Spectral Metcorological Payload and Mission
- Multi-Spectral Metcorological Payload Integration and Interfaces
- Mission Unique Equipment/Mission Unique Soltware (MUE/MUS), if required
- Satellite Checkout After Integration into the ALV and SSLV, and
- Unique GSE Required for the Meteorological Spacecraft

The Contactor shall accomplish performance analyses in support of the design and integration activities for the meteorological spacecraft.

The Contractor shatl address all extemal and intemal system interfaces unique to the meteorological the mission ground segment. The metcorological satellite mission data shall be compatible with the capabilities of existing tactical weather terminals.

The Contractor shall provide an assessment of the techmical, schedule and cost risks of each subsystem and the overall spacecraft.

4.5 TASK 5: ADVANCED TECHNOLOGY DEMONSTRATION SATELLITE SYSTEM DESIGN

Based upon the spacecraft bus design developed in paragraph 4.3 (including optionally implemented crosslink) and using DARPA-supplied data on advanced technology spacecraft and communications payload subsystems and components, the Contractor shall develop the system design for an advanced technology demonstration satellite capable of being placed into a Molniya-type elliptical orbit.

5.0 REPORTS, DATA AND OTHER DELIVERABLES

All reports and data shall be generated and submitted in accordance with the attached DD Form 1423 (or equivalent), Contract Data Requirements List (CDRL).

6.0 SPECIAL CONSIDERATIONS

6.1 DOCUMENTS

The Contractor shatl use the following documents for guidance purposes only:
MUS Generic Interface Description Document for Data Systen Modermization, 14 May

DOD-HDBK-343 1986 Design, Construction, and Testing Requirements For One of a Kind Space Equipment, February 1986
Applications Guidelines for MIL-STD-1540B. Test Requirements for Space Vehicles
Test Requiremenus for Space Vehicles
TOR-0059(6110-01)-3 Air Force Control Facility Space/Ground Interface, June 1987

