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ABSTRACT

The Take-Grant Protection Model has in the past been used to model multilevel se-
curity hierarchies and simple protection systems. The models are extended to in-
clude theft of rights and sharing of information, and additional security policies are
examined. The analysis suggests that in some cases the basic rules of the Take-
Grant Protection Model should be augmented to represent the policy properly;
when appropriate, such modifications are made and their effects with respect to the
policy and its Take-Grant representation are discussed.
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1. Introduction

The Take-Grant Protection Model [12][15] is one of a number of abstract formulations of
protection systems. Like other such models, it is primarily a theoretical tool used to analyze the
safety question; unlike other models, it presents a framework in which that question is answered
“yes,” and enables the derivation of results indicating the conditions under which rights can be
transferred as well as the complexity of determining whether or not those conditions hold in a par-
ticular system. Because of these characteristics, if it could be used to analyze an abstract model of
an existing or proposed system, it would be possible either to prove in that model that rights could
be transferred, or that they could not be.

In this, it differs from other formal models of protection. The access control matrix model
[8]1{10][14] is a matrix-oriented description of the rights that subjects, or actors, have over objects,
or passive entities. It is a very general model that does not constrain in any way the set of com-
mands that may be used to manipulate rights. As one would expect, answering the safety question
using such a system is quite complex, and for the most general case, it is undecidable. However, if
the commands are mono-conditional (or monooperational), the safety question can be answered.
The difference between this model and Take-Grant is that Take-Grant explicitly states four rules
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controlling the propagation of rights, and four rules and information, and so — even though those
rules are not mono-operational — the safety question can be answered.

The schematic protection model [17] is another model of protection which, like the access
control matrix model, focuses on the issue of being able to answer the safety question and not de-
termining necessary and sufficient conditions for sharing rights or information. Like the access
control matrix model, it presumes no rules for propagation of rights, and ignores completely the

questions of theft of rights and propagation of information.

Those questions have been studied extensively in the Take-Grant Protection Model. Work
by Snyder [20] on the transfer of rights without the cooperation of the owner of those rights ex-
tended the results about sharing to situations of theft; work by Snyder and Bishop [4] introduced
the notion of information flow and transfer into the model, and recent work by Bishop [3] presented
results about the theft of information. Bishop [2], Jones [11], Snyder [18], and Wu [21] have ap-
plied the model to some existing computer systems and simple security policies. The contribution
of this paper is the expansion of some of those representations to include theft of rights and the
sharing of information as well as representing some new policies. We begin by briefly reviewing
the Take-Grant Protection Model, and then derive a simplification of one of those results, which
will make analysis of the security policies in the following section much simpler. We analyze the
security policies of complete isolation, the owner having the ability to share rights nd information,
a multilevel security policy, and a tree-based hierarchical policy such as is found in many computer

systems. Finally, we conclude with some discussion and suggestions for future work.

2. The Basic Take-Grant Protection Model

We present this section as background into the model; the reader desiring a more complete
presentation should turn to the references. On the other hand, the reader familiar with the model is

encouraged to turn to the next section!

The Take-Grant Protection Model represents systems as graphs. The vertices are of two col-
ors: subjects correspond to the active nodes such as processes, and objects correspond to the pas-
sive entities as files. (In modelling a system, representing an entity may not be straightforward; for
example, a segment of memory might be an object when not in use, but a subject when being exe-
cuted. We treat this as a point of interpretation and hence beyond the scope of this paper.) Edges
connecting these nodes are labelled with sets of rights; these sets are subsets of a finite set of rights
which for this description we shall take tobe R = {1, g,r, w}, where t represents the take right,
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g the grant right, r the read right, and w the write right. Application of the rights is modelled by
applying graph rewriting rules, which either change the protection state of the graph( de jure rules)

or provide a representation of how information flows throughout the system (de facto rules).

In protection graphs, the subjects are represented by @ and objects by O. Vertices which

may be either subjects or objects are represented by @. Pictures are very often used to show the

effects of applying a graph rewriting rule on the graph; the symbol |- is used to mean that the graph

following it is produced by the action of a graph rewriting rule on the graph preceding it. The sym-
bol -* represents several rule applications. The term witness means a sequence of graph rewriting

rules which produce the predicate or condition being witnessed, and a witness is often demonstrat-

ed by listing the graph rewriting rules that make up the witness (usually with pictures).

take:

grant:

The de jure rules manipulate edges (and vertices) in the graph. They are:

Let x, y, and z be three distinct vertices in a protection graph G, and let x be a subject. Let
there be an edge from x to y labelled y with ¢ € 7, an edge from y to z labelled B,anda ¢ B.

. Then the take rule defines a new graph G by adding an edge to the protection graph from

x to z labelled a.. Graphically,
t
o—»aPpg |- @
X y z

The rule is written “x takes (a to z) from y.”

Let x, y, and z be three distinct vertices in a protection graph G, and let x be a subject. Let
there be an edge from x to y labelled y with g € ¥, an edge from x to z labelled 3, and a < P.
Then the grant rule defines a new graph G by adding an edge to the protection graph from
X to z labelled a. Graphically,

cel o btee |- @

y X z X

The rule is written “x grants (dtoz) to y.”
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create: Let x be any subject in a protection graph G and let a ¢ R. Create defines a new graph G,
by adding a new vertex y to the graph and an edge from x to y labelled a. Graphically,
® - *—»®

X

The rule is written “x creates (@ to new vertex) y.”

remove: Let x and y be any distinct vertices in a protection graph G such that x is a subject. Let
there be an explicit edge from x to y labelled B, and let @ € R. Then remove defines a new
graph G, by deleting the a labels from P. If B becomes empty as a result, the edge itself is
deleted. Graphically,

B B
o— |._ o—»R
X z X z
The rule is written “x removes (X t0) y.”

The edges which appear in the above graph are called explicit because they represent au-
thority known to the protection system. Note that there is a duality between the take and grant rules
when the edge labelled 7 or g is between two subjects. Specifically, with the cooperation of both
subjects, rights can be transmitted backwards along the edges. The following two lemmata [12]

demonstrate this:

Lemma 1.
o
<0 »0 | A
y X z Y X
Lemma 2.
04
oiretog |+ (14 o)
y X z y X

As a result, when considering the transfer of authority between cooperating subjects, nei-
ther direction nor label of the edge is important, so long as the label isin the set { ¢, g }.

Definition. A tg-path is a nonempty sequence Vg, ..., v, of distinct vertices such that for all i,
0 <i<n, v;is connected to v;, by an edge (in either direction) with a label containing r or g.

Note that the vertices in a tg-path may be either subjects or objects.
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Definition. Vertices are 1g-connected if there is a tg-path between them.
Definition. An island is a maximal tg-connected subject-only subgraph.

Any right that one vertex in an island has can be obtained by any other vertex in that island.
In other words, an island is a maximal set of subjects which possess common rights. With each tg-
path, associate one or more words over the alphabet { 1,1, 3,8} inthe obvious way. If the path has
length 0, then the associated word is the null word v.
Definition. A vertex vy initially spans to v,, if v is a subject and there is a tg-path between v and
v, with associated word in {#*3} U {v}.
Definition. A vertex v terminally spans to v,, if v is a subject and there is a tg-path between vy
and v, with associated word in {7*}.
Definition. A bridge is a tg-path with vg and v, both subjects and the path’s associated word in

{1%, 1%, 1% gi*, 1% gi* ) .

The following predicate formally defines the notion of transferring authority.
Definition. The predicate caneshare(a, X, y, G) is true for a set of rights & and two vertices x and
y if and only if there exist protection graphs Gy, ..., G, such that Gy -*G, using only de jure rules,
and in G, there is an edge from x to y labelled a.

In short, if x can acquire a rights over y, then caneshare(a, x, y, Gg) is true. The theorem
which establishes necessary and sufficient conditions for this predicate to hold is [15]:

Theorem 3. The predicate caneshare(a, x, y, Gy) is true if and only if there is an edge fromx to y
in G labelled @, or if the following hold simultaneously:

(3.1) there is a vertex s € G, with an s-to-y edge labelled o;
(3.2) there exists a subject vertex x” such that x” = x or x” initially spans to x;
(3.3) there exists a subject vertex 8” such that 8" = s or 8" terminally spans to s; and
(3.4) thereexistislands/y,...,/, such thatp”isin /{, 8" isin /,, and there is a bridge from
Lwl,(1sj<n).
Finally, if the right can be transferred without any vertex which has that right applying a
rule, the right is said to be stolen. Formally:

Definition. The predicate canesteal(a, x, y, Gg) is true if and only if there is no edge labelled a from
X to y in G, there exist protection graphs Gy, ..., G, such that Gy -*G, using only de jure rules,
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in G, there is an edge from x to y labelled o, and if there is an edge labelled a from s to q in Gy,
then no rule has the form “s grants (a to q) to z” forany z € G; (1 <j <n).

Essentially, this says that canesteal is true if caneshare is true, the thief did not have the
right initially, and no owner of the right in the initial graph gave it away. It can be shown [17]:

Theorem 4. The predicate canesteal(a, x, y, Gg) is true if and only if all of the following hold:

(4.1) there is no edge labelled a from x to y in G;

(4.2) there exists a subject vertex x” such that x” = x or x” initially spans to x;

(4.3) there is a vertex s with an edge from s to y labelled @ in Gg;

(4.4) caneshare(t, x’, s, Gy) is true.

The de facto rules differ from the de jure rules in that they do not alter the authorities in the
graph; they merely record patterns of information flow, so we cannot use an explicit edge to show
the result of the application. Still, some indication of the paths along which information can be
passed is necessary so we use a dashed line, labelled by r, to represent the path of a potential de
facto transfer. Such an edge is called an implicit edge. Notice that implicit edges cannot be manip-
ulated by de jure rules, since the de jure rules can only affect authorities recorded in the protection
system, and implicit edges do not represent such authority.

The following set of de facto rules was introduced in [4] to model the transfer of informa-
tion:
post: Letx,y, and z be three distinct vertices in a protection graph G, and let x and z be subjects.

Let there be an (implicit or explicit) edge from x to y labelled a with r € a and an edge

from z to y labelled B, where w € B. Then the post rule defines a new graph G with an

implicit edge from x to z labelled r. Graphically,

, " ""“‘.,..--' e,
’ y z l— ‘_r»®‘w_t

The rule is written “z posts to x through y,” and is so named because it is reminiscent of y

being a mailbox to which z posts a letter that x reads.

pass: Letx,y, and z be three distinct vertices in a protection graph G, and let y be a subject. Let
there be an edge from y to x labelled o with w € o and an (implicit or explicit) edge from
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y to z labelled B, where 7 € B. Then the pass rule defines a new graph G; with an implicit
edge from x to z labelled 7. Graphically,

s
- o,

e

The rule is written “y passes from z to x,” and is so named because y acquires the informa-

tion from z and passes it on to x.

spy: Letx, y, and z be three distinct vertices in a protection graph G, and let x and y be subjects.
Let there be an (implicit or explicit) edge from x to y labelled @ with 7 € a and an (implicit
or explicit) edge from y to z labelled 3, where r € B. Then the spy rule defines a new graph
G with an implicit edge from x to z labelled r. Graphically,

The rule is written “x spies on z using y,” and is so named because x is “looking over the

shoulder” of y to monitor z.

find:  Letx,y, and z be three distinct vertices in a protection graph G, and let y and z be subjects.
Let there be an edge from y to x labelled o with w € o and an edge from z to y labelled J3,
where w € B. Then the spy rule defines a new graph G, with an implicit edge from x to z
labelled r. Graphically,

A
ST )
< w o w e I_ ! w w I

The rule is written “x finds from z through y,” and is named because x is completely pas-

sive; z and y give it information, which x then “finds.”

Note that these rules add implicit and not explicit edges. Further, as these rules model in-
formation flow, they can also be used when any edge labelled r is implicit.

Definition. An rwitg-path is a nonempty sequence Vo, ..., v, of distinct vertices such that for all i,
0 <i<n,v;isconnected to v;,; by an edge (in either direction) with a label containing 7, g, r or w.
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With each rwtg-path, associate one or more words over the alphabet {1, 7, , 8, 7, 7, ¥, w}
in the obvious way.
Definition. A vertex vg rw-initially spans to v, if vg is a subject and there is an rwtg-path between
vg and v, with associated word in {1*#} U {V}.
Definition. A vertex v rw-terminally spans to v, if v is a subject and there is an rwtg-path between
vp and v,, with associated word in {1*}} .
Definition. A connection is an rwtg-path with v and v, both subjects and the path’s associated
wordin C = {1*F, wi*, t*iwi*}.
Definition. The predicate caneknow(x, y, Gy) is true if and only if there exists a sequence of pro-
tection graphs Gy, ..., G, such that Gy -*G,, and in G, there is an edge from x to y labelled r or
an edge from y to x labelled w, and if the edge is explicit, its source is a subject.

In short, if x can obtain an implicit or explicit edge labelled r to y, then caneknow(x, y, Go)
is true. The theorem establishing necessary and sufficient conditions for caneknow to hold is [4]:

Theorem 5. The predicate caneknow(x, y, Gg) is true if and only if there exists a sequence of sub-
jects uy, ..., u, in Gg (n 2 1) such that the following conditions hold:
(5.1) uy =xoru; rw-initially spans to x;
(5.2) u, =y oru, rw-terminally spans to y;
(5.3) foralli, 1 <i<n,there is an rwtg-path between u; and u;, ; with associated word
inBUC.
We define an information analog to the canesteal predicate in which vertices with r rights

over the target do not grant those rights to others nor participate in transfers of information.

Definition. The predicate canesnoop(x, y, Gg) is true if and only if canesteal(r, x, y, G) is true or
there is a sequence of graphs and rule applications G -* G, for which all of the following hold:

(a) there is no explicit edge from x to y labelled 7 in Gy
(b) there is an implicit edge from x to y labelled r in G,; and
(c) neither y nor any vertex directly connected to y is an actor in a grant rule or a de facto
rule resulting in an (explicit or implicit) read edge with y as its target.
Necessary and sufficient conditions for this predicate to hold are [3]:
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Theorem 6. For distinct vertices x and y in a protection graph G with explicit edges only, the pred-
icate canesnoop(x, y, Gp) is true if and only if canesteal(r, x, y, Go) is true or all of the following
conditions hold:

(6.1) there is no edge from x to y labelled r in G

(6.2) there is a subject vertex x” such that x” = x or x” rw-initially spans to x in G,

(6.3) there is a subject vertex y~ such that y* # y, there is no edge labelled 7 fromy“ to y

in Gy, and y” rw-terminally spans to y in Go; and

(6.4) caneknow(x’,y’, Gy is true.

We now consider an alternate formulation of can®share that will aid us in applying the
Take-Grant Protection Model to various security policies.

3. Alternate Characterizations of can®share and can®know

The simplicity of the statement for necessary and sufficient conditions for can®know leads
one to wonder why equally straightforward conditions cannot be found for can®share. A moment’s

reflection will lead to the following:

Lemma 7. The predicate can®share(a, x, y, Gg) is true if and only if there is a vertex s€ G with an
edge to y labelled a, and a sequence of subjects uy,...,u, such that all of the following hold simul-
taneously:

(7.1) uy =xoru, initially spans to x;

(7.2) u, =soru, terminally spans to s; and

(7.3) there is a tg-path between u; and u;,; for all i such that 1 <i<n.
Proof: (=>) Assume can®share(a, x, ¥, Gg) is true. By (3.1), there is a vertex s € G with an edge
to y labelled a; by (3.2), there is a vertex u; satisfying (7.1), and by (3.3) there is a vertex u, sat-
isfying (7.2).

Consider now condition (3.4). Letbjand ¢; be the endpoints in /; of the bridges connecting
islands /;; with /;and I; with [, respectively. From theorem 1, we have x’=bjandy” " =e,. Now,
letb; = zjl, s zjkf = ¢; be any path contained entirely in /;. Then the members of the set
{zfllSan,lSiSk,-)

are the vertices u;, 1 <i < n, and (7.3) holds.
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(<) Now assume that there is a vertex 8 € Gg with an edge to y labelled a, and a sequence of
subjects uy,.. ..My such that (7.1)-(7.3) hold. Then (3.1) holds by assumption, (3.2) by choosing x*
= u;, and (3.3) holds by choosing 8" = u,,.
Finally, note that vertices in the same island have a bridge of length 1 between them, so if
u; and ug, are directly connected, they belong to the same island, and if not (i.e., there are objects
on the bridge connecting them), then they belong to different islands. In either case, let the set of
islands in G be { /; }; then the set of islands in (3.4) is merely the set
{11 Jatleastone k withu € /; )
This proves condition (3.4), and the lemma. [ |
Intuitively, the lemma holds because the islands are simply those parts of the tg-path be-
tween u; and u,, which consist of directly connected subjects. The advantage of this formulation is
that one need not define the “islands” of the original theorem, and can instead consider simply tg-
paths irrespective of maximal subject-only groupings just as in the test for can®know one need only

consider rwtg paths and rw-terminal and rw-initial spans. So there is now a pleasing symmetry be-
tween the necessary and sufficient conditions for sharing rights and sharing information. Of course,

Corollary 8. Truth or falsity of the predicate can®share can be determined in time linear in the size
of the graph.
Given the symmetry between lemma 7 and the theorem for can®know, one would expect

the latter could be reformulated along the lines of the theorem for can®share:
Lemma 9. Let x and y be vertices in a protection graph Ggy. Then can®know(x, y, Go) is true if and
only if can®share(r, x, y, Gg) is true or all of the following conditions hold:

(9.1) there is a subject x” such that x” = x or x” rw-initially spans to x;

(9.2) there is a subject y” such thaty” = y or y” rw-terminally spans to y;

(9.3) there is a sequence of islands /;, 1 <j < n, such that there is a bridge or connection from

Iitoly 1Sj<nandx”€ yandy € I,.

Proof: The proof is similar to that of lemma 7 and is left to the reader. |

4. Modelling Specific Security Policies

We now consider some security policies and how they might be modelled using the Take-
grant Protection Model. Each of these policies is realistic in the sense that an existing computer

system uses them or they have been described in the literature as appropriate under certain condi-
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tions for an operational system. We first express the policy in terms of the predicates can®share,
canesteal, can®know and can®snoop, and then ask whether the policy can be modelled using the
rules of the Take-Grant Protection Model. If it cannot, we describe any necessary modifications to
the rules and the effect of those modifications on the predicates.

We shall explore the representation using two criteria. Let H be the set of protection graphs
satisfying the security policy (we shall use subscripts to distinguish between Hs representing dif-
ferent policies). We shall require that the set of rules used to model the policy be sound with respect
to H:

Definition. A set of graph rewriting rules P is sound with respect to a set of protection graphs H if
applying any finite sequence of elements of P to any element h € H produces a graph h“ e H.

In addition, we shall examine the completeness of the rule set with respect to H and the set
of original rules O = { take, grant, create, remove }:

Definition. Let h,h" € H, and h * h’ using the rules in O. Then if for some P C O, h * h” using
only elements of P, the subset P is complete.

Note that “subset” here includes restricting the rewriting rule in some way, such as not al-

lowing creates to add take edges.

4.1. Complete Isolation of Each Process
The policy of total isolation of each process prevents breaches of security and solves the

confinement problem by preventing any transfer of information or rights among subjects [13].

To prevent any information or rights transfer (illicit or otherwise) it suffices to make all four

predicates always be false. Hence for this policy, H is the set of graphs with elements satisfying
—can®share(a,x.y,h) A —~can®steal(,X,y,h) A —~can®know(x.y,h) A —~can®know(x.y,h)

for all protection graphs h € H,, all pairs of vertices x and y in A, and all subsets of rights a C R.

To characterize this requirement in terms of the rules, note that by theorems 5 and 7, it suf-
fices to prevent any bridges or connections between any two subjects to enforce this condition; in
that case, both conditions (5.3) and (7.3) can never hold. Because the x and y referred to in the the-
orems may be subjects, it is not possible to prevent conditions (5.1), (5.2), (7.1), and (7.2) a priori
from occurring; hence the above constraint is also necessary. Thus, H} may be characterized in

terms of Take-Grant rights by:
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Requirement. To enforce complete isolation of subjects, no bridges or connections may exist be-
tween any two subjects in the protection graph.
Determining whether or not a protection graph meets this requirement is easy: just look for

bridges or connections between subjects. So:
Lemma 10. Testing a graph for violation of the restriction may be done in time linear in the number
of edges of the graph.

Also, when a new de jure rule is applied, we can test for violation of the restriction just by
looking at the paths affected by the rule application; in the worst case, this requires checking every
edge in the graph. So:

Lemma 11. Determining whether or not an application of a de jure rule violates the restriction may

be done in time linear to the number of edges of the graph.

This does not require any changes to the take or grant rules, since in a graph in which cre-
ation is disallowed, bridges and connections may not be constructed unless they already exist.
However, it does require changing the create rule, since if one subject creates another, the parent
may give itself any rights in R to the child. Should one of these rights be take, grant, read, or write,
there will be a bridge, connection, or both between the parent and the child. Hence to make the rules
sound with respect to this set of protection graphs Hy, the create rule must not allow any of those
rights to be in the set of rights the parent has over its child:

mcreate (modified create):  Let x be any subject in a protection graph 4, and let a € R. The mod-
ified create rule mcreate defines a new graph h° by adding a new vertex y to the graph and
an edge from x to y labelled a” such that if y is a subject, ' =a - (¢, g,r,w },and if y is

an object, a” = a.

To see the set Py = { take, grant, mcreate, remove } is sound with respect to H;, simply note
bridges and connections cannot be added where they did not exist. This set of rules is not complete
with respect to O and H,, because using rules in O, one can derive a graph with two subjects that
are not connected to cach other having read rights over a single object (see figure 1), but one cannot
obtain the same graph using the rules in P because at no time can the read right be transferred from

one subject to another. These arguments can be made rigorous, and show:
Lemma 12. P is sound with respect to Hy, but not complete with respect to O and H,.

As an aside, we note that if the policy is eased to allow sharing of rights between processes

with the same ancestors (which would be reflected by modifying the requirement and the definition
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tr .
Py |_ o———p0 x creates (f7 to new subject) ¥

X X y

I_ ® 4 >0 r 0 ¥y creates (r to new object) z
z

X y
r
- ﬁ >0 m x takes (7 to z) from y
X y z
r
- Kﬁ o r :O X removes (i to y)
X y z

Figure 1. Example of lack of completeness of P for a security policy of complete isolation.

of the set H, appropriately), the create rule need not be moditied to produce a sound and complete
set of rules. The complexity of testing for violations of the restriction is still linear in the size of the
graph,

However, this security policy is so restrictive as to be uninteresting, banning (among other
things) any take, grant, read, or write edges, and most paths, between subjects. So let us turn to a

slightly less restrictive, and more interesting, policy.

4.2. Limited Sharing: Owner Controls Dissemination of Rights and Information

In some access control systems, the rights to manipulate files or data is under the control of
the owner of that data. For example, in the Unix® operating system [16], the owner of a file con-
trols who may access it. So this policy allows sharing of rights and information with consent of the
owners of that information.

We must at this point define ownership. Two definitions are possible; one, more common
in database work, holds that possession of a right is “ownership” of some kind. The second, more

common to operating systems, defines ownership as a separate right. We examine both here.

4.2.1. Ownership Conferred by Possession of a Right

This definition, used for example in System R [9],creates a system in which mere posses-
sion of a right enables a subject to propagate that right. Hence for this policy and definition, H, is
the set of graphs with elements satisfying

can®share(a.,Xx,y,h) A —~cane®steal(a.x,y,h) A can®know(x,y,h) A ~can®snoop(x.,y,h)
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for all protection graphs h € H,, all pairs of vertices x and y in A, and all subsets of rights & S R.
The reasoning is that any two subjects must be able to share rights or information, but no set of
subjects can steal rights or information without the consent of the owner. To satisfy the first two
predicates, the owner must cooperate in any transfer of rights; to satisfy the latter two, the owner
must cooperate in any sharing of information. We also note that any pair of subjects can share rights

or information by the construction of this condition.

For can®share(o.x,y,h) to be true but cane®steal(a,x,y,h) to be false, condition (4.4) must
be false since negating any of conditions (4.1)-(4.3) negates either of conditions (3.1) or (3.2), mak-
ing caneshare(a,x,y,h) false. For (4.4) to be false, by lemma 7 either there must be no tg-paths be-
tween any two subjects or no take edges incident upon any subject. We note that the former again
renders can®share(a,x,y,h) false, and that the latter renders can®snoop(x,y,h) false (as all rw-ter-
minal spans will have length 1, so condition (6.3) fails) without also negating can®know(x.y,h).
Clearly, the latter characterization of H, is best:

Requirement. To implement the above policy, no take edges may be incident upon any subject.

Obviously, testing for this condition is simple, as is testing for a violation when a de jure
rule is applied:
Lemma 13. Testing a graph for a violation of the restriction may be done in time linear in the num-
ber of edges in the graph. Further, determining whether or not an application of a de jure rule vio-

lates the restriction may be done in constant time.

The obvious way to prevent creation of take edges is to make the appropriate modification
to the mcreate rule described in the previous section (call the new create rule ncreate, and the rule
set P»1). The argument for soundness is almost identical to the one for mcreate. And the argument
for completeness fails also. To see why, notice that the grant rule does not add any edges to the
source of the edge labelled grant. Hence, lemma 2 cannot hold (in fact, the proof that it is true using
the set O of original Take-Grant Protection Model rules requires the use of a take rule). Now con-
sider a graph h in H,. As there are no take edges, the only take edges that could be added using the
rules in O would be to new vertices. If those vertices are subjects, any subsequent manipulation of
those rights would require an application of lemma 2, which is false given the replacement of the

create rule by the ncreate rule. Hence:

Lemma 14. P, is sound but not complete with respect to O and H,.
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Figure 2. Proof of lemma 2 using the rule set Py, = { take, grant, nmcreate, remove ).
A simple way to make the new rule set P»; complete as well as sound is to change ncreate

to require the creation of grant edges to every existing subject when a new subject is created:

nmcreate (new modified create):  Let x be any subject in a protection graph A, and letat S R. The
modified create rule mcreate defines a new graph A ” by adding a new vertex y to the graph
and an edge from x to y labelled a” such that if y is a subject, a"=a— (¢ },and if y is an
object, &’ = a. Also, if y is a subject, edges labeled { g } are added from y to each subject
vertex in A.

Using the rule set Py = ( take, grant, nmcreate, remove ), creating a new vertex would
add an incoming grant edge to the parent, in which case the proof of lemma 2 is straightforward
(see figure 2). Then the argument for completeness goes as before, except that as lemma 2 is true,
the transfer of any rights from a newly created subject to the parent using take can be emulated by
the child granting the parent the rights. If the child is an object, of course, the issue never arises
since the only way a right can be added to the child is by the parent granting the right, in which
case application of the take rule is redundant and can be eliminated. This can be made formal, and

shows:
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Lemma 15. Py, is both sound and complete with respect to O and Hj.

4.2.2. Ownership As a Right

Using this definition, ownership is itself a right and only the owner may distribute rights.
This version is similar to the propagation prevention mechanism such as HYDRA's environmental
rights mechanism [5],[11] and, at least in operating systems, is more common than an uncon-
strained ability to transmit rights.

First, note that the rules for the Take-Grant Protection Model fail to capture the system’s

distinction between owning an object and owning a right to an object. The simplest incorporation
of this distinction is 2 modification of the grant rule.Define a new ownership right o. Then:

mgrant (modified grant rule). Letx, y, and z be three distinct vertices in a protection graph G,
and let x be a subject. Let there be an edge from x to y labelled y with g € v, an edge from
x to z labelled P with 0 € B, and a C P with 0 ¢ o. Then the modified grant rule mgrant
defines a new graph G by adding an edge to the protection graph from x to z labelled o

In short, no rights to an object may be granted unless the grantor has an o right to the object.
Further, the o right cannot be granted. Let P3 = ( take, mgrant, nmcreate, remove }. Then:

Lemma 16. Given the set of rules P,3, only the owner of a target can propagate a right to that target.

Now, the set of graphs under consideration is still H5. But how does the change in the grant
rule affect the restriction necessary to ensure that owners can share information or rights, but that
those cannot be stolen or snooped? As both stealing and snooping may involve the propagation of
rights, if neither is possible, then limiting the propagation of rights further will not enable either.
In other words, the modified grant rule limits the spread of rights and so those predicates that are
false in the original model will be false in the modified model. So the requirement for the uncon-

strained case is at least sufficient.

To carry the analysis a bit deeper, a right can clearly be shared between the owner and any
other subject since, by the statement of the security policy, all subjects have grant rights over one
another. However, a simple construction will show that rights can be propagated between endpoints
of bridges as well, but no further. Hence given the modified grant rule, can®share is true if and only
if the number of subjects in condition (7.3) is 2.

We note that the rule set P53 is sound since no take edges are added by any of the rules.

Completeness follows from the same argument as before. Hence:
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Lemma 17. Py3 is both sound and complete with respect to O and H,.

4.3. Multilevel Security Policy

Multilevel policies are quite common in existing systems (see for example [6],[16]). Here
we generalize the results in [2] and extend them to include can®share, can®steal and can®snoop.
Our policy is a generalization of the Bell-LaPadula model [1] in which a set U of rights may not
extend from a lower to a higher level, and a set D of rights that may not extend from a higher to a
lower level.We shall assume that 7 € U and w e D so that the simple security and *-properties hold.

This policy associates with each subject and object a security level and a set of categories.
Informally, a subject can access an object (in any way other than by using the rights in D) if the
security level of that object is no greater than the level of the subject and the object’s set of catego-
ries is a (possibly improper) subset of the subject’s categories; similarly, the subject can access an
object (in any way other than by using the rights in U) if the security level of the object is no less
than that of the subject and the object’s set of categories is a (possibly improper) subset of the sub-
ject’s categories. Formally, define the functions si(x) and cs(x) to be the security level and set of
categories of the vertex x, respectively; then x dominates y (written x > y) if both si(x) 2 sl(y) and
cs(y) < cs(x), and x strictly dominates y (written x > y) if x 2 y and si(x) # sl(y) or es(y) g cs(x).
(Following Gasser [7], we shall call the pair (s/(x), cs(x)) an access class.)

We consider two types of systems: those with mandatory access controls only, and those

with both mandatory and discretionary access controls.

4.3.1. Mandatory Access Controls Only

In a multilevel security policy with mandatory controls only, permission of the owner of
rights to an object need not be acquired to obtain access to that object; if access can be granted ac-
cording to the multilevel rules, it will be. This security policy may then be summarized by requiring
the elements of H3, to satisfy:

[VOSD, vQlU]l x> y & —can®share(8 ,x,y,h) A —can®share(v,y,x,h) A can®know(x,y,h)

for all protection graphs 4 e H3,, all pairs of vertices x and y in A, and all subsets of rights x CR.
This captures that if x strictly dominates y, x cannot v to y and y cannot & to x (where v and § are
subsets of U and D, respectively) and that the owner need not consent to any transfers of informa-

tion or rights (hence the omission of can®steal and can®snoop).
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We extend the characterization of a similar (straightforward Bell-LaPadula) model in [2] to
describe the class of protection graphs in H3;. Each set of nodes in a single access class is repre-
sented as a protection level:

Definition. A protection level is a set of subjects in a protection graph G such that, for every pair
of vertices x and y in the set, can®share(a,x.y,G), can®share(a,yx,G), can®know(x,y,G) and
can®know(y,x,G) are true.

This says that within a protection level (access class), all vertices can obtain any informa-
tion or rights from any other vertex in that level.

Definition. Two subject vertices x and y are said to be joined if can®know(x,y,G) is true, and
can®know(y x,G), can®share(0,y,x,G), and can®share(3,x.y,G) are false.

It can be shown (along the lines of the proof of proposition 4.4 in [2]) that this relation de-
fines a partial ordering; so, if the members of one access class dominate another, the members of
the protection level representing the first access class are joined to the second, and we say the first
protection level is higher than the second (or, the second is lower than the first). Intuitively, what
the two definitions say is that within a protection level, any amount of sharing of information or
rights is fine, but between protection levels, information may flow upward, and any sharing of
rights that does not involve adding edges labelled with rights in U going from a lower protection
level to a higher one, or edges labelled with rights in D going from a lower protection level to a

higher.
Given this representation, it can be shown that [2]:

Requirement. To enforce a multilevel security policy of the sort described here, there can be no

bridges or connections between protection levels.

In essence, this forbids any transfer of information or rights between protection levels,
which certainly satisfies the policy. It is also straightforward to prove:
Lemma 18. Testing a graph for a violation of the restriction may be done in time linear in the num-

ber of edges in the graph. Further, determining whether or not an application of a de jure rule vio-
lates the restriction may be done in constant time.

This representation is probably overly restrictive because it limits the sharing of rights other
than those in U and D, and since the multilevel policy deals only with those rights, any represen-
tation should deal only with them. In [2], three modifications to the rules in O are considered; we

generalize the most interesting here:
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mistake (multilevel secure take): Let x, y, and z be three distinct vertices in a protection graph

G, and let x be a subject. Let there be an edge from x to y labelled ¥ with ¢ € 7, an edge

from y to z labelled B, and a  B. Then the multilevel secure take rule mistake defines a

new graph G, by adding an edge to the protection graph from x to z labelled a” such that

ifx>y,a’=a-Dandify>x,a’=a-U.
misgrant (multilevel secure grant): Letx, y, and z be three distinct vertices in a protection graph

Gy, and let x be a subject. Let there be an edge from x to y labelled ¥ with g € v, an edge

from x to z labelled B, and a C B. Then the multilevel secure grant rule misgrant defines a

new graph G, by adding an edge to the protection graph from x to z labelled a” such that

ifx>y,a’=a-Dandify>x,a’=a-U.

These rules simply modify the original take and grant rules to prevent adding edges with
rights in U from a vertex in a lower protection level to a higher one, or edges with rights in D from
a higher protection level to a lower one. If P53, is the set of rules obtained by replacing the take and
grant rules in O with the mistake and mlsgrant rules, it can be shown [2]:

Lemma 19. P3, is both sound and complete with respect to O and Hy;.

4.3.2. Mandatory and Discretionary Access Controls

In this case, first mandatory access controls determine if the desired access is allowed by
the system,; if it is, then the discretionary access controls determine if access is allowed by the own-
er of the information. So, with this policy, in addition to the statement of mandatory access, a com-
ponent for discretionary access must be included, and the elements in H3; must satisfy:

[[VZD, vClU] x > y < —~can®share(d,x,y,h) A —~can®share(v,y,X,h) A can®know(x,y,h)] A
—cane®steal(oLy,x,h) A —~can®snoop(x.y,h)
for all protection graphs A € H3,, all pairs of vertices x and y in h, and all subsets of rights @ C R.

In addition to the limits discussed in the mandatory-only case, this formula also captures that the

owner must consent to any transfers of information or rights by the inclusion of can®steal and
can®snoop.

We now redefine protection level and joined to disallow stealing and snooping in the obvi-
ous way. Then in addition to their being no bridges or connections between protection levels, there

can also be no take edges incident upon subjects by the reasoning in section 4.2.1. Hence:
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Requirement. To enforce a multilevel security policy involving both mandatory and discretionary
access controls, there must be no take edges incident upon subjects, nor any bridges or connections

between protection levels.

Clearly, violations can be tested in time linear in the number of edges of the graph, and
when a de jure rule is applied, examining the new edge will reveal violations. As before, this re-

quirement, while effective, is quite restrictive.

Let us add the right ¢ to both sets U and D, and further alter the create rule to bar creation
of any edge labelled ¢ and add grant edges to all subjects in the new vertex’s protection level when
the new vertex is a subject. (This is in the spirit of the nmcreate rule in section 4.2.1. However, here
the “parents” are simply all vertices in the protection level.) Call the new create rule miscreate.
Then let P35 = { misgrant, mlscreate, remove } and remove the above requirement. What are the
effects? If a graph h is in H3,, applying those rules will generate a new graph A" also in H3, be-
cause no stealing or snooping can be done (since the lack of take edges incident on subjects violates
both conditions (4.4) and (6.3), so by theorems 4 and 6, those predicates can never hold), and clear-
ly no edges with labels in U can be added from a lower protection level to a higher, and no edges
with labels in D can be added from a higher protection level to a lower; so this set of rules is sound
with respect to H3,. Next, notice that since no take edges are present, the take rule could never be
applied, and further if the ordinary create rule were used, the miscreate rule could be simulated by
having the creator at once grant g rights over all vertices in the protection level to the newly created

subject. Hence P3, is complete. This can be formalized to show:

Lemma 20. P, is both sound and complete with respect to O and H3;.

4.4. Tree-Based Hierarchies

A tree hierarchy is a set of entities arranged in a tree structure. We shall use the term tree-
based hierarchy 1o refer to a structure derived from a tree hierarchy. An ancestor of vertex x is a
vertex which can acquire a right from x with or without x’s cooperation. The level of x is the length
of the shortest path to the root containing only the ancestors of x and x itself. Define a common
ancestor of vertices x and y to be the set of vertices which are ancestors to both x and y. We then
consider a security policy that allows vertex X to share rights or information with vertex y if and
only if a common ancestor allows the sharing. We specifically consider those hierarchies which are

initially trees, but may degenerate into directed graphs.

Page 20 of 26



This policy is a generalization of one discussed in [18]; protocols to implement it were dis-
cussed in [21], and similar, less general policies are the basis for many protection schema (for ex-
ample, for the Unix® operating system, the tree level is 2, with the superuser being the root vertex
and all users being the nodes to which the root is ancestor). The focus of this discussion is more
fundamental: what is the specific policy being enforced, and how should the rules in O be modified
to prevent breaches of security?

Define anc(xy,....X,) to be the set of common ancestors of x, ..., X,. Then for this policy,
H, is the set of graphs satisfying:

[can®share(a.x.y,h) = [3 ze anc(x,y) [can®share(a,z.y,h) A can®share(g,z.x,h)]]] A
[can®know(x,y,h) = [3 ze anc(x.y) [can®know(z.y,h) A can®know(x,z,h)]]] A
[ V ze anc(x) [-can®snoop(x,2,h) A —can®steal(t,x,z,h)]]
for all protection graphs i € Hj,, all pairs of vertices x and y in A, and all subsets of rights o S R.
In intuitive terms, this says simply that no vertex may steal or snoop an ancestor, and that if two
vertices can share rights or information, one of their common ancestors must have assisted in that
sharing.

To characterize such a graph in Take-Grant terms, first note that while each ancestor may
have both take and grant authority over its descendents, no vertex may have take authority over any
ancestor. (Hence the definition of ancestor of a vertex x ay be characterized succinctly as the set of
vertices lying on any path from the root to x with associated word in r .) We then note that
canesteal(a,x,y,h) is true only if some vertex z has o rights over y, and a common ancestor of x
and z participates in the theft, the former condition being required by condition (4.3), and the latter
following by the common ancestors being foci of access sets which connect that part of the con-
spiracy graph associated with & containing x with that part containing y [20]. Further, both those

conditions enable one to exhibit a witness to can®steal(a.x,y,h); hence,

Lemma 21. cane®steal(o,x,y,G) is true if and only if there exists a vertex z with a rights over y in

G, and a common ancestor of x and z applies one (or more) rules instantiating the theft.
A similar result holds for can®snoop:

Lemma 22. can®snoop(x,y,G) is true if and only if there exists a vertex z which rw-terminally spans
to y in G but does not have r rights over y in G, and a common ancestor of x and z applies one (or

more) rules instantiating the snooping.
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Figure 3. Lack of soundness of O under a tree-based hierarchical security policy.
Unfortunately, a very quick construction shows that O is not sound with respect to H, (see
figure 3). Hence, to enforce soundness, the rules must be modified. The most obvious modification
follows from the previous section; since in essence this is a hierarchy, simply restrict the applica-

tion of the take and grant rules so that no take edges may be added going up:

tbhtake (tree-based hierarchical take): Let X, y, and z be three distinct vertices in a protection
graph Gy, and let x be a subject. Let there be an edge from x to y labelled Yy with r € 7, an
edge from y to z labelled B, and a C B. The tree-based hierarchical take rule tbhtake defines

a new graph G, by adding an edge to the protection graph from x to z labelled a” such that

ifye anc(x,y),a’ =a- (¢}
tbhgrant (tree-based hierarchical grant): Letx, y, and z be three distinct vertices in a protection

graph G, and let x be a subject. Let there be an edge from x to y labelled Y with g € ¥, an
edge from x to z labelled B, and a C B. Then the tree-based hierarchical grant rule thhgrant

defines a new graph G, by adding an edge to the protection graph from x to z labelled a”

such that, if y € anc(x, y), "= - (¢ }.

Now, as no take edges ever extend from a vertex to an ancestor, both snooping and thieving
are impossible unless an ancestor common to the source and target cooperates. Unfortunately, com-
pleteness no longer holds since take edges from a vertex to an ancestor can no longer be emulated
with the new rules, as lemma 2 fails for the reasons given in section 4.2.1. So to ensure complete-

ness, a modified create rule similar to the nmcreate rule must be used:

tbhcreate (tree-based hierarchical create): Let x be any subject in a protection graph 4, and let a
S R. The tree-based hierarchical create rule thhcreate defines a new graph A by adding a
new vertex y to the graph and an edge from x to y labelled a” such that, if y is a subject,
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thena’ =a - { ¢}, and if y is an object, @’ = a. Also, if y is a subject, edges labeled { g }
are added from y to each subject vertex in anc(y).

The proof of completeness now follows, so letting P4 = { tbhtake, tbhgrant, tbhcreate, remove }:

Lemma 23. P4 is both sound and complete with respect to O and Hy,.

§. Conclusion

The ability to represent useful security policies shows that the Take-Grant Protection Mod-
el may prove to be not only a theoretical tool for studying some ramifications of the safety question,
but also a powerful, practical model that can be used to study abstract representations of real sys-
tems for safety (or methods that could be used to leak information or rights). This paper has pro-
vided several such representations. Of course, other methods of abstraction could have been used.

As an example, the four basic rules (take, grant, create, remove) could have been bound to-
gether to form protocols, and subjects required to apply rules only by executing one (or more) of
those protocols. Rather than employ this strategy to ensure soundness, as Snyder [18] and Wu [21]
have done, we have considered modifications to the take-grant graph rewriting rules. This has two

effects.

A protocol strategy first implies that all subjects will use the primitive operations only
through the protocols, and that they can be trusted not to call on the primitive operations directly.
For example, in figure 3, Wu’s protocols assume that no ancestor will grant take rights in the way
that was done there. Given such an assumption (that all subjects are, in that sense at least, honest),
a protocol strategy works well. However, it ignores the possibilities of theft and snooping. When
those are considered, it becomes clear that the “protocols” must be the “primitive operations” to

ensure that the subjects only use them to alter the graph.

Secondly, the graph rewriting rules presented here are far more general than the protocols
used by Wu. As an example, in her analysis of the tree-based hierarchical security policy, there is
an implicit assumption that if a subject wants a right from another node which is not a descendent,
a common ancestor must initiate the transfer. In this analysis, we make no such assumption; the
vertex may, in effect, “request” the ancestor transfer the right by initiating a transfer. However, to
complete the transfer, the ancestor must apply one (or more) rules. The difference is that between

initiation and cooperation.
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Much work remains before the Take-Grant Protection Model can be used in practise. For
example, many systems treat rights reflexively (that is, a subject can take or grant itself rights, as
well as read itself).The Take-Grant Protection Model does not. But, as Snyder has pointed out, re-
flexivity “probably is not fundamental to the Take-Grant Model in the first place,” ([19], p. 179)
and it has some benefits when making an abstraction of an existing system. When one models a
“process,” one may actually be modelling several entities: the process thread itself, the process
control block (if the process can read or alter it directly), those portions of memory in which vari-
ables are stored (for processes which do not read or write anything are useless, unless one is con-
sidering the problem of covert channels, a subject well beyond the scope of this paper), and files.
Each of these should be considered as separate entities, because each interacts with the execution
of the process in a different way; and the lack of reflexivity in Take-Grant encourages such a divi-
sion. This suggests that in the application of a formal model like Take-Grant, irreflexivity may ben-
efit the modelling process. Analysis of a reflexive Take-Grant Protection Model would help

determine if this intuition is correct, or when a reflexive system should be used.

We have modified many of the Take-Grant graph rewriting rules to capture compliance with
a security policy. Part of the reason for this was to ensure the theorems stating necessary and suf-
ficient conditions for can®share, can®know, can®steal and can®snoop held. However, it might be
possible to produce “meta-theorems” which, for a given rule set, produce conditions under which
those four predicates hold. Such meta-theorems would almost be a necessity for any realistic use
of the Take-Grant Protection Model in systems analysis, since no two systems will have the same
rule sets. This issue requires much further work.

Finally, most computer systems have some concept of “group.” Incorporating such a notion

into the Take-Grant Model would be invaluable towards its practical application.
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