.- NASA

. Technical

- Paper
3209

© July 1992

s

Expeﬁmeﬂtal Validation
of Clock Synchronization
Algorithms

Daniel L. Palumbo
and R. Lynn Graham

(NASA-TP=-220n9) XPERIMEANTAL VALINATION UF RNYIZ=LTA%
CLUTK 3YNCHRUMIZATION ALGORITHMS {(NASA)
24 D

unclas
H1/62 cnNe923e

s

ERRATA

NASA Technical Paper 3209

Experimental Validation of Clock
Synchronization Algorithms

Daniel L. Palumbo and R. Lynn Graham

July 1992

Page 5, tigure 5: The figure should appear as follows:

T, T e R Ty T e RY

Issued July 1992

NASA
Technical
Paper
3209

1992

NASA

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Program

Experimental Validation
of Clock Synchronization
Algorithms

Daniel L. Palumbo
Langley Research Center
Hampton, Virginia

R. Lynn Graham
PRC Kentron, Inc.
Hampton, Virginia

Abstract

The objective of this work is to validate math-
ematically derived clock synchronization theories
and their associated algorithms through experiment.
Two theories are considered, the Interactive Conver-
gence Clock Synchronization Algorithm and the Mid-
point Algorithm. Special clock circuitry was designed
and built so that several operating conditions and
failure modes (including malicious failures) could be
tested. Both theories are shown to predict conser-
vative upper bounds (i.e., measured values of clock
skew were always less than the theory prediction).
Insight gained during experimentation led to alterna-
tive derivations of the theories. These new theories
accurately predict the behavior of the clock system.
It is found that a 100-percent penalty is paid to tol-
erate worst-case failures. It is also shown that under
optimal conditions (with minimum error and no fail-
ures) the clock skew can be as much as three clock
ticks. Clock skew grows to six clock ticks when fail-
ures are present. Finally, it is concluded that one
cannot rely solely on test procedures or theoretical
analysis to predict worst-case conditions.

Introduction

Many theories of clock synchronization have been
proposed and subjected to the rigors of mathematical
proof of correctness (see refs. 1 and 2). Few of these
theories are validated by experiment. One of the dif-
ficulties in validating clock synchronization theory is
that the theory often predicts the behavior of the syn-
chronization algorithm under failure conditions that
are hard to replicate in the lab (e.g., the presence of
a “malicious liar,” ref. 3). The objective of this work
is to select a theory for validation, build a synchro-
nization subsystem that is based on this theory, and
subject this subsystem to a series of tests designed
to validate the theory.

The Interactive Convergence Clock Synchroniza-
tion Algorithm (ICCSA) of Lamport and Melliar-
Smith (ref. 4) was chosen as a test subject because
of its use on the SIFT (Software Implemented Fault-
Tolerance) computer (ref. 5) and the fact that the al-
gorithm and the accompanying bounding theory had
been recently subjected to the rigors of a mechani-
cal proof (ref. 6). During the process of testing, it
was found that the theoretical bound on the clock
skew was larger than the observed maximum clock
skew. Although the theory only guarantees an upper
bound, this discrepancy led to inquiries into why the
theory was not more accurate. In the course of this
investigation, an alternative method for the deriva-
tion of the expression for the clock skew bound was
developed. This new expression accurately predicts

the observed clock skew for the Interactive Conver-
gence Clock Synchronization Algorithm.

Lundelius has derived a clock skew bound (ref. 7)
for the Midpoint Algorithm proposed by Dolev
(ref. 8). The Dolev algorithm was programmed into
the clock synchronization subsystem and tested. As
with the ICCSA theory, the predicted bound was
found to be greater than the observed clock skew
(although only in extreme cases). With the insight
gained from the previous derivation and applying a
fresh approach to the worst-case analysis of the Mid-
point Algorithm, a new expression is derived that
accurately predicts the observed clock skew.

In the following sections, expressions for the clock
skew bound for both the ICCSA and the Midpoint
Algorithm will be derived. A test plan will be
introduced, and the design of the clock subsystem
described. Results of the testing are presented and
case studies are done. Finally, conclusions concerning
this work are drawn.

Symbols

EHDM extended hierarchical design
methodology

fe clock counter frequency

fr clock reference frequency

HDM hierarchical design
methodology

ICCSA Interactive Convergence Clock
Synchronization Algorithm

m number of faulty clocks in a
synchronizing set

n number of clocks in a synchro-
nizing set

P,q, 7,8 processor designations

R minimum length of synchro-
nization period

S minimum length of synchro-
nization process

T clock time

T time of clock correction

Tep clock reading of processor p
upon receipt of synchroniza-
tion signal from processor ¢

T time of synchronization signal

t real time, (1 — p)T + €+ 1o

tt uncorrected clock function (see

fig. 4)

to real-time offset at T =0

v drift rate setting in clock
subsystem peripheral

A limit of perceived skew allowed
in ICCSA
Agp perceived skew of processor p

with respect to processor ¢

] maximum skew between good
clocks in a synchronizing set

bgp real-time skew between
clocks p and q

Sqp(T) real-time skew between pro-
cessors p and g when clock for
processor p equals T

bo maximum initial skew

€ maximum clock read error

€0 minimum read crror, 1/ f.

p clock drift rate with respect to
real time

PM maximum drift rate expected
between any two clocks

Pp drift rate of clock p

Pap drift rate between clocks p
and q

b maximum clock correction

Xp clock correction calculated by
processor p

\V/ perceived skew value derived

from faulty clock reading

Clock Fundamentals

The purpose of synchronizing clocks is to pro-
vide a global time base throughout a distributed
system. Once this time base exists, transactions
between members of the distributed system can be
controlled based on time. For example, the manage-
ment of redundant data in a real-time fault-tolerant
computer is simplified if the processors are synchro-
nized (ref. 9). In the following discussions, the term
clock refers to a device that provides a time base for
a processor. A processor thus inherits time-related
characteristics from its clock. For this reason, we
sometimes refer to a processor as drifting with re-
spect to other processors when, in fact, the drift is
actually a property of the clock.

2

A common convention has been that real time is
denoted by a lowercase letter, as in t or 8, and that
clock times are capitalized, as in T and A. A clock
approximates real time with the relationship between
clock time and real time given by

t=(1-pT (1)

where t is real time, T is clock time, and p is the
rate of drift of clock time from real time. A clock
may have some nonzero offset at clock time T' = 0,
as represented by the constant ¢y in equation (2).

t=(1-p)T+1 (2)

If p is zero, the clock is a perfect clock. If p is
positive, the clock is a fast clock and accumulates
time faster than real time. Clocks are considered to
be digital devices consisting of a crystal oscillator
and a counter. Ideally, the crystal oscillates at
frequency f.. Deviations from this specification are
what cause drift among a set of clocks. The digital
nature of the counter causes the relation between t¢
and T to be discontinuous, as shown in figure 1. The
error in reading a clock is denoted as €, and for digital
clocks € has a minimum, gg, of 1/f.. Thus, for a
digital clock the inverse of equation (2) becomes

T=|(t—ty)/(1-p)] (3)

where | | represents the floor function.

For a set of clocks, a maximum drift rate pps is
chosen so that for any nonfaulty clock p in the set

lopl < par/2 (4)

The drift between any two clocks p and ¢ in the
set of nonfaulty clocks is given by

Pap = Pg ~ Pp (5)

with

\Pgpl < pum (6)

Real time, t
[J

Clock time, T

Figure 1. Real time versus clock time.

The real-time skew by, that exists between two
clocks at some clock time T is given by

S (T) = tp(T) = 1,(T) {7

Alternatively, the skew can be expressed in terms of

the difference between two clock valiues at some real
time t. The form of equation (7) was chosen, as this
is the perspective taken in the Lamport and Melliar-
Smith proof.

Synchronizing Clocks

In the two algorithis considered here, synchro-
nization is accomplished by periodically executing an
algorithm that first computes a clock correction value
and then applies the correction to the local processor
clock. In order to compute either of the two algo-
rithms, each processor in the synchronizing set must
obtain a perceived skew Ay, between its clock and
each of the other clocks in the set. To obtain Ay,
processor p must compute the difference between its
local clock and the remote clock. Processor p must, in
effect, read the clock of processor ¢. Figure 2 graph-
ically depicts this process. By design, the algorithim
exccutes every R time units and takes S time units
to complete. In the clock subsystern constructed for
these tests, actual clock values are not transmitted.
Instead, at predetermined time Ty during S, clock ¢
sends a synchronization signal to p. Upon reeeipt
of this signal, p reads its local clock and stores this
value, Typ; Ty is then the local clock value for proces-
sor p taken at a real time corresponding to Ty, the
clock reading for processor q. The perceived skew
Ayp can then be computed as iy, — T,

Agp
Tgp . T
] Yy]] |
| 7/ 1 : 1 |
L]
]
Clock time , T
| Y | ! 4
| 7/ Algorithm] i I Algorithm
T.
start N end
——eip

R

Figure 2. Reading the clock of another processor.

More precisely stated, the perceived skew values
are arrived at by the following process:

1. Each processor broadcasts a synchronizing signal
at a predetermined time 7.

2. Upon receipt of the synchronizing signals from
other processors, the receiving processor postores
its clock value, T,.

3. The perceived skew is then the stored value, Ty,
minus Ty, or

A,“; - qu - Ts (8)

Figure 3 represents this process taking place be-
tween two processors p and g, with processor ¢ hav-
ing a clock that is faster than processor p. From the
graph it can be scen that Tj;, can be thought of as
the value of clock p at real time t,(T,). or

qu = Tp(fq(Ts)) + Eyp (9)

where Tj is the inverse elock function of clock p, and
£4p is the error inherent in taking 7.

By using equation (8) with equations (9), (2), and
(3). the following expression for the perceived skew
can be derived (see appendix A):

Ayp = —0gp(T) £+ pp Ay (10)
An cexamination of figure 3 will reveal that if ¢ is
faster than p, then pg, > 0. 64, > 0, and A4, < 0.
To correct its clock, the slower processor p must add
a positive value to the clock. Since the values of
Agyp will be negative, the resulting correcting value x
must be subtracted from clock p (assuming that a
sign change does not occur in the algorithm).

.
v

1

Tplty(Ts))
T

Figure 3. Formulation of Tg,.

Figure 4 graphically depicts the effect of applying
a correction to a fast clock. The superscripts i and
i + 1 refer to synchronization periods, as will be
discussed in the section “Periods i and 7+ 1.” In the
figure, ¢! refers to the uncorrected clock function and
t'*1 to the corrected clock function. The correction is
applied at clock time T,. The following relationship
exists between the corrected and the uncorrected
clock functions:

tHNT) = (T + (1 — p)x (11)

i+l

: }(l—p)xi

Figure 4. Effect of applying correction.

Some Useful Relations

The following relations will be used to derive
the bound formulas. Detailed derivations of these
relations are given in appendix A. These relations
hold true provided that a clock correction is not
applied during the interval from T to (T + C).

bqp(T + C) = bgp(T) + pgpC (12)

Equation (12) states that the skew between p
and g at some time T plus a constant C' is equivalent
to the skew that exists at time T plus an amount
equal to the relative drift rate times the constant.

bqp(T) = pap(T — To.) + bgp(Te.) (13)

Equation (13) states that the skew between p
and ¢ during a synchronization period is equivalent to
the skew at the beginning of the period (7;) plus the
skew accumulated over the period due to the relative
drift pgp.

brq(T) = brp(T) = bpg(T) (14)

Equation (14) states a relationship that exists
between the skews of three good clocks, p, q, and .

The Proofs

The statement of the bounding theorem is taken
largely from references 4 and reference 6.

Clock Skew Bounding Theorem

For a sct of n processors cooperating in the syn-
chronization algorithm for all time T through pe-
riod 4, a bound é exists on the skew between any
two of the processors given that at most m of the n
processors are faulty. Stated mathematically,

tL(T) — to(T)] < 6 (15)

Because this theorem is written in terms of consecu-
tive periods of time, it is convenient to use proof by
induction. To do this, we will derive an expression
for 6 for the first interval, i = 0, and then show that
another expression exists that is true for the following
intervals. This latter expression depends on charac-
teristics of the synchronization algorithm, and thus
separate derivations are necessary for the ICCSA and
the Midpoint Algorithm.

The First Period, i =0

At system start-up, assume a maximum skew &
exists between all good processors in the set. Then,

at the end of period 0 with 7' = R,
tO(R) — t3(R) = (1= pp) R — (1 = pg) R+ tup — tag
= (pg — pp) R+ top — tog
= pgplt + top — tog

1O(R) — tO(R)| < pas R + 60 < 6 (16)

where in expression (16) |tg, — tog| < 9. Expres-
sion (16) is thus one constraint on the value of 4, i.e.,
6> pmR+ b

Periods i and i + 1

To continue the proof, we will assume that an
expression for the bound is true for period 7 and
show that the same expression is true for ¢ + 1.
As stated above, this expression will depend on the
synchronization algorithm. However, we can derive a
general expression from which the subsequent proofs
can continue. Refer to figure 5 for a graphical
representation of the situation that exists between
periods i and 7 + 1. To reduce clutter in the terms,
the lack of a superscript will refer to period ¢ and a
+ superscript will refer to period i + 1.

ur: T e tHT):, T e
- L pt)
7~ T
T TC Tc_x TC+

Figure 5. Transition from period ¢ to period i + 1.
Using cquation (7) for period ¢ + 1, we have

bgp(Te) = 15 (Te) — tg (T (17)
Then using equation (11) to replace the t* functions
with ¢, and then equation (7) again to recombine the
t functions, we get

6(_};0(71!) = 6qp(Tr:) + (Xp - Xq) + PgXq — PpXp (18)

It is assumed that the difference between the px
terms can be ignored. For an error-free system this
is justified because, when considering the worst-case
skew condition with p; equal to negative py, pgXq
will be of the same sign and approximately equal to
ppXp- When clock read errors are present, the worst-
case read error effect occurs when the error for clock ¢
is equal to but opposite to the error for clock p. As
in the error-free case, the effect is canceled out in

the px difference terms. In short, when xp — xq is
maximized, pgXq — PpXp 1S Minimized.

Substituting the resulting expression in equa-
tion (13) written for period i + 1, we obtain
‘sq+p(T) < bgp(Te) + (xp — Xq) + par R (19)
with R > (T — T,.). Expression (19) will be used in
the following sections to derive bound expressions for
the associated algorithms.

The Interactive Convergence Clock
Synchronization Algorithm

The ICCSA is derived for n clocks synchronizing
in the presence of m faulty clocks. In this algorithm,
a processor computes the correction by averaging all
the perccived skew values Agy,. To limit the effect
of a faulty clock, the Ay, are subjected to the test
that their absolute value be less than some maximum
expected value A. If Agp exceeds A, Ay, is set to 0.
More precisely

1
Xp — n Z qu (20)
g=1

where Ay, = 0 if [Agy| > A, A value for A is easily
derived from equation (10):

A>b8+e+ p—giA (21)
Wishing to replace the correction terms in cqua-
tion (19) with an expression based on cquation (20),
we look at the correction terms more closely:

1 n
1 — 1 —
Xp — Xq = n Arp - ; E I Arq
r=

r=1

n
1 _ —
= - (Arp - Arq)
123
r=1
n—2-m

1
= ; z (AT]J_AT(])

r=1

1 1 m
+ - (App - qu) + - (qu - Aqq) +

n n T

(Vp — Vg

The final expression contains four terms, the first of
which contains values of Ay, taken from n —2 —m
good processors. The second and third terms have
readings of the local clock, e.g., Ay, The last term
holds the readings from the m possible faulty clocks
(denoted by v7). In appendix B, each term is taken
individually and expanded under assumptions relat-
ing to those terms and then recombined to obtain

m-—ny . 2n—1-—m
X]l - Xq E (n > éqp(Tf') + \(")E
] —m 2
g euln—m) o 2m (22)

n n

Substituting equation (22) into equation (19), we
get

m

b (1) < (20) 84p(T2)

) n—1m
N par()
T

2n—1—-m
L 2n—1-m)

n
2m .
A+ TA + [)A[R (23)

Now we create an expression for § and assume it holds
for period i, i.e., that & > é,,(T), with T in i and with
& given by

2(n — 1 —1mn 2m
QE + [))”A +

A

n—1m n—1m

n
+ () pu R (24)
T —1m

Under this assumption then, by replacing byp with é
in equation (23) we have

X my . 2ln—1—m) pyr(n—m)
ST < (2) 6 + et M
2m
+ TA + pm (25)

Now using equation (24) for 4, it follows that

2(n—1—m) 2m
or (M) < =~ — ¢ AMA
(1) < n—m oAt n—m
n ; .
+ () pari <6 (26)
n—m

which completes the proof.

The Midpoint Algorithm

In the Midpoint Algorithm, as suggested by Dolev
(ref. 8), the correction is computed as the midpoint
of the span of values of Ay, after the m largest and
smallest values have been discarded. Stated for the
case where m = 1,

1. Processor obtains all the Ay, values.

2. The Ay, arc ordered so that Ay, < Ay <
Amax/ S Amax-

3. Discard Ay, and Apax and use the new mini-

mum and maximum, A, ;0 and A, /. to com-
pute the correction as
o Amin’ + Amax’ (27)
Xp =

2

This algorithm has the property that the clock read-
ing of a faulty processor will not be used to com-
pute the correction unless it is bounded by good clock
readings. This results in it being possible to derive a
tighter bound.

In the following sections, an expression for Xp is
derived by first considering the case with no errors,
then with some clock read error e, and finally with
an arbitrary faulty clock reading.

The ideal casge. In the abscuce of a faulty clock
and read errors, all good processors in a synchroniz-
ing set will place the processor readings in the same
order. Take, for example. the four-processor system
(p,q,r,s) where

tp(T) < 14(T) < 1,(T) < t,(T)
Then, for any member 7 in (p, g, 7. s)
Apz < Aqi < /—\ri < Asi

All good processors will then use clock readings from
the same two processors to compute their respective
corrections. (In the above example, this would be
Ay and A,;.) This is equivalent to the processors
using a single clock reading which is at the midpoint
of these two clock readings (6,,;q(7%)). Thus using
cquation (10) with € = 0, we have

Xp = Ami(Lp = _bmid(TS) + /)I)Amid.p (28)

Including read error. Any read error present
in the clock readings will affect the clock correction
by at most the read error e:

N Amin’ te+ A
Xp = D)

+ e

max’

:wﬂig
2

= Ami(l.p te
= _6mid‘p(TS) + /)pAmid,p te (29)
Including a faulty clock. In reference to fig-

ure 6, consider that the maximum and minimnum
readings taken from good clocks differ by at most

5 + 2. The algorithm guarantees that if a faulty
clock reading is used in computing the correction,
it is bounded by good clock readings. Thus, the
maximum error that a faulty clock could cause is
12(8 + 2¢). The expression for the correction includ-
ing both read error and error duc to a faulty clock
reading becomes

2 é 2s
Amin’ + (6 =+ 5) + Amm((_iQ— + E)

Xp = 2
— M 1 (5 + 5)
2 4
6
= Amid,p + (Z + 5)
b
Xp — _61111(1,p(T5’) + P;)Ami(l,p = 1 te (30)

A maximum correction ¥ can be obtained by using 6
and A for the maximum values of &4, and Ayiq p

giving

56 PM A
> £+ —=—A 31
T TET (31)
Now using equation (30) in equation (19), we obtain

s4(T () < ((),”, + [f\mq

qp - bmp(T.s‘)]

e
+ (/)(1Amitl,q - V[lAmi(l‘p) +2 <_1 + 5) + /’R (32>

Ignoring the difference between the pA terms (as
was done in eq. (18) with the px terms) and using
equation (14) on [5,,,(1(7}) — (5,”1,(7’5)], we get

ﬁ 8 ‘
é;() < gp(T) — bgp(Ts) +2 <1 +5) +par R (33)

We then use equation (12) with 7. = Ts+ A to obtain
&
qp() < éqp(T) - éqp(ﬁ‘) + /’1\[‘A +2 _1 +e)+ /"UR
1)
éqp(T) < paA+2 (1) +parR (34)

Now to continue the induction, we assume the fol-
lowing expression to be true for period

6> de + 2o A + 200 R (35)

Substituting equation (35) for é in cquation (34), we
get

b (T) < de+2parA+2p0 R < 6 (36)
which completes the proof.

Amin Amin’ Amax’ Amax
el e Ele L, G E1E ELE
| | 7 | |

<8+
2e
Figure 6. Set of perceived skews taken from good clocks.

< >

If the effect of faulty processors were to be ignored
(m = 0), then equation (35) becomes

bgp(T) < 26 + par & + par iR (37)
and the clock bound is

6> 2+ pard+paQR (38)

Experimental Verification

To experimentally verify the derived skew bounds,
several tests were performed in which the effect of
varving one parameter of the skew bound expression
was measurced while the remaining paratneters were
either held constant or zero. The parameters are
8g.€, p,m,n, and R. For the clock subsystem that
was actually tested, the number of clocks n was kept
constant at four, and thus m was limited to (0.1) for
both algorithms. It was decided that if p is tested,
it is not necessary to test the cffect of varying the
synchronization period R. The following test cases
were then generated:

1. §=0withéy=0,m=0,e=0.and p=0
2. & = f(8g) during the first period with p =0
3. & = f(8y) during the first neriod with p=C
4. 6= fle) withm = (0,2 ,,=0,and 6 =0
5. 6= f(e) withm = (0.1).p=C. and &) =0
6. 6 = f(p) withm = (0,1),e =0, and &y =0
7. 6 = f(p) withm = (0,1),e = C. and 6) =0

In all the tests, the read error is treated as a
random variable with a mean of zero. This is not
the casc in most communication systems. However,
the expected value of the communication delay is
often known and can be subtracted from the clock
readings in the synchronization algorithm, so that
the resulting effect is a read error with zero mean.

In addition to functioning as a synchronizing cir-
cuit, the clock subsystem must be able to support

7

the test plan. The following capabilities were then
designed into the clock subsystem and the experi-
ment support environment:

1. Ability to sustain long-duration data acquisi-
tion of internal variables without perturbing
the system function

2. Availability of a global clock that can be read
by each processor under test; the global clock
will represent real time

3. Ability to set the starting skew o of each clock

4. Ability to set the drift rate of each clock with
respect to real time, i.e., the global clock

5. Ability to set the read error of cach clock

6. Ability to emulate a faulty clock, especially a
malicious liar

The following sections describe the clock sub-
system and experiment environment.

Design of Clock Subsystem

The clock subsystem is designed as a synchro-
nization peripheral. This primary function is then
augmented to provide the data acquisition and con-
trol necessary to accomplish the tests proposed in
the previous section. The next section will describe
the design of the primary synchronization function.
This is followed by a section on the actual design,
which includes the test augmentations. In these and
the subsequent sections, the term clock tick is used
to refer to one increment of digital time. Practically
all the parameters are stated in terms of clock ticks
instead of time. A clock tick is easily converted to
timne once the base frequency of the clock is known.

A clock synchronization peripheral. As men-
tioned previously, the ICCSA was first used in the
SIFT computer. This implementation was tested
(ref. 10), and it was found that the clock skews
were due primarily to large clock read errors. It was
proposed then that a simple hardware enhancement
could greatly reduce the read error, tighten the clock
synchronization, and thus increase the efficiency of
interprocessor communication. While it is possible
to put the entire clock function in hardware. for the
purposes of this test it is convenient to have the al-
gorithm in software so that alternate algorithms can
be tested. Having the algorithm in software also en-
hances data acquisition and fault simulation.

Figure 7 is a block diagram of how the clock
functions are distributed between the clock periph-
eral hardware and the synchronization software. The

8

clock hardware monitors a communication channel
for the presence of a synchronizing signal. When a
sync signal is detected, the hardware latches the local
clock valuc and stores it in a register related to the
processor that sent the signal. The clock hardware
also generates a sync signal at a specified time T},
and places the signal on the communication channel.
These functions are done most cfficiently (i.c., the
lowest read error is realized) if they are integrated
with the communications and networking protocols.
The clock peripheral also generates an interrupt to
the host processor to indicate the end of the pe-
riod. The processor then executes the clock algo-
rithm, reading the clock read registers, computing
the correction, and correcting the clock.

Clock peripheral

Processor/Memory IQLOCHI DETECT [e
STORE g
Sync STOREr
algorithm L ISTORES J.
B S— .
b TSyNC Communi-
|| S,
END d
= o

Figure 7. Block diagram of clock functions.

Several considerations must be made to properly
design the clock peripheral. The ICCSA requires that
all clock readings greater then A be ignored. This is
equivalent to a buffer of size A existing before and
after the synchronization time Ty (sec fig. 8). The
clock hardware can easily be designed to enforce the
rejection of signals received outside this window by
clearing all clock read registers at the beginning of
the window and inhibiting the update of the registers
at the end of the window (when the interrupt to the
processor is generated).

R

S

L /L | |
— |]
START T, END

-— -——A
- — —

Figure 8. Synchronization window.

Thought must also be given to the clock itself.
The clock must be corrected. While at first this may
sound trivial, several factors should be considered.
A read error equivalent to 1/f. could be induced
every time a clock is read or written. Thus, by

reading the clock, adding the correction, and writing
the new value, two clock ticks of read error can be
accumulated. Also, since it takes the processor a
finite amount of time to perform the correction, it
is possible that additional ticks will be lost during
the correction. Correcting the clock by adding the
correction is undesirable because clock time will be
either “lost” or repeated, and then care must be
taken not to “skip over” or “reschedule” an event.
Alternative correction methods can be designed that
add pulses to or delete pulses from a clock oscillator
input, as necessary. As will be seen, this is the
method used to adjust the drift rate between the
processors. To avoid possible interaction between
the application of the correction and the drift rate
setting, another correction method was developed.

In the clock circuit tested, the correction is ap-
plied by moving the synchronization window (which
defines the end of the frame). Normally this would
result in larger skews because the clocks will drift for
an additional frame before the correction takes effect.
This is indeed what would happen. However, during
this test no other tasks are scheduled off the clock
during the frame. Thus, moving the synchronization
window is a way of applying the correction for the
purpose of this test. Measurements are not affected
because data are only taken during the execution of
the synchronization algorithm, and by this time, the
correction for the last frame has already been ap-
plied. An additional benefit of using this method
is that the length of time taken to compute the al-
gorithm (including any interrupt latency) does not
affect the experiment. This allowed a great deal of
freedom in coding different algorithms, fault models,
and data acquisition.

Test augmentation. The clock peripheral de-
sign is augmented to allow the adjustment of the
oscillator drift rate, the setting of read error, and
the simulation of a malicious liar. To adjust the drift
rate, the oscillator input of the clock counter is driven
by a pulse deletion circuit. The pulse deletion circuit
has as input a reference oscillator signal (the global
clock oscillator) and a 16-bit unsigned integer value.
The circuit loads the 16-bit value in a down-counter
and deletes a pulse from the reference oscillator sig-
nal on overflow. A value of 0 will cause every other
pulse to be deleted; a value of 1 will delete every
third pulse, and so on, so that the clock frequency is
defined as

v+1

v+2

fc = fr (39)

where v is the 16-bit value and f, is the reference

clock frequency. If we let p be defined as

p= fr = I (fe < fr) (40)
fr
then equation (39) can be written as
1-2
v = P (0.0 < p < 0.5) (41)
P

For a drift rate of 1072, v = 99998.

Read errors and faulty clock behavior can be
programmed by varying the sync strobe time. To
present different crrors to cach of the remote clocks
(a form of malicious behavior), a SYNC pulse must
be independently generated for cach remote clock.
Thus, three SYNC register/comparators were used
in the final circuit design.

Figure 9 is a block diagram of the clock synchro-
nization peripheral. The circuit is designed for four
clocks (one local and three remote) and assumes a
dedicated connection to the remote clocks. An oscil-
lator drives a counter of sufficient length to resolve
a frame. Five register/comparator blocks define the
START window time, SYNC times, and END win-
dow time (7i). The START strobe clears and en-
ables the STORE n registers. The SYNC strobes are
broadcast to the remote clocks. The END strobe dis-
ables the STORE n registers, interrupts the proces-
sor. and clears the clock (counter), beginning a new
frame. Three remote clock strobes are gated through
the enable circuitry to the STORE n registers.
On receipt of a synchronization strobe, the current
clock value is latched into the associated STORE n
register.

Experiment Environment

The clock peripherals were installed on an exist-
ing fault-tolerant processor (FTP) test-bed (ref. 11).
The FTP is hosted from a VAX computer through
a dual port memory. In addition, each channel of
the quad FTP has an additional dual port memory
channel to separate VAX computers. These channels
were dedicated to data acquisition. A sixth VAX
computer with a windowing interface was used to
control the experiment. The FTP is a tightly cou-
pled computer. Initial skew is then easily controlled
from the base skew of & = 0 provided by the FTP.
The synchronization algorithm is loaded into FTP
RAM and configured for the test trial. The FTP op-
erating system is then started from ROM. After the
FTP stabilizes, control is passed to the synchroniza-
tion algorithm and the FTP clock synchronization is
disabled.

9

_p STROBEq

p STROBE |

JReference oscillator

Drift: 16-bit counter

p STROBE s

qSTROBE p

ENABLE

s STROBE p

J, Interrupt

Figure 9. Detail of clock synchronization peripheral.

Another component of the experiment environ-
ment is the global clock. The global c¢lock has a base
frequency of 2 MHz and a resolution of 32 bits. The
output of the global clock can be read by cach chan-
nel and is assumed to be real time. To establish the
global clock as real time, its 2-MHz base frequency is
fed to the clock synchronization peripherals as the
reference frequency. Thus, in the absence of any
programmed drift rate, the clock synchronization pe-
ripherals are perfectly synchronized.

Results

Several tests were run to verify the functionality
of the system. The following runs were made with
the synchronization algorithm disabled:

L. (m=0,p=0,e=0, and & = 0) to test the
global clock

2. (m=0,p>0,e =0, and &§ = 0) to test drift
rate circuits

3. (m = 0,p = 0,e =0, and § > 0) to test
setting initial skew

4. (m = 0,p = 0,e > 0, and & = 0) to test
setting the read error

10

With the synchronization algorithm enabled, sev-
cral tests were run with &y > 0 and p > 0, and it was
found that equation (16), the i = 0 synchronization
constraint, held. The next several sections present
the results of testing the ICCSA and the Midpoint
Algorithm.

The ICCSA. In reference 6, six constraints are
listed that must be met if the bounding theorem is to
hold for a clock synchronization system executing the
ICCSA (see table I). These constraints include the
skew bounds (C5 and C6), the maximum perceived
clock skew A (C4), the maximum clock correction ¥
(C3), the minimum time allocated to the synchro-
nization process S (C2), and the minimum length of
the synchronization frame R (C1). A synchroniza-
tion subsystem based on these constraints must have
the property that a processor can read a remote clock
at a time when the remote processor is not execut-
ing the synchronization process. That is, the remote
clock must be accessible for external reads outside
the scope of its own synchronization process. This is
clearly not the case with the design used in this test.

Because a remote clock is read with the coopera-
tion of the remote synchronization process, the Syv1-
chronization windows must allocate adequate timne

before and after the synchronization time T in order
to be sure of capturing all good clocks. This time is
at least § + £. In these tests, the window was set at
2 times the maximum perceived clock skew A, with
the synchronization time T in the center of the win-
dow (see fig. 8). Thus, the period R is determined
by the END window register. The START window
register is set to END — 2A and the SYNC registers
are set to END — A,

Table I. Constraints for Old Theory 1CCSA

Constraint definition Constraint relation

C1: minimum period time R > 35
(C2: minimum algorithm time S>¥
C3: maximum correction Y>A

Azbtet BLs

C4: maximum perceived skew

C5: maximum skew b >y +py R

8> 2+ pyr (25 + AY + A

C6: maximum skew P

+ (52) ar (R+ %)

Table II. Constraints for New Theory ICCSA

Constraint definition Constraint relation

C1: minimum period time R>8+ %

C2: minimum algorithm time S§>2A

C3: maximum correction Y > (%) A

Azo+e+ BLa

C4: maximun perceived skow

ChH: maximum skew 6> by +parft

20n - 1 — m)

C6: maximum skew &> €+ par A

2m n
Tt A (n = m) par it

The constraints as defined for these tests are listed
in table II. The only expression that remains equiv-
alent to table I is C5. The difference in C4 may be
due to the difference in S as described in the previ-
ous paragraph; C3 defines the maximum correction
possible if all n — 1 clocks return a difference of A;
C2 comes directly from the above discussion. Fi-
nally, R must be at least as big as S, with room for a
correction.

Figure 10 shows, for one series of tests, the bound
for the old theory (table I, C6), the bound as derived
in this paper (table 1I, C6), and the actual data.
These plots are of maximum clock skew (in ticks)
versus drift rate. The data were taken at large drift
rates with a constant read error of 200. Figure 10(a)
displays zero-fault-tolerant performance (m = 0),
and figure 10(b), single-fault-tolerant performance
(m = 1). The bound as derived in this paper exactly
predicts the performance of the result.

x 103
35r
30F
Z 5l
22 Oldtheory —
Z 20F
=
= 151 New theory/
g Measured data
T 10F X
O‘[bl 1 1 |
077 091 NEE! 143 .200
Drift rate
() m = 0.
x 103
0r
60
g sof Oldtheory—___
;5; 40
4 10k New theory/
% Measured data
2 .
o 20
/‘
10
0:[1 1 1
.030 034 .040 048
Drift rate
(b)Y m =1.

Fignre 10. ICCSA test results.

The Midpoint Algorithm. A theory based
on the Midpoint Algorithm was derived in refer-
ence 7 and interpreted in reference 2. Table 111 lists
the constraints for the old theory in terms of the
symbols used in this paper (see appendix C). Ta-
ble IV contains the constraints for the theory for the
Midpoint Algorithm as derived in this paper. The
synchronization process was identical to the ICCSA
with the exception that the Midpoint Algorithm was

11

executed at 7. Figure 11 plots the clock skew bound
predicted by the old theory, the theory derived in this
paper, and the actual measured results versus drift
rate. As can be seen, the measured clock skew is
well below that predicted by the new theory. This
is not due to an inaccuracy in the theory, but to an
inability to replicate worst-case conditions with the
clock subsystem. This phenomenon will be explained
in more detail in the section Simulating a Malicious
Liar.

Case Studies

The parameters used in the verification tests are
obviously far worse than can be expected in an
actual system. However, now that the theory has
been verified under these extreme conditions, it is
reasonable to ask what level of performance can
be expected under nominal conditions. The case

studies listed in table V were generated to probe this
area. The case studies deal primarily with read error
and synchronization period, as these are the most
significant contributors to the clock skew.

A read error occurs every time a digital clock is
read. It is believed that the minimum read error that
will be obtainable in most synchronization systems is
1 tick. This tick of read error is added when, as is
the case with the subject clock subsystem, the local
clock is read in response to the strobe generated by
the remote clock. In this case the remote clock is
not actually read, but generates an event signal that,
by definition, occurs at clock time Ts and, therefore,
does not include an error component. A similar
situation would exist if the remote clock were to be
read in response to a request from the local clock
(given that there were no other overhead). Case 1
covers this best-case situation.

Table I1I. Constraints for Old Theory—-Midpoint Algorithm

Constraint definition

Constraint relation

C1: minimum period time R>3A+ %‘160
]
el 1 — AL)+ 200058 + 6) + 208,89
Cla: required lower bound on § 6> 5
Py + 1
C2: minimum algorithm time S>A
C3: maximum correction > % + A

C4:

maximum perceived skew

A>é+e+ YA

: maximum skew

Assume C6 dominates

C6:

maximum skew

5>

2

P
4e (1 - 4}L> + 200m(28 + &9 + R) + p3,60

+1

7
P

Table IV. Constraints for New Theory - Midpoint Algorithm

Constraint definition

Constraint relation

C1: minimum period time R>5+%
C2: minimum algorithm time S>A
C3: maximum correction y> % +4

C4: maximum perceived skew

A>b6+c+ S

C5:

maximum skew

6>6+puR

Cé6:

maximum skew

6> 4e+2pp A+ 200 R

12

4500

4000}
Old theory

3500 \

3000

2500

Clock skew, ticks

- .

2000} //

1500'_ Measured data

1000 1 1 .
030 .034 040 .048

Drift rate

Figure 11. Midpoint Algorithm test results with m = 1.

Table V. Case Study Parameters

Period, R, PR, Read error, &,
Case Drift rate, p ticks ticks/period ticks
la 1.00 x 1077 | 1.00 x 10* 0.1 1
1b 1.00 x 10° 1.0 1
lc 1.00 x 10° 1.0 1
2a 4.00 x 107 4 4
2b 1.00 x 107 1.0 4
2 4.00 x 10° 4.0 4
3a 1.00 x 107 1.0 10
3h 1.00 x 107 1.0 10
3c 1.00 x 100 10.0 10

If both the local clock and the remote clock are
read in response to asynchronous events generated by
the processor, then 2 ticks of error would be added to
a clock read. Similarly, 2 ticks of read error can also
be added when a clock is corrected. This is again
due primarily to the asynchronous nature of clock
reads and writes. If the clock correction circuitry
is designed properly, this error will not be incurred.
Case 2 covers the situation when the read error ¢
is 4, with 2 ticks added during clock read and clock
correction.

To include a somewhat less than optimal situa-
tion, the rcad error is set to 10 in case 3.

Each case consists of three subcases where the
drift rate is set so that the accumulated drift over one
period is equal to Y10 of the read error in subcase “a,”
1.0 tick in subcase *b,” and the entire read error in
subcase “c.” This leads to two redundant cases (lc
and 3b).

Figure 12(a) is a plot of all three cases. Fig-
ure 12(b) plots cases 1 and 2, which represent best-
case conditions. Data are plotted for both the ICCSA
(dashed lines) and the Midpoint Algorithm (solid
lines) and for both zero-fault-tolerant (filled symbols)
and single-fault-tolerant cases (empty symbols).

120
— - — ICCSAm=0
L 100F --m-- ICCSAm=1 s
4 - - +== Midpoint m=0
= 80F ——0— Midpoint m=1
Z
-
L
[®]
e
o
(a) Cases 1, 2, and 3.
asr
| — « — ICCSA m=0 .

A0F __@-- ICCSA m=1 -
% 35F ----- Midpoint m=0 -
2 39k —o— Midpoint m=1
z
[}
]
93
L
Q

Case

(b) Cases 1 and 2.

Figure 12. Case study results.

Discussion of Results

The results of this study span a broad spectrum
of subject matter including clock algorithm perfor-
mance, design methodology, and techniques of worst-
case testing. The following sections address these
issues.

Clock Algorithm Performance

As can be seen from comparing the fault-free and
single-fault cases in figures 12(a) and 12(b), a per-
formance penalty of 100 percent is paid to protect
the system from faults. It is interesting to note
that this penalty is the same for both algorithms.
If a clock skew dead band is made part of every

13

communications exchange, then designers must con-
sider whether they are willing to pay this penalty
to protect the system from a rare form of malicious
behavior,

The equations for the clock skew upper bound
suggest that the component of clock skew due to ac-
tual drift (pR) can be reduced to an insignificant level
if R is made small enough. This is not thought to be
possible, since, in the absence of read error, no cor-
rection will be made for a series of intervals until a
significant skew has accumulated. A correction will
then be made. This was in fact observed indirectly.
Direct observation was not possible because our sys-
tem had 1 tick of read crror, minimum.

The indirect observation was made by first taking
one data sct with zero additional read error and zero
drift rate. What is observed is the minimum read
error of the system. This was done for several thou-
sand clock readings, with none exceeding 1 tick. To
observe the effect of pR < 1, the same system was
then run with pR = 0.1. Within this series, ocea-
sional readings of +2 were observed, thus supporting
the conjecture that the pR term actually contributes
an amount equivalent to the function ceiling(pR).

The Midpoint Algorithm outperforms the ICCSA
and is the clear choice. Remembering that the
“a” series subcases are hypothetical with pR < 1,
the next best design is case 1b (¢ = 1,pR = 1),
which yiclds a single-fault-tolerant skew bound of
6 ticks. While this kind of performance is possible
over dedicated links, it may not be possible to design
a general-purpose communication protocol that can
support both efficient transfer of normal traffic and
very low read error.

If it is necessary to allow for greater read error,
as represented by case 3, the designer has a wider
choice in sclecting the synchronization period. In
this case, the use of a minimum synchronization
period (i.e., with pR = 1) may yield only marginally
tighter clock skews because the read error dominates.
The frequent synchronizations may produce more
overhead on the communications channel than is
saved by virtue of the resultant tighter clock skews.

Design Methodology

One of the arcas in which clock synchronization
is used is highly reliable fault-tolerant architectures
such as those in military and commercial aircraft.
The high reliability requirements put on these de-
signs (probability of failure = 1079 per mission) pre-
clude testing as a means of validating that this re-
quirement has been met. One of the methods that

14

has been suggested for this purpose is formal verifica-
tion. A formal verification methodology would entail
the use of a specification language and the construc-
tion of a hierarchical theory written in that langnage
that could be proven to show that the final design
meets the highest level specification. Automated the-
orem provers are often used to facilitate this task.
A good example of this method is HDM (ref. 12)
as used on SIFT. Most recently this has matured to
EHDM, which was used by Rushby (ref. 6) to rederive
the clock theory originally invented by Lamport and
Melliar-Smith. In reference 6, Rushby reports that
the rigor enforced by the use of the theorem provers
led to the uncovering of several inconsistencics in the
original, hand-derived theory.

The purpose of experimental verification as re-
ported in this paper was to demonstrate that the
formal theory was indeed correct. What was found
was that although the theory was correct in that it
predicted a bound that was never violated, the bound
was only a bound and not a maodel for the actual cir-
cuit performance. With the insight gained by experi-
mentally observing the behavior of the circuit, it was
possible to derive a more accurate theory. Thus, al-
though testing cannot be relied upon to verify highly
rcliable components, it becomes an integral part of
deriving the theory, which can then be used to predict
the performance of the circuit into the unobservable
regions. While this may sound obvious to those who
have practiced such techniques, it has been obscrved
that individuals tend to be heavily biased toward ei-
ther the “design and debug”™ or “theorize and prove”
camps.

Figure 13 is an attempt to illustrate an op-
timal design methodology. The two axes delin-
eate time spent testing and theorizing. A vector
DMV is drawn whose length represents design op-
timality. It is proposed that the optimality is di-
rectly proportional to the correctness of a design
and inversely proportional to its cost. The locus
of points traced by this vector suggests that if too
much emphasis is placed on either testing or the-
ory, design optimality suffers and that the opti-
mum design is reached by applying those techniques
best suited for the particular problem. As demon-
strated in this work, verification of predicted val-
ues of physical quantities is well suited to testing.
Testing will also provide behavioral insight, which
aids in the construction of provable and realizable
theory. As will be seen in the next section, test-
ing cannot be relied upon to quantify worst-case
behavior.

A

Correctness
Cost

Design method value = ‘ DMV' o<

Testing

»l

Theory

Figure 13. Design method value.

Tp: good proces snlr

|]
| . [t
: T, '
| N 1
1 1 I
T, [ving processor ! 1 !
- MU T
— S !
1 ' T]
! ' N]
i ' 1
1 | 1
! 1
4 | % |
| | |
Ty good processor T

Figure 14. Anticipated malicious liar behavior.

Simulating a Malicious Liar

To experimentally verify the clock theory, special
circuits were added to the clock peripheral circuitry
to cnable the simulation of malicions faults (see
the section *Test angmentation™). During testing
of the ICCSA. the worst-case behavior of a lying
clock was more difficult to simulate than originally
anticipated, and the special circuitry could not be
used to simulate worst-case conditions without great
difficulty. Morcover. for the Midpoint Algorithm,
worst-case conditions could not be simulated at all.

Figure 14 shows the faulty behavior that was
assumed during the design of the test equipment.
The figure illustrates the time line of three processors
p.q, and 7, with p and r being good processors and ¢
being a lying processor. If p is a slow processor with
respect to 7, then ¢ would send a synchronization
signal to p just prior to the end of the synchronization
window to give p the perception that it was a good
deal faster than g and thus cause p to apply a

correction that would slow its clock even further.
Conversely, ¢ would signal r at the beginning of the
window and cause r to apply a correction that would
speed up its clock.

In practice, the difficulty with doing this is that
although it is possible to anticipate the beginning
and ending window times for 7 and p with respect
to g for the first frame, it was observed that worst-
case skew is not obtained until several frames later.
This behavior is illustrated in figure 15. Consider
the case in which processor p uses the ICCSA. Pro-
cessor p will read a clock difference of A from ¢ in
frame 1. Processor p uses this value as part of the av-
craging process to compute the correction. The cor-
rection computed by processor p will thus have an
error of A/4 (for four processors). Processor r, on
the other hand, will apply a correction with an equal
but opposite error with the result that the synchro-
nization windows of p and r have been driven A/2
farther apart. Thus, for ¢ to again send worst-case
synchronization signals, it must now take this addi-
tional skew into account, as illustrated by the second
frame in the figure. The correction error would then
become (A + A/4)/4. The correction is then increas-
ing by amount A/4]". where k is the frame number.
The skew between p and r would increase until the
additional error becomes insignificant, ie., A < 4k,
This typically took five frames when large drift rates
made large synchronization windows necessary.

T
p | L 1
Ll L) &
Tie.r '
- : ’
T ' T
a § . e
Tr
T,
p 1 1 1
T L) r 3
Tlic'r_Al/4 1 [:
Tq) TliC.p +A/4
¥ L L
T;

Figure 15. Obscrved malicious liar behavior.

It was decided, after having observed this behav-
jor, to model the malicious behavior from the per-
spective of the good processors instead of creating
the erroncous signal on the faulty processor. This
was done by providing the synchronization algorithm
with a parameter that indicated which remote clock
was to be considered a liar and in which direction
it was lying. The good processor then substituted
its START or END window value for the actual

15

reading of the faulty clock, thus simulating the ef-
fect described above.

Worst-case conditions could not be simulated
with the Midpoint Algorithm hecause of the lack of
sufficient processors to create the necessary condi-
tions. Worst-case conditions are a combination of
maximum drift, maximum read error, and the pres-
ence of a malicious liar. In the Midpoint Algorithm,
the two outlying clock differences are discarded and
the remaining two averaged (for four processors).
When a malicious liar is present and behaves as de-
scribed above, it will cause the fastest and slowest
clocks to include their clock difference readings (0)
in the correction computation. Normally, the fastest
and slowest clocks would be at the extremes and not
be used. The “self” clock readings do not contain
any read error, so that the worst-case skew is not
achieved. In a system of five or more clocks, it would
have been possible to arrange the paramecters to cre-
ate worst-case conditions.

In conclusion, testing cannot be relied upon to
create worst-case behavior. The complex interactions
often confound cursory analysis; the result is that
something other than worst case may be observed,
with the danger then that the system will be designed
around these misleading specifications. Developing a

16

theory that predicts worst case provides a checking
mechanism that when the theory prediction does
not match the observation, immediately raiscs the
question of which is at fault. For a highly rcliable
design, these kinds of discrepancies must be known
and resolved.

Concluding Remarks

New theory has been developed and experimen-
tally verified for the Interactive Convergence Clock
Synchronization Algorithm and the Midpoint Algo-
rithm. The Midpoint Algorithm is capable of achiev-
ing tighter synchronization than the Interactive Con-
vergence Clock Synchronization Algorithm. Both
algorithms suffer a 100-percent penalty to protect
against one fault. The new theory outperforms exist-
ing theory that was developed without the benefit of
the insight gained during experimental verification.
However, it is not adequate to rely on testing pro-
cedures to uncover worst-case behavior. Testing and
theory go hand in hand to produce optimal designs.
This is especially true for highly reliable systems.

NASA Langley Research Center
Hampton, VA 23665-5225
May 5, 1992

Appendix A

Proving Equations (10), (12), (13),
and (14)

Proving Equation (10)
To prove equation (10), that is,
Agp = —bgp(Ts) £ e+ ppAgp (10)
we start with the definition of Agp, equation (8),
which is
Bgp =Tgp — T (8)

and using equation (9) to expand Ty, and expressing
T as the value of clock p at a real time when clock p
reads T, we get

Agp = Tp(tg(Ty)) — Tp(tp(Ts))

Using equation (3) to expand the clock functions T},
and realizing that the second term incurs no read
error, we have

tq(Ts) te— t()p:l _ [tp(Ts) - t()p}
1—pp 1—pp

qu =

Finally, combining terms and using equation (7), we
get

= —0gp(Ts) L €+ pplgp

Proving Equation (12)
To prove equation (12), that is,

Sp(T + C) = 65(T) + pgpC (12)

we start with equation (7) and substitute equa-
tion (1) as follows:

8gp(T + C) = t,(T + C) — to(T + C)

= [(1 — pp)(T + C) + top)
— [(1 = p)(T + C) + tog]

bgp(T) + (pq — pp)C
bgp(T) + pgpC

Proving Equation (13)

To prove equation (13), that is,
bqp(T) = pap(T — Te) + gp(T0) (13)

we rearrange cquation (12) and substitute C =

—(T - T).
Proving Equation (14)
To prove equation (14), that is,
6rq(T) - 6rp(T) = 6;Dq(T) (14)

we use equation (7) and write

brg(T) = brp(T) = [tg(T) = t(T)] — [tp(T) — t(T)]
= [tg(T) — t,(T)]

= 5Pq(T) = —bgp(T)

17

Appendix B

The Expansion of y,, — \q

We expand the term Xp — X¢

n—>2—m

1
Z (AI']I - Arr]) + ; (App - qu)
retd

1
Xp — Xg = "

1 m
+ - (Al]]l - Aqq) + ; (Vp - v‘l) (Bl)

T

This expression contains four terms that can be
considered in three groups. The first term represents
the (n — 2 —m) good processors. The second and
third terms represent good processors, one of which
is a local clock. The third term represents readings
taken from bad processors.

The Good Processors

We will first reduce the term Ay — Apy using
equation (10).

Drp = Arg = [=8up(Ty) £ & + ppA,,)
~ [=6rg(T3) £ £ + pgArg]

Brp = Brg < [8ry(T3) = 6r(T5)] + 2¢

+ (PpQrp = pyAry)

< [brg(T) = brp(T)] + 2 (B2)

Here, as before, the difference between the pA values
is ignored. These results are replaced in the sum (B1)
and simplified as follows:

n—2-m n=2-n

. Z (A= d< b 30

2n—2—m
n (n m)
n

x [érq(TS) - éTp(Ts’)] = (B3)

18

The Local Processors

Taking the two terms that include local processor
readings, we write

1 1
;(Ap]) - A[}q) + ; (qu - Aqq)

1
= ; {[7[5]”)(7‘5” - [*(S])q(rs‘) e+ /)qtﬁpq}}
1
+ ; {[_b(lp(Ts') :t £+ /)]'Al[]l] - [*(Sqq(]—:s)}}
1 B
= " {[73)/)/!(713” - [—{)W(TN) + ¢l}

1
o A0 (T) £] = [y, (1]}

Py Pq
i L N

) M
n it n pa

Finally, ignoring the difference between the PA terms
we obtain

1 1

(A])p - qu) + ; (qu - Aqq)

T

= A=A (T)] = [T}

+ =Tl = (Tl + 2e (B4)

n

Good Plus Local Processors

Combining equations (B3) and (B4) by replacing
the first two terms on the right-hand side of equa-
tion (B4) in the summation of equation (B3), we get

n—m

1 .
Good + Local = . E 1 [6,4(T) — Srp(T)]
=

2n—1-m
f“‘

B5
- £ (B5)

Taking a closer look at the expression within the
summation we have, with 7, = T, + A,

6!‘(1(Ts) - ‘srp(Ts) = (Srq(T(r - A) - érp(T(' - A)
Now using equations (12) and (5), we get
0rg(T5) —

Orp(Ts) = Orq(Te) = 6rp(T0) + PgpA

Finally, application of equation (14) yields

6rq(Ts) - (S‘r'p(Ts) = _éqp(TL:) + Pqu (BG)

Now, substituting equation (B6) into equation (B5),

m—n)éqp(Tc)*F 2(n—1—m)€

n

Good + Local = (

pr(n —m) A
n

+ (B7)

The Bad Processors

Recalling from the ICCSA that all perceived
skews are limited to a maximum of A, we have

m 2m

o (Vp— Vg) < TA (B8)

Good Plus Local Plus Bad Processors

Using equations (B7) and (B8) in the original
expression gives

2(n—1—
ﬂ__m_)e
n

m—n
Xp_XqS(n >6qp(Tc)+

pun—m) o 2m
n n

+

19

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway. Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY/(Leave blank}]| 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
July 1992 Technical Paper

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Experimental Validation of Clock Synchronization Algorithms
WU 505-64-10-07

6. AUTHOR(S)
Daniel L. Palumbo and R. Lynn Graham

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
NASA Langley Research Center REPORT NUMBER
Hampton, VA 23665-5225 L-17015

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
National Aeronautics and Space Administration AGENCY REPORT NUMBER
Washington, DC 20546-0001 NASA TP-3209

11. SUPPLEMENTARY NOTES

Palumbo: Langley Research Center, Hampton, VA; Graham: PRC Kentron, Inc., Hampton, VA.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified Unlimited

Subject Category 62

13.

ABSTRACT (Maximum 200 words)

The objective of this work is to validate mathematically derived clock synchronization theories and their
associated algorithms through experiment. Two theories are considered, the Interactive Convergence Clock
Synchronization Algorithm and the Midpoint Algorithm. Special clock circuitry was designed and built so that
several operating conditions and failure modes (including malicious failures) could be tested. Both theories
are shown to predict conservative upper bounds (i.e., measured values of clock skew were always less than the
theory prediction). Insight gained during experimentation led to alternative derivations of the theories. These
new theories accurately predict the behavior of the clock system. It is found that a 100-percent penalty is paid
to tolerate worst-case failures. It is also shown that under optimal conditions (with minimum error and no
failures) the clock skew can be as much as three clock ticks. Clock skew grows to six clock ticks when failures
are present. Finally, it is concluded that one cannot rely solely on test procedures or theoretical analysis to
predict worst-case conditions.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Clock synchronization; Formal methods; Verification; Validation 22
16. PRICE CODE
A03
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION] 19. SECURITY CLASSIFICATION] 20. LIMITATION
OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT
Unclassified Unclassified
NSN 7540 01 280 5500 Standard Form 208(Rev. 2.80)

Prescribed by ANSI Std. 739-18
298-102
NASA-Langley, 1992

