RAf4

ASPECTS OF UNSTRUCTURED GRIDS AND FINITE-YOLUME
SOLVERS FOR THE EULER AND NAVIER-STOKES EQUATIONS

Timothy J. Barth
CFD Branch
NASA Ames Research Center
Moffett Field, CA 94035
United States

Contents

1.0 Preliminaries

1.1 Graphs and Meshes
1.2 Duality
1.3 Data Structures

2.0 Some Basic Graph Operations Important in

CFD

2.1 Planar Graphs with Minimum Qut-Degree

2.2 Graph Ordering Techiques
2.3 Graph Partitioning for Parallel Comput-
ing

3.0 Triangulation Methods

3.1 Voronoi Diagram and Delaunay Trian-
gulation

3.2 Properties of a 2-D Delaunay Triangu-
lation

3.3 Algorithms for 2-D Delaunay Triangula-
tion

3.4 Other 2-D Triangulation Algorithms

3.5 2-D Steiner Triangulations

3.6 Threé-Dimensional Triangulations

4.0 Some Theory Related to Finite-Volume Solvers.

4.1 Scalar Conservation Law Equations

4.2 Comparison of Finite-Volume and Galerkin

Finite-Element Methods

4.3 Edge Formulas

4.4 Godunov Finite-Volume Schemes

4.5 k-exact Reconstruction

4.6 Upwind Advection Scheme with k = 0
Reconstruction

4.7 Upwind Advection Scheme with k = 1
Linear Reconstruction

4.8 Maximum Principles and Delaunay Tri-
angulation

5.0 Finite-Volume Solvers for the Euler Equa-
tions
5.1 Euler Equations in Integral Form
5.2 Extension of Scalar Advection Schemes
to Systems of Equations
5.3 Implicit Linearizations

6.0 Numerical Solution of the Navier-Stokes Equa-
tions with Turbulence
6.1 Turbulence Modeling for Unstructured
grids
6.2 A One-Equation Turbulence Transport
Model

6-2

Introduction

One of the major achievements in engineer-
ing science has been the development of com-
puter algorithms for solving nonlinear differential
equations such as the Navier-Stokes equations.
These algorithms are now used in the practical
engineering design of devices such as cars and
airplanes as well as theoretical studies of com-
plex phenomena such as fluid turbulence. In past
years, limited computer resources have motivated
the development of efficient numerical methods
in computational fluid dynamics (CFD) utilizing
structured meshes. These meshes are comprised
of systematic arrays of quadrilateral or hexahe-
dral cells. The use of structured meshes greatly
simplifies the implementation of CFD algorithms
on conventional computers. Structured meshes
also permit the use of highly efficient solution
techniques such as alternating direction implicit
(ADI) iteration schemes or multigrid. Following
the dramatic improvement in computing speed in
recent years, emphasis has shifted towards the de-
sign of algorithms capable of treating complex
geometries. The automatic generation of struc-
tured grids about complex geometries is prob-
lematic. Unstructured grids offer one promising
alternative technique for treating these general
geometries. Unstructured meshes have irregular
connectivity and usually contain triangles and/or
quadrilaterals in two dimensions and tetrahedra
and/or hexahedra in three dimensions. The gen-
eration and use of unstructured grids poses new
challenges in computational fluid dynamics. This
is true for both grid generation as well as for
the design of algorithms for flow solution. The
purpose of these notes is to present recent devel-
opments in the unstructured grid generation and
flow solution technology.

1.0 Preliminaries

1.1 Graphs and Meshes

Graph theory offers many valuable theoret-
ical results which directly impact the design of
efficient algorithms using unstructured grids. For
purposes of the present discussion, only simple
graphs which do not contain self loops or parallel
edges will be considered. Results concerning sim-
ple graphs usually translate directly into results
relevant to unstructured grids. The most famous
graph theoretic result is Euler’s formula which re-
lates the number of edges n(e), vertices n{v), and
faces n(f) of a polyhedron (see figure 1.0(a)):

n(f) =n(e) —n{v)+2 (Euler’s formula)

(1.0)

This polyhedron can be embedded in a plane by
mapping one face to infinity. This makes the
graph formula (1.0) applicable to 2-D unstruc-
tured meshes. In the example below, the face 1-
2-3-4 has mapped to infinity to form the exterior
(infinite) face. If all faces are numbered includ-
ing the exterior face, then Euler’s formula (1.0)
remains valid.

3 4
) 7
10
)
5 s
i 2
(b)

Figure 1.0 (a) 3-D Polyhedron, (b} 2-D Planar
embedding

The infinite face can be eliminated by describing
the outer boundary in terms of boundary edges
which share exactly one interior face (interior edges
share two). We also consider boundary edges
which form simple closed curves in the interior
of the mesh. These curves serve to describe pos-
sible objects embedded in the mesh (in this case,
the polygon which they form is not counted as a
face of the mesh). The number of these polygons
is denoted by n(h). The modified Euler’s formula
now reads

n(f)+n() =n(e)+1-n(h) (1.1)

Since interior edges share two faces and boundary
edges share one face, the number of interior and
boundary edges can be related to the number of
faces by the following formula:

max d(f)

2n(e)interior+n(e)bound = Z 1 n(f),' (1.2)

i=3

where n(f); denotes the number of faces of a par-
ticular edge degree, d(f) = i. Note that for pure
triangulations T, these formulas can be used to
determine, independent of the method of triangu-
lation, the number of triangles or edges given the
number of vertices n(v), boundary edges n{€e)sound;
and interior holes n(h)

n(f)s = 2n(v) - n{e)sound — 2+ 2n(h) (1.3)

or

n(e) = 3n(v) — n(€)oound — 3+ 3n(h). (1.4)

This is a well known result for planar triangu-
lations. (For brevity, we will sometimes use N
to denote n(v) in the remainder of these notes.)
In many cases boundary edges are not explicitly
given and the boundary is taken to be the con-
vex hull of the vertices, i.e. the smallest con-
vex polygon surrounding the vertices. (To obtain
the convex hull in two dimensions, envision plac-
ing an elastic rubber band around the cloud of
points. The final shape of this rubber band will
be the convex hull.) A key observation for planar
meshes 18 the asymptotic linear storage require-
ment with respect to the number of vertices for
arbitrary mesh arrangements.

The Euler formula extends naturally to an
arbitrary number of space dimensions. In this
general setting, Euler’s formula relates basic com-
ponents (vertices, edges, faces, etc.) of higher
dimensional polytopes. In computational geome-
try jargon, vertices, edges, and faces are all spe-
cific examples of “k-faces”. A 0-face is simply a
vertex, a 1-face corresponds to a edge, a 2-face
corresponds to a facet (or simply a face), etc.
A polytope P in R? contains k-faces ¥V k& €
{-1,0,1,...,d}. The -1-face denotes the null set
face by standard convention. Let the number of
k-faces contained in the polytope P be denoted
by Ni(P). For example, No(P) would denote the
number of vertices. Using this notation, we have
the following relationships:

No = n(v) (vertices),
Ny = n(f) (faces),

Ny, =n(e) (edges)
N; = n(¢) (volumes)

By convention, there is exactly one null set con-
tained in any polytope, i.e. N_;(P) =1 and by
definition Ng(P) = 1. Using these results, we can
succinctly state the general Euler formula for an
arbitrary polytope in R¢

d
3" (-1)*Ni(P)=0 (Euler's Formula in R?)
k=-1

(1.5)
On the surface of a polyhedron in 3-space, the
standard Euler formula (1.0} is recovered since

-1+ Ng—N+N2—-1=0

or

n(f) + n(v) = n{e) + 2.

To obtain results relevant to three-dimensional
unstructured grids, the Euler formula (1.5) is ap-
plied to a four-dimensional polytope.

n(f) +n(v) = n(e) + n(¢) (1.6)

6-3

This formula relates the number of vertices, edges,
faces, and volumes n(#) of a three-dimensional
mesh. As in the two-dimensional case, this for-
mula does not account for boundary effects be-
cause it is derived by locking at a single four-
dimensional polytope. The example below demon-
strates how to derive exact formulas including
boundary terms for a tetrahedral mesh. Deriva-
tions valid for more general meshes in three di-
mensions are also possible.

Example: Derivation of Exact Euler Formula for
3-D Tetrahedral Mesh.

Consider the collection of volumes incident
to a single vertex v; and the polyhedron which
describes the shell formed by these vertices. Let
Fy(v;) and Np(v;) denote the number of faces and
vertices respectively of this polyhedron which ac-
tually lie on the boundary of the entire mesh.
Also let E(v;) denote the total number of edges
on the polyhedron surrounding v;. Finally, let
dg(vi) and d.(v;) denote the number of tetrahe-
dral volumes and edges respectively that are in-
cident to ;. On this polyhedron, we have exact
satisfaction of Euler’s formula (1.0), i.e.

polyhedral faces vertices on polyhedron

de(vi) + Fy(vi) + de(vi) + No(vi) = E(v,-)+2;

(1.7
Note that this step assumes that the polyhedron
is homeomorphic to a sphere {otherwise Euler’s
formula fails). In reality, this is not a severe as-
sumption. (It would preclude a mesh consisting
of two tetrahedra which touch at a single vertex.)
On the polyhedron we also have that

polyhedral faces

2E(v;) = 3(dg(v:) + Fo(v:)). (1.8

Combining (1.7) and (1.8) yields

de(ws) = 3da(vi) + 3 Fo(wi) — No(wi) +2. (1.9

Summing this equation over all vertices produces

don(v) = % (E¢,n(v) + ZF,,(U,-)) -3 Nufwd)

: _ (1.10}
where d. and d; are the average vertex degrees
with respect to edges and volumes. Since globally
we have that

den{v) = 2n{e), dgn(v) = 4n(¢), (1.11)

6-4
substitution of (1.11) into (1.10) reveals that

"(U)bound

1 1 e t—

n(e) = n(¢) +n(v) + > Fy(w) - 5 > No(wi).

(1.12)

Finally, note that) Fy(v;) = 3n(f)soung- [nsert-
ing this relationship into (1.12) yields

B(e) = n(8) + n(v) + 3n(FJsound = 7(0)touna

(1.13)
Other equivalent formulas are easily obtained by
combining this equation with the formula relating
volume, faces, and boundary faces, i.e.

n(f) = 20(8) + 3 Diownd (119

An exact formula, similar to (1.6), is obtained by
combining (1.14) and (1.13)

n(e)+n(¢) =n‘(f)+n(v)+'l;n(f)bound_%n(v)bound
(1.15)

1.2 Duality

Given a planar graph G, we informally de-
fine a dual graph G pyq; to be any graph with the
following three properties: each vertex of Gp,a
is associated with a face of G; each edge of G
is associated with an edge of Gpy.; if an edge
separates two faces, f; and f; of G then the asso-
ciated dual edge connects two vertices of Gpya
associated with f; and f;. This duality plays an
important role in CFD algorithms.

Figure 1.1 Several triangulation duals.

In figure 1.1, edges and faces about the cen-
tral vertex are shown for duals formed from me-
dian segments, centroid segments, and by Dirich-
let tessellation. (The Dirichlet tessellation of a
set of points is a pattern of convex regions in the
plane, each region being the portion of the plane
closer to some given point P of the set of points

than to any other point.) Two-dimensional finite-
volume schemes for the Euler and Navier-Stokes
equations are frequently developed which form
control volumes from either faces (cells) of the
mesh or faces of the mesh dual. Schemes which
use the cells of the mesh as control volumes are
often called “cell-centered” schemes. Other “ver-
tex” schemes use mesh duals constructed from
median segments, Dirichlet regions, or centroid
segments. In all of these schemes, the primary
computational effort is associated with the cal-
culation of the flux of mass, momenta, and en-
ergy through an edge associated with the con-
trol volume., The one-to-one correspondence of
edges of a mesh and mesh dual (ignoring bound-
aries) means that there is very little difference in
computational effort in schemes based on mesh
faces or duals. This observation is not true in
three dimensions! Consider a three dimensional
tetrahedral mesh. The duality for this nonpla-
nar arrangement is between edges of the tetrahe-
dral mesh and faces of the dual. In other words,
for each edge of the mesh there is a one-to-one
correspondence with a face of the dual (ignor-
ing boundaries). Again, the main computational
effort associated with finite-volume schemes for
solving the Euler and Navier-Stokes equations is
the calculation of the flux through each face of
the control volume, If the control volumes are
the tetrahedra themselves (cell-centered scheme),
then a flux must be calculated for each tetrahe-
dral face. This means that the work is propor-
tional to the number of faces of the tetrahedral
mesh. From eqn. (1.14), the number of faces of
a tetrahedral mesh is related to the number of
tetrahedra and boundary faces by

workc-—c scheme X n(f) = 2n(¢) + %n(f)bound'

If the control volumes of the finite-volume scheme
are formed from a mesh dual (vertex scheme),
then the number of flux calculations is propor-
tional to the number of faces of the mesh dual
which is roughly equal to the number of edges of
the origiral tetrahedral mesh. From eqn. (1.13)
we have that

WOrkyert scheme X n(e) = ﬂ((}5) + ﬂ(‘U)

3 1
+Zn(f)bound - En(v)bound

To better understand the work estimates, define
3 such that n{¢) = Bn(v). Practically speaking,
3 usually ranges from 5-7 for tetrahedral meshes.
Taking the ratio of the work estimates for the

cell-centered and vertex scheme, ignoring bound-
ary terms and assuming an identical constant of
proportionality, we obtain

20n(v) 23

Worke—c scheme
_ - 1.16
Workyert scheme (1 + ﬂ)n(v) 1+8 ()

The work for the cell-centered scheme approaches
twice that of the vertex scheme. The reader should
not automatically infer that the vertex scheme is
preferred. The question of solution accuracy of
the two approaches needs to be factored into the
equation. The answer to the question of which is
“better” is still a subject for debate.

1.3 Data Structures

The choice of data structures used in rep-
resenting unstructured grids varies considerably
depending on the type of algorithmic operations
to be performed. In this section, a few of the
most common data structures will be discussed.
The mesh is assumed to have a numbering of ver-
tices, edges, faces, etc. In most cases, the physical
coordinates are simply listed by vertex number.
The “standard” finite element (FE) data struc-
ture lists connectivity of each element. For ex-
ample in figure 1.2(a), a list of the three vertices
of each triangle would be given.

A
A Y
A
A
“
A Y
.
]
]
1
1
1
]
e

NN T
\
X K

Figure 1.2 Data structures for planar graphs.
(a) FE data structure, (b) Edge structure, (c)
Qut-degree structure, (d) Quad-edge structure.

The FE structure extends naturally to three di-
mensions. The FE structure is used extensive in
finite element solvers for solids and fluids.

For planar meshes, another typical structure
is the edge structure (figure 1.2(b)) which lists

6-5

connectivity of vertices and adjacent faces by stor-
ing a quadruple for each edge consisting of the
origin and destination of the each edge as well as
the two faces (cells) that share that edge. This
structure allows easy traversal through a mesh
which can be useful in certain grid generation al-
gorithms. (‘This traversal is not easily done using
the FE structure.) The extension to three di-
mensions is facewise (vertices of a face are given
as well as the two neighboring volumes) and re-
quires distinction between different face types.

A third data structure provides connectivity
via vertex lists as shown in figure 1.2(c). The
brute force approach is to list all adjacent neigh-
bors for each vertex (usually as a linked-list). Many
sparse matrix solver packages specify nonzeros of
a matrix using row or column storage schemes
which list all nonzero entries of a given row or
column. For discretizations involving only adja-
cent neighbors of a mesh, this would be identical
to specifying a vertex list. An alternative to spec-
ifying all adjacent neighbors is to direct edges of
the mesh. In this case only those edges which
point outward from a vertex are listed. In the
next section, it will be shown that an out-degree
list can be constructed for planar meshes by di-
recting a graph such that no vertex has more than
three outgoing edges. This is asymptotically op-
timal. The extension of the out-degree structure
to three dimensions is not straightforward and al-
gorithms for obtaining optimal edge direction for
nonplanar graphs are still under development.

The last structure considered here is the guad-
edge structure proposed by Guibas and Stolfi {1],
see figure 1.2(d). Each edge is stored as pair of
directed edges. Each of the directed edges stores
its origin and pointers to the next and previous
directed edge of the region to its left. The quad-
edge structure is extremely useful in grid gener-
ation where distinctions between topological and
geometrical aspects are sometimes crucial. The
structure has been extended to three dimensional
arrangements by Dobkin and Laslo [2] and Bris-
son [3].

2.0 Some Basic Graph Operations
Important in CFD

Implementation of unstructured grid meth-
ods on differing computer architectures has stim-
ulated research in exploiting properties and char-
acterizations of planar and nonplanar graphs. For
example in Hammond and Barth [4], we exploited
a recent theorem by Chrobak and Eppstein [5]
concerning directed graphs with minimum out-
degree. In this section, we review this result as

6-6

well as presenting other basic graph operations
that are particularly useful in CFD. Some of these
algorithms are specialized to planar graphs (2-D
meshes) while others are very general and apply
in any number of space dimensions.

2.1 Planar Graphs with Minimum Out-Degree

Theorem: FEvery planar graph has a 3-bounded
orientation, [5)].

In other words, each edge of a planar graph
can be assigned a direction such that the maxi-
mum number of edges pointing outward from any
vertex is less than or equal to three. A construc-
tive proof is given in ref.[5] consisting of the fo]-
lowing steps. The first step is to find a reduceable
boundary vertex. A reduceable boundary vertex
is any vertex on the boundary with incident ex-
terior (boundary) edges that connect to at most
two other boundary vertices and any number of
interior edges. Chrobak and Eppstein prove that
reduceable vertices can always be found for ar-
bitrary planar graphs. (In fact, two reduceable
vertices can always be found!) Once a reduce-
able vertex is found then the two edges connecting
to the other boundary vertices are directed out-
ward and the remaining edges are always directed
tnward. These directed edges are then removed
from the graph, see Figures 2.0{a-j). The process
is then repeated on the remaining graph until no
more edges remain. The algorithm shown picto-
rially in figure 2.0 is summarized in the following
steps:

Algorithm: Orient a Graph with maximum out-
degree < 3.

Step 1. Find reduceable boundary vertex.

Step 2. Direct exterior edges outward and interior
edges inward.

Step 3. Remove directed edges from graph.

Step 4. If undirected edges remain, go to step 1

_———

X7

)

h)

)]

Figure 2.0 (a-i) Mesh orientation procedure with
out-degree 3, (j) final oriented triangulation.

/
¢

{o)

(9) {

Linear time algorithms are given in [5]. In
the paper by Hammond and Barth, we exploit
the out-degree property to provide optimal load
balancing on a massively parallel computer. De-
tails are given in a later section.

2.2 Graph Ordering Techniques

The particular ordering of solution unknowns
can have a marked influence on the amount of
computational effort and memory storage required
to solve large sparse linear systems and eigen-
value problems. In many algorithms, the band
width and/or profile of the matrix determines the
amount of computation and memory required.
Most meshes obtained from grid generation codes
have very poor natural orderings. Figures 2.} and
2.2 show a typical mesh generated about a multi-
component airfoil and the nonzero entries asso-
ciated with the “Laplacian” of the graph. The
Laplacian of a graph would represent the nonzero
entries due to a discretization which involves only
adjacent neighbors of the mesh. Figure 2.2 in-
dicates that the band width of the natural or-
dering is almost equal to the dimension of the
matrix! In parallel computation, the ordering al-
gorithms can be used as means for partitioning

a mesh among processors of the computer, This
will be addressed in the next section.

7N
A%
K

Figure 2.1 Typical Steiner triangulation about
multi-component airfoil.

Figure 2.2 Nonzero entries of Laplacian matrix
produced from natural ordering.

Several algorithms exist which construct new
orderings by attermpting to minimize the band
width of a matrix or attempting to minimize the
fill that occurs in the process matrix factoriza-
tion. These algorithms usually rely on heuristics
to obtain high efficiency, and do not usually ob-
tain an optimum ordering. One example would
be Rosen’s algorithm [6] which iterates on the or-
dering to minimize the maximum band width.

6-7

Algorithm: Graph ordering, Rosen.

Step 1. Determine band width and the defining
index pair (7, §) with (i < j)

Step 2. Does their exist an exchange which in-
creases i or decreases j so that the band width is
reduced? If so, exchange and go to step 1

Step 3. Does their exist an exchange which in-
creases i or decreases j so that the band width
remains the same? If so, exchange and go to step
1

This algorithm produces very good orderings
but can be very expensive for large matrices. A
popular method which is much less expensive for
large matrices is the Cuthill-McKee [7] algorithm.

Algorithm: Graph ordering, Cuthill-McKee.

Step 1. Find vertex with lowest degree. This is
the root vertex.

Step 2. Find all neighboring vertices connecting
to the root by incident edges. Order them by
increasing vertex degree. This forms level 1.
Step 3. Form level k by finding all neighboring
vertices of level k — 1 which have not heen pre-
viously ordered. Order these new vertices by in-
creasing vertex degree.

Step 4. If vertices remain, go to step 3

Figure 2.3 Nonzero entries of Laplacian matrix
after Cuthill-McKee ordering.

The heuristics behind the Cuthill-McKee al-
gorithm are very simple. In the graph of the
mesh, neighboring vertices must have numberings
which are near by, otherwise they will produce en-
tries in the matrix with large band width. The
idea of sorting elements among a given level is

6-8

based on the heuristic that vertices with high de-
gree should be given indices as large as possible
so that they will be as close as possible to vertices
of the nezt level generated. Figure 2.3 shows the
dramatic improvement of the Cuthill-McKee or-
dering on the matrix shown in figure 2.2.

Studies of the Cuthill-McKee algorithm have
shown that the profile of a matrix can be greatly
reduced simply by reversing the ordering of the
Cuthill-McKee algorithm, see George [8]. This
amounts to a renumbering given by

k—on-k+1 (2.1)

where n is the size of the matrix. While this
does not change the bandwidth of the matrix,
it can dramatically reduce the fill that occurs in
Cholesky or L-U matrix factorization when com-
pared to the original Cuthill-McKee algorithm.

2.3 Graph Partitioning for Parallel Computing

An efficient partitioning of a mesh for dis-
tributed memory machines is one that ensures
an even distribution of computational workload
among the processors and minimizes the amount
of time spent in interprocessor communications.
The former requirement is termed load balanc-
ing. For if the load were not evenly distributed,
some processors will have to sit idle at synchro-
nization points waiting for other processors to
catch up. The second requirement comes from
the fact that communication between processors
takes time and it is not always possible to hide
this latency in data transfer. In our parallel im-
plementation of a finite-volume flow solver on un-
structured grids, data for the nodes that lie on the
boundary between two processors is exchanged,
hence requiring a bidirectional data-transfer. On
many systems, a synchronous exchange of data
can yield a higher performance than when done
asynchronously. To exploit this fact, edges of
the communication graph are colored such that
no vertex has more than one edge of a certain
color incident upon it. A communication graph
is a graph in which the vertices are the proces-
sors and an edge connects two vertices if the two
corresponding processors share an interprocessor
boundary. The colors in the graph represent sep-
arate communication cycles. For instance, the
mesh partitioned amongst four processors as shown
in figure 2.4(a), would produce the communica-
tion graph shown in figure 2.4(b).

2 3

(a) (b)

Figure 2.4 (a) Four partition mesh, (b} Commu-
nication graph.

The graph shown in figure 2.4(b) can be colored
edgewise using three colors. For example, in the
first communication cycle, processors (1,4) could
perform a synchronous data exchange as would
processors (2,3). In the second communication
cycle, processors (1, 2) and (3, 4) would exchange
and in the third cycle, processors (1,3) would ex-
change while processors 2 and 4 sit idle. Vizing’s
theorem proves that any graph of maximum ver-
tex degree A (number of edges incident upon a
vertex) can be colored using n colors such that
A < n £ A+ 1l Hence, any operation that
calls for every processor to exchange data with its
neighbors will require n communication cycles.
The actual cost of communication can often
be accurately modeled by the linear relationship:
Cost =a+ fm (2.2)
where « is the time required to initiate a mes-
sage, 3 is the rate of data-transfer between two
processors and m is the message length. For n
messages, the cost would be

Cost = Z(a + Bmy,). (2.3)

This cost can be reduced in two ways. One way is
to reduce A thereby reducing n. The alternative
is to reduce the individual message lengths. The
boundsonnare2 < N < P-1 for P > 3 where P
is the total number of processors. Figure 2.5(a)
shows the partitioning of a mesh which reduces
A, and 2.5(b) shows a partitioning which mini-
mizes the message lengths. For the mesh in figure
2.5(a), A = 2 while in figure 2.5(b), A = 3. How-
ever, the average message length for the parti-
tions shown in figure 2.5(b) is about half as much
as that in figure 2.5(a).

(@) (b)

Figure 2.5 (a) Mesh partitioning with minimized
A, (b) Mesh with minimizes message length.

In practice, it is difficult to partition an unstruc-
tured mesh while simultaneously minimizing the
number and length of messages. In the following
paragraphs, a few of the most popular partition-
ing algorithms which approximately accomplish
this task will be discussed. All the algorithms
discussed below: coordinate bisection, Cuthill-
McKee, and spectral partitioning are evaluated in
the paper by Venkatakrishnan, Simon, and Barth
[9]. This paper evaluates the partitioning tech-
niques within the confines of an explicit, unstruc-
tured finite-volume Euler solver. Spectral par-
titioning has been extensively studied by Simon
[10]. The algorithms have also been implemented
in three dimensions by A. Gandhi working in the
CFD branch at NASA Ames Research Center.
Note that for the particular applications that
we have in mind (a finite-volume scheme with so-
lution unknowns at vertices of the mesh), it makes
sense to partition the domain such that the sep-
arators correspond to edges of the mesh. Also
note that the partitioning algorithms all can be
implemented recursively. The mesh is first di-
vided into two sub-meshes of nearly equal size.
Each of these sub-meshes is subdivided into two
more sub-meshes and the process in repeated un-
til the desired number of partitions P is obtained
(P is a integer power of 2). Since we desire the
separator of the partitions to coincide with edges
of the mesh, the division of a sub-mesh into two
pieces can be viewed as a 2-coloring of faces of the
sub-mesh. For the Cuthill-McKee and spectral
partitioning techniques, this amounts to supply-
ing these algorithms with the dual of the graph
for purposes of the 2-coloring. The balancing of
each partition is usually done cellwise; although
an edgewise balancing is more appropriate in the
present applications. Due to the recursive na-
ture of partitioning, the algorithms outlined be-
low represent only a single step of the process.

6-9

Coordinate Bisection

In the coordinate bisection algorithm, face
centroids are sorted either horizontally or verti-
cally depending of the current level of the recur-
sion. A separator is chosen which balances the
number of faces. Faces are colored depending on
which side of the separator they are located. The
actual edges of the mesh corresponding to the
separator are characterized as those edges which
have adjacent faces of different color, see figure
2.6. This partitioning is very efficient to cre-
ate but gives sub-optimal performance on parallel
computations owing to the long message lengths
than can routinely occur.

U SAAVLY

4")
oA AY
v,qaa'::«wﬁ‘
IR

<
S Y

™
AVAN

RIS
“#:%‘VA: A &

1
&/
1 A

AN e&‘ﬂ

ETS
W
K5

ot

Yar T AVAYA N L,

4&&#}%;;:%’5 5;'1%#.%
val SAv N AVAY

Rayp A P, AN

A\
=

>,
¥

N
#V

[
Fﬁvz‘.%ﬁs [

WAV AVAVA #‘
PRI, s
Y NI AATANRE

T —

Figure 2.6 Coordinate bisection (16 partitions).

Cuthill- McKee

The Cuthill-McKee (CM} algorithm described
earlier can also be used for recursive mesh parti-
tioning. In this case, the Cuthill-McKee order-
ing is performed on the dual of the mesh graph.
A separator is chosen either at the median of
the ordering (which would balance the coloring
of faces of the original mesh) or the separator is
chosen at the level set boundary closest to the
median as possible. This latter technique has the
desired effect of reducing the number of discon-
nected sub-graphs that occur during the course
of the partitioning. Figure 2.7 shows a Cuthill-
McKee partitioning for the multi-component air-
foil mesh. The Cuthill-McKee ordering tends to
produce long boundaries because of the way that
the ordering is propagated through a mesh. The
maximum degree of the communication graph also
tends to be higher using the Cuthill-McKee algo-
rithm. The results shown in ref. [9] for multi-
component airfoil grids indicate a performance on

6-10

parallel computations which is slightly worse than
the coordinate bisection technique.

. AVAVAV;
DX

ALY

T PV,
:’AV:J‘#‘::Q
AV ST A
Ny sv‘ oy X
e -

AYD: CAVAN
K

N
X

¥

¢l

VAVAY,
RATAVAvaVATSTAVA ATAVAVATAL S 50

Figure 2.7 Cuthill-McKee partitioning of mesh.

Spectral Partitioning

The last partitioning considered is the spec-
tral partitioning which exploits properties of the
Laplacian £ of a graph (defined below). The al-
gorithm consists of the following steps:

Algorithm: Spectral Partitioning.

Step 1. Calculate the matrix £ associated with
the Laplacian of the graph (dual graph in the
present case).

Step 2. Calculate the eigenvalues and eigenvec-
tors of L.

Step 3. Order the eigenvalues by magnitude, A <
A2 € Az... AN

Step 4. Determine the smallest nonzero eigen-
value, Ay and its associated eigenvector xy (the
Fiedler vector).

Step 5. Sort elements of the Fiedler vector.

Step 6. Choose a divisor at the median of the
sorted list and 2-color vertices of the graph (or
dual) which correspond to elements of the Fielder
vector less than or greater than the median value.

The spectral partitioning of the muiti-component

airfoil is shown in figure 2.8. In reference [9],

we found that parallel computations performed

slightly better on the spectral partitioning than

on the coordinate bisection or Cuthill-McKee. The
cost of the spectral partitioning is very high (even

using a Lanczos algorithm to compute the eigen-

value problem). It has yet to be determined if the

spectral partitioning will have practical merit.

e] ;
SOCERRRR YA S TAAY,
i vV
AVAVAVL AN ES AT waVAY STAVAY ()
e R AN eV A8 A I
A i LY -r,
:‘av:r;"' : % "‘Ig""’
AW, S
&

AYAVAY:

]
2 AN
200K
RETEEAAKS
= 'A‘-l""‘é
75

2
4y, ? "4

g’ﬂ

o

v,

oy
25
Vg A

A
%‘."’
N

>
3
AV,

4!

vy

)
-
\7

9
[y
N

KN

o

(7
FAY,
LT
A
Ty
‘1 Iy

[N/
»
Vs

A
NATS
FL"A"‘ %‘L"' "4"‘7‘ X
‘§VAV4,§=§§ hhvﬁn- D
3 P.fA‘?# qﬂgw‘v‘v¢v€; 'av#";":] -
A FAVAYA Y o NV Y ATAVANAIAT S s S
SOV VAVAITIVAVE R Sy (ot enits: T8 A
ARNLOTE & S T e
VE‘%‘VAVAV"‘"hﬁ"VAﬁ#fgiqi;ﬁ’?ﬂ" < i

AR

<X
oK

R R RS RO

/ N
A VA A NS AVAAYAT S TV NS Varay; YAy

P . TSI NN

Figure 2.8 Spectral partitioning of multi- com-
ponent airfoil.

The spectral partitioning exploits a peculiar prop-
erty of the “second” eigenvalue of the Laplacian
matrix associated with a graph. The Laplacian
matrix of a graph is simply

L=-D+ A (2.4)
where 4 is the standard adjacency matrix
Ai;={1 e(vi,v;) € G (2.5)

0 otherwise

and D is a diagonal matrix with entries equal to
the degree of each vertex, D; = d(v;). From this
definition, it should be clear that rows of £ each
sum to zero. Define an N-vector, s = [1,1,1,...]T.
By construction we have that

(2.6)

This means that at least one eigenvalue is zero
with s as an eigenvector.
The objective of the spectral partitioning is to di-
vide the mesh into two partitions of equal size
such that the number of edges cut by the parti-
tion boundary ts approrimately minimized.
Technically speaking, the smallest nonzero
eigenvalue need not be the second. Graphs with
disconnected regions will have more that one zero
eigenvalue depending on the number of discon-
nected regions. For purposes of discussion, we
assume that disconnected regions are not present,
i.e. that A is the relevant eigenmode.

Elements of the proof:

Define a partitioning vector which 2-colors
the vertices

p=[+1,-1,-1,41,41,...,+1,-1]T (2.7)
depending on the sign of elements of p and the
one-to-one correspondence with vertices of the
graph, see for example figure 2.9. Balancing the
number of vertices of each color amounts to the
requirement that

slp (2.8)

where we have assumed an even number of ver-
tices.

+1
-1 1
%1

-1 1

\ 1 +1

-1
-1 3] +1
-1

+1

- \ +1
Figure 2.9 Arbitrary graph with 2-coloring show-
ing separator and cut edges.

The key observation is that the number of cut
edges, E., is precisely related to the L; norm of
the Laplacian matrix multiplying the partitioning
vector, 1.e.

4E. = || Lpllx (2.9)

which can be easily verified. The goal is te mini-
mize cut edges. That is to find p which minimizes
|£p||1 subject to the constraints that ||p|ly = N
and s L p. Since £ is a real symmetric (posi-
tive semi-definite) matrix, it has a complete set
of real eigenvectors which can be orthogonalized
with each other. The next step of the proof would
be to extend the domain of p to include real num-
bers (this introduces an inequality) and expand p
in terms of the orthogonal eigenvectors.

n
P= E GiX;
i=1

(2.10)

6-11

By virtue of (2.6) we have that x; = s. It remains
to be shown that ||£p||: is minimized when p =
p’ = nxa/||x2||; ,i.e. when the Fiedler vector is
used. Inserting this expression for p we have that
I£P'[l1 = nAz (2.11)
It is a simple matter to show that adding any
other eigenvector component to p’ while insisting
that ||p|ly = N can only increase the L; norm.
This would complete the proof. Figure 2.10 plots
contours (level sets) of the Fiedler vector for the
multi-component airfoil problem.

d)
ity

iyt If‘
T
7! I‘I"I

Figure 2.10. Contours of Fiedler Vector for
Spectral Partitioning. Dashed lines are less than
the median value.

3.0 Triangulation Methods

Although many algorithms exist for triangu-
lating sites (points) in an arbitrary number of
space dimensions, only a few have been used on
practical problems. In particular, Delaunay tri-
angulation has proven to be a very useful triangu-
lation technique. This section will present some
of the basic concepts surrounding Delaunay and
related triangulations as well as discussing some
of the most popular algorithms for constructing
these triangulations. The discussion of the ad-
vancing front method of grid generation will be
deferred to Professors Morgan and Loéhner.

3.1 Voronoi Diagram and Delaunay Triangulation
Recall the definition of the Dirichlet tessel-
lation in a plane. The Dirichlet tessellation of
a point set is the pattern of convex regions, each
being closer to some point P in the point set than
to any other point in the set. These Dirichlet re-
gions are also called Voronoi regions. The edges

6-12

of Voronoi polygons comprise the Voronoi dia-
gram, see figure 3.1. The idea extends naturally
to higher dimensions.

Figure 3.1 Voronoi diagram of 40 random sites.

Voronoi diagrams have a rich mathematical the-
ory. The Voronoi diagram is believed to be one of
the most fundamental constructs defined by dis-
crete data. Voronoi diagrams have been inde-
pendently discovered in a wide variety of disci-
plines. Computational geometricians have a keen
interest in Voronoi diagrams. It is well known
that Voronoi diagrams are related to convex hulls
via stereographic projection. Point location in a
Voronoi diagram can be performed in O(log(n))
time with O(n) storage for n regions. This is use-
ful in solving post-office or related problems in
optimal time. Another example of the Voronoi
diagram which occurs in the natural sciences can
be visualized by placing crystal “seeds” at ran-
dom sites in 3-space. Let the crystals grow at
the same rate in all directions. When two crys-
tals collide simply stop their growth. The crys-
tal formed for each site would represent that vol-
ume of space which is closer to that site than to
any other site. This would effectively construct
a Voronoi diagram. We now consider the role of
Voronoi diagrams in Delaunay triangulation.

Definition:The Delaunay triangulation of a point
set is defined as the dual of the Voronoi diagram
of the set.

The Delaunay triangulation in two space dimen-
sions is formed by connecting two points if and
only if their Voronoi regions have a common bor-
der segment. If no four or more points are cocir-
cular, then we have that vertices of the Voronoi
are circumcenters of the triangles. This is true be-

cause vertices of the Voronoi represent locations
that are equidistant to three (or more) sites. Also
note that from the definition of duality, edges
of the Voronoi are in one-to-one correspondence
to edges of the Delaunay triangulation (ignoring
boundaries). Because edges of the Voronoi di-
agram are the locus of points equidistant to two
sites, each edge of the Voronoi diagram is perpen-
dicular to the corresponding edge of the Delau-
nay triangulation. This duality extends to three
dimensions in a straightforward way. The De-
launay triangulation possesses several alternate
characterizations and many properties of impor-
tance. Unfortunately, not all of the two dimen-
sional characterizations have three-dimensional ex-
tensions. To avoid confusion, properties and algo-
rithms for construction of two dimensional Delau-
nay triangulations will be considered first. The
remainer of this section will then discuss the three-
dimensional Delaunay triangulation.

3.2 Properties of a 2-D Delaunay Triangulation

(1) Uniqueness. The Delaunay triangulation is
unique. This assumes that no four sites are cocir-
cular. The uniqueness follows from the unique-
ness of the Dirichlet tessellation.

(2) The circumcircle criteria. A triangulation of
N > 2 sites is Delaunay if and only if the circum-
circle of every interior triangle is point-free. For
if this was not true, the Voronoi regions associ-
ated with the dual would not be convex and the
Dirichlet tessellation would be invalid. Related
to the circumcircle criteria is the incircle test for
four points as shown in figures 3.2-3.3.

A

C
N
Figure 3.2 Incircle test for AABC and D (true).

D
A

Figure 3.3 Incircle test for AABC and D (false).

This test is true if point D lies interior to the cir-
cumncircle of AABC which is equivalent to testing
whether ZABC + LCDA is less than or greater
than ZBCD + {BAD. More precisely we have
that

< 180° incircle false
180° A,B,C,D cocircular

> 180° incircle true
(3.1)

Since interior angles of the quadrilateral sum to
360°, if the circumcircle of AABC contains D
then swapping the diagonal edge from position
A—C into B— D guarantees that the new triangle
pair satisfies the circumcircle criteria. Further-
more, this process of diagonal swapping is local,
i.e. it does not disrupt the Delaunayhood of any
triangles adjacent to the quadrilateral.

LABC+/{CDA = {

(3)Edge circle property. A triangulation of sites
is Delaunay if and only if there exists some circle
passing through the endpoints of each and every
edge which is point-free. This characterization is
very useful because it also provides a mechanism
for defining a constrained Delaunay triangulation
where certain edges are prescribed epriori. A tri-
angulation of sites is a constrained Delaunay tri-
angulation if for each and every edge of the mesh
there exists some circle passing through its end-
points containing no other site in the triangula-
tion which is visible to the edge. In figure 3.4, site
d is not visible to the segment a-c because of the
constrained edge a-b,

Figure 3.4 Constrained Delaunay triangulation.
Site d is not visible to a-c due to constrained seg-
ment a-b.

(4) Equiangularity property. Delaunay triangula-
tion maximizes the minimum angle of the triangu-
lation. For this reason Delaunay triangulation of-
ten called the MaxMin triangulation. This prop-
erty is also locally true for all adjacent triangle
pairs which form a convex quadrilateral. This is
the basis for the local edge swapping algorithm of
Lawson [11] described below.

6-13

(5) Minimum Containment Circle. A recent result
by Rajan [12] shows that the Delaunay triangula-
tion minimizes the maximum containment circle
over the entire triangulation. The containment
circle is defined as the smallest circle enclosing
the three vertices of a triangle. This is identical
to the circumcircle for acute triangles and a cir-
cle with diameter equal to the longest side of the
triangle for obtuse triangles (see figure 3.5).

() (b)

Figure 3.5 Containment circles for acute and ob-
tuse triangles.

This property extends to n dimensions. Unfortu-
nately, the result does not hold lexicographically.

(6)Nearest neighbor property. An edge formed
by joining a vertex to its nearest neighbor is an
edge of the Delaunay triangulation. This prop-
erty makes Delaunay triangulation a powerful tool
in solving the closest proximity problem. Note
that the nearest neighbor edges do not describe
all edges of the Delaunay triangulation.

(7) Minimal roughness. The Delaunay triangula-
tion is a minimal roughness triangulation for ar-
bitrary sets of scattered data, Rippa [13]. Given
arbitrary data f; at all vertices of the mesh and a
triangulation of these points, a unique piecewise
linear interpolating surface can be constructed.
The Delaunay triangulation has the property that
of all triangulations it minimizes the roughness of
this surface as measured by the following Sobolev
semi-norm:

[@)oo

This is a interesting result as it does not depend
on the actual form of the data. This also indi-
cates that Delaunay triangulation approximates
well those functions which minimize this Sobolev
norm. One example would be the harmonic func-
tions satisfying Laplace’s equation with suitable
boundary conditions which minimize exactly this

6-14

norm. In a later section, we will prove that a
Delaunay triangulation guarantees a maximum
principle for the discrete Laplacian approxima-
tion (with linear elements).

3.3 Algorithms for 2-D Delaunay Triangulation

We now consider several techniques for De-
launay triangulation in two dimensions., These
methods were chosen because they perform opti-
mally in rather different situations. The discus-
sion of the 2-D algorithms is organized as follows:

(a) Incremental Insertion Algorithms
(i) Bowyer algorithm
(ii) Watson algorithm
(iii) Green and Sibson algorithm
(b) Divide and Conquer Algorithm
(c) Tanemura/Merriam Algorithm

(d) Global Edge Swapping (Lawson)

It should be pointed out that there appears to be
some confusion in the CFD literature concerning
the Bowyer[14] and Watson[15] algorithms. What
is sometimes described as Bowyer’s algorithm is
actually Watson’s algorithm. This is surprising
since both the Bowyer and Watson algorithms ap-
peared as back-to-back articles in the same jour-
nal! The fundamental difference (as we will see)
is that the Bowyer algorithm is implemented in
the Voronoi plane and the Watson algorithm is
implemented in the triangulation plane.

3.3a Incremental Insertion Algorithms
For simplicity, assume that the site to be

added lies within a bounding polygon of the ex-
isting triangulation. If we desire a triangulation
from a new set of sites, three initial phantom
points can always be added which define a tri-
angle large enough to enclose all points to be in-
serted. In addition, interior boundaries are usu-
ally temporarily ignored for purposes of the De-
launay triangulation. After completing the tri-
angulation, spurious edges are then deleted as a
postprocessing step. Incremental insertion algo-
rithms begin by inserting a new site into an exist-
ing Delaunay triangulation. This introduces the
task of point location in the triangulation. Some
incremental algorithms require knowing which tri-
angle the new site falls within. Other algorithms
require knowing eny triangle whose circamcircle
contains the new site. In either case, two ex-
tremes arise in this reguard. Typical mesh adap-
tation and refinement algorithms determine the
particular cell for site insertion as part of the
mesh adaptation algorithm, thereby reducing the
burden of point location. In the other extreme,

initial triangulations of randomly distributed sites
usually require advanced searching techniques for
point location to achieve asymptotically optimal
complexity O(N log N). Search algorithms based
on quad-tree and split-tree data structures work
extremely well in this case. Alternatively, search
techniques based on “walking” algorithms are fre-
quently used because of their simplicity. These
methods work extremely well when successively
added points are close together. The basic idea
is start at the location in the mesh of the previ-
ously inserted point and move one edge (or cell)
at a time in the general direction of the newly
added point. In the worst case, each point inser-
tion requires O(NN) walks. This would result in
a worst case overall complexity O(N?). For ran-
domly distributed points, the average point inser-
tion requires O(N7) walks which gives an overall
complexity O(N %)_ For many applications where
successive points tend to be close together, the
number of walks is roughly constant and these
simple algorithms can be very competitive. Us-
ing any of these techniques, we can proceed with
the insertion algorithms.

Bowyer’s algorithm

The basic idea in Bowyer's algorithm is to
insert a new site into an existing Voronoi diagram
(for example site Q in figure 3.6), determine its
territory (dashed line in figure 3.6), delete any
edges completely contained in the territory, then
add new edges and reconfigure existing edges in
the diagram. The following is Bowyer's algorithm
essentially as presented by Bowyer (see reference
[14] for complete details):

Algorithm: Incremental Delaunay triangulation,
Bowyer [14].

Step 1. Insert new point (site) @ into the Voronoi
diagram.

Step 2. Find any existing vertex in the Voronoi
diagram closer to the new point than to its form-
ing points. This vertex will be deleted in the new
Voronoi diagram.

Step 3. Perform tree search to find remaining set
of deletable vertices V that are closer to the new
point than to their forming points. (In figure 3.6
this would be the set {vs,vs,v5})

Step 4. Find the set P of forming points corre-
sponding to the deletable vertices. In figure 3.6,
this would be the set {p2,p3,ps,ps,p7}.

Step 5. Delete edges of the Voronoi which can
be described by pairs of vertices in the set V if
both forming points of the edges to be deleted
are contained in P

Step 6. Calculate the new vertices of the Voronoi,
compute their forming points and neighboring ver-
tices, and update the Voronoi data structure.

Figure 3.6 Voronoi diagram modified by Bowyer.

Implementational details and suggested data
structures are given in the paper by Bowyer.

Watson’s algorithm

Implementation of the Watson {15] algorithm
is relatively straightforward. The first step is to
insert a new site into an existing Delaunay trian-
gulation and to find eny triangle (the root) such
that the new site lies interior to that triangles cir-
cumcircle. Starting at the root, a tree search is
performed to find all triangles with circumncircle
containing the new site. This is accomplished by
recursively checking triangle neighbors. (The re-
sulting set of deletable triangles violating the cir-
cumcircle criteria is independent of the starting
root.) Removal of the deletable triangles exposes
a polygonal cavity surrounding site @ with all the
vertices of the polygon visible to site). The in-
terior of the cavity is then retriangulated by con-
necting the vertices of the polygon to site @, see
figure 3.7(b). This completes the algorithm. A
thorough account of Watson’s algorithm is given
by Baker [16] where he considers issues associated
with constrained triangulations.

Algorithm: Incremental Delaunay triangulation,
Watson [15].

Step 1. Insert new site Q into existing Delaunay
triangulation.

Step 2. Find any triangle with circumcircle con-
taining site Q.

Step 3. Perform tree search to find remaining set
of deletable triangles with circumecircle containing
site Q.

Step 4. Construct list of edges associated with
deletable triangles. Delete all edges from the list
that appear more that once.

6-15

Step 5. Connect remaining edges to site ¢ and
update Delaunay data structure.

Figure 3.7 (a) Delaunay triangulation with site
@ added. (b) Triangulation after deletion of in-
valid edges and reconnection.

Green and Sibson algorithm

The algorithm due to Green and Sibson [17)
is very similar to the Watson algorithm. The pri-
mary difference is the use of local edge swapping
to reconfigure the triangulation. The first step is
location, i.e. find the triangle containing point
Q. Once this is done, three edges are then cre-
ated connecting @ to the vertices of this triangle
as shown in figure 3.8(a). If the point falls on an
edge, then the edge is deleted and four edges are
created connecting to vertices of the newly cre-
ated quadrilateral. Using the circumcircle criteria
it can be shown that the newly created edges (3
or 4) are automatically Delaunay. Unfortunately,
some of the original edges are now incorrect. We
need to somehow find all “suspect” edges which
could possibly fail the circle test. Given that this
can be done (described below), each suspect edge
is viewed as a diagonal of the quadrilateral formed
from the two adjacent triangles. The circumcircle
test is applied to either one of the two adjacent
triangles of the quadrilateral. If the fourth point
of the quadrilateral is interior to this circumcircle,
the suspect edge is then swapped as shown in fig-
ure 3.8(b), two more edges then become suspect.
At any given time we can immediately identify all
suspect edges. To do this, first consider the sub-
set of all triangles which share @ as a vertex. One

6-16

can guarantee at all times that all initial edges in-
cident to @ are Delaunay and any edge made inci-
dent to @} by swapping must be Delaunay. There-
fore, we need only consider the remaining edges
of this subset which form a polygon about @ as
suspect and subject to the incircle test. The pro-
cess terminates when all suspect edges pass the
circumcircle test.

Figure 3.8 (a) Inserting of new vertex, (b) Swap-
ping of suspect edge.

The algorithm can be summarized as follows:

Algorithm: Incremental Delaunay Triangulation,
Green and Sibson {17]

Step 1. Locate existing cell enclosing point Q.
Step 2. Insert site and connect to 3 or 4 surround-
ing vertices.

Step 3. Identify suspect edges.

Step 4. Perform edge swapping of all suspect
edges failing the incircle test.

Step 5. Identify new suspect edges.

Step 6. If new suspect edges have been created,
go to step 3.

The Green and Sibson algorithm can be im-
plemented using standard recursive programming
techniques. The heart of the algorithm is the re-
cursive procedure which would take the following
form for the configuration shown in figure 3.9:

procedure swap| vg, vy, vz, U3, edges]
if(incircle[vg,v;,v7,v3] = TRUE)then
call reconfig-edges|vg, v1, vz, vs, edges]
call swaplvg, v, v4, vo, edges]
call swap{vg, ve, vs, v3, edges]
endif

endprocedure

This example illustrates an important point.
The nature of Delaunay triangulation guarantees
that any edges swapped incident to @} will be final
edges of the Delaunay triangulation. This means
that we need only consider forward propagation
in the recursive procedure. In a later section,
we will consider incremental insertion and edge
swapping for generating non-Delaunay triangula-
tions based on other swapping criteria. This al-
gorithm can also be programmed recursively but
requires backward propagationin the recursive im-
plementation. For the Delaunay triangulation al-
gorithm, the insertion algorithm would simplify
to the following three steps:

Recursive Algorithm: Incremental Delaunay
Triangulation, Green and Sibson

Step 1. Locate existing cell enclosing point Q.
Step 2. Insert site and connect to surrounding
vertices.

Step 3. Perform recursive edge swapping on newly
formed cells (3 or 4).

3 3 5
) 1 (b

4
) 1

Figure 3.9 Edge swapping with forward propa-
gation.

3.3b Divide-and-Conguer Algorithm

In this algorithm, the sites are assumed to be
prespecified. The idea is to partition the cloud of
points T (sorted along a convenient axis) into left
(L) and right (R) half planes. Each half plane
is then recursively Delaunay triangulated. The
two halves must then be merged together to form
a single Delaunay triangulation. Note that we
assume that the points have been sorted along

the x-axis for purposes of the following discussion
(this can be done with O(N log N) complexity).

Algorithm: Delaunay Triangulation via Divide-
and-Conquer

Step 1. Partition T into two subsets T and Tg
of nearly equal size.

Step 2. Delaunay triangulate Ty and Tg recur-
sively.

Step 3. Merge T, and Ty into a single Delaunay
triangulation.

Figure 3.11 Triangulation after merge.

The only difficult step in the divide-and-conquer
algorithm is the merging of the left and right tri-
angulations. The process is simplified by noting
two properties of the merge:

(1) Only cross edges (L-R or R-L) are created in
the merging process. Since vertices are neither
added or deleted in the merge process, the need
for anew R-R or L-L edge indicates that the origi-
nal right or left triangulation was defective. (Note
that the merging process will require the deletion
of edges L-L and/or R-R.)

(2) Vertices with minimum (mazimum) y value in
the left and right triangulations always connect

6-17

as cross edges. This is obvious given that the
Delaunay triangulation produces the convex hull
of the point cloud.

Given these properties we now outline the “ris-
ing bubble” [1] merge algorithm. This algorithm
produces cross edges in ascending y-order. The
algorithm begins by forming a cross edge by con-
necting vertices of the left and right triangula-
tions with minimum y value (property 2). This
forms the initial cross edge for the rising bubble
algorithm. More generally consider the situation
in which we have a cross edge between A and B
and all edges incident to the points A and B with
endpoints above the half plane formed by a line
passing through A — B, see figure 3.12.

Figure 3.12 Circle of increasing radius in rising
bubble algorithm.

This figure depicts a continuously transformed
circle of increasing radius passing through the
points A and B. Eventually the circle increases
in size and encounters a point C from the left or
right triangulation (in this case, point C is in the
left triangulation). A new cross edge (dashed line
in figure 3.12) is then formed by connecting this
point to a vertex of A — B in the other half trian-
gulation. Given the new cross edge, the process
can then be repeated and terminates when the
top of the two meshes is reached. The deletion
of L — L or R — R edges can take place during
or after the addition of the cross edges. Prop-
erly implemented, the merge can be carried out
in linear time, O(N). Denoting T(N) as the to-
tal running time, step 2 is completed in approxi-
mately 2T(N/2). Thus the total running time is
described by the recurrence T(N) = 2T(N/2) +
O(N) = O(N log N).

3.3¢ Tanemura/Merriam Algorithm

Another algorithm for performing Delaunay
triangulation is the advancing front method de-
veloped by Tanemura, Ogawa, and Ogita [18] and
later rediscovered by Merriam [19]. Here the idea
is to start with a known boundary edge and form

6-18

a new triangle by joining both endpoints to one of
the interior points. This may generate up to two
additional edges, providing they aren't already
part of another triangle. After all the boundary
edges have been incorporated into triangles, the
new edges will appear to be a (somewhat ragged)
boundary. This moving boundary is often called
an advancing front. The process continues until
the front vanishes. The problem here is to make
the triangulation Delaunay. This can be done
by taking advantage of the incircle property; the
circumcircle of a Delaunay triangle contains no
other points. This allows the appropriate point
to be selected iteratively as shown in Fig. 3.13.

Figure 3.13 A straightforward iteration proce-
dure selects the node which generates the small-
est circumcircle for a given edge. The absence of
nodes inside the circumcircle establishes conver-
gence.

The iteration begins by selecting any node which
is on the desired side of the given edge. If there
are no such nodes, the given edge is part of a con-
vex hull. Next, the circumcircle is constructed
which passes through the edge endpoints and the
selected node. Finally, check for nodes inside this
circle. If there are any, replace the selected node
with the node closest to the circumcenter and re-
peat the process. When the circumcircle is empty
of nodes, connect the edge endpoints to the se-
lected node.

3.3d Delaunay Triangulation Via Edge Swapping

This algorithm due to Lawson [11] assumes
that a triangulation exists (not Delaunay) then
makes it Delaunay through application of edge
swapping such that the equiangularity of the tri-
angulation increases. The equiangularity of a tri-
angulation, A(T), is defined as the ordering of
angles A(T) = [a1, 09,03, ...,03n(c),] such that
ai < o; if i < j. We write A(T*} < A(T) if
o < ajand of = a; for 1 £ i < j. A triangu-
lation T is globally equiangular if A(T*) < A(T)
for all triangulations T* of the point set. Law-
son’s algorithm examines all interior edges of the
mesh. Each of these edges represents the diag-
onal of the quadrilateral formed by the union of

the two adjacent triangles. In general one must
first check if the quadrilateral is convex so that
a potential diagonal swapping can place without
edge crossing. If the quadrilateral is convex then
the diagonal position is chosen which optimizes a
local criterion (in this case the local equiangular-
ity). This amounts to maximizing the minimum
angle of the two adjacent triangles. Lawson'’s al-
gorithm continues until the mesh is locally opti-
mized and locally equiangular everywhere. It is
easily shown that the condition of local equiangu-
larity is equivalent to satisfaction of the incircle
test described earlier. Therefore a mesh which
is locally equiangular everywhere is a Delaunay
triangulation. Note that each new edge swap-
ping (triangulation T™*) insures that the global
equiangularity increases A(T*) > A(T). Because
the triangulation is of finite dimension, this guar-
antees that the process will terminate in a finite
number of steps.

Iterative Algorithm: Triangulation via Law-
son’s Algorithm
swapedge = true
While(swapedge)do
swapedge = false
Do (all interior edges)
If (adjacent triangles form conver quad)then
Swap diagonal to form T*.
If (optimization criteria satisfied)then
T=T*
swapedge = true
EndIf
EndIf
EndDo
EndWhile

When Lawson’s algorithm is used for construct-
ing Delaunay triangulations, the test for quadri-
lateral convexity is not needed. It can be shown
that nonconvex quadrilaterals formed from tri-
angle pairs never violate the circumcircle test.
When more general optimization criteria is used
(discussed later), the convex check must be per-
formed.

3.4 Other 2-D Triangulation Algorithms

In this section, other algorithms which do
not necessarily produce Delaunay triangulations
are explored.

The MinMaz Triangulation

As Babugka and Aziz [22] point out, from the
point of view of finite elements the MaxMin {De-
launay) triangulation is not essential. What is
essential is that no angle be too close to 180°. In

other words, triangulations which minimize the
maximum angle are more desirable. These tri-
angulations are referred to as MinMax triangula-
tions. One way to generate a 2-D MinMax tri-
angulations is via Lawson’s edge swapping algo-
rithm. In the case, the diagonal position for con-
vex pairs of triangles is chosen which minimizes
the maximum interior angle for both triangles.
The algorithm is guaranteed to converge in a fi-
nite number of steps using arguments similar to
Delaunay triangulation. Figures 3.14 and 3.15
present a Delaunay (MaxMin) and MinMax tri-
angulation for 100 random points.

Figure 3.15 MinMax Triangulation.

Note that application of local MinMax optimiza-
tion via Lawson’s algorithm may only result in
a mesh which is locally optimal and not neces-
sarily at a global minimum. Attaining a globally
optimal MinMax triangulation is a much more
difficult task. The best algorithm to present date
(Edelsbrunner, Tan, and Waupotitsch [23]) has a
high complexity of O(n?logn). Wiltberger [24]
has implemented a version of the Green and Sib-
son algorithm [17] which has been modified to

6-19

produce locally optimal MinMax triangulations
using incremental insertion and local edge swap-
ping. The algorithm is implemented using re-
cursive programming with complete forward and
backward propagation (contrast figures 3.16 and
3.9). This is a necessary step to produce locally
optimized meshes.

w
G
L]

(2 1 (b)

Figure 3.16 Edge swapping with forward and
backward propagation in Wiltberger algorithm.

The MinMax triangulation has proven to be very
useful in CFD. Figure 3.17 shows the Delaunay
triangulation near the trailing edge region of an
airfoil with extreme point clustering.

Figure 3.17 Delaunay triangulation near trailing
edge of airfoil.

Upon first inspection, the mesh appears flawed
near the trailing edge of the airfoil. Further in-
spection and extreme magnification near the trail
edge of the airfoil (figure 3.18) indicates that the
grid is a mathematically correct Delaunay tri-
angulation. Because the Delaunay triangulation
does not control the maximum angle, the cells

6-20

near the trailing edge have angles approaching
180°. The presence of nearly collapsed triangles
leaves considerable doubt as to the accuracy of
any numerical solutions computed in the trailing
edge region.

Figure 3.18 Extreme closeup of Delaunay trian-
gulation near trailing edge of airfoil.

Edge swapping based on the MinMax criteria via
Lawson’s algorithm or incremental insertion us-
ing the Wiltberger algorithm produce the desired
result as shown in figure 3.19.

Figure 3.19 MinMax triangulation near trailing
edge of airfoil.

The Greedy Triangulation

A greedy method is one that never undoes
what it did earlier. The greedy triangulation con-
tinually adds edges compatible with the current

triangulation (edge crossing not allowed) until the
triangulation is complete, i.e. Euler’s formula is
satisfied. One objective of a triangulation might
be to choose a set of edges with shortest total
length. The best that the greedy algorithm can
do is adopt a local criterion whereby only the
shortest edge available at that moment is con-
sidered for addition to the current triangulation.
(This does not lead to a triangulation with short-
est total length.) Note that greedy triangulation
easily accommodates constrained triangulations
containing interior boundaries and a nonconvex
outer boundary. In this case the boundary edges
are simply listed first in the ordering of candidate
edges. The entire algorithm is outlined below.

Algorithm: Greedy Triangulation

Step 1. Initialize triangulation T as empty.

Step 2. Compute (3) candidate edges.

Step 3. Order pool of candidate edges.

Step 4. Remove current edge e, from ordered
pool.

Step 5. If(e, does not intersect edges of T) add
e, toT

Step 6. If(Euler’s formula not satisfied) go to
Step 4.

5

Figure 3.20 Greedy Triangulation.

Figures 3.14 and 3.20 contrast the Delaunay
and greedy algorithm. The lack of angle con-
trol is easily seen in the greedy triangulation.
The greedy algorithm suffers from both high run-
ning time as well as storage. In fact a naive im-
plementation of Step 5. leads to an algorithm
with O{N3) complexity. Efficient implementation
techniques are given in Gilbert [25] with the result
that the complexity can be reduced to O(N?log N)
with O(N?) storage.

Data Dependent Triangulation

Unlike mesh adaptation, a data dependent
triangulation assumes that the number and posi-
tion of vertices is fixed and unchanging. Of all
possible triangulations of these vertices, the goal
is to find the best triangulation under data depen-
dent constraints. In Nira, Levin, and Rippa [26],
they consider several data dependent constraints
together with piecewise linear interpolation. In
order to determine if a new mesh is “better” than
a previous one, a local cost function is defined for
each interior edge. Two choices which prove to be
particularly effective are the JND (Jump in Nor-
mal Derivatives) and the ABN (Angle Between
Normals). Using their notation, consider an inte-
rior edge with adjacent triangles Ty and T2. Let
P(z,y); and P(z,y)2 be the linear interpolation
polynomials in T} and T, respectively:

P(z,y) =aiz+bhy+a

Py(z,y) =ax+ by + 2

The JND cost function measures the jump in nor-
mal derivatives of P, and P across a common
edge with normal components n. and n,.

3(.fT1 e) = |nz(al - 0'2) + ny(bl - b2)|1
(JND cost function)
The ABN measures the acute angle between the
two normals formed from the two planes P, and
P,. Again using the notation of [26]:

s(fr,e) =6 = cos™1(A)

ajag + b1by + 1
Ve + 0+ D@+ + 1)’

(ABN cost function)
The next step is to construct a global measure of
these cost functions. This measure is required to
decrease for each legal edge swapping. This in-
sures that the edge swapping process terminates.
The simplest measures are the l; and I; norms:

Ri(fr)= Y ls(fr,e)l

edges

Ry(fr)= Y s(fr.e)’

edges

Recall that a Delaunay triangulation would result
if the cost function is chosen which maximizes the
minimum angle between adjacent triangles (Law-
son’s algorithm). Although it would be desirable
to obtain a global optimum for all cost functions,

6-21

this could be very costly in many cases. An al-
ternate strategy is to abandon the pursuit of a
globally optimal triangulation in favor of a lo-
cally optimal triangulation. Once again Lawson’s
algorithm is used. Note that in using Lawson’s al-
gorithm, we require that the global measure de-
crease at each edge swap. This is not as simple
as before since each edge swap can have an effect
on other surrounding edge cost functions. Never-
theless, this domain of influence is very small and
easily found.

Iterative Algorithm: Data Dependent Trian-
gulation via Modified Lawson’s Algorithm
swapedge = true
While(swapedge)do
swapedge = false
Do (all interior edges)
If (edjacent triangles
form conver quadrilateral)then
Swap diagonel to form T*.
If (R(fr-) < R(fr))then
T=T"
swapedge = true
EndIf
EndIf
EndDo
EndWhile

Edge swapping only occurs when R(fr-) < R(fr)
which guarantees that the method terminates in
a finite number of steps. Figures 3.14 and 3.21
plot the Delaunay triangulation of 100 random
vertices in a unit square and piecewise linear con-
tours of (14 tanh(9y — 9z))/9 on this mesh. The
exact solution consists of straight line contours
with unit slope.

Figure 3.21 Piecewise Linear Interpolation of
(1 + tanh(9y — 9x))/9.

6-22

In figures 3.22 and 3.23 the data dependent tri-
angulation and solution contours using the JND
criteria and !, measure suggested in [26] are plot-
ted.

Figure 3.23 Piecewise Linear Interpolation of
(1 + tanh(%y — 9z))/9.

Note that the triangulations obtained from this
method are not globally optimal and highly de-
pendent on the order in which edges are accessed.
Several possible ordering strategies are mentioned
in [27].

3.5 2-D Steiner Triangulations

Definition: A Steiner triangulation is any tri-
angulation that adds additional sites to an exist-
ing triangulation to improve some measure of grid
quality.

Technically speaking, the method of advancing
front grid generation discussed by Professors Mor-
gan and Lohner in these notes would be a spe-
cial type of Steiner triangulation. The insertion
algorithms described earlier also provide a sim-
ple mechanism for generating Steiner triangula-
tions. Holmes [28] demonstrated the feasibility of

inserting sites at circumcenters of Delaunay trian-
gles into an existing 2-D triangulation to improve
measures of grid quality. This has the desired
effect of placing the new site in a position that
guarantees that no other site in the triangulation
can lie closer that the radius of the circumcircle,
see figure 3.24. In a loose sense, the new site
is placed as far away from other nearby sites as
conservatively possible.
c b

(a) b)

Figure 3.24 Inserting site at circumcenter of acute
and obtuse triangles.

Warren et al [29] and Anderson [30] further demon-
strated the utility of this type of Steiner trian-
gulation in the generation and adaptive refine-
ment of 2-D meshes. The algorithm developed
by Wiltberger [24] also permits Steiner triangu-
lations based on either MinMax or MaxMin (De-
launay) insertion. Only in the latter case is the
insertion at triangle circumcenters truly justifi-
able. The paragraphs below give an expanded
discussion of 2-D Steiner triangulation.

Steiner Grid Generation

The 2-D Steiner point grid generation algo-
rithm described in [28,29,30] consists of the fol-
lowing steps. The first step is the Delaunay trian-
gulation of the boundary data. Usually three or
four points are placed in the far field with convex
hull enclosing all the boundary points. Starting
with a triangulation of these points, sites corre-
sponding to boundary curves are incrementally
inserted using Watson's algorithm in [28,29,30]
and Green and Sibson’s algorithm in [17] as shown
in figure 3.25. The initial triangulation does not
guarantee that all boundary edges are members of
the triangulation. This can be remedied in a vari-
ety of ways. One technique adds additional points
to the triangulation so as to guarantee that the
resulting Delaunay triangulation contains all the
desired boundary edges, see reference [16]. An-
other approach performs local edge swapping so
as to produce a constrained Delaunay triangu-
lation which guarantees that all boundary edges

are actual edges of the triangulation.

Figure 3.25 Initial triangulation of boundary
points.

In either event, the boundary edges are marked so
that they cannot be removed as the triangulation
is refined. The algorithms described in [28,29,30]
interrogate triangles in an arbitrary order (this
makes the triangulation nonunique). The user
must specify some measure of quality for triangle
refinement (aspect ratio, area, containment circle
radius, for example) and a threshold value for the
measure. If a triangle fails to meet the threshold
value, the triangulation is refined by placing a
new site at the circumcenter of the failed trian-
gle via Watson’s algorithm. Some care must be
taken to insure that measures are chosen which
are guaranteed to be reduced when the refine-
ment takes place. Using thresholding in this way
does not give the user direct control over the ac-
tual number of triangle generated in the process
of Steiner refinement. Wiltberger takes a dif-
ferent approach by maintaining a dynemic heap
data structure of the quality measure. (Heap
structures are a very efficient way of keeping a
sorted list of entries with insertion and query time
O(log N) for N entries.) The triangle with the
largest value of the specified measure will be lo-
cated at the top of the heap at all times dur-
ing the triangulation. This makes implementa-
tion of a Steiner triangulation which minimizes
the mazimum value of the measure very efficient
{(and unique). In this implementation, the user
can either specify the number of triangles to be
generated or a threshold value of the measure.
Note that multiple measures can be refined lex-
icographically. Figure 3.26 shows a Steiner tri-

6-23

angulation using the Wiltberger algorithnr with
MaxMin insertion and refinement based on max-
imam aspect ratio.

7
Ay,
% ﬁ!ﬁ‘f‘ 3

PO K PR
o ULV WA
""%Kﬂ“’gm%‘.{v‘g@
R AAvany ATy
RSO

A

e wﬁv@vﬂ

Figure 3.26 Steiner triangulation with sites in-
serted at circumcenters to reduce maximum cell
aspect ratio.

(]

= 'A\-'
NN

S

4
oy

POE AL “é (
:45;7)'&..(‘

Figure 3.27 Steiner triangulation of Texas coast
and the Gulf of Mexico.

This triangulation has proven to be very flexible.
For instance, figure 3.27 shows a Steiner triangu-
lation of the Texas coast and Gulf of Mexico.

3.6 Three-Dimensiona] Triangulations

The Delaunay triangulation extends naturally
into three dimensions as the geometric dual of the
3-D Voronoi diagram. The Delaunay triangula-
tion in 3-D can be characterized as the unique

6-24

triangulation such that the circumsphere passing
through the four vertices of any tetrahedron must
not contain any other point in the triangulation.
As in the 2-D case, the 3-D Delaunay triangula-
tion has the property that it minimizes the max-
imum containment sphere (globally but not lo-
cally). In two dimensions, it can be shown that
a mesh entirely comprised of acute triangles is
automatically Delaunay. To prove this, consider
an adjacent triangle pair forming a quadrilateral.
By swapping the position of the diagenal it is
easily shown that the minimum angle always in-
creases. Rajan [12] shows the natural extension
of this idea to three or more space dimensions.
He defines a “self-centered” simplex in R to be
a simplex which has the circumcenter of its cir-
cumsphere interior to the simplex. In two dimen-
sions, acute triangles are self-centered and obtuse
triangles are not. Rajan shows that a triangula-
tion entirely composed of self-centered simplices
in R¢ is antomatically Delaunay.

3.6a 3-D Bo

The algorithms of Bowyer [14] and Watson
[15] extend naturally to three dimensions with es-
timated complexities of O(N%/%) and O(N*/?) for
N randomly distributed vertices. They do not
give worst case estimates. It should be noted
that in three dimensions, Klee [20] shows that
the maximum number of tetrahedra which can
be generated from N vertices is O(N?). Thus an
optimal worst case complexity would be a least
O(N?). Under normal conditions this worst case
scenario is rarely encountered. Baker [16] reports
more realistic actual run times for Watson’s algo-
rithm.

3.6b 3-D Edge Swapping Algorithms

Until most recently, the algorithm of Green
and Sibson based on edge swapping was thought
not to be extendable to three dimensions because
it was unclear how to generalize the concept of
edge swapping to three or more dimensions. In
1986, Lawson published a paper [21] in which he
proved the fundamental combinatorial result:

Theorem: (Lawson, 1986) The convex hull of
d+2 points in R? can be triangulated in at most
2 ways.

Joe [31,32], and Rajan [12) have constructed
algorithms based on this theorem. In joint work
with A. Gandhi [33], we independently constructed
an incremental Delaunay triangulation algorithm
based on Lawson’s theorem. The remainder of
this section will review our algorithm and the ba-
sic ideas behind 3-D edge swapping algorithms.

er and Watson Algorithms

It is useful to develop a taxonomy of pos-
sible configurations addressed by Lawson’s theo-
rem. Figure 3.28 shows configurations in 3-D of
five points which can be triangulated in only one
way and hence no change is possible. We call
these arrangements “unswappable”. Figure 3.29
shows configurations which allow two ways of tri-
angulation. It is possible to flip between the two
possible triangulations and we call these arrange-
ments “swappable”.

(a) (b) {©)

_T

v

Figure 3.28 Generic nonswappable configurations
of 5 points. Shaded region denotes planar surface.

(» (b) (<) ()

Figure 3.29 Generic swappable configurations of
5 points. Shaded region denotes planar surface.

There are two arrangements that allow two
triangulations. Figures 3.29(a) and 3.29(b) show
the subclass of companion triangulations that can
be transformed from one type to another thereby
changing the number of tetrahedra from 2 to 3
or vice-versa. Figures 3.29(c) and 3.29(d) show
the other subclass of configurations that can be
transformed from one type to another while keep-
ing constant the number of tetrahedra (2). These
figures reveal an important difference between the
two and three-dimensional algorithms. The num-
ber of tetrahedrons involved in the swapping op-
eration need not be constant.

The 3-D edge swapping algorithm is based
on flipping between the two ways of triangulating
the configurations in figure 3.29. One good way of
finding all sets of five points in the mesh is to loop
through all the faces in the mesh and considering
the five points that make up the two adjoining
tetrahedra for that face. Below we present the
facewise edge swapping primitive.

Primitive: EDGE_SWAP(face)
Let C = { Set of tetrahedra made from the 5
nodes of the two adjoining tetrahedra }

If(shape(C) = convex)then
Let T = current triangulation
Let T* = alternate triangulation (if it exists)
If(Quality(T*) > Quality(T))then
[Edge Swap T into T*]
Endif
Endif

The first step is to find all the tetrahedra
that are described by the five nodes of the two
tetrahedra adjacent to the face in question. There
is a maximum of four tetrahedra that can be built
from five nodes. Since any two tetrahedra made
from the same five points will have to share three
points (i.e., a face) it is sufficient to only look
at the four neighboring tetrahedra of any of the
two tetrahedra already known. This constitutes
a linear time algorithm for finding all the non-
overlapping tetrahedra made from the five points.

If these tetrahedra form a convex shape, then
the configuration is described by one of the config-
urations in figures 3.28 and 3.29 (configurations of
the convex hull) and edge swapping is permitted.
If, for example, only two of the three tetrahedra
in figure 3.29(b) were present, the two tetrahe-
dra will form a concave shape. Obviously, edge
swapping concave shapes is not possible without
possibly creating overlapping tetrahedra in the
mesh. For swappable configurations, a check is
performed to see if the local mesh quality mea-
sure (discussed further below) will improve by
edge swapping into the alternate triangulation. If
it does, the swap is performed; otherwise the tri-
angulation is unchanged. This technique offers a
distinct advantage over others (Bowyer’s or Wat-
son’s algorithm) in that it allows the use of any
arbitrary mesh quality measure.

Computational Aspects of 3-D Edge Swapping

Before proceding further, it is useful to dis-
cuss the computational aspects of some of the op-
erations needed for the edge swapping algorithm.

¢ Determining Convexity: This operation tests
whether the shape formed by the tetrahedron T;
and T3 is convex. Let the vertices of the tetra-
hedra be numbered T = (1,2,3,4) and T =
(1,2,3,5) i.e., (1,2,3) is the face shared by 7;
and 73 and nodes 4 and 5 are at the two ends
of 77 and T; respectively. We make use of the
notion of barycentric coordinates to perform the
convexity test. The by 2 3 4 satisfying

1 1 1 1 b 1
I Ty T3 T4 ba| _ |75
i Y2 ¥ W bs s

Z1 29 23 24 b4 25

6-25

are called the barycentric coordinates of node 5.
They indicate the position of 5 in relation to the
nodes of tetrahedron 7;. For each s, the sign of
b, indicates the position of 5 relative to the plane
H, passing through the triangular face opposite
node s. Thus b, = 0 when 5isin H,, b, > 0 when
5 is on the same side of H, as node s, and b, < 0
when 5 is on the opposite side of H, from node
s. Clearly, by 2,34 > 0if 5 lies inside tetrahedron
(1,2,3,4). If we imagine a cone formed by planes
H, 23 of Ty, then 7; and 7, would form a convex
shape if and only if node 5 lies in the cone on the
side opposite from node 4 (figure 3.30).

Figure 3.30 Convexity cone for node 4.

The conditions to satisfy this requirement are by <
0 and b; 2 3 > 0. In order to test if three cells form
a convex shape, the nodes are renumbered as if
the three cell configuration were edge swapped
into the corresponding two cell configuration for
purposes of the barycentric test. For example,
consider a three cell configuration with number-
ing (1,2,3,4), (2,3,4,5), and (1,2,4,5), then the
corresponding two cell configuration would have
(1,3,5) as the common face and nodes 2, and 4
at the ends of the two tetrahedra. Notice that
if the three tetrahedra formed a convex shape,
then it would be possible to edge swap it to a
convex two tetrahedra configuration. If the three
cells formed a concave shape, however, the trans-
formed two cell triangulation would contain over-
lapping tetrahedra which the test above would
label as concave.

Using Cramer’s rule to solve the Ar = b
problem posed above requires computing deter-
minants of the form

1 1 1 1
a1y a1z 413 Qi4
ag) Ggzz2 a2z Q424
a3z; 432 433 Q@34

five times. An optimization is possible by exploit-
ing the property of determinants that subtract-
ing one row or column from another leaves the
determinant unchanged. If we subtract the first
column from the rest, we simplify the above 4x4

6-26

determinant into a 3x3 one.

1 0 0 0
a11 aiz —aj; G113 — 411 G414 — a1
Gz1 agz —ag) G23 — 421 G4 — Q21
431 a3z — 431 G33 — a3 Q34 — a3
@12 — 413 @13 — 411 di14 —ag
= |Ggz —G21 G23 —agz1 Q24 — a2
G32 —G31 433 —Aaz] a34 — a3

¢ Delaunay Circumsphere test: The 3-D Delau-
nay triangulation is defined as the unique trian-
gulation such that the circumsphere of any tetra-
hedron coptains no other point in the mesh. To
determine where point F lies in relation to the cir-
cumsphere of tetrahedron (A, B,C, D), denoted
by(O ABCD), we use the InSphere primitive :

<0
InSphere(E) { =0
>0

if E is inside () ABCD
if Eison) ABCD
if E is outside O ABCD

where InSphere is computed from the following
determinant:

InSphere(E)

1 1 1 1 1 1 1
A TB TCc &p XE ! !
={va vp yc yp yel| A ¥B Tc ID
Za 2B zc ip g Ya ¥B ¥Yc UYp
wi wh wi wh wil 4 B OO D
Tp—TA o — A Ip—T4 TE—TA
—|¥B8—V¥A ¥c—Ya YD —Ya YE—Y4
2B — ZA ZC — kA Zp — %A Z2E — Z4
wh—wh wi-whi wh-wi wi-w}
Ip—ITpA XYCc—TA Tp—ZA
YB—Ya ¥Yc—YA YD —Ya
ZB— %A ZC—ZA 2D 24

and wh =z% +yh + 2%

The first determinant is the 3-D extension
of Guibas’ InCircle primitive [1]. It represents
the volume of a pentatope whose vertices are the
points A, B, C, D, F projected onto the 4-D
paraboloid (z? + y* + z?). (A pentatope is the
simplest polytope in 4-D just as a tetrahedron is
the simplest polytope in 3-D and a triangle in 2-
D. A pentatope can be constructed by joining the
tetrahedron to a fifth point outside its 3-space.)
The coordinates in 3-space of these five points
remain unchanged; they simply acquire a value
in their fourth coordinate equal to the square of
their distances from the origin. The volume of
this polytope is positive if point F lies outside

QO ABCD and negative if point E lies inside O
ABCD, provided that tetrahedron (4,B,C, D)
has a positive volume (as given by the second
determinant). The determinant is degenerate if
point E lies exactly on) ABCD.

This test is motivated by the observation in
3-D that the intersection of a cylinder and a unit
paraboloid is an ellipse lying in a plane (figure
3.31). So, any four co-circular points in 2-D will
project to four co-planar points and the volume
of the tetrahedra made from these four co-planar
points will be zero. The paraboloid is a surface
that is convex upward and the points interior to
a circle get projected to the paraboloid below the
intersection plane and the points exterior to it
get projected above the the intersection plane.
If a point lies outside the circumcircle of three
other points, the tetrahedron made from these
four points will have positive volume provided the
three points were ordered in a counter-clockwise
fashion. The volume will be negative if the point
lies inside the circumcircle.

4

Figure 3.31 Projection of cocircular points onto
unit paraboloid.

The second determinant is the 3-D exten-
sion of Guibas’ CCW (counter clock-wise) prim-
itive [1] which computes the volume of tetrahe-
dron (A, B,C,D). Thus the InSphere primitive
works irrespective of how the points A, B, C,
and D are ordered. If it can be guaranteed that
all the tetrahedra in a mesh have their vertices
ordered to have positive volumes then the need
to compute the second determinant is eliminated.
The InSphere primitive becomesill-behaved when
the points A, B, C, and D all lie nearly on a
plane because the position of the circumsphere
with respect to the points (i.e., whether the cir-
cumsphere is above or below the plane) becomes
very sensitive to small perturbations in the coor-
dinates of the five points.

3-D Mesh Optimization

The 3-D edge swapping algorithm can be used
to optimize existing triangulations. In fact, there
is no way to triangulate a given set of points based
on the minmax or maxmin of the face angles di-
rectly. An alternative is to start with an existing
triangulation and optimize it. This requires that
we cycle through all the faces in a mesh and apply
the edge swapping procedure at each step. This
process is continued until no more swaps are pos-
sible.

Algorithm: Three-dimensional mesh optimiza-
tion.
while (swaps occurred in the last cycle over faces)
for all faces
EDGESWAP (face)
endfor
endwhile

In the following paragraphs, we discuss a few swap-
criteria and examine the meshes they produce.

Global Edge Swapping

The InSphere criteria is binary in the sense
that either the triangulation of a set of five points
satisfies the criteria or it does not. It can also be
shown that of the two ways to triangulate a set of
five points, if one way fails the InSphere criteria,
then the other one will pass and vice-versa. Cases
1 and 3 in figure 3.15 and cases 1, 3, and 5 in
figure 3.16 will always pass the InSphere criteria.

The Delaunay triangulation is unique for a
given set of points. Lawson also noticed the re-
lation between local and global properties of the
Delaunay InSphere criteria: a triangulation is De-
launay if and only if the triangulations of sets of
five points corresponding to all the interior faces
in the mesh satisfy the InSphere criteria. This
means that if every face satisfies the Delaunay
criteria, then the whole mesh must be a Delau-
nay triangulation.

Joe [32] has proven, however, that process-
ing faces in an arbitrary way may result in getting
stuck in local optima. This is an important dif-
ference between two and three dimensional com-
binatorial edge swapping.

3-D MinMaz and MazMin Triangulations

The edge swapping algorithm can be applied
locally to produce a triangulation that minimizes
the maximum face angle. In 2-D, the edge swap-
ping algorithm (working with edge angles) gets
stuck in local minima and depending on the or-
der in which the edges were traversed, different
local minima are reached. In practice, the local

6-27

minima all seem very close to the global mini-
mum which makes edge swapping a practical way
to get a nearly optimal MinMax triangulation.
We observe that in 3-D as well, there are many
local minima and the order of face traversal deter-
mines which one is found. It is hard to determine
how far these local minima are from the global
minimum but we believe that edge swapping is
a practical way to get nearly optimal MinMax
meshes.

Lawson has shown that in 2-D, Delaunay tri-
angulations have the property that the minimum
edge angle is maximized (i.e., MaxMin triangu-
lation). So in 2-D, the MaxMin triangulation is
unique and the edge swapping algorithm will con-
verge to it. In 3-D, however, the Delaunay trian-
gulation is not the same as MaxMin triangulation
and the edge swapping algorithm working with
the MaxMin criteria has the same property of get-
ting stuck in local minima as the MinMax. Again,
it is hard to judge how close the local minima are
from the global minimum but we still conclude
that edge swapping is a fairly efficient technique
for the construction of MaxMin triangulations.

38-D Minimum Edge Triangulation

Another mesh of interest is the minimum
edge triangnlation. Since finite-volume flow solvers
work edge-wise, it is beneficial to reduce the num-
ber of edges in a mesh. This is easily accom-
plished by edge swapping such that we always
swap from case 3.29a to case 3.29b. Each time
this operation is performed, one edge and one
tetrahedron are removed from the mesh. Again,
different meshes will be produced depending upon
how faces are traversed and the final mesh may
only be at a local minimum.

Incremental Deleunay Triangulation

The edge swapping algorithm provides an ef-
fective way for inserting a point into an existing
triangulation. Simply find the tetrahedra into
which the point is to be inserted and test its faces
according to the circumsphere criteria to deter-
mine if edge swapping should take place. If a
set of 5 points corresponding to a face is retri-
angulated, we proceed to test all the outer faces
of the new triangulation for swappability and so
on. This propagates a front that retriangulates
the mesh. It is known that any new face created
during the retriangulation is indeed a part of the
final mesh as well, and so back-propagation is not
required. This may not be true for other mesh
quality measures and back propagation then be-
comes necessary.

Rajan proves that it is possible to find a cer-
tain sequence of edge swaps which will guarantee
that Delaunay triangulation is recovered when a
site is added to an existing Delaunay triangula-
tion. In practice, however, we find that this order-
ing of edge swaps does not seem to be necessary
in order to recover the Delaunay triangulation.
In fact, ¢t i3 our conjecture that this is always the
case.

This insertion algorithm can be used to adap-
tively refine meshes. To do this, sites are inserted
at the centers of the circumspheres of tetrahedra
with large aspect ratios (or other suitable mea-
sures). This insertion site does not always lie
within the cell T; marked for refinement. To find
the cell in which the new site lies, a walking al-
gorithm is employed. Starting at T3, barycentrics
are computed to determine which face of T; the
new site lies behind. The next step is to traverse
to the cell behind that face. This procedure is ap-
plied recursively until the cell in which the new
site falls within is found. The idea of introduc-
ing new sites at the centers of the circumspheres
of tetrahedra works well because each new site
introduced is equidistant to the 4 points of the
large aspect ratio tetrahedra. This produces high
quality meshes in 2-D and seems to work well in
3-D.

3.6¢ 3-D Surface Triangulation

The Wiltberger algorithm has been extended
to include the triangulation of surface patches.
Although the concept of Dirichlet tessellation is
well defined on a smooth manifolds using the con-
cept of geodesic distance, in practice this is too
expensive. Finding geodesic distance is a varia-
tional problem that is not easily solved. We have
implemented a simpler procedure in which surface
grids in 3-D are constructed from rectangular sur-
face patches (assumed at least C° smooth) using
a generalization of the 2-D Steiner triangulation
scheme.

Figure 3.32 Mapping of rectangular patches on
(3,1) plane.

Points are first placed on the perimeter of each

patch using an adaptive refinement strategy based
on absolute error and curvature measures. The
surface patches are projected onto the plane, see
figure 3.32. Simple stretching of the rectangular
patches permits the user to produce preferentially
stretched meshes. (This is useful near the leading
edge of a wing for example.)

The triangulation takes place in the two di-
mensional (s, t) plane. The triangulation is adap-
tively refined using Steiner point insertion to min-
imize the maximum user specified absolute error
and curvature tolerance on each patch. The ab-
solute error is approximated by the perpendicu-
lar distance from the triangle centroid (projected
back to 3-space) to the true surface as depicted in
figure 3.33. The user can further refine based on
triangle aspect ratio in the (s,¢) plane if desired.

? 3
N 2 L -
1 1’
t_’ TA'
1 } 9
3

Figure 3.33 Calculation of triangulation abso-
lute error by measurement of distance from face
centroid to true surface.

Figure 3.34 shows a typical adaptive surface grid
generated using the Steiner triangulation method.

KLty

7 WA
/7 '.A"A L -
\ A R

SO
AL
N

Figure 3.34 Adaptive Steiner triangulation of
surface mesh about Boeing 737 with flaps de-
ployed.

4.0 Some Theory Related to
Finite-Volume Solvers

4.1 Scalar Conservation Law Equations

For purposes of these notes, we consider nu-
merical methods for solving conservation law equa-
tions.

Definition: A conservation law asserts that the
rate of change of the total amount of a substance
with density z in a fixed region (is equal to the
flux F of the substance through the boundary 9.

gf zda+/ F(z)-nd! =0 (integral form)
9t Jo a0

The choice of a numerical algorithm used to
solve a conservation law equation is often influ-
enced by the form in which the conservation law is
presented. A finite-difference practitioner would
apply the divergence theorem to the integral form
and let the area of §2 shrink to zero thus obtaining
the divergence form of the equation.

%2+V-F(z)=0

(divergence form)

The finite-element practitioner constructs the di-
vergence form then multiplies by an arbitrary test
function ¢ and integrates by parts.

3] b2 da—f Vé-F(z) da+f $F(z)ndl =0
at Q 0 an

(weak form)

Algorithm developers starting from these three

forms can produce seemingly different numerical
schemes. In reality, the final discretizations are
usually very similar. Some differences do appear
in the handling of boundary conditions, solution
discontinuities, and nonlinearities. When consid-
ering flows with discontinuities, the integral form
appears advantageous since conservation of fluxes
comes for free and the proper jump conditions are
assured. At discontinuities, the divergence form
of the equations implies satisfaction in the sense
of distribution theory. Consequently, at disconti-
nuities special care is needed to construct finite
difference schemes which produce physically rel-
evant solutions. Because the test functions have
compact support, the weak form of the equations
also guarantees satisfaction of the jump condi-
tions over the extent of the support. The di-
vergence form of the equations is rarely used in
the discretization of conservation law equations
on unstructured meshes because of the difficulty
in ensuring conservation. On the other hand, the
integral and weak forms are both used extensively

6-29

in numerical modeling of conservation laws on un-
structured meshes. In the next section, the sim-
plest of numerical schemes based on integral and
weak forms of the conservation law are compared
to illustrate their similarities. These schemes can
be viewed as the “central-difference” counterparts
on unstructured grids. For advection dominated
flows, these algorithms are inadequate and addi-
tional terms must be added. This topic is under-
taken in detail in future sections.

4.2 Comparison of Finite-Volume and Galerkin
Finite-Element Methods

Although the integral and weak forms of the
equations appear to be quite different, numerical
schemes based on these forms often produce iden-
tical discretizations. To demonstrate this point,
consider the Galerkin discretization (with linear
elements) of a general model advection-diffusion
equation (u > 0):

2z+V'-F(z)=V-,uV'z

ot

Multiplying by a test function ¢ and integrating
by parts over the region produces the weak
form of the equation.

a
aL¢ZdG—LV¢'F(z)da+janqu(z)-ndI

=-/yV¢-Vzda+/ §éVz-n di
1] aa

(4.0)
In the finite-element method, the entire domain
is first divided into smaller elements. In this case,
the elements are triangles T}, such that @ = UTj,
T;NT; =0, 1+#j InFig 4.l1a we show a rep-
resentative vertex with adjacent neighbors. (To
simplify the discussion in the remainder of these
notes, we adopt the convention that the index
“5” refers to a global index of a mesh whereas
the index “i” always refers to a local index.) The
linear variation of the solution in each triangle T}
can be expressed in terms of the three local nodal
values of the solution, z-f,rlj 4 ©=1,2,3, and three
element shape functions n;, i =1,2,3.

3
e,y =) ni(e,y) 24,
i=1

(local representation)
Each element shape function n; can be interpreted
as a piecewise linear surface which takes on a unit
value at v; and vanishes at the other two vertices
of the triangle as well as everywhere outside the
triangle. The solution can also be expressed glob-
ally in terms of nodal values of the solution and

6-30

global shape functions.

Z N;(z,y) zj-‘

nodes

(global representation)
In this form, the global shape functions are piece-
wise linear pyramids which are formed from the
union of all local shape functions with have unit
value at v;. These global shape functions also en-
joy compact support, i.e. they vanish outside the
region §2; formed from the union of all triangles
incident to v;. A global shape function for vertex
v; is shown in Fig. 4.1b.

Ma,y) =

—— Medtian Dual
~ ------ Centroid Dual

Figure 4.1a Local mesh with centroid and me-
dian duals.

Figure 4.1b Global shape function for vertex vy
(not labeled).

The Galerkin finite-element method assumes
that the class of test functions is identical to the
class of functions approzimaling the solution. The
simplest test functions of this sort are the in-
dividual shape functions. To obtain a Galerkin
discretization for a typical vertex v, simply set
¢* = N; and evaluate (4.0) in ;. Since ¢ van-
ishes on 91; equation (4.0) simplifies to the fol-
lowing form:

% P 2" da—j V¢ - F(z*) da
@ i (4.1)

=—j uVeh .Vt da
§;

Before evaluating equation (4.1), it is useful to
introduce more notation concerning the geometry
of figure 4.1a. Figure 4.2 depicts the index and
normal convention which will be used throughout
these notes. The triangle with vertices 0, i, and
i+ 1 is denoted as T}y, 9. This index convention
will be used for other quantities such as areas and
gradients which are computed in T}, /2

Figure 4.2 Vertex vy and adjacent neighbors.

It is convenient to define normals, &, for straight
edges which are scaled by the length of the edge.
Using this notation, a simple formula exists for
the gradient of the numerical solution in a triangle
Tir1/2-
Vb y g = = (R By 1/ + 2P iy — 2 i
w12 = g o llirye + 2 2% 1)
(4.2)
The gradient of the test function in each trian-
gle takes a similar form (replace z by ¢ in the
previous formula with ¢o = 1,¢; = 0, ¢;3; = 0).

-1
Vit =

—1; 4.3
iy 2 (4.3)

The discrete form of eqn. {4.0) is now written as
- 2" dat ’—-f F(z*) da
ot Q; g 2A,-+1/2 T.'+1/2()

o) gz
= - . Vz* da
:Z 24412 ~/'-‘"-'+1ﬁ
(4.4)
The flux integral can be evaluated by exact inte-

gration (when possible) or numerical quadrature.
In this case, the latter is assumed,

LF(Z") da = A;;uz (F(z8) + F(z1) + F(za+1))

i+1/2
(4.5)
The diffusion term is also evaluated with Vz"
constant in Tiyy/9 and 7y, /2 the area weighted
average u.

_[T uVzh da = Agprgs B pVeliy (46)

+1/2

This simplifies (4.0) considerably.

9 h
alljtﬁz da

d{vg)
+y ghit1/2- (F(z0) + F(z}) + F(zlyy))
i=1
d(vu)
= Z 2#.+1/2 n1+1/2 V:+1/22
= (4.7)
Equation (4.7) represents a Galerkin discretiza-
tion of the model equation assuming piecewise
linear functions. Note that as far as the geom-
etry is concerned, only the exterior normals of
{1; appear. Conspicuously absent are the normal
vectors for interior edges. This strengthens our
confidence that we can show an equivalence with
a finite-volume discretization on nonoverlapping
control volumes. To show this equivalence, note
that the flux term can be manipulated using the
identity 3 ;2] dlvo) 5 f;}i/2 = 0 into a form in which
the relevant geometry is any path connecting ad-
jacent triangle centroids (R denotes the spatial
position vector):

d(vo)
Z Gn'+1/2 F(z) + F(z}) + F(zl,,))
fa]
d("n)
= E (F(z) + F(z])) - (iyryz + Bim1ya)
d("") 1 Riys
= F(FEH+FE)- [l
=1 Ri_1
d("") L(Ro+Ri+Rip1)

=Y 2 (F(4) +F() f; ndl

i=1 3(RU+RG+RG—1)
(4.8)
The diffusion term also simplifies using this iden-
tity.

d(vo) 1
E 51’1.+1/2 .“1+1/2V:+1/22

d{vo) R (Ro+Ri41)
= F:- 2v,'+1 oz .] ndl
; e / ${Ro+R;)

(4.9)
To obtain a single consistent path for the inte-
grations appearing in equations(4.8) and (4.9) re-
quires that the path pass through the centroid
of each triangle and the mid-side of each inte-
rior edge. The path formed by connecting these
points by line segments is precisely the median
dual of the mesh. This dual completely covers

6-31

the domain (no holes) and represents a consis-
tent and conservative finite-volume discretization
of the domain which is spatially equivalent to the
Galerkin approximation. The scheme can now be
written in a finite-volume form

d(vo)
qb"z" da+ Z(H i); =0

i=1

(4.10)

where H is the numerical flux of the finite-volume
discretization

(H 1), =%(F(z)+ F(zh). / n dl

._1/2
Rl"l
ndl

!
i-1/3

- ﬁi—ljzvi—ljzzh f

R:‘+1/2

—'ﬁi+1/2Vi+1/22h'/m n dl
(4.11)

and R/ +1/2 is the centroid of Tiyy/2, R}, j2 =

3(Ro + Ri+ Riy;) and R is the midpoint of
the edge e(vo,v;), R™® 2(Ro + R;).

Conclusion: The spatial discretization produced
by the Galerkin finite-element scheme with lin-
ear elements has an equivalent finite-volume dis-
cretization on nonoverlapping control volumes with
bounding curves which pass through the centroid
of triangles and midside of edges. One such set
of control volumes satisfying these constraints is
the median dual.

We now need to ask if the time integrals pro-
duce identical “mass” matrices for the Galerkin
finite-element and finite-volume schemes. The
answer to this question is no. In fact, these ma-
trices are not the same in one space dimension.
The Galerkin mass matrix for a simple 1-D mesh
with uniform spacing produces a row of the mass
matrix with the following weights:

a a, 1
at / (ﬁh hdy = EAzg(zj_l +4z; + Zj+1)

(Finite — Element)
The finite volume scheme on “median” dual pro-

duces the following weights:

d g, 1
at). "d:c = (—%—Aa:g(zj_l +62; + zj41)

(Finite — Volume)
Although the finite-volume matrix gives better
temporal stability, the finite-element mass matrix
is more accurate.

6-32

4.3 Edge Formulas

The first term appearing on the right-hand-
side of equation (4.10)

Rz.nn

1
3P + G- [at

suggests a computer implementation using an edge
data structure. The fluxes in this term are eval-
uated at the two endpoints of an edge. The geo-
metrical terms could be evaluated edgewise if the
midpoint of the edge and the centroids of the two
adjacent cells are known. Recall that the edge
data structure (described in section 1.3) for a 2-
D mesh supplies this information for each interior
edge of the mesh, i.e. the structure provides for
each edge

{1) The two vertices which form the edge.

(2) The two adjacent cell centroids {or a pointer
to centroid values) which share the edge.

More generally, if the solution is assumed to vary
linearly within each triangle then edge formulas
can be derived for discretized formns of the gra-
dient, divergence, Hessian, and Laplacian oper-
ators. As we will see, the formulas can be de-
rived from either a finite-volutne or finite-element
point-of-view with essentially identical results.

4.3a Gradient and Divergence Edge Formulas

As a first example, we will derive an edge
formula for the integral averaged gradient of a
function u, [Vu da, for the the region Qy de-
scribed by the union of all triangles which share
the vertex vo, see figure 4.1a. If the discrete solu-
tion u® varies linearly in each triangle T then the
gradient is constant and the integration exact.

Vu" da = z (Vuh)TAT
o TEeN

(4.12)

Equation (4.12) would suggest computing the gra-
dient in each triangle sharing vy and accumulat-
ing the area weighted sum. If integral averaged
gradients are required at all vertices then the gra-
dient in each triangle could be computed and the
area weighted result scattered to the three ver-
tices of the triangle for accumulation. We re-
fer to this as the element-by-element approach.
A Green’s formula would suggest a different ap-
proach for the same task.

/ Vu da=f undl
2o 881

(4.13)

Identical results are obtained by approximating
the right-hand-side of (4.13) by trapezoidal quadra-
ture (exact for piecewise linear u*)

1
f ubndl =) §(uf +uly)Bipryz (414)
a1l i€l

where 7y = {1,2,...,,6} and Hi;4/; is the vector
perpendicular to the edge e(v;, vi+1) with magni-
tude equal to the length of the edge. The sum-
mation can be rearranged to yield

A constant solution can be added to (4.15) since
the gradient of a constant function is exactly zero
in this discretization. In particular, we add the
value of u* at vertex vy.

f uPndl=3)" %(u{{ +ul)(Riyrse + Bimiy)
880 i€T,
(4.16)
Once again using the fact that for any closed
curve § n d! = § d1i = 0 which implies that

Vig1
ﬁ,‘+1/2+ﬁg_1/2 =/ dii
Vi-1
for any path connecting v;_; and v;,,. This path
integral represents a vector which is parallel in di-
rection and three times the magnitude of the vec-
tor il obtained by computing the integral for any
simple path connecting the centroids of the two
triangles which share the edge e{vo, v;). [dil =

v;r -1
3 i
L

if—1

mula to the following form:

3

h h hy=
% u ndl—z —{up + u;')iy;
e iEIoz °

d i = 3fip;. This reduces the gradient for-

(4.17)

The vertex lumped average gradient at vertex is
then given by

(Vuh)vo =

3 1 ..
1 > 5(”3 +uf)ip;. (4.18)
o i€l,

It is well known that the region bounded by the
“median” dual at vertex vg, (shown in figure 4.1a)
has an area Aq which is exactly %Ago. Therefore,
using the median dual we obtain a formula which
appears to represent some approXimate quadra-
ture of the right-hand-side of (4.13) on nonover-
lapping regions.
1

1 "
(Vuh)uy = —) 5(“3 + ')fio;

(4.19)
AO i€l

A naive interpretation of equation (4.19) would
probably conclude that this equation is a rather
poor approximation to (4.13). It is not obvious
from (4.19) that the gradient of a linear func-
tion u is computed exactly. From the origin of
this formula, we now know that this formula can
be obtained from a trapezoidal quadrature on a
slightly larger region and is exact within the class
of linear polynomials.

Keep in mind that a constant solution could
have been subtracted instead of added from equa-
tion (4.15) which would have given a different but
equivalent form of (4.19).

1 1
=A—DZ§(“?—“3

i€y

(Vuh)vo)ﬁo.’ (4.20)

This formula does not appear to resemble any
approximate quadrature of (4.13).

Equation (4.19) suggests an algorithm using
an edge data structure which is quite different
from the element-by-element method (4.12). The
edge-based calculation consists of the following
steps:

Sample Gradient Computation

(1) (Precomputation) For each edge e(v;, v;) gather
the centroid coordinates of the two adjacent cells,
v} and v}.

(2) (Precomputation) For each edge compute the
dual edge normal ii;; from the centroid coordi-

nates fi;; = [,/ di. (Orient from v; to v; if
i< j).

(3) For each edge e(v;, v;) gather the values of the
function at the two vertices, u? and u;-'.

(4) For each edge compute the arithmetic average
and multiply by the dual edge normal, 3(u; +
uj)n,-j.

(5) For each edge scatter and accumulate the re-
sult at vertex v;.

(6) For each edge negate, scatter and accumulate
the same result at vertex v;.

(7) For each vertex compute the final gradient by
dividing the accumulated result by area of the
median dual, Ag.

This algorithm conforms perfectly within the edge
data structure. In practice all the geometrical fac-
tors could be precomputed and stored in memory
by edge thereby eliminating a gather. The sample
algorithm described above serves as a template
for all the remaining algorithms described in the
rest of this section.

6-33

The gradient and divergence operators are
related so that it is not surprising that the dis-
cretization of the divergence operator produces a
similar formula:

div(F*)da = > SFh+
§lo SGIQ

+F}) o (4.21)

The Galerkin weighted finite element integrals with
linear elements produce essentially identical re-
sults. In this case a piecewise linear weighting
function ¢* is introduced (see figure 4.1b). The
gradient and divergence formulas (introduced ear-
lier)

1 -
" Vutda = E 5(1;3 + uf)ig;
i€ET,

(4.22)
20

f ot div(F)da = 3 = (Fh+FH)-fio; (4.23)

2 = 2
1€Xy

differ from the previous formulas by a constant

factor of 1/3. For example, if a lumped approxi-

mation to the left-hand-side of (4.22) is assumed,

then (4.19) is recovered since

A " Vutda = (Vuh),, Ao.

(4.24)

4.3b 2-D Hessian and Laplacian Edge Formulas

We begin by approximating the following ma-
trix of second derivatives

(ttiz)s

V,U.(VU)T - (Huz)y

(”uy)z]

(huy), | 42

using a standard Galerkin approximation for the
region 1, formed from the union of all triangles
that share the vertex vg. To do so, multiply (4.25)
by the weight function ¢ and perform integration
by parts over {1y assuming ¢ = 0 on 9Qp.

6V u(Ve)T da = j w(Ve) (V)T da

=-Zf

ieIy

2o

1#(Ve) (Vu)T da
Tiy172
(4.26)
where T,/ = simplex(vo,v;,viy1). Using the
notation of figure 4.2, gradients of the piecewise
linear functions ¢* (figure 4.1b) and u” are

|
-rniﬂfz

VvV =
(¢ Tit1/2 i1/

(4.27)

6-34

and

-1
h
(Vu')Ta‘-l-!lﬁ = 2A, +1/2

(4.28)
where A;yyo is the area of Tjy/s and 6y,
is the vector normal to the edge e(v;, vi41) with
magnitude equal to the length of the edge.

For piecewise linear u”*, the gradient is con-
stant in each triangle. The integral average ma-
trix of second derivatives simplifies to the follow-
ing form:

/¢hV,u(Vuh)Tda
S
P 2] p(Vur)da
§2A w2 R
= n1+1/2(V“)T. fﬂda
IJ. i
-Z +1/2 .+1/2(V“h)T.+1,,
1€,
(4.29)

where ;. /» is the integral average of 4 in Tiy/s.
Inserting the triangle gradient formula, we obtain
a discretized formula for the Galerkin integral.

"V u(Vuh)T da

e
1 ”:-{-1/2
=73 Ay n,+1/2(u0 n:+1/2
1EIQ
ST h =T
+uf iy — Uiy 0)

(4.30)
Regrouping terms and removal of a constant so-
lution yields the following simplified form

Qg
= Z M,-(u:‘ - uh
I‘EIU

(4.31)

with
Hi -
M;=— [/2 Aipr2(Rigr)T
4 Aiv1/2
(4.32)

Ml—l/z ap . T
A5-1/2 Bi-1/2(8i-1) j'

Even though this formula is very simple, it is
not compatible with the edge data structure men-
tioned earlier. Using some simple identities, we
will now rewrite the weight formula in a form
which is compatible with the edge data structure.

(uo ni+1/2+“ fi41 -—u,+1n,)

"V w(Vut)T da =/ Vu(V{ub —uf)T da
Qo

i+1 i+1

Figure 4.3 Local geometry configuration.

Referring to figure 4.3, we have the following vec-
tor identities:

g - 1 . - - 1-‘
nf—1f2 = 3nR.‘ - §ni, n;_j = 3nR.‘ + Eni
(4.33)
and similarly
iy - 1 - - - 1 -
nt'+1/2 == 3nL.- + Eni, Niy1 = _3nL.' + 5n_‘..
(4.30)

It is useful to decompose the tensor product terms
into symmetric and skew-symmetric parts, for ex-
ample:

= = 1 e g —~ =
—f;_1/o(fi1)T = (Znin?_ 9fipiig)

L o

Symmetric

3 — - -
+ E(ning— ang‘)

- o

Skew—symmetric

ns+1/2(nz+1) -—(n;n —911L

;)

Symmetric

+ - (n,nL— fpial)

L v

Skew—aymmetf-lc

Upon dividing by the area terms, some simple
algebra reveals that

ﬁi—l/z(ﬁi—l)T _ (9nR‘n£ - %ﬁ,ﬁ?)_{_[0 1
A,'_Ug As—l/? -1.0
(4.35)

and similarly

iy ye(fig)”
Ait1/2

(3] - ody, nf)+[0 1]
A|+1f2 -1 0]°
(4.36)

So in summary we have that

1 Biy1y2 LT
M,'= - n; n;
4 [A:'H/z +1/2(Bi+1)
- n;_ n;_
Ai—l/? i 1/2(1)

+(Fis1/2 = Fic1/2) [_01 (1]”

The second form is compatible with an edge data
structure where edge vertices and adjacent cell
centroids are known.

4.3c 2-D Edge Discretization of V - yVu

Calculation of this termm amounts to sum-
ming diagonal entries of the previous result. Can-
cellation of terms leaves a reduced form.

f "V - yVuP da =Trace] "V u(Vut)T da
Qo 1429
= Wi(ul - ug)

i€ly
(4.38)
1. Oi1/0 - iy
W= ~1 [ﬂ.‘+1/2—+—A/_“"'““—““
s (4.39)
+ 7 D172 n£—1]
ST A

The area of a triangle can be expressed in terms of
the magnitude of the cross product of the scaled
edge normals.

1 . "
Air1/z = 3lfip1yz X Hia

1 — -y
Aiipp = §|n£-1/2 X 1|

1] (fip1/2 - Higa)
W,=—- [12T o=
2 Hivrf2 |12 X Higr]
(i—1/2 ﬁi-1)]

fi;_y /0 X Hi_q|

(4.40)
= HBi_1p2

Finally we can express the dot and cross products
in terms of the local angles as sketched in figure
4.4.

6-35

i+l

Figure 4.4 Local angles for triangles sharing edge
e{vo, v;).

Hipi/2 - g _ _Cos (o) = —cotan(ay,)
|iy1/2 X i1 sin (az,) ‘
(4.41)
and
_ Wy_ggp - Hiy _ _cos(or,) _ —cotan{ap,)
1172 X Bym| sin (ar,) '
(4.42)

Inserting these formulas yields a particularly sim-
ple form of the weight factors W;:

W, = % [ﬁi+1/2°°ta=n(ah) + B;-y jpc0tan(ag,)]

(4.43)
Equation (4.43) is particularly useful in theoreti-
cal studies.

4.3d 3-D Hessian and Laplacian Edge Formulas

Asin the 2-D case, we begin with the Galerkin
integral equation for the Hessian-like matrix of
derivatives.

]¢hvﬂ(vuh)TdU= _fp(v¢h) (Vuh)T dv
r r

In this formula Vr is the volume formed by the
union of all tetrahedra that share vertex vy. Fol-
lowing a procedure identical to the 2-D case, we
can derive the analogous 3-D edge formula for the
matrix of second derivatives

-/‘./ro ¢hV ,U(Vuh)T dv = Z Mi(u,' - 'u.o) (4.44)

1€,
where
d{ve,) —
1 Eret1/2
M; = -3 v / Sk+1/2(§1+112)T (4.45)
o1 TkH1/2

6-36

Ty is the set of indices of all adjacent neighbors of
vp connected by incident edges, k a local cyclic in-
dex describing the associated vertices which form
a polygon of degree d{vg, v;) surrounding the edge
e(vp, v;). The subscript k + 1/2 indicates quanti-
ties associated with the tetrahedron with vertices
Vg, ¥, Uk and vg4y as shown in figure 4.5.

i

e

0 g,

K+l

Figure 4.5 Set of tetrahedra sharing edge e{vo, v;)
with local cyclic index k.

4.3e 3-D Edge Discretization of V - uVu

Following the same procedure as in 2-D, we
obtain:

"V - uVut dv =Trace | "V u(Vuh)T dv
| Y To
=) Wi(ui — uo)
t€ly
(4.46)
where
d{vo,v;) —
1 Hiyrf2 o ”
W; = —— 8 -8 4.47
9 2 Verty2 k+1/2 " Sky1/2 (4.47)

It can be shown that the volume of a tetrahedron
is given by

V. _ E|§k+1/2><§’k+1/2|
B2 T3 |AR k412

where [AR4 /2| is the length of the edge shared
by the faces associated with 8;41/2 and &, /2

(4.48)

1) Bkt1/2 " Sey1/2
Wi=—= Fr1/2| AR =
i 6 ; k+1/2 +1/2| |Sk+1/2><§'k+1,2|

(4.49)

Finally we can rewrite the dot and cross product
in terms of the cotangent of the face angle.

é‘l~=+1/2 '§'k+1/2 __ Ccos (C’k+lf‘2)
|8kt 1/2%8y pol sin (041/2)
= — cotan(ogt1/2)

As in the 2-D case, the weights W; now have a
particularly simple form:

1 d(”o.”i)
W= 3 Z Eit1/2)BRiqr/2|cotan(ag/2)

k=1
(4.50)

4.4 Godunov Finite-Volume Schemes

In this section, we consider upwind algorithms
for scalar hyperbolic equations. In particular,
we concentrate on upwind schemes based on Go-
dunov’s method [34] and defer the discussion of
“upwind” schemes based on the fluctuation de-
composition method or the Petrov-Galerkin for-
mulation (SUPG, GLS) to the lectures of Profs.
Deconinck, Hughes, and Johnson.

The development presented here follows many
of the ideas developed previously for structured
meshes. For example, in the extension of Go-
dunov’s scheme to second order accuracy in one
space dimension, van Leer [35] developed an ad-
vection scheme based on the reconstruction of dis-
continuous piecewise linear distributions together
with Lagrangian hydrodynamics. Soon thereafter,
Colella and Woodward [36] and Woodward and
Colella. [37] further extended these ideas to in-
clude discontinuous piecewise parabolic approx-
imations with Eulerian or Lagrangian hydrody-
namics. Harten et. al. [38,39] later extended
related schemes to arbitrary order and clarified
the entire process. These techniques have been
applied to structured meshes in multiple space di-
mensions by applying one-dimensional-like schemes
along individual coordinate lines. This has proven
to be a highly successful approximation but does
not directly extend to unstructured meshes. In
reference [40], we proposed a scheme for multi-
dimensional reconstruction on unstructured meshes
using discontinuous piecewise linear distributions
of the solution in each control volume. Mono-
tonicity of the reconstruction was enforced using
a limiting procedure similar to that proposed by
van Leer [35] for structured grids. In a later pa-
per (Barth and Frederickson [41]), we developed
numerical schemes for unstructured meshes utiliz-
ing a reconstruction algorithm of arbitrary order.
Portions of the discussion presented here is taken
from these papers.

4.4a Generalized Godunov Scheme

We begin by considering the integral con-
servation law for some domain, 2 and its tes-
sellation 7(Q?) comprised of cells, ¢;, 2 = Uc;,
ckNej =0, k# j. The integral equation is valid
for the entire domain as well as in each cell (or

possibly dual cell):

g—f uda.+/ F(u) ndl=0 (4.51a)
6t Cy 86,'

Fundamental to Godunov’s method is the cell av-
erage of the solution, %, in each cell.

/ u da =ﬁjAj

£

(4.52)

In Godunov’s method and the higher order ac-
curate extension considered here, these cell av-
erages are treated as the fundamental unknowns
(degrees of freedom).

%(ﬁjAj) +f F(u) -ndl =0

£)

(4.51b)

The solution algorithm for (4.51b) is a relatively
standard procedure for extensions of Godunov’s
scheme in Eulerian coordinates [34-39]. The ba-
sic idea is to start with piecewise constant data in
each cell with value equal to the integral cell aver-
age. Using information from cell averages, k — th
order piecewise polynomials are reconstructed:

uk(xa y) = Z a(m,n)-P(m,n)(m = Iy — yt.‘)
mtn<k

(4.53)
where Py (& = Te, ¥ — ¥e) = (2 = 2e)™(y)"
and (z.,y.) is the cell centroid. The process of
reconstruction amounts to finding the polynomial
coefficients, (., »). Near steep gradients and dis-
continuities, these polynomial coeflicients maybe
altered based on monotonicity arguments. Be-
cause the reconstricted polynomials vary discon-
tinuously from cell to cell, a unique value of the
solution does not exist at cell interfaces. This
nonuniqueness is resolved via exact or approxi-
mate solutions of the Riemann problem. In prac-
tice, this is accomplished by supplanting the true
flux function in (4.51) with a numerical flux func-
tion {described below) which produces a single
unique flux given two solution states. Once the
flux integral in (4.51) is carried out (either ex-
actly or by numerical quadrature), the cell aver-
age of the solution can be evolved in time. In
most cases, standard techniques for integrating

6-37

ODE equations are used for the time evolution,
i.e. Euler implicit, Euler explicit, Runge-Kutta.
The result of the evolution process is a new col-
lection of cell averages. The process can then be
repeated. The process can be summarized in the
following steps:

(1) Reconstruction in Each Cell: Given inte-
gral cell averages in all cells, reconstruct piecewise
polynomial coefficients o(m,,) for use in equa-
tion (4.51). For solutions containing disconti-
nuities and/or steep gradients, monotonicity en-
forcement may be required.

(2) Flux Evaluation on Each Edge: Consider
each cell boundary, dc;, to be a collection of edges
(or dual edges) from the mesh. Along each edge
(or dual edge), perform a high order accurate flux
quadrature.

(3) Evolution in Each Cell: Collect flux con-
tributions in each cell and evolve in time using
any time stepping scheme, i.e., Euler explicit, Eu-
ler implicit, Runge-Kutta, etc. The result of this
process is once again cell averages.

By far, the most difficult of these steps is
the polynomial reconstruction given cell averages.
In the following paragraphs, we describe design
criteria for a general reconstruction operator.

Reconstruction

The reconstruction operator serves as a finite-
dimensional (possibly pseudo) inverse of the cell-
averaging operator A whose j-th component A;
computes the cell average of the solution in c;.

U =Aju= Lf u{x,y)da (4.54)
@j Je;

In addition, we place the following additional re-
quirements:

(1) Conservation of the mean: Simply stated,
given cell averages ¥, we require that all poly-
nomial reconstructions u* have the correct cell
average.

if u* = R*7 then uw= Au*

This means that R* is a right inverse of the av-
eraging operator A.

AR =T (4.55)
Conservation of the mean has an important impli-

cation. Unlike finite-element schemes, Godunov
schemes have a diagonal mass matriz.

6-38
(2) k-exactness: We say that a reconstruction

operator R” is k-ezact if R* A reconstructs poly-
nomials of degree k or less exactly.

if u€Pr and W= Au, then v* =R*u=1u

In other words, R* is a left-inverse of A restricted
to the space of polynomials of degree at most k.

RFA| =1
Px

(4.56)

This insures that exact solutions contained in Py
are in fact solutions of the discrete equations. For
sufficiently smooth solutions, the property of k-
exactness also issures that when piecewise poly-
nomials are evaluated at cell boundaries, the dii-
ference between solution states diminishes with
increasing k at a rate proportional to h**! were
h is a maximum diameter of the two cells. Figure
4.6a shows a global quartic polynomial u € P,
which has been averaged in each interval.

L]

Figure 4.6a Cell averaging of quartic polyno-
mial.

Figure 4.6b shows a quadratic reconstruction u* €
P, given the cell averages. Close inspection of
figure 4.6b reveals small jumps in the piecewise
polynomials at interval boundaries. These jumps
would decrease even more for cubics and vanish
altogether for quartic reconstruction. Property
(1) requires that the area under each piecewise
polynomial is exactly equal to the cell average.

s
Foi
. |

\}W

1

i
a
[

.

L

\
L

Figure 4.6b Piecewise quadratic reconstruction.

Fluz Evaluation

The task here is to evaluate the flux integral
appearing in (4.51).

F(u) - ndl
Be;

(4.57)

At cell interfaces, two distinct values of the so-
lution can be obtained anywhere on the bound-
ary of the control volume by direct evaluation of
the piecewise polynomials in the two cells sharing
the interface. For brevity, the states will be de-
noted by u* and u™ which should be interpreted
as (u*)* and (u*)~ where + refers to which piece-
wise polynomial was used in the evaluation. Rather
than use a numerical flux function derived from
the exact solution of the Riemann problem, we
prefer numerical flux functions based on mean
value linearizations. As we will see, this actu-
ally makes certain stability proofs much clearer.
Define f{u,n) = F(u)-n and a{u,n) = f(u,n)’,
the mean value flux function is given by

h(u*,u”,m) =3 (F(u*,m) + f(u™, m)

1 (4.58)

—5la(@n)| (u* —u7)
where f(ut) — f(u~) = a(@,n)(ut — u~) and
% = fu~ +(1—9)u’* for some @ € [0,1]. Using the
numerical lux function, we approximate (4.57) by

h(u*,u",n)dl
Bcy

In practice, this flux integral is never evaluated
exactly, except when the data is piecewise con-
stant. When piecewise linear functions are used, a
midpoint quadrature formula is usually employed.
This is used rather than the slightly more accu-
rate trapezoidal quadrature because it requires
only one flux evaluation per edge segment while

the trapezoidal quadrature requires two. When
considering schemes with reconstruction order k
greater than one, we suggest in [41] that Gauss
quadrature formulas be used. Recall that N point
Gauss quadrature formulas integrate 2N —1 poly-
nomials exactly. These quadrature formulas give
the highest accuracy for the lowest number of
function evaluations. For the k-exact reconstruc-
tion discussed below, N > (k + 1)/2 point Gauss
quadrature formulas are used.

4.5 k-exact Reconstruction

In this section, a brief account is given of
the reconstruction scheme presented in Barth and
Frederickson [41] for arbitrary order reconstruc-
tion. Upon first inspection, the use of high order
reconstruction appears to be an expensive propo-
sition. The present reconstruction strategy opti-
mizes the efficiency of the reconstruction by pre-
computing as a one time preprocessing step the
set of weights W in each cell ¢; with neighbor
set NV, such that

Ammy = D, Wimm)ili
ieNc,.

(4.59)

where &(m,n) are the polynomial coefficients. This
effectively reduces the problem of reconstruction
to multiplication of predetermined weights and
cell averages to obtain polynomial coefficients.
During the preprocessing to obtain the re-
construction weights W a coordinate system with
origin at the centroid of ¢; is assumed to min-
imize roundoff errors. To insure that the recon-
struction is invariant to affine transformations, we
then temporarily transform (rotate and scale) to
another coordinate system (Z, §) which is normal-

ized to the cell Cc;
[.’E] {Dl,l DI,Z] [:L']
] D2,1 D2,2 ¥

with the matrix D is chosen so that
A;(T)=A;F) =1
A;(TY =A;Fz)=0

Polynomials on c¢; are temporarily represented
using the polynormial basis functions

P=[,%,57%,75,7.7,.]
Note that polynomials in this system are easily

transformed to the standard cell-centroid basis

TG =

WL

m—ayt n—t_s+t, m+n—s—1i
1,2 D2,1D2,2 Yy

6-39

Since0 < s+t<kand0<m+n—s5-t <k, we
can reorder and rewrite in terms of the standard
and transformed basis polynomials

Pimmy= 3 GulaPay
s+i<k

(4.60)

Satisfaction of conservation of the mean is guar-
anteed by introducing into the transformed coor-

dinate system zerc mean basis polynomia.lsl—’o in
which all but the first have zero cell average, i.e
P = [1,7,%,22 - ,Z3,¥%° — 1,2% — A4;(7%),..].
Note that using these polynomials requires a mi-
nor modification of (4.60) but retains the same
form:

-9 =8,
P(m:ﬂ)z Z Gm,nP(s,t) (4.61)

s+i<k

Given this preparatory work, we are now ready
to describe the formulation of the reconstruction
algorithm.

Minimum Energy {Least-Squares) Reconstruction

We note that the set of cell neighbors A
must contain at least (k + 1)(k + 2)/2 cells c; if
the reconstruction operator R;? is to be k-exact.
That (k + 1)(k + 2)/2 cells is not sufficient in all
situations is easily observed. If, for example, the
cell-centers all lie on a single straight line one can
find a linear function u such that A ;(u) = 0 for
every cell ¢;, which means that reconstruction of
4 is impossible. In other cases a k-exact recon-
struction operator R;-‘ may exist, but due to the
geometry may be poorly conditioned.

Our approach is to work with a slightly larger
support containing more than the minimum num-
ber of cells. In this case the operator R;-’ is likely
to be nonunique, because various subsets would
be able to support reconstruction operators of de-
gree k. Although all would reproduce a polyno-
mial of degree k exactly, if we disregard round-
off, they would differ in their treatment of non-
polynomials, or of polynomials of degree higher
than k. Any k-exact reconstruction operator Rf
is a weighted average of these basic ones. OQur ap-
proach is to choose the one of minimum Frobenius
norm. This operator is optimal, in a certain sense,
when the function we are reconstructing is not ex-
actly a polynomial of degree k, but one that has
been perturbed by the addition of Gaussian noise,
for it minimizes the expected deviation from the
unperturbed polynomial in a certain rather nat-
ural norm.

As we begin the formulation of the recon-
struction preprocessing algorithm, the reader is

6-40

reminded that the task at hand is to calculate the
weights W for each cell ¢; which when applied
via (4.59) produce piecewise polynomial approx-
imations. We begin by first rewriting the piece-
wise polynomial (4.53) for cell ¢; in terms of the
reconstruction weights (4.59)

uk(m?y)= Z P(m.n) Z I}V(ﬂrz,ﬂ)iﬁi

m+n<k iEN;

or equivalently

uk(z,y) = Z U Z Wim,nyiFm,n)

I'EN,,- m4+n<k

Polynomials of degree k or less are equivalently
represented in the transformed coordinate system
using zero mean polynomials

_ =0
H@y)= D T Y. WionmiPimm (462)
€N, mingk

Using (4.61), we can relate weights in the trans-
formed system to weights in the original system

-5,
W(-‘l,t)iz Z Gm,nW(’m,n),i
min<k

(4.63)

We satisfy k-exactness by requiring that (4.62) is
satisfied for all linear combinations of P—?a,t)(:r,)
such that s + ¢t < k. In particular, if u*(2,y) =
F?a_t)(a:, y) for some s+ ¢ < k then

—0 ~—0 —=0
P(s,i)(x5y) = Z P(m,ﬂ) Z W(’m,n)iA"(P(s,t))
m+n<k :'ENCJ.

This is satisfied if forall s+ t,m+n < k

_0 8
D> Winmidi(Pr) = 62,
€N,

Transforming basis polynomials back to the orig-
inal coordinate system we have

Z W(,m,n)l' Z @:,’:A,-(P(u‘,,)) = 6:::71
€N, utv<k
(4.64)
This can be locally rewritten in matrix form as
W;A; =1 (4.65a)
and transformed in terms of the standard basis
weights via

W; = GW (4.65b)

Note that W7 is a (k + 1)(k + 2)/2 by N; matrix
and A’ has dimensions N; by (k + 1)(k + 2)/2.
To solve (4.65a) in the optimum sense described
above, an L;Q; decomposition of A is performed
where the orthogonal matrix Q; and the lower tri-
angular matrix L; have been constructed using a
modified Gram-Schmidt algorithm (or a sequence
of Householder reflections). The weights W, are
then given by

w7 —~1
W; = QjL;

Applying (4.63) these weights are transformed to
the standard centroid basis and the preprocessing
step is complete.

We now show a few results presented earlier
in reference [41]. The first calculation involves the
reconstruction of a sixth order polynomial with
random normalized coefficients which has been
cell averaged onto a random mesh. Figures 4.7a-
b show a sample mesh and the absolute L error
of.the reconstruction for various meshes and re-
construction degree.

10 §

L2 error

14 1 2 3 4 s
Degree K of Reconstruction

Figure 4.7b L; error of reconstruction.

The reconstruction algorithm has also been
tested on more realistic problems. Figures 4.8a-
¢ show a mesh and reconstructions (linear and
quadratic) of a cell averaged density field corre-
sponding to a Ringleb flow, an exact hodograph
solution of the gasdynamic equations, see [42].

6-41

Figure 4.8b Piecewise linear reconstruction of
Ringleb flow.

The reader should note that the use of piecewise
contours gives a crude visual critique as to how
well the solution is represented by the piecewise
polynomials. The improvement from linear to
quadratic is dramatic in the case of Ringleb flow.
A later section will show actual numerical solu-
tions computed using this reconstruction opera-
tor.

Figure 4.8c Piecewise quadratic reconstruction
of Ringleb flow.

4.6 Upwind Advection Scheme with & = 0
Reconstruction

This is the simplest (first order) approxima-
tion in which the polynomial behavior in each cell,
c;, is a constant value equal to the cell average.

(4.66)

u*=z,y) =7; foru* €

The flux formula then simplifies to the follow-
ing form (for clarity %; is locally numbered Hp
as shown in figure 4.1a)

h(u+, U, ﬁ), =h(ﬁ;,ﬁo, ﬁ,)

=%(f(ﬁg,ﬁ,-) + f(T, 8:) (4.67)

Lo e —
—§|ﬂ(“ia ;)| (% —)

R/
In this formula, 8; = f,"""/* for any simple path.
i—1/1

By summing over all edges of the control volume,
the entire scheme for c; is written

3 d(cy) 1
E / Ug da+ Z: E (f(ﬁo, ﬁt) + f(ﬁisﬁi))
cj i=1
die;)
- Z §|a(ﬁ,-,ﬁ,-)| (ﬁ,‘ - ﬁo) =0
i=1

(4.68)
It is not difficnlt to prove stability and monotonic-
ity of this scheme.

6-42

Monotonicity and Stability

Recall that the lux function was constructed
from a mean value linearization such that

f(u,-, ﬁ,) - f('u,o, ﬁ,) = a(ﬁ.—, n,') (u.- - Uo) (469)

with @; = Qug+(1—0)u;, @ € [0,1]. This permits
regrouping terms into the following form:

a d(c.i)

g A g da + ; f(@o, 1;)
d{c;)

+y 5 (a(@,) = |a(@;, 6,)]) (@ ~ W) =0
=1

(4.70)
For any closed control volume, we have that

d(c;)

> f(@, 1) =0
i=1

Combining the remaining terms yields a final form
for analysis (a = a* +a~,|a|=at —a™):

a d(cj)

= | Woda a(it, 0;) (U —T) =0 (4.71
Btj;_uo +3 ol 8)"(W-1) =0 (471
To verify the monotonicity of the scheme at steady
state, set the time term to zero and solve for %g.

de;) on ay— = UE)
Uy = z‘?(c,?(u’_’ n,} oo Z o (4.72)
Y=t alw, i) 5

All weights a; are positive and sum to unity. The
scheme is monotone since %y is a positive weighted
average of all neighbors. This implies a mazimum
principle since U, is bounded from above and be-
low by the maximum and minimum of neighbor-
ing values (and itself), TUnez and Tpmin.

(4.73)

Umin S Uy S Umaz

For explicit time stepping, a CFL-like condition
is obtained for monotonicity. For Euler explicit
time stepping, we have the time approximation,

81 [_ upgt! —up
Ug dam 22— 0
[

Bt A,
which results in the following scheme:

_ At d(e;)
ot =u5 — — > a(d;,8;)" (@ - o)
€ =1
d(cj5)
=Y o
i=0

(4.74)

It should be clear that coefficients in (4.74) sum to
unity. To prove monotonicity in time and space,
it is sufficient to show positivity of coefficients.
By inspection we have that a; > 0 Vi > 0. To
guarantee monotonicity requires that ag > 0.

At d(c;)
oo =1+ =/ Y a(i,d;)~ >0

T (4.75)

=1

Thus, a CFL-like condition is obtained which in-
sures monotonicity and stability.

A

At < ———
>3 afa;, 1)~

(4.76)

Note that in one dimension, this number corre-
sponds to the conventional CFL number. In mul-
tiple space dimensions, this inequality is sufficient
but not necessary for stability. In practice some-
what larger timestep values may be used.

Conclusion: The upwind algorithm (4.68) using
piecewise constant data satisfies a discrete maxri-
mum principle for general unstructured meshes.

4.7 Upwind Advection Schemes with Linear
{k = 1) Reconstruction

In this section, we consider advection schemes
based on linear reconstruction. The process of
linear reconstruction in one dimension is depicted
in figure 4.9. f

o
Figure 4.9 Linear Reconstruction of cell-averaged
data.

One of the most important observations concern-
ing linear reconstruction is that we can dispense
with the notion of cell averages as unknowns by
reinterpreting the unknowns as pointwise values
of the solution sampled at the centroid (midpoint
in 1-D) of the control volume. This well known
result greatly simplifies schemes based on linear
reconstruction. The linear reconstruction in each

interval shown in figure 4.9 was obtained by a sim-
ple central-difference formula given point values
of the solution at the midpoint of each interval.

In section 4.3, results for the Ringleb flow
with linear reconstruction were presented. The
reconstruction strategy presented there satisfies
all the design requirements of the reconstruction
operator. For linear reconstruction, simpler for-
mulations are possible which exploit the edge data
structure. Several of these reconstruction schemes
are given below. Note that for steady-state com-
putations, conservation of the mean in the data
reconstruction is not necessary. The implication
of violating this conservation is that a nondiag-
onal mass matrix appears in the time integral.
Since time derivatives vanish at steady-state, the
effect of this mass matrix vanishes at steady-state.
The reconstruction schemes presented below as-
sume that solution variables are placed at the
vertices of the mesh, which may not be at the
precise centroid of the control volume, thus vio-
lating conservation of the mean. The schemes can
all be implemented using an edge data structure
and satisfy k-exactness for linear functions.

4.7a Green-Gauss Reconstruction

This reconstruction exploits the gradient cal-
culation (4.19) studied earlier in section 4.3:

1 1 -
(Voo = o ‘EYI‘ 5 (ui + o)
iCio

(4.77)

where fg; is the vector normal associated with
the edge e(vp,v;). This approximation extends
naturally to three dimensions, see Barth [43].

4.7b Linear Least-Squares (L) Reconstruction

To derive this reconstruction technique, con-
sider a vertex vo and suppose that the solution
varies linearly over the support of adjacent neigh-
bors of the mesh. In this case, the change in ver-
tex values of the solution along an edge e{v;,vg)
can be calculated by

(Vuh)o - (Ri — Ro) = ui — ug

This equation represents the scaled projection of
the gradient along the edge e(v;,vg). A similar
equation could be written for all incident edges
subject to an arbitrary weighting factor. The re-
sult is the following matrix equation, shown here
in three dimensions:

(4.78)

w1A3:1 wlAyl w1A21 Uy wl(ul—uo)
: : : Uy | :
W AT, WaAYn walz, [\Uz wn (un—uo)
4.79)

6-43
or in symbolic form £ Vu = f where

L=[0, L, Ls) (4.80)
in three dimensions. Exact calculation of gradi-
ents for linear u is guaranteed if any three row
vectors w;(R; — Ro) span all of 3 space. This im-
plies linear independence of ﬁl, i:g, and L;. The
system can then be solved via a Gram-Schmidt
process, i.e.,

v, L. 1 0 0
V| (B0 Lo Ls]=]0 1 0| (481)
Vs 0 01
5 . G _ _ 0.
The row vectors V; are given by V; = .0
where

U, =(laalag — 123123)1_:1 — (lazlya — 123113)1:2
—(laglia — I3l12)La

Ua =(lssl1y — hshia)Lz — (lashz — lalaa)L,
—(l11l23 — li3l12) L3

Us =(lnle2 - lial12) s — (lg2ha — 112123)1-:1
~(l1les — lioli3)Es

and l;j = (fn, . f:J)

Note that reconstruction of N independent.
variables in R? implies (d';l) +d N inner product
sums. Since only d N of these sums involves the
solution variables themselves, the remaining sums
could be precalculated and stored in computer
memory. This makes the present scheme compet-
itive with the Green-Gauss reconstruction. Using
the edge data structure, the calculation of inner
product sums can be calculated for arbitrary com-
binations of polyhedral cells. In all cases linear
functions are reconstructed exactly. We demon-
strate this idea by example:

For k = 1,n(e) ! Loop through edges of mesh
jr=e"(k,1) ! Pointer to edge origin

jo = e 1(k,2) ! Pointer to edge destination
dzr = w(k) - (z(j2) — z(j1)) ! Weighted Az
dy = w(k) - (y(j2) — y(j1)) ! Weighted Ay
hi(G1) =lu(h) +dz-dz !l orig sum
111(j2) = lll(j2) +d3‘.‘. ~dx ! 111 dest sum
lig(j1) = ha(jh) +dz -dy ! Lz orig sum
Lia(j2) = hi2(j2) +dx -dy ! l1o dest sum

du = w(k) - (u(fz) — u(j1)) ! Weighted Au
luz(51) = lua(j1) + dz -du ! luz orig sum

6-44
lug(j2) = lua(Gz) +dz - du ! luz dest sum
Endfor

This formulation provides freedom in the choice
of weighting coeflicients, w;. These weighting
coefficients can be a function of the geometry
and/or solution. Classical approximations in one
dimension can be recovered by choosing geomet-
rical weights of the form w; = 1./|R; — Ry|! for
values of ¢ = (,1,2. The L; gradient calculation
technique is optimal in a weighted least squares
sense and determines gradient coefficients with
least sensitivity to Gaussian noise. This is an im-
portant property when dealing with highly dis-
torted (stretched) meshes.

4.7¢ Data Dependent Reconstruction

Both the Green-Gauss and L, gradient calcula-
tion techniques can be generalized to include data
dependent (i.e. solution dependent) weights. In
the case of Green-Gauss formulation, the sum

1 —
> 5 (w0 + w1l
s€Tn

is replaced by

1
3 v (o) oi+pdiz (Vo - (R; — Ro)) o

i€,

(4.82)
If the pfﬁ are chosen such that pj; + pg; = 1 then
the gradient calculation is exact whenever the so-
lution varies linearly over the support. In two
space dimensions, equation (4.82) implies the so-
lution of a linear 2 x 2 system of the form

Ao — Mgz ~mgy](ux) _1 -
= E i (to+ui My;
[~Mys Ap — myy, \uy ieIop0'2(0 YA

where

—_ + _—
Mge = Z PoidTing, my, = Z PgiAyiny,
i€y i€y

= + —
Mey = ZPOs'Ax!'”yn Mye = Z p{}',-Ay,-nz.-
i€, i€y

Care must be exercised in the selection of p* in
order that the system be invertible. This is sim-
ilar to the spanning space requirement of the L,
gradient calculation technique.

4.7d Monotonicity Enforcement

When solution discontinuites and steep gradi-
ents as present, additional steps must be taken

to prevent oscillations from developing in the nu-
merical solution. One way to do this was pio-
neered by van Leer [35] in the late 1970°s. The
basic idea is to take the reconstructed piecewise
polynomials and enforce strict monotonicity in
the reconstruction. Monotonicity in this context
should be interpreted to mean that the value of
the reconstructed polynomial does not exceed the
minimum and maximum of neighboring cell av-
erages. In other words, the final reconstruction
must guarantee that no new extrema have been
created. This will be referred to as ‘monotonicity
property 1. When a new extremum is produced,
the slope of the reconstruction in that interval
is reduced until monotonicity is restored. This
implies that at a local minimum or maximum in
the cell averaged data the slope in 1-D is always
reduced to zero, see for example figure 4.10.

tone limiting.

Another property (referred to hereafter as ‘prop-
erty 2') of the monotonicity enforcement is mo-
tivated by the stability proof associated with the
higher order accurate schemes {presented in sec-
tion 4.7e). In one dimension, property 2 can be
characterized as the requirement that the new re-
construction not produce a reconstructed solution
variation, [|du|, which is larger than the piece-
wise constant value. If property 2 is violated then
the slopes must be reduced until the solution vari-
ation is satisfied. This situation is depicted in
figure 4.11. For arbitrary unstructured grids, a
sufficient condition is that the differences in the
extrapolated states at a cell interface quadrature
point be of the same sign as the difference in the
piecewise constant values, i.e.

+ _ -
H >0, (property 2)

when combined with property 1, the following in-
equality exists:

ut —u
1> —m— >0

(4.83)

This inequality is crucial in the stability proof
given below.

(b)

Figure 4.11 (a) Reconstruction profile with in-
creased variation violating monotonicity property
2. (b) Profile after modification to satisfy mono-
tonicity property 2.

In Barth and Jespersen [40], we gave a simple
recipe for invoking property 1. Consider writing
the linearly reconstructed data in the following
form:
wh(a,y); = T;+ Vil -(R-R;) (484a)
Now consider a “limited” form of this piecewise
linear distribution.
uf(z,y); = T; + &;Vul - (R-R;) (4.84D)
The idea is to find the largest admissible &; while
invoking a monotonicity principle that values of
the linearly reconstructed function must not ex-
ceed the maximum and minimum of neighboring
centroid values (including the centroid value in
c;). To do this, first compute

m:'" . — —
u7*" = min(%;, Uneighbors)
and
maer __ T T) -
u; = IIla-x('UJ, Uneaghbors)

then require that

u" < u(x, y)E < uleE

(4.85)

For linear reconstructions, extrema in u(m,y)f
occur at the vertices of the control volume and
sufficient conditions for (4.85) can be easily ob-
tained. For each vertex of the cell compute u,=
u*(zi,4:)j, i = 1,N,, to determine the limited
value, ¢;, which satisfies (4.84):
min(1, E‘u_—;’u’), ifu; —3; >0
¢i = min(1, 1‘17:;—) ifu; —%; <0
1 if u; — ;=0

6-45

with &; = min(q51,¢2,qb3,...,¢NcJ_). In practice,
the reconstructed polynomial may be calculated
at the flux quadrature points instead of the ver-
tices of the control volume with a negligible degra-
dation in monotonicity. In the implementation of
property 2, we prefer a “symmetric” reduction
of slopes. In other words, at interfaces violating
property 2, both of the two cells sharing that in-
terface reduce their slope until (4.83) is satisfied.

When the above procedures are combined with
the flux function given earlier (4.58),

h(ut,u”) =3 (F(ut,0) + f(u™,m)

2 (4.58)
—~5la(é,n)) (ut —u”)

the resulting scheme has very good shock resolv-
ing characteristics. To demonstrate this fact, we
consider the scalar nonlinear hyperbeolic problem
suggested by Struijs, Deconinck, et al [44]. The
equation is a multidimensional form of Burger’s
equation.

w + (2 /2)s +uy =0

We solve the equation in a square region [0, 1.5] x
[0, 1.5] with boundary conditions: u{z,0) = 1.5—
2z, z < 1, u(z,0) = =.5, z > 1, u(0,y) = 1.5,
and u(1.5,y) = —.5. Figures 4.12 and 4.13 show
carpet plots and contours of the solution on reg-
ular and irregular meshes.

Figure 4.12a Carpet plot of Burger’s equation
solution on regular mesh.

6-46

o

A N i T
Ty e 2

SELNISHRERS,

Figure 4.13a Carpet plot of Burger’s equation
solution on irregular mesh.

Figure 4.13b Solution contours.

Note that the carpet plots indicate that the nu-
merical solution on both meshes is monotone. Even
so, most people would prefer the solution on the
regular mesh. This is an unavoidable consequence
of irregular meshes. The only remedy appears to
be mesh adaptation. Similar results for the Euler
equations will be shown on irregular meshes in a
future section.

4.7e Stability Analysis via Energy Methods

Consider once again the local mesh shown in
figure 4.1a with local index about a vertex vg. In
the analysis performed below, we consider energy
stability of schemes of the following form

5 d(e;)

—UgAg = — z h(u"‘,u_,ﬁ)o;
i=1

5 (4.86)

using linear reconstruction with limiting. Note
that in this analysis all boundary effects will be
ignored. In section 4.5, stability of the first or-
der upwind scheme was proven using monotonic-
ity analysis. Before considering the higher order
schemes, we briefly digress to show stability of the
first order upwind scheme using energy methods.
Using the same techniques, energy stability of the
high order schemes with reconstruction and lim-
iting will be shown.

Enerqy Analysis for the k = 0 scheme

In this case, the flux takes the simple form and
the scheme for a single vertex vy can be written
as indicated below

d(e;)
1 - —
(Aotlo) + Z 3 (f (o, i) + f(T;, As))
Pu J=t - P
Lau
aCes) (4.87)

= Y 3l)| (3 - 3) =0

o

Lau
or in symbolic operator form, where u denotes
the solution vector, i.e. u = (@, %, %, ..., un]7.
In this symbolic form, the scheme is written as

(Du); + Lau— Lygu=0 (4.88)

where D is a positive diagonal matrix containing
the area of each control volume. £, and £, repre-
sent the advective and diffusive operators in this
linear scheme. The energy of the system (4.88) is
given by the following equation:

(WTDou), +u”(L, + LT) u—uT(Ls+ L) u=0
(4.89)

It is a straightforward exercise to show that in
the linear case, £, and LI are skew-symmetric
(isoenergetic) operators, hence

T(La+L)u=0,
The diffusive operator £4 is symmetric which re-
duces the energy equation to the following form:

1

5 (u"Dou), ~ u’L4u =0 (4.90)

From symmetry and application of the eigenvalue
circle theorem, it is easily shown that £ is a
symmetric, negative semi-definite matrix opera-
tor which implies that

uTEdu <0

for all u. This establishes that the scheme is en-
ergy stable since

{(uT Dyu) , <0

Energy Analysis for the k =1 scheme

We now consider the advection scheme with lin-
ear reconstruction. The interface states for the
edge of the control volume separating cells ¢y and
ci are denoted by uf and u;, respectively. The
scheme is written in the familiar form:

d(c,)

f(uo t nl) + f(ul 4 n’))

-

g

Lau
d(e;)
—Z a(di;, B)| (w7 —ud) =0
.C:u ’
(4.91)

Consider rewriting equation (4.91) using the iden-
tity

-
oo = (B8 (- w) = (@i —)

which tacitly assumes that the ratio exists. Mono-
tonicity properties 1 and 2 guarantee that ¢ €
[0,1). Thus, equation (4.91) is rewritten in the
nonlinear form:

d(c,)
)t E
d(f:j)

~ Y Stila(a Bl — 7o) = 0
i=1

(U'E)l-s ﬁi) + f(u:'—sﬁl'))

6-47

From symmetry and the eigenvalue circle theorem
we have that

ufLu<o (4.92)

It remains to be shown that the advection oper-
ator £, is either isoenergetic (in the linear case)
or decays energy in the system. Not all extrap-
olation formulas guarantee that this is true. A
full discussion of this topic is beyond the scope of
these notes and is a subject of current research.
Note that in reference [45], we indicated a pref-
erence for a standard Galerkin discretization of
L. Since this operator is isoenergetic, when com-
bined with the diffusion operator described above,
the entire scheme is provably stable in an energy
norm.

4.8 Maximum Principles and the
Delaunay Triangulation

The edge formulas presented earlier not only
provide an efficient procedure for calculating quan-
tities such as the gradient and divergence, but
also provide certain theoretical results which are
difficult to ascertain otherwise. For example, Cia-
rlet and Raviart [46] consider Galerkin schemes
for solving elliptic equations using linear finite-
elements. They derive sufficient conditions for
the existence of a discrete maximum principle for
Laplace’s equation if all angles in the triangula-
tion are less than =/2 — e for some positive e.
Using the edge formulas derived in section 4.3,
sufficient and necessary conditions can be derived
for a discrete maximum principle which are quite
different from the Ciarlet result. A brief outline
of the proof is given below.

Example: Derive conditions for a discrete max-
imum principle using a Galerkin approximation
with linear elements.

Using a reduced form of (4.43), the canonical
edge formula for the discrete Laplacian operator
is given by

pAutda = L(uP),, =
Qo

Z %[cotan(ah) + cotan(ag,)] (u; — o)
€Ty
(4.93)
where the angles oy, and a g, are depicted below.

6-48

Figure 4.14 Circumcircle test for adjacent tri-
angles.

It is well known that a discrete maximum prin-
ciple exists for arbitrary point distributions and
boundary data if and only if the discrete operator
is a nonnegative operator, i.e., if

E(uh)un = Z w,-u:'

i€T,

(4.94)

and

wp <0, w; >0,i>0, w0+2w;=0 (4.95)
i€y

for any interior vertex vp. For schemes of the form

L")y = 3 Wilul — ul)

i€l,

(4.96)

nonnegativity requires that W; > 0 for all i € 7.
This guarantees a maximum principle. Equating
equation (4.96) to zero, we obtain

h

h z;ero Wiu;
up = == 4.97
¢ Z!'GID Wi ()

and therefore
: h oA h h h _h 3
min (uf, Uy, ..., Ug,) < g < max(uy,us, ..., ug,)

A natural question to be addressed concerns the
existence and uniqueness of triangulations of an
arbitrary point set such that (4.93) guarantees a
discrete maximum principle. In two dimensions
a unique triangulation always exists. The main
result is summarized in the following theorem:

The discrete Laplacian operator (4.93) ezhibits
a discrete mazimum principle for arbitrary poini
sets in two space dimensions iff the triangulation
of these points is a Delaunay triangulation.

The key elements of the proof are given below:
Rearrangement of the weights appearing in (4.93)
yields

w; =% [cotan(arr,) + cotan{ag,)]
_1[cos{ayr,;) , cos(ar,)
T2 [sin (a;) + sin(a::..):l
=l[sin (g, + or,;)]

2 |sin(ayg,)sin(ag,)

(4.98)

Since o, < w, ap, < w, the denominator is
always positive and nonnegativity requires that
arp, + ar, £ n. Some trigonometry reveals that
for the configuration of figure 4.14 with circumcir-
cle passing through {vg, v;,vi41} the sum og, +
ay, depends on the location of v;_; with respect
to the circumcircle in the following way:

op, + o, <m, v;_; exterior

ap, + o, >m, vi_i interior

(4.99)

ap,+or, =m, v;_; cocircular

Also note that we could have considered the cir-
cumcircle passing through {vg, v;, vi—1 } with sim-
ilar results for v;4;. The condition of nonnegativ-
ity implies a circumcircle condition for all pairs of
adjacent triangles whereby the circumcircle pass-
ing through either triangle cannot contain the
fourth point. This is precisely the unique char-
acterization of the Delaunay triangulation which
would complete the proof.

Keep in mind that from equation (4.98) we
have that cotan(a) > 0 if o < #/2. Therefore
a sufficient but not necessary condition for non-
negativity {(and a Delaunay triangulation} is that
all angles of the mesh be less than or equal to
7/2. This is a standard result in finite element
theory and applies in two or more space dimen-
sions. The construction of nonnegative operators
has important implications with respect to the di-
agonal dominance of implicit schemes, the eigen-
value spectrum of the discrete operator, stability
of relaxation schemes, etc.

We can ask if the result concerning Delaunay
triangulation and the maximum principle extends
to three space dimensions. As we will show, the
answer is no. Section 4.3d gives the correspond-
ing edge formulas for Hessian and Laplacian dis-
cretizations in 3-D. The resulting formula for the
three dimensional Laplacian is

¢" Viul dv =) Wi(u; —u) (4.100)
Vo i€To

where
1 d{vg,v;)
W; = 5 ; |AR k4 1/2| cotan(ogy/2).

(4.101)
In this formula Vr, is the volume formed by the
union of all tetrahedra that share vertex vg. Zg is
the set of indices of all adjacent neighbors of v
connected by incident edges, k a local cyclic in-
dex describing the associated vertices which form
a polygon of degree d(vp, v;) surrounding the edge
e(vg,vi), k12 i the face angle between the
two faces associated with 8¢, and 8} /2 which
share the edge e(vi,Vi+1) and |ARyy /2| is the
magnitude of the edge (see figure below).

Figure 4.15 Set of tetrahedra sharing interior
edge e(vg, v;) with local cyclic index k.

A maximum principle is guaranteed if all W; > Q.
We now will procede to describe a valid Delau-
nay triangulation with one or more W; < 0. It
will suffice to consider the Delaunay triangulation
of N points in which a single point vy lies inte-
rior to the triangulation and the remaining N —1
points describe vertices of boundary faces which
completely cover the convex hull of the point set.

(1=
=

Top View

Figure 4.16 Subset of 3-D Delaunay Triangula-
tion which does not maintain nonnegativity.

6-4%

Consider a subset of the N vertices, in particular
consider an interior edge incident to ve connect-
ing to v; as shown in figure 4.16 by the dashed
line segment and all neighbors adjacent to v; on
the hull of the point set. In this experiment we
consider the height of the interior edge, z, as a
free parameter. Although it will not be proven
here, the remaining N — 8 points can be placed
without conflicting with any of the conclusions
obtained for looking at the subset.

It is known that a necessary and sufficient con-
dition for the 3-D Delaunay triangulation is that
the circurnsphere passing through the vertices of
any tetrahedron must be point free [21]; that is to
say that no other point of the triangulation can
lie interior to this sphere. Furthermore a property
of locality exists [21] so that we need only inspect
adjacent tetrahedra for the satisfaction of the cir-
cumsphere test. For the configuration of points
shown in figure 4.16, convexity of the point cloud
constrains z > 1 and the satisfaction of the cir-
cumsphere test requires that z < 2.

1< 2<2 (Delaunay Triangulation)

From (2.13) we find that W; > 0 if and only if
z < 7/4.

1<z< —, (Nonnegativity)

P

This indicates that for 7/4 < z < 2 we have a
valid Delaunay triangulation which does not sat-
isfy a discrete maximum principle. In fact, the
Delaunay triangulation of 400 points randomly
distributed in the unit cube revealed that approx-
imately 25% of the interior edge weights were of
the wrong sign (negative).

Keep in mind that from (4.101) we can obtain a
sufficient but not necessary condition for nonneg-
ativity that all face angles be less than or equal
to w/2.

The formulas for the prototypical viscous term
V - uVu are only slightly more complicated than
the Laplacian formulas. In 2-D we have the fol-
lowing weights

1
W; = 3 [ﬁLicota.n(a‘Ll.) + ﬂR_-COta-n(aR.-)]

(4.102)
or in 3-D
1 d(vo,vi)
W=z Brs1/2|OR k41 /2] cotan{agyi/a)
k=1
(4.103)

6-50

where Ji is the average value of u in the specified
simplex. Since g and 7 are always assumed posi-
tive quantities, we have the following theorem:

A discrete mazimum principle associated with
the discretization of V - uVu with weights given
by (4.102) and (4.103) is guaranteed iff W; > 0
for all interior edges of the mesh. A sufficient but
not necessary condition is that all angles (2-D) or
faces angles (3-D) be less than or equal to 7 /2.

The proof follows immediately from nonnegativ-
ity of (4.102) and (4.103). The sufficient but not
necessary condition is a minor extension of the
result by Ciarlet [46].

5.0 Finite-Volume Solvers for the Euler
Equations

In this section, we consider the extension of
upwind scalar advection schemes to the Euler equa-
tions of gasdynamics. As we will see, the changes
are relatively minor since most of the difficult
work has already been done in designing the scalar
scheme.

5.1 Fuler Equations in Integral Form

The physical laws concerning the conserva-
tion of mass, momentum, and energy for an ar-
bitrary region §2 can be written in the following
integral form:

Conservation of Mass

prda+f p(V-n)dl=0 (5.1)
at Jg a9

Conservation of Momentum

2/dea+f pV(V~n)dl+] pndl=0
ot Jg % an
(5.2)

Conservation of Energy

EaELEd“+[99(E+P)(V-n) dl=0 (5.3)

In these equations p, V, p, and F are the density,
velocity, pressure, and total energy of the fluid.
The system is closed by introducing a thermody-
namical equation of state for a perfect gas:

p=(r-E-3aV-V) (54)

These equations can be written in a more com-
pact vector equation:

Q—/uda—}— F(u) ndli=0 (5.5)
ot Jo an
with
p p(V - n)
u=|pV], Flu)-n=|pV(V-0)+pn
E (E+p)(V -n)

In the next section, we show the natural ex-
tension of the scalar advection scheme to include

(5.5).

5.2 Extension of Scalar Advection Schemes to
Systems of Equations
The extension of the scalar advection schemes

to the Euler equations requires two rather minor
modifications:

(1) Vector Flur Function. The scalar flux func-
tion is replaced by a vector flux function. In the
present work, the mean value linearization due to
Roe [47] is used. The form of this vector flux func-
tion is identical to the scalar flux function (4.58),
i.e.

h(u*,u",n) =% (f(u*,n) + f(u", n))
27 (5.6)
—3lA)] (ut —u7)

where f(u,n) = F(u) - n, and A = df/du is the
flux Jacobian.

(2) Componentwise limiting. The solution vari-
ables are reconstructed componentwise. In prin-
ciple, any set of variables can be used in the recon-
struction (primitive variables, entropy variables,
etc.). Note that conservation of the mean can
make certain variable combinations more difficult
to implement than others because of the nonlin-
earities that may be introduced. The simplest
choice is obviously the conserved variables them-
selves. When conservation of the mean is not im-
portant (steady-state calculations), we prefer the
use of primitive variables in the reconstruction
step.

The resulting scheme for the Euler equations
has the same shock resolving characteristics as
the scalar scheme. Figures 5.1a-b show a simple
Steiner triangulation and the resulting solution
obtained with a linear reconstruction scheme for
transonic Euler flow (M, = .80, = 1.25°) over
a NACA 0012 airfoil section.

Vs

Figure 5.1a Initial triangulation of airfoil, 3155
vertices.

Even though the grid is very coarse with only
3155 vertices, the upper surface shock is captured
cleanly with a profile that extends over two cells
of the mesh.

Figure 5.1b Mach number contours on initial
triangulation, M., = .80,a = 1.25°.

Clearly, the power of the unstructured grid method
is the ability to locally adapt the mesh to resolve
flow features.- Figures 5.2a-b show an adaptively
refined mesh and solution for the same flow. The
mesh has been locally refined based on a poste-
riori error estimates. These estimates were ob-
tained by performing k-exact reconstruction in
each control volume using linear and quadratic
functions. A complete discussion of error esti-

6-51

mation and solution adaption will be given by
Professor Johnson in these notes. The paper by
Warren et al [29] also provides some interesting
insights into the area of mesh adaptation for flows
containing discontinuities.

K :;-:3 7\ a""'

VA
>
S
eA
N/

AN
v
o

Ty %
R e KRR
sy TANS va¥|
i H’ !‘ "‘
Cackd) b <] -
KK AV
s o
ANV : g AV AVAY.

3 IV,
SRS,

v/

5
TAWARWAVS
Faoy 5‘3"“
EATAE L
K/

X
7Y

'A
A
Y

4!

2

é’é&'ﬁgﬁ 3 PP X1

YAy Vi il
RIS BERTN
ROy
AR\

Figure 5.2a Solution adaptive triangulation of
airfoil, 6917 vertices,

The flow features in figure 5.2b are clearly defined
with a weak lower surface shock now visible. Fig-
ure 5.3 shows the surface pressure coefficient dis-
tribution on the airfoil. The discontinuities are
crisply captured by the scheme.

Figure 5.2b Mach number contours on adapted
airfoil.

The other major advantage of unstructured grids
is the ability to automatically mesh complex ge-
ometries. The next example shown in figure 5.4a-

6-52

b is a Steiner triangulation and solution about a
multi-component airfoil.

-1.5

Figure 5.3 Comparison of C), distributions on
initial and adapted meshes.

Using the incremental Steiner algorithm discussed
previously, the grid can constructed from curve
data in about ten minutes time on a standard en-
gineering workstation using less than a minute of
actual CPU time.

Figure 5.4a Steiner Grid about multi-component
airfoil.

The flow calculation shown in figure 5.4b was per-
formed on a CRAY supercomputer taking just a
few minutes of CPU time using a linear recon-
struction scheme with implicit time advancement.
Details of the implicit scheme are given in the
next section.

Figure 5.4b Mach number contours about multi-
component airfoil, M., = .2, = 0°.

We previously mentioned the importance of
using accurate flux quadrature formulas. In fact,
for k-exact reconstruction, we suggest N point
Gauss quadratures with N > (k + 1)/2. In Figs.
5.5a-b this importance is illustrated by plotting
density contours for a numerical calculation of the
Ringleb flow (previously described) using quadratic
reconstruction k = 2. Cur formula suggests that
two point quadratures should be used in this case.

Figure 5.5a Ringleb flow density contours us-
ing quadratic reconstruction and one-point Gauss
quadrature (k =2, N =1).

Figure 5.5a shows contours for a calculation us-
ing one-point Gauss quadrature and Fig. 5.5b
shows contours for a calculation using two-point
quadratures. The improvement in Fig. 5.5b is

dramatic. Increasing the number of quadrature
points to three leaves the solution unchanged.

Figure 5.5b Ringleb flow density contours us-
ing quadratic reconstruction and two-point Gauss
quadrature (k =2, N = 2).

The algorithms outlined in section 4 have
been extended to include the Euler equations in
three dimensions. In reference [43], we showed the
natural extension of the edge data structure in the
development of an Euler equation solver on tetra-
hedral meshes. One of the calculations presented
in this paper simulated Euler low about the ON-
ERA M6 wing. The tetrahedral mesh used for
the calculations was a subdivided 151x17x33 hex-
ahedral C-type mesh with spherical wing tip cap.
The resulting tetrahedral mesh contained 496,350
tetrahedra, 105,177 vertices, 11,690 boundary ver-
tices, and 23,376 boundary faces. Figure 5.6 shows
a closeup of the surface mesh near the outboard

tip.

A

Figure 5.6 Closeup of M6 Wing Surface Mesh
Near Tip.

Transonic calculations, M, = .84, a = 3.06°,
were performed on the CRAY Y-MP computer
using the upwind code with both the Green-Gauss

6-33

and L, gradient reconstruction. Figure 5.7 shows
surface pressure contours on the wing surface and
C, profiles at several span stations.

Figure 5.7 M6 Wing Surface Pressufe Contours
and Spanwise C, Profiles (M= .84,a=3.06°).

Pressure contours clearly show the lambda
type shock pattern on the wing surface. Figures
5.8a-c compare pressure coefficient distributions
at three span stations on the wing measured in
the experiment, y/b=.44,.65.,.95.

-1.5
-1.07
-0.57
S o0
0.5 — Upwind, Green-Gauss Gradients
- - -- Upwind, L2 Gradients
—-=. CFL3D (ref. 48)
1.0 o Experiment
¢ Experiment
1.5 1 T T
0.00 0.25 0.50 0.75 1.00

x/c

Figure 5.8a M6 Wing Spanwise Pressure Distri-
bution, y/b = .44.

Each graph compares the upwind code with Green-
Gauss and L, gradient calculation with the CFL3D
results appearing in (48] and the experimental

data [49]. Numerical results on the tetrahedral

mesh compare very favorably with the CFL3D

structured mesh code. The results for the out-

board station appear better for the present code

than the CFL3D results. This is largely due to

the difference in grid topology and subsequent im-

proved resolution in that area.

6-54

~——— Upwind, Green-Gauss Gradients
---- Upwind, L2 Gradients
—-— CFL3D (ref. 48)

¢ Experiment

¢ Experiment

000 025 0.50 075 1O
x/c

Figure 5.8b M6 Wing Spanwise Pressure Distri-
bution y/b = .65.

-1.5

— Upwind, Green-Gauss Gradients
- --- Upwind, L2 Gradients
—-—~- CFL3D (ref, 48)

o Experiment

¢ Experiment

025 0.50 075 1.00
x/c

Figure 5.8¢c M6 Wing Spanwise Pressure Distri-
bution y/b = .95.

2.3 Implicit Linearizations

In this section, we consider the task of lin-
earizing the discrete spatial operator for purposes
of backward Euler time integration. Defining the
solution vector u = [&;, Uy, U3, ..., x| *, the basic
scheme is written as

Du; = R(u) (5.7)
where D is a positive diagonal matrix. Perform-
ing a backward Euler time integration, equation
(5.7) is rewritten as

D(u"*! —u™) = At R(u"™*!). (5.8)
where n denotes the iteration (time step) level.
Linearizing the right-hand-side (RHS) of (5.8) in
time produces the following form:

D(u™*'-u®) = At (R(u“) + %(u““ - u“))

By rearranging terms, we can arrive at the so
called “delta” form of the backward Euler scheme
n
[D _ At %—] (™ — u") = +At R(u")
(5.9)
Note that for large time steps, the scheme be-
comes equivalent to Newton’s method for finding
roots of a nonlinear system of equations. New-
ton’s method is known to be quadratically con-
vergent for isolated roots. Each iteration of the
scheme requires the solution of an algebraic sys-
tem of linear equation. In practice, we use ei-
ther sparse direct methods as discussed in ref.
[45] or preconditioned minimum residual meth-
ods. Both of these topics will be addressed by
Professor Hughes and other lecturers. The suc-
cess or failure of these methods hinges heavily on
the accuracy of the time linearization. For the
schemes discussed in sections 4 and 5, the most
difficult task is the linearization of the numerical
flux vector with respect to the two solution states.
For example, given the flux vector

h{(u*,u",n) =% (f(ut,n) +f(u",n))
2 (5.10)
—5l4@@)| (u* —u7)

we require the Jacobian terms % and 3‘%. In
reference [50], we derived the exact Jacobian lin-
earization of Roe’s flux function. In this same pa-
per, approximate linearizations of (5.10) were in-
vestigated. The linearization of (5.10) is straight-
forward, except for terms which arise from differ-
entiation of |A{1)|. A simple approximation is
to neglect these terms in the linearization pro-
cess. This produces the following approximate
linearizations:

di_l:' = %(A(“+) —|A(@)[) (Approx 1)
di;h— = %(A(u‘) + |A(1)]) (Approx 1)

It is not difficult that to prove that the error asso-
ciated with this approximation is O(|lut —u~||)
which makes the linearization attractive for the
implicit calculation of smooth flows, Near dis-
continuities, this term becomes O(1) which can
slow the convergence of the scheme considerably.
One important attribute of this approximation is
that it retains ime conservation of the scheme.
This amounts to a telescoping property of fluxes
in time. For time accurate problems involving
moving discontinuities, this property is essential

to obtain correct shock speeds. Another approx-
imate form considered in [50] uses the following
simple approximation

dh _

e A(u)~ (Approx 2)
dh

— — A(m)yt

T A(u)™ (Approx 2)

This linearization also differs from the exact lin-
earization by terms O(Jjut — u~||). One impor-
tant feature of this linearization is that it pro-
duces a LHS operator for the first order upwind
scheme which is (block) diagonally dominant. For
those solution methods or preconditioning meth-
ods based on classical relaxation schemes, this
property establishes convergence of the relaxation
method. Scalar equation analysis also indicates
that when this linearization is used with back-
ward Euler time integration and first order up-
wind space discretization, the resulting scheme is
monotone for all time step size. Unfortunately,
this linearization violates time conservation and
should not be used for time accurate calculations,

L2 Norm Residual

10 ¢ 5 10 15
Iterations

Figure 5.9 Convergence histories for exact and
approximate linearizations. Solid lines show con-
vergence histories for calculations carried out us-
ing first order upwind RHS in(5.9). Dashed line
depicts scheme run with exact linearization of
first order scheme on the LHS and second order
RHS discretization.

Using the edge data structure, the assembly of
the LHS matrix in (5.9) for the first order scheme
is very straightforward. The flux associated with
each edge e(v;,v;) of the mesh is linearized with
respect its two arguments, u; and u;. This means
that the linearization contributes to the forma-
tion of the block matrix elements in the i-th row
j-th column, i-th row i-th column, j-th row i-
th column, and j-th row j-th column positions.

6-35

This leads to a highly vectorizable (using gather-
scatter hardware) algorithm for matrix assembly
(and matrix multiplies). For the higher order
reconstruction schemes, the usual strategy is to
only construct LHS matrix terms associated with
the first order upwind scheme while using a higher
order RHS operator. The mismatch of operators
destroys any hope of quadratic convergence for
large time steps. Figure 5.9 graphs the conver-
gence history for a typical calculation using the
linearizations discussed above. The flow prob-
lem being solved is subsonic flow over a single
airfoil. In this case, the flow is smooth and all
linearizations should be applicable. In this fig-
ure, we see that when the RHS and LHS op-
erators both correspond to the first order up-
wind scheme and the exact Jacobian linearization
is used, quadratic convergence is achieved. The
schemes using approximate linearizations do not
approach quadratic convergence but are very ef-
fective in reducing the initial residual. In reality,
most computations are terminated after reduc-
ing the residual about four orders of magnitude.
For the present example, this would amount to 7
steps using the exact linearization or 8-9 steps us-
ing the approximate forms. Using a higher order
accurate RHS slows the convergence even further.

Nevertheless, a four order reduction in residual is
achieved after 30-40 steps.

6.0 Numerical Solution of the Navier-Stokes
Equations with Turbulence

6.1 Turbulence Modeling for Unstructured Grids

Simulating the effects of turbulence on un-
structured meshes via the compressible Reynolds-
averaged Navier-Stokes equations and turbulence
modeling is a relatively unexplored topic. In early
work by Rostand [51], an algebraic turbulence
model was incorporated into an unstructured mesh
flow solver. This basic methodology was later re-
fined by Mavriplis [52] for the flow about multi-
element airfoil configurations. Both of these im-
plementations utilize locally structured meshes
to produce one-dimensional-like boundary-layer
profiles from which algebraic models can deter-
mine an eddy viscosity coefficient for use in the
Reynolds-averaged Navier-Stokes equations. The
use of local structured meshes limits the general
applicability of the method.

The next level of turbulence modeling in-
volves the solution of one or more auxiliary differ-
ential equations. Ideally these differential equa-
tions would only require initial data and bound-
ary conditions in the same fashion as the Reynolds-

6-56

averaged mean equations. The use of turbulence
models based on differential equations greatly in-
creases the class of geometries that can be treated
“automatically.” Unfortunately this does not make
the issue of turbulence modeling a “solved” prob-
lem since most turbulence models do not perform
well across the broad range of flow regimes usu-
ally generated by complex geometries. Also keep
in mind that most turbulence models for wall-
bounded flow require knowledge of distance to
the wall for use in “damping functions” which
simulate the damping effect of solid walls on tur-
bulence. The distance required in these models is
measured in “wall units” which means that phys-
ical distance from the wall y is scaled by the local
wall shear, density, and viscosity.

yt = ’ Twall Y

Pwall V

Scaling by wall quantities is yet another compli-
cation but does not create serious implementa-

tion difficulties for unstructured meshes as we wil]
demonstrate shortly.

6.2 A One-Equation Turbulence Transport Model

(6.1)

In a recent report with Baldwin [53], we pro-
posed and tested (on structured meshes) a single
equation turbulence transport model. In this re-
port, the model was tested on various subsonic
and transonic flow problems: flat plates, airfoils,
wakes, etc. The model consists of a single scalar
advection-diffusion equation with source term for
a field variable which is the product of turbulence
Reynolds number and kinematic viscosity, vRy.
This variable is proportional to the eddy viscosity
except very near a solid wall.

2%—;?—7') = (Cey Ja ~ €,)\ VR P
+(v + ﬁ)v2(,,j§,r) - -l—(Vw) - V(vRyr)

R Oe¢
(6.2)
In this equation, P is the production of turbulent
kinetic energy and is related to the mean flow ve-
locity rate-of-strain and the kinematic eddy vis-
cosity v;. In equation (6.2), the following func-

tions are required:

1

— =(Ce; = Ce;)\/Cu/ K
e
OR =0¢

Ve =c“(uﬁT)D1 Dy

Ht =ply

Dy =1—exp(-y*/A")
Dy =1— exp(—y+/A+)

p- ;) 20 _ 2, (kY
% 3 8z;) 8z; 3 '\ Bxy
f2(y+)— +(—%)($+D1Dz)(\/D1D2

y+

1
exp(-y* /A*) D,

+¢13—1>2(A+

+oz exp(-v*/Af) Dl))

The following constants have been recommended
in [53):

k=041, c
c, =0.09, A%t

=12, e¢,=20
=26, AY =10

We also recommend the following boundary con-
ditions for (6.2):

1. Solid Walls: Specify Ry =0.
2. Inflow (V- n < 0): Specify By = (Rr)eo < 1.

3. Outflow (V- n > 0): Extrapolate Ry from
interior values.

Equation (6.2) depends on distance to solid
walls in two ways. First, the damping function
f2 appearing in equation (6.2} depends directly
on distance to the wall (in wall units). Secondly,
v; depends on vR, and damping functions which
require distance to the wall.

v = cuDi(y*) Do (y*)v R,

It is important to realize that the damping func-
tions f, Dy, and D, deviate from unity only when
very near a solid wall. For a typical turbulent
boundary-layer (see figure 6.1) accurate distance
to the wall is only required for mesh points which
fall below the logarithmic region of the boundary-
layer.

40
35
30
25
5 a0 b e et =
15
10 /c/g: Flu Plate BL.
P === Laminar Sublayer
5 S0 —— Log Layer
.7 o Re(theta)=37,300
o+ P TP T Ty T T T
0 18° 1w 100 100 16* 10

y+

Figure 6.1 Typical flat plate boundary-layer from
ref. [53] showing dependence of turbulence model
on distance to wall.

The relative insensitivity of distance to the wall

means that accurate estimation of distance to the

wall is only required for a small number of points
that are extremely close to a boundary surface.
The remaining points can be assigned any approx-
imate value of physical distance since the damp-
ing functions are essentially at their asymptotic
values. A general procedure for calculation of dis-
tance to the wall in wall units is to precompute
and store, for each vertex of the mesh, the mini-
mum distance from the vertex to the closest solid
wall (examples are shown later in figures 6.2b and
6.3b). This strategy can only fail if two bodies are
in such close proximity that the near wall damp-
ing functions never reach their asymptotic values.
Realistically speaking, the validity of most tur-
bulence models would be in serious question in
this situation anyway. In general, the minimum
distance from vertex to boundary edge does not
occur at the end points of a boundary edge but
rather interior to a boundary edge. For each ver-
tex, information concerning which boundary edge
achieves the minimum distance and the weight
factor for linear interpolation along the boundary
edge must be stored. Data can then be interpo-
lated to the point of minimum distance whenever
needed. In the course of solving (6.2), distance to
a solid wall in wall units is calculated by retriev-
ing physical distance to the wall and the local wall
quantities needed for (6.1) as interpolated along
the closest boundary edge.

The numerical calculations presented in this
section represent a successful application of the
ideas discussed in previous sections. Figures 6.2a
and 6.3a show examples of Min-Max triangula-
tions about single and multi-element airfoils. The
first geometry consists of a single RAE 2822 air-

6-57

foil. Navier-Stokes flow is computed about this
geometry assuming turbulent flow with the fol-
lowing free-stream conditions: My, = .725,a =
2.31°, Re = 6.5 million. Wind tunnel experi-
ments for the RAE 2822 geometry at these test
conditions have been performed by Cook, Mc-
Donald, and Firmin [54]. The RAE 2822 airfoil
mesh shown in figure 6.2a contains approximately
14000 vertices and 41000 edges. The second ge-
ometry consists of a two element airfoil configu-
ration with wind tunnel walls. The inflow condi-
tions assume turbulent flow with M, = .09 and
Re = 1.8 million. Details of the geometry and
wind tunnel test results can be found in the re-
port by Adair and Horne [55]. The two element
mesh shown in figure 6.3a contains approximately
18000 vertices and 55000 edges.

Both meshes were constructed in two steps.
The first step was to generate a Delaunay trian-
gulation of the point cloud. As mentioned earlier,
the method of Delaunay triangulation can gener-
ate poor triangulations for highly stretched point
distributions. Both meshes suffered from nearly
collapsed triangles with two small interior angles.
As a second step, a Min-Max triangulation was
constructed by edge swapping the Delaunay tri-
angulation. Edge swapping repaired both trian-
gulations. Both airfoil geometries were calculated
assuming turbulent flow using the one-equation
turbulence model (6.2). Level sets of the gen-
eralized distance function used in the turbulence
model are shown in figures 6.2b and 6.3b.

Figure 6.2a Mesh near RAE 2822 airfoil.

6-58

i

=

|

Figure 6.2b Contours of distance function for
turbulence model.

Figure 6.2c Closeup of Mach number contours
near airfoil.

Figures 6.2c-d plot Mach number contours
and pressure coefficient distributions for the RAE
2822 airfoil. The pressure coeflicient distribution
compares favorably with the experiment of Cook,
McDonald, and Firmin [29]. Leading edge trip
strips were used on the experimental model but
not simulated in the computations. This may ex-
plain the minor differences in the leading edge
pressure distribution.

Figure 6.2d Pressure coefficient distribution on
airfoil.

Navier-Stokes computations for the two el-
ement airfoil configuration as shown in figures
6.3c-d. The effects of wind tunnel walls have been
modeled in the computation by assuming an in-
viscid wall boundary condition. Mach number
contours are shown in figure 6.3¢c. Observe that
the contours appear very smooth, even in regions
where the mesh becomes very irregular. This is
due to the insistance that linear functions be ac-
curately treated in the flow solver reguardless of
mesh irregularities.

L ININN

Figure 6.3a Mesh near Multi-element airfoil.

Figure 6.3b Contours of distance function for
turbulence model.

Figure 6.3c Closeup of Mach number contours
near airfoil.

Pressure coeflicient distribution on the main
airfoil and flap are graphed in figure 6.3d. Com-
parison of calculation and experiment on the main
element is very good. The suction peak values of
pressure coefficient on the flap element are slightly
below the experiment. The experimentors also
note a small separation bubble at the trailing edge
of the flap which was not found in the computa-
tions.

6-59

2 Blement Airfoil
o " Experiment

s s

2 ; ; : ; ; :
025 0.00 025 050 0.75 1.00 1.25 1.50
x/c

Figure 6.3d Pressure coefficient distribution on
airfoil.

References

1. Guibas, L.J., and Stolfi, J.,*Primitives for
the Manipulation of General Subdivisions and
the Computation of Voronoi Diagrams” , ACM
Trans. Graph., Vol. 4, 1985, pp. 74-123.

2. Dobkin, D.P., and Laszlo, M.J.,“Primitives

for the Manipulation of Three-dimensional

Subdivisions”, Algorithmica, Vol. 4, 1989,

pp. 3-32.

Brisson, E.,“Representing Geometric Struc-

tures in d Dimensions: Topology and Order”,

In Proceedings of the 5th ACM Symposium

on Computational Geometry., 1989, pp. 218-

227.

. Hammond, S., and Barth, T.J., “An Efficient
Massively Parallel Euler Solver for Unstruc-
tured Grids”, AIAA paper 91-0441, Reno,
1991.

5. Chrobak, M. and Eppstein, D.,“Planar On-

entations with Low Out-Degree and Com-

paction of Adjacency Matrices”, Theo. Comp.

Sci., Vol. 86, No. 2, 1991, pp.243-266.

Rosen, R., “Matrix Band Width Minimiza-

tion”, Proc. ACM Nat. Conf., 1968, pp.

H585-5995.

Cuthili, E., and McKee, J.,“Reducing the

Band Width of Sparse Symmetric Matrices”,

Proc. ACM Nat. Conf., 1969, pp. 157-172.

George, J.A,“Computer Implementation of

the Finite Element Method”, Techical Re-

port No. STAN-CS-71-208, Computer Sci-

ence Dept., Stanford University, 1971.

Venktakrishnan, V., Simon, H.D., Barth, T.J.,

“A MIMD Implementation of a Parallel Eu-

ler Solver for Unstructured Grids”, NASA

6-60

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21,

22,

23.

24,

Ames R.C., Tech. Report RNR-91-024, 1991.
Simon, H.D., “Partitioning of Unstructured
Problems for Parallel Processing,” NASA
AmesR.C., Tech. Report RNR-91-008, 1991.
Lawson, C. L., “Software for C!' Surface In-
terpolation”, Mathematical Software 111, (Ed.,
John R. Rice), Academic Press, New York,
1977.

Rajan, V. T., “Optimality of the Delaunay
Triangulation in R?”, Proceedings of the 7th
ACM Symposium on Computational Geom-
etry, 1991, pp. 357-372.

Rippa, S., “Minimal Roughness Property of
the Delaunay Triangulation”, CAGD, Vol. 7,
No. 6., 1990, pp-489-497.

Bowyer, A., “Computing Dirichlet Tessella-
tions”, The Computer Journal, Vol. 24, No.
2, 1981, pp. 162—166.

Watson, D. F, “Computing the n-dimensional
Delaunay Tessellation with Application to
Voronoi Polytopes,” The Computer Journal,
Vol. 24, No. 2, 1981, pp. 167—171.

Baker, T. J. ,“Automatic Mesh Generation
for Complex Three-Dimensional Regions Us-
ing a Constrained Delaunay Triangulation”,
Engineering with Computers, Vol. 5, 1989,
pp- 161-175.

Green, P. J. and Sibson, R., “Computing
the Dirichlet Tesselation in the Plane”, The
Computer Journal, Vol. 21, No. 2, 1977, pp.
168—173.

Tanemura, M., Ogawa, T., and Ogita, N.,“A

New Algorithm for Three-Dimensicnal Voronoi

Tesselation”, J. Comput. Phys., Vol. 51,
1983, pp. 191-207.
Merriam, M. L.,“An Efficient Advancing Front

Algorithm for Delaunay Triangulation”, ATAA

paper 91-0792, Reno, NV, 1991.

Klee, V., “On the Complexity of d-dimensional

Voronoi diagrams”, Archiv der Mathematik,
Vol. 34, 1980.

Lawson, C. L., “Properties of n-dimensional
Triangulations” CAGD, Vol. 3, April 1986,
pp. 231-246.

Babuska, I, and Aziz, A. K., “On the Angle
Condition in the Finite Element Method?”,
SIAM J. Numer. Anal, Vol. 13, No. 2,
1976.

Edelsbrunner, H., Tan, T.S, and Waupotitsch,
R.,“An O(n®logn) Time Algorithm for the
MinMax Angle Triangulation,” Proceedings
of the 6th ACM Symposium on Computa-
tional Geometry, 1990, pp. 44-52.
Wiltberger, N. L., Personal Communication,
NASA Ames Research Center, M.S. 258-1,

26.

28.

29,

30.

31.

32.

35.

36.

Moftett Field, CA, 1991.

. Gilbert, P.N., “New Results on Planar Tri-

angulations”, Tech. Rep. ACT-15, Coord.
Sci. Lab., University of Illinois at Urbana,
July 1979.

Nira, D., Levin, D., Rippa, S.,“Data Depen-
dent Triangulations for Piecewise Linear In-
terpolation”, J. Numer. Anal., Vol. 10, No.
1, 1990, pp. 137-154.

. Nira, D., Levin, D., Rippa, S.,“Algorithms

for the Construction of Data Dependent Tri-
angulations”, Algorithms for Approxima-
tion, II, Chapman, and Hall, London, 1990,
pp. 192-198,

Holmes, G. and Snyder, D., “The Genera-
tion of Unstructured Triangular Meshes us-
ing Delaunay Triangulation,” in Numerical
Grid Generation in CFD, pp. 643-652, Piner-
idge Press, 1988.

Warren, G., Anderson, W.K., Thomas, J.L.,
and Krist, S.L.,“Grid Convergence for Adap-
tive Methods,”, AIAA paper 91-1592-CP, Hon-
olulu, Hawaii, June 24-27,1991.

Anderson, W.K.,“A Grid Generation and Flow
Solution Method for the Euler Equations on
Unstructured grids,” NASA Langley Research
Center, USA, unpublished manuscript, 1992.
Joe, B.,“Three-Dimensional Delaunay Trian-
gulations From Local Transformations”, SIAM
J. Sci. Stat. Comput., Vol. 10, 1989, pp.
718-741.

Joe, B.,"“Construction of Three-Dimensional
Delaunay Triangulations From Local Trans-
formations”, CAGD, Vol. 8, 1991, pp. 123-
142.

. Gandhi, A. 8., and Barth T. J.,“3-D Un-

structured Grid Generation and Refinement
Usinge ‘Edge-Swapping’ ", NASA TM in
preparation, 1992,

. Godunov, S. K., “A Finite Difference Method

for the Numerical Computation of Discon-
tinuous Solutions of the Equations of Fluid
Dynamics”, Mat. Sb., Vol. 47, 1959.

Van Leer, B., “Towards the Ultimate Conser-
vative Difference Schemes V. A Second Or-
der Sequel to Godunov’s Method”, J. Comp.
Phys., Vol. 32, 1979,

Colella, P., Woodward, P., “The Piecewise
Parabolic Method for Gas-Dynamical Simu-
lations”, J. Comp. Phys., Vol. 54, 1984.

. Woodward, P., Colella, P., “The Numerical

Simulation of Two-Dimensioal Fluid Flow with
Strong Shocks” J. Comp. Phys., Vol. 54,
1984.

. Harten, A. , Osher, S., “Uniformly High-

39.

40.

41.

42,

43.

44,

45,

46.

47,

48.

49,

50.

51.

52.

53.

Order Accurate Non-oscillatory Schemes, I.,”
MRC Technical Summary Report 2823, 1985,
Harten, A., Engquist, B., Osher, S., Chak-
ravarthy, “Uniformly High Order Accurate
Essentially Non - Oscillatory Schemes III,
ICASE report 86-22, 1986.

Barth, T. J., and Jespersen, D. C., “The De-
sign and Application of Upwind Scehemes on
Unstructured Meshes”, AIAA-89-0366, Jan.
9-12, 1989.

Barth, T. J., and Frederickson, P. O., “Higher
Order Solution of the Euler Equations on
Unstructured Grids Using Quadratic Recon-
struction”, AIAA-90-0013, Jan. 8-11, 1990.
Chiocchia, G., “ Exact Solutions to Tran-
sonic and Supersonic Flows”, AGARD Ad-
visory Report AR-211,1985.

Barth, T. J.,“A Three-Dimensional Upwind
Euler Solver of Unstructured Meshes,” AIAA
Paper 91-1548, Honolulu, Hawaii, 1991.
Struijs, R., Vankeirsblick, and Deconinck, H.,
“An Adaptive Grid Polygonal Finite Volume
Method for the Compressible Flow Equations,”
ATAA-89-1959-CP, 1989.

Barth, T.J.,“Numerical Aspects of Comput-
ing Viscous High Reynolds Number Flows
on Unstructured Meshes”, AIAA paper 91-
0721, January, 1991.

Ciarlet, P.G., Raviart, P.-A., “Maximum Prin-
ciple and Uniform Convergence for the Finite
Element Method”, Comp. Meth. in Appl.
Mech. and Eng., Vol. 2., 1973, pp. 17-31.
Roe, P.L.,“Approximate Riemann Solvers, Pa-
rameter Vectors, and Difference Schemes”,
J. Comput. Phys., Vol 43, 1981.

Thomas, J.L., van Leer, B., and Walters,
R.W., “Implicit Flux-Split Schemes for the
Euler Equations,” ATAA paper 85-1680, 1985.
Schmitt, V., and Charpin, F., “Pressure Dis-
tributions on the ONERA M6-Wing at Tran-
sonic Mach Numbers,” in “Experimental Data
Base for Computer Program Assessment,”
AGARD AR-138, 1979.

Barth, T.J.,“Analysis of Implicit Local Lin-
earization Techniques for Upwind and TVD
Schemes,” AIAA Paper 87-0595, 1987.
Rostand, P., “Algebraic Turbulence Models
for the Computation of Two-dimensiona] High
Speed Flows Using Unstructured Grids,”
ICASE Report 88-63, 1988.

Mavriplis, D., “Adaptive Mesh Generation
for Viscous Flows Using Delaunay Triangu-
lation,” ICASE Report No. 88-47,1988.
Baldwin, B.S., and Barth, T.J.,“A One-Eqn
Turbulence Transport Model for High Reynold:

54.

55.

6-61

Number Wall-Bounded Flows,” NASA TM-
102847, August 1990.

Cook, P.H., McDonald M. A., Firmin, M.C.P.,
“AEROFOIL RAE 2822 Pressure Distribu-
tions, and Boundary Layer and Wake Mea-
surements,” AGARD Advisory Report No.
139, 1979.

Adair, D., and Horne, W.C., “Characteris-
tics of Merging Shear Layers and Turbulent
Wakes of a Multi-element Airfoil,” NASA
TM 100053, Feb. 1988.

	07CHAP06.TIF

