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1. Introduction

The primary goal of this grant has been the design and implementation of software to be used in the conceptual
design of aerospace vehicles. The work carried out under this grant has been camed out jointly with members of

the Vehicle Analysis Branch (VAB) of NASA Langley and Computer Sciences Corp. This has resulted in the

development of several packages and design studies. These include two software tools currently used in the

conceptual level design of aerospace vehicles. These tools are SMART, the Solid Modeling Aerospace

Research Tool, and EASIE, the Environment for Software Integration and Execution. Work under this grant
also includes contributions to the design studies of orbital vehicles, specifically, the HL-20.

SMART provides conceptual designers with a rapid prototyping capability and additionally provides initial mass

property analysis. In addition, SMART has a carefully engineered user interface that makes it easy to learn and

use. A more detailed review of the capabilities of SMART can be found in [1]. This describes the necessary

charactersfics built into SMART which allow it to be used efficiently as a front end geometry processor for
other analysis packages.

EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided

design systemsconsisting of diverse, stand-alone, analysis codes. Resulting in a streamlining of the exchange of

data between programs reducing errors and improving the efficiency. EASIE provides both a methodology and

a collection of software tools to ease the task of coordinating en_;,,neering design and analysis codes. A more
detailed review of the characteristics of the EASIE system can be found in [2].

As conceptual aerospace design move to consider future vehicles several factors stand out. First, conceptual
designers face a pressing need to enhance their analysis capabilities as traditional formulae and historical data

are exceded by new conditions and requirements. The effort to generate new formulae and tables will proceed

by the application of higher order analysis packages such as EAL and PATRAN. Geometric input for structural
development in such packages is tedious at best.

Secondly, many modern analysis codes, such as POST, provide an excellent analysis capability with a high

degree of flexibility. Flexibility is further added to the design system by providing design engineers with tools

to interface analysis codes together (the tools of EASIE for example). The price for this high degree of

flexibility is two fold. Within a given program the high degree of flexibility leads to complex data structures.

The user of the program is made responsible for the creation and proper formatting of the input data file. The

user is also responsible for tracking the definition of the appropriate sets of input parameters. In addition,

allowing users to freely define execution sequences of analysis programs adds a high degree of interdependence

in the definition of data items. Consistency and integrity of the data is currently the responsibility of the user.

In what follows, this report will cover in further detail the advances made in each of the following areas.

• General consulting on the use and development of aerospace structural analysis codes.

• Continued the development of SMART routines for the generation of structural element generation and

automatic grid generation preprocessing.

• Enhancing the design of a database interface for POST that allows easier definition of data and helps

perform data consistency checks for the model.

• Build a prototype X-Window interface for EASIE.

• Initial work on the development of basic parallel algorithms.
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2. Use and Development of Structural Codes

Continuing research under this grant has been focused on the design and implementation of computer aided
design tools to support conceptual level aerospace design. This has included the use of a number of finite
element design and analysis codes involved in several design studies currently underway in the VAB.

In order to provide the detailed understanding necessary to design and implement the Integration of SMART and
advanced structural analysis programs as well as providing insight into the analysis programs themselves, the
services of an expert are required. This support has been supplied by Mr. James C. Robinson. The remainder of
this section consist of Mr. Robinson's report on the project work he has condicted during this period.

The primary task during this period has been the analysis of the Rockwell developed configuration of the HL-20
vehicle. The existing HL-20 finite-element model was modified to conform to the Rockwell concept of the HL-

20. This required the addition of a partial circular cylindircal pressure shell and a fiat floor area. The existing
upper part of the vehicle exterior forms the remainder of the pressure shell. Existing frames in the previous
conformal shell model were removed from the access doors. Frames were modeled for the new pressure shell
structure. The remainder of the conformal model was converted into access panels (large doors) on the upper
surface and a frame stiffened, heatshield structure on the lower surface.

THe model was analyzed and re.sized for five loading conditions. Two loading conditions controlled the sizIng
of most of the structure. The first is the internal pressure case plus the 3-G axial acceleration of a normal

launch. The second is an abort condition which subjects the vehicle to an 8-G axioal acceleration and a 10 psi
over-pressure due to the explosion of the launch vehicle. The Rockwell concept with doors exterior to the
pressure shell causes the external and internal pressure ioadings to be supported by two different load paths.

The considerable pressure loads in the vehicle exterior caused by the abort condition required that part of hte
structure to be resized to resist over-all buckling of the vehicle. This capability was not present in the resizing
program.

The creation and implementation of an algorithm to size a finite element model to prevent over-all buckling was
the second task for this period. Rigorous mathematical programming methods exist that may be used to resize a
structure for buckling but application at a level consistent with the strength resizing (approximately 3000

elements and five load cases) is not practical for preliminary design efforts. The method implemented uses EAL
generated swain-energy-densities for the critical buckling mode shapes and several small AWK scripts to
calculate new element sizes. While the method is heuristic in nature, it appears to provide a "hands-off" solution
to the problem.

3. Enhancements for SMART

3.1 Determination of the Structural Requirements

One of the major achievments of this period of research was the determination of those requirements that
structural engineers across the NASA-Langley base need in order to more readily carry out their model
preparation. The requirements are contained in the document "System Software Requirements for SMART -
Vehicle Structure Modules." The document is included in -"_pendix A. This subsection will conclude with a
summary of the document.

This document specifies the functional requirements for software components which address the geometric and
data modelling needs of the aerospace structural engineer. The modules are to be included as part of the



-4-

(SMART)package.Hereafter, these software components will be referred to as SMART - Vehicle Structure
Module (VSM). The purpose of this document is to state precisely WHAT the SMART Structures modules
will do, without consideration as to HOW it will be done.

The software requirements document is intended to be used by the following groups: the SMART
Development Team, structural engineers in VAB, other interested structural engineers and SMART users at
NASA LaRC, and the design and implementation group at Old Dominion University. SMART provides
conceptual designers with a rapid vehicle geometry prototyping capability. Of current interest is the definition
and implementation of those characteristics which would provide the design engineer with a more effective
and efficient tool for building structural models. Construction of such models is currently a bottleneck toward
carrying out the analysis process. The goal of SMART VSM is to address this bottleneck.

The SMART VSM modules will be a set of software tools designed to aid in the development of geometric and
data models to be used in the structural analysis of aerospace vehicles. SMART VSM will provide the
following general capabilities:

• creating and editing structural elements for the wing and fuselage of a given aerospace vehicle,

• integrating wing and fuselage structural assemblies,

• integrating tail and fuselage structural assemblies,

• remapping of aerodynamic loads data in a manner consistent with the developed structural model,

• applying point and area based loads to the model, and

• preparing loads data for visual presentation.

The requirements listed in this document are currently in the process of implementation. Completion of the
implementation for testing will be by the end of June, 1992, with final implementation expected by the end of
the summer.

3.2 Design of Frames and Bulkheads

During the most recent term of this project, one of the enhancements made in the slructural modeling
capabilities of SMART is that of the desing of frame and bulkhead components. This work was carried out by
Susan Schwartz and served as her Master's project at Old Dominion. The text of her project is provided in
Appendix B.

3.3 SMART Related Publications

During the period of this grant, joint work with members of the VAB and the principal investigator lead to the
following publication.

• with W. Engelund and C. Cruz, "Conceptual Level Aerodyanmic Heating Predictions Using the
Aerodynamic Preliminary Analysis System (APAS)" - Proceedings of AIAA Aircraft Design Conference,
AIAA-91-3087, September 1991.
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4. Enhancements for EASIE

4.1 Database Interface for POST

This section describes the work during this period on the database interface to POST. As described in the

introduction, many modern analysis codes provide an excellent analysis capability with a high degree of
flexibility. Within a given program the high degree of flexibility leads to complex data structures. The user of

the program is made responsible for the creation and proper formatting of the input data file. The user is also
responsible for tracking the definition of the appropriate sets of input parameters.

POST is an event driven program, the input to which falls into the above categories. POST is batch oriented
taking input data from an ascii 'event' file. The flexibility of POST leads to a high degree of interdependence
in the definition of data items. For example, when an alternate method of guidance is selected, a completely
different set of input parameters must be specified. POST provides no tools for the definition of such input.

Current research has designed and implemented the prior work of Schwing and Grimm [3] into a proto-type
which applies these techniques to the parameter variables of POST. User reaction has been extremely
favorable. The next stage has been to adapt this proto-type for use with tabular variables and to enhance the
data interdependence factors described above. The work is being condicted by students Shawn Casey and
William Denny. The enhancements are projected for completion by the end of the summer 1992.

4.2 X-Windows and EASIE

4.3

Now that version 1 of EASIE has been released to the public the importance of the menu driven aspect of
EASIE has been emphasized. Currently, this user interface is designed for simple ascii terminals and does not
take advantage of recent advances in technology for presenting the user interface. On the forefront of these
advances is the windowing system for the Athena project at MIT, X-Windows. Most of the software in this
system is in the public domain and hardware in the form of X-servers and X-terminals is rapidly becoming
available. To do some crystal gazing, it would seem that this combination of public domain software and low-
cost hardware will lead to the next revolution of the user interface.

With this in mind, work under this grant has developed a new user interface for EASIE. This work has been
carried out as Master's projects by students Ya-Chen Kao and Chia-Lin Tsai. They developed MOTIF based
interfaces for the ADE and CCE modes of execution. The text of their project reports is included in
Appendicies C and D.

EASIE Related Publications

During the period of this report, work with members of VAB and ACD and the principal investigator lead to
the following publication.

• with K. Jones, L. Rower and A. Wilhite, "Environment for Application Software Integration and
Execution" - Procedings of the 7th ASCE Conference on Computing and Database, May 1991.

5t Parallel Algorithms

It has become clear that much of the future improvements in computing power will arise in the use of parallel
and/or distributed computing environments. Indeed, this can be seen in the new IRIS computers that have been
brought in to support the VAB analysis and design programs. They are all multi-processor machines. While
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these machines can and do provide a certain amount of automatic algoritm adjustment to take advantage of this

environment, true efficient use of any parallel or distributed environment requires careful investigation of the

algorithms being developed. Algorithms initially developed for sequential single processor machines may not
perform anywhere near optimally under automated conversion.

During the period of this grant, the principal investigators and a doctoral student, Jingyuan Zhang, have

continued to be remarkably successful in the development of such baseline algorithms. Below is a list of

refereed publications related to this work.

• "On the Power of Two-Dimensional Processor Arrays with Reconfigurable Bus Systems" - Parallel

Processing Letters September 1991, v 1, no 1, pp 29 - 34.

• "An Optimal Encoding and Decoding Algorithm for Trees" - accepted by International Journal of

Foundation of Computer Science; preliminary version - Procedings of the 19th Annual ACM-CSC, Mar.

1991, pp 1-10.

• "Integer Problems on Reconfiguratble Meshes" - accepted by Journal of Computer ans Software

Engineering; preliminary version - Proceedings of the 29th annual Allerton Conference, OcL 1991, pp. 811 -
820.

• "Fundamental Algorithms on Reconfigurable Meshes" Proceedings of the 29th Annual Allerton

Conference, Oct. 1991, pp 821-830.

• "A fast Adaptive Convex Hull Algorithm on Two-Dimensional Processory Arrays with a Reconfigurable

Bus Systems" - Proceedings of the 3rd NASA Symposium on VLSI Design, Nov. 1991, pp. 13.2.1-13.2.9.

• "Sorting in O(1) Time on a Reconfigurable Mesh of Size nxn" - Parallel Computing: From Theory to Sound

Practice, Procedings of EWPC'92, Plenary Address, IOS Press, pp. 16 - 27, 1992.

• "Fast Mid-level Vision Algorithms on Reconfigurable Meshes" - Parallel Computing: From Theory to
Sound Practice, Proceedings ofEWPC'92, IOS Press, pp. 188 - 191, 1992.

6. References

1. A Solid Modeler For Aerospace Vehicle Preliminary Design, M.L. McMillan, J.J. Rehder, A.W. Wilhite

J.L. Schwing, J.L. Spangler, and J.C.Mills, presented to AIAA conference on CAD Modeling, August 1987.

2. Software Tools for the Integration and Executions of Multidisciplinary Analysis Programs, L Rowell, J.

Schwing, and K. Jones, AIAA-88-4448, Sept., 1988.

3. Data Management Interface for POST, J. Schwing, final report for NASA Task NAS1-18584-50, July
1989.
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1.1 Purpose

12

This document specifies the functional and informational requirements for software modules which address the
geometric and data modelling needs of the aerospace structural engineer. The modules are to be included as

part of the Solid Modeling Aerospace Research Tool (SMART) package developed for the Vehicle Analysis
Branch (VAB) at NASA Langley Research Center (LaRC). Hereafter, these modules will be referred t5 as
SMART Structures. The purpose of this document is to state precisely WHAT the SMART Structures
modules will do, without consideration as to HOW it will be done. Each requirement is numbered for

reference in development and testing.

Scope

This software requirements document is intended to be used by the following groups: the SMART
Development Team, structural engineers in VAB, other interested structural engineers and SMART users at
NASA LaRC, and the design and implementation group at Old Dominion University. SMART provides

conceptual designers with a rapid vehicle geometry prototyping capability. Of cmrent interest is the definition
and implementation of those characteristics which would provide the design engineer with a more effective
and efficient tool for building structmal models. Construction of such models is currently a bottleneck toward

carrying out the analysis process. The goal of SMART Structures is to address this bottleneck.

The SMART Su-ucmtes modules will be a set of software tools designed to aid in the development of

geometric and data models to be used in the structural analysis of aerospace vehicles. SMART Structures

WILL provide the following general capabilities:

• creating and editing structural elements for the wing and fuselage of a given aerospace vehicle,

• integrating wing and fuselage structural assemblies,

• integrating tail and fuselage strucua-al assemblies,

• remapping of aerodynamic loads data in a manner consistent with the developed structural model,

• applying point and area based loads to the model, and

• preparing loads data for visual presentation.

1.3

SMART Structures WILL NOT provide the following capability:

• generation of the geometric surfaces defining any of the internal or external assemblies for wing, fuselage,
or tank surfaces since such capabilities are either currently or shortly will be supplied by other SMART
modules.

Terminology and References

Technical terms used in this document are common terms used in the engineering design of aerospace vehicles.

Complem definitions can be found in any standard text on the topic, for example [2,3]. Figures 1-4 below
illusuam the typical naming and placement of structural elements in aerospace vehicles.

DRAFT - 10/30/91 SMART Requirements Document
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Figure 1

Wing Structural Components
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Figure 2

Fuselage Structural Components
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Figure 3
Aircraft Frame Structure
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Figure 4

Tall Structural Components
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1.4

Additional terminology used in this document.

• consistent - when applied to surface geometry and data patches relative to the structural model means that

the edges of the patches have been defined to correspond to structural elements immediately beneath the
surface.

• patch - a bicubic functional representation of a geomeuric or data surface using two parameters.

• gridpoint - the I/3 points of the patches that define the geometry.

• surface patch d/v/der - a non-structural entity used to separate surface patches as structural entities such as
ribs and spars separate patches.

The following references are provided as background in basic aerospace design and in the software packages
SMART, PATRAN and APAS.

[1] Aerodynamic Preliminary Analysis Syaem II (APAS), Part II -- User Manual, Rockwell
International Corporation, April 1981.

[2] Basic Science for Aerospace Vehicles - 4th Edition, Northrup Institute for Technology,
McGraw-Hill, 1972.

[3] Colvin and Colvin, Aircraft Handbook, McGraw-Hill, 1929.

[4] McMillan, Rehder, Wilhite, Schwing, Spangler and Mills, A Solid Modeler for Aerospace
Vehicle Preliminary Design, AIAA paper 87-2901.

[5] PATRAN Plus User Manual, Vols. I & H, PDA Engineering, 1988.

[6] SMART User Reference Guide, Vehicle Analysis Branch, NASA Langley, 1991.

Overview of the Software Requirements Document

Section 2 of this document consists of a general overview of SMART Structures and includes the following
subsections:

• a perspective of how SMART Structures relates to the existing and proposed development and analysis
process in VAB,

• a general look a SMART Structures functions,

• user characteristics,

• general constraints, and

• assumptions and dependencies.

Section 3 of this document consists of a detailed listing of the requirements for SMART Structures. Where

applicable, every requirement will address each of the following areas:

• introduction,

• h'Ipu_,

• processing, and

• outputs.

Finally, Section 3 will end with a listing of the external interface requirements including user interface and
software interface requirements.

DRAFT - 10/30/91 SMART Requirements Document
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2. General Description

2.1 SMART Structures: A Perspective

The SMART Structures mode will be a assembly of the SMART geometric design system. The main

objectives of SMART Structures are the definition and editing of structural elements for aerospace vehicles
and, for further structural analysis, the preparation of geometric and data models consisten- • ith the structural
elements. Initial geometric surface descriptions of the aerospace vehicles will be prepared through other

design modules in SMART [4,6]. The basic interface to the rest of SMART is through the SMART data tree.
It is assumed that the aerospace vehicle assemblies, to which structure will be added, have been defined in
SMART and have bicubic surface definitions as described by [4,6]. Strucuwal elements prepared by SMART
Structures will follow this same format and will be inserted into the SMART data tree and will thus be

available to SMART modules such as visualization.

SMART Structures will provide tools for the definition and editing of both point and area load data. In
addition, SMART Structures will be able to read data files created by APAS which contain loads and other

aerodynamic analysis information, such as heating. Once geometry and data surfaces have been prepared that
correspond to the underlying structural elements, SMART Structures will be able to write the results to
PATRAN neutral files. Figure 5 below shows the interaction of various SMART modules and the APAS and

PATRAN analysis programs while figure 6 illustrates the proposed data flow for the structural analysis process
in VAB. SMART [:'des Primitives represents those functions in SMART available for defining geometric

surfaces, both generalCt_x, sphere, etc.) and aero-specific (wing, tank, etc.). SMART Files represents those
functions in SMART that aid in the -ading and writing of various types of data files.

SMART

SMART Mo(lules

Figure 5
Data Flow Relative to Smart Structures

DRAFT - 10/30/91 SMART Requirements Document
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Figure 6
Proposed Data Flow for Conceptual Vehicle Analysis in VAB

2.2 SMART Structures Functions

SMART Structtt_s functionality is defined by the following groups of requirements:

Wing-type Elements - Definition and Editing
Note: wing-type includes consideration of tail, pylon, and other wing-like structures.

1. Wing Box - Leading Edge Requirements
2. Wing Box - Trailing Edge Requirements

3. Wing Box - Root and Tip Rib Requirements
4. Rib Requirements
5. Spar Requirements
6. Multiple Wing Assembly Integration Requirements
7. Wing Secdon Cutout Requirements
8. Wing Output Requirements

Fuselage-type Elements - Definition and Editing
Note: fuselage-type include considerationof tank and other fuselage-like structures.

9. Fuselage Assembly Generation Requirements
10. Cross Section Generation Requirements

11. Ring Frame Requirements
12. Bulkhead Requirements
13. Longeron, Keel, and Beam Requirements
14. Fuselage Output Requirements

Assembly Placement and Integration

DRAFT - 10/30/91 SMART Requirements Document
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15. Wing - Fuselage Placement and Integration

16. Wing - Tail placement and Integration

Load Definition and Visualization

17. Point Load Requirements
18. Path and Area Load Requirements
19. Analysis-Generated Load Requirements
20. Load Output Requirements

External Interfaces

21. User Interface Requirements

22. Software Interface Requirements

2.3 User Characteristics

Users of the SMART system are aerospace design engineers. All users will be familiar with SMART as a

geometric design tool. Further, users of SMART Structures will have knowledge of structural design and
analysis programs. This includes knowledge of design parameters and input and ourput variables for
associated analysis programs such as APAS and PATRAN.

2.4 General Constraints

SMART Structures will be written in the "C" language, using the SMART graphics user interface developed
for the Silicon Graphics (SGI') IRIS 4D Workstation using SGI's GL graphics library. As graphics will be
used, the SMART Structures module will only run from the console. Note that this is consistent with the

current execution of SMART. It is further noted that this also implies the existence of a pointing device (the
mouse). No other hardware will be needed.

2.5 Assumptions and Dependencies

Software developed for SMART Structures is dependent on the operating system and libraries provided by SGI

with their IRIS Workstation products and graphics display and GUI modules already developed for SMART.
Changes in these underlying systems may result in changes in the operation or in the appearance of SMART
Structures.

SMART Smactares will provide software tools to define and edit structural elements for all possible SMART-
produced wing geometries. At this time, the full range of wing definitions supported by SMART is yet to be
determined. It is not essential for the purpose of this document that all such geometries be currently defined;
however, it is assumed that any NEW wing geometries will satisfy the following characteristics.

I. Upper and lower surfaces will be defined by an array of bicubic patches consistent with the SMART
geometry format.

2. The SMART data tree will contain sufficient information so that a planform view of the wing can be
determined.

3. When previously defined by the SMART Wing modules, the SMART data tree will contain sufficient
information to determine the placement of flaps and other cutouts in the wing surface.

It is assumed that fuselage geometries will satisfy the following characteristics:

1. There may be several fuselage assemblies defined, for example, fore, center, and aft assemblies.

2. Surfaces are defined by an array of bicubic patches consistent with the SMART geometry format [6].

DRAFT - 10/'30/91 SMART Requirements Document
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3. Functional Requirements

1. Wing Box - Leading Edge Requirements

I. General Requirements

The wing box is made up of the leading edge spar, the trailing edge spar and the root and tip ribs. This
section and the two which follow describe the requirements for defining and editing these structural

elements and the region immediately preceding the leading edge spar and following the u-ailing edge spar.

The purpose of this function is the generation of the geometry for the major structural element in each
wing assembly behind the leading edge usually referred to as the leading edge spar. In addition, geometry
for the leading edge rib elements within the leading edge is also generated. Figure 7 illustrates typical
positions for the leading edge spar and leading edge ribs.

leading edge

nbs

leading edge

spar

leading edge

,

Figure 7
Leading Edge Spar and Rib Components

R1.1 The leading edge spar must be generated perpendicular to the wing planform.

RI,2 The extent of the leading edge spar must be defined by where it intersects the root and tip fibs
and the upper and lower surfaces of the wing,

R1.3 The extents of the leading edge ribs must be defined by where they intersect the leading edge,
the leading edge spar, and the upper and lower surfaces.

R1.4 The placement of the leading edge spar must be checked relative to the placement of the
trailing edge spar, the two spars must not be allowed to intersect.

Input Requirements

RI.$ The leading edge spar may be DEFINED as parallel to the leading edge with the distance

back fi'om the leading edge determined by either

DRAFT - 10/30/91 SMART Requirements Document
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a. a percentage length of the root chord - 0% at the leading edge and 100% at the trailing
edge, or

b. a measured distance behind the leading edge measured along the root chord which may
be input either by value or by pointing.

R1.6 The leading edge spar may be DEFINED as skew to the leading edge, requires two inputs to
fix its position behind the leading edge, determined by either

a. percentage of length of both the root and tip chords -- 0% at the leading edge and 100%

at the traiting edge, or

b. measured distances behind the leading edge along the root and tip chords which may be

input either by value or by pointing.

R1.7 The leading edge spar may be EDITED as parallel to the leading edge by updating current
values as follows:

m a percentage length of the root chord,

b. a measured distance behind the leading edge measured along the root chord which may

be input either by value or by pointing.

RI.8 The leading edge spar may be EDITED as skew to the leading edge by allowing updates of
either of two inputs to fix its position as follows:

a. percentage of length of either the root or tip chords,

b. measured distances behind the leading edge along either the root or dp chords which

may be input either by value or by pointing.

If the leading edge spar was initially input as skew to the leading edge and later edited as

parallel to the leading edge, it is fist made parallel to the leading edge, intersecting the root

chord at the same place as the initial skew leading edge spar.

R1.9 The leading edge spar may be DELETED.

Since much of the other internal strucutre depends upon the placement of the leading edge

spar, editing the leading edge spar requires deleting this structure and redefining it. Since this
may require extensive data reentry on the part of the user, the user will be notified of the

desu'uctive nature of this choice and asked to verify the intention to make this change.

RI.I0 The leading edge n'b elements may be DEFINED as parallel to the root chord and specified

by:

a. equal spacing and the number of required ribs,

b. entering the value of the position of each desired rib,

c. pointing at the position of each desired rib.

RI.ll The leading edge rib elements may be DEFINED as perpendicular to the leading edge and

specified by:

a. equal spacing and the number of required ribs,

b. entering the value of the position of each desired rib,

e. pointing at the position of each desired rib.

RI.12 The leading edge rib elements may be EDITED as parallel to the root chord and specified by:
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a. equal spacing and updating the number of required fibs,

b. changing the value of the position of each desired rib,

c. dragging any desired rib to a new position.

Rl.13 The leading edge rib elements may be EDITED as perpendicular to the leading edge and
specified by:

a. equal spacing and updating the number of required ribs,

b. changing the value of the position of each desired rib,

c. dragging any desired rib to a new position.

Editing leading edge ribs initially defined as parallel to the mot chord as perpendicular to the
le.ading edge (or alternately initially defined as perpendicular to the leading edge and edited as
parallel to the mot chord) causes the ribs to be redefined immediately.

Editing non-equally spaced ribs as equally spaced causes the given number of ribs to be
redistributed equally before editing.

Rl.i4 All leading edge rib elements may be DELETED by choosing a delete all function.

Rl.15 The leading edge rib elements may be DELETED by individually pointing at each rib to be
deleted.

Processing Requirements

Rl.16 Surfaces will be generated to define a complete, separate leading edge assembly.

Rl.17 Results are presented real-time on a both a planform view of the wing and a side view of the
wing.

RI.18 Since users must define the leading edge spar prior to defining the leading edge ribs, this
module notifies users of an attempt to define rib elements out of sequence.

Rl.19 Surface patch dividers may be defined, edited and deleted like leading edge ribs.

2. Wing Box - Trailing Edge Requirements

1. General Requirements

The purpose of this function is the generation of the geometry for the major structural element in each
wing assembly preceding the trailing edge usually referred to as the trailing edge spar. In addition,
geometry for the trailing edge n'b elements within the trailing edge is generated. Figure 8 illustrates typical
positions for the trailing edge spat and trailing edge ribs.
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trailing edge_--
nbs

trailing edge

f spar

trailing edge

Figure 8
Trailing Edge Spar and Rib Components

.

R2.1 When previously defined, the wing planform will be drawn with outlines of t_aps or other
trailing edge aero-surfaces so that the placement of the trailing edge spar may be as accurate
as possible.

R22 The trailing edge spar must be generated perpendicular to the wing planform.

R2.3 The trailing edge spar must be defined by where it intersects the root and tip chords and the
upper and lower surfaces of the wing.

R2.4 The extents of the trailing edge ribs must be defined by where they intersect the trailing edge,
the trailing edge spar, and the upper and lower surfaces.

R2.5 The placement of the trailing edge spar must be checked relative to the placement of the
leadingexlgespar,thetwo sparsmustnotbeallowedtointersect.

InputRequirements

R2.6 The trailingedge sparmay be DEFINED asparalleltothetrailingedge withthedistance

backfromthetrailingedgedeterminedbyeither

a. apercentagelengthoftherootchord- 0% attheleadingedgeand 100% atthetrailing

edge, or

b. a measured distance preceding the trailing edge measured along the root chordwhich
may be input either by value or by pointing.

R2.7 The trailing edge spar may be DEFINED as skew to the trailing edge, and requires two inputs
to fix its position preceding the trailing edge, determined by either

a. percentage of length of both the root and tip chords -- 0% at the leading edge and 100%

at the trailing edge, or
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R2.10

R2.II

R2.12

112.13

R2.14

b. measured distances preceding the trailing edge along the root and tip chords which may
be input either by value or by pointing.

R2.8 The trailing edge spar may be EDITED as parallel to the trailing edge by updating current
values as follows:

a. a percentage length of the root chord,

b. a measured distance preceding the trailing edge measured along the root chord which
may be input either by value or by pointing.

R2.9 The trailing edge spar may be EDITED as skew to the trailing edge by allowing updates of
either of two inputs to fix its position as follows:

a. percentage of length of either the root or tip chords,

b. measured distances preceding the trailing edge along either the root or tip chords which
may be input either by value or by pointing.

If the trailing edge spar was initially input as skew to the trailing edge, and later edited as

parallel to the trailing edge, it is first made parallel to the trailing edge, intersecting the root
chord at the same place as the initial skew trai/ing edge spar.

The trailing edge spar may be DELETED.

Since much of the other internal structure depends upon the placement of the trailing edge
spar, editing the trailing edge spar requites deleting this structure and redefining it. Since this
may require extensive data reentry on the part of the designer, the designer will be notified of
the destructive nature of this choice and asked to verify the intention to make this change.

The trailing edge rib elements may be DEFINED as parallel to the root chord and specified
by:

a. equal spacing and the number of required ribs,

b. entering the value of the position of each desired rib,

c. pointing at the position of each desired rib.

The trailing edge rib elements may be DEFINED as perpendicular to the trailing edge and
specified by:

a. entering the value of the position of each desired rib,

b. equal spacing and the number of required ribs,

c. pointing at the position of each desired rib.

The trailing edge rib elements may be EDITED as parallel to the toot chord and specified by:

a. equalspacingand updatingthe numberofrequiredribs,

b. changing the value of the position of each desired rib,

c. dragging any desired rib to a new position.

The trailing edge rib elements may be EDITED as perpendicular to the trailing edge and
specified by:

a. equal spacing and updating the number of required ribs,

b. changing the value of the position of each desired rib,
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c. dragging any desired rib to a new position.

Editing ribs initially defined as parallel to the root chord as perpendicular to the trailing edge
(or alternately initially defined as perpendicular to the trailing edge and edited as parallel to
the root chord) causes the ribs to be redefined immediately.

Editing non-equally spaced ribs as equally spaced causes the given number of ribs to be
redistributed equally before editing.

R2.15 All trailing edge rib elements may be DELETED by choosing a delete all function.

112.16 The trailing edge rib elements may be DELETED by individually pointing at each rib to be
deleted.

Processing Requirements

R2..17 Surfaces will be generated to define a complete, separate trailing edge assembly.

R2.18 Results are presented real-time on a planform view of the wing and on a side view of the
wing.

R2.19 Since users must define the trailing edge spar prior to defining the trailing edge ribs, this
module notifies users of an attempt to define rib elements out of sequence.

R220 Surface patch dividers may be defined, edited and deleted like trailing edge ribs.

3. Wing Box - Root and Tip Rib Requirements

I. General Requirements

The purpose of this function is the generation of the geometry for the other major structural elements of

any wing assembly, the root and tip ribs. Figure 9 illustrates a typical position for the root and tip ribs.

root

rib

.--i)

---I)

Figure 9
Root end Tip Rib Components

tip

rib

R3.1 The dp rib must be genea-ated perpendicular to the plane of the wing planform.
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R32 If the wing assembly being considered attaches to another assembly of the wing, the root rib
must be generated perpendicular to the plane of the wing planform.

R3.3 If the wing assembly attaches to the fuselage, the root rib must be initially generated in a
plane parallel to the plane of symmetry for the vehicle being defined. This angle can be
found by adding the dihedral angle to the perpendicular of the wing planform.

It should be noted that this initial definition of the root rib may be modified by the requirements of wing-
fuselage integration discussed below in the Processing Requirements of the wing-fuseslage section.

R3.4 Both of these ribs must contain the line segments in the wing planform defined by the root
and tip chords.

R33 The extents of the root and tip ribs are defined by where they intersect the leading and trailing
edges and the upper and lower surfaces.

Input Requirements

The requirements made for defining the root and tip fibs completely specify these elements, therefore no
user input is required.

Processing Requirements

R3.6 Any processing required must be completed automatically once both the leading and trailing
edge spars are defined.

4. Rib Requirements

. General Requirements

The purpose of this function is the generation of the geometry for rib elements in the wing. Figures 10

and 11 illustrate typical positions for the placement of ribs in the wing box.

i!!:%., rit:_

Figure "10
Ribs Defined P-,ralkfl to Root Rib
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Figure 11
Ribs Defined perpendicular to the 50% Chord

R4.1 R_'b structural elements must be generated perpendicular to the wing planform.

R4.2 The extents of the ribs ate defined by where they intersect the wing box and by the upper and
lower surface of the wing.

R4.3 When the spars are defined, the rib elements are subdivided where they intersect spar
elements.

Input Requirements

R4.4 The rib elements may be DEFINED as parallel to the root chord and may be specified by

a. equal spacing and the number of required ribs,

b. pointing at the position of each desired rib.

R4.5 The rib elements may be DEFINED as perpendicular to a user-specified percentage chord and
further specified by

a. equal spacing and the number of required ribs,

b. pointing at the position of each desired fib.

R4.6 The rib elements may be DEFINED by pointing to the wing box at the endpoints of the
desired rib; this method will be referred to as "freehand."

R4.7 The rib elements may be DEFINED by entering the value of the endpoints of each desired n'b.

R4.fl The rib elements may be EDITED as parallel to the root chord by

a. equal spacing and updating the number of required ribs,

b. dragging any desired rib to a new position.

R4.9 The rib elements may be EDITED as perpendicular to a potentially updated user-specified
percentage chord by

a. equal spacing and updating the number of required ribs,

b. dragging any desired rib to a new position.

R4.10 The rib elements may be EDITED by dragging any endpoint of a rib to a new position.

R4.11 The rib elements may be EDITED by changing the value of any endpoint of a rib.
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FAiring ribs as parallel to the root n'b (alternately as perpendicular to a percentage chord) not
initially defined in that format causes the ribs to be redefined immediately in the format

chosen for editing, i.e. the same number of ribs are redistributed equally spaced and parallel
to the root rib (alternately perpendicular to the percentz.-_ chord).

R4.12 ALl rib elements may be DELETED by choosing a delete all function.

R4.13 The rib elements may be DELETED by individually pointing at each rib to be deleted.

Processing Requirements

R4.14 Results are presented real-time on a planform view of the wing.

R4.15 Validity of "freehand" input for ribs is checked to insure that ribs do not intersect except

perhaps at the boundaries of the wing box.

The definition of rib and spar elements has a direct implication on the representation of elements for the

wing surfaces as follows:

R4.16 Geometry elements in the wing surfaces will be redefined so that the boundaries of the

surface patches matches to the boundary of an underlying rib or spar patch.

This geometry data is to be provided as input to analysis programs such as PATRA2q [5]. Elements input
into such analysis programs are either in the form of three- or four-sided elements.* The process of
subdividing the wing box into ribs and spars can lead to elements with five or more sides which are not
acceptable for further analysis.

R4.17 Once the process of defining ribs and spars is finished, each surface element must be
reviewed for the number of sides generated. If five or more-sided elements exist, they must
be identified to the user. The user must be placed in a mode that allows editing the rib or spar
elements to correct this situation.'*

R4.18 Surface patch dividers may be defined, edited and deleted like ribs. In addition, any section
of a rib (between two spars) may be designated as a section of a surface patch divider.

Conversely, any section of a surface patch divider may be designated as a rib section.

" Note: elements are not polygons; edges may be curved.

** Since the order of definition of _ and spars is left to the user requ/remems R4.16 and 4.17 are placed with the processing requisements of

beth ribs (here) and _an (requirtanents R5.18 md R5.19).
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5. Spar Requirements

I° General Requirements

The purpose of this function is the generation of the geometry for spar elements in the wing.
and 13 illustrate typical positions for the placement of spars in the wing box.

Figures 12

spars

Figure 12
Spars Defined at Equal Percentages of the Root and Tip Chords

spars
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Figure 13
Spars Defined Perpendicular to Existing Ribs

RS.1 Spar structural elements must be generated perpendicular m the wing planform.

R52 The extents of the spars are defined by where they intersect the wing box and by the upper
and lower surface of the wing.

1_.3 When the ribs are defined, the spar elements are subdivided where they intersect fib elements.
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2. Input Requirements

R5.4 The spat elements may be DEFINED as endpoints placed at equally calculated percentages of
the root and tip chords and further specified by the number of spars.

R5.5 The spar elements may be DEFINED as parallel to a user-specified percentage chord and
further specified by

a. equal spacing and the number of required spars,

b. pointing at the position of each desired spar.

R5.6 The spar elements may be DEFINED as perpendicular to existing rib elements and further
specified by

a. equal spacing and the number of required spars,

b. pointing at the position of each desired spar.

The choice of whether to define fibs or spars first is left to the user. Thus, if the user decides

to define spars first, this technique is not appropriate and the user is asked to use another
technique.

R5.7 The spar elements may be DEFINED by pointing at the endpoints of the desired spar;, this
method is referred to as "freehand."

R5.8 The spar elements may be DEFINED by entering the value of the endpoints of each desired
spar.

R5.9 The spar elements may be EDITED as endpoints placed at equally spaced percentages of the
root and tip chords and by updating the number of spars.

RS.10 The spar elements may be EDITED as parallel to a potentially updated user-specified
percentage spar chord and further specified by

a. equal spacing and updating the number of required spars,

b. pointing at the position of each additional spar.

R5.11 The spar elements may be EDITED as perpendicular to existing rib elements and further
specked by

a. equal spacing and updating the number of required spars,

b. pointing at the position of each additional spar.

R$.12 The spar elements may be EDITED by dragging any endpoint of a spar to a new position.

R5.13 The spar elements may be EDITED by changing the value of any endpoint of a spar.

Editing spars as endpoints at equally spaced percentages of the root and tip ribs (alternately
either as parallel to a percentage chord or as perpendicular to existing ribs) not initially
defined in that format causes the spars to be redefined immediately in the format chosen for
editing, i.e. the same number of spars are redistributed with endpoints at equally spaced
percentages of the root and tip ribs (alternately either as parallel to the percentage chord or as
perpendicular to existing ribs).

R$.14 All spar elements may be DELETED by choosing a delete all function.

RS.I$ The spar elements may be DELETED by individually pointing at each spar to be deleted.
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. Pro_ssing Requirements

R5.16 Results are presented real-time on a planform view of the wing.

R5.17 Validity of "freehand" input for spars is checked to insure that spars do not intersect except
perhaps at the boundary of the wing box.

The definition of rib and spar elements has a direct implication on the representation of elements for the
wing surfaces as follows:

R5.18 Geometry elements in the wing surfaces will be redefined so that the boundaries of the

surface patches matches to the boundary of an underlying rib or spar patch.

This geometry data is to be provided as input to analysis programs such as PATRAN [5]. Elements input

into such analysis programs are either in the form of three- or four-sided elements. The process of
subdividing the wing box into ribs and spars can lead to elements with five or more sides which are not
acceptable for further analysis.

R5.19 Once the process of defining ribs and spats is finished, each surface element must be

reviewed for the number of sides generated. If five or more sided elements exist, theymust
be identified to the user. The user must be placed in a mode that allows editing of the rib or
spar elements to correct this situation.*

R5.20 Surface patch dividers may be defined, edited and deleted like spars. In addition, any section
• of a spar (between two ribs) may be designated as a section of a surface patch divider.
Conversely, any section of a surface patch divider may be designated as a spar section.

6. Multiple Wing Assembly Integration Requirements

1. General Comments

The purpose of this function is to allow the user to edit the structural elements of any wing assembly as
necessary to produce a model that has elements consistent with the requirements for input to analysis
programs such as PATRAN [5]. A summary of these requirements follow. Two assemblies which share a
common rib with a common airfoil (or upper and lower surface), must have the same number of spar
elements ending at the common boundary. In addition, corresponding elements from each of the
assemblies must intersect at a single point on the common boundary. Figure 14 illustrates this condition.

* Since the order of definition of ribs _d spars is left to the user. requirements RS. I8 md RS.I 9 tre placed with the processing requirements of
both spars (hem)and ribs (requinnnen_ R4.16 & R4.17).
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Figure 14
Integration of Wing Au4m_blles

It is NOT the function of SMART Structures to provide facilities to edit the chord elements of the two
assemblies or their airfoils at intersection to obtain a match of these elements. It is assumed that this

match is provided by the SMART Wing Generation module(s). It is the function of this requirement to
provide editing facilities in order to facilitate the matchingof sparelements at the commonchord.

R6.1 It may be necessaryfor the designer to define assemblies in addition to those provided to
SMART Structures. Such assemblieswould be separatedby a plane, defined perpendicular to
the wing planfrom. The plane will be represented by a line segment drawn where this plane
intersects the wing planform.

Input Requirements

R6.2. New assemblies may be defined by

a. selecting an existing rib or spar as the assembly boundary,

b. entering the values of the endpoints of the defining line segment on the boundary of the

wing box,

c. pointing to the position of the endpoints of the defining line segment on the boundary of
the wing box. "

R63 Any assembly may be named or renamed.

R6.4 For MATCHING assemblies at a common boundary, identify a assembly for editing and use
any of the spar or rib editing techniques described in the sections on Spar or Rib
Requirements.

R6.5 Point to a spar or rib endpoint at the common chord and move that point so that it matches
one of the spar or rib endpoints from the other assembly.

Processing Requirements

R6.6 Results are presented real-time on a planform view of the wing.

R6.7 Operations for the integration of wing assemblies require both the existence of two wing
assemblies and the existence of structural elements for both of the assemblies. The existence

of this information is checked and the user informed of the need to provide additional inputs

when necessary.

DRAFT - 10/30/91 SMART Requirements Document



SystemRequirementsSpeci_cadonforSMARTStructuresMode Page21

7. Wing Section Cutout Requirements

1. General Comments

The purpose of this function is to allow the user to edit the structural elements of the wing assemblies as
necessary to define a region of the wing to be cut out for special purposes such as a landing gear box. Let
a spar (alternately rib) section be that section of a spar (rib) between two rib (spar) elements. It is
assumed that the desired cutout will be bounded by spar and rib elements. Required editing may include

the insertion or deletion of spar or rib elements.

2. Input Requirements

R7.1 Point at fib or spar section for deletion.

R7.2 Point to existing structural elements to define the endpoints of an additional n'b or spar
sections; this method will be referred to as "freehand."

7.3 Surface patches may be designated as missing or holes in the surface.

3. Processing Requirements

R7.4 Results are presented real-time on a planform view of the wing.

R7.5 Operations for the definition of structural elements for a wing cutout require the existence of
structural elements in the wing. The existence of this information is checked and the user
informed of the need to provide additional inputs when necessary.

R7.6 Validity of "freehand" input is checked to insure that inserted rib and spar section intersect
existing ribs and spars only at the designated endpoints.

8. Wing Output Requirements

1. General Requirements

,

Since processing in SMART Structures is a time-consuming procedure, user input is captured and stored
until the entire wing structtm_ is defined. Upon finishing, one and two-dimensional geometry elements are
created for both the wing sta-face and the user-defined structural elements. Elements in the surface are
reformulated from the original SMART geometry so that the new surface patches are defined by the

boundaries of the underlying structural elements.

R$.1 The resulting elements must be added back to the SMART data tree for use by other SMART
modules, including visualization, and may be output as a PATRAN neutral file. Sufficient
information is output to the SMART data tree so that the wing structures can be recalled,

edited by SMART Structures and output again in edited form.

Input Requirements

R$.2 The user indicates that the editing of the structural model of the wing is complete.

3. Processing Requirements
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Twotypesofelementsneedtobecalculated,one-andtwo-dimensional.

R83 Two-dimensionalelementsarerepresentedbybicubicsurfaces.

R8.4One-dimensionalelementsarerepresentedbycubiccurves.

Rg.5Bothone-andtwo-dimensionalelementsaretranslatedintoaformatappropriateforboththe
SMARTdatatree[6]andaPATRANneutralfile [5]. Information for the PATRAN neutral
file is written at the user's request.

R8.6 Both one- and two-dimensional elements are generated for all rib and spar structural
elements. The user may indicate which type of element is to be saved for output.

R8.7 SMART geometry surface elements are reformulated so that each boundary of the' new

surface elements correspond to the boundary of one of the underlying structural elements.

Reformulation of the geometry surface elements may cause some deviation from the original
geometry surface elements.

9. Fuselage Assembly Definition Requirements

I. General Requu'ements

The purpose of this function is the identification of fuselage assemblies. General/y, the placement of
structural elements in the fuselage follows differing principles depending upon the position along the axis
of the fuselage and the structures and loads being supported there. Figure 15 illustrates a typical placement
of fuselage assemblies.

ILIW_It,.d

Figure 15
Fuselage Components
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It is assumed that basic surface geometry for the fuselage has been provided in the SMART data tree,

along with sufficient information to determine top, front and side views.

R9.1 Stations separating assemblies are placed perpendicular to the x-axis.

2. Input Requirements

R92 The assembly divisions may be DEFINED by pointing to a top view of the fuselage at the

position assemblies are to be divided.

R9.3 The assembly divisions may be DEFIlqED by numeric input of the fuselage station value
which is to divide the assemblies.

R9.4 The assembly divisions may be EDITED by pointing to a top view of the fuselage moving'the

position of the indicator dividing the assemblies.

R9.5 The assembly divisions may be EDITED by updating the numeric value of the station which
divides the assemblies.

R9.6 A assembly division may be DELETED by pointing at the division which is to be removed.

Since much of the other internal structure depends upon the placement of the assembly

divisions, editing the assembly divisions requires deleting this structure and redefining it.

3. Processing Requirements

R9.7 Results are presented real-time in a top view of the fuselage.

I0. Cross Section Generation Requirements

I° General Requirements

The purpose of this function is the identification of fuselage stations where frames and bulkheads are
defined. Figure 16 illuswates the typical placement of stations within a fuselage assembly.

Fuselage
Stations Assembly

Figure 16
Cross Section Placement

R10.1 Stations are placed perpendicular to the axis of the fuselage.
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R102 Each fuselage assembly is treated separately.

Input Requirements

R10.3 The assembly for which stations are to be generated is designated by pointing at a top view of
the fuselage.

R10.4 The station positions may be DEFINED by designating that stations should occur at a uniform
interval and a numeric value for that interval, for example, every 20 inches.

R10.S The station positions may be DEFINED by pointing at a top view of the fuselage at the
position a station is to be inserted.

RI0.6 The station positions may be DEFINED by numeric input of the desired location of the
stanon.

R10.7 The assembly divisions may be EDrrED by updating the value for the size of the interval at
which stations shouldoccur.

R10.8 The as._mbly divisions may be EDITED by poindng at a top view of the fuselage and
moving the station indicator to a new position.

R10.9 The amsembly divisions may be EDITED by updating the numeric value for the position of the
station.

R10.10 Editing non-equally spaced stations as equally spaced causes the given number of stations to
be redistributed equally before editing. Since this may delete user supplied data, the user will
be notified prior to this change.

All stations may be DELETED by choosing a delete all function.

A station may be DELETED by pointing individually at the station to be deleted.

R10.11

R10.12

Processing

R10.13 Results are presented real-time in both top and side views of the fuselage.

I1. Ring Frame Requirements

Io General Requirements

The purpose of this function is the designation of a given frame station and the generation of structural
elements corresponding to that frame. Figure 17 illustrates a typical frame station.
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Figure 17
Freme Structure

RII.1 Ring frames are initially generated to have a uniform depth.

RII2 Smlctural elements representing the flame are generated as both one- and two-dimensional.

Rll.3 Only one ring frame is generated at the boundary of two assemblies.

2. Input Requirements

RII.4 In a given fuselage assembly, all station stations may be DESIGNATED as the sites for ring
frames.

Rll.5 In a given fuselage assembly, individual station stations may be DESIGNATED as the site for
a ring frame by pointing at that station.

RIl.6 Ring frames are initially DEFINED to have a constant depth by a user input value which is
then used as a default for all subsequent ring frames generated.

RI1.7 The default value for the depth of a ring frame may be EDrrED at any time updating the
depth of frames subsequently generated.

Rll.8 The value for the depth of a user-specified ring frame may be EDITED regenerating that ring
• frame with the specified depth. ,-

Rll.9 Since ring frames are represented by patches, ring frames patches may be EDITED by
changing the value of depth at either edge of the patch.

RII.10 The depths along the edges of patches in one ring frame can be used as a template for the
depths along the edges of patches in another ring frame. That is, corresponding edges of

patches will have the same depth.

RII.11 Since structural elements representing the frames are bicubic patches, ring frames are
available to be EDITED by updating any of their patch control parameters.

3. Processing

RlI.12 Results are presented real-time in a front view of the station for which the frame is defined.

RII.13 Editing structural elements of the frame as patches follows SMART interface conventions for

patch editing [5].

DRAFT - 10/30/91 SMART Requirements Document



SystemRequirementsSpecificationforSMARTS_'uc_ Mode Page26

12. Bulkhead Requirements

1. General Requirements

The purpose of this function is the designation of a given station station as a bulkhead and the generation
of structural elements corresponding to that bulkhead. Figure 18 illus_tes a typical bulkhead.

Flgure 18
Bulkhead Structure

.

.

R12.1 Bulkheads arc initially generated from the outer skin to inner structure, if any, such as a tank.

R122 Structural elements representing the bulkhead am generatexi as both one- and two-
dimensional.

R12.3 Only one bulkhead is generated at the boundary of two assemblies.

Input Requirements

R12.4 In a given fuselage assembly, all station stations may be DESIGNATED as the sites for
bulkheads.

R12.5 In a given fuselage assembly, individual station stations may be DESIGNATED as the site for
a bulkheadby pointing at that station.

R12.6 Since sn'ucmral elements rq_rcsenting the bulkheads are bicubic patches, they are available to
b¢ EDITED by updating any of their conmo[ parameters.

Processing Requh'cments

R12.7 Results are pre,scn_d real-time in a front view of the station for which the bulkhead is being
defined.

R12.8 Editing of structural elements representing the bulkhead follows SMART interface

conventions for patch editing.
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13, Longeron, Keel, and Beam Requirements

General Requirements

The purpose of this function is the generation of structural elements representing longerons, keels, and
other beams. Figures 19 and 20 illustrate typical placements for longerons, keel and other beams.

't

Figure 19
Placement o! Longerons

floor

keel
beams

Figure 20
Keel Beam and Floor Structure

R13.1 Longeron and beam elements are generated along the outer skin of the fuselage parallel to the
axis of the fuselage (x-axis).

R13.2 Longeron elements are re_resenw, d by one-dimensional elements.

R13.3 Keel, floor and other beam elements arc represented by both one and two dimensional
elements.

2. _put Requirements
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Generally, each station station intersects the same number of longeron, keel or other be,am elements.

R13.4 Elements will initially be DESIGNATED as Iongerons.

R13.5 The initialpositionsof longetonsareDEFINED by enteringthenumber of longeronsrequired

for a given stadon.

R13.6 Additional longeron positions may be DEFINED by pointing to thedesired locations.

R13.7 Additional Iongcron positions may be DEFINED by entering values for the desired locations.

R13.8 The value representing the number of Iongeron locations may be EDITED.

R13.9 A Iongcron location may be EDITED by dragging it to the desired new position.

RI3,10 A Iongcron location may be EDITED by changing the values representing its position.

RI3,11 All Iongeron locations may be D_ by choosing a delete all function.

R13.12 Single Iongeron locations may be DELETED by pointing at them individually.

R13.13 Since successivestationswillhave thesame number oflongeronpositions,one stationcan be

used as a template for another. That is,corresponding edges of patches will used on

successivestationstations.

RI3,14 Positions for keel and other beams may be DESIGNATED by pointing at the desired

locations. By default, keel beam elements will be initialized with a depth equal to the frame

depth at that position and a direction perpendicular to the fuselage.

R13,15 The depth of beam elements may be EDrrED by changing its value.

R13.16 The direction of beam elements may be EDITED by dragging the endpoint of the beam to the
desired dLr_ction.

R13.17 The direction of beam elements may be EDITED by changing the values of the endpoint of
tbe _am.

In case the number of longerons is not fixed between a pair of station stations, the following editing

functions are necessary:

R13.18 A longeron element may be ADDED by pointing at its endpoints in successive stations; this

method is referred to as "fi'eehand."

R13.19 A Iongeron section may be DELETED by pointing to it in a given station.

Processing Requirements

R13.20 Results are presented real-time on both a front view and a side view of a given station.

R13.21 The dcfattlt longeron positions will be calculated using the following rule. The cross section

will be divided into segments based upon points of discontinuity of the fuselage curve. Arc

lenglhs of each segment will be computed. Longerons will be positioned at the points of
discontinuity between sections. The remaining longerons will be assigned to each segment in

a percentage proportional to the relative arc length of that segment. The longerons in each

segment will be placed uniformly along that segment.

R13.22 Validity of "freehand" input for Iongerons is checked to insure that they do not intersect other

longerons.
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14. Fuselage Output Requirements

I. General Requirements

.

.

Since processing in SMART Structures is a time-consuming procedure, user input is captured and stored
until the entire fuselage structure is defined. Upon finishing, one and two-dimensional geometry elements
are created for both the fuselage surface and the frame, bulkhead and beam elements. One-dimensional

elements are created for the longeron elements. Elements in the surface are reformulated from the

original SMART geometry, so that the output patches are defined by the boundaries of the under)ying
structural elements.

R14.1 The resulting elements must be added back to the SMART data tree for use by other SMART
modules, including visualization, and may be output as a PATRAN neuu'al file. Sufficient

information is output to the SMART data tree so that the fuselage structures can be recalled,
edited and output again in edited form.

Input Requirements

R142 The user indicates that the editing of the structural model of the fuselage is complete.

Processing Requirements

Two types of elements need to be calculated, one- and two-dimensional.

R14.3 Two-dimensional elements are represented by bicubic surface.s.

R14.4 One-dimensional elements are represented by cubic curves.

R14..q Both one- and two-dimensional elements are translated into a format appropriate for both the
SMART data tree [6] and a PATRAN neutral file [51. Information for the PATRAN neutral

file is written at the user's request.

R14.6 Both one- and two-dimensional elements are generated for all frame, bulkhead and beam

structm'al elements. The user may indicate which types of elements are to be saved for output.

R14.7 One-dimensional elements are created for the longerons.

R14.8 SMART geometry surface elements are reformulated so that each boundary of the new
surface elements corresponds to the boundary of one of the underlying structnral elements.

Reformulation of tl_ geometry surface elements may cause some deviation from the original
geometry surface elements.
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15. Wing. Fuselage Placement and Integration Requirements

1. General Comments

The purpose of this function is to provide for the relative placement of the wing and fuselage and for the
integration of major structural elements in the wing and fuselage to build an integrated structural model.
It is assumed that the wing and fuselage structural models have been completed by SMART Structures.

Figure 21 illustrates several different carry-through structures for wing - fuselage integration. Figure 22
illustrates several different techniques for joining wing-spar structure to fuselage-ring frame structure.,

_'t
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Figure 21
Carry-Through Structures
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(a) High-Wing (b) Low-Wing

(c) Mid-Wing (d) Mid-Wing

Figure 22
Joining Spar and Ring Frame Structures

R15,1 It is assumed that the wing will be integrated to only one of the assemb[ies of the fuselage.

, Input Requirements

R152 The right wing is presented in planform view together with a top view of the fuselage.
Symmetry defines the placement of the left wing. A side view is also presented to allow for
height alignment.

R15.,3 The assembly of the fuselage with which the wing is to be integrated is IDENTIFIED by
pointing.

R15.4 The wing may be PLACED relative to this assembly by pointing at the desired position.

R15.5 The wing may be PLACED relative to this assembly by numerical input of the fuselage
station at which the leading edge - root rib intersection is to be placed.

R15.6 The placement may be EDITED by dragging the wing to a new position.

R15.7 The placement may be EDITED by updating the fuselage station value at which the leading
edge - root n'b intersection is to be placed.

R15.8 The user may SELECT any one of the methods of carry-through illustrated in figure 21.
When poss_l¢ ring frame and bulkhead stations will be moved in the x-direction to match
spar positions for the method of carry-through selected.

R153 Ring frames and bulkhead stations may be EDITED to change their x-location by dragging
the stadon to a corresponding spar position.

R15.10 Ring frames and bulkhead stadons may be EDITED to integrate wing fuselage structure by
adding a new frame or bulkhead station using the techniques of section 10. above.

RIS.U Ring frame,s and bulkhead stations may be EDITED to integrate wing fuselage structure by

deleting a frame or bulkhead station.
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R15.12 The user may SELECT any one of the methods for joining spars to ring frames illustrated in
figure 2Z

R15.13 Since structural elements representing the joining of spars to ring frames and bulkheads are

bicubic patches, they are available to be EDITED by updating any of their control parameters.

Processing Requirements

Since the bulk of processing consists of editing frame and bulkhead stations, processing proceeds as in
requirements R11.9-R11.10 and RI2.6-R 12.7.

R15.14 The root rib of the wing must be made to intersect with flame elements in the fuselage. This
may require that the root rib no longer be parallel to the plane of symmetry of the vehicle.

R15.15 Editing the root fib necessarily requires updating the spar elements that intersect it.

, Fuselage Integration Output

R15.16 Since the positioning and definition of elements in both the wing-type object and fuselage-
type object may change due to this operation, all elements are verified to determine the need
for recalculation. When necessary both the SMART data tree and PATRAN neutral file
output must be updated.

16. Wing. Tail Placement and Integration Requirements

I. General Comments

The purpose of this function is to provide for the relative placement of the wing and tail (or other wing-

Like structure such as a wing tip) and for the integration of major structural elements to build an integrated
structural model. It is assumed that the wing and tail structural models have been completed by SMART
Sa-uctures. Hgure 23 illustrates several typical methods for wing-tail integration.

(b} * Tail

Flguro 2:1
Wing - Tall Integration

R16.1 It is assumed that the wing will be integrated to only one of the assemblies of the tail.

2. Input Requirements
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R16_

R16.3

R16.4

R16..5

R16.6

R16.7

The fight wing is presented in planform view together with a top view of the tail. Symmetry
defines the placement of the left wing. A side view is also presented to allow for height
alignment. Initially the wing and tail are assumed to be perpendicular to each other.

The assembly of the tail with which the wing is to be integrated is IDEqTIFIED by pointing.

The wing may be PLACED relative to this assembly by pointing at the desired position.

The placement may be EDITED by dragging the wing to a new position.

When possible spars in the tail will be moved to match spar positions for the wing being
attached.

Spar locations in either the wing or tail may be edited as in wing-assembly integration

described in Requirements Section 6 above.

Fuselage Integration Output

R16,8 Since the positioning and definition of elements in both the wing and fuselage may change
due to this operation, all elements are verified to determine the need for recalculation. When
necessary both the SMART data tree and PATRAN neutral file output must be updated.

17. Point Load Requirements

1. General Requirements

The purpose of this function is the placement and modification of structural loads associated with user-
specified points in the wing and fuselage.

R17.1 Loads may be represented either by scalar or vector values corresponding to the load
condition and an indicator of the grid point in the existing structural model at which the load
should be applied.

R17_ Multiple loads of various types may be applied at any given grid point in the structural model.

2. Input Requirements

R17.3 A load may be DEFINED for any existing grid point in the structural model of the wing or

fuselage; such a load will be called a point load.

R17.4 Multiple point loads may be defined for any grid point in the existing structural model.

RI7.S Any point load may be DEFIIqED as either a scalar or vector value.

R17.6 All point loads may be simultaneously DISPLAYED on a visual representation of the
structuralmodel

R17.7 Any point load may be EDITED by selecting the grid point at which the load is applied and

updating the value of the associatedscalar or vector.

R17.8 Any point load may be DELETED.

3. Processing Requirements

If the structural model is edited after the point loads have been applied, one of two situation exist. Either a
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given grid point at which a point load was applied remains in its original position on the structural model
or the associated grid point has either been moved or deleted.

R17.9 If the point is in its original position, point loads should remain auaehed to the same grid
point in the resulting structural model.

R17.10 If the grid point has been moved from its original position or deleted, the user is notified so
that the load can be appropriately placed in the modified model. An initial default for the

placement of the point load is that grid point in the modified model closest to the original grid
point.

18. Path and Area Load Requirements

1. General Requirements

.

The purpose of this function is the placement and modification of structural loads associated with
specified paths or areas in the wing and fuselage. For example loads associated with the placement of a
heavy pipe (path load) or a thermal protection system (area load).

R18.1 Loads can be represented by scalar values at the grid points in the model representing the path
or area over which the load is to be spread.

R18.2 Multiple loads of various types may be applied at any given path or area in the structural
model.

Input Requirements

R18.3 A path may be DEFINED as any sequence of grid points in the existing structural model
where successive grid points share a common edge with the previous grid point.

RIgA An area may be DEFINED as a connected collection of grid points in the existing structural
model.

R18.$ A load may be DEFINED for any existing path in the structural model of the wing or fuselage
by specifying the total load which will be spread uniformly over the indicated path; such a
load will be called a path load.

Rlg.6 A load may be DEFINED for any existing area in the structural model of the wing or fuselage

by specifying the total load which will be spread uniformly over the indicated area; such a
load will be called an area load.

RIg.7 Multiple path or area loads may be DEFINED for any path or area in the existing structural
model.

R18.8 All path and area loads may be DISPLAYED on a visual representation of the structural
model.

R18.9 Any path or area load may be EDITED by selecting the path or area over which the load is
applied and redefining the collection of grid points comprising that path or area.

RI8.10 Any path or area load may be EDITED by selecting the path or area over which the load is
applied and updating the value of the total associated load.

Rlg.ll Any path or area load may be DELETED.

DRAFT - 10/30/91 SMART Requirements Document



SystemRequirementsSpecificationforSMARTStructuresMode Page35

3. ProcessingRequirements

If thestructuralmodeliseditedafterthepathorarealoadshavebeenappliedoneoftwosituationexist.
Eitherthegridpointsdefiningagivenpathorarearemainintheiroriginalpositiononthestructuralmodel
ortheyhaveeitherbeenmovedordeleted.

R18.12If thegridpointsdefiningthepathorarearemainin theiroriginalposition,theloadsshould
remainattachedtotheoriginal path or area in the resulting strucaa'al model.

R18.13 If some of the grid points have been moved from their original position or deleted, the user is

notified so that the path or area can be appropriately placed in the modified model. An initial
default for the placement of the load is that set of grid points in the modified model closest to
theoriginalgridpoints.

R15.14 Data is kept on the patches with which the path and area loads are associated through their

grid points.

19. Analysis-Generated Load Requirements

Accept as input loads generated by the APAS and other aerodynamic analysis programs and use these to
generate data patches in a form compatible with the PATRAN neutral file and consistent with the structural
model.

1. General Comments

As noted in section 2 above, models designed using SMART are subjected iteratively to several different
analysis techniques. Part of this process involves using SMART-generated vehicle geometry in the

aerodynamic analysis programs such as APAS. The various loads generated in this analysis are important
to the structural analysis. It should be noted that although the geometric surfaces represented in both the
acro and structures model are the same, the representations employed are different, each tailored to meet

different needs. It is the purpose of this function to retrieve the aero data and the representation used for
the aero geometry and map the data to a form consistent with the representation of the structural geometry
defined above.

It is assumed that the input will be in the format of datafileshanded by APAS [1] and will contain
parametric identifiers for the test cases nm along with data fct each surface panel that includes the

centroid of the panel, the loading information at that centroid and other functional outputs. It is assumed
that a "smoothed" bilinear interpolant to this data will provide sufficient accuracy for further structural

analysis.

2. Input Requirements

R19.1 The module must be able to present all available local data files for selection by the user.

R19.2 The module must be able to present parameter information identifying all test cases contained

in a specified data file for selection by the user.

R19.3 The module must be able to read the data file formal

3. Processing
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R19.4 This module is responsible for creating a bicubic data surface representing a smoothed
approximation of the bilinear interpolant to the data found in the data file.

R19.5 Data patches may be output to a PATRAN neutral file [5].

R19.6 Data patches are further processed by re.scaling data values so that ranges fall approximately
in the geometry range of the wing thickness and placed in the SMART data tree [6].

20, Load Output Requirements

Two types of elements need to be calculated at this stage, data patches for output to PATRAN and scaled data
surface patches using the SMART format to aid in visualization of the surface.

R20.1 PATRAN data patches are output in the format described in [5].

R202 SMART data surface patches are output in the format described in [6].

21. User Interface Requirements

R21.1 SMART Structures must use the SMART graphics user interface developed for the Silicon Graphics
(SGr) IRIS 4D Workstation using SGI's GL graphics h'braryand described in [6].

I_qaddition

R21.2

R21.3

R21.4

1121.5

R21.6

R21.7

the following general user interface consideration must hold:

Validity of keyboard inputs is checked; specifically, numeric input must be numeric and within
acceptable ranges defined by the extents of the wing planform or fuselage.

Pointer input on points and edges is modified to attach to an existing point or edge within 5 raster
units if appropriatefor the indicated operation.

Since edit and deleteoperationsmust follow corresponding define operations,usersare notified of
an attempt to edit elements outof order.

Users are notified of mistaken input immediately.

Requests for deletion are confirmed with the user.

An UNDO feataa,e which should allow for the restoration of the state of the structural model just
prior to the last user operation. This feature would apply to the immediately preceding operation as
tracking an entire sequence of preceding operations and the information necessary to restore the
model would be complicated and time consuming.

The following two points, while not requirements, would significandy improve the functionality of the SMART
Structures modules form the user's point of view.

R21.8 An INTER.MEDIATE SAVE feature which would allow the user to exit the SMART Structures

modules saving the current state of the structmal model generation so that it could be restored for
completion at a later time.
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R21:9 The 'ability to save and edit a SCRIPT or JOURNAL file of a SMART Su'uctures session which

would allow the user to replay a set of modifications exactly as entered or in an appropriately
modified fashion.

22. Software Interface Requirements

The basic interface to the re.st of SMART is through the SMART data tree.

R22.1 SMART Structures must be capable of reading any aerospace vehicle geometry generated by
SMART.

R22.2 SMART Structures must be capable of generating structural and visualization surfaces in a format
for inclusion in the SMART data tree.

R223 As detailed in sections 8, 14, 15, 19, SMART Structures must be capable of reading aerodynamic
analysis data files and writing PATRAN neutral files.
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Abstract

SMART, Solid Modeling Aerospace Research Tool, is the Vehicle Analy-

sis Branch of NASA Langley Research Center's computer-aided design tool

used in aerospace vehicle design. Modeling of structural components using

SMART includes the representation of the transverse or cross-wise elements

of a vehicle's fuselage, ringframes and bulkheads. Ringframes are placed

along a vehicle's fuselage to provide structural support and maintain the

shape of the fuselage. Bulkheads are also used to maintain shape but are

placed at locations where substantial structural support is required.

Given a B4zier curve representation of a cross-sectional cut through a

vehicle's fuselage and/or an interior tank, this project produces a first-guess

B4zier patch representation of a ringframe or bulkhead at the cross-sectional

position. The grid produced is later used in the structural analysis of the ve-

hicle. The graphical display of the generated patches allows the user to edit

patch control points in real time. Constraints considered in the patch genera-

tion include maintaining "square-like" patches and placement of longitudinal,

or lengthwise along the fuselage, structural elements called longerons.
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1 Introduction

"A model is a representation of some (not necessarily all) features of a con-

crete or abstract entitv. The purpose of a model or an entity is to allow

people to visualize and understand the structure or behavior of the entity,

and to provide a convenient vehicle for 'experimentation' with and prediction

of the effects of inputs or changes to the model [FOLEY, pp. 286-7]." In

many instances, the model is the only means in which analysis can be per-

formed to determine feasibility of an idea. Costs of creating an actual entity

or the testing facility for a particular entity may be prohibitive and a model

provides the simulation of the entity for experimentation and learning about

a proposed system.

The cost of memory and computing time has decreased drastically in

the past two decades and made the computer one of the most viable tools

for modeling. In particular, graphics-based modeling tools are now used "to

create and edit the model, to obtain values for its parameters, and to visualize

its behavior and structure [FOLEY, p. 287]."

In the mid 1970's, the Vehicle Analysis Branch, VAB, of NASA Lang-

ley Research Center, LaRC, began development of its own solid modeling

system. Numerous commercially produced systems were evaluated and de-

termined not to meet the needs of the VAB. Thus, SMART, or Solid Modeling

Aerospace Research Tool, was begun in the 1980's to provide the VAB with

its own computer-aided design tool for aerospace vehicle design.

A primary method of modeling used by aerospace and structural engi-

neers is based on the ability to create a "nice" grid on a surface. Finite

element analysis and computational fluid dynamics both rely on known val-

ues at points relatively close to one another to predict values of quantities

like stuctural stress at other points. Currently, the difficulties in producing

suitable grids for these analyses slows the design process. Manual means of

producing the grids are unsuitable and automating the process is the desired
method.

The goal of this project has been to automate the B4zier patch gener-

ation of fuselage bulkheads and ringframes used in the structural analysis

of aerospace vehicles. Sections two through five of this paper provide in-

sight into the basics of SMART, aircraft structural design, the finite element

analysis process, and the geometric representations used in the modeling pro-

cess. Section six presents the algorithms developed to generate the desired



patches. Snapshotsof the SMART display showing the implementation of
the algorithms are provided as Appendix A. Copiesof the SMART struc-
tures requirementsdocument and sourcecodeareprovided as AppendicesB
and C, respectively.

2 Capabilities of SMART

SMART, written in the C programming language, was developed for use on

the Silicon Graphics IRIS workstation, a computer which features custom

graphics hardware and the UNIX operating system. The initial modeling

requirements of the software included:

• abilitv to generate accurate 3-dimensional geometric descriptions of

complex vehicle shapes quickly and easily;

• facilitate easy manipulation of the vehicle components using a hierar-

chial component grouping scheme;

• provide data from a single geometric representation to a variety of

analysis programs; and

• real-time interaction with the user [MCMIL, p. 1].

The user interface of SMART was designed to accomodate "novice, oc-

casional, and experienced users [MCMIL, p. 2]." The main features of the

display, shown in Figure 1, are two large viewing windows or viewports, a

small textport area, two horizontal main menus, and an area for displaying

a variety of menus and slider bars pertinent to the given evolution. Most

user input is accomplished by positioning the mouse over the desired menu,

bar, or plotted geometric figure in the viewport and pressing an appropriate
button.

Objects may be created from basic primitive shapes, that is, SMART-

facilitated automatic generation of vehicle components, or by "flee-hand"

rendering with the mouse over the viewport. In particular, SMART "has

an extensive capability for creating and modifying cross-section capability

to create completely arbitrary shapes [MCMIL, p. 3]." The cross-sections

are represented by either "B6zier cubic curves or a series of points connected
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Figure 2-1
The Layout of the SMART Screen

A. Textport
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F. View Windows

G. View Option Menubers

H. Menu Display Area

Figure 1: The Layout of the SMART Screen [SMART, p. 2-1]
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Figure 2: Ringframe from an offset curve [REHDER, p. 3]

by straight lines, referred to as Cartesian cross-sections [MCMIL, p. 3]." A

discussion of B6zier curves is presented in Section 5 of this paper.

Once a geometric component is created, the component is accessed for a

variety of processes. A capability, currently being developed, is the consoli-

dation of the model generation process for structural analysis. New require-

ments specifications have been written and this project represents the fulfill-

ment of many of the ringframe and bulkhead generation and longeron place-

ment requirements. See [SOFT, pp. 24-28], provided in Appendix B of this

paper, for the pertinent portion of the requirements document. [REHDER,

pp. 3-4] describes the technique applied to constructing the model of these

components. A planar surface is generated between two curves: one of the

curves is formed by the outer surface of the fuselage; the other is a scaled

offset from the fuselage curve, creating a ringframe, as in Figure 2, or a sep-

arate curve representing the cross-section of a tank interior to the fuselage,

creating a bulkhead, as in Figure 3.

The planar surface, represented by B6zier bicubic patches, may be stored

in several different types of files. In particular, SMART has the capability

of writing an ASCII text file of the patch data for an entire vehicle in the

format known as a "neutral file." This file may then be "read" by the PA-

TRAN structural analysis program [PATRAN] and this geometry is used as



I

Figure 3: Bulkhead between fuselage and internal tank [REHDER, p. 4]

a template to create a suitable grid and then perform finite element analysis

on that grid for various pressure and stress [oadings.

3 Aircraft Structural Design

3.1 Design Considerations

The design of an aircraft requires the combined efforts of both the aerody-

namics engineer and the structural engineer. The aerodynamicist considers

the vehicle as an aerodynamic shape and analyzes the reaction of the sur-

rounding air to the presence of the "envelope of specially shaped airframe

surfaces [STIN66, p. 190]." This envelope must distribute the loads to the

surrounding air. The airframe must also protect the items within, such as the

payload, fuel, and engines. Given an accurate distribution of the air-loads

of the vehicle, the structural engineer's job is to produce a sound struc-

ture. Because there is great difficulty in accurately predicting these loads at

each point on the structure's surface, the structural engineer considers the

"most critical design cases--which often run into thousands-- arising from

the various combinations of speed, attitude and weight throughout the flight

[STIN66, p. 190]."



"Structural design affects the achievable flight envelope, stability and
control, the operational role and the developmentpotential of an aeroplane
[STIN66, p. 192]." There aremany considerationsfor structural designand
eachdeservesto be fully explored. However,full explanationsarebeyond the
scopeof this paper, and eachwill be given at most, a cursory explanation:

, The outer skin must remain reasonably" wrinkle-free and smooth in 1-g

flight, which is different from an unloaded vehicle on the ground.

• The fabrication material must have a high strength-to-weight ratio,

particularly at high temperatures, and high specific stiffness.

The study of loads on a material is of major concern and both the way

in which the load is applied and the area over which it is applied must

be considered. When a material is loaded in a particular way, it is said

to be stressed. There are three types of stress: tensile, compressive

or bearing, and shear. Tensile stress is caused by tension across a

cross-sectional element. Compressive stress is the reverse of tensile

stress. Shear stress occurs tangential to the surface. The material's

shape multidimensionally changes when it is stressed. Shear strain is

defined as the angular displacement caused by shear stress. Similar

strain definitions apply to tensile and compressive stress. Although a

simplistic approach, it should be noted that stress causes strain and

strain causes stress.

Heat is also a consideration. The boundary layer of air surrounding a

high-speed aircraft becomes heated and raises the temperature of the

skin of the aircraft. External radiant heat may also be a factor.

The elasticity/plasticity of a material is an important factor. If the

strain caused by a stress completely disappears when the stress is re-

moved, the material is said to be wholly elastic. If the strain has not

disappeared, the material is said to have a permanent "set" and plas-

ticity has occurred. "A structure is designed so that the working range

of any component does not exceed its elastic limit. It is now possi-

ble to study stress-patterns established in structural components by

various applied loads .... A useful general law, known as Hooke's Law,

states that within elastic limits of a material the strain produced is

proportional to the stress producing it [STIN66, p. 197]."
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* Bending and torsion or twisting must also be accounted for. Bending
takes place when a load is applied to a point on the flexural axis of
a structural member and the reaction is at another point on the axis.
Torsion will alsooccur if the reaction is offset from the flexural axis.

Fatigue is also studied. It occurswhen repeated stresses,each much
lower than maximum tensile stress allowable, cause the cracking of
structural members.

None of these items can be taken in isolation and generally combinations
are consideredsimultaneously. "An important aid in structural analysis is
the Principle of Superposition: that the total strain causedby a load-system
may beconsideredasthe sum of the individual strains causedby the various
load components, taken in isolation [STIN66, p. 19712'

"The analysis of stress and strain in advanced aircraft structures has
forced the developmentof very elegant and complicated mathematical tech-
niques. The structural engineer must relate the effects of weights, aero-
dynamic inputs, elastic responsesand stress distributions throughout the
structure as one whole, for a wide variety of different shapes. Fortunately,
the grid-like construction allowsaccurateanalysesto bemadeand translated
into mathematical statements that can be handled by computers [STIN66,
p. 213]."

3.2 The Actual Design

The airplane has three basic parts, the fuselage, the wings, and the tail.

This paper will only address the fuselage, parts of which are the focus for

this project.

"The fuselage is the body to which the wings and the tail unit of an

airplane are attached and which provides space for the crew, passengers,

cargo, controls, and other items, depending upon the size and design of the

airplane. It should have the smallest streamline form consistent with desired

capacity and aerodynamic qualities of the airplane... The main structure of

a spacecraft or missile may be called a fuselage but is more commonly called

the body or tank [MCKIN, p. 140]."

The modern aircraft's fuselage is of a semi-monocoque construction, as

seen in Figures 4 and 5 . This means that the fuselage has a framework

ll



Figure 4: Semimonocoqueconstruction [MCKIN, p. 144]

which supports an external skin which must withstand most of the stresses
placedon the fuselage.The framework consistsof severaltypes of structural
elements. The vertical or transverseelementsof the fuselagesupport are
called bulkheads,frames,and formersor rings. A bulkhead is a substantially
constructed cross-sectioncutting acrossa fuselage,perpendicular to the fuse-
lage's longitudinal beam, as in Figure 6. A bulkhead is placed at points of
concentratedloads,and helpsto distribute the loadsover the skin and allows
little radial expansion• There may be cut-out areasfor doorwaysand holes,
but doors and plates areusedto maintain the structural requirement, asseen
in Figure 7.

A frame servesprimarily to maintain the shapeof the body and has the
outline of the cross-sectionof the vehicle,which canbe seenin Figure 8. The
loads at the framesare smaller and construction of the frames canbe lighter
than that of the bulkheads. Formersor rings have the sameoutline as the
frame but are lighter and areused to maintain a uniform shapeof the skin.
This paper refers to all of theseas ringframes.

The longitudinal componentsare longeronsand stringers. They aresup-
ported by the bulkheads and frames and support the outer skin to prevent
bulging due to severestresses.They also are usedto carry the axial loads

12
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Figure 8: Fail-safe design by using longitudinal beam along side of fuselage.

[NIU,p. 391]

caused by bending. Longerons are especially designed to take the end loads

fore and aft of the vehicle and run the length of the fuselage. Stringers are

shorter and of lighter construction. See Figure 5.

The external skin is formed from metal sheets which are attached to the

frames and bulkheads by riveting or welding. It carries the loads of sheer

stress and cabin pressure. Figure 9 shows the combined features mentioned
above.

The semi-monocoque structure is considered to be "very efficient, i.e., it

has a high strength to weight ratio, and it is well suited for unusual load

combinations and locations. It has design flexibility and can withstand local

failure without total failure through load redistribution [NIU, p. 377]."

4 Overview of Finite Element Analysis

Finite element analysis is defined to be a "group of numerical methods for

approximating the governing equations of any continuous system [BARAN,

p. 1]'. Originally developed for the study of stresses in complex airframe
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Figure 10: Finite difference and finite element discretizations of a turbine

blade profile. (a) Typical finite difference model. (b) Typical finite element

model. [HUEB, p..5]

structures [HUEB, p. 3], the finite element method today is also used in a

variety of engineering disciplines. It is particularly effective for problems with

complex geometries. Until recently, finite element analysis was restricted to

expensive mainframe computers, but the significant declines in hardware and

processing costs have made this process available to virtually all engineers

and scientists. Civil and aerospace engineers remain the most frequent users

of this method.

The difficulty of a continuous system or structure is the infinitely many

values of the unknown quantity being evaluated at each point of the struc-

ture. The objective of finite element analysis is to approximate the governing

differential equation of the system or structure at selected points with a suf-

ficient degree of accuracy. A mathematical model of the physical system is

created. The points or nodes, when connected, define the elements of the

model. This process of creating nodes and elements is called discretization

and is illustrated in Figure 10. Simplifying assumptions are made to create

approximating functions, from the original differential equations, which are

then applied to the specified nodes of the model. Solutions are created for

individual elements and then combined to represent a solution for the en-

tire problem. The size and number of elements and simplifying assumptions

determine the accuaracy of the analysis.

17



4.1 Steps in the Finite Element Method

Finite elementanalysiscan be performed in a sequenceof five steps,eachof
which has its own difficulties and time requirements. They are summarized
asfollows:

. Perform the discretization. Dividing the physical structure into ele-

ments is the most important phase because this will greatly affect the

accuracy of the analysis. Elements may take various shapes depending

on the nature of t" problem. This is discussed in greater detail in the
next section.

2. Define the geometric properties of each element and any material prop-

.erties and boundary or loading conditions pertinent to the analysis.

. Formulate interpolation equations for each element. These are often

polynomial in nature because of the ease in integrating and differen-

tiating them. The interpolation functions in these equations give "an

analytical expression for the displacement at any point inside the ele-

ment" [BARAN, p. 4]. The value of the equation at any point in an

element is a function of the nodes bounding the element. See Figure i 1.

.

.

Assemble the system equations, accounting for properties outlined in

Step 2 above, and solve the equations.

Make additional calculations, if necessary. The solution of the system of

equations may be used to calculate other parameters. For example, in

structural analysis, nodal values represent body displacements. These

values are then used to calculate strains and stresses in the elements.

4.2 Creating the Mesh

There are two basic categories of planar elements: line and area. Beam and

spring elements are examples of line elements. Beam elements are used in a

variety of engineering problems to represent parts whose lengths are much

greater than the cross-sectional depth or width. Area elements include flat

plate or shell elements. The plate elements have a thickness much smaller

than their other dimensions and are usually represented by three or four

18
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Figure 11: An arbitrary shape divided into nodes and elements. The shape

is governed by the partial differential equation shown. The value of this

equation at any point in an element is a function of the values of the nodes

qS, bounding the element. [BARAN, p. 3]

nodes. Solid or volume elements are a third type of element used to account

for parts whose thickness is significant compared to other dimensions.

The model being created is an idealization of the actual physical structure

being analyzed. By understanding the physical problem, the regions of the

structure most likely to be stressed are determined. A coarse mesh is created,

placing nodes at stress, support, and load points. Finer meshes can be created

from this initial mesh, if necessary. Huebner quotes John M.Biggs as saying

that it is a "waste of time to employ methods having precision greater than

that of the input of the analysis [HUEB, p. 88]."

The shape and element pattern of the finite element model is determined

by the location of the nodes. Other significant locations of nodes include

structure corners and discontinuities. The model should closety approximate

the shape of the actual structure. The size of the model can be reduced

by accounting for the structure's symmetry, as in Figure 12. Establishing

a coordinate system with an origin on an axis of symmetry allows easier

definition of nodes and elements.

Ultimately, the choice of nodes and elements depends on the type of
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Figure 12: Model reduction due to structure symmetry

finite element analysis being performed and the accuracy required. Huebner

suggests the following as rules for finite element modeling [HUEB, pp. 94-99]:

If the problem involves concentrated loads and/or geometric disconti-

nuities, minimum dimensions and areas requiring a refined mesh should

be determined using St. Venant's principle. This states that _localized

loads or geometric discontinuities cause stresses and strains only in the

immediate vicinity of the load or discontinuity [HUEB, p. 99]."

• Stress analysis requires a more refined mesh than displacement analysis.

• Nodes should be placed at supports, load points, and other locations

where information, such as displacements or temperatures, is required.

Uniform mesh spacing should be used, if possible. If it is necessary

to transition from coarse to fine meshes, the dimensions of adjacent

elements should not differ by more than a factor of two. The transition

should be made across a series of elements.

When using plate or axisymmetric elements, quadrilaterals are the pre-

ferred shape because they are more accurate than triangles. Triangular

elements should be used only when required by the geometry or for

transitions.
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The aspect,or length-to-width, ratio of triangular or quadrilateral el-
ementsshould be as closeto unity as possible. Aspect ratios as large
as5.0 are permissible,but below 3.0 is preferrable.

In triangular and quadrilateral elements,no extremely obtuseor acute
anglesshould be used. The optimum is the equilateral triangle, where
all anglesare 60degrees,or right anglesin the quadrilateral, but devi-
ations of up to 30 degreesis permissible.

Curved surfacesshouldbe modeled with flat elementswhosenodesare
all in one plane. The angle subtended by the surfaceand the plane
should be lessthan 15degrees.

Poisson's ratio, should be lessthan 0.5. An elastic material elongates
in the direction of an applied tension while its cross-sectioncontracts
perpendicular to the tensiondirection. During simple compression,the
material contracts in the tensiondirection and expandsperpendicularly
to the tension. Poisson'sratio is the ratio of the resultant perpendicular
strains to the parallel strains. Most metallic materials havea value of
0.25-0.3and an assumedvalue of 0.3 is used. It is also assumed that

Poisson's . _:io approaches 0.5 as the stresses reach a maximum for the

material [NILES, pp. 151-152].

Lengths and areas of line and area elements must be non-zero. Values

of zero may produce unpredictable results.

Elements should not extend across discontinuities or changes in thick-

ness. This tends to cause numerical errors and inaccurate results. Ad-

ditional nodes and smaller elements should be used.

It is assumed that flat plate elements have no in-plane rotational stiff-

ness. If in-plane twisting is allowed, plate elements do not accurately

represent the model's flat plates.

5 Geometric Representation

Vehicles are drawn using curves and surfaces which approximate the desired

shape of the vehicle. There are numerous ways to represent such curves
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Figure 13: Two B_zier curves and their control points [FOLEY, p. 488]

and surfaces. As surface representations are a generalization of curve rep-

resentation, this section will first consider working with curves. Often, a •

parameterization of curves, where each coordinate, x,y, and z, is a function

of a parameter, t, i.e., z - x(t),y - y(t),z - z(t), is used to avoid prob-

lems occuring with explicit and implicit equations used to describe geometric

figures. For specifics, see [FOLEY, p. 478].

The predominant method used in SMART is the B_zier form of the para-

metric cubic polynomial curve segment. This consists of 4 points, ,Do, Pl,

-P2, and -'°3 where 1°0 and P3 are endpoints of the curve segment and Pl and

P2 are additional control points. Generally not on the curve segment, points

P1 and P2 indirectly specify the tangent vectors to the curve at P0 and P3.

Specifically, the direction of the tangent vector at Po is determined by PoPl

and the direction of the tangent vector at P3 is determined by P3P2. See

Figure 13.

To determine a point P on the curve segment, the parameterization of the

domain is set up so that at parameter t = 0, P = Po, and at t = 1, P = Pa.

The weighting factors for each point, known as the Bernstein polynomials,

are:

eg(t)= (i- t)
e (t)= 3t(1-t?

e (t)= 3t2(l-t)
s (t)= P
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The resultant equation to evaluate P is:

3

P(t)= ×
j=O

Note that P(t) is guaranteed to be cubic in t because it is a linear combination

of cubic polynomials. The sum is computed for each coordinate, z and y in

2-D; z, g, and z in 3-13).

There are several advantages inherent to this representation:

Cubic curves do not "wiggle" as much as higher order polynomials and

give a relatively smooth approximation of the desired shape. Note that

a cubic curve is the lowest degree polynomial to interpolate to four

requirements: the two endpoints and the specified derivatives at each

endpoint {FOLEY].

• The resultant curve segment is contained by the convex hull of its

representative points. This guarantees that the curve segment is planar.

Calculation of the derivative at any point on the curve segment, most

notably at the endpoints, is easy. For a given t, P'(t) is calculated as

the linear combination of the derivatives of the Bernstein polynomials.

The storage requirements for a curve segment are minimal--the four

points and possibly, information about slope continuity with adjoining

segments.

Another way to compute P(t) involves successive linear interpolations

of pairs of the given four points. This linearity allows the B4zier rep-

resentation to inherit the property of affine invariance. That is, when

applying an affine transformation, scaling, rotation, shearing, or trans-

lation, to a B+zier curve, the result is the same whether the trans-

formation is applied to the original four points, followed by the curve

generation, or if the curve is generated from the points, followed by the

transformation. Therefore, these viewing transformations need only

be applied to the four control points of the segment, which minimizes

computation time.
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To representa given shape, successiveBdzier curvesare placed end-to-
end. Continuity of segmentsis guaranteedif Pa of one curve is set to Po of

tl_e next c_lrve. If slope contil_ltit, y from one seglnent to the next is required,

then I72 and Pa of the first curve and P0 and Pl of tile second curve must

remain collinear. Moving P2 or P1 "controls" the slope at the endpoint(s).

Sometimes a Bdzier curve needs to be split into two pieces. If the param-

eter t is normally defined over the interval [0, 1], a value of t in this interval

can be specified to represent a certain percentage c along the curve, or the

place where tile curve should be split. In essence, the first piece of the curve

would be exactly the original curve over the parameter's interval [0, e] and the

second curve is the piece corresponding to [c, 1]. [FOLEY, pp. 507-510] and

[FARIN, pp. 75-77] describe this process using the geometric construction'

technique developed by F. de Casteljau in 1959. As in Figure 14, "the point

on the curve for a parameter value of t is found by drawing the construction

line L_H so that it divides PIP2 and P2P3 in the ratio of t : (1 - t), HR3

so that it similarly divides P_Pz and P3P4 and L3R2 to likewise divide L2H

and HR3. The point L4 (which is also R_) divides L_R2 by the same ratio

and gives the point Q(t) [FOLEY, p. 508]," the value of the Bdzier curve at

parameter t. The points LI, L2,Lz, and L4 are the control points for the first

curve and RI,R2, R3, and R4 are for the second curve.

B6zier representation can be extended to surfaces. Bdzier bicubic patches

are determined by sixteen control points, positioned in a 4 ×4 gridlike pattern.

The four points on a side of the patch form a Bdzier curve segment. The

center four points control slopes of the surface. The parameterization requires

two variables, s and t, and a point P(s, t) is calculated by:

,s s 2 ,s 1 ] x MB X

Poo Pol Po2 Po3
Po4 Po5 P06 P07
P08 Po9 P10 Pll
&_ Pi3 &4 Pl5

x M_ x

t 3

t 2

t

1

where MB is the coefficient matrix for the Bernstein polynomials and the Pi's

are the control points of the patch. Slope continuity between two patches is

achieved by maintaining collinearity of a control point on the border between

them and the control points on either side of the border. Additionally, the

ratio of distances between control points on either side of the boundary and

the boundary control points must be consistent along the edge. Calculation
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I intoFigure 14: The B_zier curve defined by the points -Piisdivided at t =

a leftcurve defined by the points Li and a right curve defined by the points

Ri. [FOLEY, p. 508]

of the slope at a given point on a patch is achieved by partial derivatives

with respect to parameters a and/or t. See Figure 15.

All surfaces in SMART are represented with B4zier bicubic patches; how-

ever, sometimes two other representations for curves are used, each of which

is equivalent to the B4zier representation. The first is the one-third point

representation which requires using the coordinate values of the points on

the B4zier curve at parameter values of t = 0,-_,_, and 1. Note that the

endpoints of the curve for both representations are the same. The one-third

points are used in this project to place "control-like" points directly on the

curves for clarity in editing multiple, closely spaced B4zier curves.

The Hermite representation is the other method. Often the slopes of the

tangent vectors to each endpoint are known. The Hermite representation

utilizes the two endpoints and the two tangent vectors to represent the curve.

There are matrices which allow easy conversion from one representation to

the other, which are included in Appendix C in the matrices2.h file.
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Figure 15: Bicubic Bdzier Patch

6 Algorithms for

Ringframes

Generating Bulkheads and

6.1 Capabilities Developed for SMART Prior to the

Project

As with many graphics programs, the image on the screen is constantly

redrawn at speeds which fool the human eye into believing that the image

has remained continuously on the screen. This is generally accomplished with

a [ooping routine in the software. The main loop checks the mouse location

and based on its present coordinates, determines whether the user had placed

the mouse over a menu, a bar, or over a viewport on the screen. Based on the

mouse's position, certain calculations are accomplished or editing capabilities

are available. The display is refreshed each time through the loop, regardless

of the function being performed. The loop is exited by explicit menu choices.

The structure of the main loop in this portion of SMART is:

while (true)

begin

if choosing a main-menu option then

exit main loop and redisplay;

else if over a menu then

begin
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if over main-cross-section-menu then

exit main loop and redisplay;

else if over store-patches-menu then

store patches in SMART data structure and redisplay;

else if over t!]pe-of-growth.menu then

redisplay patches using B_zier or linear format;

else if over growth-direction-menu then

redisplay with patches interior or exterior to cross-

section;

else if over new-edge-menu then

store partial patches, begin new calculations from old

leading edge, and redisplay;
end

else if over a bar then

begin

if over patch-growing-bar then

calculate partial patches to given percentage and

redisplay;

else if over radius-bar then

calculate new patches given new radius length and

redisplay;

else if over centerline-bar then

calculate new patches given new centerpoint position

and redisplay;

else if over ringframe-bar then

calculate new patches for ringframe value and redisplay

with ringframe patches;
end

else if over the right-viewport then

edit control points and redisplay;
end

The initial algorithms for creating bulkhead patches centered on a given

fuselage cross-section represented by a linked list of B6zier curves. Due to the

symmetry of the cross-section about a vertical axis of symmetry, the cross-
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section representation is actually one half of the completecross-section,as in
Figure 12. For the remainder of this paper, referenceto a cross-sectionwill
imply the "l_alf-cross-section"unlessexplicit indication to the contrary.

Becausemany interior tanks of a vehicle are spherical or multi-bubble
spherical in shape,the softwarecreateda first-guesssemicircular cross-section
of a tank, interior to the fuselagecross-section,with its endpoints on the
on the axis of symmetry of the fuselagecross-section. The points on the
tank cross-sectionweregeneratedaround the semicircle to correspondto the
percent of arclength of the one-third points of the curves of the fuselage
cross-section.The centerpoint of the semicircle wasplacedat the calculated
midpoint between fuselagecross-sectionendpoints, and the default radius
washalf the minimum distance fi'om the centerpoint to any one-third point
on the fuselagecross-section. The analogous representation using a circle
external to the cross-sectionhasalso beendevelopedand may potentially be
usedby aerodynamicists for computational fluid dynamics.

The patchesgeneratedbetweenthc givencross-sectionand the semi-circle
representeda structural bulkllead between the fuselageand the tank. The
percent-of-arclengthguide for generating tank points enabledthe patches to
havereasonablewedge-likeshape,which is ascloseto square-likepatchesas
possible.

The original algorithm wasas follows:

procedure bTdkhcad-first-guess (cross-section, ccnterpt, radius)

begin

for each curve in cross-section do

begin

calculate 1/3 pts on curve;

calculate inward pointing normal vectors to each 1/3 pt;

calculate normalized vectors from centerpt in direction

of each 1/3 point;

calcvlate tank-points at length radius from centerpt in

direction of normalized vectors;

comment: The two points and two vectors comprise

the tlermite representation of the curve, as seen

in Figure 16.
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- D. curve

Centerpotnt

Figure 16: Vectors and points used to calculate a patch

calculate B4zier curves between corresponding

1/a points and tank-points;

calculate B4zier patch from 4 B4zier curves

place patch on linked list;

end

end

Using established SMART routines, graphical bars and menus were cre-

ated to enable the user to change parameters. A bar is used to change the

radius of the interior tank, allowing growth until the tank cross-section is

at most tangent to the fuselage cross-section. The radius is also allowed to

decrease to zero to represent a position in the fuselage where there is no

interior tank and only a bulkhead. Another bar allows the centerpoint of the

semi-circle to move along the axis of symmetry until the tank cross-section

is tangent to the fuselage cross-section. Menus are used to allow choice of

linear or B4zier curve patch growth between the cross-sections.

Editing of control points is important to allow smoothing of patch wedges.

Because the points on the tank were generated according to a given radius,
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thesepoints can be "dragged" with the mousearound the semicircle by de-
termining the changein arclength and recalculating the actual point on the
circle. Movementis restricted to tank-points which are patch "corner" points
and one-third points on either sideof the cornerpoint are then recalculated.
Patch corner points on the axisof symmetry are required to remain on the
axis.

The eight patch control points not : either cross-sectionmay also be
"dragged" with the mouseto smooth the interior shapeof the patches.The
change in mouseposition is usedto calculate the new one-third point posi-
tion. Points on the fuselagemay not be edited in order to preservethe pre-
viously determined shape basedon aerodynamicand structural constraints.
Due to the speedof the Silicon Graphics processor,changesin patchesare
redisplayed in real time.

6.2 New Results

The specific tasking of this project was to allow automatic generation of a

bulkhead or ringframe for a given cross-section(s). The bulkhead would be

drawn between two given cross-sections, one representing the fuselage and

the other representing the interior tank. This allows the interior tank to

have any predetermined shape and not be limited to being circular. The

ringframe would be drawn interior to the fuselage cross-section at a default

width which could be edited.

6.2.1 Bulkheads

There were several problems to consider in creating patches for the bulk-

head between the two cross-sections. The requirement to have "square-like"

patches supports the current method of calculating each patch using corre-

sponding curve points of the two cross-sections. The most obvious problem is

that both cross-sections may not have the same number of B_zier curve seg-

ments. Even if the number of curves is the same, their respective arclengths

may not pair up in a fashion to create "nicely" shaped patches. These prob-

lems were solved with the following algorithm which compared arclengths

of successive curves on each cross-section, splitting curves into two curves

when differences in arclength was greater than a predetermined percentage.

Locations where splits are made are internally stored and create an addi-
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tional editing capability, explained in further detail below. The algorithm is
as follows:

procedure match-curve-arclengths (fuselage-cross-section,

tank-cross-sectio n)

begin

calculate percent of arclength of each curve in

fuselage-cross-section;

calculate percent of arclength of each curve in

tank-cross-section;

determine value where curve percents of arclength

are close enough;

look at first curves in each cross-section;

while there is another curve in the fuselage-cross-section

and another curve in the tank-cross-section do

begin

if difference in percents of arclength of current

curves in each cross-section is greater than

close-enough- value then

begin

split curve with larger percent of arclength (pal):

first curve will have same pal as smaller curve;

look at second curve of split curve (other piece

of larger curve, farther along the cross-section)

and the next curve on the other cross-section;

end

else

look at the next curves on both cross-sectioas;

end

end

This algorithm accomplishes two things: both cross-sections end up with

the same number of B4zier curves and corresponding curves have near-equal

percents of arclength, within an agreed-upon factor. As mentioned above,

information is stored as to which curve endpoints were created by splitting
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original curves. Although the percent of arclength is a reasonableway to
line up correspondingcurves, it is sometimespreferrable to move the curve
cn(lpoints to straight.enthe patchwedges."New" endpoints canbe "dragged"
with the mouse: the changeiu mouseposition is translated into the change
ix_pet'cellt of arclcl_gth of tl_c split in the original curve and the original
curve is resplit with the new percent. The subdivision of a B_zier curve
is acco_-nplishedby finding control points of the curve as representedby a
higher degreepolynomial. Each pieceof the curve will represent the same
cubic polynomial on its own interval domain, as explained in Section 5 of
this paper on B_zier curves or [FARIN, pp. 75-6]. Therefore, each new
curve is an exact duplicate of the correspondingpieceof the original curve.
By returning to the original curve eachtime, the original shapeof the cross-
section is preserved,but editing of at least someof the curve endpoints is
now alsoa feature of the software.

The other problem that neededconsiderationwas the placementof long-
eronsin the longitudinal structural design. The placeswheretheselongerons
intersect the fuselagecross-sectionneededto be at "corner" points of the
patchesfor later structural analysis,as explained in sections3 and 4 of this
paper on aerospacevehiclestructure and finite elementanalysis. The shape
of the vehicle in many instancesreflectsonly aerodynamicrequirements,and
curve endpoints in the fuselagecross-sectionare usually not in the locations
of longeronplacement.

The guidancefrom engineersat NASA Langley ResearchCenter's Vehi-
cleAnalysis Branch can besummarized: longeronsare ideally spacedequally
around the fuselage,but must especially be placed at discontinuity points,
or curve endpoints where successivecurves are not slope continuous with
one another. Thus, a percentageof the longeronsto be placedon the cross-
section,equal to the percent of arclength of the portion of the cross-section
betweendiscontinuity points, should be equally spacedbetween the discon-
tinuity points. If the desired placementof the longeron is too close to an
already existing curve endpoint, a very narrow patch, which is undesirable,
might be created. To resolvethis, if a desired longeronposition is within a
curve-length, from the curveendpoint, correspondingto lessthan twenty-five
percentof the equal spacingcurve-length for that sectionof the cross-section
betweendiscontinuities, the longeroncould be placedat the endpoint.

The resulting algorithm is shownin two parts. The first is the computa-
tion of a comparisonvalue usedto determineif the placementof the longeron
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requiresthe splitting of an existing curveor if it will be placedon an existing
curve endpoint:

procedure compute-compare-value (equal-spacing-length,

push- up-length,back-up-length, length-not-yet.included)

comment: Because longerons may be placed at curve endpoints

and not exactly at the equal-spacing-length, the quantities

pu_,-up-Iength, or the curve-length difference of the

positioning point located past the end of equal-spacing-length,

back-up-length, or the curve-length difference of the

positioning point located before the end of equal-spacing-length,

and length-not-yet-included, or the curve-length total

from previous curves which did not total to equal-spacing-length

yet, keep track of differences in the calculated and actual

position of the previously-placed [ongeron. The use of

the term %ection"in the following algorithms refers to

the current portion of the fuselage cross-section between

discontinuities.

begin

if first curve in section then

compare-value = equal-spacing-length;

else

begin

if push-up-length and back-up-length are both zero then

compare-value = equal-spacing-length;

else if push-up-length > 0 then

compare-value = equal-spacing-length - push-up-length;

else if back-up-length > 0 then

compare-value = equal-spacing-length + back-up-length;

if longeron not placed on previous curve then

compare-value = compare.value - length-not-yet-placed;

end

end

The actual algorithm for placing longerons is:
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procedure place-longerons(fuselage-cross-section,

number-longerons-to-place)

comment: The first endpoint of a curve is the one closest to the

beginning of the cross-section, the second endpoint is

further along the cross-section.

begin

for each section of fuselage-cross-section between discontinuities do

begin

number-longerons-for-section =

(number-longerons-to-place) x (pal-of-section):,

if number-longerons-for-section > 0 then

begin

calculate equal-spacing-length;

comment: equal-spacing-length = pal-of.section divided

by (number-longerons-for-section + 1)

look at first curve of section;

while all longerons not placed in section do

begin

compute-compare-value;

if pal-current-curve = compare-value then

begin

place longeron at second endpoint of curve;

look at next curve in section;

end

else if pal-current.curve > compare-value then

begin

if not first curve of section and

longeron was not placed on previous curve and
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compare-value < 25% of equal-spacing-length then

begin

place longeron at first endpoint of curve;

back-up-length = compare-value;

end

else if pal-current-curve and compare-value

differ by > 25% of equal-spacing-length then

begin

split current curve (wrt compare-value);

place longeron at split point;

look at curve beginning at split point;

end

else if pal-cur'rent-curve and compare-value

differ by <_ 25% of equal-spacing-length then

begin

place longeron at econd endpoint of curve;

push-ahead-lengt,o -: difference of

pal-current-curve and compare-value;

look at next curve in section;

end

end

else (pal-current-current < compare-value)

begin

increase length-not-yet-included by

pal-current-curve;

look at next curve in section;

end

end

place longeron at last endpoint of section;

end

end

end
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This algorithm would be applied to the fuselagecross-sectionprior to
the match-curve-arclengthsalgorithm to ensurethat the interior tank cross-
section matches the fuselagecross-sectionfor which the longeronshave been
considered.

6.2.2 Ringframes

The original algorithms enabledconstant percentageringffames, i.e., those
ringframes whosewidth at eachone-third point of the _uselagecross-section
was a given percentageof the length of the B&ier curve from the one-third
point to the correspondingtank cross-sectionpoint, to be created. However,
in actual aerospacevehicledesign, the requirementfor ring-framesis constant
width and not constant percentage,although constantwidth is a misnomer.
At points of discontinuity, the width of the ringframeis usuallya little wider,
the leading edgeof the ringframe maintaining the basic shapeof the cross-
section at a placeof greater structural stress.

To createa realistic width for the ringframeat points of discontinuity, the
following algorithm wasusedto changethe calculated "normal" to the cross-
section at ghediscontinuity point. When normal vectors to each one-third
point are calculated, becausethe tangent to eachcurve at the discontinuity
is different, the curveswould havea different normal vector emanating from
the samepoint. This algorithm providesan alternative to just averagingthe
two normals at the discontinuity point:

procedure normal-at-discontinuity

begin

for each discontinuity point do

begin

calculate normal vector to second endpoint of

first curve meeting at discontinuity;

calculate normal vector to first endpoint of

second curve meeting at discontinuity;

compute points corresponding to tails of two

normal vectors;

compute tangent vectors to each curve at discontinuity;

compute intersection point between two lines through
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respectivepoints at the headof the normal
vectors in the direction of the tangent vectors;

new-normal = vector from discontinuity to intersection
end

end

The ringframe patches are then constructed as follows:

procedure ring frame-patches

begin

for each curve in fuselage-cross- section do

begin

calculate 4 inward B4zier curves using Hermite

representation of one-third point on fuselage-cross-

section curve, point in direction of normal at

ring frame-width, two vectors of ringframe-tcidth

length in direction of normal;

calculate patch from 4 curves;

place patch in linked list;

end

end

7 Conclusion

The algorithms just described have been implemented in the current cross-

sections portion of SMART and preliminary feedback from the previously

mentioned NASA engineers has been extremely positive. The final implemen-

tation will be placed within the currently being developed structures portion

of SMART. Actual "snapshots" of the SMART display showing these results

are provided in Appendix A of this paper.

The development of software can be a very long and sometimes difficult

evolution. Getting a user to specify his or her requirements such that they

truly reflect the needs of the user can be extremely frustrating. The specifi-

cations may represent a simple concept yet the implementation may be very

complex, and the reverse is also often true. This project has added a new
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dimesion to SMART and should enablethe designingand testing of the de-
sign phasesof aerospacevehicleresearchand developmentto beaccomplished
more expediently in the future.
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ABSTRACT

The Environment for Application Software Integration and Execution, EASIE, provides a user

interface and a set of utility programs which support the rapid integration and execution of analysis

programs about a central relational database. EASIE provides users with two basic modes of

execution. One of them is a menu--driven execution mode, called Application-Driven Execution

(ADE), which provides with sufficient guidance to review data, select a menu action-item, and

execute an application program. The other mode of execution, called Complete Control Execution

(CCE), provides an extended executive interface which allows in depth control of the design

process.

Currently, the EASIE system is based alphanumeric interaction techniques only. It is the purpose

of this project to extend the flexibility of the EASIE system in the ADE mode by implementing it

in a window system. Secondly, a set of utilities will be developed to assist the experienced engineer

in the generation of an ADE application.
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1. Introduction

The Environment for Application Software Integration and Execution, EASIE, which developed

for NASA by Old Dominion University, Computer Sciences Corporation and Vehicle Analysis

Branch of NASA Langley, provides with a methodology and a set of software utility program to ease

the task of coordinating engineering design and analysis codes.

EASIE provides a user interface and a set of utility programs which support the rapid integration

and execution of analysis programs about a central relational database [ I ]. EASIE provides users

with two basic modes of execution. One of them is a menu--driven execution mode, called

Application-Driven Execution (ADE), which provides users with sufficient guidance to review

data, select a menu action-item, and execute an application program. The other mode of execution,

called Complete Control Execution (CCE), provides an extended executive interface which allows

in depth control of the design process. In CCE, commands can be issued via menu selection or

directly typed. Although CCE provides the flexibility of an operating system, it also is complicated

to use like an operating system. Most users currently access the EASIE system via the menu-driven

mode known as AIDE.

In general, the EASIE system addresses the needs of two different classes of users who be involved

in the buildup and use of an engineering design system.

The first classification represents the engineer/designer/analyst. This group conducts the design

study through the execution of modeling and analysis programs and the generation of data required

to this evaluate the design against its objectives. EASIE documentation will refer to this group as

"EASIE system users" or, more often, as "designers". In general, these users are only interested in

executing programs already installed into an EASIE design system [1].

A second group aided by EASIE will be referred to as "application programers" or "experts".

These programers/engineers are responsible for the development and improvement of modeling and

analysis programs used in the engineering design process. EASIE documentation will refer to this

group as "experienced engineers". They are the experts with respect to particular application

programs and can defines its input and output variables [1].

2. EASIE : ADE-mode Considerations

The predominant design method used by engineers is the iterative technique. One processes to

a f'mal solution through successive applications of analysis techniques to increasingly refined data.

EASIE provides a basic user tools which support the selection and execution of application

programs, viewing, and editing of program data. EASIE also provides tools for a design team to

easily manage the design environment by providing the ability to quickly integrate new analysis

programs and data with the existing environment.



2.1 Concepts of EASIE system

Confiouration Data:
v

Configuration data is stored in a system-managed database. An advantage of the EASIE user

interface is that data held in the database are automatically communicated to either a user or an

application program in an appropriate format. Once the basic data definitions and values have been

made, a copy of this "master" database is placed in a controlled project directory. Access to this

database is provided on a "read only" basis. That is, the users may display the configuration data

for review, or they may make copy of the database for their personal files. Updates to the master

database can be entered only by the design manager [1].

Reviewer:

The EASIE software interface provide a program called the "REVIEWER" which can access any

data. Based upon an indicated analysis program or other dataset in the database for a designer, the

REVIEWER, using information contained in the database, can then make the appropriate selection

to retrieve the necessary input and present that data at the terminal.

Itala_.T.e,malale 

The software screen forms used to control the flow of data to and from the database are called

data templates. A data template is basically a list of all data required for input ( or supplied as output)

by a given program along with their required data formats. Since data templates axe generated by

EASIE utility program. Finally, access to these data templates is used in conjunction with the

REVIEWER to directly modify the variables in the database when presented during the Review

process [1].

Formatter:

A final utility called the Formatter uses the data templates to enable the automatic generation of

FORTRAN subroutine source code, called Formatter code, which can be placed in the application

program allowing it to retrieve data or store data into the database during program execution.

2.2 Sample Session for ADE mode

Menu displayed during an ADE session are typically created by experienced engineers to guide

new users through the proper sequence of steps to conduct some particular design activity. Given

such an interface, an introductory user can easily learn to manipulate data and execute programs in

the Application Derived Executive (A.DE) mode. Now we look at an example to describe an

interaction with EASIE for a given application. This example illustrates capabilities of the EASIE

system. It consists of four short programs that define and draw a box. Figure I represents the basic

relationship among these programs and their data.

Within the concepts of the EASIE system, we can realize this figure in a straight forward manner.
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The Box program extracts dimensional data from the database, calculates physical

properties(volume), and stores it in the database. The MAKGEO program extracts the dimensional

data from the database, create a geometric boundary representation for the box, and stores that data

in the database. The object of the DRAW program is to display the box geometry that exists in the

database.

The session commences with the user entering the following command (underlined text represents

user input).

exmenu

CS-

DC-

CD-

R -

E -

p -

X -

SELECT A CONFIGURATION

DELETE A USER CONFIGURATION

EDIT A CONFIGURATION DESCRIFUON FILE

REVIEW PROGRAM INPUT

EXECUTE A PROGRAM

PRINT OUTPUT FILES

EXIT

Input: label - menu choice, <CR> - reprint menu - CS

SCREEN 1

Screen 1, the fin'st screen presented, provides a menu of the commands available for basic

interaction: selection, deletion, editing, and review of configuration data, program execution, and

printed out. From figure 1, the first choice from this menu would be CS for the selection of a

configuration database.

MASTER CONFIGURATIONS

DEFAULT

USER CONFIGURATIONS

SHOULD A NEW CONFIGURATION BE CREATED ( Y = yes )

Y

COPY SOURCE CONFIGURATION ( FOR DEFAULT VALUES )

TO THE DESTINATION CONFIGURATION

ENTER SOURCE CONFIGURATION ( "1" TO LIST ) :

DEFAULT

ENTER DESTINATION CONFIGURATION ( "1" TO LIST ) :

NUDATA
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COMMENCING DATABASE COPY

SCREEN 2

Screen2 is theresult of thatselection.Thef'wstfour linesdisplayedindicatetheexistenceonly

the masterconfiguration databaseDEFAULT. SinceEASIE usersmay changedonly personal

database.Then,thefollowing stepsare the copy of configuration. In AIDE mode, the menu provides

basic selections available for designers, then designers use the keyboard for alphanumeric input to

the program. Successive menu choices allow designers to complete a special execution of programs.

Details of the sample session described above can be found in the EASIE Volume III- Program

Execution Guide.

Control of the system during ADE is governed by a command procedure designed by the

experienced engineer who, as it will be seen, must also be an expert on the EASIE system. The

next section demonstrates how procedures are structured in EASIE. Thus the construction of such

procedures should be considered a priority in order to fit the needs of designers who will use the ADE

mode.

2.3 Menu Manipulation and Construction in ADE mode

Since design is generally iterafive in its nature, the procedures controlling the EASIE sessions

for ADE users should have the ability to jump and loop when needed. During the execution of a

procedure, EASIE will keep track of its position via a procedure counter (pc). The procedure counter

may be reset by jumping to a labeled statement within a procedure. Labels are placed in a procedure

with a comment statement of the form below:

C LABEL : < label_id >

Consider this example.
GET JMPL THERE

C LABEL : THERE

Menus can be presented to the ADE user via the "GET MENU" command. The format for this

command is :

GET MENU < n > where < n > represents an associated menu number.

Menus are stored in separated files, whose format is detailed below. The combination of this

command, along with the ability to jump and loop within a procedure, provides EASIE with the



flexibility to make the ADE interfacework. The procedurefile to beexecutedis linked to a
particularchoiceof USER-ID andis automaticallyexecutedwhenEASIE is initiatedwith that ID.

Thefollowing illustratestheprocedureandits associatedmenufiles [1].

C LABEL : MM
GET MENU 1
C LABEL : R
GET MENU 2
C LABEL : E
GET MENU 3
C LABEL : CS
GET CFG
GET YMPL MM

C LABEL : DC

RM CFG

GET JMPL MM

C LABEL : cD

CD CFG-

GET J-MPL MM

C LABEL :BIR

RVU BOXIN

GET JMPL R

C LABEL :BOR

RVU BOXOUT

GET JMPL R

C LABEL :MR

RVU MAKGEOIN

GET JMPL R

C LABEL :DR

RVU DRAWIN

GET JIVIPLR

C LABEL :BX

EX APPL BOX

GET/MPL E

C LABEL :MX

EX APPL MAKGEO

GET/MPL E

C LABEL :DX

EX APPL DRAWIT

GET JMPL E

C LABEL : X

L

N

Figure 2. A printout of the procedure file



CS
DC

CD

R

E

P

X

CS

DC

C

R

E

X

SELECT A CONFIGURATION

DELETE A USER CONFIGURATION

EDIT A CONFIGURATION DESCRIFFION FILE

REVIEW PROGRAM INPUT

EXECUTE A PROGRAM

PRINT OUTPUT FILES

EXIT

Figure 3a. EXMENU.PROC_I.

BIR

BOR

MR

DR

MM

BI REVIEW INPUT FOR BOX

BO REVIEW OUTPUT FOR BOX

M REVIEW INPUT FOR MAKGEO

D REVIEW INPUT FOR DRAWIT

R RETURN TO MAIN MENU

Figure 3b. EXMENU.PROC_2.

BX

MX

DX

MM

B EXECUTE BOX

M EXECUTE MAKGEO

D EXECUTE DRAWIT

R RETURN TO MAIN MENU

Figure 3c. EXMENU.PROC_3.

A review of the commands in figure 2 procedure reveals the use of the GET MENU command

three times -- namely, command 1, 2 and 3. Since each of these has a different number, it refers

to each of the menus listed on figure 3. For example, GET MENU 2 refers to the menu contained

in frie EXMENU.PROC_2. In general, the use of the statement GET MENU < n > in a procedure

with the name <proc_id> requires the existence of a menu file.

In general, when a procedure is activate, command are being sent to the EASIE command

processor from the procedure, and thus are not expecting feedback from a user. It is clear from the

above example that construction of an ADE-mode procedure is a nontrivial operation and requires

an expert on the EASIE system. Unfortunately, EASIE does not provide the analyst with utilities

to create a predefmed procedure and associated menu fries.

As a final note, EASIE user frie directory will contain a large variety of files. Though an

explanation of each of these fries is attracted, there would generally be little reason for a general user
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to becomeinvolved with anyof thedetailsor namingconventionsusedin thesefiles. Suchdetails

canandgenerallyshouldbe left for theEASIEsystemto monitor. Althoughmostdesignersprefer
to accessEASIEvia theADE modeinterface,manyhavevoiceddisappointmentover the lackof

a moderninterface. In additionto theprecedingsectionmakesit clearconstructionof suchan
interfaceisdifficult atbest. Thishasledustoidentify two majorproblemswith thecurrentEASIE
ADE modeinterface.

2.4 The Drawbacks of EASIE in ADE mode

• The EASIE system is based alphanumeric interaction.

• Control of the system during ADE mode is governed by command procedure. The construction

of such procedures are designed by an experienced analyst.

3. Principles of Interface Design

Most computer users feel that computer systems are unfriendly, uncooperative and that it takes

too much time and effort to get something done. They feel dependent on specialists, and they notice

that "software is not soft". Users use computers as tools for achieving tasks of particular problem

domains such as text processing,f'mancial planning, or computer-aided design. It is too much to ask

users to learn about something as complex as a large computer program by direct Observation of what

the program does. Therefore, the overall goal of the design methodology is to help programmers

deliver their designs, not only by reducing the complexity of the delivery process, but also by helping

to ensure that the delivered system provides a good interface for users.

The quality of the user interface often determines whether users enjoy or despise a system and

ultimately whether the system is even used. The following will describe five principles of interface

design [4] [5].

3.1. Put the User in Control

An effective interface allows users to form an accurate and detailed cognitive representation of

the structure of the software and to learn quickly how to operate it. A poor interface frustrates and

confuses users placing them in constant doubt about where they are in application; it makes users

unsure that they can predict how the software will respond to their direction; it creates difficulties

in operating the software; and it makes it easy to make errors but not to recover from them.

In order to solve this problem, different interface construction techniques have been proposed.

• Provide online help that informs the user about the structure and operation of the application.

• Provide effective prompts and status messages that guide the user through procedures and keep



theminformedaboutprogramstatus.

• Provideerror messagesthat allow the user to understandboth what went wrong and how to

smoothlyrecoverfrom theerror.
• Providetheuserwith the meansto move freely within andbetweenscreensand the ability to

moveeasily to majormenuitemsandto quickly exit from theapplication.

• Provideconsistencyin theuseof words,formatsandprocedure.

3.2.Address the User's Level of Skill and Experience

One of the most difficult problem for you as a software developer is overcoming this gap between

your skills and the skills of most users. If the application you are developing will be used by people

with no computer experience, then your design must favor these users over the more experience

ones. In order to solve this problem, different interface construction techniques have been proposed.

• Avoid jargon.

All computer terms and other technical jargon not familiar to the users must be eliminated from

the interface or explained to the users. The design must be subjected to ensure that potential users

understand the words contained in menus, messages, help text and tutorials.

• Use appropriate transaction control procedures.

New users will be most comfortable with menu or simple question-and-answer dialogue.

Experienced users can use these methods, but they may want to be able to string together sequences

of commands and use function keys to speed up the operation of an application.

• Provide several levels of detail for error and help messages.

Experienced users need error and help messages to remind them of what they already know. New

users, however, need step-by-step procedures and examples that instruct them in the operation

of the application. The needs of both these groups can be met by providing more than one level

of help and error message.

3.3. Be consistent in wording, formats, and procedures

Consistency is an important feature that should be built into every interface and it should be

maintained across applications. Consistency helps the user to learn an application more easily, to

use it more easily, and to recover more easily when there is a problem.

3.4. Protect the user from inner working of the hardware and software that is behind the
interface

One of the characteristics of a poor interface is that it displays information about the internal

workings of the software that the typical end user cannot understand. For example, displaying a
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messagesuchas"FORTRAN END" maytell youthatthesoftwareis operatingnormally,but it may
bemeaninglessto theenduser. In addition,manynewusersareverysensitiveabouttheir lackof

knowledgeofcomputerhardwareandsoftware.As aconsequence,theyareimmediatelyupsetwhen
wordsandphrasesthatdescribetheinternalworkingsof thesoftwarearedisplayedon thescreen.

A goodinterfacewiUprotecttheuserfrom havingtoknowaboutthe innerworkingof hardwareand
softwaretools.

3.5. Minimize the burden on the user's memory

Human beings are poor at recalling detailed information but are remarkably good at recognizing

it. A good interface design should minimize the need for the user to memorize and later recall

information. Whenever possible, users should be able to choose from lists and be allowed to use

their recognition memory rather than their recall memory. Here different interface consu'ucfion

techniques have been proposed.

• Be Consistency in your use of words, formats, and procedures. Consistency reduces the user's

need to learn and remember new information.

• Display status messages that remind users where they are in an application and what options are

in an application and what operations are in effect.

• Provide online help that is designed as an aid to memory.

• Use memory joggers in prompts and data entry captions. For example, tell users how to format

dates, such as (mm/ddlyy).

4. Modification of EASIE in ADE mode

4.1 Window system : OSF's MOTIF

Almost all modem user interface are window--based. Windows allow the user to interact with

multiple source of information at the same time. W'mdow techniques allow a relatively rapid access

to more information than is possible with a single frame of the same screen size. The window system

provides many of important features of the modern interface, for example, applications that show

results in different area of display, the ability to resize the screen areas in which those applications

are executing, pop-up and pull--down menus and dialog boxes.

Currently, the EASIE system is based alphanumeric interaction techniques only. The goal in the

design of any menu should be to facilitate the user's ability to make a choice quickly and accurately.

It is the purpose of this project to extend the flexibility of EASIE system in the ADE mode by

implementing it in a window system. The user-interface, with its windows and pulldown menus,

is popular because it is easy to learn and requires little typing skill. The windowing system chosen

to implement EASIE is OSF/MOTIF. What follows is a brief description of Motif [2] [3].

11



OSF/Motif isagraphicaluser-interfacetoolkit, windowmanager,styleguide,anduser-interface

language.Mofi.f's graphicalinterfaceis basedon theX windowsystemfrom MIT. This underlying
technologyprovidesyou with a network-basedgraphicaluserinterface. Motif is composedof a

styleguide,window manager,interfacetoolkit andpresentationdescriptionlanguage.

• Style guide

The style guide describes a standard behavior and a set of connections for applications, to ensure

a consistent feel on multiple applications. The style guide includes extensions for powerful

network-based workstation. Its "look" is based on the HP-three dimensional screen-button

appearance.

• Window manager

The window manager lets you manipulate multiple applications on the screen and plays a

principle role in enforcing the style guide.

• Interface toolkit

The OSF/Motif toolkit is based on the X windows intrinsics, a toolkit framework provided

with MIT's X window system. The intrinsics use an object-oriented model to create graphical

objects known as widgets or gadgets. The specified widgets maintain consistency between

applications.

• Presentation description language

This language enables application developers to describe the presentation characteristics of

the application interface independent of the actual application code. The separation between

application and interface lets you make many changes to the overall appearance and layout of an

application without having to modify, recompiler, or relink the application itself.

4.2 Design Considerations for ADE Facilitator

Menus displayed during AIDE mode are typically created by experienced engineers to guide other

designers in the proper sequence of steps to conduct some particular design activity. In this project,

in addition to implementing AIDE mode in a window system, a set of utilities are developed to assist

the experienced engineer in the generation of an ADE application. It is assumed that an experienced

engineer has sufficient knowledge of the desired application to develop an organized approach to

use of that application. The A.DE facilitator has been developed to capture this information in a way

that automatically includes a number of good interface design principles. Thus we have designed

the AIDE facilitator to overcome the problem listed in section 2.4. In addition, the ADE facilitator

provides the engineers a simple environment to generate the ADE application easily. Experienced

engineers are not required to have any knowledge of principles of interface design or OSF/MOTIF
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• Theymakeuseof theADE facilitatorto buildupanapplication-dependenthierarchymenuin any
desiredformat.

In orderto developADE facilitator asagoodinterface,therearealot of issuesweconsidered.

• The layout of menus

Whentheuserinterfacemakesuseof graphicalobjectssuchaswindow andmenus,it iscalled

agraphicaluserinterface(GUI).Comparedwith thenongraphicalapplication,interactivegraphicals

makesmenuselectionsuchsimplerandfaster.Themenuis displayedonthescreen,theuserpoints
to aselectionwith a graphicalinputdevice,like mouse.This menucanfacilitate theuser'sability

to makeachoicequickly andaccurately.

In applicationprogramswith commandsor manydifferentoperands,thesizeandcomplexityof

the interfacecanbecomeaseriousproblem. A simplesolutionis to useamultilevel menu. With

ahierarchicalmenu,theuserf'n'stselectsfromthechoicessetatthetopof thehierarchy,whichc.auses

a secondchoicesetto beavailable. Theprocessis repeateduntil a leafnodeof thehierarchytree

is selected. Since the ADE facilitator captures the organization of an experienced engineer, a natural

task decomposition is obtained.

• Feedback

Feedback is as essential in conversation with a computer• A selected objected or menu command

is highlighted, so the user can know that action has been accepted. In this project, when the

application designer travels the menus being built, information about the current level of menu

hierarchy is displayed in a list window. This list window provides good feedback for the application

designer. In addition, the full feedback facilities of OSF/MOTIF are automatically provided for the

final ADE application.

• Error Recovery

A poorly design interface gives the user no choice but to proceed with the command. A

well-designed interface lets the user back out of such situation with a cancel command. With good

error recovery, the user is free to explore unlearned system facilities without "fear of failure ". In

a less serious type of error, the user may want to correct one of units of information needed for a

command. The dialogue style in use determines how easy to make such corrections are.

Command-language input can be corrected by multiple backspaces to the item in error, followed

by reentry of the corrected information and all the information that was deleted. This project

provides these capability automatically through its OSF/MOTIF interface.

• Be Consistent

Consistency reduces the user's need to learn and remember new information. For example, when

the select procedure is used on all menu, a user has to learn it only once and it is easier to remember.

In this project, we provide the capability for selecting menu by pushing first button of the mouse,
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andpointingaspecialitembeforedoinginsertion with second button of the mouse. Again these are

capabilities provided automatically through the OSF/MOTIF interface.

• Provide online documentation to help the user to understand how to operate the application

In this project, we have provided a help menu that gives the user a brief overview of how to use

this application.

4.3 Demonstration of the ADE Facilitator

In windows 1-28, we demonstrate the use of the ADE facilitator. These windows also illustrate

those characteristics we mentioned above that lead to a well designed interface. For this example

we develop an interface for the sample problem stated in section 2.2. This interface is developed

with the following steps.

Window 1 is an original ADE facilitator, there is no menus with it.

Step 1. Push the "Add menubar Item" button.

Step 2. Type in the name of new menubar item.

Step 3. Click on the "ok" button.

Windows 2 -7 show the procedure of creating new items on the menubar using step 1-step3

recursively.

Step 4. Point the puLldown menu of a menubar item using flu'st button of the mouse.

Step 5. Push the "Add Item with subItem" button.

Step 6. Type in the name of a new item.

Step 7. Click on the "ok" button.

Windows 8-11 show the procedure of creating a new cascading item using step 4~step 7.

Step 8. Point the pullright menu of a branch item.

Step 9. Push "Add Menu Item" button.

Step 10. Click on the "ok" button.

Step 11. Type in the EASIE command.

Step 12. Click the "ok" button.

Windows 12-14 show the procedure of creating a new leaf item using step 8 - step 12.

Window 15 is the resulting of built menu of fL,'st item at the menubar.

Step 15. Select an item on list window using the f'n-st button of the mouse.

Step 16. Release the button.

Windows 16 -17 show the procedure of deleting an item from the menu using step 15 - step 16.

Window 18 -23 show the procedure of building the menus of second item at the menubar.

Window 24 shows the menu of third item at the menubar.

Step 17. Push "Delete Menubar Item" button.
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Step 18. Type in the name of the item existing on the menubar.

Step 19. Click on the "ok" button.

Windows 25 -26 show the procedure of deleting a menubar item.

Window 27 is the dialog box for "save" button.

Window 28 is the dialog box for "Exit" button.

Windows 29 -34 show the EASIE user interface built by ADE facilitator. This user interface helps

the EASIE user make a choice quickly and accurately. When a leaf node of a hierarchy menu is

selected, a special command will be showed up on the list window and being sent to the EASIE

command processor at the same time.

5. The general Structure of the Solution

As seen in the previous chapter, presentation of an ADE facilitator menu is best carried out in a

hierarchical manner. This hierarchy is easily described by the tree data structure shown below.

5.1 Data Structure

typedef structure menu {

structure info data;

structure menu *sub_menu;

smacture menu *next;

} *node;

Since the purpose of the ADE facilitator and the creation of an ADE application, the menu

structure cannot be known ahead of time and therefore must be dynamic. The usual approach to

declare a space large enough to hold the maximum amount of data we could logically expect cannot

work. Thus tree components are created only as they are needed. Each component contains

information about the location the next components. Such a tree can expand or contract as the ADE

facilitator is executed and we use this dynamic data structure to hold the structure of the newly

created menus.

In general, each node of this structure contain information related to the menu choice it represents

as well as two information of locations. The flu'st location is that of next menu item at same level

of hierarchy, and the other is the location of the f'u'st choice for a submenu item.

Figure 4 demonstrates the structure of menus.
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5.2 Mechanisms

We provide two operations on the data structure mentioned above.

( i ) Add an item to the menu.

( ii ) Delete an item from the menu.

Each item has its own ID. We use a binary expression to represent the location of an item or

subitem in the hierarchy of the menu to which it belongs.

ID =0000 110000 1 =33

I I

second level first level

figure 5.

The first five bits from right side stand for the fhst level of hierarchy in the menu, the second

five bits stand for the second level of hierarchy and so on. For example, consider the II3 number

33 in figure 5. This binary expression represents the first subitem of the first item at the first level

of hierarchy in the menu. Thus the current implementation use a five bits to stand for each level,

and therefore there are 32 items at most for each level of hierarchy in the menu.

We use bitwise operators to deal with the problem from adding or deleting a menu or submenu

item. Except for the ID of any item at the first level of hierarchy menu, simple addition or subtraction

operations on the ID are not sufficient to find the ID of the next submenu item.

1131 =0000110000 1 =33

1I)2 =000 1 010000 1 =65

figure 6.

In figure 61131 represents the first submenu item of first item located at the first level of hierarchy.

1I)2 represents the second submenu item of f'ust item located at the first level of hierarchy. Using

the bitwise operators, we can easily realize the relationship between I]31 and 1132 as follows.

num= ( II31 & 01740 ) >> 5;

num ++ ;

numtemp = ( ID1101740 ) ;

num = ~ ( ( - hum << 5 );

ID2 =num & numtemp;

Based upon this encoding the menu hierarchy can easily be stored in file format. The resulting menu

tree needs to be stored for both later editing or using in an ADE session by a design engineer.

Currently we differentiate leaf nodes in the tree from branch nodes as follows.

( i ) Format for an item with submenu ( branch node) :

1I) name :

( ii ) Format for an item without subitem ( leaf node ) :
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command name

Of course, design engineers do not need to have this knowledge of the format of a file, it is handled

automatically for them. When they develop an application-dependent menu, the ADE facilitator is

going to help them store the menu tree.

5.3 Capabilities and Limitations of ADE facilitator

We note the following capabilities of designed into the ADE mode facilitator.

• Add an item with submenu into the pulldown or pullright menu at any special position.

• Add an item without submenu into the pulldown or pullright menu at any special position.

• Delete an item with submenu from the pulldown or pullright menu.

• Delete an item without submenu from the puLldowm or pullright menu.

• Add an item into the menubax at any special position.

• Delete an item from the menubar.

We also note two cautions for the current implementation.

• We can create six levels of menus at most.

• Each level of menu could have 32 items at most.

6. Conclusions

In this project, we used OSF/MOTIF toolkit based on the X window system to implement new

ADE mode. In addition, we designed an interface with facilities to help the design manager easily

build the application-dependent menu, called the ADE facilitator. With this, an EASIE design

manager can quickly develop an application-dependent menu to any desired format, and the EASIE

user can make a choice quickly and accurately.
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ABSTRACT

The Environment for A_pplication Software Integration and

Execution, EASIE, was designed to meet the needs of conceptual

design engineers that face the task of integrating the results

of many stand-alone engineering analysis programs. EASIE is

a set of utility programs which supports rapid integration and

execution of programs about a central relational database, and

it provides users with two basic modes of executing

operations: Application-Derived Executive (ADE), a menu-driven

execution mode which provides users with sufficient guidance

to quickly review data, select menu action items, and execute

application programs, and Complete Control Executive (CCE),

which provides a full executive interface allowing users in-

depth control of the design process. Users can switch between

these modes as needed.

mode interface.

Two objectives of

This project will consider the CCE

this project are to redesign the

selecting menus by using a windowing system and to reorganize

the selecting structures of the selecting menus. The project

will be implemented in the X window system, OSF/Motif version.
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1. AN INTRODUCTION OF THE EASIE SYSTEM

1.1 WHY EASIE WAS DEVELOPED

The Environment for A_pplication Software _ntegration and

Execution, EASIE, was designed to meet the needs of conceptual

design engineers that face the task of integrating the results

of many stand-alone engineering analysis programs [REF 9].

The need for such techniques and tools has stemmed from the

computer aided design and engineering activities with Langley

Research Center's Space Systems Division (SSD).

1.2 WHAT EASIE WAS

EASIE provides access to the programs via a quick,

uniform interface. The most predominant system design

methodology uses the iterative technique. One progresses to

a final solution through successive application of analysis

techniques to increasingly refined data. EASIE facilitates

this process.

In addition, EASIE is a set of utility programs which

supports rapid integration and execution of programs about a

central relational database. EASIE provides utilities which

aid in the execution of the following tasks: selection of

application programs, modification and review of program data,

automatic definition and coordination of data files during

program execution and a logging of steps executed throughout

a design. Therefore, EASIE provides both a methodology and a
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set of software utility programs to ease the task of

coordinating engineering design and analysis codes.

1.3 TWO OPERATION MODES OF EASIE

EASIE provides users with two basic modes of executing

operations. The first, A_pplication-Derived Executive (ADE),

is a menu-driven execution mode which provides users with

sufficient guidance to quickly review data, select menu action

items, and execute application programs. The second mode of

execution, Complete Control Executive (CCE), which provides a

full executive interface allowing users in-depth control of

the design process. For example, when using CCE, techniques

are provided which allow the user to establish a design

sequence and then automatically re-execute the sequence. This

allows the engineer to refine input iteratively and review the

results with minimum interaction. Users can switch between

these modes as needed. This project will consider redesigning

the CCE-mode interface.

1.4 WHAT CCE MODE WAS

The CCE-mode interface provides the flexibility of an

operating system without requiring the user to track a

multitude of files, directories, or data. In CCE, commands

can be issued via menu selections or typed in via a command

line. Various levels of menus, display, and help text are

available.



2. A COMPARISON BETWEEN THE CURRENT EASII  SYSTEM

AND THE DESIGN PRINCIPLES

To design a good human interface, we have to consider a

number of design principles which are to help ensure good

human factors in a design: be consistent, provide feedback,

minimize error possibilities, provide error recovery,

accommodate multiple skill levels, and minimize memorization.

These principles are discussed more fully in [REF 8].

AS described above, EASIE provides significant

functionality; however, this utility is buried in the current

user interface. To see these problems, let us consider each

of the factors above with respect to the EASIE interface.

2.1 BE CONSISTENT

First, the EASIE interface is consistent. The conceptual

model, functionality, sequencing, and hardware binding in

EASIE have been uniform. For example, in the output portion

of EASIE, the menu items are always displayed in the same

relative position within the menu, system-status messages are

shown at a logically fixed place, and the same codings are

always employed. In addition, when considering the input

portion of EASIE, keyboard characters always have the same

function and can be used whenever text is being input, global

commands such as Help, Status, and Cancel can be invoked at



any time, and generic commands such as Move, Copy, and Delete

are provided and can be applied to any type of object in the

EASIE system.

2.2 PROVIDE FEEDBACK

Feedback can be

corresponding to the

given at three possible levels,

hardware-binding, sequencing, and

functional levels of user-interface design. Currently, the

EASIE interface is restricted to keyboard input, thus

hardware-binding is trivially satisfied. EASIE provides some

sequencing feedback such as when each word of the input

language (command, position, object, etc.) is accepted by the

system. However, EASIE does not provide functional feedback,

for example, there is no acknowledgement communicated to the

user when an operation is processing.

2.3 MINIMIZE ERROR POSSIBILITIES

Users will make input errors in any system, and it is the

job of the user interface to minimize error possibilities.

The system tries to minimize the errors as possible. No

matter how, there may be some error occurred in the future.

2.4 PROVIDE ERROR RECOVERY

It is important to provide error recovery: Undo, Abort,

Cancel, and Correct. Unfortunately, EASIE currently only

provides the Cancel feature.



2.5 ACCOMMODATE MULTIPLE SKILL LEVELS

User interface methods which can be used to help

accommodate multiple skill levels are accelerators, prompts,

help, extensibility, and hiding complexity. EASIE, however,

does not provide accelerators which are faster interaction

techniques that replace slower ones. Secondly, it provides

some prompts which is to suggest what to do next, but these

are not generally sufficient. Thirdly, the EASIE interface

does not offer a sufficiently detailed help facility. For

example, the EASIE interface does not give a full explanation

about how to use commands. EASIE does offer a primitive

extensibility which means letting the user add additional

functionality to the interface by defining new commands as

combinations of existing commands. Finally, the EASIE

interface does not provide complexity hiding which can allow

new users to learn basic commands and to start doing

productive work without becoming bogged down with specifying

options, learning infrequently used specialized commands, or

going through complicated start-up procedures.

2.6 MINIMIZE MEMORIZATION

The final principle of user interface design is to

minimize memorization. The original configuration of the

EASIE system seems to be redundant. A new user has to read

commands on a complicated menu to get what is needed. It is

not economic.



3. TWO OBJECTIVF OF THIS PROJECT

There are two objectives of this project: redesign the

selecting menus by using a windowing system, and reorganize

the selecting structures according to the design principles

outlined above.

3.1 REDESIGN THE SELECTING MENUS

Redesign of the menus of the Complete Control Executive

(CCE) mode will be implemented in the X window system,

OSF/Motif version. Since the initial menus of CCE mode are

alphabetical with numerical selection, we want to redesign

those menus to be windows. This will allow the accommodation

of skill level in the EASIE system: hide complexity from the

user.

Window-based user interfaces [REF 7] have become a common

feature of most computer systems, and users are beginning to

expect all applications to have polished user-friendly

interfaces. The X window System, developed at Massachusetts

Institute of Technology (MIT), is an industry-standard

software system that allows programmers to develop

sophisticated user interfaces that are portable to any system

that supports the X protocol. In addition, X allows programs

to display windows containing text and graphics on any

hardware that supports the X protocol without modifying,

recompiling, or relinking the application. X is based on a
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network-transparent client-server mode. The X server creates

and manipulates windows in response to requests from clients,

and sends events to notify clients of user input or changes in

a window's state. One important different between X and many

other window systems is that X does not define any particular

user interface style. X also provides a device-independent

layer that serves as a base for a variety of interface styles.

The OSF/Motif version of the X window system [REF 2] is

a graphical user interface combining a toolkit, presentation

description language, window manager, and style guide. First,

the OSF/Motif toolkit is a rich and varied collection of

widgets and gadgets for building OSF/Motif applications. The

toolkit provides a standard graphical interface upon which the

window manager is based. Second, the OSF/Motif presentation

description language allows application developers and

interface designers to create simple text files that describe

the visual properties and initial states of interface

components. Third, The window manager works with the toolkit

to manage the operation of windows on the screen. The window

manager provides functions for moving and resizing _indows,

reducing windows to icons, restoring windows from icons, and

arranging windows on the workspace. Finally, the style guide

describes the standard for window manager and toolkit

behavior. It is a guide to usage, providing application

writers with guidelines for using toolkit widgets, widget

writers with guidelines for designing new widgets, and window

7



manager writers with guidelines for designing new or

customized window managers. Together, these four elements

provide the OSF/Motif to be a standard of user interface

behavior for applications.

3.2 REORGANIZE THE SELECTING STRUCTURES

The second objective is the reorganization of the

interface with respect to the previously mentioned design

principles. Version 1.0 of the EASIE interface has seven

different standard menus in addition to a "Permanent" Menu of

commands. They are Utility Selection Menu, Workspace Control

Menu, Data Review/Modification Menu, Application Execution

Menu, Procedure Execution Menu, Procedure Building Menu,

Template Building Menu, and the "Permanent" Menu mentioned

above. We find that the old ones are to be redundant and

ineffective. One objective of the reorganization will be the

minimization of memorization. Let us take an exam_ e of

Workspace Control Menu shown in Figure 1 on the next page.

There are twenty-eight choices. It is difficult for

users to select their choices. They have to read all the

selections, then make their decisions. Therefore, we want to

reorganize those menus to be more efficient. Let us have an

example. If your selection concerning the WORKSPACE, then

there will be only six choices: READ DESCRIPTION, NEW, COPY,

ACTIVATE, SAVE TEMPLATE, and REMOVE FROM UFD. It will be

easier for users to choose what they need. In addition, the



user can not enter some commands with file name or with path

if he/she does not know or make sure about the file names or

paths. There is no way for the user to get the information of

the file name or path he/she needs.

WORKSPACECONTROL

1 - READ DESCRIPTION - WORKSPACE

2 - - CONFIGURATION

3 - - TEMPLATE

4 - - APPL. PROG.

5 - - PROCEDURE

6 - CLEAR LOG OF OLD INFORMATION

7 - TYPE - COMMAND LOG

8 - - PROCEDURE

9 - NEW - WORKSPACE

i0 - - CONFIGURATION

ii - COPY - WORKSPACE

12 - - PROCEDURE

13 - ACTIVATE - WORKSPACE

14 - - CONFIGURATION

15 - - TEMPLATE

16 - - APPL. PROG.

17 - - UTILITY

18 - - INPUT TEMPL

19 - - OUTPUT TEMPL

20 - - PROCEDURE

21 - - PROGRAM UFD

22 - SAVE TEMPORARY - WORKSPACE

23 - - PROCEDURE

24 - REMOVE FROM UFD - WORKSPACE

25 - - CONFIGURATION

26 - - TEMPLATE

27 - - PROCEDURE

28 - SET USER LOGIN CHARACTERISTICS

COMMAND FORMAT

RD WS <name>

RD CFG <name>

RD TPL <name>

RD APPL <name>

RD PROC <name>

CL

TY LOG <name>

TY PROC <name>

N WS

N CFG <name>

CP WS <f,to>

CP PROC <f,to>

ACT WS <name>

ACT CFG <name>

ACT TPL <name>

ACT APPL <name>

ACT UTL <menu>

ACT ITPL

ACT OTPL

ACT PROC <name>

ACT PUFD <path>

SAWS <name>

SA PROC <name>

RM WS <name>

RM CFG <name>

RM TPL <name>

RM PROC <name>

SLOG

ENTER COMMAND:

Figure i. WorkSpace Control menu
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4. AN OUTLINE OF THIS PROJECT

4.1 A GENERAL VIEW

The main purpose of this project is not to change the

existing EASIE system, but to design a nice-looking, window

selection menu for EASIE. The work of this project is to

provide a front end to EASIE for users which handles basic

menu processing and passes some commands as necessary to the

EASIE command processor. Thus, some processing and error

checking will be provided by the front end. EASIE commands

are written into a file called easie.file in the user or home

directory where they are available to the EASIE command

processor, and they are also shown in the window for the user.

Error messages and warnings will also be displayed in this

window.

When the user starts EASIE, the user may enter a file

name as an argument. Alternatively, the system will use a

default file name called easie.input. The contents of this

file define the basic operating environment for EASIE and

include basic filenames and default directories. They are

WorkSpace (.WS), Configuration (.CFG), Application (.APPL),

Template (.TPL), Procedure (.PROC), home directory, program

directory, and base directory. For format purpose, a blank

line is entered if there is no corresponding file name or

directory for a particular environment. The contents may be

changed after being executed by the system. The following is

i0



an example format of the easie.input.

/tmp_mnt/home/tsai c/project/ws.WS

/tmp_mnt/home/tsai_c/project/cfg. CFG

/tmp_mnt/home/tsai c/project/tpl.TPL

/tmp_mnt/home/tsai c/project

/tmp_mnt/home/tsai-c/project/program

/tmp mnt/home/tsai_c/project/base

Figure 2. Basic Environment File, easie.input

The state diagrams in Appendix A define the operation

implemented for the improved EASIE interface. Appendix B

gives a user manual for the new CCE mode interface of the

EASIE system. What follows is a description of the new CCE

interface.

Upon initialization, the CCE mode interface will pop up

a window with eight basic selections in a main menu bar and

the current status or operating environment in the working

area. These eight selections are Tools, Open, _etrieve,

Update, _rganize, Execute, £rint, and List. The user can use

a mouse to choose any of these selections. The main menu is

further organized in a hierarchy which is a pull-down for the

first level of sub-menu and a pull-right for further levels of

sub-menu.

The working area will show the current status which

includes the file names of WorkSpace, Configuration,

Application, Template, Procedure, the home, program, and base

directories. These data are read from the default file,

easie.input, or the filename which the user entered as an

ii



argument. If there is no such file name or if the file does

not specify that environment variables, the system will

display <null> on the corresponding position in the working

area. The current status will be updated during executing the

system. Before exiting the system, the user will be asked

whether to save the current status or not. If the answer is

"OK", the updated status will be saved; otherwise, the updated

status will not be saved, and the status will be kept as same

as the first time the user logged in.

4.2 IMPROVEMENTS

First, we have given the user a windowing system for

selecting choices. Thus, it is simpler for the user to select

his/her choice and memorization and confusion of the previous

system minimized. Second, we offer on-line help to assist the

user. The user can get the on-line help whenever he/she

pushes the help buttons. Third, we provide enhanced utility

to the user, for example, the user can change his/her program

or base directory as he/she needs. We also provide List

selection for the user. The system provides a list of all

appropriate files for a given situation, again, limiting the

memorization and confusion factors. Fourth, we offer the

current status. The current status indicates the current

operating environment of EASIE for the user. Fifth, the user

is provided with a file list for selecting when he/she needs

to enter some file names. Finally, we remove some unnecessary
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and confusing menu choices, for example, Toggle the display

mode (EASIE command T), Return to Previous Menu (EASIE command

R), Quit this sequence of menus and return to the utility

selection menu (EASIE command Q), Zero: cancel a command

sequence (EASIE command O).

mode environment.

described above

reference, the

previously in Figure 2.

4.3 SAMPLE SESSION USING THE CCE MODE

The following EASIE session is included as a sample for

the CCE mode user to follow. The screens given in Appendix C

were recorded during the session. References to screens in

Appendix C will be denoted by Screen n where n represents the

screen number. This sample session has been put together to

highlight the capabilities of the EASIE system using the CCE

To initialize EASIE, we type "easie". As

this uses the file "easie.input". For

contents of this file have been given

Screen 1 is the general log-in screen presented to users

who log in using default log-in characteristics. It includes

a menu bar with eight selections, and a working area shown the

current status. The user can resize the screen 1 by using the

mouse device. Screen 2 is the resizing window. We will use

screen 2 to present the main window in the following examples.

Screen 3 shows the contents of the input file, easie.input

under the /tmp_mnt/home/tsai_c/project directory, and it just

shows the user the contents of the input file before executing

13



the program.

The menu is organized in a hierarchy which is a pull-down

for the first level of sub-menu, and a pull-right for further

levels of sub-menu. The first level in the main menu is the

selections of the main menu bar which are !ools, Open,

Retrieve, Update, Organize, Execute, £rint, and List. Now we

choose the Tools selection, pull the sub-menu down, and select

the General Concept from the pull-right sub-menu. Note that

if there are pull-right sub-menus for the choice, there is a

triangle after that choice. Screen 4 shows the condition

above. Screen 5 shows the pop-up window after pushing the

General Concept choice. The user can push the OK button in

the pop-up help window. The pop-up help window will be

closed.

Screen 6 shows that we choose the System command. A

System Command widget will be popped up. Screen 7 is the pop-

up widget. The user can type the system command in the

widget, and push the Ok button or strike the Enter key. The

EASIE command will be generated and written into one specific

file, easie.file. Pushing the Clear button will erase the

contents which the user typed in. The Help button will pop a

help widget up and show the on-line information for that

widget. Screen 8 is the pop-up on-line help widget pushed by

the Help button. If the user pushes the Close button in

Screen 7, the System Command widget and the on-line help

widget will be closed. The situation for the Comment choice

14



under the Tools selection is similar to the System command.

Screen 9 shows the results when the user pushes the clear

Log choice. There are two sub-choices for the clear Log. An

appropriate EASIE command will be generated by pushing each of

these sub-choices.

Screen I0 represents the results of pushing the Open

selection. Next we pushed the HOMEsub-choice which means we

want to activate an application from the home directory. An

ACTIVATE-Application-HOME dialogue widget will be popped up.

In this widget, all files with an .APPL extension will be

appeared. The functions of the buttons on the bottom of this

widget are similar to the buttons described above, except for

the Filter button. Screen ii shows how the user chose the

file name he/she wants. The chosen file name will appear in

the Selection column. The Filter button is a way to change

the directory. Select the directory the user want to change

to, and then push the Filter button. The list of file names

will be modified and shown for the new directory. Screen 12

shows the widget described above. Screen 13 shows the on-line

help information for the user by pushing the Help button.

Screen 14 shows the result when we chose the WorkSpace

sub-choice under the New pull-down sub-menu. New means that

we want to clear the WorkSpace filename in the current status.

Screen 15 is presented the result.

The Retrieve selection and the Update selection are

similar to the Open selection. Notice that the sub-choice
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Directory under the U_pdate selection is an improvement of the

modified CCE mode. Let us take a look of this choice. Screen

16 shows that we pushed the BASE sub-choice of the Directory

under the Update selection. It means that we want to update

the directory for base programs and configurations. A Change-

Directory widget will be popped up, and the default base

directory will be shown in this widget. Screen 17 is the pop-

up widget. The functions of this widget are similar to the

System command's.

Now we take a look of the Organize selection. There are

four choices: Copy, Remove, Save, and ReName. Screen 18 shows

the result when we chose the Application sub-choice of the

Copy. When the Application sub-choice under the Copy pull-

down menu selected, this result is in Screen 19. Screen 19

presents all the file names with .APPL extension under the

directory. The functions of this widget are same as the

ACTIVATE-Application-HOME widget. After selecting a file

name, the system will pop a COPY-to widget for the user to

enter the copy-to file name. Screen 20 demonstrate the COPY-

to widget. The functions of this widget is similar to that of

the pop-up widget of the System command choice. The functions

of the Remove, Save, and ReName sub-choices under the Organize

selection, the Execute selection, the Print selection, and the

List selection are similar to the functions mentioned above.

Next we consider how to exit the EASIE system. We select

the Quit EASIE choice under the Tools selection. Screen 21
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shows the choice. A question widget will be popped up.

Screen 22 is the pop-up question widget. It will ask the user

whether to save the current status or not. Pushing the Ok

button means to save the modified status. Pushing the Cancel

button means to keep the original status as the first time the

user logged in. Screen 23 presents the result when the user

pushes the Ok button for saving the modified status. Screen

24 shows an example of EASIE commands generated during

executing the system. These generated EASIE commands will be

written into a file called easie.file, and will be sent to the

EASIE command processor.

4.4 COMMAND SUMMARY USING THE CCE MODE

The following section summarizes and collects the EASIE

command information of the CCE mode interface as it is

organized in this project. There are eight selections in the

menu bar of the main window. They are !ools, Open, Retrieve,

Update, Organize, Execute, Print, and List. In what follows,

we distribute EASIE commands under each of these choices. It

should be noted that the user is no longer responsible for

knowing the structure of these commands.

automatically provides this information.

not have the EASIE commands since the

selections can be performed by the

interface. For example, Help

selection, and the List selection.

The new interface

Some selections do

functions of those

modified CCE mode

choice under the Tools

As described above, some
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functions have been added to the modified CCE mode interface,

for example, changing the base or the program directory.

Tools Selection

S - System command

Used to pass a command to the operation system.

Form: S <system command>

Example: S is

C - Comment

Used to place a comment in the command log. This allows

notes to be inserted in the log for later reference and

clarity.

Form: C <comment>

Example: C enter today's date

CL - Clear Log

Used to remove prior information from a cluttered command

log or clear the log completely.

Form: CL <type>

Example: CL D

Allowable object types: D - prior to a given date

T - total, a new log started

L - Log out

Used to give an orderly closeout of the EASIE system, and

return the user to the computer's operation system.

Before exiting the EASIE, the system will pop up a

question widget, and ask the user: "Save Current
Status?" If the answer is "OK", the system will save

the current status into a file called easie.input;

otherwise, it will not save the updated status, and it

will keep the original status. After that, the system
will close all the windows which the User opened during

executing the system.

Form: L

Example: L

Open Selection

ACT - Activate

Used to associate the indicated object with the user's

workspace.

Form: ACT <type> <filename>

Example: ACT CFG /tmp_mnt/home/tsai_c/project/cfg. CFG

Allowable object types: APPL, CFG, ITPL, OTPL, PROC, TPL,

WS

N - New

Used to create a new object or get a fresh object.
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Form: N <type>
Example: N WS
Allowable object types: WS, CFG, TPL, PROC

Retrieve Selection

TY - Type

Used to type the indicated file at the terminal.

Form: TY <type> <filename>

Example: TY PROC /tmp_mnt/home/tsai_c/project/proc. PROC

Allowable object types: LOG, PROC, BAT, FILE

RVU - Review

Used to review data from the configuration database.

This command invokes the interactive "REVIEWER" program,

and will display for possible modification a "view" of a

configuration database. A view of a database is defined

as the collection of variables defined by a data

template.

Form: RVU <type>

Example: RVU IDB

Allowable object types: IDB, ODB, TPL

RD - Read Description

Used to read a file description associated with any

workspace, program procedure, template, or database.

Form: RD <type> <filename>

Example: RD APPL /tmp mnt/home/tsai_c/project/appl.APPL

Allowable object types: APPL, CFG, ITPL, OTPL, PROC, TPL,
WS

UDdate Selection

ED - Edit

Used to invoke a system editor for certain operations.

Form: ED <type> <filename>

Example: ED PROC /tmp_mnt/home/tsai_c/project/proc. PROC

Allowable object types: LOG, PROC, TPL

CD - Change Description

Used to change a file description of the indicated object

by using the system editor.

Form: CD <type> <filename>

Example: CD TPL /tmp_mnt/home/tsai_c/project/tpl.TPL

Allowable object types: APPL, CFG, ITPL, OTPL, PROC, TPL,

WS

Orqanize Selection

CP - Copy

Used to copy one file to another.

Form: CP <type> <filename> <filename>
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Example: CP CFG /tmp_mnt/home/tsai_c/project/cfg. CFG

/tmp_mnt/home/tsai_c/project/configuration. CFG

Allowable object types: APPL, CFG, PROC, TPL, WS, FILE

RM - Remove

Used to remove a file from the user's file directory.

Form: RM <type> <filename>

Example: RM CFG /tmp_mnt/home/tsai_c/project/cfg. CFG

Allowable object types: APPL, CFG, PROC, TPL, WS, FILE

SA - Save

Used to save the indicated object for the later work.

Form: SA <type> <filename>

Example: SA PROC /tmp_mnt/home/tsai_c/project/proc. PROC

Allowable object types: PROC, WS

CN - Change Name

Used to change the name of a file as indicated.

Form: CN <type> <old filename> <new filename>

Example: CN TPL /tmp_mnt/home/tsai_c/project/tpl.TPL

/tmp_mnt/home/tsai_c/project/template. TPL

Allowable object types: APPL, CFG, PROC, TPL, WS, FILE

Execute Selection

EX - Execute

Used to execute an indicated application program or

procedure command file.

Form: EX <type> <filename>

Example: EX APPL /tmp_mnt/home/tsai c/project/appl. APPL

Allowable object types: APPL, PROC

SUB -Submit

Used submit a job for batch processing.

Form: SUB <type> <filename>

Example: SUBAPPL /tmp_mnt/home/tsai c/project/appl.APPL

Allowable object types: APPL

Print Selection

PR - Print

Used to print an indicated file at a local hard copy

printer.

Form: PR <type> <filename>

Example: PR LOG /tmp_mnt/home/tsai_c/project/log. LOG

Allowable object types: LOG, PROC, BAT, FILE

PRVU - Print Review

Used to print a template or a view of the database.

Form: PRVU <type>

Example: PRVU IDB

Allowable object types: IDB, ODB, TPL
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5. CONCLUSION

EASIE is consisted of a set of utility programs to meet

the needs of conceptual design engineers who needs many stand-

alone engineering analysis programs. Since the selecting menu

of the original EASIE interface are the alphanumerical menu

selection, and the structures of the selecting menu are not

well-organized. Thus, the main purpose of this project is to

give a front end to EASIE for the users. This project is

considered in CCE mode, and is implemented in the X window

system, OSF/Motif version.

This paper is organized by the introduction of the EASIE

system, a comparison between the current EASIE system and the

design principles, two objectives of this project, and an

outline of this project.

At the beginning, this paper gives the reader a general

concept about the EASIE system. By comparing to the design

principles, we found that the current EASIE got some flaws.

Therefore, the two objectives of this project are to redesign

the selecting menus and reorganize the selecting structures.

To redesign the selecting menus by using a windowing system is

to hide complexity from the user. To reorganize the selecting

structures is to minimize memorization. Finally, we give the

reader a general concept about the modified EASIE system in

CCE mode and some improvements we did.

Although we enhance some functionality to the current
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EASIE system in CCE mode, there are still some potential bugs

in this project. First, the input file must be in the correct

format; otherwise, the system will not perform well. This

project does not provide file-existence checking. Second, we

suggest that we can minimize the levels of pull-right menus.

It may be more organizing if we put the choices in the second

level of pull-right menus to be some buttons in the pop-up

widget as pushing the choice of the first level of pull-right

menu.
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