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Abstract

An efficient, direct, second order solver for the discrete solution of a class of two-

dimensional separable elliptic equations on the sphere is presented. The method involves a Fourier

transformation in longitude and a direct solution of the resulting coupled second order finite-

difference equations in latitude. The solver is made efficient by veetorizing over longitudinal

wavenurnber and by using a veetorized fast Fourier transform routine. It is evaluated using a

prescribed solution method and compared with a multigrid solver and the standard direct solver

from FISHPAK.
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I. Introduction

Numerical techniques used in global atmospheric models have evolved over the past several

decades. Models with explicit time differencing generally require very small time steps in order to

avoid linear computational instability associated with fast moving gravity waves, particularly

because of the convergence of meridians near the pole. The introduction of semi-implicit time

differencing (Robert, 1969) relaxed the requirement for linear computational stability and allowed

larger time steps relative to explicit schemes. Further advances occurred through the introduction

of semi-Lagranglan semi-implicit time differencing schemes (see Staniforth and Cote, 1991 and

Bates et al., 1992 for a comprehensive review of the evolution of the semi-Lagranglan approach).

The implicit (or semi-implicit) time differencing, in general, leads to an elliptic equation (two-

or three-<limensional and separable or non-separable depending on the formulation) on the sphere

(Temperton and Staniforth, 1987; McDonald and Bates, 1989; Tanguay et al., 1989; Bates et al.,

1990; Barros et al., 1989). Thus for the implicit schemes to be more economical compared to their

explicit counterparts, efficient solvers are of paramount importance.

Algorithms for the direct solution of separable elliptic equations have been around for awitile.

Swarztrauber (1974a) developed a method of direct solution of separable elliptic equations by

extending the stabilized cyclic reduction algorithm. When the coefficients of the elliptic equations

are independent of one of the dimensions (which is the class of equations we are considering here),

the problem can be solved with the application of Fourier analysis. Hockney (1965) used this

approach to obtain the direct solution of Poisson's equation. Lindzen and Kuo (1969) suggested

the use of a Fourier transform in one direction combined with the direct solution of the resulting

second order ordinary differential equations in the other, for more general elliptic equations. Le

Bail (1972) applied fast Fourier transforms (FFT's) to solve a class of partial differential

equations.
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Until recently, fast direct solvers on the sphere have been available for the discrete Poisson

or I-Iclmholtz type elliptic equations (Swarzwauber and Sweet, 1973, 1975; Sweet, 1973, 1974;

Swarzwauber, 1974; Adams et al., 1980). Thus many implicit time differencing schemes have

been geared towards obtaining such elliptic equations (e.g. McDonald and Bates, 1989). Bates et

al., (1990) (hereafter BSHB) were the first to obtain a more general elliptic equation for their

vector semi-Lagrangian semi-implicit time differencing scheme in the global shallow water

framework. Because no efl'lcient direct solver was available at that dine, they used the multigrid

solver developed by Barros (1991); multigrid methods can be applied to more general elliptic

equations and more complex domains (Phillips, 1984; Fulton ¢t a1.,1986; Barros et al., 1989;

Bates et al., 1990; Barros, 1991). However, when the scheme of BSHB was extended to a global

multi-level primitive equation model (Bates et al., 1992), it was soon realized that the original

muldgrid solver was not efficient enough. This led to the development of the FFT based direct

solver presented here.

It should be emphasized that the idea of using FFTs is not new; they are routinely used to

solve Poisson and Helmholtz equations on the sphere. Recently, Cote and Staniforth (1990) have

also described and applied this approach to a more general elliptic problem.

Our solver is based on a lafimde/lon#otude grid over the sphere. The solution method

involves a Fourier decomposition in longitude to separate that dependency. This reduces the

problem to a set of coupled ordinary differential equations in the latitudinal direction for each

longitudinal wavcnumber. These coupled equations are solved using the procedure described in

Lindzen and Kuo (1969) and Chao (1979).

In Section II we present the elliptic equation, the separation of longitudinal dependency, the

latitudinal discretization, the method of solution for two coupled ordinary differential equations and

a brief description of the coding strategy and the calling sequence for the solver. In Section llI, we

validate the algorithm and compare it with the multigrid method used by BSHB. A summary is

#oven in Section IV. The Appendix contains a listing of the source code for the solver.
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II. Description of the solver

a) The elliptic,equation

In this report we present a fast and direct algorithm to solve the following class of two-

dimensional elliptic equations on the sphere:

CI(0 ) Oh20 C2(0 ) oh2(_ 4" 1 oh 0oh(_

a2cos20 ohm2 t a2cos0 ohm0 a2cos0 oh0 (c3(0)cOs _-0)

-I c,,(O) o-kl)+ 1 oh (cs(O)cosO(_)+c6(O)(_= F
acosOoh_ acosOohO

(i)

where a is the radius of the sphere, _. and 0 are the longitude and latitude, respectively, _ is the

solution, and F is the forcing (which is known). Here the coefficients c_ (0), c2(0), c3(0), c4(0),

cs(0), and, c6(0) are at most functions of latitude. If any of these coefficients is also a function

of longitude, then it is nearly impossible to write an efficient direct solver for such an equation in

which case the multigrid method would be preferable (Phillips,1984).

b) Separation of longitudinal dependency

We solve (1) on a uniform longitude and latitude grid on the sphere. Any field defined on

this grid can be expanded into a finite Fourier series in the longitudinal direction k. Supposing that

we have I equally spaced grid points along a latitude circle, any function O can be expanded in a

finite Fourier series as

II2 ^

y_,(l,(k)e
-112

(2)
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Here _(k) is the complex amplitude for wavenumber k and c}(-k) is the complex conjugate of

_(k) where i = @'i. The complex amplitude can be obtained by

. ^ 1 I
,(k) = =_,(_..) eu_. . (3)

I 1

Since we are considering real data, for k =0 (i.e. the longitudinal mean part) and k =I/2, only the

real part of the amplitude functions exist.

We ftrst consider the case when 0<k <I/2. For any wavenumber k, eq. (1) reduces to a

second order ordinary differential equation in 0 for the complex amplitude. Without loss of

generality, let us consider a solution to (1) of the form
^ A

= ¢}e _, and F = F e _ (4)

where - )" + i_ i, F = F' + iF i. After substituting (4) into (1) we obtain

a=cos:O" a=cose_O a=cose oo(C3(°)c°seoo )

+ + (c,(e)cosO,) + cdO)_=
acosu acos000

(5)

Separating(5)intorealand imaginaryparts,we obtainthefollowingtwo coupled second order

ordinarydiffc_ntialequations:

and

-k2cl(0) _,/cc2(0 ) 0(} i + 1 0a2cos=e a2cos0 _0 a2cosO00(c3(0)c°s0 )

_,(O) c}_+ 1 0 (cs(0)cosO,,) + ct(0)_r = F'
acose acosO _0

-k2c)(e))i + kc2(0) 0c}' 1 0 _0a2cos 2e a2cos e '_ + a2cos e 0o (c3(o) cos o )

+kc,(O)$, 1 a (cs(O)cos0 {}i)+ct(0)¢i =F i.
+ acosO OO

(6)

(7)

4



Equations(6) and(7)'determinethelatitudinalstructuresof the amplitude for k>0. When k=0 (ix.

the longitudinal mean part) only the real part exists and we obtain a single second order ordinary

differential e_uation. Denoting the longitudinal mean part by an overbar, we have

1 /9 "/9(_ 4 1 __
(c3(0)cosu_-) _-0(cs(0)cos0_)+ c_(0)_= _.a2cos0/90 acos0

(8)

Finally, since the imaginary part is zero for k =I/2, the problem reduces to a single second

order ordinary differential equation governing the real part. This is obtained by ignoring the terms

with imaginary part in (6).

c) Latitudinal discretization

We represent the distance from the south pole to the north pole of the sphere by a set of J

equally spaced grid points. Each grid point is referred to by an integer index j, with j=l and j=J

representing the south and north poles, respectively. For interior points of the domain, we

approximate the latitudinal derivatives in (6) and (7) by second order finite differences. Since the

elliptic operator is not formally defined at the poles, we use integral definitions there, as detailed

later. Thus for the interior, we assume

and

1 _ __ (C3 COS 0)j+_ ((_j+l -- _j) -- (C3 COS 0)j-_ ((_j -- _j-1 )
a 2cos0j (c3cos0 )_j = aScos0j(A0)2

I 0 (cscos0 _)j = (c5 cos0)j+_(_j+l "l"_j)-(c$ cos0)j-_((1)j "l"(llj-l)

acos0j 30 acos0j 2A0

Then from (6) and (7), we get



(c_cosO)ea (cscosO)j+_] , l- k2(c_).
a2cosOj(AO)2 + acosOj2AOJ_j+,-[a2cos2_j

-(c, (c,),],;+a cos0j2A0

k(c2)j #i÷i k(c,)j_ij
a2cos0_2A0 J acos0j

+

(%cose)j__ _ (%cose)j_s_,

a z cos 0j (A0) 2 a cos 0j 2A0 j,rj__

k(c2)j d_i r

a2co--'--s-0_2A0"J-1=X_

1 _ cos0)j+_ + (c3 cosO)j__}
a 2cosej(:,0) 2 (c3

(9)

and

[ ,(.%cosO)j.s
a 2 cos0j (A0) 2

1 {(cs cos0)j+g- (c5 cos0)j__}_ (c6)jjwj..,.La2cos0j(A0) 2 _ acos0j 2AOj4)j_ l,cos ,2 0 1.i.F(c, (c,coso) _ 1 

k(c2)j k(c4)j a,r k(c2)j r i

+ a 2 cos0j2A0 ¢_+1 + _wj - _j--1 = Fj,acos0j a 2 cos0j2A0

(c,_sO)=.,,1. k_(c,)_ 1
n/_+x - -I.+ oos0,2,,0j' Voos'0,

(I0)

where l<j<J. As shown by Barros (1991), the same discredzation can be obtained through the

finite volume discretization approach.

The centered differencing cannot be applied at the polar singularities. Therefore, at the poles

we follow the integral approach used by Barros (1991) and BSI-IB. Since the poles are singular

points, only the longitudinally symmetric component (k =0) is non zero there. Thus for the

longitudinally asymmetric components (k >0), the boundary conditions at the poles simply

become,

_---oand_]---o (ll)

To obtaintheboundary conditionsforthelongitudinallysymmetric part(which has only realpart),

we integrate(I)over thepolarcaps lyingwithinA9/2 from thepoles.Then the terms with 2k

derivativesvanishdue tocycliccontinuityinthelongitudinaldirection.At thenorthpole,we then

obtain,

J(,n-_0n) cos0 (%(0)cos0 )-Icos0a 80_ (cs(O)cos0_)+a2c6(0)_] cos0d0d_
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From(12) we obtain

= f2,,f,,/2 F a2cos0d0cl3.. (12)
dO J(z/2-A0/2)

j'o2,__(c3 D0 [2,,[,,,2 a2(c,(0) - F) cosededX = 0cose)+__(_-_)j__ - a(c_ cose _)j__] dX + _0 .,o,,'+,-+e;',_
(13)

Now the derivative of_ in the f'trst term is evaluated by a centered difference and _ at J-l/2 is

approximated by the average of its values at J and J-1. The second term in (13) is approximated by

the mid-point rule applied to the spherical cap. Dividing by the approximation to the area of the

spherical cap, a2 cos0j__A0(n/2), and denoting the longitudinal average by an overbar, we obtain

4 2 4 2

_Jj[(c,)j a2(A0) 2 (c3)j_ _ aA0(Cs)J-_]+_'-'[a2(A0)" (c3)'-_- aA"'O(c5)'-_1 =F'w (14)

for the north pole and

4 2 4 2

_3,[(c+)_a_(Ae)_(c_),+j++ _--_(c_)_+_]+,_,+[a_(,XO)_(c_),+j++ _--6(c5),+j+1= F_.

for the south pole. The above discretizations are second order accurate and maintain the

conservative properties of the derivatives in the continuous form.

(15)

d) Solution of two simultaneous second order finite-difference equations

In the previous section, we reduced the problem to solving (9) and (10) subject to (11) (for

1 <k<l/2-1), to solving the discrete version of (8) subject to (14) and (15) (for k=0) and to solving

(9) without the imaginary part subject to (11) (for k =1/2). To solve (9) and (10) subject to (11),

we follow the approach of Lindzen and Kuo (1969) and Chao (1979). For the sake of

completeness, we repeat the method here as it is applied to our problem. Details of the method of
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solution for k =0 and k =I/2 will not be presented here, however, the solutions can be obtained by

following the procedure below (or see Lindzcn and Kuo, 1969).

For simplicity, wc rewrite (9) and (10) as

and

Ar_r i i i iJ_'J-,+ E¢; +q*;÷1+ m,'j,,_-1+ Bj¢)+Cj¢j÷,= F; (16)

+ Pi _)j-1 +Qfl)j =F_, (17)ej'*;-I +Q;0; + R;¢_I ' ' ' ' + Rj,j+,''

for j=2, 3, ..., J-1. The coefficients in (16) and (17) are def'med from (9) and (10). We seek the

solutions to (16) and (17) in the form

and

'= +aj%, +13; (18)

r r i i i
¢ij _. TjOj*t + "YjOj+I + _j (19)

wherv the or's, l_'s and T's are new variables yet to lm determined. Evaluating (18) and (19) atj-1

and substituting into (16) and (17), we obtain

and

where

and

aj,j + aijOij+ C_¢;+, ' ', r + CjCj+l _. f;

i i -- i
p;,; + pijCij + R;,i÷t + Rj,m _ f_

r r r i r +B_aj = A joej_x+ Aj'yj_1 ,

i r i i i B i
aj = Ajtxj_ 1 + AjTj_ 1 + j,

= r r _ Aj]3j_ 1fir FI _ Aj_j_ 1 ii

r_ r r i r
Pj - Pj aj-I + PjTj-1 + Q_,

i r i +pi .i +Q_,Pj = Pj C_j-1 jrj-I

f_ _ F_ _ p;_jr..l i i-Pj_j__.

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)
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EliminatingOii from (20) and (21) and comparing the result with (18), we obtain

r i r i r i
a_ = -(C_pij - Rjaj) / (ajpj - pjaj), (28)

0t_= -(Cijpij- Rijaij)/(a;pij- p;aij), (29)

[3; = (f;P'.i- f_aij) / (a;Paj- p;a'j). (30)

Similarly,eliminating ¢; from (20) and (21) and comparing the result with (19), we obtain

and

Yj (CjPj - R;a;) / (a;P_j - '_r = r r pjaj), (31)

i i r i r t i r i
yj = (Cjpj - Rja i) / (ajpj - pjaj), (32)

_ij...__(f_pj i r r i r i' - f_aj) / (ajpj - pjaj). (33)

r i r i •
Thus, if we know a t, oq, _, 131,Y1, and yi (which can be obtained from the lower boundary

condition), then all of the a's, 13'sand _/'s are readily obtained for each j. In the present problem,

the boundary condition (11) implies that all tz[ = ot I = 13[= 131= 7[ = Yil = 0.

Equations (18) and (19) can then be used to obtain _; and ¢ii at all j=J-1, J-2 .... 1, provided

¢; and ¢ij are known, which can be obtained from the upper boundary condition. In the present

problem, 0_ = ¢i = 0.

e) coding strategy

The first step of the solution procedure involves the use of a forward FFT to obtain the

complex amplitudes of the forcing function F that depend only on latitude. Then for each

wavenumber, the complex amplitude of the solution is obtained by solving the coupled second

order difference equations. Finally we use a backward FFT to obtain the solution.

We made this procedure very efficient by using the CRAY subroutine RFFTMLT to

transform (both forward and backward) all latitudes simultaneously. In addition, we wrote the

9



codeto solve two coui_led second order difference equations by vectofizing over longitudinal

wavenumbers. This vectorization coupled with the vectorized FFF package makes our direct

solver very efficient.

It should be pointed out that if the longitudinal derivatives are approximated by finite

differences, then the definitions of k and k 2 should be appropriately changed in all of the

equations above. Also the FFT has a restriction on I, namely that I= 2Px3qx5 r, where p, q and r

are integers. However, there is no restriction on the choice of J.

The complete listing of the FORTRAN code for the solver is given in the Appendix. The

calling sequence for the solver is as follows:

CALL ELLSOL(IMA, IM, JM, AE, INITI, INIT2, DIFF, CI, C2, C3, C4, C5, C6, FI, FO

, WSV, WRK, IX)

where

IMA is the leading dimension of input and output arrays FI and FO.

IM is the longitudinal domain over which the solution is desired.

(IM should be less than or equal to IMA)

JM is the number of grid points from the south pole to the north pole.

AE is the radius of the sphere.

INIT1 is a logical variable, true only the first time for a given IM, JM and AE.

IN1T2 is a logical variable, used only when IN1T1 is false. It is true whenever the coefficients

of the elliptic equation change (except for C6).

DIb"F is a logical variable, true if wavenumber k is based on finite-difference, false otherwise.

C1, C2, C3, C4, C5, C6 are the coefficients of equation (1) and have dimension JM.

C1, C2, C4, and (26 are defined at the grid points j and C3 and C5 are defined at the

midpoints between j and j+l. C6 can change any time. If any other coefficients change,

then INrI2 should be true.

10



FI is an input array'of dimension (IMA,JM) containing the forcing F in the locations I=I,IM

and J=I,JM.

FO is an output array of dimension (IM ,JM) containing the solution _ in the locations I=I,IM

and J=I,JM.

WSV is an array whose dimension is at least [4*IM+9*JM+7]. This array stores some

constants to be used in subsequent calls to ELLSOL. It should not be overwritten unless the

next call to ELLSOL has INIT1 true.

WRK is a work array whose dimension is at least [ 14 * IM * JM]

IX is an integer array of dimension IM needed for the FFF (it should not be overwritten)

III. Evaluation of the solver

In this section, we present results from some tests to evaluate the solver. Since it is difficult

to find analytical solutions to (1) against which we can compare the numerical solutions, we adopt

the following "prescribed solution" procedure. Under this procedure, we assume a solution apriori

and apply the differential operator on the left hand side of (1) to obtain the forcing F. Then we

obtain the numerical solution for this forcing and compare the results with the original assumed

solution. Here we consider the following simple function for _:

_bi,j = 5.0x104 + 1.0xl03 COS0j COS(2m / I) (34)

where i andj are longitudinal and latitudinal indices, respectively. A contour map of this function

is shown in Fig. 1. The forcing Fij is computed using a second order accurate finite-difference

operator corresponding to the left hand side of (1). In the following, we consider two cases. In

case 1 we apply the solver to the elliptic equation of BSHB and compare the results with those

obtained from the multigrid solver. In case 2 we apply it to the Poisson equation and compare the

results with those obtained from FISHPAK.

11



case/

The elliptic equation of BSI-IB is obtained by setting

where

c1(0) = G, c2(0) = 0.0,

b(GF)

c4 (0) = a_0 ' c5 (0) = 0.0,

G=[I+F2] -1 , and F = At.Osin0.

c3(O) = G

c6(0) = -[(At / 2) 2 _]-I

Here _=50000 isa mean value,At=3600 s,and t2istheearth'srotationrate. The 2D multigrid

solverof BSHB isused intheFull-Multigridmode. Wc use a singleV-cycle withone relaxation

sweep both beforeand afterthecoarsegridcorrectionand eightrelaxationstepson the coarsest

grid.These am identicaltothoseused in BSHB and more detailsarcavailableinthatpaper.

We solved theabove problem forvariousresolutionsranging from (Ij) = (48,25)to

(Ij)=(768,385). Figures 2a and 2b show the numerical solution for the direct method and the

multigrid method, respectively with (IJ)=(96,49). The solutions appear to be almost identical to

that shown in Fig. 1. However, the accuracy of the solution is revealed in Figs. 3a and 3b wh;.ch

show the difference between the exact and the numerical solutions for both solvers. Notice that in

Fig. 3a the error is multiplied by a factor of 108 while in Fig. 3b, it is multiplied by a factor of 10.

Thus in this case the direct solver is several orders of magnitude more accurate. Similar results

were also found at other resolutions (not shown). Furthermore, the accuracy of the multigrid

solver did not improve significantly when both the number of V-cycles and the number of

relaxation sweeps were increased. However, we do recognize that the level of accuracy of the

spatial discretization should be the level of accuracy desired for any problem. Nevertheless, an

efficient direct solver is always preferable since its solution is close to machine accuracy.

We next examine the efficiency of the solvers. For this purpose, we present in Fig. 4 the

CPU time (t) taken for 500 calls to the solver on a single processor of the CRAY YMP as a

12



functionof the total number (N) of grid points (i.e. IxJ). In Fig. 4a the axes are linear while in

Fig. 4b they are logarithmic. The timings are also presented in Table 1. Clearly the direct solver is

faster at all resolutions examined. Also, note that for both solvers, the time (t) is almost a linear

function of the total number of grid points (N).

Table 1: CPU time (t) in seconds for 500 calls to the direct solver, the multigrid solver and the

solver from HSI-IPAK on a single processor of the CRAY YMP as a function of

resolution.

_[_a?J_.f_)J-_ multigrid solver

(48,25) 0.513 2.323 3.14

(72,46) 1.110 -

(96,49) 1.401 7.008 12.615

(144,91) 4.062

(192,97) 5.253 23.301 53.914

(288,181) 14.464

(384,193) 19.563 85.588 241.579

(576,361) 55.889

(768,385) 77.998 326.955

case2

Now we consider the Poisson equation which is obtained by setting Cl(0) = c3(0) = 1 and

c2(0 ) = ca(0 ) = c5(0 ) = c6(0) = 0. It should be pointed out that when c6(0) = 0 we cannot

determine the constant part and thus there is no unique solution. In addition, if the forcing has a

13



globalmean component, then there is no solution to the problem. Therefore, in our solver we

remove the global mean from the forcing F whenever c6(0) = 0. This is equivalent to the

perturbation method of Swarztrauber (1974b).

We used the forcing as in case 1 to compare the numerical solution with the assumed one.

The errors in the numerical solution (not shown) are of the order 10 -6 or less. Similar results are

found for other resolutions.

For this case, we compare the efficiency of our direct solver with the direct solver from the

FISHPAK package (Adams et al., 1980). As before, we show the CPU time (0 taken for 500

calls to both solvers as a function of the total number (N) of grid points (Fig. 5). Again, our direct

solver is significantly faster at all resolutions and there is a noticeable divergence between the two

curves as the resolution increases.

We also confirmed that our solver works equally well for a general case in which all of the

coefficients in (1) are nonzero functions of 0. Finally, we repeated each case above by assuming a

prescribed solution made up of random numbers. We found for all cases that the errors were

comparable to those discussed above.

IV. Summary

An efficient, direct solver for the discrete solution of a class of two-dimensional separable

eUiptic equations on the sphere has been discussed. It is based on a Fourier decomposition in

longitude and a direct solution of the resuiting coupled second order finite-difference equations in

latitude. These equations are solved following the approach of Lindzen and Kuo (1969) and Chao

(1979).

For the elliptic equation of BSHB we find that the direct solver is both more efficient and

accurate than the multigrid solver at all resolutions. For the special case of Poisson's equation we

find, at all resolutions, that the direct solver presented here is more efficient than that available in

FISHPAK (Adams et a1.,1980).
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Thusour solver _s both accurate and efficient and general enough that it could be used for

any separable elliptic equation on the sphere with coefficients independent of longitude. It can also

be applied to limited areas on the sphere if cyclic boundary conditions are invoked in longitude and

if appropriate boundary conditions are used in latitude. It is currently being used in the global

multi-level primitive equation semi-Lagrangian semi-implicit model of Bates et al. (1992) at the

Goddard Laboratory for Atmospheres and in the adjoint model development (Li et al., 1991) at the

Horida State University. While the solver is accurate and flexible, it takes only a few percent of

the CPU time taken by the multi-level model dynamics.
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VH. Appendix

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*
C*

C*

C*

C*

C*

C*

C*

C*

SUBROUTINE ELLSOL(IMA, IM, JM, AE, INITI, INIT2, DIFF

*, Cl, C2, C3, C4, C5, C6, FI, FO, WSV, WRK, IX)
C

(IMA, JM) is the dimension of the forcing FI (input) and the

solution FO (output). IM is less than or equal to IMA and

represents the physical domain (in longitude) over which the
solution is computed. AE is the radius of the sphere.

INITI, INIT2 and DIFF are logical variables.

When INITI is true, the value passed for INIT2 is ignored

CI, C2,...C6 are arrays of dimension JM containing the coefficients*

of the elliptic equation. *

WSV, WRK and IX are other miscellaneous work arrays.

The dimension of WSV should be at least [4*IM + 9*JM + 7].

This array stores Constants needed in subsequent calls to ELLSOL.
It should not be overwritten unless INITI is true for the

next call to ELLSOL.

The dimension of WRK should be at least [14 * IM*JM].

The dimension of IX should be at least IM and it should not be

overwritten unless INITI is true for the next call to ELLSOL.

C

DIMENSION FI(IMA,JM), FO'(IMA, JM)

*, CI(JM), C2(JM), C3(JM), C4(JM), C5(JM), C6(JM)
.
, WSV(1), WRK(1), IX(IM)

C

C

C

LOGICAL INITI, INIT2, DIFF

ITRG = 3"(IM+2) + 1

IMB2 = IM / 2

IJM = (IMB2-1) * JM
IJMM = IJM*22 + JM

IJM2 = IJMM + (IM+2)*(JM-2)

CALL DIRSOL(IMA, IM, JM_ IMB2, ITRG, AE, INITI, INIT2, DIFF

*, CI, C2, C3, C4, C5, C6, FI, FO, IX

*0 WSV(1), WSV(JM+I), WSV(JM*2+I), WSV(JM*3+I)

WSV(JM*4+I), WSV(JM*5+I), WSV(JM*6+I), WSV(JM*7+I)
WSV(JM*9+I), WSV(JM*9+IMB2+I), WSV(JM*9+IM+I)

WRK(1), WRK(IJM+I), WRK(IJM*2+I), WRK(IJM*3+I)
WRK(IJM*4+I), WRK(IJM*5+I), WRK(IJM*6+I), WRK(IJM*7+I)

WRK(IJM*8+I), WRK(IJM*9+I), WRK(IJM*I0+I), WRK(IJM*II+I)

WRK(IJM*I2+I),WRK(IJM*13+I), WRK(IJM*I4+I), WRK(IJM*I5+I)

WRK(IJM*I6+I),WRK(IJM*I7+I), WRK(IJM*I8+I), WRK(IJM*I9+I)

WRK(IJM*20+I),WRK(IJM*21+I), WRK(IJM*22+I), WRK(IJMM+I)

WRK(IJM2+I), WRK(1), WRK(JM+I), WRK(JM*2+I)

WRK(JM*3+I), WRK(JM*4+I))

RETURN

END
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C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

SUBROUTINE DIRSOL(IMA, IM, JM, IMB2, ITRG, AE, INITI, INIT2, DIFF

* CI, C2, C3, C4, C5, C6, FI, FO, IX

t

t

CDSI, CDNI, CDS2, CDN2, CDCI, CDC2, CDC3, CPH

WV, WVSQ, TR

s

t

AN1, BNI, CNI, DNI, FNI, PNI, QNI, RNI

AN2, BN2, CN2, DN2, FN2, PN2, QN2, RN2

ALl, AL2, GMI, GM2, BTI, BT2

FM, A, B, AN, BN, CN, DN, FN)

ITRG SHOULD AT LEAST BE 3"(IM+2) + 1

INTEGER FORWARD, BACKWARD

PARAMETER (FORWARD=-I,BACKWARD=I)
PARAMETER(PI=3.1415926535898, TWOPI=PI+PI, PIO2=0.5*PI)

DIMENSION FI(IMA, JM), FO(IMA, JM)

*, CI(JM), C2(JM), C3(JM), C4(JM), C5(JM), C6(JM)

* TR_t

DIMENSION AN1
* AN2

a

* QNIi

* QN2o

* DNI

* FNI
i

ITRG), IX(IM), WVSQ(IMB2), WV(IMB2)

IMB2-I,JM), BNI(IMB2-I,JM), CNI(IMB2-I,JM)

IMB2-I,JM), BN2(IMB2-I,JM), CN2(IMB2-I,JM)

IMB2-I,JM), PNI(IMB2-I,JM), RNI(IMB2-I,JM)

IMB2-I,JM), PN2(IMB2-I,JM), RN2(IMB2-I,JM)

IMB2-I,JM), DN2(IMB2-I,JM)

IMB2-I,JM), FN2(IMB2-I,JM)

o

i

r

ALI(IMB2-I,JM), AL2(IMB2-I,JM)

GMI(IMB2-I,JM), GM2(IMB2-I,JM)
BTI(IMB2-I,JM), BT2(IMB2-I,JM)

DIMENSION AN(JM), BN(JM), CN(JM), DN(JM), FN(JM)

*, CDNI(JM), CDSI(JM), CDN2(JM), CDS2(JM)

*, CDCI(JM), CDC2(JM), CDC3(JM), FM(JM), CPH (JM, 2 )

DIMENSION A(IM+2,JM-2), B(IM*2,JM-2)

LOGICAL INITI, INIT2, DIFF, FIRST, SETC0

DATA JMMI, JMM2, IMP1, IMP2, LEN/5*0/, AREA/0.0/

DATA FIM, DLM, DPH, RDLM, RDPH, DY, AESQ, CDNP, CDSP/9*0.0/
DATA FIRST/.FALSE./

SAVE

INITIALIZATION ON FIRST CALL

IF (INITI) THEN

CALL FFTFAX(IM, IX, TR)

JMMI = JM - I

JMM2 = JM - 2

IMP1 = IM + 1

IMP2 = IM + 2

LEN = IMB2 - 1

FIM = 1.0 / FLOAT(IM)

DLM = TWOPI * FIM

DPH = PI / FLOAT(JMMI)

RDLM = 1.0 / DLM

RDPH = 1.0 / DPH
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C

C

C

C

C

C

C

I0

20

3O

4O

42

DY = AE * DPH

AESQ = AE * AE

DO I0 J=I,JM

TEM = -PIO2 + (J-1)*DPH

CPH(J,I) = COS(TEM + 0.5*DPH)
CPH(J,2) = COS(TEM)

CONTINUE

CPH(I, 2) = 0.0

CPH(JM,2) = 0.0

FIRST = .TRUE.

INIT2 = .TRUE.

ENDIF

IF (INIT2) THEN
DO 20 J=2,JMMI

TEMI = 1.0 / (CPH(J,2) * 2.0 * DY)
TEM2 = 1.0 / (CPH(J,2) * DY*DY)

* CPH(J,I) * TEMICDNI(J) = CL(J)

CDSI(J) = CL(J-I) * CPH(J-I,I) * TEMI

CDN2(J) = C3(J% * CPH(J,I), * TEM2CDS2(J) = C3(J-i) * CPH(J-I I_ * TEM2

CDCI(J) = CI(J) / (CPH(J,2) * CPH(J,2) * AESQ)

CDC2(J) = C4(J) / (AE * CPH(J,2))

CDC3(J) = C2(J) / (AE * CPH(J,2) * 2.0 * DY)

CONT INUE

CDCI(1) = 4.0 * C3(I) / (DY*DY)

CDCI(JM) = 4.0 * C3(JMMI) / (DY*DY)
CDNP = CL(JMMI) * 2.0 / DY

CDSP = C5(i ) * 2.0 / DY

IF (DIFF) THEN
DO 30 I=I,IMB2

WVSQ(I) = (SIN(0.5*I*DLM) * (RDLM * 2.0)) ** 2

WV (I) = SIN(I*DLM) * RDLM

CONT INUE

ELSE

DO 40 I=I,IMB2

WVSQ(I) = I * I

WV (I) = I

CONT INUE

ENDIF

ENDIF

DO 25 J=I,JM

IF (C6(J) .NE. 0.0) GO TO 26
25 CONTINUE

SETC0 = .TRUE.
CALL REMGLM(IMA, IM, JM, FI, CPH, FIRST, AREA)

GO TO 27

26 SETC0 = .FALSE.

27 CONTINUE

DO 42 J=2,JMMI

FM(J) = 0.0
DO 42' I=I,IM

FM(J) = FM(J) + FI(I,J)

CONTINUE
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C

C

C

C

C

C

C

C

DO 43 J=2,JMMI
FM(J) =_FM(J) .* FIM

43 CONTINUE

DO 45 J=2,JMMI

DO 45 I=I,IM

A(I,J-I) = FI(I,J) - FM(J)

A(I,J-I) = FI(I,J)

45 CONTINUE

50

C

C###

DO 50 J=I,JMM2

A(IM+I,J) = A(I,J)

A(IM+2,J) = A(2,J)
CONTINUE

CALL RFFTMLT(A,B,TR, IX, I,IMP2,IM, JMM2,FORWARD)

DO 60 J=2,JMMI

DO 60 I=I,LEN

ANI(I,J) = CDS2(J) - CDSI(J)

BNI(I,J) = -(CDS2(J) + CDN2(J) + WVSQ(I) * CDCI(J)
• + CDSI(J) - CDNI(J) - C6(J))

CNI(I,J) = CDN2(J) + CDNI(J)

AN2(I,J) : CDC3(J) * WV(I)
BN2(I,J) = - CDC2(J) * WV(I)

CN2(I,J) = - CDC3.(J) * WV(I)

DNI(I,J) = A(I+I+I,J-I)

QNI(I,J) = CN2(I,J)

PNI(I,J) = - BN2(I,J)

RNI(I,J) = AN2(I,J)

QN2(I,J) = ANI(I,J)

PN2(I,J) = BNI(I,J)

RN2(I,J) = CNI(I,J)

DN2(I,J) = A(I+I+2,J-I)

60 CONTINUE

CALL SO2ODE(LEN, JM, AN1, BNI, CNI, DNI, AN2, BN2, CN2, DN2

*, QNI, PNI, RNI, QN2, PN2, RN2, FNI, FN2

*, ALl, AL2, GMI, GM2, BTI, BT2)

DO 70 J=2,JMMI

DO 70 I=I,LEN

A(I+I+I,J-I) = FNI(I,J)

A(I+I+2,J-I) = FN2(I,J)
70 CONTINUE

DO 80 J=2,JMMI

AN(J) = CDS2(J) CDSI(J)

BN(J) = -(CDS2(J) + CDN2(J) + CDSI(J) - CDNI(J)

* + WVSQ(IMB2) * CDCI(J) - C6(J))

CN(J) = CDN2(J) + CDNI(J)

DN(J) = A(IMPI,J-I)
80 CONTINUE

CALL SOIODE(JM, AN, BN, CN, DN, FN, ALl, BTI)

DO 90 J=2,JMMI

A(IMPI,J-I) = FN(J)

BN(J) = -(AN(J) + CN(J) - C6(J))
BN(JI = -(CDS2(J) + CDN2(J) + CDSI(J) - CDNI(J) - C6(J))

DN(J) = A(I,J-I)

DN(J) = FM(J)

90 CONTINUE
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C

C

C

C

C

ii0

120

C

92

94

BN(1) = - (-C6(I) + CDCI(1) - CDSP)

BN(JM) =- (-C_(JM) + CDCI(JM) + CDNP)

AN(JM) --"CDCI(JM) - CDNP

CN(1) = CDCI(1) + CDSP

DN(1) = FI(I,I)
DN(JM) = FI(I,JM)

CALL SOIOD2(JM, AN, BN, CN, DN, FN, ALl, BTI)

IF (SETC0) THEN
FLDM = (FN(1) + FN(JM)) * (AREA*CPH(I,I)*0.25)

DO 92 J=2,JMMI

FLDM = FLDM + FN(J) * (CPH(J,2)*AREA)

CONTINUE

DO 94 J=I,JM

FN(J) = FN(J) - FLDM
CONTINUE

ENDIF

DO I00 J=2,JMMI

A(I, J-l) = FN(J)

A(2, J-l) = 0.0

A(IMP2,J-I) = 0.0

100 CONTINUE

CALL RFFTMLT (A, B, TR, IX, I, IMP2, IM, JMM2, BACKWARD)

DO 120 J=I,JMM2

DO Ii0 I=I,IM

FO(I,J+I) = A(I,J)

FO(I,J+I) = A(I,J) + FN(J+I)

CONTINUE
CONTINUE

DO 130 I=I,IM

FO(I,I) = FN(1)

FO(I,JM) = FN(JM)
130 CONTINUE

C

c

C

C

C

C

RETURN

END

SUBROUTINE SO2ODE(LEN, JM, AN1, BNI, CNI, DNI, AN2, BN2, CN2, DN2

*, QNI, PNI, RNI, QN2, PN2, RN2, FNI, FN2
* ALl, AL2, GMI, GM2, BTI, BT2)

t

DIMENSION ANI(LEN, JM), BNI(LEN,JM), CNI(LEN,JM)

*, AN2(LEN, JM), BN2(LEN,JM), CN2(LEN,JM)

*, QNI(LEN,JM), PNI(LEN, JM), RNI(LEN,JM)

*, QN2(LEN,JM), PN2(LEN,JM), RN2(LEN,JM)

*, DNI(LEN,JM), DN2(LEN,JM), FNI(LEN,JM), FN2(LEN,JM)

DIMENSION ALI(LEN, JM), AL2(LEN,JM), GMI(LEN,JM), GM2(LEN,JM)

*, BTI(LEN,JM), BT2(LEN,JM)

JMMI = JM- 1

DO I0 I=I,LEN

ALI(I,I) = 0.0

AL2(I,I) = 0.0

BTI(I,I) = 0.0

BT2(_,I) = 0.0

GMI(I,I) = 0.0

GM2(I,I) = 0.0

10 CONTINUE
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

DO 30 J-_2,JMMI
JMI = J _ 1

DO 20 I=I,LEN
SAI = ANI(I,J) * ALI(I,JMI) + AN2(I,J) * GMI(I,JMI) + BNI(I,J)

SA2 = ANI(I,J) * AL2(I,JMI) + AN2(I,J) * GM2(I,JMI) + BN2(I,J)

SBI = QNI(I,J) * ALI(I,JMI) + QN2(I,J) * GMI(I,JMI) + PNI(I,J)

SD2 = QNI(I,J) * AL2(I,JMI) + QN2(I,J) * GM2(I,JMI) + PN2(I,J)

SDI = DNI(I,J) - ANI(I,J) * BTI(I,JMI) - AN2(I,J) * BT2(I,JMI)

SD2 = DN2(I,J) - QNI(I,J) * BTI(I,JMI) - QN2(I,J) * BT2(I,JMI)

RM = 1.0 / (SAI*SB2 - SBI*SA2)

ALI(I,J) = - RM * (CNI(I,J) * SB2 - RNI(I,J) * SA2)
AL2(I,J) = - RIM * (CN2(I,J) * SB2 - RN2(I,J) * SA2)

BTI(I,J) = RM * (SDI * SB2 - SD2 * SA2)

GMI(I,J) = RM * (CNI(I,J) * SBI - RNI(I,J) * SAI)
GM2(I,J) = RM * (CN2(I,J) * SBI - RN2(I,J) * SAI)

BT2(I,J) = - RM * (SDI * SBI - SD2 * SAI)

20 CONTINUE

30 CONTINUE

DO 40 I=I,LEN

FNI(I,JM) = 0.0

FN2(I,JM) = 0.0

40 CONTINUE

DO 60 J=JMMI,I,-I

DO 50 I=I,LEN
FNI(I,J) = ALI(I,J)*FNI(I,J+I) + AL2(I,J)*FN2(I,J+I) + BTI(I,J)

FN2(I,J) = GMI(I,J)*FNI(I,J+I) + GM2(I,J)*FN2(I,J+I) + BT2(I,J)

50 CONTINUE

60 CONTINUE

RETURN

END

SUBROUTINE SOIODE(JM, AN, BN, CN, DN, FN, AL, BT)

DIMENSION AN(JM), BN(JM), CN(JM), DN(JM), FN(JM)

DIMENSION AL(JM), BT(JM)

JMMI = JM- 1

AL(1) = 0.0

BT(1) = 0.0

FN(JM) = 0.0

DO i0 J=2,JMMI

JMI = J - 1
SAI = 1.0 / (AN(J) * AL(JMI) + BN(J))

AL(J) = CN(J) * SAI
BT(J) = (DN(J) - AN(J) * BT(JMI)) * SAI

10 CONTINUE

DO 20 J=JMMI, I, -I
FN(J) = AL(J)*FN(J+I) + BT(J)

20 CONTINUE

RETURN

END
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C

C

C

C

C

C

C

C

C

C

C

SUBROUTINE SOIOD2(JM, AN, BN, CN, DN, FN, AL, BT)

DIMENSION AN(JM), BN(JM), CN(JM), DN(JM), FN(JM)

DIMENSION AL(JM), BT(JM)

JMMI = JM- 1

TEM = 1.0 / BN(1)

AL(1) = - CN(1) * TEM

BT(1) = DN(1) * TEM

DO I0 J=2,JMMI
JMI = J - 1

SAI = 1.0 / (AN(J) * AL(JMI) + BN(J))

AL(J) = - CN(J) * SAI
BT(J) = (DN(J) - AN(J) * BT(JMI)) * SAI

10 CONTINUE

FN(JM) = (DN(JM) - AN(JM)*BT(JMMI)) / (BN(JM) + AN(JM)*AL(JMMI))

DO 20 J=JMMI, I, -I

FN(J) = AL(J)*FN(J÷I) + BT(J)

20 CONTINUE

RETURN

END

SUBROUTINE REMGLM(IMA, IM, JM, FLD, CPH, FIRST, AREA)

DIMENSION FLD(IMA, JM), CPH(JM,2)

LOGICAL FIRST

DATA JMMI/0/, FIM/0.0/

SAVE

IF (FIRST) THEN

JMMI = JM -
FIM = 1.0 / FLOAT(IM)

AREA = 0.0

DO I0 J=2,JMMI

AREA = AREA + CPH(J,2)

i0 CONTINUE
AREA = 1.0 / (AREA ÷ CPH(I,I) * 0.5)

FIRST = .FALSE.

ENDIF

FLDM = (FLD(I,I) + FLD(I,JM)) * (AREA*CPH(I,I)*0.25)

DO 20 J=2,JMMI

DO 20 I=I,IM
FLDM = FLDM + FLD(I,J) * (CPH(J,2)*AREA*FIM)

20 CONTINUE

DO 30 I=I,IMA*JM

FLD(I,I) = FLD(I,I) - FLDM

30 CONTINUE

RETURN

END
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VIII. List of Figures

Figure 1. Contour map of the prescribed solution (Eq. 34) to the elliptic equation with (Id) =

(96,49). The contour interval is 300.

Figure 2. Numerical solution in case 1 for (a) the direct solver and (b) the multigrid solver with

(I J) = (96,49). The contour interval is 300.

Figure 3. As in Fig. 2 except for the difference between the numerical and prescribed solutions.

The contour interval is 1. In (a) the difference is multiplied by a factor of 108 and in

(b) the difference is multiplied by a factor of 10.

Figure 4. CPU time (t) taken for 500 calls to the direct and to the multigrid solvers on a single

processor of the CRAY YMP as a function of the total number (N) of grid points. In

(a) the axes are linear while in (b) the axes are logarithmic.

Figure 5. As in Fig. 4b except for the present and the FISHPAK direct (subroutine HWSSSP)

solvers.
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