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Summary

The method based on Fourier functional analysis and indicial

formulation for aerodynamic modeling as proposed by Chin and Lan is

extensively examined and improved for the purpose of general applications

to realistic airplane configurations. Improvement is made to automate the

calculation of model coefficients, and to evaluate more accurately the

indicial integral. Test data of large angle-of-attack ranges for two different

models, a 70-deg. delta wing" and an F-18 model, are used to further verify

the applicability of Fourier functional analysis and validate the indicial

formulation. The results show that the general expression for harmonic

motions throughout a range of k is capable of accurately modeling the

nonlinear responses with large phase lag except in the region where an

inconsistent hysteresis behavior from one frequency to the other occurs. The

results by the indicial formulation indicate that more accurate results can

be obtained when the motion starts from a low angle of attack where

hysteresis effect is not important.
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LIST OF SYMBOLS

coefficient of cosine Fourier series

coefficient of sine Fourier series

average value of Ao(k) in the indicial formulation

reference values

drag coefficient

lift coefficient.

variation of lift coefficient with respect to angle of attack

variation of lift coefficient with respect to time rate of angle of attack

pitching moment coefficient

a given step length

constants associated with the zero-lag response

objective function for the first level of the outer optimization loop

objective function for the second level of the outer optimization loop

value of gradient in the gradient method

constants in amplitude functions

imaginary part of a complex number
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reduced frequency (=cogVoo)

maximum allowable equivalent reduced frequency

index for time interval
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1. INTRODUCTION

Due to the rapid development of on-board computers, a new air

combat tactic, called supermaneuverability, has become more feasible and

realistic than before. Fighter designers have recognized the applications of

supermaneuverability as one of the major features of next-generation

fighters. With the advantage of simplicity, flying up to and beyond post-

stall(PST) region has been considered as one way of achieving

supermaneuverability(Ref. 1). One of the applicable PST maneuverings is a

180-degree change of heading with the additional constraint of returning

to the point of departure at the initial speed and altitude (Fig. 1). However,

the usefulness of PST maneuvering in terms of tactical purpose still is in

question. Instead of conducting flight tests, such as X-31 demonstrator,

flight simulation is an easier and more flexible way to evaluate the

advantage of PST maneuverings.

In flight simulation, aerodynamic forces and moments are needed.

According to Tobak and Schiff in Ref.2, the major difficulty in calculating

the nonlinear aerodynamic forces and moments acting on a rapidly

maneuvering aircraft is that these airloads are, in general, determined not

only by the instantaneous motion variables, for example a and &, but also

by all of the prior states of the motion up to the current state. As a result,

the currently-used linear and locally-linearized quasi-steady aerodynamic
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models incorporated in the look-up tables of wind tunnel test data have

become increasingly inadequate for the simulation of a rapid maneuvering

flight. Although a simple empirical surface pressure model was proposed

lately in Ref 3. to improve the accuracy of nonlinear aerodynamic modeling

for a 65-deg. delta wing subjected to large-amplitude high-rate oscillation

in roll, it is not applicable to general configurations. Therefore, a more

general aerodynamic modeling technique is needed.

In applications of linear potential flow theory, aeroelasticity

researchers(Ref.4 and 5) utilized Fourier Transform to relate the

aerodynamic responses of a step change in the angle of attack of a wing to

those of harmonic oscillatory motions. The transient aerodynamic response

corresponding to a step change in the angle of attack, called an "indicial

function", has been calculated for several classes of isolated wings(Ref.4-7).

Further applications of the indicial function were considered by Tobak and

his coworkers by extending the concept of indicial function into the

nonlinear aerodynamic regimes(Ref.2 and 8). In addition, the method of

separating the time-history data into in-phase and out-phase components

has been successfully carried out for the type of response with small-

amplitude oscil]ations(Ref.9). However, the above-mentioned simple model

which only includes the fundamental frequency and small-amplitude is not

applicable to nonlinear aerodynamic responses involving dynamic stall and

2
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vortex lag.

For this reason, Chin and Lan(Ref.10) proposed a general model

based on Fourier analysis to analyze the force and moment data obtained

in large amplitude forced oscillation tests at high angles of attack. Test

data for a 70-deg. delta wing were used to verify this method of analytically

modeling responses of harmonic motions at different reduced frequencies.

In addition, harmonic ramp motions for the 70-deg. delta wing also were

calculated to verify the indicial formulation in their paper.

Since the method of Fourier functional analysis uses a two-level

gradient method to determine the model coefficients for all linear and

nonlinear terms in the general model, questions arise as to the uniqueness

of results. In other words

• are the model coefficients sensitive to the initial guesses?

o If the solutions are sensitive to initial guesses, are the results

obtained with different initial guesses acceptable?

• If not all results by different initial guesses are acceptable, what

would the constraint and

coefficients?

In this research, two more sets of test data obtained at NASA

Langley Research Center will be used to conduct a more extensive testing

on the method of Fourier functional analysis as well as the indicial

criteria be to determine the "best" set of
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formulation. The results have shown that an outer optimization procedure

with constraints should be added to the original Fourier functional analysis

due to the complexity of the present highly-nonlinear optimization problem

with constraints. In addition, the results in validating the indicial

formulation also show that some special treatments should be made in the

practical applications of the indicial formulation.

L
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2. FOURIER FUNCTIONAL ANALYSIS

2.1 Theoretical Model

In the Chin and Lan's study, a general formulation for a response C L

at time t can be written as

=

C L (t) =C L (0) + zero-lag response

+f:CLa[t__ " _(¢) , _(_) ] d(X(_) de• de (i)

V_f: dtX (_ ) d¢+ CLa[t-X; a(_), a(¢)]

a_ ..-

go: =

L

w

L

r

Here, the zero-lag response represents the virtual mass effect in 2-D

incompressible flow which includes the effect of _ and is identical in every

harmonic motion. Therefore, it is independent of the time history of motion.

The last two terms involving the time integrals represent the summation

of indicial responses at time t due to changes in cc and _ in the prior

motions. The key task to determine the time integrals in Eq.(1) is to find

an analytical form for C L in terms of co(t) and & (t). Then, the time response

at a given time t can be calculated through the integrals by substituting the

derivatives of C L.

According to the linear theory of unsteady aerodynamics, an

unsteady aerodynamic response can be separated into a product of an

amplitude function and a phase function in harmonic motion. The

amplitude function is a function of motion variables as well as their time

5



z

= =

T_

=

rate of change. On the other hand, the phase function is a function of

frequency and depends on the phase lag between the response and the

excitation. For 2-D incompressible flow, Theodorsen introduced a phase

function(Re!.4 and 5) which can be determined numerically by analyzing

the responses obtained at different frequencies with the same amplitude in

harmonic oscillations. Chao and Lan(Ref. 11) used this approach successfully

to calculate the indicial lift function for a plunging wing.

Based on a similar idea, a more general model which is applicable to

nonlinear aerodynamic responses involving dynamic stall and vortex lag is

formulated to be a sum of the products of amplitude functions and phase

functions for frequencies which are multiples of the test frequency in

harmonic motion, instead of only taking the response to the test frequency

as in the linear theory. That is,

CL=C0+_(amplitude function) j • (phase function) j (2)
J

For a harmonic motion at a given frequency, the response can be

decomposed in terms ofk and t' by Fourier-analyzing this response over one

period. The complete expression is written as

M__

CL=A0+AlCOS (kt !) +A2cos (2kt !) +A3cos (3kt !)

+Blsin(kt !) +B2sin(2kt 1) +Bssin(3kt/)

÷

(3a)



(XI=(Xm+fXoCOS(kt I ) (3b)

_=_oCO s (kt ! ) (3c)

w

_: (-_o k) sin (kt !) (3d)

Here, k is the reduced frequency, t' is the nondimensional time, a m is the

mean angle of attack, and s o is the amplitude of angle-of-attack change.

Following the convention in the classical airfoil theory, the analysis is best

performed in complex form as follows:

CL=A0+ (AI-iBI) eikt/+ (A2-iB 2) e

+ (A3-iB 3) e i3kt/ +

i2kt I

0_=0_0 eikt' (4b)

& =(iaok ) e ikt' (4c)

(4a)

An important step herein is to convert Eq.(4) into a formula in terms of c_(t')

and & (t'). A "successive Fourier analysis" has been used effectively to split

cos(ne) and sin(ne) into n+l terms which include cosne and sinne and other

cross-product terms. Once the coefficients Aj,Bj at different frequencies are

obtained by Fourier analysis, the next question is what the appropriate

expression is for the phase function to represent the lag effects throughout

L W 7
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the whole range of k. From past experience(Ref.10 and 12), it was found

that Pad4 approximants provide an accurate approximation of the

theoretical phase functions. Therefore, in the present model the response

will be put in the following form including the products of amplitude

functions and phase functions:

C L _--_ A 0 (k)

+CI*

+C2 *

+ C3 *

[EII(_ + E21(_ + (HII_ + H21(_ ) * (i - PD I) ]

[EI20_ + E22(% 2 + (HI2 (_2 + H22 (_ + H32 (_2) (5)

• (I - PD 2) ]

[EI3_ 3 + E23(%3 + (HI3(X3 + H23(_2(_ + H33(Z_ 2 + H43(_ 3)

• (I - PD 3) ]

+

where PD's are Pad4 approximants of order 2 and are defined as

E=

PDj
PIj (ik)2 + P2j (ik) (6)

P3j (ik)2 + (ik) + P4j

E n& j+E21(2 j etc. are the zero-lag response; and the variables & j and _ j are

defined as

" eijkt '
(/j = ik cz0J

d j = -k 2 O_oJ eiJ kt'

to be consistent with higher order terms.

Finally, a general expression for the nonlinear aerodynamic models

is constructed. This expression is to interpolate a complete set of harmonic-
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oscillatory data with different frequencies to result in a formula for all

frequencies. The response calculated at the test frequency encompasses the

classical linear theory. It is noted that the response in time domain is given

by the real part of the summation from each mode in Eq.(5). The

expressions for all aerodynamic force and moment models are similar and

will be determined with the following optimization procedures.

2.2 Inner Optimization Procedure Without Constraints

The main objective in the inner optimization procedure is to

determine the E and H values for each mode independently by data-fitting

the/_ and Bj at different frequencies.

In the previous study, the first term in Eq.(5) was assumed to be

constant based on a set of experimental data for a 70-deg. delta wing. After

two more sets of experimental data have been examined in this research,

it is found that a linear polynomial function of k for Ao(k) is better than a

constant, especially in modeling C D responses. The Cj, which are given and

unchanged in the inner procedure, are reference values and used to

normalize the response given by Aj-iBj in the least-squared-error method.

The inner optimization procedure mainly consists of two major

methods. They are

(1)Least-squared-error method: For fixed E and H values etc., the

Plj,P2j,P3j,P4j are determined by minimizing the sum of squared errors.

9
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(2)Gradient method: The values of E and H etc. are varied so that the

sum of squared error is minimum.

According to the previous study, a two-level gradient method is more

effective than a straightforward gradient method because of the type of

nonlinearity in this optimization problem. The detail about the least-

squared-error method and gradient method are discussed in the following.

The idea is illustrated in the flow chart of Fig.2.

2.2.1 Least-Squared-Error Method

At a specified reduced frequency, the magnitude of Fourier

components in Eq.(4a) written in complex form is Aj-iBj. So

Aj-iBj = Cj_0 j * [Eljik + E2j (-k 2)

+ (amplitude function) j, (I-PDj) ]

(7)

For the assumed values of E and H etc., the only unknown variables in

Eq.(7) are the coefficients of Pad4 approximants. Eq.(7) is rearranged as

follows with all known values being on one side:

Vj + iWj -- 1
Aj - iBj - EIj ik - E2j (-k 2)

(amplitude function) j

PIj (ik)2 + P2j (ik)

P3j (ik)2 + (ik) + P4j

(8)

10
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It should be noted that Aj-iBj in Eq.(8) has been normalized by Cjo_0J. If both

sides of Eq.(8) are multiplied by the denominator of the Pad4 approximant

and separated into real and imaginary parts, Eq.(8) becomes

z_

Y,,,g

E

--=

7-.--

and

Re - Pljk 2- e3jVjk 2 + P4j Vj- Wj k = 0

Im- P2jk + PajWjk 2- P4jWj - Vjk = 0

Then, the coefficients of Pad4 approximants, i.e. Pij , are

minimizing the sum of squared errors with different k's. That is,

(9a)

(9b)

chosen by

Err - E Re(k i)2 + E Im(k,)2 (10)

By equating the first derivatives of Eq.(10) with respect to variables

Plj,P2j,P3j and P4j to zero, the coefficients of Pad4 approximants can be

determined from the following equation:

(11)

4Zk, o -Zv,k_ z-'v,k_

o Zk_ Zw,k_ -Zwiki

-Zv,k_ Zw,k_ _ 2 _ 2 4 2 2 2 2(Viki+Wiki) -_ )(Viki+Wiki

_Vik _ -EWik i E 2 2 2 2 2 2(Viki+Wik i) _ )(Vi+W i

P2j _ Evi k2

P3Jl 0

o

where i is the index for different frequencies used in acquiring the

experimental data, and the mode subscript j on V and W has been omitted.

7
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2.2.2 Gradient method without constraints

Once the unknown coefficients Plj,P2j,P3j and P4j are found, a one-

dimensional gradient method is adopted to find better E and H values

which minimize the sum of squared errors. The sum of squared errors is

defined as :

S = _ [Aj-(Aj) numerical ]2 + _ [Bj- (Bj) numerical ]2 (12)

u

m

L_

m

M

p_

where (Aj)numerica | = Re[ RHS of Eq.(7) ]

(Bj)numerica 1 = Im[ RHS of Eq.(7) ]

Because of the difficulty in locating a global minimum in a straightforward

gradient method, a two-level gradient method described in the following is

used in this investigation.

(1)First level

Step 1: The current E or H value is perturbed by a small amount hE

or AH to find the gradient of sum of squared errors.

Step 2: Each E or H value advances one step to new value according

to its local gradient obtained in step 1.

Step 3: Repeat Step 1 and Step 2 for each variable E or H until

several iterations has been reached(it is set to be 5 in the current program)

(2)Second level

Repeat the first level until several iterations has been reached(it is

12
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set to be 10 in the current program).

2.3 Outer Optimization Procedure With Constraints

As mentioned earlier in the introduction, the results for E and H

values by the inner optimization procedure are not unique. They tend to

vary with different initial guesses of E and H values. Moreover, not all of

these results are acceptable due to the requirement that the denominators

of Pad_ approximants must have real negative roots only. the latter

requirement is necessary so that in time domain the corresponding

exponential terms will die out at large time. A straightforward method

which directly adds this requirement as constraints to the inner

optimization loop has been tried. Unfortunately, for most cases, it was

found that directly imposing constraints to the two-level gradient method

tends to make the final results close to the initial guesses of E and H

values. In other words, the constraints block the path of searching vector

obtained in the gradient method so that a global minimum solution can not

be reached in such a situation. To avoid this problem, an outer optimization

loop has been added outside the inner optimization procedure. The outer

optimization procedure is based on the same search technique as the inner

one, i.e. the gradient method, except that additional constraints are

imposed for the purpose of choosing proper initial values for E and H. A

question arises as to what would be the objective function of the outer

13
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optimization procedure. From the experience of validating the indicial

formulation, an objective function which tends to minimize the lag effect of

phase function in time domain at x=0 is chosen. That is, (1.-aij-a2j) is

minimized.

A further examination of Eq.(5) is needed at this time. The remaining

variables which are not calculated by any optimization procedure are Cj.

Theoretically, E and H values are inversely proportional to Cj for a given

response Aj-iBj, and can be adjusted to take appropriate values in the

gradient method for a given reference value of Cj. But, numerical

experimentation shows that this is not true. The reason is that the given

response Aj-iBj in Eq.(8)is normalized by Cj(z j, while the E and H values

always start from the same built-in initial guesses. In other words, the Cj

must be properly chosen in a way to make the present method more

workable and user-friendly in analyzing any given set of test data.

Therefore, one more outer loop has been added outside the first outer

gradient method to determine the best value of Cj within a feasible range

of Cj. To illustrate the necessity of this additional outer optimization loop,

test data for the 70-deg. delta wing(Ref.13) used in Chin and Lan's paper

are reanalyzed by the modified method. Significant improvement at small

time can be seen in the constant-rate pitch-up motion(Fig.3). The detail of

the two-level outer optimization procedures are discussed in the following,

14
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and the flow chart is presented in Fig.4.

2.3.1 Gradient Method With Constraints

Unlike the gradient method in the inner optimization loop, the

gradient method used in the outer loop is imposed with a constraint which

requires all roots of the denominators of Pad_ approximants to be real and

negative. In addition, another special constraint which needs to be applied

only to the analysis of C D responses is that Ell can not be negative

according to the classical linear theory. By treating the whole inner

optimization procedure as a "function box", a gradient method with

constraints which comprises a gradient-search process and a series of

checking-up has been implemented. This includes the following three steps.

Step 1: Find an acceptable starting point

For a given Cj, the starting initial guesses for E and H values are

assumed to be a set of optimal initial values from the previous Cj or a set

of build-in initial data in case the search of the previous Cj finds no

reasonable starting values. If this starting point violates the constraints,

each of E and H values will take turn to advance one step(maximal number

of steps is set to be 4) until a reasonable starting point is found.

Step 2: Construct an acceptable gradient vector

Once an acceptable starting point has been found, a gradient vector

is constructed by separately perturbing a small amount AE or AH for the

15
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current initial guess. If the perturbation in any of E or H values leads to

an unacceptable result, the gradient in the corresponding direction will be

set to zero. It is noted that the objective function in this gradient method

is defined as

FI=-I./(I. -alj-aj2) (13)

from numerical experiments, where alj and a2j represent the lag effects at

very small time.

Step 3: Advance to a new acceptable point

Based on the gradient vector in Step 2, a new set of initial values for

E and H are obtained by advancing a given step length DS. Once again, the

reasonableness of the new point should be checked. If it is an unacceptable

point, the searching procedure must be stopped; and the last acceptable

point found in Step 1 would be recalled to be the optimal set of initial

values of E and H for the given Cj. Otherwise, Step 2 to Step 3 would be

repeated further until several iterations has been reached(it is set to be 10

iterations in the current program).

2.3.2 Determination of reference value C,
J

In the search of the best reference value for Cj, no gradient method

is needed. A simple way used in the present method is to evaluate different

Cj over a feasible range. Based on the experience in analyzing the test data

i6



presented in this report and the earlier test data(Ref. 13) used by Chin and

Lan, the optimal Cj usually satisfies the following inequality.

1
Cj <

_m j

Here, a m is in radian and j is the mode index. So, a set of feasible Cj for

the second level search can be built up. Then, a cost function which is

defined as

F2 = ]alj + a2jl + laljl + ]a2j 1 (14)

is used in the evaluation of Cj. The best reference value of Cj is determined

by selecting the Cj with a minimum cost function.

U

L2
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3. INDICIAL FORMULATION

3.1 General Mathematical Formulation

According to Tobak(Ref.14), in linear theory exponential functions

which are obtained by applying the Fourier integral to the phase functions

in frequency domain are good representations in time domain for

aerodynamic response corresponding to a step change due to the asymptotic

nature of exponential functions. In Chin and Lan's paper this approach was

applied to the nonlinear model and successfully set up a general

mathematical formulation, called "indicial formulation". A brief review of

this formulation will be given in the following.

Once the appropriate coefficients in Eq.(5) have been found for a set

of harmonic responses, Eq.(5) can be rewritten in a compact form by

absorbing Cj into E and H values as follows:

m

C L --A0(k ) + _ (EI9_ + )
j=l J E2j_j (15)

m

+ _ (amplitude function)j * (phase function)j
j--1

where phase functions are defined as

Plj (ik)2 + P2j (ik)
1 -

P3j (ik)2 + ik + P4j

i(jk) alj i(jk) a2j

1 - i(jk) + ja3j i(jki' + ja4j

(16)

18
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Based on a step input (Ref.4), the phase function will be converted into

exponential functions in time domain but the amplitude function is kept

unchanged. Therefore, an indicial response C L for the circulatory lift, i.e.

the third term in Eq.(15), can be defined as

m

CLindlcia I ----_ (amplitude function)j * (l.-alje-a2Jjt-a2je -a4jjt)

j--I (17)

From Eq.(1), it is known that aerodynamic response at time t is made of

three parts. The first part is the initial response at the starting point. The

second part is the response without hysteresis effect; while the last part is

the indicial response due to changes in a and & in the prior motion. The

initial response CL(0) is obtained by setting the running variable _ to zero

in the indicial response C L and the zero-lag response term is identical in

every harmonic motion. Then, the integrands in the third part can be

determined explicitly by taking derivatives with respect to a and & from

Eq.(17). It should be noted that an average value Cav e also will be added in

Eq.(1) because a in the amplitude functions of Eq.(17) denotes only a

perturbation from o_m in the harmonic model. Therefore, the final form of

indicial formulation for arbitrary motions is given as

19
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C L (t! )

m

= CLinalclal[tf-% , 06(¢) , 0_(_) ]_--0 + Cave +
j=l

(EIj0_ j + E2j(Z j)

dc_ (_)
+ £ _t! d (a. f. ) j * (l_alje-a3jj (t/-_) _a2je-a4jj (t/-z)) d_

j:iJo d(X _-_

Q_ £ _t ! d (a.f.) j,(l_alje-a3jj(t/-Z)_a2je-a4jj(t/-_)) d(Z(Z)

+ vooj=l$0 d 06

(18)

d_

L_

3.2 Implementations of Indicial Formulation

To perform the time integration in Eq.(18) for arbitrary motions,

some special numerical implementations have been made in the present

program. First of all, a 3-point Simpson rule is chosen to evaluate

numerical integration. Secondly, an arbitrary motion has to be represented

locally by a cosine function in order to utilize the results of harmonic

modeling. At a certain time of an arbitrary motion, the total angle of attack

al and &l can be described by the cosine and sine functions as

O_1 (Z) =(Xm+OtoCOS (kz +qb) (i 9a)

_i (<) =-aok sin (kz +¢) (I 9b)

_4

2O

L=
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By knowing the harmonic model's mean angle of attack c_n and amplitude

ao, an equivalent frequency k and an equivalent phase angle ¢ at a given

instantaneous time x can be solved by Newton's method. To smooth out

possible discontinuity in response when the given motion has a sudden

change in &, an a o which is slightly greater than the actual amplitude is

frequently used. It should be emphasized that this dose not change the

instantaneous values of ¢z1 and &l in the actual time history of motion. It

merely changes the values of equivalent frequency k and phase function ¢.

Finally, the Cav e in Eq.(18) which was assumed to be a constant in the

previous study has been reformulated. A constant term A o in the harmonic

modeling is now replaced with a linear polynomial function of k for Ao(k).

Based on the similar concept in the indicial response, the Cav e at a given

t' should be made of all Ao(k) of prior states in the motion up to the current

time. So, a simple way to calculate Cav e is to take an average, i.e.

L _

M

Cav e = [ _A 0 (km) ] /M (20)
m=l

where m is an index for running time, and km is the equivalent frequency

based on the original amplitude in the harmonic model.

In addition to the above-mentioned general implementations in the

indicial formulation, several special treatments used in some particular

motions will be discussed in the next chapter.
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4. RESULTS AND DISCUSSION

4.1 Test Data

In the present study, test data for three kinds of motions obtained at

the NASA Langley Research Center are taken to be analyzed or compared

with numerical results calculated from simulations of the specified motion.

They are described in detail as follows:

(1)Large Amplitude Harmonic Motions: Test data of harmonic

motions with large amplitude are used for numerical modeling in Fourier

functional analysis. In this category, there are two groups of test data, and

each group includes three sets of aerodynamic data for CL,C D and C M with

five reduced frequencies. The first group is for a 70-deg. delta wing, and the

second one is for an F-18 model. Both test models are harmonically

oscillated about 32.5 deg. of angle of attack with an amplitude of 30 degree.

This large coverage in angle of attack which contains low a region, near-

stall region and post-stall region exhibits a good characterization of

hysteresis behaviors. In addition, the test data for a 70-deg. delta

wing(Ref.13) used in Chin and Lan's paper also have been reanalyzed for

the purpose of comparison.

(2)Constant-Rate Pitching Motions: Test data of constant-rate

pitching motions are used for validation of the indicial formulation in

arbitrary motions. The experimental data in this category were taken from
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the same models as described in the large amplitude harmonic motions.

Responses with three pitch rates for each model have been measured in

pitch-up motions as well as pitch-down motions. The angle of attack starts

from 2.5 degree and stops at 62.5 degree in the pitch-up motions; but moves

in reverse in the pitch-down motions.

(3)Medium Amplitude Harmonic Motions: An additional group of

forced harmonic oscillation data for an F-18 model provides a further

examination of the interpolative property of the mathematical model. The

mean angle of attack and amplitude of oscillation in this harmonic motion

are intentionally set to be different from those in the large amplitude

harmonic motions. In the present test, the F-18 model was harmonically

oscillated about 22.5 degree angle-of-attack with an amplitude of 20 degree.

4.2 Fourier Functional Analysis

As pointed out in chapter 2, a constant term for Ao(k) in the previous

study is replaced by a linear polynomial function of k, especially while

analyzing C D responses. To show the necessity of this change, the term A o

versus the test reduced frequencies for the F-18 C D responses are plotted

in Fig.5(a), and also the numerical results by both models are compared

with experimental data at the highest k in Fig.5(b). Both figures show that

a discrepancy of about 0.1 exists if an average value for Ao(k) is applied.

Regardless of the optimization procedures, other task to improve the
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accuracy of the present method is to include the static test data as

additional dynamic stall data at a very low reduced frequency, such as

k=l.0E-6. The main purpose of this implementation is to avoid possible poor

extrapolation at low reduced frequency.

The results by the Fourier functional analysis are presented in Fig.6

for the 70-deg. delta wing and Fig.7 for the F-18 model respectively. Five

Fourier terms are used in this analysis and the calculated coefficients for
:± :

the two aerodynamic models are listed in Table(l) and Table(2) respectively.

All results were done by the same set of build-in initial data for E, H and

Cj without any try-and-error guess by a user. The results show that the

present method is able to capture all major hysteresis effects. Compared

with the up-stroke data, most of the down-stroke data are modeled with

less accuracy. The reason can be found by taking a further look at the C L

test data for the presently-used 70-deg. delta wing (see Fig.8(a)) and those

for the other 70-deg. delta wing(Ref. 13) used in Chin and Lan's paper (see

Fig.8(b)). In Fig.8(b), it appears that the flow becomes attached in the low

cc region (0-20 deg.) during the down-strokes. On the contrary, strong

hysteresis effects still exist under similar conditions in Fig.8(a). So, the

trend of the hysteresis behavior on down-strokes is not as consistent as that

on up-strokes in the presently-used test data. This may imply that a higher

order Pad_ approximant could be needed to model responses which have
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more complicated hysteresis effects. It is noted that the mismatched part

of F-18 C M responses at k=0.015(see Fig.7(c)) is due to the even more

inconsistent trend of the hysteresis behavior from one frequency to the

other occurring in the region of high angle of attack.

4.3 Indicial Formulation

4.3.1 Harmonic Motion and Harmonic Ramp Motion

The harmonic motion is used to compare with Fourier modeling

results which have been well fitted with test data. On the other hand, the

harmonic ramp motion can be used to show how good the agreement with

the static value is at the time when the motion stops.

As mentioned in chapter 2, discontinuity could happen in the

calculation of time integral if the given motion has a sudden change in &.

This can be easily solved by slightly increasing the amplitude of the original

model, such as by 2.5 degree. In the following calculations, the amplitude

(_0) which was 30 degree in the testing is set to be 30.5 degree for the

harmonic ramp calculation and 32.5 degree for the constant-rate pitching

motions respectively.

The results of harmonic motions and harmonic ramp motions are

plotted in Fig.9 for the delta wing and Fig.10 for the F-18 model

respectively. In the harmonic ramp motions, all responses eventually

approach the static value corresponding to the angle of attack when the

= =
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motion stops.

4.3.2 Constant-Rate Pitching Motion

This is used to compare with test data at the same pitch-rate.

Two special treatments about this type of motion should be

mentioned here. First of all, a question arises about the results by Eq.(19),

when the actual angle of attack (a 1 in Eq.(19)) is near the two ends of a

harmonic model's cz range, for example 2.5 or 62.5 deg. in the present test

model. In such a situation, the equivalent k obtained from Eq.(19) tends to

be high because the corresponding &z is too large comparing with & in the

harmonic model. From the experience in calculating the constant-rate

pitching motions, it was found that an unreasonably extrapolated high

value of k at a starting point would lead to an unacceptable result in

simulation. So, one of the variables, a m and (zo, must be treated as an

unknown instead of k, when the extrapolated k-value is greater than a

given allowable value kma x. Through a series of tests on both variables, the

amplitude of harmonic model ao was chosen as the other unknown in case

the extrapolated k-value exceeds the given allowable kma x. Therefore,

Eq.(19) will be replaced by the following equation if the equivalent

frequency k in Eq.(19) is larger than the given kmax:

m 26
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_i (Z) =_m+_oCOS (kmaxZ +_) (21a)

(_i (z) =-_okmaxSin (kmaxZ +_) (21b)
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w
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[]
m

where c¢o and ¢ are the unknowns, and are, again, solved by Newton's

method.

Secondly, as the constant-rate pitch-down motions start at a high

angle of attack, the time integration should start from a static value by

setting t'_oo to the first term of Eq.(18).

The results of the constant-rate pitching motions are presented in

Fig.ll for the delta wing and Fig.12 for the F-18 model respectively. As

expected, all results for pitch-up motions are well predicted except in the

region near the starting point. The reason for this is that the phase lag

terms (1.-alj-a2j) for _=0 in the first term of Eq.(17) are not able to perfectly

represent a starting point which physically does not involve any hysteresis

effects. On the other hand, some of the results for pitch-down motions are

not as good as those for pitch-up motions. There are two possible reasons

for this. Firstly, the harmonic model which does contain large hysteresis

effects in the high angle-of-attack region can not precisely depict an initial

response at the starting point in the high ¢z region which definitely

possesses a static value without any phase lag. Secondly, the poor
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numerical modeling of harmonic motions in down-strokes which is caused

primarily by the non-smooth variation of the response from one frequency

to the other, especially at low and moderate k, also is a reason for these

discrepancies.

4.3.3 Validation of the Interpolative Property

Harmonic responses with a lower mean angle of attack(a m) and a

smaller amplitude((_ o) for the F-18 model are calculated by using the

indicial formulation to compare with the test data in the same conditions.

The aerodynamic models are still those based on the test data with am=32.5

degree and _)=30 degree.

Since the a range and reduced frequencies still are within the range

of the original harmonic model, no extrapolated equivalent reduced

frequencies are expected. For the known a 1 and &l time histories, the

equivalent k and ¢ at certain time x can obtained from Eq.(19) without any

change in (zo and O_n of the original harmonic model. To avoid the error

which usually happens at a small time, the integral in Eq.(18) are

evaluated from the third cycle and only over one period for the periodical

motion.

The results are plotted in Fig. 13. Comparing with the experimental

data, the simulation by using the indicial formulation shows reasonably

good agreement. It is also shown that the higher the reduced frequency is,
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the better the calculated responses are. The reason is that the simulation

for higher reduced frequency includes higher equivalent k which are well

modeled in the original harmonic modeling than the simulation for lower

reduced frequency. Moreover, some other results should also be noted in

this simulation, first of all, the results of C D responses reveal that using a

model containing large hysteresis effects to calculate a motion with less

dynamic effect may not be as good as expected(see Fig.13(b)). Secondly,

although the analysis for C M responses fails to model accurately the high

a region (c_>40 deg.) at low and moderate reduced frequencies (see Fig.7(c)),

the harmonic motions with a a-range below 42 deg. still can be well

simulated by the indicial formulation.

, =

z
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5. CONCLUSIONS

In the present research, a method involving Fourier functional

analysis and indicial formulation proposed by Chin and Lan has been

extensively examined and modified for the purpose of applications to

airplane configurations. Two sets of test data from NASA Langley Research

Center which include a 70-deg. delta wing and an F-18 model have been

used to show the applicability of Fourier functional analysis and validate

the indicial formulation. Extensive examination of this method has led to

the modification of the method by adding an outer optimization procedure

with constraints to the original optimization loop to automatically choose

appropriate starting values for the Unknowns in the nonlinear optimization

process.

The results from the Fourier functional analysis showed that the

general expression for the aerodynamic response to harmonic motions

throughout a range of k was capable of accurately modeling nonlinear

responses with large phase lag except in the region with an inconsistent

hysteresis behavior from one frequency to the other, such as the F-18 C M

responses at low reduced frequencies. The results by time integration of the

indicial integral showed the applicability of the latter to harmonic motions

and ramp-type motions. Moreover, all pitch-up motions with constant rate

were well simulated by indicial formulation; while the results for the

m
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corresponding pitch-down motions were produced with less accuracy but

still in a correct trend. Finally, The results for the F-18 model's

aerodynamic response to harmonic motions with different mean angle of

attack and amplitude was indicative of good interpolative property of the

present aerodynamic models.
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r (a) CL Responses

Ao(k)=0.567+0.140*k

C] Eli E2j H1.i H2] H3.] H4] Hsj H6.i

2.5 -0.415 -0.232 0.150 0.750

1.5 0.479 0.048 -0.850 -0.948 -1.026

2.05 -0.268 0.114 0.350 -0.650 1.050 0.850

13.0 -0.095 -0.043 0.050 0.377 0.930 -0.082 -0.057

5 16.0 -0.075 0.042 -0.050 1.378 1.092 -0.961 -0.052 0.850

J Pii P2i P3j P4j alj a2j a3j a4j

1 -16.71 0.941 15.134 0.0010 0.9883 -2.093 -.0010 -.0651

2

3

3.789 0.018 13.813 0.0010 0.0142 0.2601 -.0010 -.0714

11.952 0.927 7.579 0.0010 0.9293 0.6477 -.0010 -.1310

4 -1.216 0.450 6.477 0.0236 0.7792 -.9669 -.0291 -.1252

5 4.821 0.681 5.296 0.0361 0.9196 -.0093 -.0486 -.1402

=
(b) C D Responses

Ao(k)=0.476+0.8248*k

_=

j C.i .... E lj E 2i H I.i H2_i H3i H4.i Hsi H6i

1 1.3 1.129 1.166 0.650 0.034

2.2 0.175 -0.237 -0.150 1.050 0.650

2.8 0.309 -0.009 -0.050 -0.123 -0.354 0.877

11.0 0.068 -0.025 0.050 -0.661 0.854 -0.059 -0.053

21.0 0.012 -0.010 -0.050 -0.050 -0.050 -0.050 -0.050

Plj P2i P3i P_ alj a2j a3j a_

-6.240 -0.067 8.550 0.001 -0.062 -0.668 -.0010 -0.116

5.295 -0.203 6.065 0.001

-11.78 -4.079 4.015 0.042

-0.211 1.084 -.0010 -0.164

-6.067 3.132 -.0538 -0.195

12.31 -0.224 18.868 0.004 -0.324 0.977 -.0041 -0.049

-0.05

5 1.247 1.079 3.063 0.001 1.084 -0.677 -.0010 -0.325

: W

=

Table(l) Model Coefficients for A 70-deg. Delta Wing.
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(C) CM Responses

Ao(k)=0.046+0.0773*k

=

L_

z .

J

1

2

3

4

5

J

1

2

3

4

5

E E H
"-'j lj 2j lj

1.5 -0.923 1.127 -0.050

2.5 -0.475 0.263 -0.050

H2j H3j H4i Hs.] H6.i

-0.476

1.050 -0.050

3.25 -0.022 -0.015 0.050 -0.667 -0.053 -0.048

-0.003 O.O5O

-0.025 -0.050

11.0 -0.138

9.0 0.023

Pl.i P2.i P3i

9.234 2.908 3.404

P4j

0.062

0.001

0.001

0.001

0.001

0.954 -0.340 3.512

11.594 0.312 11.369

3.533 0.811 8.148

0.361 0.785 0.874

1.050 -0.050 -0.050 -0.050

-0.150 -0.050 -0.050 -0.050 -0.05

al.i a2 i a3j a4.i

5.206 -2.494 -.0877 -0.206

-0.343 0.615 -.0010 -0.283

0.307 0.712 -.0010 -0.087

0.821 -0.387 -.0010 -0.122

0.786 -0.373 -.0010 -1.143

v

E

m

m

Table(l) Concluded.
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(a) C L Responses

Ao(k) = 1.131+0.804"k

F

= :

J

1

2 1.7 0.480 -0.238 -0.950 -0.250 -0.950

3 1.45 -0.057 -0.110 0.150 1.050 1.050 -0.950

4 1.0 -0.310 -0.062 0.850 -0,950 -0,950 1.050 0.550

5 12.0 0.045 -0.017 0.050 0.652 1.096 -0.068 -0.050

J PI.j P2j P3j P4j alj a2j . a3i a4_

1 -17.22 0.244 14.046 0.001 0.2696 -1.496 -.0010 -.0702

2 -0.142 -0.005 0.572 0.001 -.0044 -.2436 -.0010 -1.748

3 50.422 -0.226 16.683 0.001 -.2882 3.311 -.0010 -.0589

4 0.1656 0.710 1.784 0.001 0.7127 -.6199 -.0010 -.5596

5 0.3468 1.456 0.204 0.001 1.4559 0.2427 -.0010 -4.898

Cj . E 1.i E2j Hlj H2i ..... H3j H4.] H5j

1.9 1.068 1.262 0.350 0.819

H6j

-.050

= = (b) CD Responses

Ao(k)=0.916+l.552*k
L--

= i ==:_

L--

J E E_j . lj 21

1 2.5 0.162 -0.023

2 2.5 0.511 0.259

3 1.0 -0.115 -0.037

4 7.0 0.063 -0.003

5 28.0 -0.007 -0.002

Hlj H2i H3.i H4j Hsi H6j

0.750 0.077

-0.150 -0.250 0.250

-0.950 1.050 1.050 1.050

0.050 -0.750 -0.050 -0.050 -0.050

0.050 -0.150 -0.050 -0.050 -0.050 -0.05

J PI.i P2.i P3i P4i ali a2i a3i a4.i

1 -5.174 0.009 9.309 0.001 0.014 -.5699 -.0010 -.1064

2 56.012 0,746 19.232 0.001 0,717 2.1958 -.0010 -.0510

3 -0.146 0.287 2,023 0.001 0.288 -.3602 -.0010 -.4932

H

4 10.592 -0.411 17.481 0.001 -.4377 1.0437 -.0010 -.0562

5 -0.307 0.929 2.756 0.001 0.934 -1.046 -.0010 -.3619

L_

Table(2) Model Coefficients for An F-18 Model.
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(c) CM Responses

Ao(k)=-0.07614+0.7105*k

i "_- ,

J f_ E E H
vj . lj 2j lj "'2i

1 2.5 -0.942 -0.954 -0.150 -0.850

2 1.1 -0.098 -0.269 -0.350

3 1.75 -0.117 -0.112 -0.250

4 3.0 -0.098 0.021 -0.050

5 23.0 -0.018 -0.005

J Plj P2j P3j P4i

1 -1.464 0.667 1.015 0.001

H3 i H4j H5 i H6i

O.78O -1.001

-0.050 0.250 -0.050

0.798 0.994 -0.056 -0.050

0.050 0.856 -0.066 -0.050 -0.050 -0.05

alj . a2.i , a3i a4j

0.6702 -2.112 -.0010 -.9840

2 22.400 0.141 23.931 0.001 0.1241 0.8119

3 35.605 0.277 26.874 0.001

4 4.007 1.086 5.440 0.018

5 3.289 0.926 4.790 0.001

0.2543 1.0705

-.0010 -.0408

-.0010 -.0362

1.2947 -0.558 -.0207 -.1631

0.9316 -0.245 -.0010 -.2077

::..::

L
M

Table(2) ....... Concluded.
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Figure 1 A New Air Combat

Maneuvering

Tactic with Post-Stall
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Figure 3 Comparison of Unsteady Lift Coefficient in

Constant-Rate Pitch-up Motion by The Modified

Method with The Results by The Original

Method for A 70-deg. Delta Wing.
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