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Summary

The method based on Fourier functional analysis and indicial
formulation for aerodynamic modeling as proposed by Chin and Lan is
extensively examined and impfox}ed for the purpose of general applications
to realistic airplane configurations. Improvement is made to automate the
calculation of model coefficients, and to evaluate more accurately the
indicial integral. Test data of larrgrérangle-of-attack ranges for two different
models, a 70-deg. delta wing and an F-18 model, are used to further verify
the applicability of Fourier functional analysis and validate the indicial
formulation. The results show that the general expression for harmonic
motions throughout a range of k is capable of accurately modeling the
nonlinear responses with large phase lag except in the region where an
inconsistent hysteresis behavior from one frequency to the other occurs. The
results by the indicial formulation indicate that more accurate results can
be obtained when the motion starts from a low angle of attack where

hysteresis effect is not important.
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LIST OF SYMBOLS
coefficient of cosine Fourier series
coefficient of sine Fourier series
average value of Ay(k) in the indicial formulation
reference values
drag coefficient
lift coefficient.
variation of lift coefficient with respect to angle of attack
variation of lift coefficient with respect to time rate of angle of attack
pitching moment coefficient
a given step length
constants associated with the zero-lag response
objective function for the first level of the outer optimization loop
objective function for the second level of the outer optimization loop
value of gradient in the gradient method
constants in amplitude functions
imaginary part of a complex number
index
reduced frequency (=w&/V_))
maximum allowable equivalent reduced frequency
index for time interval

number of time interval



1

I I

R

gar

o

i

t

il

Iy

u

L I

AIRI i}

B

t

PD;

I\

index for reduced frequency. Also index for the coefficients in Padé

approximants

number of frequencies

Padé approximants

coefficients in Padé approximants
pitch rate in rad/sec

nondimensional pitch rate (V=qﬁ/V°°)
the sum of squared errors

time

nondimensional time (=tV /0

free stream velocity

variation in angle of attack (=o coskt’)
= o+, total angle of attack
amplitude of angle-of-attack variation

méan angle of attack

time rate of change in angle of attack

=0 time rate of change in total angle of attack
reference length

dummy time integration variable

= kv’

phase angle
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1. INTRODUCTION

Due to the rapid development of on-board computers, a new air
combat tactic, called supermaneuverability, has become more feasible and
realistic than before. Fighter designers have recognized the applications of
supermaneuverability as one of the major features of next-generation
fighters. With the advantage of simplicity, flying up to and beyond post-
stall(PST) region has been considered as one way of achieving
supermaneuverability(Ref.1). One of the applicable PST maneuverings is a
180-degree change of heading with the additional constraint of returning
to the point of departure at the initial speed and altitude (Fig.1). However,
the usefulness of PST maneuvering in terms of tactical purpose still is in
question. Instead of conducting flight tests, such as X-31 demonstrator,
flight simulation is an easier and more flexible way to evaluate the
advantage of PST maneuverings.

In flight simulation, aérodynamic forces and moments are needed.
According to Tobak and Schiff in Ref.2, the major difficulty in calculating
the nonlinear aerodynamic forces and moments acting on a rapidly
maneuvering aircraft is that these aiiﬂoads are, in general, determined not
only by the instantaneous motion variables, for example a and &, but also
by all of the prior states of the motion up to the current state. As a result,

the currently-used linear and locally-linearized quasi-steady aerodynamic
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models incorporated in the look-up tables of wind tunnel test data have
become increasingly inadequate for the simulation of a rapid maneuvering
flight. Although a simple empirical surface pressure model was proposed
lately in Ref 3. to improve the accuracy of nonlinear aerodynamic modeling
for a 65-deg. delta wing subjected to large-amplitude high-rate oscillation
in roll, it is not applicable to general configurations. Therefore, a more
general aerodynamic modeling technique is needed.

In applications of linear potential flow theory, aeroelasticity
researchers(Ref.4 and 5) utilized Fourier Transform to relate the
aerodynamic responses of a step change in the angle of attack of a wing to
those of harmonic oscillatory mo'tié;ns. The transient aerodynamic response
corresponding to a step change 1n the angle of attack, called an "indicial
function”, has been calculated for sreyreral classes of isolated wings(Ref.4-7).
Further applications of the indiciél fﬁnction were considered by Tobak and
his coworkers by extending the concept of indicial function into the
nonlinear aerodynamic regimes(Ref.2 and 8). In addition, the method of
separating the time-history data into in-phase and out-phase components
has been successfully carried oruﬁwfror the type of response with small-
amplitude oscillations(Ref.9). However, the above-mentioned simple model
which only includes the fundamental frequency and small-amplitude is not

applicable to nonlinear aerodynamic responses involving dynamic stall and
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vortex lag.

For this reason, Chin and Lan(Ref.10) proposed a general model
based on Fourier analysis to analyze the force and moment data obtained
in large amplitude forced oscillation tests at high angles of attack. Test
data for a 70-deg. delta wing were used to verify this method of analytically
modeling responses of harmonic motions at different reduced frequencies.
In addition, harmonic ramp motions for the 70-deg. delta wing also were
calculated to verify the indicial formulation in their paper.

Since the method of Fourier functional analysis uses a two-level
gradient method to determine the model coefficients for all linear and
nonlinear terms in the general model, questions arise as to the uniqueness
of results. In other words

eare the model coefficients sensitive to the initial guesses?

*If the solutions are sensitive to initial guesses, are the results
obtained with different initial guesses acceptable?

*If not all results by different initial guesses are acceptable, what
would the constraint and criteria be to determine the "best” set of
coefficients?

In this research, two more sets of test data obtained at NASA
Langley Research Center will be used to conduct a more extensive testing

on the method of Fourier functional analysis as well as the indicial
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formulation. The results have shown that an outer optimization procedure
with constraints should be added to the original Fourier functional analysis
due to the complexity of the present highly-nonlinear optimization problem
with constraints. In additioh, rthe results in validating the indicial
formulation also show that some special treatments should be made in the

practical applications of the indicial formulation.
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2. FOURIER FUNCTIONAL ANALYSIS

2.1 Theoretical Model

In the Chin and Lan’s study, a general formulation for a response Cp,

at time t can be written as

Cp(t)=Cy(0)+ zero-lag response

€ . da(1)
+J;CLa[t v o), am] 4 ()
0 [t . ae(t)
+V_°°f0CLa[t toam), ey 28 a

Here, the zero-lag response represents the virtual mass effect in 2-D
incompressible flow which includes the effect of & and is identical in every
harmonic motion. Therefore, it is independent of the time history of motion.
The last two terms involving the time integrals represent the summation
of indicial responses at time t due to changes in « and o in the prior
motions. The key task to determine the time integrals in Eq.(1) is to find
an analytical form for C; in terms of a(t) and o (t). Then, the time response
at a given time t can be calculated through the integrals by substituting the
derivatives of Cy.

According to the linear theory of unsteady aerodynamics, an
unsteady aerodynamic response can be separated into a product of an
amplitude function and a phase function in harmonic motion. The

amplitude function is a function of motion variables as well as their time
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rate of change. On the other hand, the phase function is a function of
frequency and depends on the phase lag between the response and the
excitation. For 2-D incompressible flow, Theodorsen introduced a phase
function(Ref.4 and 5) which can be determined numerically by analyzing
the responses obtained at different frequencies with the same amplitude in
harmonic oscillations. Chao and Lag(Ref. 11) used this approach successfully
to calculate the indicial lift function for a plunging wing.

Based on a similar idea, a more general model which is applicable to
nonlinear aerodynamic responses involving dynamic stall and vortex lag is
formulated to be a sum of the products of amplitude functions and phase
functions for frequencies which are multiples of the test frequency in
harmonic motion, instead of only taking the response to the test frequency

as in the linear theory. That is,

Cp=Co+X (amplitude function)j * (phase function) j (2)
J

For a harmonic motion at a given frequency, the response can be
decomposed in terms of k and t’ by Fourier-analyzing this response over one

period. The complete expression is written as

Cp=Ag+A,cos (xt’) +A,cos (2kt’) +A4COS (3xt’)
+Bysin (kt/) +Bysin (2kt’) +B3sin (3kt/)
+.

(3a)
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0y =0+ cos (kt/) (3b)
0=0,C0S (kt’) (3c)
0= (-0gk) sin (kt/) (3d)

Here, k is the reduced frequency, t’ is the nondimensional time, o, is the
mean angle of attack, and o, is the amplitude of angle-of-attack change.
Following the convention in the classical airfoil theory, the analysis is best

performed in complex form as follows:

: / , ; /
CpL=RBo+ (A;-1By) e Kkt + (A,-1B,) et 2kt

o (4a)
+(A3"lB3) elBkt + .
o=0l, ekt (4b)
& =(orgk) e'k (4¢)

An important step herein is to convert Eq.(4) into a formula in terms of a(t")
and & (t"). A "successive Fourier analysis" has been used effectively to split
cos(nd) and sin(n6) into n+1 terms which include cos™8 and sin™6 and other
cross-product terms. Once the coefficients AJ-,Bj at different frequencies are
obtained by Fourier analysis, the next question is what the appropriate

expression is for the phase function to represent the lag effects throughout
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the whole range of k. From pastrexrperience(Ref.lo and 12), it was found
that Padé approximants provide an accurate approximation of the
theoretical phase functions. Therefore, in the present model the response
will be put in the following form including the products of amplitude

functions and phase functions:

Cp = Ap (k)
+ Cl x [Ella + E21O( + (Hlla + H21OL ) X (1 - PDl)]
+ C2 * [Elz% + E220'(2 + (leaz + H220L0t + H320L2) (5)
* (1 - PDz)]
# Cy * [By30 + Epylly + (Hy30® + Hy3020 + Hi3002 + Hys0f)

x (1 - PDy)]
+ .

where PD’s are Padé approximanté of order 2 and are defined as

— , (6)
P3] (lk) + (lk) + P4J

PDJ =

E o j+Eg;0 j ete. are the zero-lag response; and the variables dj and & ; are

defined as
: j Aijkt’

aj=1kao e

to be consistent with higher order terms.
Finally, a general expression for the nonlinear aerodynamic models

is constructed. This expression is to interpolate a complete set of harmonic-
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oscillatory data with different frequencies to result in a formula for all
frequencies. The response calculated at the test frequency encompasses the
classical linear theory. It is noted that the response in time domain is given
by the real part of the summation from each mode in Eq.(5). The
expressions for all aerodynamic force and moment models are similar and
will be determined with the fo}lpﬁpg optimization procedures.

2.2 Inner Optimization Procedure Without Constraints

The main objective in the inner optimization procedure is to
determine the E and H values for each mode independently by data-fitting
the AJ and BJ- at different frequencies.

In the previous study, ti;e rﬁrst term in Eq.(5) was assumed to be
constant based on a set of experimental data for a 70-deg. delta wing. After
two more sets of experimentarlr glata have been examined in this research,
it is found that a linear polynomial function of k for Ay(k) is better than a
constant, especially in modeling Cp résponses. The CJ-, which are given and
unchanged in the inner procedure, are reference values and used to
normalize the response given by Aj—iBJ- in the least-squared-error method.

The inner optimization procedure mainly consists of two major
methods. They are

(1)Leasrt-squared-error method: For fixed E and H values etc., the

Plj,sz,P3j,P4j are determined by minimizing the sum of squared errors.
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(2)Gradient method: The values of E and H etc. are varied so that the
sum of squared error is minimum.

According to the previous study, a two-level gradient method is more
effective than a straightforward gradient method because of the type of
nonlinearity in this optimization problem. The detail about the least-
squared-error method and gradient method are discussed in the following.
The idea is illustrated in the flow chart of Fig.2.

2.2.1 Least-Squared-Error Method

At a specified reduced frequency, the magnitude of Fourier

components in Eq.(4a) written in complex form is Aj-iBj. So

. j . 2
Aj'—lBj = Cjag * [Eljlk + Ezj(*k ) (7

+ (amplitude function) 3* (1—PDj) ]

For the assumed values of E and H etc., the only unknown variables in
Eq.(7) are the coefficients of Padé approximants. Eq.(7) is rearranged as

follows with all known values being on one side:

A, - iBy - Eq4 ik - Epy (-k?
Vi o+ iW, =1 - 3 3 13 ?3( )
J J (ampIlitude function) 4

(8)

P3y (ik)? + (ik) + Pyy

10
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It should be noted that A;-iB; in Eq.(8) has been normalized by Cjocoj. If both
sides of Eq.(8) are multiplied by the denominator of the Padé approximant

and separated into real and imaginary parts, Eq.(8) becomes

Re = Pjk? - Py Vik® + Py V- W k = 0 %a)
and

Im = Pyk + PyWik? - PyW; - Vik = 0 %)
Then, the coefficients of Padé épproximants, i.e. Pij , are chosen by

minimizing the sum of squared errors with different k’s. That is,

Err = X Re(k;)? + X Im(k;)? (10)

By equating the first derivatives of Eq.(10) with respect to variables
Plj,sz,P3j and P4j to zero, the coefficients of Padé approximants can be

determined from the following equation:

. . , i ]
K 0 -YV.k: kS
ki 2 v, ; YV k§ puy | 2w,k
0 Xk YWk -2W kg P, 2
4 i 154 i 2| Ivv, k2| (A1)
Iviki Twkd Tvikiewich -Dovikiewixd) Bl o

2
1 1
2 k%) Tviawd C a3l L ]

1

4 2

1 X

YV.kZ -Tw.k: X (vikZ+w?
L 1°*1 11 11 1

where i is the index for different frequencies used in acquiring the

experimental data, and the mode subscript j on V and W has been omitted.

11
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2.2.2 Gradient method without constraints

Once the unknown coefficients Plj,P2j,P3j and P4j are found, a one-
dimensional gradient method is adopted to find better E and H values
which minimize the sum of squared errors. The sum of squared errors is

defined as :

S = E [Aj—(Aj>numerica112 + Z [Bj"(Bj)numerical]z (12)

where (4 - Re[ RHES of Eq.(7) ]

numerical ~

(Bi)numerical = Im[ RHS of Eq.(7) ]
Because of the difficulty in locating a global minimum in a straightforward
gradient method, a two-level gradieﬁtrmethod described in the following is
used in this investigation.
(1First level

Step 1: The current E or H value is perturbed by a small amount AE
or AH to find the gradient of sum of squared errors.

Step 2: Each E or H value advances one step to new value according
to its local gradient obtained in step 1.

Step 3: Repeat Step 1 and Step 2 for each variable E or H until
several iterations has been reached(it is set to be 5 in the current program)

(2)Second level

Repeat the first level untirlts:rét\;ézr'al iterations has been reached(it is

12
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set to be 10 in the current program).

2.3 Outer Optimization Procedure With Constraints

As mentioned earlier in the introduction, the results for E and H
values by the inner optimization procedure are not unique. They tend to
vary with different initial guesses of E and H values. Moreover, not all of
these results are acceptable due to the requirement that the denominators
of Padé approximants must have real negative roots only. the latter
requirement is necessary so that in time domain the corresponding
exponential terms will die out at large time. A straightforward method
which directly adds this requirement as constraints to the inner
optimization loop has been tried. Unfortunately, for most cases, it was
found that directly imposing constraints to the two-level gradient method
tends to make the final results close to the initial guesses of E and H
values. In other words, the constraints block the path of searching vector
obtained in the gradient method so that a global minimum solution can not
be reached in such a situation. To avoid this problem, an outer optimization
loop has been added outside the inner optimization procedure. THe outer
optimization procedure is based on the same search technique as the inner
one, i.e. the gradient method, except that additional constraints are
imposed for the purpose of choosing proper initial values for E and H. A

question arises as to what would be the objective function of the outer

13
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optimization procedure. From the experience of validating the indicial
formulation, an objective function which tends to minimize the lag effect of
phase function in time domain at 1=0 is chosen. That is, (1.-ay;-a9) is
minimized.

A further examination of Eq.(5) is needed at this time. The remaining
variables which are not calculated by any optimization procedure are Cj.
Theoretically, E and H values are inversely proportional to Cj for a given
response Aj-iBj, and can be adjusted to take appropriate values in the
gradient method for a given reference value of Cj. But, numerical
experimentation shows that this is not true. The reason is that the given
response A-iB; in Eq.(8) is normalized by Cjocoj, while the E and H values
always start from the same built-in initial guesses. In other words, the Cj
must be properly chosen in a way to make the present method more
workable and user-friendly in analyzing any given set of test data.
Therefore, one more outer loop has been added outside the first outer
gradient method to determine the best value of CJ- within a feasible range
of Cj. To illustrate the necessity of this additional outer optimization loop,
test data for the 70-deg. delta wing(Ref.13) used in Chin and Lan’s paper
are reanalyzed by the modified method. Significant improvement at small
time can be seen in the constant-rate pitch-up motion(Fig.3). The detail of

the two-level outer optimization procedures are discussed in the following,

14
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and the flow chart is presented in Fig.4.

2.3.1 Gradient Method With Constraints

Unlike the gradient method in the inner optimization loop, the
gradient method used in the outer loop is imposed with a constraint which
requires all roots of the denominators of Padé approximants to be real and
negative. In addition, another special constraint which needs to be applied
only to the analysis of Cpy responses is that E;; can not be negative
according to the classical linear theory. By treating the whole inner
optimization procedure as a "function box", a gradient method with
constraints which comprises a gradient-search process and a series of
checking-up has been implemented. This includes the following three steps.

Step 1: Find an acceptable starting point

For a given C;, the starting initial guesses for E and H values are
assumed to be a set of optimal initial values from the previous Cj or a set
of build-in initial data in case the search of the previous C; finds no
reasonable starting values. If this starting point violates the constraints,
each of E and H values will take turn to advance one step(maximal number
of steps is set to be 4) until a reasonable starting point is found.

Step 2: Construct an acceptable gradient vector

Once an acceptable starting point has been found, a gradient vector

is constructed by separately perturbing a small amount AE or AH for the

15
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current initial guess. If the perturbation in any of E or H values leads to
an unacceptable result, the gradient in the corresponding direction will be
set to zero. It is noted that the objective function in this gradient method

is defined as

Fi=-1./(1.-a,5-a4,) (13)

from numerical experiments, where ay; and ag; represent the lag effects at
very small time.

Step 3: Advance to a new acceptable point

Based on the gradient vector in Step 2, a new set of initial values for
E and H are obtained by advancing a given step length DS. Once again, the
reasonableness of the new point should be checked. If it is an unacceptable
point, the searching procedure must be stopped; and the last acceptable
point found in Step 1 would be recalled to be the optimal set of initial
values of E and H for the given Cj. Otherwise, Step 2 to Step 3 would be
repeated further until several iterations has been reached(it is set to be 10

iterations in the current program).

2.3.2 Determination of reference value G;
In the search of the best reference value for Cj, no gradient method
is needed. A simple way used in the pfesent method is to evaluate different

Cj over a feasible range. Based on the experience in analyzing the test data

16



v

e

U0

!

Ll
'

i

[ ! L]
o lak

Y

f

11

o

!
|

100

T

il

o

i

L ingh

HH‘ L
ikl i

presented in this report and the earlier test data(Ref.13) used by Chin and

Lan, the optimal Cj usually satisfies the following inequality.

Here, o, is in radian and j is the mode index. So, a set of feasible C; for
the second level search can be built up. Then, a cost function which is

defined as
Fp = lay + azjl + laml + Jay,l (14)

is used in the evaluation of CJ-. The best reference value of CJ- is determined

by selecting the CJ- with a minimum cost function.

17
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3. INDICIAL FORMULATION

3.1 General Mathematical Formulation

According to Tobak(Ref.14), in linear theory exponential functions
which are obtained by applying the Foﬁrier integral to the phase functions
in frequency domain are good representations in time domain for
aerodynamic response corresponding to a step change due to the asymptotic
nature of exponential functions. In Chin and Lan’s paper this approach was
applied to the nonlinear model r:arild successfully set up a general
mathematical formulation, called "indicial formulation". A brief review of
this formulation will be given in the following.

Once the appropriate coefficients in Eq.(5) have been found for a set
of harmonic responses, Eq.(5) can be rewritten in a compact form by

absorbing Cj into E and H values as follows:

m
CL = Ao(k) + J§1 (Eljaj + EZJCXJ) (15)

m
+ X (amplitude function)

*+ (phase function) y4
j=1

3

where phase functions are defined as

_ Pyy (ik)? + Ppy (ik)
P3; (ik)? + ik + Py
i (3jk) ajy i(Jk) azy

T(3K) + Jazy 1(3K) + Jagy

(16)

18
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Based on a step input (Ref.4 ), the phase function will be converted into
exponential functions in time domain but the amplitude function is kept
unchanged. Therefore, an indicial response Cy, for the circulatory lift, i.e.

the third term in Eq.(15), can be defined as

m
(amplitude function) 5 x (l.-aj4e
i=1

-azjjt"azje—aqjjt)
(17)

From Eq.(1), it is known that aerodynamic response at time t is made of

Lindicial —

three parts. The first part is the initial response at the starting point. The
second part is the response without hysteresis effect; while the last part is
the indicial response due to changes in a and 0. in the prior motion. The
initial response C;(0) is obtained by setting the running variable 1 to zero
in the indicial response C; and the zero-lag response term is identical in
every harmonic motion. Then, the integrands in the third part can be
determined explicitly by taking derivatives with respect to o and o from
Eq.(17). It should be noted that an average value C,, also will be added in
Eq.(1) because o in the amplitude functions of Eq.(17) denotes only a
perturbation from o, in the harmonic model. Therefore, the final form of

indicial formulation for arbitrary motions is given as

19
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Cplth) = CLindicial

m t d (a.f.) ;

t ]
+ _ "% (l-aqze
32170 do ( 13

L) , 1 ,
-a t! -1 -a t' -1
3jJ( ) e 4j3( ))

azj

ft, d (a.f.)y4 ~a3y3 (t/-1) -a”j(t’—r))

m
* VLEI o —aw — *TRse ~923°

3
(18)

3.2 Implementations of Indicial Formulation

To perform the time integration in Eq.(18) for arbitrary motions,
some special numerical implementations have been made in the present
program. First of all, a 3-point Simpson rule is chosen to evaluate
numerical integration. Secondly, an arbitrary motion has to be represented
locally by a cosine function in order to utilize the results of harmonic
modeling. At a certain time of ani arbitrary motion, the total angle of attack

o, and &, can be described by the cosine and sine functions as

04 (T) =0 +0,cos (KT +0) (1%9a)
0 (T) =-0yksin (kT+0) (19Db)
20

/-1, a(t), o(1) lz=0 + Cave + jzl (Ey 404 + Ez404)

do (1)
— dt

do(t)
—— drt
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By knowing the harmonic model’s mean angle of attack o, and amplitude
0, an equivalent frequency k and an equivalent phase angle ¢ at a given
instantaneous time 1 can be solved by Newton’s method. To smooth out
possible discontinuity in response when the given motion has a sudden
change in &, an o, which is slightly greater than the actual amplitude is
frequently used. It should be emphasized that this dose not change the
instantaneous values of «; and &, in the actual time history of motion. It
merely changes the values of equivalent frequency k and phase function ¢.
Finally, the C,,, in Eq.(18) which was assumed to be a constant in the
previous study has been reformulated. A constant term A, in the harmonic
modeling is now replaced with a linear polynomial function of k for Ay(k).
Based on the similar concept inrthre indicial response, the C, . at a given
t’ should be made of all Ay(k) of prior states in the motion up to the current

time. So, a simple way to calculate C,,, is to take an average, i.e.
M
Cave = [ X Ao (kp) 1 /M (20)
M=

where m is an index for running time, and k,, is the equivalent frequency
based on the original amplitude in the harmonic model.

In addition to the above-mentioned general implementations in the
indicial formulation, several special treatments used in some particular

motions will be discussed in the next chapter.
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4. RESULTS AND DISCUSSION
4.1 Test Data

In the present study, test data for three kinds of motions obtained at
the NASA Langley Research Center are taken to be analyzed or compared
with numerical results calculated from simulations of the specified motion.
They are described in detail as follows:

(1DLarge Amplitude Harmonic Motions: Test data of harmonic
motions with large amplitude are used for numerical modeling in Fourier
functional analysis. In this category, there are two groups of test data, and
each group includes three sets of aerodynamic data for C;,Cp and Cy; with
five reduced frequencies. The ﬁrsit”é’l;oup is for a 70-deg. delta wing, and the
second one is for an F-18 model. Both test models are harmonically
oscillated about 32.5 deg. of angle of attack with an amplitude of 30 degree.
This large coverage in angle of attack which contains low o region, near-
stall region and post-stall region exhibits a good characterization of
hysteresis behaviors. In addition, the test data for a 70-deg. delta
wing(Ref.13) used in Chi£1 and Lan’s paper also have been reanalyzed for
the purpose of comparison.

(2)Constant-Rate Pitching Motions: Test data of constant-rate
pitching motions are used for validation of the indicial formulation in

arbitrary motions. The experimentéi data in this category were taken from
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the same models as described in the large amplitude harmonic motions.
Responses with three pitch rates for each model have been measured in
pitch-up motions as well as pitch-down motions. The angle of attack starts
from 2.5 degree and stops at 62.5 degree in the pitch-up motions; but moves
in reverse in the pitch-down rnotiohs;

(3)Medium Amplitude Harmonic Motions: An additional group of
forced harmonic oscillation data for an F-18 model provides a further
examination of the interpolative p'roprer'ty of the mathematical model. The
mean angle of attack and amplitude of oscillation in this harmonic motion
are intentionally set to be different from those in the large amplitude
harmonic motions. In the present fest, the F-18 model was harmonically
oscillated about 22.5 degree angle-of-attack with an amplitude of 20 degree.

4.2 Fourier Functional Analysis

As pointed out in chapter 2, a constant term for Ay(k) in the previous
study is replaced by a linear polynomial function of k, especially while
analyzing Cy responses. To show the necessity of this change, the term A,
versus the test reduced frequencies for the F-18 Cp responses are plotted
in Fig.5(a), and also the numerical results by both models are compared
with experimental data at the highest k in Fig.5(b). Both figures show that
a discrepancy of about 0.1 exists if an average value for Ay(k) is applied.

Regardless of the optimization procedures, other task to improve the
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accuracy of the present method is to include the static test data as
additional dynamic stall data at a very low reduced frequency, such as
k=1.0E-6. The main purpose of this implementation is to avoid possible poor
extrapolation at low reduced frequency.

The results by the Fourier functional analysis are presented in Fig.6
for the 70-deg. delta wing and Fig.7 for the F-18 model respectively. Five
Fourier terms are used in this analy§i§ and the calculated coefficients for
the two aerodynamic models are lisféd in Table(1) and Table(2) respectively.
All results were done by the same set of build-in initial data for E, H and
Cj without any try-and-error guess by a user. The results show that the
present method is able to capture ;1”11 major hysteresis effects. Compared
with the up-stroke data, most of the down-stroke data are modeled with
less accuracy. The reason can be found by taking a further look at the C,
test data for the presently-used 70-deg. delta wing (see Fig.8(a)) and those
for the other 70-deg. delta wing(Ref.13) used in Chin and Lan’s paper (see
Fig.8(b)). In Fig.8(b), it appears that the flow becomes attached in the low
o region (0-20 deg.) during the down-strokes. On the contrary, strong
hysteresis effects still exist under similar conditions in Fig.8(a). So, the
trend of the hysteresis behavior on down-strokes is not as consistent as that
on up-strokes in the presently-used test data. This may imply that a higher

order Padé approximant could be needed to model responses which have
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more complicated hysteresis effects. It is noted that the mismatched part
of F-18 Cy; responses at k=0.015(see Fig.7(c)) is due to the even more
inconsistent trend of the hysteresis behavior from one frequency to the
other occurring in the region of high angle of attack.

4.3 Indicial Formulation

4.3.1 Harmonic Motion and Harmonic Ramp Motion

The harmonic motion is used to compare with Fourier modeling
results which have been well fitted with test data. On the other hand, the
harmonic ramp motion can be used to show how good the agreement with
the static value is at the time when the motion stops.

As mentioned in chapter 2, discontinuity could happen in the
calculation of time integral if the given motion has a sudden change in o .
This can be easily solvéd by slightly increasing the amplitude of the original
model, such as by 2.5 degree. In the following calculations, the amplitude
(a) which was 30 degree in the testing is set to be 30.5 degree for the
harmonic ramp calculation and 32.5 degree for the constant-rate pitching
motions respectively.

The results of harmonic motions and harmonic ramp motions are
plotted in Fig.9 for the delta wing and Fig.10 for the F-18 model
respectively. In the harmonic ramp motions, all responses eventually

approach the static value corresponding to the angle of attack when the
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motion stops.

4.3.2 Constant-Rate Pitching Motion

This is used to compare with test data at the same pitch-rate.

Two special treatments about this type of motion should be
mentioned here. First of all, a question arises about the results by Eq.(19),
when the actual angle of attack (o in Eq.(19)) is near the two ends of a
harmonic model’s o range, for example 2.5 or 62.5 deg. in the present test
model. In such a situation, the eduirx}élérnt k obtained from Eq.(19) tends to
be high because the corresponding ¢, is too large comparing with & in the
harmonic model. From the experience in calculating the constant-rate
pitching motions, it was found that an unreasonably extrapolated high
value of k at a starting point would lead to an unacceptable result in
simulation. So, one of the variables, o, and o must be treated as an
unknown instead of k, when the extrapolated k-value is greater than a

given allowable value k_ ... Through a series of tests on both variables, the

max-
amplitude of harmonic model o, was chosen as the other unknown in case
the extrapolated k-value exceeds the given allowable k_ ... Therefore,

Eq.(19) will be replaced by the following equation if the equivalent

frequency k in Eq.(19) is larger than the given k,,.:
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04 (T) =0 +0,COS (KpayT+0) (21a)

0 (T) =-0gKpax SIN (KpaxT+9) (21Db)

where o and ¢ are the unknowns, and are, again, solved by Newton’s
method.

Secondly, as the constanta-rré;(; ;itch-down motions start at a high
angle of attack, the time integration should start from a static value by
setting t'—>oo to the first term of Eq.(18).

The results of the constant-rate pitching motions are presented in
Fig.11 for the delta wing and Fig.12 for the F-18 model respectively. As
expected, all results for pitch-up motions are well predicted except in the
region near the starting point. The reason for this is that the phase lag
terms (1.-a1j-a2j) for 1=0 in the first term of Eq.(17) are not able to perfectly
represent a starting point which physically does not involve any hysteresis
effects. On the other hand, some of the results for pitch-down motions are
not as good as those for pitch-up motions. There are two possible reasons
for this. Firstly, the harmonic model which does contain large hysteresis
effects in the high angle-of-attack region can not precisely depict an initial
response at the starting point in the high o region which definitely

possesses a static value without any phase lag. Secondly, the poor
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numerical modeling of harmonic motions in down-strokes which is caused
primarily by the non-smooth variation of the response from one frequency
to the other, especially at low and moderate k, also is a reason for these
discrepancies.

4.3.3 Validation of the Interpolative Property

Harmonic responses with a lower mean angle of attack(c ) and a
smaller amplitude(a,) for the F-18 model are calculated by using the
indicial formulation to compare with the test data in the same conditions.
The aerodynamic models are still those based on the test data with o =32.5
degree and ;=30 degree.

Since the o range and reducreidr frequencies still are within the range
of the original harmonic model, no extrapolated equivalent reduced
frequencies are expected. For the known o, and étl time histories, the
equivalent k and ¢ at certain timer'r can obtained from Eq.(19) without any
change in o, and o, of the original harmonic model. To avoid the error
which usually happens at a small time, the integral in Eq.(18) are
evaluated from the third cycle and only over one period for the periodical
motion.

The results are plotted in Fig.13. Comparing with the experimental
data, the simulation by using the indicial formulation shows reasonably

good agreement. It is also shown that the higher the reduced frequency is,
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the better the calculated responses are. The reason is that the simulation
for higher reduced frequency includes higher equivalent k which are well
modeled in the original harmonic modeling than the simulation for lower
reduced frequency. Moreover, some other results should also be noted in
this simulation. first of all, the results of Cp, responses reveal that using a
model containing large hysteresis effects to calculate a motion with less
dynamic effect may not be as goocili és expected(see Fig.13(b)). Secondly,
although the analysis for Cy; responses fails to model accurately the high
a region (0>40 deg.) at low and moderate reduced frequencies (see Fig.7(c)),
the harmonic motions with a o-range below 42 deg. still can be well

simulated by the indicial formulation.
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5. CONCLUSIONS

In the present research, a method involving Fourier functional
analysis and indicial formulation proposed by Chin and Lan has been
extensively examined and modified for the purpose of applications to
airplane configurations. Two sets of test data from NASA Langley Research
Center which include a 70-deg. dglﬁa wing and an F-18 model have been
used to show the applicability of Fourier functional analysis and validate
the indicial formulation. Extensive examination of this method has led to
the modification of the method by adding an outer optimization procedure
with constraints to the original optimization loop to automatically choose
appropriate starting values forﬁ the iunknowns in the nonlinear optimization
process.

The results from the Fourier functional analysis showed that the
general expression for the aerod&namic response to harmonic motions
throughout a range of k was capable of accurately modeling nonlinear
responses with large phase lag except in the region with an inconsistent
hysteresis behavior from one frequency to the other, such as the F-18 Cy
responses at low reduced frequencies. The results by time integration of the
indicial integral showed the appliggbﬂity of the latter to harmonic motions
and ramp-type motions. Moreovéf;: all pitch-up motions with constant rate

were well simulated by indiciéiwfrorl;}nulation; while the results for the
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corresponding pitch-down motions were produced with less accuracy but
still in a correct trend. Finally, The results for the F-18 model’s
aerodynamic response to harmonic motions with different mean angle of
attack and amplitude was indicative of good interpolative property of the

present aerodynamic models.
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(a) C, Responses

A(k)=0.567+0.140%k

34

il G Eyj Eyi Hy | Hy | Hy | Hy | Hy | Hy
1| 25 |-0415 |-0232 | 0.150 | 0.750
2| 15 0.479 | 0.048 | -0.850 | -0.948 | -1.026
3| 205 |-0268 | 0.114 | 0.350 | -0.650 | 1.050 | 0.850
4] 130 |-0095 |-0043 | 0.050 | 0.377 | 0.930 | -0.082 | -0.057
5| 160 |-0.075 | 0.042 | -0.050 | 1.378 | 1.092 | -0.961 | -0.052 | 0.850
il Py Pyi Py; Py ay 39 | 8 Ay
1 |-1671 | 0.941 | 15.134 | 0.0010 | 0.9883 | -2.093 | -.0010 | -.0651
2 | 3789 | 0.018 | 13.813 | 0.0010 | 0.0142 | 0.2601 | -.0010 | -.0714
3 | 11.952 | 0.927 | 7.579 | 0.0010 | 0.9203 | 0.6477 | -.0010 | -.1310
4 | -1.216 | 0.450 | 6.477 | 0.0236 | 0.7792 | -.9669 | -.0291 | -.1252
5 | 4.821 | 0.681 | 5.296 | 0.0361 | 0.9196 | -.0093 | -.0486 | -.1402
(b} Cp Responses
Ay(k)=0.476+0.8248*k

i G By Ey | Hy | Hy | Hy | Hy | Hy | Hg
1] 13 1.129 | 1.166 | 0.650 | 0.034
2 | 22 0.175 | -0.287 | -0.150 | 1.050 | 0.650
3| 28 0.309 | -0.009 | -0.050 | -0.123 | -0.354 | 0.877
4 (110 | 0.068 | -0025 | 0.050 | -0.661 | 0.854 | -0.059 | -0.053
5 | 21.0 | 0.012 | -0.010 | -0.050 | -0.050 | -0.050 | -0.050 | -0.050 | -0.05
b Py Pyi Py | Py 2y i 3; ay;
1 | -6.240 | -0.067 | 8.550 | 0.001 | -0.062 | -0.668 | -.0010 | -0.116
2 | 5295 | -0203 | 6.065 | 0.001 | -0211 | 1.084 | -0010 | -0.164
3 |-11.78 | -4.079 | 4.015 | 0.042 | -6.067 | 3.132 | -.0538 | -0.195
4 | 1231 | -0.224 | 18.868 | 0.004 | -0.324 | 0.977 | -.0041 | -0.049
5 | 1.247 | 1.079 | 3.063 | 0.001 | 1.084 | -0.677 | -0010 | -0.325

Table(1) Model Coefficients for A 70-deg. Delta Wing.
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(c) Cy; Responses

Ay(k)=0.046+0.0773*k
J Cj E 1j E 2i H 1j H2_1 H3) H4j H5j HGJ
1| 15 |-0923 | 1.127 | -0.050 | -0.476
2 { 25 |-0475 | 0263 |-0.050 | 1.050 | -0.050
3| 325 |-0.022 |-0.015 | 0.050 | -0.667 | -0.053 | -0.048
4 {110 |-0.138 | -0.003 | 0.050 | 1.050 | -0.050 |-0.050 | -0.050
5| 90 | 0023 ]-0025|-0.050 |-0.150 | -0.050 | -0.050 | -0.050 | -0.05
3] Py | Py | Py | Py | 2y 3yi A | B4
1| 9.234 | 2.908 | 3404 | 0.062 | 5206 |-2.494 | -.0877 | -0.206
2 | 0954 |-0.340 | 3512 | 0.001 |-0.343 | 0.615 | -.0010 | -0.283
3 | 11.594 | 0.312 | 11.369 | 0.001 | 0.307 | 0.712 | -.0010 | -0.087
4 | 3533 | 0.811 | 8148 | 0.001 | 0.821 | -0.387 | -.0010 | -0.122
5| 0361 | 0.785 | 0.874 | 0.001 | 0.786 | -0.373 | -.0010 | -1.143
Table(1) Concluded.
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(a) Cy, Responses

Ay(k) = 1.131+0.804*k

36

J G Ey By Hy Ho i Hy Hy; He;
1 1.9 1.068 1.262 | 0.350 | 0.819
2 1.7 0.480 | -0.238 | -0.950 | -0.250 | -0.950
3 1.45 -0.057 | -0.110 0.150 1.050 1.050 | -0.950
4 1.0 -0.310 | -0.062 | 0.850 | -0.950 | -0.950 | 1.050 | 0.550
5 12.0 0.045 | -0.017 0.050 | 0.652 1.096 | -0.068 | -0.050 | -.050
3| Py | Py | Py | Py | ay Bg; G 3y
1 |-1722 | 0.244 | 14.046 | 0.001 | 0.2696 | -1.496 | -.0010 | -.0702
2 ]-0.142 | -0.005 | 0.572 0.991 -.0044 | -.2436 | -.0010 | -1.748
3 | 50.422 | -0.226 | 16.683 | 0.001 | -.2882 | 3.311 | -.0010 | -.0589
4 | 0.1656 | 0.710 1.784 0.001 | 0.7127 | -.6199 | -.0010 | -.5596
5 | 0.3468 | 1.456 0.204 0.001 | 1.4559 | 0.2427 | -.0010 | -4.898
(b) Cp Responses
Ay(k)=0.916+1.552*k

il ¢ Ey | By | Hy | Hy | Hy | Hy | Hy | Hg
1 2.5 0.162 | -0.023 | 0.750 | 0.077
2 2.5 0.511 0.259 | -0.150 | -0.250 0.250
3 1.0 -0.115 | -0.037 | -0.950 1.050 1.050 1.050
4 7.0 0.063 | -0.003 0.050 | -0.750 | -0.050 | -0.050 | -0.050
5 | 28.0 -0.00'; 77-0.002 0.050 | -0.150 | -0.050 | -0.050 | -0.050 | -0.05
J Py Py Py, Py a3 4gi agi 444
1 | -5.174 0.009 9.309 0.001 0.014 | -.5699 | -.0010 | -.1064
2 156.012 | 0.746 | 19.232 | 0.001 0.717 | 2.1958 | -.0010 | -.0510
3 | -0.146 0.287 | 2.023 0.001 0.288 -.3602“ -.0010 | -.4932
4 | 10.592 | -0.411 | 17.481 | 0.001 | -.4377 1.0437“ -.0010 | -.0562
5 |-0.307 | 0.929 | 2756 | 0.001 | 0.934 | -1.046 | -.0010 | -.3619

Table(2) Model Coefficients for An F-18 Model.
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(c) Cy; Responses

Ay(k)=-0.07614+0.7105*k

J Ci Eli E2j Hlj H2i H3j H4j H5i Hsi
1| 25 |-0.942 |-0.954 | -0.150 | -0.850

2| 11 |-0098 |-0269 | -0.350 | 0.780 | -1.001

3| 175 |-0117 | -0.112 | -0.250 | -0.050 | 0.250 | -0.050

4|30 |-0098 | 0021 |-0.050 | 0.798 | 0.994 | -0.056 | -0.050 |
5 |23.0 |-0.018 |-0.005 | 0.050 | 0.856 | -0.066 | -0.050 | -0.050 | -0.05
3] Py | Py | Py | Py | 2y Bi | 8y | B

1 |-1464 | 0.667 | 1.015 | 0.001 | 0.6702 | -2.112 | -.0010 | -.9840

2 | 22.400 | 0.141 | 23.931 | 0.001 | 0.1241 | 0.8119 | -.0010 | -.0408

3 | 35.605 | 0.277 | 26.874 | 0.001 | 0.2543 | 1.0705 | -.0010 | -.0362

4 | 4007 | 1086 | 5440 | 0018 | 1.2947 | -0.558 | -0207 | -1631

5 | 3289 | 0.926 | 4.790 | 0.001 | 0.9316 | -0.245 | -.0010 | -.2077

Table(2)  Concluded.
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Figure 3 Comparison of Unsteady Lift Coefficient in
Constant-Rate Pitch-up Motion by The Modified
Method with The Results by The Original
Method for A 70-deg. Delta Wing.

i

Lo

42

I

ey



o owr o ur

£

o

I

| I

<define> |OP= inner optimization procedure (fig.2)

set E and H as the optimal
initial guesses from the
previous Cj

are E and
H acceptable?

advance to

E and H are reset
by the built-in
initial data

advance E or H
sequentially by
0. I interval

calculate Fi
by eq.(13)

Figure 4 Flow Chart for The Outer Optimization
Procedure.

43



BL

YRR

!

P

Tl

Il

i

!

1
!

!

LHI

il

)

I‘n

"
1

LER]
|
i

i

LIE]

Hi-

i

uin

ny

@

change to
next E orH

perturb £ or H from
the current value

set gradient) (calculate F1 and
to zero gradient Ge or GH

H are perturbed

[E new = E old -GE*DS)
H new = Hold —~GH*DS

Figure 4 Continued.

44



(I

L

(AN

B
B

l

i

]
|

t

Tl

L Ehin

‘H " !lw

i

11!

(e

change to
E1j

fmd the Cj w1th
a minimum F2

Figure 4 Concluded.

45 .

calculate F
by eq.(14)

)




M\ i

[

i

ﬂ 1

e
Ll

m." !

)

LV

ol

Gili

!

L

"
k

!

l

i1

(MO i

[l

il

I
i

L

1.50
1.30
1.10
0.90
0.70

0.50

3.0
2.5
2.0
1.5
1.0
0.5
0.0

-0.5

T T T ' T T ¥ | ¥ T T I T T T ! T T ¥ '[ T T T
i —©&— Linear Function i
R — — - Constant by Average N
_ o
N o -~ - T T T T T~ ]
o _
i I i 1 l | 1 1 l 1 ! 1 l 1 i 1 | I\ 2 I l 1 1 I ]
0 0.02 0.04 0.06 0.08 0.1 0.12

Reduced Frequency k
(a) Linear function of Kk for Ao(k)
L L e e rYeTrrTTe
k=0.1116

lllllllLJIlllAllJlLlllllllllililjl

IlllrlllllllIIIr]II]TIIlll!I!]lIIl

o increasing
a o decreasing
e = .",1/“ . -
= = = linear function
— — -constant value
i I L__k l 1 i 1 I l i - i I 1 i I__I l 1 J 1 1 l 1 L i 1 I 1.1 1 1
0

10 20 30 o 40 50 60 70
(b)Numerical Modeling for k=0.1116

Figure 5 Comparison of Different Models of Ay(k) for The
F-18 Cy Harmonic Responses.

46



{

il

Crl

U1

Ui

.
itk

L

m B EY

m

e

il

bl

£

2.5

2.0

1.5

0.5

0.0

-0.5

2.5

2.0

1.5

0.5

0.0

-0.5

T ¥ T T l T T T T I T T T ¥ { ¥ £l ¥ T [ T T T T I T T T T I T
3 k=0.0 b
L A
- ]
L i
L i
L i
- _
L i
+ 4
L 4
ETENN S TS S B 'O S N | Il 1 11 L,,,l D TN N N 1 Y N | S T T Lo 3 1

0

10

20 30 40 50 60 70

I L L L L L L e L

v v vy v ¢ T T T

o wincreasing k=0.0262
& adecreasing
modeling results

IlIllllll!Illllllllllllllllll

0

TS S WU U UL VAT SE U S SN S ST SN A NN TR SHS S U N SR ST ST SO N SN SN S S RN ST S

10

Figure 6

20 30 40 50 60 7
o

~ - (a)Lift Data

Analysis of The Harmonic Responses for A 70-
deg. Delta Wing.

47

0



il

{113

ane

o

LA

U

i

gl

I

T

@i

2.5

2.0

1.5

0.5

0.0

-0.5

2.5

2.0

1.5

0.5

0.0

-0.5

LI T

I L L L L L L

1 1 LJJ L 1 1 i l 1 1 1.1 [ i 1 L 1 l i 1 X

AR T A A SIS NN B

k=0.0556

PSRN (OO TR S N S ST S T U

PSS YT NS YA [ OO0 VA A S NN SN S ST SN AN TN N NS T Y S S N N NS M

20 30 40

50 60

70

T T T T [ T T T T l T T T T ‘ ) T T 1] l T T T T | T T T T ! T T 1 T
i k=0.0968
- -4
[

1 i Jd 1 [ g 1 1 1 [ 1 13 i 1 l 1 L 1 1 [ 1 I 1 1 l L L 1 1 i 1 ] 1 i

O

20 30 40
o

(a)Lift Data
Figure 6 Continued.

48

50 60

70



S R (N

rw e
il

e
il

e

1 Lildaits

M\ rr

K

fmmm "
;i s

e

[

LMY

|
]

il
Wi

I

1
I

!

e
o il

[

m

QU

il 1

|
hildi

{7

2.5
2.0
1.5

C 1.0
0.5
0.0

-0.5

2.5

2.0

0.5

0.0

-0.5

|llII!IIII|I¥|I||IIIIII|IIY!‘I

T LI § L l 1 T T T ] ¥ H i l 1 T 1 T ] T T

1 j [ 1 i 1 | l 1 i 1 I} l 1 L 1 1 l 1 1

¥ T ‘ T T T ¥ I T T T T

k=0.1356

i 1 I i 1 1 i l H i 1 1

IllllllllllllllllllllLlllllll

o

10 20 30 40

50 60

~
o

llll]lllllllll|||l|]llII'l|||

T T r T I 1 ¥ T T ‘ ¥ ¥ ¥ 1 ‘ T T I ' I 1 i

PO S TS YOO SN A VAT NN S UV TN RS S S S S Y Y

T T I T 1 ’ T I T 1 ' T

k=0.1938

NS U U TS S TN S N S N B

IIll]ll!l!lIIIIlllIllllllllLI

o

10 20 30 40
o

 (a)Lift Data

50 60

Figure 6 Continued.

49

~J
o



i

g

i

[
|

B

Ll

{118

i

v

ol

Iy
il

a

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

"r"l‘n":"l LI l" L E SR S s S A S N RN B SN R AN (N AN A N R IR R B B
b B
ol ~
. —
- o .
[ 000 o 90
- o 4
o o) E
o0 -
1 4
PR VOIE VNN SN R0 WS ST S S AU TUUS SR TN SN T SIS SHDE ST S SN SN ST SN NN S SH SN S SN ST S S S

10 20 30 40 50 60

70

TTTTY

bl11’r]17‘r1[1111]#111]!!11

llll'llIliéllllTTTTII[V‘]VIII"IO!

k=0.0262

P VAT S ST SN W SN T SN S S | T SR U U H TN VA SN S N SN S S S S RN S S

[ WA TN NN YT SN ST VOR[N YO ST SN S NN N VAT WO U O S ST SN Y SN S M

o

10 20 30 40 50 60
o

(b)Drag Data
Figure 6 Continued.

50

70



i | i

f"! e

(A

e
dil b

il

LIN]
i |

e

il

i wdi

kil

W

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

A A S

IITTII'I'I

T T

LA L N N L R L I B N B B L B S B L L

k=0.0556

et b by oy o by by Ly gy

T T T T l T T T T I"l’ H T T I T 1 ¥ T I 1 T T T l H T T T ] LS IR I I
k=0.0968 -
o
4
-
4
.
4
—
.
4
4
-4
PR SRS S W N SRS ONY TS VN NN TN SRS WA S R TSN N VR S SR RS T SN SN S S VN G S 1

10 20 30

o

40

(b)Drag Data

Figure 6

51

Continued.

50 60

N}
(@]



ppp
M\Lh\ "

!
i

MHH“
B

]

ol

G I

(T

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

IlTl]l|lT[l|ll]'llllllll

T T T 1

T T T ¥ l ¥ T T T I T T T T I 1 H T T

k=0.1356

I T T T T I T T T T l T T T T

lllIll”llelllilllLllllllAIlJlllllll

llll‘lllllllllIlllllllll‘llll

o

10

20

30

40

50

60

70

LR LA A

L L

T T L

k=0.1938

PERES B T S S T AN

LI S R B (LS A

T

40

(b)Drag Data A

Figure 6

52

50

Continued.

60

70



‘F'm‘"w
Lol

E ol

{

e

-

"

il
i d il

t

rr

1.0

0.6

0.2

-0.2

-0.6

-1.0

1.0

0.6

0.2

-0.2

-0.6

-1.0

|

T T T T

LN R B M B AN A

OOOO

LA S T A B

k=0.0

(o]
?
(o)

PSS NN S U S S AUV NS HVO0 WY UAED S S WD SUNIG NN SN SN NN TR TN SUEY SR SN SN I SN TN SRS

10

20 30

40

50

60

LN A R SR S SR U AL A B ST SN A A

k=0.0262

i 1 1 1 I e 1 1 I i Ao 1 [ S S Y 1 1 l 1 1 1 I L A 1 1 LJ 1 L 1 1

10

20 30

o

40

50

" (c)Pitching Moment data

Figure 6

53

Continued.

60

70



1k

71 r vy v r [ 1 v vt [ T 37 ¥ ¥ T oo T

k=0.0556

— —
b -
-
-

PR VRS SO S NN ST U SAUAS AU Y SHNOT WO ST S NN SRS WU SUUS WY NN TS SN SN S S SN SO S S N SR S S

0 10 20 30 40 50 60 70

LA L R I A N NN S RN SN AN SR N N R Y N A R R Y IR B R L B S A

L k=0.0968

PR YRS VN NS TN TR SR WS HNY SR SN ST SN SSUY VAN SR SN DA NSNS SO SA U GRS (N SR SO S SO NN S SN S |

0 10 20 30 40 50 60 70
a

(c)Pitching Moment Data

Figure 6 Continued.
54



1191 S

I3 M e

e

1.0

0.6

0.2

-0.2

-0.6

-1.0

1.0

0.6

0.2

-0.2

-0.6

-1.0

I T T T T I T T T T I T T 1] T l ¥ T T ' T ! T T T
k=0.1356
1 1 1 1 I 1 i 1 1 J 1 1 1 1 l 1 i L L l 1 1. 1 X l e 1 . 1 I L I 1 1 ]
10 20 30 40 50 60 70
(6
T T T T i T T T T l T T T ¥ k T ) T T l T T T T ' T T T T I T [ T T
k=0.1938

1 1 1 l 1 1 ] 1 ,lﬂl,l 1 ! |

PIRY TS N VLS VAN TR U S DA SN T G SN G T

10

20 30

Figure 6

40

a
(c)Pitching Moment Data

55

Concluded.

50

60

70



HEALY

et

LR

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

2.5

2.0

1

-0.

.5

5

Model.

56

T T ¥ l" LN S B B R A A T 1 T i 7t 7 1 v T T
k=0.0 ]
(o}
A l i 1 1 i l L i i ! 1 i I 1 1 l i 1 I ' 1 L
0 10 20 30 40 50 60 70
04
| T T T T ' v T T T [ T i T ‘ T 1 T T ‘ T T H T T 7 T T I T T ¥ ]
. k=0.0150 ]
:_ © aincreasing _
F g & o decreasing .
I mdeling results ]
i A L 1 1 I 1 1 11 l 1 L i i l 1 L 1 Il i 1 i 1 I i I 1 i I i ’y 1 1 ]
0 10 20 30 40 50 60 70
o
(a)Lift Data
Figure 7 Analysis of The Harmonic Responses for An F-18 -



Ll

[

IS

i - {

LR

(!

Ill1|llll|l|lllll|lllT

LANEE B S ) I T T

1 T T ] 1T

LA A

o O 0O ¢

C

LN R L B SR R L Y B AL R

k=0.0320

llllIllllIIllLIlllllllllIllll

o

10

20 30

40

50

lllllJlLLlllLl,LlllJLLlllllLliLlll

60

~
o

IIIIII[IIII!IIIIIIIITI[I

LALLM A I A A S S Mt

IllllLllLJtLleLJllll

L

T T T ( T 7 T T l T T v T ‘ ¥ T ¥ T | T T T ¥

k=0.0558

€1

PN B R SN S

L L 1 1 l L 1 1 1 I 1 1 i 1 I 1 1 i 1 I i 1 i L

o

10

20 30

40
o

(a)Lift Data

Figure 7

57

Continued.

50

60

~
o



1

wie o Emooan

] ’ ]
("

2.5

2.0

1.5

0.5

0.0

-0.5

2.5

2.0

1.5

0.5

0.0

-0.5

T | I T R N NUU S S B Losovaa 1 o 11

l[llIllllllllllllllllilllllll

10 20 30 40

50

60

ol
(@]

LA S S (N AL IR A B B S S B

LA S S LA S UL B L AL S B B

PR YT T T T A Y VN S U N SN VN T |

OO S SO VA T S N S S T

llllllllllllllllllllll

(@)

10 20 30 40
o

(a)Lift Data

Continued.

58

Figure 7

50

60

70



i

n
i
u

m._...
6 i
o

I

(f iy

Vi

Girn

M

1

3.0
2.5
2.0
1.9
1.0
0.5
O_.O

-0.5

3.0
2.5
2.0
1.5
1.0
0.5
0.0

-0.5

T T 1 1 ' T T T T l T T T ¥

o]

llllll|l||llll]rll]llllllrllrlrlrt

T T T T T T T ¥ I T 1 T I T T T v

k=0.0

lll|Ill]L[llJllLlLlJllllllllllllll

llllIllllllLll]lllllllllllllllIlIL

o

10 20

30

40 50 60

~d
o

LA B R T I S R S B S

LANUIN RN D N 0 S S M S SO O AL U L B

LERNRLEN [ R AR AR R R R B B S B A R

k=0.0150

p v b g g o e b g e v b s ag

0 10 20

30

40 50 60
o

(b)Drag Data

Figure 7
59

Continued.



! : “‘ ;
|

[ .

I [

{

1

181n

1

lllIIIIIGIFIIIITIISITTTIIIII'IlTTT

k=0.0320

IIITTI1TT1I111IIIIIIIIIIllllllllfl'

lllIIIILl]lilJllLlL[llLLlLiJl[llll

IlIlllllllllllllllllIlllllllllllll

o

10 20 30 40 50 60

\l

T T T T ' i T T ¥ ‘ T ¥ T T l ¥ T T I T T T T l T T T T I T T T T

k=0.0558

Il'l’lllllllllllllllllllllllllllll

Lllllllll!JLJ]lllLJLllllll[lllllll

lIIlllllllllllllllllllllllllllllll

o

10 20 30 40 50 60
o

(b)Drag Data

Figure 7 Continued.
60

7



30 ||vllvlllll|llllilvlr1111|Irvll'l*Ill

k=0.0782

lllllllllllllIIIIILIllllllllllll]l

|||||I|l|[ll|l|||Illllllllllllllll

P N S S NS TN VNN T WU VDU T TN TN SUDN NSO N S S | SR TS ST A NS S VAU DU W N S S S |

10 20 30 40 50 60

o
~
o

{

Nl
w

. O T T T 1 T ¥ T T ‘ ¥ ¥ 1 H T T ¥ T ‘ T T T T . T T T T . T T T 1

k=0.1116

|

J
o
(0)]

!
i
O

|

{11
o
5

11
o
o

lllll]llllllll[llll[lllllllllllIlL

k.
o
II[IIIITTIIIIIIIIII]IIII‘IIIIIII|I

!

IH
o
—t
o
[\
O

30 o 40 50 60 70

(b)Drag Data

Figure 7 Continued.
S 61

"



" 1 |

til i I P L BT U

it

g

I‘.‘. '

'

1.0

0.6

AL

1 | N & l i dl L l 1 1. 1

L lanlrr‘tl'llitlrlvl‘[llt‘l’

k=0.0

P USN SIOEE TS SN VSN N WS SO AT SRS NN TR SR SR S N G SR N ¢

10

20 30

40

50

60

70

LN I B B R A A

P DU T D MR Y Y

L

T I B

l T T 1 H I T J T T I' T T ¥ T " T T T T l T ] T 1

k=0.0150

TS R TN N S T DS S VU TN U S

10

20 30

08

40

50

(c)Pitching Moment Data

Figure 7
62

Continued.

60

70



{ IS

il

f

€

i

i
!

IHE

1l L)

{!

1.0

0.6

0.2

-0.2

-0.6

-1.0

1.0

0.6

0.2

-0.2

-0.6

-1.0

T T T T l T T T T I T T T T ‘ T T T T ' T T T T I T T T T ] T T H T

k=0.0320

TR SRR WY S NS0 VAN SR TN SH NN SAVAN SANN N VAU A0 SA TSRS SO S VN SUNY SR SV S Y TR SR SN S NS U S S

10 20 30 40 50 60

AL S NN A A R SRR (L A RO S SR I U A R R (RN AR SR SR RN SRR BN N UL IR S R AN A R

k=0.0558

[T U VD R T S Y EN S T TR T U T WY S SO NS SN VN W U N GR R SR T

10 20 30 40 50 60
o

(c)Pitching Moment Data
Figure 7 Continued.
63




(T

[

1

gl

il

o

LN A R L R S NN R L AL AL LA S R R A B B T T v ¥ 7
-
k=0.0782
J
-
b~ —
.
F
PR S WK VS SN NS VY SN U JN TOUNF NS SO S NN S St I N T S G S Y WA S 'Y | I S T

0 10 20 30 40 50 60 70

T T T T I T T J T l T T T T [ T 7 T T l T T T ¥ ' T T T ¥ I T T T T
k=0.1116
1 1 1 l 1 1 1 1 { 1 1 1 i I 1 1 1 1 L L L L L l 1 1 1 1 l 1 1 1 1
0 10 20 30 40 50 60 70
o

(c)Pitching Moment Data

Figure 7 Concluded.
64



Gl |

) 2'5 i T T T T ' T T I' T i H T T T ‘ T T T T l T T T [ T T f T T T T F ]
0.0 F—0.0262 =
- - — — —0.0556 ]
- — -—0.0968 ]
1.5 r B
-  ——0.1356 =TT RIS S :
- CL 1.0 7
0.5 ]
. 0.0 | -
- -O 5 C i | S S l 1 1 1} l | 11 1 [ N N | l ) I S l S S J 11 .t | i
‘?:: 0 10 20 30 40 50 60 70
- [0
(a)CL responses for the 70-deg. delta wing
tested at NASA Langley Research Center
: 2.5 B T T T i ! T ] T T | L] | T T I ] ] T T T ‘ a1 T T I T 1 1T 7 |
- Kk .
_ 20 ©r ——0.030 B
- — — —0.043 ]
B 1.5 - —-—0.072 7]
C. 10 F :
B 0.5 [ .
= 0.0 | -
= -O 5 :l PN NS W I T SR TS Y NN U WO S NOU SN WY WS OO WO SN TN S N NN S SO N N A AN S 1:
- 0 10 20 30 o 40 50 60 70
(b)C, responses for the 70-deg. delta wing
o tested at Ohio State University(Ref.13)
— Figure 8 Comparison of The Hysteresis Behavior of Lift '
o Responses Between Two 70-deg. Delta Wings.

65

I



[

L

g

I

1
il

Tn

| T

g

Il

2.5

2.0

1.5

2.5

2.0

1.5

harmonic motion k=0.1938

T T T T T T T v T T T T

I — — time integration ]
_ — modeling results N
4 :
L i.. 1 l ‘ i 3. A l H e L l 1 1 1
0 20 40 60 80 100
nondimensional time t'
harmonic ramp motion k=0.0968
| | T ¥ T ' T T T l T T T ‘ T T T ’
o " static C_at 0=62.5° .
[ — harmonic ramp up to a=62.5°
]
S R T URID WU NSO WU TSNS T N SN SN SN N U SR WA SUUN M SR SR U S S
0 20 40 60 80 100 120 140
nondimensional time t'
(a)Lift Data
Figure 9 Harmonic Motion and Harmonic Ramp Motion

Responses by Indicial Formulation for A 70-deg.
Delta Wing.
66



harmonic motion k=0.1938

2.5 B T T T [ T T T | T T T ] T T T ] T T B
- — — -time integration
, 20 modeling results -
- * r -J
- 1.5 [ 7
: C, 1.0 [ 7
== 0.5 [ ]
== 0.0 ]
7 0.5 T Lo N U T R
; 0 20 40 60 80 100
nondimensional time t'
) harmonic ramp motion k=0.0968
z 25 [ T T T T T T T T T T T T T T T T T T T T T T T T T T T ]
" static C_at g=62.5° 1
i 2.0 [ o 7]
— harmonic ramp up to «=62.5° ]
— 1.5 [ ]
L= % 10 [ ) N~ ]
= 0.5 ]
= 0.0 ]
== _0 5 1 1 1 i i 1 | 1 1 i l 1 1 1 { 4 1 1 l 1 1 1 l I i I
= 0 20 40 60 80 100 120 140
nondimensional time t'
(b)Drag Data
) Figure 9 Continued.
— 67



harmonic motion k=0.1938

1.0 T T T T T T T ' T T T T T T T T T T T
I — — time integration
- N modeling results
- 0.6
~— 0.2 [
- 0.2 I
. -0.6 [
;:: -1 .0 1 H AL l ) I | i I 1 IQ 1 i 1 7l 7 1 1 i
. 0 20 40 60 80
-
nondimensional time t'
harmonic ramp motion k=0.0968
% 1'0 T T T l 1] ¥ ¥ I T ¥ T ' T ) T I T T T T T T T I T T T
i “static C_at a=62.5°
- 0.6 [ 0
— harmonic ramp up to a=62.5
- 0.2
= C
— m L
-0.2 [
= -0.6 |
= L
-1 .O 1 1 'y l 1 1 1 { 1 i S— l i i 1 I 1 1 1 1 L 1 L_l L 1 L
- 0 20 40 60 80 100 120
nondimensional time t'
- (c)Pitching Moment Data
_ Figure 9 Concluded.
i 68

!



to

1

[
i

rl

{

!

o

K

T il

.

1A

L

harmonic motion k=0.1116

T T T T T T T T T T I T T ¥ T T T T T T T T

— — time integration
—— modeling results

|I|l|rlllll‘[1!l|||ll|]llll

IIIlIl]llllllllllllllllllllll'Illl

7
T T U D U SRS N U S T N SR S Y S S S
0 20 40 60 80 100 120
nondimensional time t

harmonic ramp motion k=0.0558
[ T T T T T ¥ T T T ‘ T T T T T ¥ T T T [ ¥ k] T T T T T 1 T ]
- "~ static C_at =625 .
r ]
- — harmonic ramp up to a=62.5° E
C ]
B 1 1 1 L 1 1 1 1 1 l F . W 1 1 i 1 4 H 1 ] 1 1 1 1 1 l,__Lv‘L__,L_V__E
0 50 100 150

nondimensional time t'
(a)Lift Data

Figure 10 Harmonic Motion and Harmonic Ramp Motion
Responses by Indicial Formulation for An F-18
Model. 69



{

te

[ T

I

B

Ul

1

!
i

b

i

£

1zl

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

harmonic motion k=0.1116

nondimensional time t
(b)Drag Data

Figure 10

Continued.
70

T T T I T T ¥ I T T T l L] v T ‘ T T ] T
— — time integration
modeling resulls ]
=/ ]
< |
M R SR S P S I R S L i ]
0 20 40 60 80 100 120
nondimensional time t'
harmonic ramp motion k=0.0558
5 T T T T T T T T . T T T T T T T ¥ T l‘l’ T v L3 T T T T T i
- " static CData=625° )
3 harmonic ramp up to a=62.5° E
y .
1 1 X 1. 1 1 i A l 1 i 1 1. 1 - 1 1 lJ 1 . L ) I i i 1 L-
0 50 100 150



("

ey

"

‘ﬂl ] ‘l" I
1ol

i

Uz

it

i

harmonic motion k=0.1116

1.0 T T T l T T 1 ] T T ¥ ' T T T ] T T T | T T T

I — — time integration ]
0.6 modeling results -

b
0.2 _

\ -
-0.2 -
-0.6 [~ u
-1 _O | i | 1 l 1 1 1 I A AL 1 ' i 1 1 1 1 1 1 1 1 i |

0 20 40 60 80 100 120

nondimensional time t'

harmonic ramp motion k=0.0558

1.0 T T T T T T T T T T T T T T T T T T T 7 T T 1 T T T

i " static C_at 0=62.5° ]
0.6 m

~— harmonic ramp up to a=62.5 -

0.2 B
-0.2 [ B

L 4
-0.6 | ]
_1 .O P SR S NN VN SR TN N SO WA TR SUNE TN SN N TRV SN AU SO SHNY G SIS S S S T

0 50 100 150

nondimenional time t'
(c)Pitching Moment Data

Figure 10  Concluded.
71



2-5 [ T T T ¥ l T T T T ] T T L T ] T T T ¥ l T ¥ T T r T T T T ‘ T T ) T ]
- i pitch-up § =0.0270 |
7 20 [ ]
1.6 [ 7
o C|_ 1.0 [ .
=
: 0.5 [ 7
=3 0.0 [ 7]
. g:: _0. 5 1 L L 1 l i 1 11 l i A ] i ‘ 1 i 1 i 14L 1 1 1 l . 1 1 1 J_ j I S 1 1
Lo 0 10 20 30 40 50 60 70
o
.;—'_ 25 [ LUREIC S N Ay B B B A E MO R A R Y N S R L Y A AN AL L IR AL AL B T T i
pitch-up § =0.0538 |
_ 2.0 [ 7]
_ 1.5 [ 7
= CL 1.0 [ .
= 0.5 [ ,
B 0.0 [ ]
) O . 5 RN R N R T TS N0 U SN TN VN TN SN RN NN VN THN ST SN SN TN VU S SO A SR S SN U R R P
- 0 10 20 30 40 50 60 70
_ a
(a)Lift Data
Figure 11  Constant-Rate Pitching Motion Responses by
Indicial Formulation for A 70-deg. Delta Wing.

72

i



UL

f

i)

Ll
i

I

"

2.5 L e L S B BN ]

I pitch-up q =0.0808 ]

20 [ ]

1.5 [ ]

1.0 [ B

05 ]

0.0 [ ]

_O 5 i 1 1 L l i i 1 1 [ 1 3 e i l 1 i L 1 ! 1 ) i 1 Ll 1 1 1 1 1 1 1 1 ]
0 10 20 30 40 50 60 70

o4
2'5 [ T T v T T [ T T T [ T T v 7t v v [ f ¢t 11 ]
i pitch-down § =-.0270

2.0 [ ]

1.5 [ .

1.0 [ ]

0% o oo ]

= (o] o] 00 —

0-5 i o ° °e’ °° ©0 0006 ]

| O 0° 4

0.0 [ 7]

0.5 S NS NN NN (NS 00N VAN 0N S NN WA TN GUUS SO (NN SN SRS W SUINN AU SO UOUNN SN NN SN SN SN S S J GO 1._,1‘_:
0 10 20 30 40 50 60 70

o
(a)Lift Data

Figure 11 Continued.
73



i

v

m“l ne
e

1

2.5

2.0

1.5

0.5

0.0

-0.5

2.5

2.0

1.5

0.5

0.0

-0.5

(a)Lift Data

Figure 11
74

Continued.

T T T T T | T
pitch-down § =-.0538 )
s /ﬁmﬁ :
i o © 0 4
(@0 © ]
1 1 1 L l 1 1 1 1 ! L i i 1 ‘ 1 1 1 1 l 1 1 1 1 l i 1. L i i 1 1 1 1
0 10 20 30 40 50 60 70
(03
[ EE | t ¥ I I T T ’ T ] T
- pitch-down § =-.0808
__ \//Mo ‘:
L c © o} 4
‘000 00 0 9 °
P YOS VAN AN VNS VOUES JOURY TUNNES NUNK SO TN SED TS NUNT N SUNN NN SHUEN U U SU VNS VU NN U S S T SN S SHN S
0 10 20 30 40 50 60 70
04



Ihi

1
i

1
ikl

L

I!
|

t

2.5

2.0

1.5

0.5

0.0

-0.5

2.5

2.0

1.5

0.5

0.0

-0.5

LIRS SR R N I I I B A S L BN SR

Tt T

PR T TN YOO KT YO VNN SN T AN YNY SO ST UURE SN ST S TR S NN TS SHNN W N SN TS VRN SO TN BUR WA S
0 10 20 30 40 50 60 70
o
i T T 7 T v T ‘"1 LA SR B N B B B B S B B ]
pitch-up § =0.0538
o0 .
PR TS U DO VA G TR WU (T SN SN UUS WA SO SN SN SR TN NN TUNY WY SAUNE GOSN SNVO SUNT ST SN SN S S S L_-
0 10 20 30 40 50 60 70
o
(b)Drag Data
Figure 11  Continued.
75



.

[wmmn e

"

il

{

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

—rr 1 r 5y rrj v fr 3 [ oy vy T v T v T

pitch-up § =0.0808 ]
i 1 ) S l 3 )1 | 1 l 1 1 1 1 l 1 1 1 L l i I\ L 1 1 1 L L 1 L 1 1 1 i
0 10 20 30 40 50 60 70

a
(b)Drag Data

LI B I B B B

LN L L R R SN T B BN BN BN AR N L BN LI B N SN NN N N B N S L L

pitch-down § =-.0270

(@]

(b)Drag Data
Figure 11  Continued.

76

i RIS SN0 U VNS VU WU SN SN VAN U VA U YNNE H S G YU W SN ST SN TN W N WV TS UMY U N T T
10 20 30 40 50 60 70
a



[ww‘wv "
P

 ERO

U

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

i T T T 1 l T T T T I T T T T i 1 1 T T r ¥ T T T I L 4 1 T l 1 T ¥ T |
I . A ]
i pitch-down q =-.0538 |
- A
i ]
o]
00°
oo o © 0 ]
A i L 1 l I__4 1 1 I 1 1 A L ] L 1 A .1 J A 1 L i L 1 L 1 1 l 1 1.1 1 ]
0 10 20 30 40 50 60 70
a
T T T T I T T T T l T T 1 i ‘ T T T T ] L L ] T 1 T T l T T T T
L . A |
i pitch-down q =-.0808 j
1 1 1 1 l e X 1 A l 1 i i i ‘ 1 1 1 1 I 1 ] 1 |,l ) U S | ' e J i 1 £ L

0 10 20 30 40 50 60

a
(b)Drag Data

Figure 11  Continued.
77

70



11T

SR SRR | LA (8 R

i

1.0

0.6

0.2

-0.2

-0.6

-1.0

1.0

0.6

0.2

-0.2

-0.6

-1.0

(c)Pitching Moment Data

Figure 11  Continued.
78

T H T T [ T T T T ' T T I T l T T T T '[ T T T I‘l’ T T T 1 [ T T T k]
pitch-up § =0.0270 ]
_1
: S o 0020 965 o
I | L1 | 1.1 1 1 | oo 1 11 1 1 | SR} 1 L I | [ S ) L [ RS I S §
10 20 30 40 50 60 70
[0
1 T T T I T ¥ T T I T T T T l T T T T I T T T T l T T T T l T T T T
pitch-up § =0.0538
%M ]
i L 1 L I 1 1 1 1 ‘ 1 1 1 1 l i 1 1 i l 1 1 1 L I 1 1 1 L l 1 1 1, 1 ]
10 20 30 40 50 60 70
04



)

(!

Il

1.0

0.6

0.2

-0.2

-0.6

-1.0

1.0

0.6

0.2

-0.2

-0.6

-1.0

T + L} 1 I T T T T ! T T v T I—r T T ¥ | ¥ T T T l T T T T ] ¥ T T L]
I pitch-up § =0.0808
:_ (o] e} Co o o __:
. o0 00O ® ° J
I U SS SNNT THUN HN WU SR S T UES S T ST NNS OSSN S | J___L_L__l__L_Lfl_J_l_l__l_l_l_l_;
0 10 20 30 40 50 60 70

03
T ‘ T T T T I T T L] H ‘ T T T ¥ ] T T T T ‘ T T T T l T T T ¥
pitch-down § =-.0270

I o © o J
| AR TR NV NS A S DI S G NN TS TN YNNG NN DY U OIS UUUE TP FUNDY VU TS S SN AU VOIS SN SN N NN S 17,:
0 10 20 30 40 50 60 70

o
(c)Pitching Moment Data

Figure 11  Continued.
79



1.0 L3 T T T I T T T T I T T T T l T I3 T T ' T T T T T T T T T I T T T T
— pitch-down {§ =-.0538
g 0.6 [ ]
— 0.2 -

c :o% o
m

- 0.2 .

0.6 [ ]
_ -1 O 1 1 1 1 I i i 1 1 l 1 i i 1 l 1 1 1 L l i L 1 1 ,L,I 1 i1 ] 1 1 I 1
70 10 20 30 40 50 60 70

’ 04
; 1'0 1] T T ¥ ‘ T T T T ’ T 1 13 T ‘ T ] T + . T il T T I T T ¥ T I T T T T
pitch-down § =-.0808

o 0.6 | .
- 02 I W ]
c | ©° © ©° 07 00 00 0 0 00000 ¢ 1
. m

-0.2 -
-0.6 [ ]

-1 O PR TN N S T S T ST NN U TS T Y S NN AN WU SIS T NN TN NS TS T S SHA N SN S WU SH S T
= 0 10 20 30 40 50 60 70

o

(c)Pitching Moment Data

Figure 11  Concluded.
80

i

ﬂlwwl\



f |

|
).

{

iy

{'

v

3.0

2.5

2.0

0.0

-0.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

l T I T T T T | ¥ T T T | T T T T i ¥ T T T l ¥ T T L
pitch-up § =0.0154
—1 L 1 1 L i i i I ‘ 1 L 1 i J o 1 i 1. l 1 L 1 i l i 1 1
10 20 30 40 50 60 70
a
| T T I T T T T ‘ T T T T i ¥ T T i I T T T T l T ¥ v T ]
pitch-up § =0.0310 3
1 l 1 I 1 1 1 1 ! 1 1 1 1 l 1 i i 1 l I 1 H 1 l iy 1 i | —
10 20 30 40 50 60 70
o
(a)Lift Data
Figure 12 Constant-Rate Pitching Motion Responses by

Indicial Formulation for An F-18 Model.
81



A

thl

i

(RN I

ne TP il

i

fir

3.0

2.5

2.0

1.5

0.5

0.0

-0.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

AN N B

1L L

1 r 5 v r ¥ jr T

pitch-up q =0.0464

(a)Lift Data

Figure 12
82

Continued.

: :
s I RN N ST T N Y UON SN TR SRS VU SN SR TN ST SO U ST WA SO N LJ__L.‘:
0 10 20 30 40 50 60 70
o
L e B L s St S M B IR B N S L L LN LA B
- pitch-down § =-.0154 ]
S W S— l 1 l 'y i _.‘L__JEL‘X____L_L 1 1 1 1 1 1 ] 1 1 1 1 [ 1 1 i 1
10 20 30 40 50 60 70
[0



L

11

{

Ll

VR

N

1

Il

{1

th

]

!

v

n

i

i, &

3.0 [
2.0 —
1.5 .'
0.5 :'
0.0 l

T T

T

T

LA S At S M M B

pitch-down § =-.0310

PR W S N NS U T

IllLJlL4Jlil~llllll

CERER S SRS U TN AR

-0.5

(e

10 20 30

40

50

60

~J
o

3.0 [

25 [
2.0 [

L
1.5 [

1.0
0.5

0.0 [

| L AL L L

— 1 ] 1t T 7

LA S A A R R A

pitch-down § =-.0464

e 4 oo Ve oy Ve b Lsay

-0.5

10 20 30

40
a

(a)Lift Data

Figure 12
83

Continued.

50

~J
o



(1

{

{

-
.

g

i1l

o

A

l

[

3.0 B T T T T l ¥ ¥ T L] I T T T T I [ T T T ' T T T T | T T T T l T T L T ]
o5 [ pitch-up §q =0.0154 ]
2.0 ]
1.5 7
1.0 ]
0.5 7
0.0 B

I 1 1 | v 1 11 7;7[7”;, L P PSS S NS ot S S b TN W | ]

0 10 20 30 40 50 60

70

3.0 _l LANNLENLIRR AL R S R A S L B R L LAY NN B ALY R L LR B
- - pitch-up § =0.0310 i
. : 5
i (o)
2.0 [ p
1.5 | g
1.0 [ ]
0.5 [ ~
0.0 [ 7
-_EL‘;_‘J 1 | PR PR T B 1 i 1 | U S T | | i P L 1 1 1 O 1 I I

-0.5
0 10 20 30 40 50 60

[0
(b)Drag Data

Figure 12  Continued.
84

70



(

i

(-

i

I

{1

ah

U

£

15

v

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

LI BN (L B A (N O N A R B S

U AL B

pitch-up § =0.0464

LI B

NS BTN RS TN TN U IO SN WA T S ST T WS T N A S A AN RN

~l
(@]

LI SR SR |

I L L L L L L e L T L L et e

pitch-down § =-.0154

T S S U

[T ED I ITEN SN0 il BTSN Er i B

10 2

0 30

40
a

(b)Drag Data

Figure 12
85

Continued.

60

~



ny
5\ il

e

A

o

!

{

i

S

a1

()

|

LI

vt U

I

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

L ‘ l 5 T T T | T ] T T ] T T ]
I . A B
g pitch-down G =-.0310 ]
1 L | | YUY YUY S A VO TN SN SO U WU SN ST GRN SUNNT SAVA SRS VN SUN NN SO S T 1

30 40 50 60

70

0 10 20

T ¥ T T ]’ T T T T ‘ T T ¥ T I T T T ) I T ¥ T T l T T T T l T T T T

. A ]

o pitch-down q =-.0464 h
3 1 1 1 1. l i L i1 1_1 1.1t L, 1 1_ 1 1 1 L 1 1 1 | I RS S § 14[ 1 1 1 1

30 40 50 60
o

(b)Drag Data

Figure 12  Continued.

86

70



[ I

(|

H

N Y

I

(!

il

! I | i

n

0.4

0.2

0.0

-0.2

-0.4

-0.6

0.4

0.2

0.0

-0.4

-0.6

LA IR B S S R R R S I I M IR St AL SR AN S S R R R A L AL AL B SR R B

pitch-up § =0.0154 i

o © OOOm o) OOOOOOO

o ©°

PN SR SRS ST SY WNT NG AN SR ST S T NN SN SNNS T TN (S S TN VIS S SN U SO TN S GUN SR SN T

10 20 30 40 50 60 70

LN B TR B A 5 R S S A A R S S LSS ENN S L R R L B B
pitch-up § =0.0310
0°% ;
[e} e}
OO © 1
ao ° o
o -
oaoaow b gy 1 1 | S S S W S SR W S T I PSS S IR TS S St L_L._L,¢,L,_
10 20 30 40 50 60 70

a
(c)Pitching Moment Data

Figure 12  Continued.
87



! o

v

FI

! {

(h

ull

1!

oy

U1

1

0.4 L e e e L
- pitch-up § =0.0464 1
0.2 n
0.0 § &8 7
i Cbo o © 1
= 0 4
L © o ° o A
0.2 5 o .
- © 00 000gg0 © :
-0.4 [ ]
-0.6 PO S S U Y VRN SR SUNS V) SN TV TS SN SN [N TN T T | SV ST ST SO Y VA SO TS VS N SO SN S |
0 10 20 30 40 50 60 70
a
0.4 T ) T T l T T T T I T T T T l T T T T ‘ ¥ T T T I T T ] T I T T T T
I pitch-down § =-.0154
0.2 [ .
0.0 [ n
-0.2 ]
-0.4 i
_0-6 I 1 1 1 1 I L 4 i i L 1.5 1 1 ' i 1 i i l 1 i I 1 I 1 1 1 1 l ] 3 1 1 1 ]
0 10 20 30 40 50 60 70

(08

(c)Pitching Moment Data

Figure 12
88

Continued



{ I

e !

o r vl 2

r'l

0.4

0.2

0.0

-0.2

-0.4

-0.6

0.4

0.2

0.0

-0.4

-0.6

i I I LN RN R R S St R S S S I N S

pitch-down § =-.0310

PN S ST SRS S U NS USRS N U WA S SN (Y SN SRS WU SR S S SN TR SR SUN SR S SR S Y S S T
10 20 30 40 50 60 70

x
i 1 T LI S S E I At R N E B B B T
00 000 pitch-down ﬁ =-.0464

1
1
AR W SN TSN NS ST SN S SN NN ST U A WU U S S NN T HNNN S SN SO TR NN SRS WY SOV Y RY S S S ]
10 20 30 o 40 50 60 70

(c)Pitching Moment Data

Figure 12
89

Concluded.



L

t !

ki "

[

{

greoan

i

[
i

win

{ e

il‘!l o

a
(a)Lift Data

2-5 i T T T T i T T T T i T T T T | T ¥ T T l T T T T ] T T T T l ¥ T
k=0.0558
2.0 [ 0000, ]
1.5 [ 7]
C 10 [ ]
i a increasing )
- & o decreasing ]
0.5 [ time integration ]
L @9
0.0 [ ]
-o i 5 fo 1 ] 1 l i L i1 L 1 1 1 1 1 i 1 1 1 [ i 1 1 L I I T T S I | 1 I X
0 10 20 30 40 50 60 70
a
2.5 | T U v T l T T [ T ‘ T T T T 1 T T T T ‘ T T T T [ T T T T l T
k=0.0782
2.0 7
1.5 ]
C 1.0 ]
0.5 7]
0.0 ]
..O 5 B W ¥ 1 L [ j 1 1 l 1 i H i l 1 1 1 1 l 1 1 1 1 l a1 1 L 1 [ 1 1 i 1
0 10 20 30 40 50 60 70

Figure 13 Harmonic Responses with Medium Amplitude for

An F-18 Model.
90



4
¥

oy
Il

[

[u Lain
wliidaa

pr
|

0

RS

{

!

|
i

il

o

Qi

T
i

SR

r

2.5

2.0

1.5

0.0

-0.5

2.5

2.0

1.5

0.0

-0.5

T T T Ty T T T Y T T U rTTeY
T T I T I

T —+ ¥ 1 1 T T 1t [ r v v r ] v v o T LA LS S B

k=0.0892

FOUNE SO SUN RS NS VOUE SRS VU SHNS WASS SSUN SN THNT SR SUUNT SN SHNY WONNE WN NN VOO SR SN S ENS VHNNS SN S SN NN MY SN S

R RTERTIN N 0 N U N AU T SRS A SR S SN S N S Y U G Y T

O‘

10

20 30

(o

40 50 60

~J
o

LIS N L L O S N O O S B S N S B R B

T

»

v+ v 1 r r . r ¥t & & o 3 11

T v ¢y vy 7 r . r T

k=0.1116

13 1 1 1 I 1 I i i ‘ 1 i i 1 l 1 1 1 L l 1 I i H l 1 I i 1 [ 1 1 i 1

eoa Voo by e b a

0

10

20 30

(a)Lift
Figure 13
91

o

40 50 60

Data

Continued.

-8

70



i

Ll

l

"
1

P
I

il

M

e b

!

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

[ T | i I T T T
5 k=0.0558 ]
i PRUT DV N S B T | SO O S TR TN PO NS NN SO SO NN TOREN VAN SRR TS ENNE WU S TN AN SO VO S 1 ]

50

60

LI B R B B B B ¢

LI I R B

T+ + 1 T T v T [ 1 T i T 17

71 v T T 7

T T 1 L LI B ]

k=0.0782

sl o laa

20 30

40
o

(b)Drag Data

Figure 13
92

Continued.



f

[t

" I (R B I

ne

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

T

LN HARLN N B B S L B

T

LANLLAN S SN BN (L

LN S R SN S A S AL LI B A SN I B B B LI SR BB

k=0.0892

PRGOS SO U0 WA VRO VAN G AU0N SN WU TS N K ST G S SN S S TN ’, ) S W R | L,_L“_l b T 4

TR BT R A B

e

20 30 40 50 60

N
o

TV

T T ’ T T ¥ T ‘ T T T ¥ T T i T l T ¥ ¥ ¥ i T T ¥ T

k=0.1116

PRI ST SIS AN NS SN NN SN SO SUNTESNT WY SUNT T S S YA P O S T

'Sl TS ED TS T I ST U S U SN ST AR U I B0 A et

J I

e ]

M

20 30 o 40 50 60

(b)Drag Data

Figure 13 Continued.
93

70



!

v

(N

jil

L
il

(ot

P

”“

0.4

0.2

0.0

-0.2

-0.4

-0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

LA I A T R A A R S A A L R AL S L AL |

TR SN AT SUUE U SN WU T VO ANV U SHN SHNY NN JUURNS W SN SN SN T SUNS SN S SN SN NN U SN SN SR G S T

10 20 30 40 50

T

T Tt | 1 r r r

k=0.0558

60

70

v v ¢+ | ¥ v v v [ T ¥ t [t ¥t Tt ] ¥ Ty vt T

k=0.0782

1 11 1 [ 11 1 i _ l 1 1 § G I 1 i 1 1 l L S § 1 l i 1 1 1 l L 1 1 1

10 20 30 40 50
a
(c)Pitching Moment Data

Figure 13  Continued.
94

60

70



- 0‘4 LI S B S R S S SRS AENY SN S AN S S R SN SR LA AL AN AL AL R
- I k=0.0892
ESE 0.2 [

t.

-0.2 [

I

d

0.4 [
. S T SN S S S S S
- 0 10 20 30 40 50 50
- 04
= 0.4 T T T B e LA S s B e

i k=0.1116

CTREY

0.0 [

Wwﬁ NW
3

-0.2

!

-0.4 [

I
!

R
']

JYRNIE TR TN NN NS S SR NN SN OSSO TV U SN SN0 TS SHUNC VU SN Y TRS SUURE SOUY S0 AN SHNS SN N SN SN SN N S

-0.6

|H|‘
o

10 20 30 40 50 60

o4
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Figure 13  Concluded.
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