
June 1992 UILU-ENG-92-2217

CRHC-92-11

Center for Reliable and High-Performance Computing //_.-.._8=c./__

/o4 _/7.-----

jo_

DEPEND:
A SIMULATION-BASED
ENVIRONMENT FOR

SYSTEM LEVEL
DEPENDABILITY ANALYSIS

Kumar Goswami and Ravishankar K. Iyer

_=

E

Coordinated Science Laboratory

College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

LrNCL_\SS I F! ED

ECURf¢¥ CL_SSI_.f_r_ON OF rH_ _E

la REPORT SECURITY CL_SSiF<AnON

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY

"'I N"2b.DECLASSIFICAT O /EX3WNGRADING SCHEDULE

4, PERFORMING ORGANIZATION REPORT NLJMBER(S)

UILU-ENG-92-2217

6,1. NAME OF PERFORMING ORGANIZATION

Coordinated Science Lab

University of Illinois

.. ADDRESS (G'ty, State, and ZlPCoa)

Ii01 W. Springfield Avenue

Urbana, IL 61801

8,1. NAME OF FUNDING/SPONSORING
ORGANIZATION

7a

8c. ADDRESS(City, 5tare, and ZiP Co@e)

7b

11. TITLE (Ir,<l_le Security Classification)

DEPEND: A slmulation-based

12. PERSONAL AUTHOR(S)
GOSWAMI,

i

I3a. TYPE OF REPORT

Technical

i • i

REPORT DOCUMENTATION
i i ii

CRHC- 92-11

6bl OFFICE SYMBOL

(If a_plicab/e)

N/A
ir ii

l Sb. OFFICE SYMBOL

(If a_plicable)

iiii

PAGE

:b R'ES_'RICTIVE MARKING'5

None

3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;

distribution unlimited

S MONITORING Q-RGANiZATiON REPORT NUMBER(S)

7a. NAME OF MONITORING ORGANIZATION

National Aeronautics and Space

7b ADDRESS(o_, st.t, .nd zlpco_i

Moffitt Field, CA

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

environment for system level

I

Kumar and Ravishankar K. lyer

10. SOURCE OF FUNDING NUMOERS

ELEMENT NO. NO. NO.

dependability analysis

16. SUPPLEMENTARY NOTATION

13b IME COVERED

FROM. TO

=,,

Adminis t.

I

ii i

iWORK UNIT
ACCESSION NO

i

l114 OAT_2_06_26OFREPORT (Year, Month. Oay)5 41PAGECOUNT
ii |11

i iii

17 COSATICODES 18. SUBJECT TERMS(Continueon_vcr_tif_ece_a_ and identi_ by blc_k number)

FIELD GROUP SUB-GROUP dependability analysis, fault injection, near-coincident

errors, error latency, triple modular redundant systems,
I " on

!9. ABSTRACT(Co_ue on _ve_eifnece_ and iden_ by _k numberJ

The design and evaluation of highly reliable computer systems is a complex issue. Designers mostly develop

such systems based on prior knowledge and experience and oecasionaUy from analytical evaluations of simplified

designs. This paper presentsa simulation-based environment called DEPEND which is especially geared for the

design and evaluation of fault-tolerant architectures. DEPEND is unique in that it exploits the properties of object-

oriented programming to provide a flexible_framework with which a user can rapidly model and evaluate various

fault-tolerant systems. The paper describes the key features of the DEPEND environment and illustrates its capabil-

ities with a detailed analysis of a real design. In particular, DEPEND is used to simulate the Unix based Tandem

Integrity fault-tolerant and evaluate how well it handles near-coincident errors caused by correlated and latent

faults. Issues such as memory scrubbing, re-integration policies and workload dependent repair times which affect

how the system handles near-coincident errors are also evaluated. Issues such as the method used by DEPEND to

simulate error latency and,K_'the time acceleration technique that provides enormous simulation speed up are also dis-

cussed. Unlike any other simulation-based dependability studies, the use of these approaches and the accuracy of

the simulation model are validated by comparing the results of the simulations with measurements obtained from

fault injection experiments conducted on a production Tandem Integrity machine.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT J21. ABSTRACT SECURITY CLASSIFtCJkT_ON

i3EIUNCLASSIFIEDAJNLIMITEO [] SAME AS RPT [] DUC..USE,.R,S I Unclassified

22a NAMEOFRESPONSiBLEINDIVIDUAL=. [22b TELEPHONE Onclude Are. Coo_,) I 22c OFFICE SYMBOL

DD FORM 1473, B4 MAR B3 APR editlofl may bl used un_d exhausted. SECVRITY CLASSIFICATION OF TNIS PAGE
All other e_r,t_on_a_e obsolete

DEPEND: A Simulation-Based Environment for System Level
Dependability Analysis

Kumar K. Goswami

Ravishankar K. Iyer

Center for Reliable and High-Performance Computing

University of Illinois at Urbana-Champaign

1101 W. Springfield Ave., Urbana, IL 61801

Abstract

The design and evaluation of highly reliable computer systems is a complex issue.

Designers mostly develop such systems based on prior knowledge and experience and
occasionally from analytical evaluations of simplified designs. This paper presents
a simulation-based environment called DEPEND which is especially geared for the

design and evaluation of fault-tolerant architectures. DEPEND is unique in that it

exploits the properties of object-oriented programming to provide a flexible frame-
work with which a user can rapidly model and evaluate various fault-tolerant systems.

The paper describes the key features of the DEPEND environment and illustrates its

capabilities with a detailed analysis of a real design. In particular, DEPEND is used
to simulate the Unix based Tandem Integrity fault-tolerant system 1 and evaluate how

well it copes with near-coincident errors caused by correlated and latent faults. Is-

sues such as memory scrubbing, re-integration policies and workload dependent repair

times which affect how the system handles near-coincident errors are also evaluated.

Issues such as the method used by DEPEND to simulate error latency and, the time

acceleration technique that provides enormous simulation speed up are also discussed.

Unlike any other simulation-based dependability studies, the use of these approaches
and the accuracy of the simulation model are validated by comparing the results of the

simulations with measurements obtained from fault injection experiments conducted

on a production Tandem Integrity machine.

_The MTBF figures presented in this paper should not be construed to reflect the MTBF figures of an actual

Tandem Integrity system because key parameters that have a direct bearing on this measure were not obtained from

measurements of the Integrity system but rather from other production machines. For this reason, the results shown

in this paper should only be construed to reflect the trend and behavior of a general TMR based system.

1 Introduction

The rapid growth in the demand for highly dependable systems and the increasing complemty of

these systems has made system dependability issues - availability, reliability, fault tolerance - too

important to be based on prior know-how, engineering changes and other fragmented approaches.

The classical approach of designing for performance and then addressing dependability issues and

the practice of determining a system's dependability with isolated analysis of its individual com-

ponents are no longer adequate. Since dependability is a system issue, an entire system should

be analyzed under various realistic stress conditions to determine the types of faults to which it

is especially vulnerable, to study the dynamic interactions between the components in the system

and to identify the major dependability bottlenecks.

There is a lack of automated analysis tools that facilitate such studies. This paper describes a

simulation-based environment called DEPEND that is explicitly geared for system level dependabil-

ity analysis. DEPEND is unique in that it exploits the properties of object-oriented programming

to provide a flexible framework with which a user can rapidly model and evaluate various fault-
tolerant architectures. DEPEND contains objects Which inject faults, model the behavior of system

components, compile fault statistics and perform other functions typically required for fault injec-
tion studies. These objects are general in nature and a user can customize them by specifying the

exact behavior of the components and the fault models desired. The user can then connect the

objects together to build complex simulation models with minimal effort. This approach makes
DEPEND a versatile tool that can model a wide variety of architectures 'and fault scenarios.

The capabilities and the features of DEPEND are illustrated with a simulation-based fault in-

jection study of the Tandem Integrity system - a TMR-based, fault-tolerant computer. It is well
established that this system is very effective against single faults [Jewett 91, Young 92]. An impor-

tant question is how such systems cope with near-coincident errors generally caused by correlated
failures and latent faults. Architectural issues that have a bearing on how the system handles near-

coincident faults include memory scrubbing, re-integration policies and workload dependent repair

times. To study these issues, DEPEND was used to simulate the Integrity system and evaluate
the combined effect of all these factors. This comprehensive study demonstrates the capabilities of

DEPEND in a realistic setting.

The paper focuses on the features of DEPEND used to conduct fault-injection and dependabil-

ity studies. The general design philosophy and the key aspects of DEPEND are discussed in detail.

These include the object-oriented programming environment that provides a framework for rapid

modeling, simulation of correlated and latent faults and the time acceleration technique that pro-

vides significant simulation speed up. These techniques and the simulation of the Integrity system

are validated by comparing the results of the simulations with measurements obtained from fault

injection experiments conducted on a production Integrity machine. To our knowledge, no other

simulation-based dependability study has been validated in such a fashion.

The next section presents tools and methods commonly used for dependability analysis and

it surveys simulation-based tools that have appeared recently. Section 3 describes the DEPEND

environment and illustrates the user programming interface with a very simple example. The

details of the Tandem Integrity system, the simulation model of the system and the simulation

of error latency are presented in section 4. Section 5 describes the testbed used to conduct the

injectionexperimentsonaTandemIntegritysystemandit alsopresentstheresultsthat validatethe
systemsimulationmodel.Finally,section6detailsthesimulation-basedfault injectionexperiments
conductedand the resultsobtained. Concludingremarksand an assessmentof the resultsare
presentedin section7.

2 Methods &: Tools used for Dependability Analysis

Analytical tools based on continuous time Markov chains are frequently used for dependability anal-

ysis in the early design stage. SHARPE [Sahner 87], SAVE [Goyal 86], and METASAN [Sanders 86]

are three well known analytical tools used for dependability analysis. METASAN also uses simu-

lation techniques. These tools are excellent for rapid modeling and analysis of systems and they

require very little computer processing time. Their drawback is that stringent restrictions and

simplifying assumptions are needed to keep a model analytically tractable. This makes it difficult

to model systems in detail and leads to abstractions that may not be representative of the system

being analyzed. Furthermore, analysis of certain issues such as error latency and propagation, pose

significant problems.

Fault injections, both hardware and software, is a method commonly used for dependability

analysis at the prototype stage. Studies that have used the physical insertion of faults, via hard-

ware, include fault injection experiments conducted on the FTMP (Fault Tolerant Multi-Processor)

[Lala 83], fault latency studies on the NASA AIRLAB testbed [Shin 84a], [Shin 84b], and a valida-

tion study of the computerized interlocking system for the French railways [Arlat 88]. In [Young 92],

a hybrid monitor is used to inject errors and analyze the Tandem Integrity fault-tolerant computer.

The main drawback with the proposed hardware methods is that they offer no feedback to the

system designers and are only useful as validation methods after the system has already been built.

Two tools that use software fault injection are FIAT [Segall 88] and FERRARI [Kanawati 92].

The FIAT environment utilizes software implemented fault injection to emulate various hardware

faults and is being used by the Federal Aviation Authority to validate the software system of

the Advanced Automation System. FERRARI is a similar tool which also allows the injection

of transient errors. These tools are specifically designed to inject faults into the memory space

of a program as it is executing. They have been specifically designed to evaluate and validate

application software after the software has been developed.

Simulation has greater applicability than analytical techniques and unlike the fault injection

techniques, simulation can be used in the early life cycle of a design to provide feedback to the

designer to ensure that dependability specifications are met. Various researchers have addressed

specific aspects of dependability evaluation via simulation. At the chip-level, simulation experi-

ments have been used to determine the efficiency of error-detection mechanisms [Courtois 79] and,

fault propagation [Lomelino 86]. Recently, in [Czeck 91], a simulation model of the IBM PC was

developed anti injected with gate-level transient faults. A simulation-based tool called FOCUS

[Choi 89] has been developed to investigate reliability and fault sensitivity analysis of VLSI sys-

tems. FOCUS has been used to evaluate several chip designs, including the BDX930 Bendix flight

control processor and the EC-16 Pratt/Whitney jet engine controller. These studies indicate that

simulation techniques are useful and provide insight into fault-propagation and fault-impact at the

chip-level.

At thesystemlevel,however,thereis a lackof simulation-baseddependabilityevaluationtools.
l_Iostsimulation-basedtoolsaredesignedto facilitateperformanceanalysis(CSIM [Schwetman,%],

ASPOL [MacDougall 73], SES Workbench [SES 89], RESQ [Sauer 82]). VttDL [IEEE 88] is a

powerful hardware specification language but it does not contain built-in facilities to support de-

pendability analysis. To our knowledge, there is no other simulation environment like DEPEND

although some are being developed, such as NEST [Dupuy 90] and the Rainbow Net [Johnson 91].
The Rainbow Net simulator uses a petri-net like structure to model a system's behavior under fault

conditions. The model is then solved via simulation to produce typical dependability measures.

NEST is a simulation and proto-typing testbed for analyzing distributed networks and system pro-

tocols. It can fail links and nodes, but it is very specialized in the types of architectures it considers

and the types of faults it can model.

While these tools are useful in the context of their specific applications, several important issues

with regard to simulation-based, dependability evaluation of fault-tolerant systems have yet to be

addressed. These include 1) evaluating a system for long periods of time to obtain statistically valid

results, 2) providing extensive, automated fault injection environments, 3) providing facilities to
model fault tolerant components and, 4) validating simulation results with actual data. Other issues

in simulating complete systems are coordinating the injection of faults, the reactions to these faults

(e.g. aborting a process) and initiating repairs that occur simultaneously in the various components

in the system. As the system gets larger, the problem can become overwhelming. There are no

general-purpose simulation based tools that address all these issues and provide an automated
environment that makes the analysis of fanlt-tolerant systems more feasible. The development of

such a tool has been the motivation behind DEPEND.

DEPEND has been used to model the hardware and software of a distributed system employing

centralized and distributed prediction-based load sharing [Goswami 90a]. Faults were injected into

the processors and the communication channels to corrupt or destroy data used by the load sharing
software. The simulation helped to isolate a minor implementation detail of the load sharing

software that caused destructive task scheduling. This would have been difficult to detect without

simulating the software in detail and injecting faults. DEPEND is now being used to simulate the

computing element of the Hubble telescope. Various architectural configurations are being modeled

to find an optimal design that will be both reliable and yet afford the highest performance. Traces

of actual workload are being used to gauge the performability of the system under faults.

3 The DEPEND Environment

DEPEND is a joint performability and dependability analysis tool that provides a simulation frame-

work to facilitate modeling and analysis of fault-tolerant architectures at the system level (e.g.,

modeling CPUs, communication links and communication protocols). DEPEND exploits the prop-

erties of object-oriented programming to provide the framework which consists of objects that

perform simple tasks but which can be easily connected together to build complex simulation mod-

els. Some objects simulate the functional behavior 2 of components commonly used in fault-tolerant

systems. Others inject faults, compile fault statistics or generate detailed reports. Each object is

2As an example, the functional behavior of an adder is the addition operation. The gate level operation required

to do the addition is not simulated. However, there is nothing that prevents using DEPEND for lower level simulation

except for processing speed.

3

self-containedand is designedto interfacewith others to createa useful,functionalmodel. For
example,an object designedto inject faults canbe connectedto an object that modelsa com-
municationlink to createanobject that cansimulatea communicationllnk under various fault

conditions. The simplicity of the objects allows them to be used in a variety of ways and yet they

are designed to be easily customizable to provide very specific functions. This makes it possible to
use DEPEND to model many different types of architectures, reconfiguration and repair schemes

and various fault scenarios.

The steps required to develop and execute a model are shown in figure 1. The user writes a

I

;: ::: :i_/'_ii '.'jiiiii_i_ii_ij!i_i!?iiji!_!ii!! ::: _'::: ::: :i:_:i:i i:ii i iiiii i!ii!ii!!ii[ili?!i_ili!i!:'"""':'"'" ':'""' ';'"' ":'';':':]

iiiiiiiiiiiiiiiiii ii!i !i!: i',iiiiii',i 1
iriiii ,ii iiiiiiiii i il

!!!j!!!!!!!!!!j!!!!j!!!!!!!!!

I

Figure 1: Steps in developing and simulating a model with DEPEND.

control program in C++ with the objects provided by DEPEND. Once it is written, a command is

used to compile and link the program with the DEPEND objects and the run-time environment.
The model is then executed in a simulated parallel environment created by the run-time environ-

ment. Here, the assortment of objects including the fault injectors, CPUs and communication links

execute simultaneously to simulate the functional behavior of the architecture. Faults are injected

and repairs are initiated, all according to the user's specifications. When the simulation is complete,

a report containing the essential statistics of the simulation is produced.

The next subsection presents the fault models used in DEPEND. The following subsection

describes a few key DEPEND objects and the general philosophy behind their design. The pro-

gramming environment of DEPEND is illustrated with a simple example in subsection 3.3 and the

time acceleration technique used to reduce simulation execution time is described in subsection 3.4.

The approach used by DEPEND to simulate error latency is discussed in section 4.2, along with

the description of the Integrity simulation model, because it is best explained in the context of the

Tandem Integrity application.

3.1 DEPEND fault models

DEPEND was designed to handle functional fault models which simulate the system level mani-

festation of low, gate-level faults such as stuck-at faults. Functional fault models are used because

they are best suited for system level fault injection where the focus is more on the behavior of

a component rather than the exact underlying structure. DEPEND provides the mechanism for

injecting faults and relies on a 'fault subroutine' provided by the user to simulate a specific fault
model. Hence, the the generality of the types of faults injected is not limited by the tool and is

determined by the user. Default fault subroutines are provided with each DEPEND object, but

these can be overridden by the users by supplying fault subroutines of their own. The default fault

models depict the functional behavior of faults in memory and I/O subsystems, in CPUs and in
communication channels. For example, the default CPU fault model assumes that the processor

hangs when a fault is discovered. If the fault is transient, it disappears when the CPU is restarted.

If the fault is permanent, it is corrected only when the CPU is replaced. Thus this fault model

represents the functional behavior of low-level, stuck-at faults and transient errors in key CPU

registers and functional units. Similarly, for a communication medium, the functional fault model

assumes that messages are corrupted (bits in the fields of a message are flipped) or lost due to
errors. This simulates the effects of a noisy communication medium. The reaction to these faults

might trigger a re-transmission of the message. Two default fault models are available for memory

and I/O subsystems. Either a bit of a word is flipped or a flag is raised to represent the error. The
error can be detected with a byte-by-byte comparison or by checksum comparison, if the error is a

flipped bit. Otherwise, it can be detected by checking the status of the flag.

3.2 The DEPEND Object Library

DEPEND is essentially a library of objects that provide functions typically needed to model fault-

tolerant architectures and conduct system level, simulation-based dependability studies. An object

is perfect for encapsulating a set of related functions. The object library consists of a hierarchy of

elementary and complex objects. Elementary objects provide basic functions like fault injection and

the compilation of statistics. Complex objects, created with several elementary objects, perform

more complex and specific tasks. The objects were designed with four criteria in mind:

• They should make very few assumptions and should be general-purpose. For example, the

fault injector object does not assume any particular fault model.

• They should easily interface with other objects.

• They should be easy to customize and easy to use to create new objects.

• When possible, each object should provide default functionality to reduce the work done by

a user. It should be possible to override these defaults.

These criteria make it possible to simulate a wide range of architectures, and fault scenarios with

just a few key objects. These key objects model the fundamental components found in most
fault tolerant architectures. The objects model fault tolerant processors, communication channels,

memory, voters and other basic parts of a fault-tolerant computer system. As a result they can be

combined with others or replicated to build more complex systems such as self-checking systems,

N-modular redundant systems and multiprocessor systems. The rest of the subsection describes

5

anobject usedto inject errorsandobjectsusedto modelprocessorsandcommunicationmediums.
Section3.3showshowthey canbeusedto createa simulationprogram.

3.2.1 Fault Injector

The primary object used to inject faults is the fault injector shown in figure 2. To use the

injector, a user specifies the fault arrival distribution and a fault subroutine that contains the fault
model and simulates the occurrence of a fault. The injector randomly samples from the specified

distribution to determine the arrival time of each fault and then calls the fault subroutine at the

appropriate times. With this approach, the fault injector is not restricted by any specific fault
model and can be used in a wide variety of ways. The injector is an elementary object that was

expressly designed to be used by more complex objects such as the server and the link (figures

3 and 4) to inject faults specific to these components. For example, the link, which simulates a
communication medium, uses the fault injector, along with a fault subroutine to corrupt and lose

messages traversing along the communication medium.

Fault Injector

Figure 2: The Fault Injector Object.

In addition to using statistical distributions to model fault arrival (see figure 2), the injector also

provides a workload-based injection scheme that varies the fault arrival rate based on a specified

workload. The user provides a workload function, a set of workload states and an exponential fault

arrival rate for each state. For example, the workload function may be the utilization of a server

or any other function that provides a measure between 0 (low workload) and 1 (high workload).

The states may be defined to consist of a high utilization state (e.g., with utilization between 0.8

to 1.0), a medium state (e.g., 0.8 to 0.4) and a low state (e.g., 0.4 to 0.0). To maintain a history of
the workload behavior, the fault injector periodically polls the workload function to update a state

transition diagram. This history is used to inject a larger number of faults during peak workload
conditions and fewer faults when the workload is low. This technique models the workload/failure

dependency observed in [Iyer 82] and [Castillo 82]. Depending on the workload function supplied

to the injector, this approach can be used to model one or a combination of workload factors.

The fault injector illustrates what we mean by "providing a simulation framework". The in-

jector provides the basic algorithms and mechanisms needed to inject faults and al]ows the user

to concentrate on the application specific aspects, the fault model and the simulation of a fault.

6

Furthermore,the modular,object-orientedapproachallowsthe userto easilyexperimentwith dif-
ferent arrival distributionsand fault subroutines.Other DEPENDobjectsaresimilarly designed
to providethe functionality that arecommonlyneededwithout restrictingthe applicabilityof the
object.

3.2.2 Fault-tolerant server

The server object, which is typically used to model CPUs and other processors, is an example

of a complex object (figure 3) that is built from several elementary objects. It uses a fault injector

object to inject faults and other objects to compile and output fault statistics. The server contains
functions to simulate the acquisition, the use and the release of a server. The server offers several

service disciplines including, first come first serve (FCFS), round-robin and pre-emptive round-robin

and, it simulates contention at the server.

I "°'* I I IIn_eotor repair

1 I

L j
aplrtng

°- [I I I Idegradadorl nMll',_ qLul_l _q_al_ qj_lR4 zwqv, lat ql_l
r'-r-t- ooo r-r-r--

p_tm.ry pr_n._J,

t ? t
I J

Figure 3: The Fault-Tolerant Server Object.

The server offers three sparing modes: the no spare mode, the graceful degradation mode, and

the standby cold sparing mode. In the graceful degradation mode, all the spares operate on incoming

requests. The entire server fails when all the spares become faulty. In the standby sparing mode,

only the primary server operates on requests. When it fails, a reconfiguration takes place and a

healthy spare becomes the primary server. The entire server continues to function as long as there

is at least one healthy server. The number of spares and the type of sparing policy is user selected.

The server provides three fault types: permanent faults, transient faults and user defined faults.

Transient faults last for a specified period of time, after which the server returns to a healthy state

where it can be used again. When a transient or permanent fault is injected in a server, the server

becomes faulty and all requests in the queue, including the one currently using the server, are

dequeued or aborted to simulate that the processor is in a hung state. The remaining processing

time of each request is returned so that remedial action can be taken. Other fault models can

be simulated by specifying user defined faults. To simulate user defined faults, the server calls

a pre-specified fault subroutine, written by the user, that can simulate any fault action a user

requires.

7

The user can customize the behavior of a server by specifying, among other things, the recon-

figuration time, repair coverage and the fault arrival rate. The user can also override the default

repair and fault behavior of the server by specifying user written subroutines to be invoked when

a fault or repair event occurs.

I PORT 1 PORT 1

°
Figure 4: The Fault-Tolerant Communication Link.

3.2.3 Fault-tolerant communication llnk

Another complex object is the link object shown in figure 4. It is designed to simulate various

types of communication links. It consists of a redundant set of communication links with redundant
connections from the links to the ports. The link is built from several objects. Several server objects

are used to model the ports and the links. An instance of the injector object is used to provide

the mechanism needed to inject faults. The rest of the link object consists of additional software
to model the behavior of a communication medium. To initialize a link object, the user specifies:

the number of redundant links and redundant connections to the links, the number of ports, the

time required to send data via the links and the types of faults to be injected. The object offers

automatic retry. Messages sent back and forth contain checksums. If a checksum error is detected

by a receiving port, a negative acknowledgment is sent triggering a retransmission of that message.
The number of retransmissions is user specified. Several fault models, including faulty link, faulty

connection, lost message and corrupted message are offered. If a link or connection is faulty or

if a message is lost, the message does not reach its destination. The sender times out waiting

for an acknowledgment and then retransmits the message. A message corruption fault flips bits

in a message based on user specifications. Like the server object, these default fault models can
be overridden by supplying user written fault subroutines. All the redundancy and fault-tolerant

features described are switch selectable so the user has a range of options and can select from a

simple link with no fault-tolerance to a Unk with all the fault-tolerance capabilities described.

Table 1 briefly describes the major objects available in DEPEND. Each object has functions

that maintain and report fault statistics, from availability and mean time between faihlres to a

detailed report on each fault injected and repair attempted. The objects in DEPEND can be

used to simulate a gamut of different architectures from hypercubes and meshes to TMR and

multiprocessor systems. The level of detail of the simulation is up to the user. For example, a node

8

Name Type Description

Active_elem Elementary Simulates a basic server.

Offers various usage disciplines:

firstcome firstserve,round robin,

pre-emptive round robin. Allows

manual faultinjectionand repair.

Injector Elementary Automatically injects faults based
on statistical distributions.

Offers worldoaA based injections.

Can inject correlated and latent faults.

Checksum Elementary Compute checksums.

Fault Reporter Elementary Compiles fault statistics. Displays

MTBF, MTBR, availability and coverage.

Can output details of every fault

injected and repair attempted.

Voter Elementary Simulates a basic voter.
Has timeout features. Default

voting scheme: byte by byte comparison.

Allows user defined voting algorithms.

RAM Complex

Link Complex

ComplexServer

Simulates a basic random access memory.

Can injectpermanent and transient

faults(bitflips)with latencies.
Simulates communication channels.

Several types of faults:link dead,

packet corruption, packet lossand

user defined faults.Automatic retry.

Simulates a server with spares.

Three sparing policies:no spare,

graceful degradation, stand-by sparing.

Automatic repair and reconflguration

with specifiedcoverage.

Automatic injectionof faults.

NMR Complex Simulates dual self-checking,

trip_e-modular redundant and N-modular

redundant components.

Fault Manager Complex Simulates software fault management

schemes. Logs faults and shuts off

components which exceed their fault threshold.

Table 1: DEPEND objects used for fault-based simulations

9

of a hypercube may be represented by a server object or, the user can use the server, link and RANI

objects to simulate the internal architecture of each node in more detail.

3.3 DEPEND's programming environment

The C++ object-oriented language is used to specify a DEPEND simulation model. The C++

language was chosen as the user interface to DEPEND for several reasons. First, a user does not
have to learn an esoteric simulation language; only knowledge of C++ is necessary. Furthermore,

the entire C++ programming environment is available to the user. DEPEND enhances C++ by

offering simulation facilities not available through regular C++ constructs. The user can use actual

C++ programs as a part of the simulation model. This makes it possible to test proto-type software

algorithms within DEPEND. C++'s strong type checking makes it easier to write large simulations

efficiently with fewer bugs than other languages such as C. Finally, C++ produces efficient code,

and the C++/UNIX environment is widely available.

Figures 5 and 6 show a simple, example program that illustrates the programming environment
and some of DEPEND's features 3. The program models two processes that communicate via a

fault-tolerant communication link. The [ink is declared in line 2 to consist of 2 links, using the

graceful degradation sparing mode. There are two ports connected to the link and each port has an

additional spare port. The co_routine 0 statement in routines main() and receiver() distinguish them

from ordinary C++ subroutines, main() and receiver() are llght-weight co-routines that execute

concurrently in a pseudo-parallel environment. Each time the co_routine() statement is executed

an instance of the co-routine is created.

The main co-routine initializes the [ink. Lines 8 through 13 specify the cost of sending a

message, the time to send acknowledgments and that automatic retry is desired. Lines 14-17

specify the percent of messages lost and corrupted and they also specify the range of bytes (from

the beginning of the message) that can be corrupted and the mask to be used. If these two types of

faults are not sufficient, the user can opt to specify his or her own fault routine by removing lines

16 and 17 and including line 18 ("//"is a C++ comment delimiter). Lines 19-22 specify the failure
rates and distributions of the ports and the links. By default, permanent faults are injected into

the ports and links because a fault type has not been specified. If transient faults or user defined

faults axe injected, repair times, coverage and user defined fault subroutines for link and port faults

can be specified.

The main co-routine creates two of the receiver() co-routines (line 26) and then goes to sleep

waiting for the event done to be set before printing the performance (e.g., throughput, response

time etc.) and fault (e.g., MTTF, availability, fault and repair times) reports. The general struc-

ture of the receiver() co-routines is shown in lines 30 through 46. Each co-routine performs some

computation, puts results in a message and then sends it to the tandem co-routine. Each co-routine

then waits for a return message, performs additional computations and repeats the entire process

until all computations are complete or until the communication link fails (i.e., both links are failed

or 1 port has failed). The last co-routine to complete wakes up the main co-routine by setting the
done event.

3The program is written in "pseudo" C++ for simplicity and ease of understanding.

10

01) _define NUM 2

//Link with one spare and two ports and I spare port for each port

O2) FTAink In ("link", FT_GRACEFUL_SPARE, 1, 2, I);

03) Event done(Uevent");

04) int c_nt;

05) void main(int argc, char = argv0)

06){ co=outineC_n");
07') void recv(int);

//main control program

08) in.msg.xferr_time (10.0, 0.01);

09) In.set .f.hecksum0;

I0) In.set.Auto_retrYO;

11) In.set _aura_try(3);

12) In.set _timeout (500.0);

13) In.set -reply.xfer(10.0);

// 10 units startup, 0.01 per/byte cost

// checksum the messages

//retransmlt if there is an error

//retry 3 times before giving up

// wait S00 units for ack

// 10 units to send reply ack

14)

15)
is)
17)
18)

In.m_s.lo_(0.01);
In.msg.corrupt (0.05);

ln.set .corrupt .range(0, 6)"

In.set.,mask('2');

// ln.set -msg..fault _rune (£,my_fault Junc);

// 1% nmp lost

// 5% msgs corrupted

//corrupt any of 1st 7"bytes of msg

//XOR byte with mask = '2'

//optional, user selected fault

19)

20)
21)
22)

ln.por t _exp_inject (0.000001);

In .port.switch.time (1000.0);

In.port.swit ch_coverage (0.999);

In.set_weibJnject (x,y);

//failure rate of port

// time to switch to a spare port

//prob. switch is successful

//Weibull failure rate for links

23)

24)
In.det ailed-record-on 0;

In.fmject Jtart 0;

//detailed record of all injections

//start the injector

25) for (i=1 to NUM) //start processes that send and

26) receiver(i); //receive msgs at these ports

27) done.wait0; //wait for simulation to end

28) report(); //produce fault report
29) In.fault_report_full 0;

Figure 5: A simple example program using DEPEND - the main co-routine.

i1

30} void receiver(int port_ld)

31) (co_routine("recv'); //tttls is a co-routine- not a subroutine

32) int stat, finished = 0;

33) while (!finished && ln.cond-ok0) (

34) do computations ...

35) put results into msg ...

//send(to, from, msg, size)

36) ln.send((portld+l)%NUM, port.Jd, &msg, sizeof(msg));

37) int reply = ln.receive(id, msg[id], star);

38) if (stat) {

39) ... received message without error ...

40) ... do more computation ...

41) } e_e {
42) ... message as error - take remedial action ...

43) }

}
44) cnt-;

45) if(cnt== o)
46) done.set();

}
/* optional fault routine to do specific fault injections

47) void my_fault.func(int &n_g)

48) < code to corrupt fields in the message ... } */

Figure 6: A simple example program using DEPEND - the "receiver" co-routine.

The simulation contains several concurrent threads of execution. There are the threads for the

main routine and the two 'receive' routines. In addition, there are several threads that inject faults

into the ports, the links and the messages traversing them.

The level of detail of the simulation model depends on the user. For example, for the computa-

tions (line 34, 35, etc.), the user may choose to simply forward the simulation clock and the data in

the messages could be arbitrary values. Alternatively, the user could execute actual code and send
real data back and forth, making it possible to test actual programs such as communication proto-

cols, algorithm-based fault-tolerant schemes [ttuang 84] and the like. Such an approach was used

to determine the fault sensitivity and fMlure behavior of two load balancing heuristics operating in

a distributed system [Goswa.mi 90a].

The simple example in figures 5 and 6 illustrates several basic features of DEPEND. DEPEND

provides the framework and the general behavior of the fault-tolerant communication link. The

specific behavior is controlled by the user by providing key parameters, specifying options and by

furnishing fault subroutines. The user is relieved from simulating the operations of the simulation

medium, the ports, the checksumming logic, the automatic retry logic and the injection of faults to

the links, ports and messages. Several methods are available to interact with the object and react to

important events such as link and port failures. The example shows two methods: a polling function

that returns the status of the link (cond_ok(), line 33) and a status variable returned by the object

(stat, line 37). In addition to various other polling functions such as functions to determine the
status of the ports, the number of messages that have been corrupted and the overhead of sending

acknowledgments, there are signals that are set any time failures and repairs occur. Co-routines

can sleep until these signals are set and then wakeup and perform specific tasks.

The example also demonstrates that the impact of different number of spares, different fault

12

arrival rates and distributionsand repair coverage can be easily modeled by simply changing a

few parameters. A larger, common-bus system consisting of several ports and receiver() routines

operating on these ports can be quickly modeled by increasing the number of ports (line 2) and

appropriately increasing NUM (line 1). Distributed algorithms can be tested for correctness and to
determine their reaction to faults in the communication medium. Other architectures, such as the

hypercube, can also be modeled by creating several instances of the link object, one for each link in

the cube. By modifying the [ink declaration, a comparative performability study can be conducted

to determine whether the cold sparing or the graceful degradation sparing mode is best suited for a

particular application.

A more realistic example in which a complete fault-tolerant system is simulated with DEPEND

and injected with near-coincident errors is described in section 4.

3.4 Simulation time acceleration

Although simulation has the advantage that it can model the detailed behavior of a system, it is
bound by execution time. Simulating systems with large MTBFs can require very large execution

times because system failure is a rare event. This problem is further exacerbated because a simu-
lation must be executed several times or over a large period of time to collect enough failures to

acquire statistically valid results.

Errorn jump Errorn+l

I
,,-r/

Simulate in Simulate in

nanoseconds nanoseconds

_mo

Figure 7: Time acceleration: "Error" driven simulation.

Several techniques can be used to effectively reduce simulation time explosion. In DEPEND, a

time acceleration mechanism has been incorporated to reduce simulation execution times. Objects

in DEPEND axe designed to furnish the time of their next event. Using this feature, a list of

important events which affect dependability measures, such as the time when the next error will

arrive and when the next latent error will be activated, are kept in a chronologically sorted fist. The

simulator leaps forward to the time of the event at the head of the list and resumes processing at the

granularity of the system clock until the effect of the event has subsided (figure 7). This is different

from regular event-driven simulation because this approach allows certain user-specified "unimpor-

tant" events to be suspended during leaps while others continue. This acceleration technique is

used with the Tandem Integrity simulation described in section 4.2.

DEPEND also allows a user to implement other acceleration techniques, such as importance

sampling. Importance sampling increases the number of system failures by accelerating the failure

rates (thereby reducing the number of events that have to be simulated). It then produces unbiased

13

estimatesof the dependabilitymeasureby multiplying thevaluewith a ratio that compensatesfor
theacceleratedfailurerateused[Lewis89]. DEPENDfacilitatesthe implementationof importance
samplingtechniquesbyallowingcontroloverthesimulationengineandprovidinga C++ userinter-
facewith whichuserscanincorporateimportancesamplingmethodsdirectly into their simulation
models.Importancesamplinghasbeenvery successfulin reducingsimulationtime whenthe fail-
ure and repair distributionsareexponential.In [Nicola90], the authorsextendthe applicability
of importancesamplingto non-Markoviansystemswith generalfailure and repair distributions.
But, eventhesemethodscannotbeusedto accuratelycalculatesteadystate MTTF and MTBF
measureswhenthe error occurrenceprocessis not exponential[Shahabuddin88], [Nicola90]- as
is the casein this study. However,it shouldbenoted, that the time acceleration method described

above is not a substitute for importance sampling and that it can be used in conjunction with

importance sampling to further reduce simulation time when computing dependability measures

other than the steady state MTBF or MTTF.

Another approach to reduce simulation execution time is to use hybrid simulation techniques

which combine the detailed modeling available with simulation with the efficiency of analytical

modeling (e.g., CTMC). This approach has been used on the Tandem Integrity simulations and

has been shown to provide significant reduction in simulation time [Goswami 92]. An advantage of

this approach is that it is not restricted to Markovian processes (so long as the CTMC is solved

via Monte Carlo simulation) and is therefore more widely applicable.

4 A Case Study to Illustrate DEPEND

This section illustrates the capabilities of DEPEND with a simulation-based fault injection study

of the Tandem Integrity fault tolerant computer system. This system has been shown to be very

effective against single faults. An important question is how such a system copes with near-

coincident faults generally caused by correlated failures and latent faults. Architectural issues that

have a bearing on how the system handles near-coincident errors include memory scrubbing, re-

integration policies and workload dependent repair times. To study these issues, DEPEND was

used to simulate the Integrity system and evaluate the combined effect of all these factors.

The next subsection describes the salient features of the Tandem Integrity system. The following
subsection describes the simulation model of the machine developed with DEPEND. The error

occurrence process and the techniques used to simulate error latency and speed up the simulation

are presented in the third subsection. The last subsection presents the assumptions and parameters
used in the simulation.

4.1 The Tandem Integrity Fault-Tolerant System

The Tandem Integrity fault-tolerant system [Jewett 91] was introduced in 1990. The system is

shown in figure 8. Each CPU board contains a MIPS R2000 RISC processor with an on-chip

virtual memory mechanism, 128 Kbytes of cache (64 Kbytes of instruction cache and 64 Kbytes

of data cache), a minimum of 8 Mbytes of local memory and its own separate clock. All three

processors execute the same instruction stream but due to clock drift, they do not necessarily

execute the instructions at the same time. Any time the global memory is accessed, the three

processors are synchronized and their requests are checked by the voter. The voter waits until it

14

oi n

TJlaC

_lohwll

Mmw_

!
n i

RIOB

I !!

I

I

IOP

Co_t L-ollez

Di•km

Co_t _I m t

Figure 8: The Tandem Integrity processing subsystem

receives a request from each healthy processor. It then compares all three requests (the request

type, the address field and the data field, if any) for agreement and then forwards the request to

the global memory. If the processors do not access the global memory within 2047 instructions,

the voter forces them to synchronize to prevent large clock drifts. If there is a discrepancy during

voting, the processor in disagreement is shut down and the remaining processors are alerted but

continue with normal operation. The faulty processor performs a power-on self-test (POST), and

if it completes successfully it is re-integrated into the system. The re-integration process consists

of halting all the healthy processors, copying their state information and the contents of their local

memory to global memory and then copying them back again to all three processors to ensure

that all of them have identical states. Re-integration takes only 1.5 seconds for a system with 8

Mbytes of local memory. The entire process takes approximately 61.5 seconds because 60 seconds
are needed to execute the POST. The Tandem system can continue to function with one faulty

processor. However, if a second disagreement is detected by the voter before the faulty processor

is repaired, the system fails.

The local memories in the Tandem Integrity do not have parity or ECC circuitry. The system

relies on memory scrubbing to correct transient memory errors. Unlike conventional systems,

scrubbing in the Tandem Integrity system involves voting. Periodically, 64 byte portions of all

three local memories are copied to global memory. As they are copied, they are checked to see if

they are in agreement. If a disagreement is detected, the local memory's block that disagrees is
rewritten with the correct data found in the other two memories.

The boards containing the voter and the global memory are referred to as the TMRC. The

TMRC contains up to 128MB of global memory and interfaces with the CPUs via the Reliable

System Bus (RSB). The primary function of the TMRC is to vote upon the transactions sent by

15

Percent of Time
CPU is Idle

99%
59%

37%

27%

16%

Re-integration
Time

30 sec.

2 rain. 25 sec.

3 rain. 46 sec.

4 rain. and 5 sec.

4 min. and 40 sec.

0% 5 min. and 29 sec.

Table 2: Global memory re-integration times with varying machine idle percentages

the CPUs. All processor transactions that are external to the CPUs are voted on by the TMRC.

All bits of the command, address and data are voted on. The voting circuit is duplicated and

compared and any self-check errors halt the board. The global memories are protected by parity,

with one parity bit per byte of data. When a parity error is detected by the TMEC, the backup

memory takes over and prevents the primary memory from driving the KSB. A global memory is

re-integrated in the background, interleaved with ordinary processing. For a system with 32MB

of global memory, the re-integration process takes approximately 30 seconds on an idle system.

Since the re-integration time is load dependent, the re-integration time of an Tandem Integrity

with 32MB of global memory was measured under various loads. Table 2 contains the results of

these measurements. Global memory re-integration has a lower priority than CPU re-integration.

A global memory undergoing re-integration will be aborted if a CPU is ready to be re-integrated.

Once the CPU re-integration is complete, the global memory re-integration is restarted from the

beginning. The global memory, llke the local memory, is scrubbed periodically to eliminate latent
errors.

The I/O subsystem is a redundant system with two I/O processors (IOP), redundant busses

to the controllers (RIOB) and more than one controller per disk. In a healthy system, there are

always two paths to each disk. The disks can be organized as mirrored pairs so that a hot backup

is available in case a disk fails. Fault recovery for the processing core of the Tandem Integrity is a

joint hardware and software effort, but for the I/O subsystem, the software is primarily responsible

for recovery from I/O processor (IOP) and I/O controller faults. The IOP exception handler
determines if the fault is in an IOP or in a I/O controller. If it is in a controller and retries do

not succeed, the controller is shut off permanently. If the fault is in an IOP, all the I/O controllers

attached to it are switched to the remaining IOP. If the IOP has a soft-error, it is re-integrated.
Otherwise, it is logically removed from the system. The re-integration time of an IOP is less than

15 seconds. The re-integration time of the controllers varies among controllers but is typically

around 30 seconds. If a disk fails, the backup disk accepts all disk requests. Once the fault disk is

replaced, it can be mirrored on-line and takes approximately 20 minutes for a 150MB disk.

The Integrity system fails when any of the major subsystems, the processing core, the global

memory or the I/O subsystem, fails. The processing core and the global memory fails if a second

error occurs in the subsystem before recovering from an earlier error. The I/O subsystem fails

if both controllers or both IOP boards fail. In the simulation model, described next, the I/O
subsystem is also considered failed if both pairs of a mirrored disk have errors.

16

4.2 The simulation model developed with DEPEND

Recall that we are interested in evaluating the Integrity system and several of its architectural fea-

tures under the stress of near-coincident errors. In order to achieve this, several key characteristics

of the Tandem Integrity system were simulated. These include:

1. the loose synchronization policy of the Integrity system. The fact that the processors idle

at the voters waiting for all three to synchronize and the exact time needed by the voting

operation are accounted for in the model.

2. the CPU (with its local memory) and the global memory structure that is unique to the

Integrity system.
3. the functional behavior of the error-detection mechanisms of the CPU and global memory

structure.

4. the CPU off-line POST and the on-line re-integration process and the global memory back-

ground re-integration process that are unique to the Tandem Integrity.

5. the behavior of the Tandem Integrity when a CPU and global memory re-integration occurs

simultaneously (prioritized re-integration).

6. the software fault management policy for the disk and I/O subsystem which logs faults and

shuts down components that receive too many faults in a short interval. Aspects of the

management policy such as the specific number of faults that must arrive before a component

is shutdown are proprietary. We use realistic values based on the error arrival rates.

The details of the system architecture and how it reacts to faults were determined by studying its

layouts, descriptions and manuals, discussing the matter with its designers and conducting several

fault injection studies (in addition to the validation experiments mentioned below). Simultaneous

injections into various components of the system helped to uncover interesting characteristics of the

system that were subsequently incorporated into the Integrity simulation model. The simulation

model of the Tandem Integrity, developed with DEPEND, is shown in figure 9. The blocks on the

right axe the DEPEND objects used in the simulation model. The block on the left summarizes

the program written to create the simulation model and control the operations of each of the "

components.

The NMR object in the DEPEND library is the primary object used to develop the simulation

model. It is used to model the NMR processing core and the dual, self-checking global memory.

The NMR object simulates dual self-checking, triple-modulax redundant and N-modulax redundant

systems. It contains two, three or more servers and one voter. The servers are designed to idle until

they receive a task to process. They then execute for the time period specified and feed their results

to the voter. The voter waits for the servers to deposit their results and then executes a voting

algorithm to detect discrepancies in the results. The voter uses a timeout condition to prevent

hanging in cases where a server fails to report to the voter. The NMR object offers two voting

algorithms: bit stream voting and error based voting. The bit stream voting scheme performs a bit

by bit comparison of the data deposited by the servers. The error based algorithm flags a server's

result as being faulty if an active error (see below) has been injected into the server. This option
was used in the simulations because the processors were not given any real data to process. In

addition to these voting schemes, the NMR object also allows the voting algorithm to be specified

by the user. Once the voting is complete, the NMR automatically shuts down the servers with

17

Control Program

..... inlJ.

Tni_e objec= - specify pm'mmemrs

se_e_dal injec_on

slaec_y eeror urlv-n _

spec_ re-imegr_c=

speedy ,,umber or'sen,era _ _

specify number of c_:npone_ and
ch_r_tedst_ of the o_tnpone_s
in the YO subsysg,'m

etc.

Start e_h obje_

loop _ done:

do 2047 in_ucdons

wa/t for voC_g to compteto

if faulty proc_sor _.i,_.,#. POST

callglobalmemory's error based
vo_"

if faulty global memory
r_integr_oo

if any subsystem ha= failed
reboot the system

if _ ready for re-integr_on
halt system and re-lntegra_

ast (orwJw _ next event

end loop

2047 _clea

do POST

=e.-int e(F--at e

=eboot

fault or fail

signal

voting =Cm]L_lete

_ro¢ baaed
vot:l.ng

re--Integrat •

Eault og fall

elCn_l

£_ Int_c_t

=aboot

DEPEND objects

ProcessingCore

v

1

fault injector

2 3

NMR

I

E

P

t
r

wot_._

Global Memory

I fault _ecto=]

NMR

1 2

E

I/0 Subsystem

l I FAULTfault ln:_:o= MANAGER

IOP J ZOP=ontEolleroontrolleE

disk I diak

..,t f
fault _risor

diik

•]

• I

P I
• I
i I
r I

Figure 9: The simulation model of the Tandem Integrity system developed with DEPEND.

18

faulty results.The NMR doesnot offerautomaticrepairschemes.However,it hasfunctionsthat
canbe calledto repair the individual servers.This featureis usedto simulatethe automaticre-
integrationfeatureof theTandemIntegrity. TheNMI_object'sfault injector isusedto injectlatent
andcorrelatederrors.Thedetailsof theerrorinjectionprocessarediscussedin the nextsubsection.

The processing core wassimulatedwith a NMR.object containing3 servers. Eachserver
simulatesa processorboardcontainingaCPUandalocalmemory.TheNMR's injectiontechnique
is usedto inject errorsinto both the processorandthe localmemory.

Thetwoglobal memory boardsaresimulatedwith a NMR with 2 servers.Every2047cycles,
whenthe processorssynchronize,the global memory'serror based voting function is explicitly

invoked by the control program to check each server and shut down any that has an active error.
This simulates the actual operation of the Integrity system because parity errors in the global

memory are detected when the processors synchronize at the voter to access global memory.

The fault manager object was used to simulate the reliability aspects of the I/O subsystem

because it closely models the software controlled recovery process used with the Tandem Integrity's

I/O subsystem. The fault manager object is primarily used to mimic typical software fault man-

agement schemes which log faults against components and shut down components that receive a

large number of faults in a short time interval. Each component has a fault threshold. Periodi-

cally, faults logged against the component are erased so that only a burst of faults can exceed the

threshold. To setup the fault manger, the user specifies: the number of components, the number

of elements in each component and the number of faults that can arrive in a specified period of

time without causing the element to be shutdown (fault threshold). The user can opt to apportion

faults to the components probabillstically or can specify the component with each fault injected.

The user can select automatic repair and the re-integration time required for each component. To

simulate the I/O subsystem of the Tandem Integrity, an instance of the Fault Manager object was

created with components to simulate the IOP, the controller and the three mirrored disks. The

IOP and controller were each modeled with one component containing two elements. The mirrored

disk was modeled with two components with each containing three elements. Once component was

used to log soft errors such as errors from bad blocks. The other was used to log hard errors such

as a major catastrophe that affects the entire disk and causes disk mirroring to be lost. The fault
threshold for the IOP was set at 1, for the controller it was 4, for soft disk errors 8, and 1 for hard

disk errors. The fault eraser was specified to wake up hourly and erase an error (if one was logged)

in all healthy elements. These specifications for the I/O subsystem are not those of the Tandem

Integrity system. Detailed information about the software error management scheme of the system
was not available.

The control program in figure 9 declares instances of the three DEPEND objects and ini-

tializes and customizes them in a similar way to that shown in figure 5. Initialization consists of

specifying the error arrival distribution desired, the error arrival rate, the error latency, the number

of components and their re-integration times and so on. After initialization, the program "starts"

each object causing it to automatically perform tasks based on the parameters specified during

initialization. For example, when the fault manager object is started, it will automatically inject

faults, perform repairs and erase faults until the I/O subsystem fails. All actions are automatically

logged and the user can call functions to obtain a detailed report of every fault or repair. In addi-

tion, statistics such as availability, MTBF, the number of faults injected, the mean time between

19

repairandthe repaircoverageareavailable.

After starting the objects,thecontrolprogramloopsfor a specifiednumberof simulatedyears
exercisingthe machine.Theprogramrequeststheprocessorsto execute2047instructionsandthen
synchronizeat the voter. The controlprogramthensleepsuntil voting is completedand then it
checksto seeif anyprocessorhasbeenshutdownby the voter. If so,a POSTcycleis initiated for
the faulty processor.The control programthen polls the global memoryboardsto determineif
thereareanydetectederrors.If a boardhasanerror,are-integrationprocessis started. Next, the
control programchecksto seeif the entire systemhasfailed and if so it initiates a rebootof the
systemthat resetsall the subsystems.If the systemhasnot failed,the controlprogramdetermines
if thereis a processorthat hascompleteda POST(that wasinitiated at an earlier time) andis
readyfor re-integration. If so, anyglobal memoryre-integrationthat is in progressis aborted,
and the systemsimulatesthe re-integrationprocessof a processorby halting the systemfor 1.5
seconds.Afterwardsanyglobalmemoryre-integrationprocessthat wasabortedis restartedfrom
the beginning.Finally the time acceleration algorithm, described earlier, is invoked to determine

the time of the next major event. The clock is advanced to that time and the whole cycle repeats.

The control program does not explicitly check for faulty I/O components. The fault manager

object conducts automatic re-integration of failed elements and interrupts the control program

whenever the entire I/O subsystem fails. The I/O subsystem fails if an entire component (e.g.

both IOPs, both controllers or a mirrored disk pair) fails.

To summarize, this subsection describes the DEPEND objects and shows how they are used to

simulate the Tandem Integrity system. The bulk of the simulation is performed by the DEPEND

objects. All the statistics compilation, fault injection and repair actions are done by DEPEND. As

a result, only a small control program needs to be written by the user. This makes it possible to

simulate large systems with relatively little effort. Since the control program is small, it is easy to

compile, debug and verify.

4.3 The Error occurrence process, Time acceleration & Experiment design

The simulation models errors in the storage elements (e.g. registers and memory) of the system.

These errors are assumed to be caused by transient faults such as ionization radiation and are

assumed to manifest as a single bit flip that can be detected by the voter if it is in the processor

board, or detected by the parity error coding scheme if it is in the global memory. Compensating
second errors to the same bit are not considered because it is a very rare event.

The TMR's fault injector is used to inject active, latent and correlated errors. Active errors are

detected within 2047 cycles from the time they are injected. Latent errors may remain dormant for

hours before being detected. As a result, a component may have several latent errors. This models

the phenomenon observed when errors were injected into the Integrity system; errors injected into
the section of a local memory containing the exception handler, the TLB (Translation Lookaside

Buffer) miss handler or the processor register space were usually detected immediately whereas

errors injected into other locations in the local or global memories had a much larger latency. A

correlated error is two or more errors injected simultaneously into two or more components of a

subsystem. Each correlated error can be either active or latent. This notion that the correlated

errors may have different latencies is justifiable because there is a high probability that the errors

2O

will not occur in the samelocationin eachcomponentandhencewill producedifferentlatencies.
Evenif the errorsoccurin the samelocation, the latenciesarestill likely to be different because

the processors are loosely synchronized.

eX_ _ Exponential

_rpr arrival

rate

a _ _robabilistically 5Qlec_

e_o _ one or bo_h _oT_ponents

Error latency
is normally

_ g distributed

® i L-----.J / I --22.. I I _._ I I I remain do_nt

Scrubl_ r corrects r

all lat, en_. errors _

o - 204"t I I 0 - 2047 I

I °'°l'. I i I
I I *ACt_&I per co.orient

_ ival raue

Ic°--I Icoo....crash crash

* In addition, all ao_ive _rrors and
laten_ eEEOES are correo_ed during

co_nent relntegration. This alJo
affects the actual per co_onant
error arrivsl rate.

Figure 10: The error occurrence process simulated with DEPEND.

The complete error occurrence process for just two CPUs is illustrated in figure 10. A similar

process is used to inject errors into the global memory with one exception; only latent errors are

injected. As shown in the figure, the error arrival times are exponentially distributed. When
an error is injected, a probabilistic branch is used to determine whether it is a correlated error

affecting 2 or more components in a subsystem, or a single error. A probabilistic branch is also
used to determine whether the error is active or latent. Eventually, the error is detected by the

voter and the component is shutdown and then re-integrated. The next subsection describes how

error latency is simulated.

4.3.1 Simulating error latency

One way to simulate error latency is to model a memory structure and the read and write

access to the words in the memory. Error latency is then the time from the corruption of a word

to the time it is read. An excellent description of such an approach can be found in [Meyer 88].

The drawback with this approach is that in order to reduce execution time, several simplifying

21

assumptionssuchasgeometricalaccesstime distribution, independenceof memoryaccessesand
simple,static read/write accessdistributionsneedto beassumed.

While sucha modelcanbe usedin DEPEND,a simplerapproach,whichallowsthe user to
directlyspecifythe latencydistribution, is alsoincorporatedinto DEPEND.In section5, weshow
chat this simpler approach is indeed yard and representative of system behavior. When the NMR

object injects a latent error, it determines its latency from a statistical or empirical distribution.

Based on this latency time, the error is inserted into a dormant queue in chronological order. The

errors are extracted from the queue when their latency times have expired and are then placed on

a list of active, detectable errors (see figure 10). This approach has several advantages. First, it

makes no assumptions about the structure of the component injected and so the basic mechanism

can be used to simulate error latency in CPU registers, memory boards, caches and other structures

also. The latency distribution represents and contains the structural and functional differences of

the various components. This is useful to DEPEND because it strives for methods that are general

and widely applicable. Second, because this approach uses a distribution and does not require

detailed modeling of the memory structure, it can potentially be represented with an analytical

continuous time Markov chain (CTMC). Finally, and the biggest advantage of this approach is that

it results in enormous simulation speed up because the time at which the next latent error will

become detectable is known thus eliminating the need to simulate the system between occurrences

of detectable errors. The time acceleration algorithm described in section 3.4 takes advantage of

this property.

4.3.2 Assumptions and parameters used in the simulations

Error arrival times are assumed to be exponentially distributed. The distribution means are

based on findings from a measurement-based analysis of real error data collected from a DEC

VAXcluster multicomputer system[Tang 90]. Tang found that the mean time between CPU errors

(1/,,kcPu) in the system was 265.8 hours with a standard deviation of 497.6 hours. The mean time

between memory errors (1/,,kMemory) was 27.0 hours with a standard deviation of 150.4 hours. The

combined error arrival rate is approximately 1 every 24 hours. Of this combined rate, approximately

62% of the errors are injected into the global memory and 38% are injected into the processor
board containing the CPUs and the local memories. These numbers are based on the size of the

memories (8Mbytes of local memory per board and 32Mbytes of global memory per board) and the
contribution of the CPU error arrival rate to the combined error arrival rate. The voter is assumed

to be error free. To compensate for the fact that the measurements are from a larger system and
that the standard deviations are large relative to their means, three combined error arrival rates

(shown in Table 5) are used in the simulations. Still, one cannot assert that the error rate of the
Tandem Integrity is similar to that of the VAX cluster. Since we are not concerned with absolute

reliability figures but rather with the trends and changes to system reliability due to various fault

conditions, this does not pose a problem.

The error latencies used in the simulations are based on findings from a measurement study
of the VAX 11/780 by Chillarege [Chillarege 87]. Chillarege found that error latency is workload

dependent. Errors injected at midnight, when the workload was low, had a mean latency of 8 hours
with a standard deviation of approximately 4 hours. Errors injected at noon, when the machine

was used heavily, had a mean latency of approximately 44 minutes and a standard deviation of 29

22

minutes.Theerror latenciesusedin this studyareapproximatedby normaldistributionswith the
meansand standarddeviationsjust mentioned.A larger latencywith a meanof 36hoursand a
standarddeviationof 18hoursis alsousedin the simulationsto determinethe effectof extremely
largelatencies.

All errors,includingundetectedlatenterrors,residingin a processoror in a globalmemoryare
assumedto becorrectedwhenthe componentundergoesa re-integration,the systemis rebooted
or whenscrubbingtakesplace- regardlessof the numberof latent errorsresidingin the system.
Therefore,not all theerrorsinjectedaredetectedandtheactualerrorarrivaldistributionof detected

errors depends on the scrubbing rate, the component re-integration rate, the error latency and

the injection rate. Because error latencies and global memory re-integration times are workload

dependent, various system workloads are implicitly modeled by varying these parameters. Finally,

since we are primarily concerned with transient errors, permanent errors are not injected and the

MTBFs presented do not reflect their impact on system reliability.

5 Validation of the Simulation Model

Many steps were taken to ensure that the simulation model of the Tandem Integrity adequately

represents the behavior of the actual machine under error conditions. The Tandem Integrity's

response to errors was determined by discussing the matter with its designers and by injecting

errors into multiple components of an Integrity system, observing the interactions and incorporating

them into the simulation model. For example, the prioritized re-integration policy, where a global

memory re-integration is aborted to conduct a CPU re-integration, was only discovered when

errors were simultaneously injected into the global memory and a CPU. To further verify the

abstractions used to simulate the injection process and the system's behavior, an additional set of

injection experiments were conducted and the results were compared with those obtained from the

simulation. This section describes these injection experiments in detail.

Specifically, the goal of the experiments was to verify whether the simulation model is correct

and detailed enough to capture the behavior of the Integrity system, especially under latent errors.
We also determined if a single latency distribution was sufficient to model the workload and the

dynamically changing user and system activity.

The experimental testbed takes advantage of the Integrity system's ability to re-integrate a

failed component of a subsystem on-the-fly without crashing the system. The testbed was designed

to repeatedly injected errors into one CPU board and collect measurements. The Integrity system's

on-line re-integration also made it possible to automate the injection process and run the injection

experiments continuously for several days while other users continued to use the system, unaffected.

This made it possible to collect data under varying load conditions and to collect enough data to
provide statistically valid comparisons. The next subsection describes the validation testbed and

the injection process. The following subsection describes the validation experiments conducted.
Finally, results of the experiments are presented in the third subsection.

23

5.1 Validation environment: Hybrid monitoring

A hybrid monitoring environment was used to conduct the injection experiments. Figure 11 shows

the various parts of the environment. A Tektronix DAS 9200 digital logic analyzer was used to

monitor bus activity on one CPU (the CPU that is injected with errors) of the Integrity system.

The logic analyzer contains a finite state machine that was programmed to collect pertinent data
such as the times when an injection occurs, an exception is raised by the Tandem Integrity and when

POST is initiated. In addition, the types of exceptions raised and the times when the corrupted

word are accessed (read and written) are also collected.

pr_-im & _

ipplicati0nsJ

Tandem
Inr_jri_

DASProbe

socketconnec_on

TekronixDAS
9200Logic
Ar_lyzer

Finitemachine
to coutroidata
c011ection

SUN SPARCII

DAS Control
program

Figure 11: An injection environment using hybrid monitoring.

The logic analyzer is controlled by a DAS control program that runs on a Sun SparclI work-

station. The control program accepts commands from the injection program and translates them

into a sequence of DAS recognizable commands that start and stop the DAS and upload the data

collected by the DAS. The injection program runs on the Tandem Integrity machine and injects

errors into the text region (the region containing the machine instructions) of a process. It also

controls the operations of the DAS remotely via the DAS control program. The specific injection

programs used in the experiments are described in the next subsection. An error is injected by

corrupting a bit in a word that is randomly selected from the text region of the target applications

and writing that word into the memory of one CPU (in this case, CPUB). If the word resides in
the cache, it is deleted to ensure that the corrupted version of the word is used.

An acceleration technique was used to increase the percent of errors detected. An executable

version of a program consists of a large prologue, epilogue and support code in addition to the main

body of the program. Because the prologue and epilogue mostly contain code used to initiate and

terminate a program and perform other support functions, and were infrequently invoked during

the execution of the target applications, only the machine instructions in the main body of the

program were injected. This increased the percent of errors detected from approximately 10% to

65%. This acceleration technique may reduce the error latency values measured but our objective

is validation and not error latency measurement.

The target applications are Gaussian elimination programs which use a random number gener-

ator to fill a square matrix and then execute the Ganssian elimination algorithm to solve the set of

simultaneous equations. This process is repeated indefinitely. Two instances of the program were

24

executedsimultaneouslyandinjectedwith errors.The programsgeneratedandsolved300-by-300
elementmatrices.

5.1.1 The Validation Experiments

The validation was conducted in two phases. In the first phase, a contro/led experiment was

conducted to determine the error latency distribution, the error isolation distribution and the

percent of errors detected. For these experiments, the error latency distribution is defined to be the

time from injection to the time an exception is raised by the Tandem Integrity. The error isolation

distribution is the time from the exception to the time when power-on-self-test (POST) of the CPU
board is initiated. These values are subsequently input to the system simulation. The injection

program used is shown in figure 12. The three minute wait time used in the injection program was

1) Start the two Gaussian elimination workload programs.

2) Start the DAS controller and request it to start the DAS.

3) Randomly select

the program to inject

the address of the word to be corrupted
the mask to use.

4) Inform the DAS of the address of the word corrupted.

5) Inject the error into the word (flip a sigle bit).

6) Wait for CPU shutdown or 3 minutes - whichever comes first.

meanwhile, the DAS looks for exceptions, POST etc.

7) If the CPU was not shutdown
shutdown the CPU.

8) Initiate the POST and re-integration process.
t_8 cleamJ out amy effect of the Jz_ject_on.

9) Request the DAS controller to upload the data collected by the DAS.

10) Goto step 3.

Figure 12: Injection program used for phase 1 of the validation experiment.

determined through experimentation to be sufficiently long enough so that the probability of an

error being detected three minutes after the injection is negligible. Examples of errors that are not

detected include errors injected into machine instructions that axe never or rarely executed (e.g.,
an if clause that is never true) and flipping bits in an unused portion of an instruction word. This

phase of the experiment is referred to as a 'controlled' experiment because only one error is injected

at a time and the system is always reset to a known state before injecting the next error (step 8 in
figure 12).

The purpose of the second phase of the experiment was to collect the CPU shutdown distribution

and the distribution of the number of undetected, latent errors present in the CPU board prior

to a shutdown 4. These distributions are then compared with those generated with the DEPEND

Integrity simulation model. The second phase of the experiment was an 'uncontrolled' experiment

in which errors were injected randomly without waiting to determine the effect of the previous errors

injected and without returning the system to a known state before each injection. Errors arrived
based on an exponential distribution with a mean of 3 minutes. Such an accelerated rate was used

4This is simply a count of the number of errors injected prior to a CPU shutdown. So if four errors are injected

before a shutdown, it is assumed that there are three undetected errors in the CPU prior to a shutdown.

25

to ensurethat enoughCPUshutdowneventswouldbecollectedfor a meaningfulcomparisonwith
the simulationresults.The injectionprogramusedis shownin figure13.

1) Start the two Caussian elimination workload programs.

2) Start the DAS controller and request it to start the DAS.

3) Randomly select
the program to inject

the address of the word to be corrupted

the mask to use.

4) Inform the DAS of the address of the word corrupted.

5) Inject the error into the word (flip a single bit).

6) Determine time of next error, t (exp(A -- 3minutes)).

7) Wait for CPU shutdown or until t - whichever comes first.

8) If (CPU is shutdown before t elapses)

re-integrate the CPU

sleep until t elapses

9) Goto step 3.

Figure 13: Injection program used for phase 2 of the validation experiment.

A summary of both phases of the experiment is shown in table 3. In the first phase, 734 errors

Phase

Phase 1

Phase 2

Duration (hrs.) No. Injections No. CPU Shutdowns

93.5 734 476

28.0 414 247

Table 3: Validation experiment statistics.

were injected continuously over a period exceeding three days (93.5 hours). During this period,
other users continued to use the Integrity system. As a result, the workload was not fixed and

varied with the number of users and the time of day. The errors, however, were only injected

into the two target applications. The second phase of the experiment was conducted under similar

conditions and lasted for 28 hours, during which 414 errors were injected.

5.1.2 Results from Phase 1: Measurement of Error Latency

The error latency and isolation latency distributions measured from the first injection experi-

ment is shown in figure 14. The mean error latency was found to be 16.48 seconds for 300-by-300

element matrices. The mean latency was found to vary considerably depending on the size on the

matrices. With 15-by-15 matrices, the mean latency was approximately 1 second.

Non-linear regression techniques from a statistical analysis package [SAS], were used to fit the

empirical distributions with common exponential polynomials. The fitted functions are also shown

in figure 14 and their parameters and an indication of the goodness of fit (the r 2 value) are given

in table 4. Both a 2-phase hyperexponential and an exponential distribution were fitted to the

empirical error latency distribution. The figure shows that the hyperexponential distribution is

a reasonably good fit and approximates the percent of small and large error latencies well. The

exponential distribution overestimates the number of small latent errors and underestimates the

number of large latent errors. The isolation distribution, the time from the first exception to

26

300 100
250 -}1 2-phase hyper-exp 80 -]| 2-phase hypo-exp

- -- exponential | - -- 4-phase hypo-exp
J2O0

, . =01360
|

YeU100-J_ o- = 24.51 yCn 40]_ a = 0.12
it,

0 20 40 60 80 IO0 0.00 0.25 0.50 0.75 1.00 1.25

Error latency in seconds Error isolation time in seconds

Figure 14: Measurements from the first injection experiment.

Error Latency

Type Parameters r 2

2-phase al = 0.5, a2 = 0.5 0.89

hyperexponent!al)`1 = 0.03,)`2 = 5.94

exponential)` = 0.5257 0.819

Error Isolation

Type Parameter r 2

2-phase),1 = 16.32 0.55

hypoexponential)`2 = 16.36

4-phase)`1 = 34.93,)`2 = 31.26 0.67

hypoexponential)`3 = 54.66,)`4 = 34.13

Table 4: The fitted exponential polynomials.

the time POST is initiated, has an unusually large peak which makes it difficult to fit. The

distribution has a peak that indicates that a majority of the errors are isolated within 0.1125

seconds followed by a large tail which represents those infrequent cases that take more time. As

discussed in [Geist 90], similar behavior has been observed by several experimenters, including

[Finelli 87] and [McGough 83]. The empirical isolation distribution was fitted with a 2-stage and

a 4-stage hypoexponential distribution. Both fail to capture the peak and indicates that a mixed

distribution may be needed for a better fit [Geist 90 I. However, since the isolation distribution is

a small fraction of the total error latency, the total latency being the sum of error latency and

isolation latency, additional effort to find a proper fit was abandoned. Instead, the simpler 2-stage

hypoexponential distribution was used in the simulations and found to produce adequate results.

5.1.3 Results from Phase 2: Comparison of Simulation and Actual Injection Results

The fitted hyperexponential error latency and the 2-stage hypoexponential isolation latency dis-

tributions obtained from phase 1 of the experiment were used in the DEPEND Integrity simulation

model to represent the total error latency of the injected errors. The system simulation was modi-

fied to only inject errors into one CPU. The simulation injection scenario used was identical to that

outlined in figure 13. The model was executed for a simulated time period of 500,000 seconds (5.78

27

days)with anexponentialerror arrival rate with a meanof 3 minutes.Figure15showsthe mea-
suredand simulatedCPUshutdowndistributionsand their means,medians,standarddeviations
andthe samplecounts.Themeans,mediansandthe standarddeviationsarestatisticallyidentical.

24 70

Mean:381.84 Mean:383.2920 Median:291.0 60 Median:301.94
Std.dev:294.55 50 Std.dev:280.18

F 16 Count:247 F Count: 1304
r 1"

e e 40
q q
u 12 u
e e 30
n n
c £

y 8 Y 20

4 10

0 0
0 320 640 960 1280 1600 0 320 640 960 1280 1600

a) Measured (sec.) b) Simulated (sec.)

Figure 15: The Time to CPU shutdown distribution(inseconds).

Comparing the distributions,the generalshape ofboth distributionsissimilarin spiteof the fact

that the measured distributionhas 5 times fewer samples. A closerlook at the two distributions

revealthat many of the peaks in the measured distributioncan alsobe found in the distribution

obtained from simulation.For example, the simulateddistributioncapturesthe peaks which occur

between 640 and 960 seconds and between 960 and 1280 seconds. The simulationmodel was also

executed with the fittedexponentiallatencydistribution(seetable4) and found to produce a mean

time of368.3 seconds between CPU shutdowns. The mean time issmallerbecause the fittedexpo-

nentialerrorlatencydistributionoverestimatesthe number of errorswith small latencies.Figure

16 containsthe measured and simulateddistributionsofthe number of undetected,latenterrorsin

the CPU at the time of a shutdown. The distributionobtained from the simulationmodel tracks

the one obtained from measurement very well.

These resultsdemonstrate that the simulationmodel of the Integritysystem isvalidand that

DEPEND iscapable of capturingthe intricaciesofa realsystem. The resultsalsoindicatethat a

singleerrorlatencydistributioncan be used to representthe dynamically changing system activity

and workload so that accuratedependabilitymeasures can be obtained.The distributionin figure

15a was obtained from an actualmachine over a period of 28 hours while severalusersused the

system,the workload changed with the time ofday and paging,swapping and othersystem activities

continuedundeterred.The distributionshown infigure15b was obtainedfrom the simulationmodel

in which allof the system activitywas replacedby a singlelatencydistribution.The statistically

identicalparameters of the CPU shutdown distributionsand theirsimilarshapes indicatethat

modeling system activityand memory read/write accessmay be eliminatedand replaced with

a latency distributionfor the purpose of obtainingdependabilitymeasures. This simplification

makes itpossibletomodel largersystems forextended periodsof time without sacrificingaccuracy.

Furthermore, in caseswhere the latencycan be fittedwith an exponentialpolynomial,itmay be

possibleto model the errorlatencyprocesswith analyticaltechniques.

28

F
r
e

q
U
e
n
C

y

150 -

125 -

i00 -

75-

5O

25

0
0

Mean: 0.67
Std. dev: 0.97
Count: 247

1234567

a) Measured

F
r
e

q
U
e
n
c

y

750

625

500

375

250

125

0

Mean: 0.73
Std. clev: 1.06
Count: 1304

I

01234567

b) Simulated

Figure 16: Distribution of the number of latent errors prior to a CPU shutdown.

6 Simulation-based Fault Injection Study

Having verified the simulation model, it is now used to analyze the behavior of the TMR-based

system under correlated and latent errors and with memory scrubbing and various re-integration

times. These experiments illustrate some of the capabilities of DEPEND and the sorts of analysis

that is possible with such a tool. The parameters used in the simulation experiments are listed

in table 5 s. The experiments were conducted in phases to isolate and determine the impact these

various parameters have on system reliability. The system was simulated for time periods ranging

from 30 years to 2000 years. Each simulation was run twenty times with different random seeds

and the averages of these repeated executions are shown here.

Except where explicitly stated, the simulations were executed with a POST time of 60 seconds,

a global memory re-integration time of 2 minutes and with memory scrubbing turned off..The

mean time between failures (MTBF) is calculated by dividing the simulation period by the average

number of system failures. The MTBF figures presented in this paper should not be construed to

reflect the MTBF figures of an actual Tandem Integrity system because the error arrival rate and the

error latency, which have a direct bearing on this measure, were not obtained from measurements

of the Tandem Integrity system but rather from other production machines. For this reason, the

results shown in this paper should only be construed to reflect the trend and behavior of a Tandem

Integrity like machine.

6.1 Impact of Correlated Errors

TMtt systems have been shown to be extremely effective against single, independent errors. In

this experiment, correlated errors are injected to determine their impact on system reliability. To

isolate the impact of correlated errors, only active errors are injected. Correlation factors of 0, 1

5Normally distributed error latencies based on [Chillarege 87] are used because they were collected over large
periods of time whereas our latency measurements were for validation and were obtained under high acceleration
conditions. Nevertheless, DEPEND can use both, as has been established.

29

Error Arrival Ra_e At [1/24 hrs
Error Arrival Rate A2 [

IError Arrival Rate M

Small Latency (sm)

Large Latency (lg)
Extra Large Latency (x])
Percent Correlated Errors

1/72 hrs
1/120 hrs

mean = 44 min. std = 29 min.
mean ----8 hrs. std = 4 hrs.

mean -- 36 hrs. std --- 18 hrs.

0, 1, 2
Percent Latent errors 85

POST Time 1, 10, 30, 60 sec.
CPU Re-integration 1.5 sec.

Global Mem. Re-integration 0.5, 2, 5, I0 rain.
IOP Re-integration 15 sec.

Controller Re-integration 30 see.
Recoveryfrom bad block 30 sec.

Disk Mirroring time (150 MB)
System Reboot time

20 rain.
10 min.

I/O Error Arrival Intervals 5,8,12,15,18,21,24,27,48,72,96 hours

Table 5: Simulation parameters.

and 2 percent were used. Figure 17 shows the results for error arrival rates A1 and A2 for various

global memory re-integration times. The figure shows that there is a significant reduction in the

MTBF when correlated errors axe injected. However, because only active errors are injected, all

errors injected are detected and all occurrences of correlated errors result in a system failure.

a) Active Errors, AI arrivalrate b) Active Errors, A2 arrivalrate

M
T
B
F

y
r
s

25

30 sec.

20 k 2 min.
x

k 5 min.
15 _k 10 rain.

-_2.22._.. " ,,

0 i '_

0 1

!80 -iX 30 sec.

160 -1 \ 2 min.

140_ \ 5min.

TM 120_ \ 10 min.

,001 \

s 60

40

2

I

2 0 1 2

Percent Correlation Percent Correlation

Figure 17: Active errors (no latency) with various global memory re-int, times

These results are therefore very pessimistic. Latency tends to decrease the probability of two errors

occurring simultaneously and reduces the degradation caused by correlation. The next subsection

presents results when latent correlated errors are injected.

The figures also illustrate the degradation in reliability as the global memory re-integration time

is increased. Increasing the re-integration time from 30 seconds to 5 minutes (a 10-fold increase)

3O

reduces the MTBF by a factor of 5 for ,_2. The results demonstrate that the MTBF for a TMR

system is quite sensitive to the re-integration times. Since the global memory re-integration times

for the Integrity system increases with increasing workload, the system reliability will be much
lower if the machine is heavily used. To avoid this, the priority of the background re-integration

process can be increased to ensure that it always takes approximately 30 seconds (for 32Mbyte

boards) and is workload independent. Whether the performance cost is acceptable will depend on

the use of the $2. If the Integrity system is used as a part of a cash station system, a 30 second

glitch may be acceptable whereas it may be problematic for a manufacturing system. Finally, since

the re-integration times also depend on the size of the memory, larger systems will have smaller
MTBFs.

The performance overhead for voting was also measured during the experiments and was found

to be 3.36% with the assumptions that the processors only vote every 2047 cycles and that they

all arrive at the voter at the same time. This is the minimum voting overhead because in actual

operation, the CPUs are likely to vote more often (i.e., they vote whenever they access global

memory or perform I/O) and they will typically never reach the voter at the same time, leaving

the early comers to idle waiting for the slowest processor.

Three different re-integration policies: 1) the CPU has priority and aborts global memory re-

integration in progress, 2) global memory re-integration has priority and aborts CPU re-integration

in progress, 3) and both have equal priority, were simulated and found not to have any significant

impact on system MTBF. This is because the probability of simultaneous re-integrations by a CPU

and a global memory was extremely small and hence all three policies behaved identically.

6.2 Impact of Latent and Correlated Errors

Since in reality errors have latency, the experiments above are repeated except this time correlated,

latent errors axe injected. All errors injected into the global memory have latency. Eighty-five

percent of the errors injected in the CPU boards have latency and the remaining 15% are active

errors. Since 2 or 3 correlated active errors _ always cause the system to fail, the maximum

system MTBF attainable under these error conditions can be approximated by multiplying the

probability of injecting 2 or 3 active correlated errors with the error arrival rate of the processor

subsystem. Using the equations in the appendix, the approximate maximum MTBF for A1 is 8.66

years and for A2 is 25.98 years for a correlation factor of 2%.

Figure I8 graphs the change in the MTBF for error arrival rates of ,_1 and)_2. Scrubbing was

not activated and a POST time of 60 seconds and a global memory re-integration time of 2 minutes

was used. There are three things worth noting. First, the figure shows that the degradation

in the MTBF when correlated latent errors are injected is not as significant as when correlated
errors with no latency are injected. For example, for ,_2, with 1% correlated errors and small

latency, the degradation in the MTBF is 5-fold, whereas the degradation is over 80-fold when the

errors have no latency. These results indicate that error latency tends to counteract the effect

of correlated errors. This is because latent errors remain dormant for some period of time and

reduce the probability of their simultaneous detection. Similar trends were observed for the other

error arrival rates. Second, the MTBF values in the graph are all less than the maximum MTBF

calculated above. This indicates that correlated active errors are not the sole cause of all the system

31

16

14
12

M 10
8
6

s

4

2

a) Error arrival rate AI

-- no 80

(x, sm

........ _ 70\,
" 60
\ M

' "" T 50

r 30
s

- 20

..... 10

I]- 0

0 1 2

b) Error arrival rate A2

_i_x x siO

-

0 1 2

Percent Correlation Percent Correlation

Figure 18: Combination of correlatedand latenterrors,Mem. re-int= 2 rain.,no scrubbing.

crashesand that correlatedlatenterrorsalsoimpair system reliability.This isalsoborne out by

figure19 which shows thatthe number of times the entireglobalmemory subsystem failsincreases

a) Num. Global Memory Failures, Az b) Num. Processor Failures, AI

U

r

e

s

a

6-

5-

4

3

2

1-

0

sm 6
F
a 5
i
1 4

u
__ -)< lg r

_ e 3
S

............. × × xl 2

1

| !

_

7

/ .X

0 i J

0 1 2 0 1 2

sm

lg

xl

Percent Correlation Percent Correlation

Figure 19: Number of Processor subsystem and Global Memory subsystem failures. No scrubbing.

with increasing correlation. Since no active errors are injected into the global memory, only the

increase in correlated, latent errors can account for the increase. Similarly, the number of processor

subsystem failures would have been identical for all latencies if correlated latent errors did not

contribute to the failures (figure 19b).

6.3 Error Injection with Scrubbing

In this experiment, memory scrubbing is activated to see how well it protects the system from

correlated, latent errors. Four scrubbing intervals, 1 hour, 4 hours, 8 hours and 24 hours, are used.

32

Figure 20 shows the impact of scrubbing on the system MTBF for the various scrubbing intervals

for the three latencies with error arrival rate A1. The case where scrubbing is not used (scrubbing

interval = 0 in the figure) is also included in the graphs for comparison purposes. Figure 20a

a) Impact of Scrubbing, A1 c) Impact of Correlation on Hourly Scrubbing, A1

M
T
B
F

Y
r
s

60-

50-

40-

30-

20-

10-

0 i i l

014 8

sm
×

i

24

M
T
B
F

y
r
$

60-

50"

40-

30-

20

1°°
0

I

2

sm

b) d)

M
T
B
F

2000

1500

I000

500

I

I
I

I

/<.................. xxl
k

\

'x--
........ -_.lg

] I I

8 24

M
T
B
F

2000

1500

1000

500

\

\

\

\

\

\

\

-- \

\

\

lg

........ X1

\

\

\

\

\

1

0
014 0 2

Scrubbing interval Percent Correlation

Figure 20: Results with scrubbing activated. POST = 60s. Global Mem. Re-int. = 2 min.

shows that with small latency (mean of 44 minutes) frequent scrubbing is necessary. With hourly

scrubbing, the MTBF increases nearly 7 times over the non-scrubbing case. When the scrubbing

frequency is decreased to once in 4 hours, there is only a 1.5 times increase in the MTBF. For larger

latencies, scrubbing every 8 hours or just once a day provides good results as seen in figure 20b.

Identical trends were seen for the other error arrival rates. The results indicate that the scrubbing

frequency should be based on the size of the expected latency and not on the error arrival rate.

Here again there is a performance/reliabillty tradeoff because latency decreases with increasing

workload and that is precisely when frequent scrubbing is required. Fortunately, the overhead for

33

scrubbing is not significant. The overhead for scrubbing the global memory and the local memory

hourly was only 0.34% of the processing time.

Figure 20c and 20d show that the improvement in system reliabi]_ity achieved by scrubbing

diminishes substantially when there are correlated errors. For example, with 1% correlated, small

latent errors, the MTBF falls from 52.03 years to 8.4 years. Though scrubbing is not effective

against correlated errors, the experiments revealed that it still tends to decrease the number of

near-coincident faults and increase the availability of the individual components.

6.4 Impact of POST Time

The system simulated is designed to tolerate single faults. For such systems, the time needed to

repair a faulty component is referred to as its window of vulnerability. If a second fault arrives

within this window, the system will fail. The previous experiments show that the MTBF of the

system is quite sensitive to the size of this window and so in this experiment we simulate the

Integrity system with various CPU POST and global memory re-integration times to determine

which of these repair times have the greatest impact on system reliability.

So far all experiments have been conducted with a 61.5 second CPU repair time; 60 seconds to

perform a power-on self-test (POST) and 1.5 seconds to re-integrate the CPU. The re-integration

time cannot be reduced but the POST time canbe cut by using different self-checking programs.

Since most errors axe caused by transient faults, an effective policy may be to perform only a

perfunctory check that takes just a few seconds and immediately initiate the re-integration process.

If another error is detected in the same board shortly thereafter, a more thorough POST program

can be executed to see if there are any permanent defects. The re-integration time for the global

memory varies with workload but it can be reduced by increasing the priority of the re-integration

process. In this experiment, simulations axe conducted with POST times of 1, 10, 30 and 60 seconds

with the global memory re-integrations times listed in table 5 to determine their impact on system

MTBF. Scrubbing was not activated.

Figure 21a plots the MTBF figures for the various POST times for small latent errors with error

arrival rate A1. With a 30 second global memory re-integration time, reducing the POST time from

60 seconds to 1 second improves the MTBF from approximately 20 years to 50 years. However,

when the global memory re-integration time is increased to 2 minutes, reducing POST times has

no effect on system MTBF. According to table 2, global memory re-integration time for a 32Mbyte

system is 2 minutes when the system is working at hag capacity. Clearly, given the assumption

that 62% s of all errors are injected into the global memory, the "reliability bottleneck" is the large

re-integration time of the global memory. Rather than trying to reduce CPU POST times, the

designers should focus their efforts on reducing global memory re-integration times.

The results of simulations where correlated errors are injected are shown in figure 2lb. For

these simulations, the global memory's re-integration time was kept fixed at 30 seconds. Again,

in this experiment we see that the presence of correlated errors diminishes any gains achieved by
reducing the CPU POST times.

6This number was determined based on the size of the global memory _nd the CPU local memories. See section
4.3.2.

34

a) CPU POST -VS- Mem. Re-lnt. b) Impact of Correlatlon

M
T
B
F

Y
r

3

50

40

30

20

10

M
T
B
F

Y
r
s

- 1 sec.

ii_ 60 sec.

I ! !

2 5 I0
0
0.5 0 1 2

Global Mem. Re-integratlon(min.)

50 i sec.

,_ I0 sec.

40 i \ _ 30 sec.

30 "..",,\ 60sec.

20-

I
01 , _,

PercentCorrelation,GlobalMere. Reint (0.Smin)

Figure 21: System reliability for various subsystem re-integration times.

6.5 Impact of the I/O Subsystem

In this experiment, the I/0 subsystem is included in the simulation to determine its impact on

system reliability. The I/O subsystem was injected with errors based on an exponential distribution

with the means listed in table 5. For a given error arrival rate, 5% were injected into the IOPs,

34% into the controllers, 60% were injected as recoverable disk errors and 1% as major disk errors.

Figure 22 shows the results of simulations with a POST time of 60 seconds, a global memory

re-integration time of 2 minutes and A1 as the combined error arrival rate for the CPU and the

global memory. The figure shows that the original "without I/0" MTBF figure are not reached

until the I/O error arrival rate is slightly slower than A1. Most of the I/O failures were due to

controller failures which in turn caused disk mirroring to be lost. Since it takes 20 minutes to

re-mirror a disk, a controller failure creates a large window of vulnerability for the system. The

I/O subsystem is the reliability bottleneck until the I/O error arrival rate falls to less than 2 errors

a day (figure 22b).

7 Conclusion

The objective of this paper was to introduce DEPEND and demonstrate its capabilities and its

utility with a real example. The paper described the unique object-oriented approach used by

DEPEND to provide a flexible framework which can model various fault-tolerant architectures.

It also demonstrated how the tool can facilitate the evaluation of a complete system and help to

conduct extensive fault-injection experiments with minimal effort.

The key features of DEPEND were illustrated by analyzing the Tandem Integrity fault-tolerant

system. Specifically, the effect of near-coincident errors caused by correlated and latent faults was

analyzed. Issues such as memory scrubbing, re-integration policies and workload dependent repair

times, which affect how the system handles near-coincident errors were also evaluated. Other issues

35

a) Rellabillty wlth I/O subsystem at AI b) I/O: A Reliabillty Bottleneck, AI

2018

16

6 With I/O F 14
M 5 12

S

2

1

0

i
1
u 10
r

e 8

40 6
yr

4

2

0

_ I/O

! I [I I

12 24 48 72 96 12 24 48 72 96

Global Memory

I/O MTBE (hours) I/O MTBE (hours)

Figure 22: System Reliability with I/O Subsystem included. No Scrubbing.

such as the simulation of error latency and the time acceleration technique that provides significant

simulation speed up were discussed.

Results obtained using DEPEND were validated by comparing with measurements obtained

from fault injection experiments conducted on a production Tandem Integrity system. A hybrid

monitoring testbed was used to conduct the injection experiments. The measured error latency
distribution for a workload consisting of two Gaussian elimination programs was found to fit a

hyperexponential distribution. The mean latency time was found to vary significantly depending

on the size of the matrix being solved. The results of the validation experiments demonstrated that

DEPEND is capable of capturing the intricacies of a real system. The results also verified that the

technique used to simulate error latency adequately represents the workload and the dynamically

changing system and user activity so that precise computation of dependability measures can be

obtained.

The simulation model was used to inject near-coincident errors and evaluate the behavior of

the Integrity system. Results from the fault injection study clearly showed that there is substan-

tim degradation in system reliability due to transient, correlated errors. Even correlated errors

with large latencies (larger latencies reduce the probability that a pair of correlated errors will

be detected simultaneously or near-coincidentally) were found to significantly impair system reli-

ability and diminish much of the benefit derived from reliability improvement strategies such as

memory scrubbing and reducing re-integration times. Several re-integration schemes were modeled

and found to behave similarly. Experiments in _vhich various CPU and workload dependent global

memory re-integration times were tried revealed that if the machine is working at half its capacity,

the global memory re-integration time is the reliability bottleneck and that designers should try to

reduce this time rather than CPU re-integration times. The weak point of the I/O subsystem is

the time needed to mirror a disk, coupled with the fact that a faulty controller causes all the disks

attached to it to be inaccessible thus losing disk mirroring.

36

8 Acknowledgements

This work was supported by NASA grant NAG-I-613 at the Illinois Computer Laboratory for

Aerospace Systems and Software (ICLASS), a NASA Center of Excellence. This work would not

have been possible without the help of Doug Jewett, Bob Horst and Carlos Alonso who have

furnished many of the details of the Tandem Integrity system and have given useful feedback

about DEPEND and the Tandem Integrity simulation. The authors would like to thank In-hwan

Lee for his detailed and valuable suggestions regarding this paper and, Dong Tang for discussions

that were useful in designing the experiments. Special thanks go to Bob Dimpsey, John Murphy,

Krishna Subramanian, Karyn Williamson and Luke Young for their proof-reading and their helpful

suggestions.

37

9 Appendix

The probabilityof 2 or 3 activecorrelatederrors(P[ACTERR]) is computedasfollows:

P[ACTERR] = P[CR] x (P[2AEI2EI] • P[2EI] + P[23AEI3EI] • P[3EI]) (1)

where

• P[CR] is the probability of a correlated error.

• P[2AE] is the probability of 2 active errors.

• P[2EI] is the probability that there are 2 correlated errors given that this is a correlated
error.

• P[23AE] is the probability of 2 or 3 active errors.

• P[3EI] is the probability that there are 3 correlated errors given that this is a correlated

error.

P[2AEI2EI] = 0.152 (2)

P[23AEI3EI] = 0.15 3 + 0.152 X 0.85 X 3 (3)

Here, P[CR] is simply the percent of correlated errors and is either 0, 0.01 or 0.02 and P[2EI] =
P[3EI] = 0.5. The maximum MTBF is then:

1

MTBF,_,,xi,,,,,rn = P[ACTERR] x AePu (4)

where)_cPU is the error arrival rate of the processor subsystem.

38

Bibliography

[Arlat 88]

[Castillo82]

[Chillarege87]

[Choi 89]

[Courtois 79]

[Czeck 91]

[Dupuy 90]

[Finelli 87]

[Geist 90]

[Goswami 90a]

[Goswami 90b]

[Goswami 91]

[Goswami 92]

[Goyal 86]

[Hsueh 88]

J. Arlat, Y. Crouzet and J. Laprie, "Fault-injection for dependability validation,"

LAAS Research Report no. 88-363, December 1988.

X. Castillo and D. Siewiorek, "A Workload Dependent Software Reliability Pre-

diction Model," 12th Int. Syrup. on Fault-Tolerant Computing, Santa Monica, Ca.,

June, 1982.

1%.Chillarege and 1%.K. Iyer, "Measurement-Based Analysis of Error Latency,"

IEEE Trans. on Computers, Vol. C-36, No. 5, May 1987.

G. S. Choi, 1%.K. Iyer and V. Carreno, "FOCUS: An Experimental Environment

for Validation of Fault Tolerant Systmes: A case study of a Jet Engine Controller,"

IEEE Inter. Conf. on Computer Design (ICCD), Cambridge, MA, October, 1989,

pp. 561-564.
B. Courtois, "Some results about the efficiency of simple mechanisms for the de-

tection of microcomputer malfunctions," 9th Int. Syrup. on Fault-Tolerant Com-

puting, pp. 71-74, June 1979.

E. W. Czeck, "On The Prediction of Fault Behavior Based on Workload," Ph.D.

Thesis, Dept. of Electrical and Computer Engineering, Carnegie Mellon Univer-

sity, April 19, 1991.

A. Dupuy, J. Schwartz, Y. Yemini, and D. Bacon, "NEST: A Network Simulation

and Prototyping Testbed", Communications of the ACM, Vol. 33, No. 10, October

1990, pp. 64-74.

Geaorge B. Finelli, "Characterization of Fault 1%ecovery through Fault Injecton

on FTMP," IEEE Trans. on Reliability, Vol. R-36, No. 2, June 1987, pg. 164-170.

1%.Geist, M. Smotherman and 1%.Talley, "Modeling Recovery Time Distributions

in Ultrareliable Fault-Tolerant Systems," 20th Int. Syrup. on Fault-Tolerant Com-

puting, June 26, 1990, pg. 499-504.

K. K. Goswami and 1%.K. Iyer, "DEPEND: A Design Environment for Prediction

and Evaluation of System Dependability," 9th Digital Avionics Systems Confer-

ence, October 15, 1990.

K. K. Goswami and 1%.K. Iyer, "The DEPEND Reference Manual," CRHC Tech-

nical Report, January 10, 1991.

K. K. Goswami and 1%. K. Iyer, "A Simulation-Based Study of a Triple Modu-

lar Redundant System using DEPEND", FTRS-91, September 1991, Nurnberg,

Germany.

K. K. Goswami and 1%. K. Iyer, "An Investigation and Application of Hybrid

Simulation for Dependability Analysis," CRHC Technical Report, February 21,

1992.

A. Goyal, W. C. Carter, E. de Souza e Silva, and S. S. Lavenborg, "The system

availability estimator," Proc. 16th Int. Syrup. Fault-Tolerant Computing, Vienna,

Austria, July 1986, pp. 84-89.

M. C. Hsueh, R. K. Iyer and K. S. Trivedi, "Performability Modeling Based on

Real Data: A Case Study," [EEE Trans. on Computing, Vol. 37, No. 4, April

1988.

39

[Huang84]

[Hwang89]

[IEEE 88]

[Iyer 82]

[Jewett91]

[Johnson91]

[Kanawati92]

[Kubiak89]

[Lala83]

[Law 82]

[Lee 91]

[Lee89]

[Lewis 89]

[Lomelino 86]

[MacDougall 73]

[McGough 83]

[Melamed 85]

Kuang-Hua Huang and Jacob A. Abraham, "Algorithm-Based Fault Tolerance for

Matrix Operations," IEEE Trans. on Computing, Vol. c-33, No. 6, June 1984.

D. K. Hwang and W. K. Fuchs, "CSP-Based Object Oriented Description of Par-

al]el Reconfigurable Architectures," Proc. IEEE Intl. Conf. on Wafer-Scale Inte-

gration, Jan. 1989, pp. 111-120.
IEEE Standard VHDL Language Refernce Manual -Std 1076-1987, [EEE Press,

New York 1988.

R. K. Iyer, S. E. Butner and E. J. McCluskey, "A Statistical Failue/Load Rela-

tionship: Results of a Multicomputer Study," IEEE Trans. on Computers, Vol.

SE-8, No. 4, July 1982, pp. 354-370.

D. Jewett, "Integrity $2: A Fault-Tolerant Unix Platform," Proc. 21st Int. Syrup.

Fault-Tolerant Computing, Montreal, Canada, June 1991.
A. M. Johnson and M. A. Schoenfelder, "Rainbow Net Analysis of VAXcluster

System Availability," IEEE Trans. on Reliability, July 1991.

G. Kanawait, N. Kanawati, and J. Abraham, "FERRARI: A Fault and ERRor

Automatic Real-time Injector," CERC Technical Report UT-CERC-TR-JAA92-

01, Computing Engineering Research Center, University of Texas, Austin, TX,

1992.

K. Kubiak and W. K. Fuchs, "Reliability Analysis of Application-Specific Archi-

tectures," Inter. Workshop on Defect and Fault Tolerance in VLSI Systems, Oct.

1989.

J. Lala, "Fault detection isolation and reconfiguration in FTMP: Methods and

experimental results," 5th AIAA/IEEE Digital Avionics Systems Conference

(DASC), pp. 21.3.1-21.3.9, 1983.
A. M. Law and W. D. Kelton, "Simulation Modeling and Analysis", McGraw Hill

Book Company, 1982.

I. Lee, R.K. Iyer and D. Tang, "Error/Failure Analysis Using Event Logs from

Fault Tolerant Systems," Proc. of the 21st Inter. Syrup. on Fault-Tolerant Com-

puting, Montreal, Canada, June 25-27, 1991.

K. D. Lee, "PARAGRAPH: A Graphics Tool for Performance and Reliability

Analysis," UIUC Coordinated Science Laboratory Tech. Report UIL U-ENG-89-

2239, Nov. 1989.

E. E. Lewis, F. Boehm, C. Kitsch, B. P. Kelkhoff, "Monte Carlo Simulation of

Complex System Mission Reliability," Proc. Winter Simulation Conf., pp. 497-

5O4, 1989.

D. Lomelino and R. Iyer, "Error propagation in a digital avionic processor: a

simulation-based study," Prac. Real Time Systems Symposium, pp. 218-225, Dec.

1986.

M. H. MacDougall and J.S. McAlpine, "Computer Simulation with ASPOL,"

Syrup. on the Simulation of Comp. Sys., ACM/SIGSIM, pp. 93-103, 1973.

J. H. McGough, F. L. Swern and S. Bavuso, "New Results in Fault Latency

.Modelling," I 6th Annual Electronics and Aerospace Conf., Washington, DC. Sept.

1983, pg. 299-306.
B. Melamed and R.J.T. Morris, "Visual Simulation: The Performance Analysis

Workstation", IEEE Computer, vol. 18, no. 8, pp. 87-94, Aug. 1985.

4O

[Meyer88] J.F. MeyerandL. Wei,"Influenceowworkloadonerrorrecoveryin randomaccess
memories,"IEEE Trans. on Computers, vol. C-37, no. 4, pp. 500-507, April 1988.

[Nicola 90] Victor F. Nicola, Marvin K. Nakayama, Philip Heidelberger and Ambuj Goyal,
"Fast Simulation of Dependability Models with General Failure, Repair and Main-

tenance Processes," Proc. of the 20st Inter. Syrup. on Fault-Tolerant Computing,

Newcastle upon Tyne, England, June, 1990.

K. Pawlikowski, "Steady-State Simulation of Queueing Processes: A Survey of

Problems and Solutions," ACId Computing Surveys, Vol. 22, No. 2, June 1990.

R. A. Sahner and K. S. Trivedi, "Reliability modeling using StIARPE," IEEE

Trans. Reliability, Vol. R-36, No. 2, June 1987, pp. 186-193.

W. H. Sanders and J. F. Meyer, "METASAN: A performability Evaluation Tool

Based on Stochastic Activity Networks," 1986 Fall Joint Comp. Conf., Dallas,

TX, Nov. 1986, pp. 807-816.

[SAS] SAS User's Guide: Statistics Version 5 Edition, SAS Institute Inc., Cary, NC.

[Sauer 82] C.H. Sauer, E.A. MacNair and J.F. Kurose, "RESQ: CMS User's Guide," IBM
Research Report RA-139, Yorktown Heights, N.Y., April 1982.

[Schwetman 86] H. Schwetman, "CSIM: A C-Based Process-Oriented Simulation Language," Proc.
Winter Simulation Conf., 1986.

[Segall 88] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin, J. Kownacki, J. Barton, R.

Dancey, A. Robinson, T. Lin, "FIAT - Fault Injection Based Automated Test-

ing Environment," Proc. 18th Int. Syrup. Fault-Tolerant Computing, June, 1988,

pp. 102-107.

[SES 89] Scientific and Engineering Software, Inc., "SES/Sim Simulation Language Refer-

ence Manual, " Austin, TX, March 1989.

[Shahabuddin 88] Perwez Shahabuddin, Victor F. Nicola, Philip Heiderlberger, Ambuj Goyal and

Peter W. Glynn, "Variance Reduction in Mean time to Failure Simulations," Proc.

Winter Simulation Conf., pg. 491-498, 1988.

[Shin 84a] K. Shin and Y. Lee, "Error detection process - model, design, and its impact on
computer performance," IEEE Transactions on Computers, vol. C-33, pp. 529-

540, June 1984.

[Shin 84b] K. Shin and Y. Lee, "Measurements of fault latency: methodology and experimen-
tal results," Technical Report CRL-TR-J5-84, Computing Research Laboratory,

University of Michigan, Ann Arbor, 1984.

[Shin 86] K. G. Shin and Y. H. Lee, "Measurement and Application of Fault Latency,"

IEEE Transactions on Computers, vol C-35, no. 4, pp. 370-375, 1986.

[Tang 90] D. Tang, R. K. Iyer, S. S. Subramani, "Failure Analysis and Modeling of a VAX-
cluster System," Proc. 20th Int. Syrup. Fault-Tolerant Computing, Newcastle upon

Tyne, England, June, 1990.

[Tang 91] D. Tang and R. K. Iyer, "Impact of Correlated Failures on Dependability in a

VAXcluster System," 2nd IFIP Conf. on Dependable Computing for Critical Ap-

plications, Tucson, Arizona, February, 1991.

[Young 92] Luke Young and R. K. Iyer, "A Hybrid MOnitor Assisted Fault Injection Envi-

ronment," Third IFIP Conf. on Dependable Computing for Critical Applications,

Sicily, Italy, Sept. 1992.

[Pawlikowski 90]

[Sahner 87]

[Sanders 86]

41

