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Abstract

This paper presentsa new method forlearningand tuning a fuzzy

logiccontrollerbased on reinforcementsfrom a dynamic system. In

particular,our Generalized Approximate Reasoning-based Intelligent

Control (GARIC) architecture(a)learnsand tunes a fuzzy logiccon-

trollereven when only weak reinforcements,such as a binary failure

signal,isavailable;(b) introducesa new conjunctionoperator incom-

puting the rulestrengthsof fuzzy controlrules;(c) introducesa new

localisedmean of maximum (LMOM) method in combining the con-

clusionsof severalfiringcontrolrules;and (d) learnsto produce real-

valued controlactions.Learning isachieved by integratingfuzzy infer-

ence intoa feedforward network, which can then adaptively improve

performance by using gradientdescentmethods. We extend the AHC

algorithm ofBarto, Sutton,and Anderson to includethe priorcontrol

knowledge of human operators. The GARIC architectureisapplied

to a cart-polebalancing system and has demonstrated significantira.

provements in terms ofthe speed oflearningand robustnesstochanges

inthe dynamic system'sparameters overpreviousschemes forcart-pole

balancing.

1 Introduction

The non-linear behavior of many practical systems and unavailability of

quantitative data regarding the input-output relations makes the analyti-



cal modeling of these systems very difficult. On the other hand, approx-

imate reasoning-based controllers which do not require analytical models

have demonstrated a number of successful applications such as the subway

system in the city of Sendal [31], nuclear reactor control [12] and automobile

transmission control [14]. These applications have mainly concentrated on

emulating the performance of a skilled human operator in the form of lin-

guistic rules. However, the process of learning and tunin 8 the control rules

to achieve the desired performance remains a difiicult task.

Starting with the Self Organizing Control (SOC) techniques of Mam-

dani and his students (e.g., [23]), the need for research in developing fuzzy

logic controllers which can learn from experience has been realized (e.g.,

[17]). The learning task may include the identification of the main control

parameters (better known as system identification in control theory) or de-

velopment and tuning of the fuzzy memberships used in the control rules.

In this paper, we concentrate on the latter learning task and develop an

architecture which can learn to adjust the fuzzy membership functions of

the linguistic labels used in different control rules.

Connection_t learning approaches [5] can be used in learning control.

Here, we can distinguish three classes: supervised learning, reinforcement

learning, and unaupert_sed learning. In supervised learning, a teacher pro-

vides the desired control objective at each time step to the lemming system.

In reinforcement learning, the teacher's response is not as direct, immediate,

and informative as in supervised learning and ]t serves more to evaluate the

state of the system. The presence of a teacher or a supervisor to provide

the correct control response is not assumed in unsupervised learning.

If supervised learning can be used in control (e.g., when the_.uput-output

training data is available), it has b_ shown that it is more efficient th_

reinforcem_t ie _s/_g (e.g., [6, 1]). However,...............many control problems re-
quire selecting control actions whose consequences emerge over uncertain

periods for which input-outputtralning data are not readily available. In

such domains, reinforcement learning techniques are more appropriate than

supped learning.

The org_zation of this paper is as follows. We first review some fun-

damentals of fuzzy logic control, reinforcement learning, and credit assign-

ment. Next, we discnss the general architecture for Approximate Reasoning-

based Intelligent Control (GARIC). This architecture addresses two related
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problems.First, weintroducetechniquesfor the designof rule-based con-

trollers which use qualitative linguistic rules obtained from human expert

controllers. Also, we describe a controller that learns directly from experi-

ence and automatically develops and adjusts the definitions of its linguistic

labels. Finally, we describe the application of this architecture to the real-

world control problem of cart-pole balancing.

2 Fuzzy Sets and Fuzzy Logic Control

A fuzzy set, defined originaly by Zadeh [32], is an extension of a crisp set.

Crisp sets only allow full membership or no membership at all, whereas fuzzy

sets allow partial membership. In other words, an element may partially

belong to a set. In a crisp set, the membership or non-membership of an

element z in set A is described by a characteristic function pA(Z), where:

1 ifzEA_A(Z)= o _f_¢A.

Fuzzy set theory extends this concept by defining partial memberships

which can take values ranging from 0 to 1:

PA : X ---, [0, I]

where X refers to the universal set defined in a specific problem.

Assuming that A and B are two fuzzy sets with membership functions of

PA and PB, then the following operations can be defined on these sets. The

complement of a fuzzy set A is a fuzzy set _I with a membership function

_x = 1 - _A(,).

The union of A and B is a fuzzy set with the following membership function

flAUS -" max{pA, PB}.

The intersection of A and B is a fuzzy set

_AnS =IDJn{_A,_B}.



Different methods for developing fuzzy logic controllers have been sug-

gested in recent years and are reviewed in [8]. In the design of a fuzzy

controller, one must identify the main control parameters and determine s

term set which is at the right level of granttlarity for describing the values of

each linguistic variable'. For example, a term set including linguistic values

such as { Small, Medium, Large) may not be satisfactory in some domains,

and may instead require the use of a five term set such as { Very Small,

Small, Medium, Large, and Very Large).

Figure 1 illustrates a simple architecture for a fuzzy logic controller.

The system dynamics of the plant is measured by a set of sensors. This
architecture consists of four elements whose functions are described next.

In coding the values from the sensors, one transforms the values of the

sensor measurements by using the linguistic labels in the rule preconditions.

This process is commonly called fuzzification or encoding. The fuzzification

stage requires matching the sensor measurements against the membership

functions of linguistic labels.

In modeling the human expert operator's knowledge, fuzzy control rules
of the form:

IF Error is small AND Change-in-error is small THEN Force is small

can be used effectively when expert human operators can express the heuris-

tics or the control knowledge that they use in controlling a process in terms
of rules of the above form.

2.1 Conflict Resolution and Decision Making

As mentioned earlier, due to the partial matching attribute of fuzzy control

rules and the fact that the preconditions of rules do overlap, more than one

fuzsy control rule can fire at a time. The methodology which is used in

deciding what control action should be taken as the result of the firing of

several rules can be referred to as conflict resolution. The following example,

using two rttles, illustrates this process. Assume that we have the following
rules:

"A linguistic variable is a variable which can only take linguistic vs/ues.

4



Rule I: IF X isAI and Y isBI THEN Z isCI

Rule 2: IF X isA2 and Y isB2 THEN Z isC2

Each rulehas an antecedentor//part containingseveralpreconditions,and

a cut,sequentor thenpart which prescribesthe valueof one or more output

actions.Now, ifwe have zo and Yo as the sensorreadingsforfuzzyvariables

X and Y, then theirtruthvaluesare representedby PA, (Zo) and Ps_ (Yo)

respectivelyforRule 1,where PA_ and PB_ representthe membership func-

tionfor AI and BI, respectively.SimilarlyforRule 2,we have pA2(zo) and

/_B2(90)as the truthvaluesofthe preconditions.

wl= A(_,A,(_o),_s,(_o))

Simi]arlyfor Rule 2:

w2: A(_A2(_o),_,(Yo)).

where A denotesa conjunctionor intersectionoperator.TraditionMly,fuzzy

logiccontrollersuse a minimum operator for A. However, here we use a

softminoperatorwhich produces the same resultin the limitbut in general

isnot as specificas the minimum operator is.The reasonfor thisisdiffer-

entiabRity,which we need forlearningpurposes. This willbe dealtwith in

greaterdetaillater.

Using the softmin,the strengthofRule I can be calculatedby:

_A,(z0)e-h_1(_')+ _Sl(_0)e-_' (v.)
Wl = e--I_Al(=o)"Fe-k#s_(m)

SimilarlyforRule 2:

_A2(zo)e-_A2(ffio)+ _s2(_o)e-k'_(m)
iv2 = e-t_A2 (ffio)+ e-k_s_ (_o)

The controloutput ofruleI iscalculatedby applyingthematching strength

ofitspreconditionson itsconclusion.Assuming that

zl= _(_),

and forRule 2:

z3= _(_),



In this paper, we introduce a new defi_zzification procedure to compute the

expression p-1 (w) which is explained later. The above equations show that

as a result of reading sensor values z0 and Y0, Rule 1 is recommending a

control action zl and Rule 2 is recommending a control action z2. The

combination of the above rules produces a nonfuzzy control action z* which

is calculated using a weighted averaging approach:

El'=1

where n is the number of rules, and rd is the amount of control action

recommended by rule i. A similar procedure can be used for multiple output

variablesin the consequents.

3 Reinforcement Learning

In reinforcement learning, one assumes that there is no supervisor to criti-

cally judge the chosen control action at each time step. The learning system

is told indirectly about the effect of its chosen control action. The study of

reinforcement learning relates to c_dit assignment where, given the perfor-

mance (results) of a process, one has to distribute reward or blame to the

individual elements contributing to that performance. This may be further

complicated if there is a sequence of actions, which is collectively awarded

a delayed reinforcement. In ru/e.based systems, for example, this means

assigning credit or blame to indi_dual rules (or their parts) engaged in the

problem solving process. Samuel'S che_ers-piaying program is probably the

earliest AI program which used this idea [25]. Miclde and Chambers [19] used

a reward-punishment strategy in their BOXES system, which learned to do

cart-pole balancing by discretizlng the state space into non-o_erlapping re-

gions (boxes) and applying two opposite constant forces. Barto, Sutton, and

Anderson [4] used two neuron-I/ke elements to solve the learning problem in

cart-pole balancing. In these approaches, the state-space is partitioned into

non-overlapping smaller regions and then the credit assignment is performed
on a local basis.

Reinforcement learning has its roots in studies of animal learning and

research on human behavior (e.g., [3]). It directly relates to the theory of

learning automata initiated by the work of Tsetlin [28] and further devel-
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oped by the work of Narendra and Thathachar [22], Narendra and Laksh-

mivarahan [21] , and Mendel and McLaren [18] in control engineering. Since

reinforcement learning techniques do not use an explicit teacher or supervi-

sor, they construct an internal evaluator or a critic capable of evaluating the
dynamic system's performance. The construction of this critic so that it can

properly evaluate the performance in a way which is useful to the control

objective, is itself a significant problem in reinforcement learning. Given

the evaluation by the critic, the other problem in reinforcement learning is

how to adjust the control signal. Barto [5] discusses several approaches to

this problem based on the gradient of the critic's evaluation as a function of

control signals.

Temporal Difference methods Related to reinforcement learning are

the Temporal Difference (TD) methods, a class of incremental learning pro-

cedures specialized for prediction problems, which have been introduced by

Sutton [27]. The main characteristic of these methods is that they learn from

successive predictions whereas in the case of supervised learning methods,

learning occurs when the difference between the predicted outcome and the

actual outcome is revealed (i.e., the learning model in TD does not have to

wait until the actual outcome is known and can update its parameters within

a trial period). The difference between the Temporal Difference methods

and the supervised learning methods becomes clear when these methods are

distinguished as single-step versus multi-step prediction problems. In the

single-step prediction (e.g., Widrow-Hoff rule [29]), complete information

regarding the correctness of a prediction is revealed at once. However, in

multi-step prediction, this inforn_ati0n _sn0t revealed until more than one

step after the prediction is made, but partial information becomes available

at each step. Barto et. al. have recently shown stronger relation between a

specific class of these methods called TD algorithm and dynamic program-

[7].

AKIC Architecture The Approximate Remoning-based Intelligent Con-

trol (ARIC) arcldtecure has been proposed in [10]. This architecture extends

Anderson's method [1] by including the prior control knowledge of expert

operators in terms of fuzzy control rules. In ARIC, a neural network is used

to perform action and state evaluations. Also, two coupled neural networks

are used to select a control action at each time step where the first network
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usesfuzzyinferenceto recommend an action and the second network calcu-

lates a degree to which the action recommended by the first network should

be modified. The AR.IC architecture tunes its fuzzy controller through up-

dating the weights on the links in these networks. As this learning proceeds,

the action recommended by the fuzzy controller is fonowed more often. Only

monotonic membership functions are used in ARIC and the fuzzy labels used

in the control rules are adjusted locally within each rule. However, in the

architecture presented next, we provide an algorithm to tune the fuzzy l_-

bels globally in all the rules and allow any type of differentiable membership

function to be used in the construction of a fuzzy logic controller.

4 The GARIC architecture

Our system will determine a control action by using a neural network which

implements fuzzy inference. In this way, prior expert knowledge can be

easily incorporated. This knowledge is allowed to be faulty or damaged.

Another neural net will learn to become a good evaluator of the current

state and will serve u an internal critic. Both networks will adapt their

weights concurrently so as to improve performance.

The architecture of GAP,.IC is schematically shown in Figure 3.

It has three components:

• The Action Selection Network (ASN) maps a state vector into a rec-

ommended action F, using fuzzy inference.

The Action Evaluation N_etwork (AEN) maps a state vector and a

failure signal into a scalar score which indicates state goodness. This

is also used to produce internal reinforcement _.

• The Stochastic Action Modifier (SAM) uses both F and _ to produce

an action F' which is applied to the plant.

The ensuing state is fed back into the controller, along with a boolean failure

signal. Learning occurs by fine-tuning of the free parameters in the two

networks : in the AEN, the weights are adjusted; in the ASN, the parameters

describing the fuzzy membership functions change.
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4.1 The Action Evaluation Network

The AEN plays the role of an adaptive critic element (ACE) [4] and con-

stantly predicts reinforcements associated with different input states. The

only information received by the AEN is the state of the physical system in

terms of its state variables and whether or not a failure has occurred.

The AEN is a standard two-layer feedforward net with sigmoids every-

where except in the output layer. The input is the state of the plant, and

the output is an evaluation of the state (a score), denoted by v. This _-

value is suitably discounted and combined with the external failure signal

to produce internal reinforcement _ as explained before.

The structure of an evaluation network includes h hidden units and n

input units from the environment, and a bias unit (i.e., zo, zx,..., zn). In

this network, each hidden unit receives n + 1 inputs and has n + 1 weights,

while e.ach output unit receives n + h + 1 inputs and has n + h + 1 weights.

This structure is shown in Figure 4. The learning algorithm is composed of

Sutton's AHC algorithm [26] for the output unit and error back-propagation

algorithm [24] for the hidden units.

The AEN produces a prediction of future reinforcement for a given state,

and the changes in this prediction are used to guide the SAM in selecting

actions. For example, if we move from a state with prediction of low rein-

forcement to a state with prediction Of higher reinforcement, this positive

change, also called heuristic or internal reinforcement, is used to reinforce

the selection of the action which caused this move.

The output of the units in the hidden layer is:

ft

y,[t,t + 1] = 0(_"_ a_i[t]zj[t + 1]) (1)
j=l

wh_e
I

g(')= i+ •-o (2)

and t and t+ 1 are successive time steps. The output unit of the evaluation

network receives inputs from both units in the hidden layer (i.e.,7/i)and

directlyfrom the units in the input layer (i.e., zi):

n h

t,[t, t + 1]- b [t]x [t+ 11+ + 11 (3)
i----1 i----1



where v is the prediction of reinforcement. In the above equations (and the

equations which follow), double time dependencies are used to avoid insta-

bilities in the updating of weights [2]. For example, in the above equation,

the weights at time t are multiplied by the zi's st time t-F1. /fthe same time

index is used, then we can not detect whether the change in v was caused by

the change in the weights (i.e., bi and c_) or it was caused by the change in

the state of the system (i.e., zi). Writing the equation as shown above with

di/_'erent time steps allows us to compare different v's over times and notice

whether the system has moved to a better state (i.e., higher reinforcement)

or to a worse State (i.e., lower reinforcement).

This network evaluates the action recommended by the action network

as a function of the failure signal and the change in state evaluation based

on the state of the system at time t + 1:

0 start state ;
_[t + I] - r[t + I]- v[t,t] failure state; (4)

tit + 1] + 7v[t,t + 1]- v[t,t] otherwise

where 0 _ 7 -< I is the d_courd rate. In other words, the change in the value

of v plus theyalue of the external reinforcement constitutes the heuristic or

internal reinforcement I: where the future values of v are discounted more,

the further they are from the current state of the system. For example,

the value of v generated one time step later is given less weight than the

the current value of v. This method of estimating reinforcement gives an
approximate exponential trace o]_v, where the S_es is truncated after two

terms.

4.2 Action Selection Network

Given the current state of the plant, this network selects an action by im-

piementing_ihi/'_ence scheme ]_Meci:-on _y control rules as explained in

section 2. It can be represented as a network with 5 layers of nodes, each

layer performing one stage of the fuzzy inference process (see Figure 5). The

connections are feedforward, with each node performing a local computa-

tion. However, this computation may be different from the conventional

weighted-sum-of-inputs.
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Layer 1 is the input layer, consisting of the real-valued input variables.

These can also be thought of as the linguistic variables of interest. No com-

putation is done at these nodes.

A Layer 2 node corresponds to one possible value of one of the linguistic

variables in Layer 1, e.g. if large is one of the values that z can take, a node

computing pt=,.o_(z) belongs to layer 2. It will have exactly one input, and

will feed its output to all the rules using the clause: if z is large, in their if

part. The function is given by

/_ov,.vL,.v_(=)

where V indicates a linguistic value (e.g. large), and c, ai,, 8R correspond to

the center, left spread and right spread of the fuzzy membership function of

label V. cv serves as a reference point (the mode), and the spreads charac-

terize length scales on either side of the center, thus permitting asymmetry.
More parameters may be included if desired. An instance of a smooth mem-

bership function is
1

_(=) =
1 + [___._[b

where a = 8vn or sVR accordingly as z < c or z > c and b controls the

curvature. For triangu]ar shapes, this function is given by

{ 1- I=-cl/°R, = s [c,c+.R]
_o,.L,._(=)= 1 -If - _l/_, "_ [c- ,_,c) (5)

0 otherwise

Triang_ar shapes are to be prefexIed because they are simple and have

been proven to be sufficient in scores of application domains. The center

and spreads may be considered as weights on the input iin]B, analogous to

the approach taken with radial-basis-function units in neural networks [20].

Layer 3 implements the conjunction of all the antecedent conditions in a

rule. A node in layer 3 corresponds to a rule in the ru]e-base. Its inputs

come f_om all nodes in Layer 2 which participate in the ifpa:t of that rule.

The node itself performs the rain operation, which we have softened to the

following continuous, differentiable sof_min operation:

OR_ = to, _'_/_e-k_
= E,e-h., (6)
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Here,/_ is the degree of match between a fuzzy label occurring as one of the

antecedents of rule r, and the corresponding input variable. This softmin

operation gives wr, the degree of applicability of Rule r. The parameter k

controls the hardness of the softmin operation, and as k _ co, we recover

the usual rain operator. However, for k finite, we get a differentiable function

of the inputs, which makes it convenient for calctdating gradients during the

learning process. The choice of k is not critical.

A Layer 4 node corresponds to a consequent label. Its inputs come

from all rules which use this particular consequent label. For each of the

wr suppIied to it, this node computes the corresponding output action as

suggested by rule r. This mapping may be written m,

-1
_cv ,.vL ,.v_(W')

where V indicates a specific consequent label, c, JL, aR parameterize the

membership function as before, and the inverse is taken to mean a suitable

defuzzification procedure applicable to an individual rule. In general, the

mathematical inverse of # may not exist if the function is not strictly mono-

tonic. We propose a simple procedure to determine this inverse: if w, is the

degreeto which Rule r is satisfied,

_,l(w,) is the X-coordinate of the centroid ol the set {z : _v(z) = w,}

This is similar to the Mean-of-Maximum method of defuzzification [8],

but the latter is applied after _ rule .......consequents have been combined,

whereas we apply it locally, to each rule, before the consequents are com-

bined. We will refer to this variation as the LMOM (Local Mean-of-Maximum)

methodt (see Figure 6).

For triangular _ctions, LMOM gives

-1 1
= cv+  ("VR--"VZ,)(I--",) (Z)

For the case w, = 0, the limiting value of #-1(w, --* 0 +) is used (which

is cv + (JvL + avjz)/2). It is easy to see that the set #-1([0, 1]) is the

tAlthougk LMOM was independently derived in our work, but we were referred to

Yager's level set method[30] later on by a reviewer of this paper. The LMOM end level

set methods are similar in nature although Yager [30] does not discuss the case for skewed

end convex fuzzy sets in any details:
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projection of the median of the triangular membership function on the X-

axis. If the membership function is monotonic, then _-l(w,) is just the

standard mathematical inverse, with appropriate limiting values.

The unusual feature of a unit in Layer 4 is that it may have multiple out-

puts carrying different values, since sharing of consequent labeh is allowed.

For each rule feeding it a degree, it should produce a corresponding output

action which is fed to the next layer. However, this nonstandard feature

can be eliminated for many classes of membership functions. For triangular

functions, such a node needs to output only the value

1 1
Or, = + (S)

F P

In general, whenever #-1(z) is polynomial in z, only one output is sufficient,

regardless of the number of inputs. This transformation is possible because

of the form of the computation done in the next layer.

.Layer 5 will have as many nodes as there are output action variables. Each

output node combines the recommendations from all the fuzzy control rules

in the rulebase, using the following weighted sum, the weights being the rule

strengths:

F = E, w,_-1(w,) (9)
_ IOp

By taking advantage of the transformation used in layer 4, this may be
rewritten as

F = _,v Or4
E.O, (lo)

where the inputs come from Layer 3 and Layer 4. The node simply mm_

up each set of inputs and t_kes their quotient. This delivers a continuous

output variable value which is the action selected by the ASN. F will always

be defined if each dimension of the input space is completely covered by the
antecedent label functions.

Modifiable weig_hts are present on input links into Layer 2 and 4 only.

The other weights are fixed at unity. This means that the gradient descent

procedure effectively works on only two layers of weights, rather than all
five.
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4.3 Stochastic Action Modifier

Thisusesthe valuesof _ from the previous time step and the action F rec-

ommended by the ASN to stochastically generate an action F ! which is a

gaussian random variable with mean F and standard deviation _(_(t - 1)).

This _() is some nonnegative, monotone decreasing function, e.g. exp(-_).

The action F _ is what is actually applied to the plant. The stochastic per-

turbation in the suggested action leads to a better exploration of state space

and better generalization ability. The magnitude of the deviation IF _- F[ is

large when _ is low, and small when the internal reinforcement is high. The

result is that a large random step away from the recommendation results

when the last action performed is bad, but the controller remains consistent

with the fuzzy control rules when the previous action selected is a good

one. The actual form of the function or(), especially its scale and rate of
decrease, should take the units and range of variation of the output variable

into account.

The perturbation at each time step is denoted

sit ) = F'it)- Fit )
,i_i t- 1))

i11)

and is simply the normalized deviation from the ASN-recommended action.

This will contribute as a lemg factor in the ASN,

5 Learning Mechanisms

5.1 Learning in AEN

Weight-updating in this network is similar to a reward/punishment scheme

for neural networks. If positive (negative) internal reinforcements are re-

ceived, the values of the weights are rewarded (punished) by being changed

in the cKrection which inereases (decreases) its contribution to the total sum.

The weights on the links connecting the units in the input layer directly to

the units in the output layer are updated according to the following:

bi[t + 1] = bi[t] +/_[t + 1]zi[t] (12)

where/_ > 0 is a constant and _[t + I] is the internal reinforcement at time
t+l.
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Similarly,for the weightson the connectionsbetween the hidden layer

and the output layer,we have:

ei[t + 1] = ei[t] + B,_[t + 1]yi[t, t] (13)

The weight update functionforithe_ti_en layeris based on a modified

versionof the errorback-propagationalgorithm[24].Since no directerror

measurement ispossible(i.e.,knowledge of correctactionisnot available),

as in Anderson [1],I:playsthe roleof an errormeasure in the update ofthe

outputunit'sweights:if_ispositive,the weightsarealteredso astoincrease

the output v forpositiveinput,and viceversa.Therefore,the equation for

updating the weightsis

aij[t + 1] = alj[t] +/gh_[t + 1]y_[t,t](1 - yi[t, tl)sgn(ei[t])zj[t] (14)

where _, > 0. Note that in the above equation,the signof a hidden unit's

output weight, ratherthan itsvalue,is used. This variationisbased on

Anderson's empiricalresultsthat the algorithmismore robust ifonly the

signofthe weight isused ratherthan itsvalue.

5.2 Learning in ASN

The ASN isa map from input to output space,denoted Fp(x). Here, p

isthe vectorof allthe weights in the network, which includesthe centers

and spreadsof allantecedentand consequentlabelsused in the fuzzyrules.

The intentof computing F isto maximize v, so that the system ends up

in a good stateand avoidsfailure.Hence, v isthe objectivefunctionwhich

needs to be maximized as a functionof p, given the state. This can be

done by gradientdescent,which estimatesthe derivative@v/@p, and uses

the learning rule
d)v _)v @F

Ap _--r/_-_p= r/_-ff@p (15)

to adjustthe parameter values.To do this,we need the two derivativeson

the righthand side,which ingeneral,willdepend on the state.

Even though F isdirectlydependent on p, the dependence of v on F

isquiteindirect.Each applicationof the forceF isstate-specific,and the

new statedepends in a complicated way on the dynamics of the plant.In

addition,the transferfunctionof the/kEN has to be taken intoaccount to
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see how the change in state affects v. Since part of this is unknown, and

part of it is computationally complex, we have made the approximation that

Ou/SF can be computed by the instantaneous di_erence ratio

O_ d_ _(t) - _(t - 1)

O--F_ _ _ F(t) - F(t- 1) (16)

Since thisignoresthe change in statebetween successivetime steps,itis

a very crude estimator of the derivative.We willthereforeonly use its

sign,and not itsmagnitude. Of course,the existenceofthe derivativeisan

implicitassumption as well.

The other term OF/Op ismuch more tractable.Since F isknown and

di_erentiable,a few applicationsof the chain rulethrough the 5 layersof

the ASN givethe followingsetof learningrules.In what follows,Con(Rj)

and Ant(Rj) are the consequentlabeland antecedentlabelsused by Rule j.

A labelV isparameterized by Pv, which may be one ofcenter,leftspread

or rightspread.

For consequent labeb V with parameters pv, with z standing for _-s

the actionF islinearin Pv, but nonlinearin _#_.Substitutingfor rdusing

(7),and diR'erentiating

F = _" w,_ (17)
Er Wr

1

•v(w,) = cv + _(,vR- ,vL)(1 --,) (18)
OF 1 Ozv

O.,w' _ '='_ v=co.(a_)

Ozv
0c-"v"= 1 (20)

0zv
- - _(1-,,,.) (21)Osva

Ozv
= -_(1-,..) (22)

0av_

These derivativescan be combined to compute _v" If only consequent

labels are to be tuned, this is all that needs to be calculated. In many

problems,thismay be su/_cientas well,sincesome errorin the speci_cation

of antecedentlabelscan be compensated forby modifying the consequent

labels.
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For antecedent labels, the calculations proceed similarly. The action

depends on the degrees wp, which in turn depend on the membership degrees
generated in layer 2.

OF = w,z(w,) + z'(w,)- F (23)

Ow,.._ e-_"_(1 + k(w,. - #j)) (24)

(25)= OF Ow_

O#v v_a.t(a_)

where z'(w,) is the derivative with respect to to,.

These are the variables controlled by the parameters of the antecedent

labels.

OF OF O_v

= our (28)
o,, ,,(t) - ,,(t - 1)
O"F = sgn(_ _-(i--'i-)' (27)

The above derivatives can now be combined to get the gradient.

Ov Ov OF

= OF Opv (28)

An appropriate multiplicat/ve learning rate factor is used with this estima-

tion of the gradient. This consists of the perturbation a(t) computed by

the Stochastic Action Modifier, and the internal reinforcement _ generated

by the AEN, in addition to a constant r/, which is set to a small positive

value. The reason for using J(t)_(t) as a learning factor is that if a large

perturbation results in a good action, then there should be an extra reward

given to the weights, since probabilistic search has really helped the system

in this case. Conversely, if the large random deviation is not beneficial, then

it should have minimal effect on the weights.

Since we are interested in mazimizing v,

apv(t) = (29)

is the learning equation. The derivatives can be computed locally by each

node after receiving relevant values backpropagated through the network.
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Theonly nodeswhoseweightswill changeare the ones in layer 2 and 4. A_

other edges have weights fixed at 1.

A word about the existence of these derivatives. If the _() used in layer
2 are clLfl_erentiable everywhere, then all the relevant derivatives will exist.

However, for triangular membership functions, the derivative does not exist

at three points, since the two limits are not equal at these points. The

formally rigorous way to handle this is to consider the convex combination

of all the gradients at the singular point, and to pick the one direction

from this set that benefits the optimization algorithm most. A heuristic

approximation to this scheme is to use an average of the two limits for

the derivative at the singular points. We have chosen the simpler heuristic

approach. Note that such a problem does not arise in layer 4 functions, since

the LMOM method to compute _-1() gives a difrerentiable function, even

if the corresponding/_ is triangular in shape.

The other potential problem with derivatives in gradient descent meth-

ods is fiat spots. When _vv is 0 because the inputs lie outside the range of
_v, then no learning will occur for Pv'. Strictly speaking, this is reasonable

since V played no role in det_mining the action for this particular input.

However, if the input data is confined to a portion of the input space such

that V"does not play any role at all, then the parameters controlling V w/]l

not be modified. In other words, the system will fail to generalize over parts

of input space where there is little or no data available. This problem is

partially avoided by using the Stochastic Action Modifier, which randomly

perturbs the action performed so that the state trajectory of the system will

not remain confined to a region of small volume. In our experiments, we

have also used random starting configurations after a failure occurs. This

removes sensitive dependance of the learning system on inJtial conditions.

Slow learning may also occur because the process is caught in a narrow

ravine with a gradually sloping bottom (as is known to happen with gradient

descent methods in neural networks). This can be avoided by use of a

momentum term [24], or some sort of ]inesearch teclm/que to determine

the optimal step size at each point [15]. We have not used any of these

methods in our simulatio_ because we _d not encounter prohibitively slow

learning. However, since a standard gradient descent is being used, any of

these variations and additions to speed it up can always be used.
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6 The Cart-Pole Balancing Problem

We now apply the GAtLIC approach to solve an interesting control problem.

In this problem a pole is hinged to a motor-driven cart which moves on

rail tracks to its right or its left. The pole has only one degree of freedom

(rotation about the hinge point). The primary control tasks are to keep the

pole vertically balanced and keep the cart within the rail track boundaries.

Four state variables are used to describe the system status, and one

variable represents the force applied to the cart. These are:

• z: horizontal position of the cart;

• _: velocity of the cart;

• 8: angle of the pole with respect to the vertical line;

• 0: angular velocity of pole 8;

• f: force applied to the cart.

The dynamics of the cart-pole system are modeled by the fonowing non-

linear differential equations [4]:

r-t -'n_ .ho+_,e,,(_) 1 - _-§ = g sin 0 + cos8_ _-I--, '

= ! + , l[0 2sh0 -  cos 0] - zo,gn(i)
me +m

where g is the acceleration due to gravity, rnc is the mass of the cart, rn is

the mass of the. pole, I is the half-pole length, pc is the coefficient of friction

of cart on track, and/_n is the coefBcient of friction of pole on cart. These

equations were simulated by the Euler method, which uses an approximation

to the above equations, and a time-step of 20 nlsec.

We assume that a failure happens when 18[ > 12 degrees or [z I > 2.4

meters. However, we later show that the system learns even when the these

two bounds are tightened. Also, we assume that the equations of motion

of the cart-pole system are not known to the controller and only a vector

describing the cart-pole system's state at each time step is known. In other
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Table 1: The membership functions:14 labelsfor the antecedent and 9

labelsin the consequent

Label Center Left Right Label Center Left Right

spread spread spread spread

P01 0.3 0.3 -1 PL 20.0 5.0 -I.0

ZE1 0.0 0.3 0.3 PM 10.0 5.0 6.0

NEI -0.3 -I 0.3 PS 5.0 4.0 5.0

VSI 0.0 0.05 0.05 PVS 1.0 1.0 1.0

PO2 1.0 1.0 -1.0 NL -20.0 -1.0 5.0

ZE2 0.0 1.0 1.0 NM -10.0 6.0 5.0

NE2 -1.0 -1.0 1.0 NS -5.0 5.0 4.0

VS2 0.0 0.1 0.1 NVS -1.0 1.0 1.0

PO3 0.5 0.5 -1.0 ZE 0.0 1.0 1.0

NE3 -0.5 -I.0 0.5

P04 1.0 1.0 -1.0

NF_A -I.0 -I.0 1.0

PS4 0.0 0.01 1.0

NS4 0.0 1.0 0.01

words, the cart-pole arrangement is treated as a black box by the learning
system.

Figure7 presentsthe GARIC architectureasitisappliedtothisproblem.

The AEN network has 4 input _ts, a biasinput unit,5 hidden unitsand

an output unit. The input statevectorisnormalized,so that the pole and

cartpositionsliein the range [0,1].The velocitiesare alsonormalized,but

they are not constrainedto liein any range. The 35 weights of thisnet

areinitializedrandomly to valuesin [-0.1,0.1].The learningrateforthese

weightsisfixedat 0.3.The externalreinforcement(i.e.,the failuresignalr)

isreceivedby the AEN and used to calculatethe internalreinforcement_.

The discountfactor7 used in thiscalculationis0.9.

6.1 The Action Selection Network

The fuzzy control rules used to balance the pole successfully are shown

in Table 6.1 and explained below. These completely determine the width of
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P01 P02 null null PL

POI ZE2 null null PM

POI NE2 null null ZE

ZEI P02 null null PS

ZE1 ZE2 null null ZE

ZE1 NE2 null null NS

NE1 PO2 null null ZE

NE1 ZE2 null null NM

NE1 NE2 null null NL

VS1 VS2 PO3 PO4 PS

VS1 VS2 P03 PS4 PVS

VS1 VS2 NE3 NFA NS

VS1 VS2 NE3 NS4 NVS

•Figure 1: The 13 rulesused with 7 labelsforforce.

each layerin the ASN. There are 4 inputs,14 unitsin layer2 (thenumber

of antecedentlabels),13 unitsin layer3 (thenumber of rules),9 unitsin

layer4 (thenumber of consequent labels)and finally,one output unit to

compute the force.The initialdefinitionsof allthe labelsare alsoshown in

the table.These directlytranslateintothe initialweightsofLayers 2 and 4

in the Action SelectionNetwork.

The designofthe rulebase forthisfuzzycontrollerfollowsthe algorithm

developed in [9,11]which isbased on a hierarchicalprocesswhich considers

the interactionof multiplegoals.

As mentioned earlier,the rulebase ofa fuzzy controllerconsistsofrules

which are described using linguistic variables. As shown in Figure 8(a) and

Figure 8(b), four labels are used here to linguistically define the value of the

state variables: Positive (PO), Very Small (VS), Zero (ZE), and Negative

(N'E). Nine labels are used to linguistically define the force value recom-

mended by each control rule: Positive Large (PL), Positive Medium (PM),

Positive Small (PS), Positive Very Small (PVS), Zero (ZE), Negative Very

Small (NVS), Negative Small (NS), Negative Medium (NM), and Negative

Large (NL). The forward calculationsin thisnetwork are based on fuzzy

logiccontrolas describedearlier.Nine fuzzy controlruleswere writtenfor
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balancing the pole vertically and four control rules were used in positioning

the cart at a specific location on the raft tracks [11]. These rules are shown

in Table 6.1. In Figure 7, the presence of a link between an input unit j and

a unit i in the hidden layer indicates that the linguistic value of the input

corresponding to unit j is used as a precondition in rule i. The first nine

rules, corresponding to the hidden layer units 1 to 9, are rules with two pre-

conditions (i.e., O, and 0). The rules 10 through 13 have four preconditions

representing the linguistic values of O, O, z, and _.

For any particular control problem using the GARIC architecture, the

fuzzy rules and their initial shapes and definitions need to be set up. We

have used triang_tlar membership functions for all antecedent and conse-

quent labels. This choice is general enough to be applicable to many other

problems besides cart-pole balancing. There are 13 rules for this 4-input

system, and they use 23 Kuguistic labels in all. The spreads of a fuzzy mem-

bership function lie in the range (0, oo). Ira spread is oo, this parameter will

not be changed during learning, and the defuzz_cation procedure (LMOM)

will work by inverting the non-constant portion. In addition, the softmin

parameter k is set at a value of I0, and the learning rate 17is 0.01.

The labels and rule descriptions are presented in Figure 8. Given the

rule base, the parameters may be thought of as a means of controlling the

meaning of the linguistic terms. When the parameters change, this meaning

is being tuned to be consistent with the rules, such that good performance

results. In fact, performance is the only objective criterion of "correctness"

of the label definitions, in the context of the fixed rulebase.

6.2 Results

A trial in our experiments refers to starting with the cart-pole system set to

an initial state and ending with the appearance of a failure signal or success-

ful control of the system for an extended periodX. The default parameters

for the simulations are: half-pole length .5 m; Pole mass 0.I Kg; Cart mass

1.0 Kg; learning rate in the consequents .001. The starting eonfigurati0n af-
ter each failure was varied in numerous ways including randomly. The rules

and starting label descriptions were varied by large amounts. The damages

tWe say that the system has learned to control the cart-pole if no failure is observed

before 100 000 time steps. This time corresponds to about 33 minutes of real time.
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to the labels which are the variations from labels original definitions, as well

as changes in the parameters, are described with each figure. A starting

position of 0.1, for example, implies that all 4 state variables were set to

0.1 after each failure. A randomized start means that after each failure, the

initial configuration (all 4 parameters) were independently and randomly

chosen. In the graphs, each curve shows the value of a state variable and

is in four pieces. The first and second pieces show this value for the first

few time steps of the first and second trials respectively. If"the trial lasted

less than 300 time steps, then the entire trial is shown, but if not, only the

first 300 time steps are shown. The third and fourth pieces of the curve

show the first 300 and last 300 (from 99700 to 100000) time steps of the last

(successful) trial, when the experiment was terminated. Of course, failure

occurs whenever 0 or z exceed their respective bounds.

Figure 10 shows the performance of the controller during the learning

process. This is to clearly demonstrate how the membership functions are

shifted to the correct place by learning. In this experiment, we shifted the

center of the membership function for ZE by 5 N (this is shown in the fisure's

caption by ZE +5). The system learned to shift it back to about 0 as shown

in Figure 9. This change is sufficient for success, given the robustness of

the fuzzy inference process. Other labels were also shifted by about 1 N,

which is minimal change. The start state was non-random. Modifications

to all force labels are shown in Table 2. Figures 11, 12, 13, 14, 15, and 16

illustrate the performance of the learning system under different scenarios

which are described in the figure captions.

6.2.1 Additional Experiments

Two additional sets of experiments were performed. In the first set, we var-

ied the number of labels for force from 9 to 7 and redefined their membership

functions as shown in Table 3. Figures 17, 18, 19, 20, 21, 22, and 23 show

the results of further experiments using the new membership functions with
the rules which are shown in table 4.

Further experiments were performed using 9 modified labels for force as

shown in table 5. The following table summarizes the results of these runs.
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Table 2: Force labelsafterlearning

Label Center Left Right

spread spread

PL 19.89 5.10 -I.00

PM 8.25 5.84 5.16

PS 6.73 3.99 5.80

PVS 1.08 0.99 1.01

NL -20.29 -I.00 4.71

-9.72 5.69 5.30

NS -7.28 6.14 2.85

NVS -0.09 0.31 1.68

ZE -0.18 1.86 0.14

Table 3: The membership functionsforthe 7 forcelabelsin the consequent

Label Center LeR Right

spread spread

PL 20.0 1.0 -1.0

PS 5.0 1.0 1.0

PVS 1.0 1.0 1.0

NL -20.0 -1.0 1.0

NS -5.0 1.0 1.0

NV$ -1.0 1.0 1.0

ZE 0.0 1.0 1.0
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Table 4: The 13 rules used for set 1 with 7 labels for force.

POI PO2 null null PL

PO1 ZE2 null null PL

POI NE2 null null ZE

ZEI PO2 null null PS

ZEI ZE2 null null ZE

ZEI NE2 null null NS

NE1 PO2 null null ZE

NE1 ZE2 null null NL

NE1 NE2 null null NL

VS1 VS2 PO3 PO4 PS

VSI VS2 P03 PS4 PVS

VSI VS2 NE3 NE4 NS

VSI VS2 NE3 NS4 NVS

Table 5: Revised membership functionsforforce

Label Center Le_% Right

spread spread
PL 150 I00 -I

PM 90 120 0

PS 0 0 80

PVS 0 0 20

NL -150 -I I00

NM -90 0 120

NS 0 80 0

NVS 0 20 0

ZE 0 0.2 0.2
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Experiment Description No. of Trials to learn

ZE +5., start from 0., learn rate = 0.01

Same as above, learning rate = 0.1

Same as above, learning rate = 0.001

Same as above, learning rate = 0.0001

ZE(force) +5,+5,+5
ZE1 +0.2

34

89

32

85

33

0

7 Discussion

GARIC's architecture is similar to the structure proposed by Anderson [2],

but the action selection network in our architecture is a synthesis of fuzzy

logic control and neural networks. Using the structure of a fuzzy controller,

Anderson's approach is extended to provide for continuous representation of

the output value and inclusion of the human expert operator's control rules

in the action selection network. It should be noted that Anderson's goal

in [I] was to discover interesting patterns and strategy-learning schemes.

Not much effort was spent on making the process learn faster. In our work,

although we allow some of the strategy learning to occur automatically, we

start from a knowledge base of fuzzy control rules and tune them by learning
in the neural networks.

Also, the stochastic action modifier unit in GARIC has s/m_arities to

Gu]lapalli's method [13] although we use a completely different approach for

defining the internal reinforcement. Lee and Berenji [17] and Lee [16] have
used a single layer neural network which requires the identL'ication of the

trace functions for keeping track of the visited states and their evaluations.

The generation of these trace functions is a dL_cult task in larger control

problems. However, the approach suggested in GARIC does not use trace

functions. The neural network representation of the fuzzy control rules in

GARIC allows faster development and faster learning. Also, in the single

layer model, only the generation of the output values were considered. The

preconditions of the fuzzy control rules were left untouched. However, in

GARIC, based on reinforcements received from the environment, both the

preconditions and the conclusions of rules can be modified.

The ARIC and GARIC architectures both use external reinforcements to

form internal evaluations of states and control actions. Also, they both use
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internal reinforcements to guide the process of tuning the rules. However,

GARIC extends the theory for using reinforcement learning in fuzzy control

in many respects including:

Learning is achieved by full integration of fuzzy inference into a feed-

forward network, which can then adaptively improve performance by

using gradient descent methods.

The fuzzy memberships used in the definition of the labels are modified

(tuned) globally in all the rules rather than being locally modified in
each each individual rule.

GARIC can compensate for inappropriate definitions of fuzzy mem-
bership functions in the antecedent of control rules. We showed this

attribute by damaging the labels used in the antecedents and observ-

ing how the system can learn a new control policy to succeed. To the

best of our knowledge, GARIC is the first architecture to do this.

• GAllIC introduces a new conjunction operator in computing the rule

strengths of fuzzy control rules,

• GARIC introduces a new localized mean ofmATirnum (LMOM) method

in combining the conclusions of several firing control rules.

Only monotonic membership functions are used in A_IC. However,

GARIC allows any type of difl_erentiable membership functions to be

used in construction of fuzzy Iosic controller.

8 Conclusions

With the GARIC architecture, We have proposed a new way of designing

and tuning s fuzzy logic controller. The knowledge used by an experienced

operator in controlling a process can now be modeled using approximate

linguistic terms and later refined through the process of learning from ex-

perience. GARIC provides a well-baJsnced method for combining the qual-

itstive knowledge of human experts in terms of symbolic rules and lemming

strength of the artificial neural networks. Therefore, we believe that this

architecture is general enough for use in other rule-ba_ed systen_ which

perform fuzzy logic inference.
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Figure 1: A simple architecture of a fuzzy logic controller
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Figure 10: The ZE force label was set to +5. The system shifted it back to about 0, which is enough

for success, given the robustness of the fuzzy inference process. Other labels were also shifted by
about 1 N, which is minimal change. Start state was non-random. The system learned in 322 trials.
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Figure 11: Here the starts are randomized. Other parameters are the same as abovare required to

learn but not much more. Again, the system brings back the label from 5 to near 0. The system
learned in 367 trials.
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Figure 12: Antecedents change: ZE1 +0.2, ZE2 -0.4, PO3 -0.1, NS4 -0.1, ConsequenStart: ran-

domized. The consequents are all adjusted by small amounts. ZE is brought back again because it

is the most critical label in some sense. If this label is not correct, balancing is impossible even if

the system has started from a good state. Here, the system learned in 312 trials.
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Figure 13: More damage in addition to above. Antecedents changed : ZE1 -0.2, ZE2 -0.4, PO3

-0.1, NE3 -1.0,0,+1 PO4 +0.3,+0.3,0 PS4 +0.3 NS4 -0.1. Consequents changed : PL +5, PM +3,

PS +2, NM +1, ZE -2. Start : randomized. Again, ZE is corrected and the others are shifted by

comparatively smaller amounts. PM is brought back near to its original value. In general, there is

less pressure to correct the less-frequently used labels (such as PL), since once the system is in a

good sea of state-space, it can completely avoid using PL after it has made the important repairs.

Learning took 550 trials.
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Figure 14: Parameter damage : maximum pole position = 0.1 rad and maximum cart position

- 0.2 m which have been reduced from 0.2 tad and 2.4 m respectively. Start was randomized.

Learning took 82 trials.
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Figure 15: Pole half-length was reduced to 0.2 m from 0.5 m, and the start was randomized. Only

4 trials required for learning.
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Figure 16: Cart mass was doubled to 2.0 kg. Random startingstate.2 trialswere enough for

success.The PL and NL shifttheircentersaway by small amounts to compensate forthe heavier

cart. Similareffectsare observed in other labels. The shiftsare allsmall,sincethe effectis

distributedover a largenumber of parameters.
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Figure 17: Damages of: P04 (+0.4,+0.4,0), NE4 (+0.2,0,-0.2), P$4 (+0.5,0,0), NS4 (-0.5,0,0),
starting state = 0.1. Learned in 2 trials.
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Figure 18: Cart mass = 4.3 kg (increased from 1 kg), starting position = 0.1, learaing occurred in
3 trials.
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Figure 19: Damages to all labels of 8 : (+0.2,%0.2,0),(+0.2,0,0),(-0.2,0,+0.2),(-0.1,0,0) to

PO1,ZE1,NE1,VSI respectively. Starting position = 0.05. It took 29 trials to succeed.
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Figure 20: Damages to all labels of 0 : (+0.4,+0.6,0),(+0.1,0,0),(-0.2,0,+0.4),(-0.1,+0.3,0) to

PO2,ZE2,NE2,VS2 respectively. Starting position = 0.05. The learning time was 24 trials.
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Figure 21: Damage to consequents = (-5,-1,0,5.5,1,0,0). Starting position = -0.19 (which is very

close to failure). 136 trials were required.
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Figure 22: Major damage to consequents : PL +40.0, NL +5. Randomized starting positions. 15
trials were sufficient.
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Figure 23: Max cart position = 0.5 (from 2.4). Randomized starts. Antecedent damage : ZE1

+0.3, ZE2 0.6, VS2 +0.2, PO3 -0.4, NE4 +0.5, PS4 +0.1, NS4 +0.3. Learned in 140 trials.
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