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Abstract

This paper presents a new method for learning and tuning a fuzzy
logic controller based on reinforcements from a dynamic system. In
particular, our Generalized Approximate Reasoning-based Intelligent
Control (GARIC) architecture (a) learns and tunes a fuzzy logic con-
troller even when only weak reinforcements, such as a binary failure
signal, is available; (b) introduces a new conjunction operator in com-
puting the rule strengths of fuzzy control rules; (c) introduces a new
localized mean of maximum (LMOM) method in combining the con-
clusions of several firing control rules; and (d) learns to produce real-
valued control actions. Learning is achieved by integrating fuzzy infer-
ence into a feedforward network, which can then adaptively improve
performance by using gradient descent methods. We extend the AHC
algorithm of Barto, Sutton, and Anderson to include the prior control
knowledge of human operators. The GARIC architecture is applied
to a cart-pole balancing system and has demonstrated significant im-
provements in terms of the speed of learning and robustness to changes
in the dynamic system’s parameters over previous achemes for cart-pole
balancing.

1 Introduction

The non-linear behavior of many practical systems and unavailability of
quantitative data regarding the input-output relations makes the analyti-



cal modeling of these systems very difficult. On the other hand, approx-
imate reasoning-based controllers which do not require analytical models
have demonstrated a number of successful applications such as the subway
system in the city of Sendai [31], nuclear reactor control [12] and automobile
transmission control [14]. These applications have mainly concentrated on
emulating the performance of a skilled human operator in the form of lin-
guistic rules. However, the process of learning and tuning the control rules
to achieve the desired performance remains a difficult task.

Starting with the Self Organizing Control (SOC) techniques of Mam-
dani and his students (e.g., [23]), the need for research in developing fuzzy
logic controllers which can learn from experience has been realized (e.g.,
[17]). The learning task may include the identification of the main control
parameters (better known as system identification in control theory) or de-
velopment and tuning of the fuzzy memberships used in the control rules.
In this paper, we concentrate on the latter learning task and develop an
architecture which can learn to adjust the fuzzy membership functions of
the linguistic labels used in different control rules.

Connectionist learning approaches [5] can be used in learning control.
Here, we can distinguish three classes: supervised learning, reinforcement
learning, and unsupervised learning. In supervised learning, a teacher pro-
vides the desired control objective at each time step to the learning system.
In reinforcement learning, the teacher’s response is not as direct, immediate,
and informative as in supervised learning and it serves more to evaluate the
state of the system. The presence of a teacher or a supervisor to provide
the correct control response is not assumed in unsupervised learning.

If supervised leu'nmg can be used in control (e g., when 1 the i mput output
training data is available), it has been shown that it is more efficient than
reinforcement | Iearmng (e-g., [6, 1]). However, ma.ny control problems re-
quire selectmg control actions whose consequences ‘emerge over uncertain
periods for which input-output training data are not readily available. In
such domains, reinforcement learning techniques are more appropriate than
supervised learning.

The organization of this paper is as follows. We first review some fun-
damentals of fuzzy logic control, reinforcement learning, and credit assign-
ment. Next, we discuss the general architecture for Approximate Reasoning-
based Intelligent Control (GARIC). This architecture addresses two related



problems. First, we introduce techniques for the design of rule-based con-
trollers which use qualitative linguistic rules obtained from human expert
controllers. Also, we describe a controller that learns directly from experi-
ence and automatically develops and adjusts the definitions of its linguistic
labels. Finally, we describe the application of this architecture to the real-

world control problem of cart-pole balancing. i

2 Fuzzy Sets and Fuzzy Logic Control

A fuzzy set, defined originaly by Zadeh [32], is an extension of a crisp set.
Crisp sets only allow full membership or no membership at all, whereas fuzzy
sets allow partial membership. In other words, an element may partially
belong to a set. In a crisp set, the membership or non-membership of an
element 2 in set A is described by a characteristic function pu4(z), where:

1 ifz€e A
#a2) =1 0 ifz¢ A

Fuzzy set theory extends this concept by defining partial memberships
which can take values ranging from 0 to 1:

pa:X —[0,1]

where X refers to the universal set defined in a specific problem.

Assuming that A and B are two fuzzy sets with membership functions of
44 and pp, then the following operations can be defined on these sets. The
complement of a fuzzy set A is a fuzzy set 4 with a membership function

Ba =1- pa(z).
The union of A and B is a fuzzy set with the following membership function
Baup = max{us, pp}-

The intersection of A and B is a fuzzy set

BanB = min{u,,up}.



Different methods for developing fuzzy logic controllers have been sug-
gested in recent years and are reviewed in [8]. In the design of a fuzzy
controller, one must identify the main control parameters and determine a
term set which is at the right level of granularity for describing the values of
each linguistic variable*. For example, a term set including linguistic values
such as { Small, Medium, Large} may not be satisfactory in some domains,
and may instead require the use of a five term set such as { Very Small,
Small, Medium, Large, and Very Large}.

Figure 1 illustrates a simple architecture for a fuzzy logic controller.
The system dynamics of the plant is measured by a set of sensors. This
architecture consists of four elements whose functions are described next.

In coding the values from the sensors, one transforms the values of the
sensor measurements by using the linguistic labels in the rule preconditions.
This process is commonly called fuzzification or encoding. The fuzzification
stage requires matching the sensor measurements against the membership
functions of linguistic labels.

In modeling the human expert operator’s knowledge, fuzzy control rules
of the form:

IF Error is small AND Change-in-error is small THEN Force is small

can be used effectively whenﬂéx;ei't human operators can express the heuris-
tics or the control knowledge that they use in controlling a process in terms
of rules of the above form.

2.1 Conflict Resolution and Decision Making

As mentioned earlier, due to the partial matching attribute of fuzzy control
rules and the fact that the preconditions of rules do overlap, more than one
fuzsy control rule can fire at a time. The methodology which is used in
deciding what control action should be taken as the result of the firing of
several rules can be referred to as conflict resolution. The following example,
using two rules, illustrates this process. Assume that we have the following
rules:

*A linguistic variable is a variable which can only take linguistic values.




Rule 1: IF X is A; and Y is B, THEN Z is C;
Rule 2: IF X is A; and Y is B, THEN Z is C;

Each rule has an antecedent or if part containing several preconditions, and
a consequent or then part which prescribes the value of one or more output
actions. Now, if we have 2o and yo as the sensor readings for fuzzy variables
X and Y, then their truth values are represented by p4, (o) and up, (yo)
respectively for Rule 1, where u4, and up, represent the membership func-
tion for A; and B, respectively. Similarly for Rule 2, we have u,,(zo) and
4B, (¥o) as the truth values of the preconditions.

wy = A(pa, (20), #Bx(.'IO))
Similarly for Rule 2:

wz = A(pa,(20), #8,(¥0))-

where A denotes a conjunction or intersection operator. Traditionally, fuzzy
logic controllers use a minimum operator for A. However, here we use a
softmin operator which produces the same result in the limit but in general
is not as specific as the minimum operator is. The reason for this is differ-
entiability, which we need for learning purposes. This will be dealt with in
greater detail later.

Using the softmin, the strength of Rule 1 can be calculated by:

_ “Al (zo)e_k“Al (30) + “Bl (yo)e_k“Bl (W)
- e~kua, (z0) | o—kuB, ()

wy

Similarly for Rule 2:

_ Ba, (_,,O)C—kua,(zo) + us, (yo)c"“‘az(W)
I

w3

The control output of rule 1 is calculated by applying the matching strength
of its preconditions on its conclusion. Assuming that

5= ou;;l(wl):

and for Rule 2:
z3 = p;l(wa),
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In this paper, we introduce a new defuzzification procedure to compute the
expression u~!(w) which is explained later. The above equations show that
as a result of reading sensor values zo and yo, Rule 1 is recommending a
control action z; and Rule 2 is recommending a control action z;. The
combination of the above rules produces a nonfuzzy control action z* which
is calculated using a weighted averaging approach:

" - -
z* = i=1 Wi%

E?:l w;
where n is the number of rules, and z is the amount of control action
recommended by rule i. A similar procedure can be used for multiple output
variables in the consequents.

3 Reinforcement Learning

In reinforcement learning, one assumes that there is no supervisor to criti-
cally judge the chosen control action at each time step. The learning system
is told indirectly about the effect of its chosen control action. The study of
reinforcement learning relates to credit assignment where, given the perfor-
mance (results) of a process, one has to distribute reward or blame to the
individual elements contributing to that performance. This may be further
complicated if there is a sequence of actions, which is collectively awarded
a delayed reinforcement. In rule-based systems, for example, this means
assigning credit or blame to individual rules (or their parts) engaged in the
problem solving process. Samuel’s checkers-playmg program is probably the
earliest Al program which used this idea [25]. Michie and Chambers [19] used
a reward-punishment strategy in their BOXES system, which learned to do
cart-pole balancing by discretizing the state space into non-overlapping re-
gions (boxes) and applying two opposite constant forces. Barto, Sutton, and
Anderson [4] used two neuron-like elements to solve the learning problem in
cart-pole balancing. In these approaches, the state-space is partitioned into
non-overlapping smaller regions and then the credit assignment is performed
on a local basis.

Reinforcement learning has its roots in studies of animal learning and
research on human behavior (e.g., [3]). It directly relates to the theory of
learning automata initiated by the work of Tsetlin [28] and further devel-



oped by the work of Narendra and Thathachar [22], Narendra and Laksh-
mivarahan [21] , and Mendel and McLaren [18] in control engineering. Since
reinforcement learning techniques do not use an explicit teacher or supervi-
sor, they construct an internal evaluator or a critic capable of evaluating the
dynamic system'’s performance. The construction of this critic so that it can
properly evaluate the performance in a way which is useful to the control
objective, is itself a significant problem in reinforcement learning. Given
the evaluation by the critic, the other problem in reinforcement learning is
how to adjust the control signal. Barto [5] discusses several approaches to
this problem based on the gradient of the critic’s evaluation as a function of
control signals.

Temporal Difference methods Related to reinforcement learning are
the Temporal Difference (TD) methods, a class of incremental learning pro-
cedures specialized for prediction problems, which have been introduced by
Sutton [27]. The main characteristic of these methods is that they learn from
successive predictions whereas in the case of supervised learning methods,
learning occurs when the difference between the predicted outcome and the
actual outcome is revealed (i.e., the learning model in TD does not have to
wait until the actual outcome is known and can update its parameters within
a trial period). The difference between the Temporal Difference methods
and the supervised learning methods becomes clear when these methods are
distinguished as single-step versus multi-step prediction problems. In the
single-step prediction (e.g., Widrow-Hoff rule (29]), complete information
regarding the correctness of a prediction is revealed at once. However, in
multi-step prediction, this information is not revealed until more than one
step after the prediction is made, but partial information becomes available
at each step. Barto et. al. have recently shown stronger relation between a
" specific class of these methods called TD algorithm and dynamic program-
ming [7].

ARIC Architecture The Approximate Reasoning-based Intelligent Con-
trol (ARIC) architecure has been proposed in [10]. This architecture extends
Anderson’s method [1] by including the prior control knowledge of expert
operators in terms of fuzzy control rules. In ARIC, a neural network is used
to perform action and state evaluations. Also, two coupled neural networks
are used to select a control action at each time step where the first network



uses fuzzy inference to recommend an action and the second network calcu-
lates a degree to which the action recommended by the first network should
be modified. The ARIC architecture tunes its fuzzy controller through up-
dating the weights on the links in these networks. As this learning proceeds,
the action recommended by the fuzzy controller is followed more often. Only
monotonic membership functions are used in ARIC and the fuzzy labels used
in the control rules are adjusted locally within each rule. However, in the
architecture presented next, we provide an algorithm to tune the fuzzy la-
bels globally in all the rules and allow any type of differentiable membership
function to be used in the construction of a fuzzy logic controller.

4 The GARIC architecture

Our system will determine a control action by using a neural network which
implements fuzzy inference. In this way, prior expert knowledge can be
easily incorporated. This knowledge is allowed to be faulty or damaged.
Another neural net will learn to become a good evaluator of the current
state and will serve as an internal critic. Both networks will adapt their
weights concurrently so as to improve performance.

The architecture of GARIC is schematically shown in Figure 3.

It has three components:

o The Action Selection Network (ASN) maps a state vector into a rec-
ommended action F, using fuzzy inference.

o The Action Evaluation Network (AEN) maps a state vector and a
failure signal into a scalar score which indicates state goodness. This
is also used to produce internal reinforcement #.

o The Stochastic Action Modifier (SAM) uses both F and # to produce
an action F’ which is applied to the plant.

The ensuing state is fed back into the controller, along with a boolean failure
signal. Learning occurs by fine-tuning of the free parameters in the two
networks : in the AEN, the weights are adjusted; in the ASN, the parameters
describing the fuzzy membership functions change.



4.1 The Action Evaluation Network

The AEN plays the role of an adaptive critic element (ACE) [4] and con-
stantly predicts reinforcements associated with different input states. The
only information received by the AEN is the state of the physical system in
terms of its state variables and whether or not a failure has occurred.

The AEN is a standard two-layer feedforward net with sigmoids every-
where except in the output layer. The input is the state of the plant, and
the output is an evaluation of the state (a score), denoted by v. This v-
value is suitably discounted and combined with the external failure signal
to produce internal reinforcement 7 as explained before.

The structure of an evaluation network includes A hidden units and n
input units from the environment, and a bias unit (i.e., zo, z1,..., 2,). In
this network, each hidden unit receives n + 1 inputs and has n 4 1 weights,
while each output unit receives n + A + 1 inputs and has n + A + 1 weights.
This structure is shown in Figure 4. The learning algorithm is composed of
Sutton’s AHC algorithm [26] for the output unit and error back-propagation
algorithm [24] for the hidden units.

The AEN produces a prediction of future reinforcement for a given state,
and the changes in this prediction are used to guide the SAM in selecting
actions. For example, if we move from a state with prediction of low rein- -
forcement to a state with prediction of higher reinforcement, this positive
change, also called heuristic or internal reinforcement, is used to reinforce
the selection of the action which caused this move.

The output of the units in the hidden layer is:
wlt,t+ 1] = g(Q_ aijt]z;(t + 1)) (1)
i=1
where

9(s) = 5 Tes (2)

and ¢ and £ 4 1 are successive time steps. The output unit of the evaluation
network receives inputs from both units in the hidden layer (i.e., ;) and
directly from the units in the input layer (i.e., z;):

ot e+ 1] = 3 8ladt + 11+ 3 el ¢+ 1 (3)

1=1 =1



where v is the prediction of reinforcement. In the above equations (and the
equations which follow), double time dependencies are used to avoid insta-
bilities in the updating of weights [2]. For example, in the above equation,
the weights at time ¢ are multiplied by the z;’s at time ¢4 1. If the same time
index is used, then we can not detect whether the change in v was caused by
the change in the weights (i.e., §; and ¢;) or it was caused by the change in
the state of the system (i.e., z;). Writing the equation as shown above with
different time steps allows us to compare different v’s over times and notice
whether the system has moved to a better state (i.e., higher reinforcement)
or to a worse state (i.e., lower reinforcement).

This network evaluates the action recommended by the action network
as a function of the failure signal and the change in state evaluation based
on the state of the system at time ¢ + 1:

0 start state ;
Mt+1]=4¢ rlt+1]-vft,f] failure state; (4)
r[t + 1]+ yv[t,t + 1] — v[t,t] otherwise

- where 0 < 7 < 1is the discount rate. In other words, the change in the value

of v plus the value of the external reinforcement constitutes the heuristic or
internal reinforcement # where the future values of v are discounted more,
the further they are from the current state of the system. For example,
the value of v generated one time step later is given less weight than the
the current value of v. This method of estimating reinforcement gives an
approximate exponential trace of v, where the series is truncated after two

terms.

4.2 Action Selection Netwo;'k

Given the current state of the plant, this network selects an action by im-
plementing an inference scheme based on fuzzy control rules as explained in
section 2. It can be represented as a network with 5 layers of nodes, each
layer performing one stage of the fuzzy inference process (see Figure 5). The
connections are feedforward, with each node performing a local computa-
tion. However, this computation may be different from the conventional
weighted-sum-of-inputs. -
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Layer 1 is the input layer, consisting of the real-valued input variables.
These can also be thought of as the linguistic variables of interest. No com-
putation is done at these nodes.

A Layer 2 node corresponds to one possible value of one of the linguistic
variables in Layer 1, e.g. if large is one of the values that z can take, a node
computing pigrge(z) belongs to layer 2. It will have exactly one input, and
will feed its output to all the rules using the clause: if z is large, in their if
part. The function is given by

”"-‘V;'VL»'VR(Z)

where V indicates a linguistic value (e.g. large), and ¢, s1, sp correspond to
the center, left spread and right spread of the fuzzy membership function of
label V. cy serves as a reference point (the mode), and the spreads charac-
terize length scales on either side of the center, thus permitting asymmetry.
More parameters may be included if desired. An instance of a smooth mem-

bership function is .

TP
where 8 = sy or syr accordingly as 2z < c or 2 > ¢ and b controls the

curvature. For triangular shapes, this function is given by

=) =

1-|z—-¢|/sr, z€[c,c+ 3R]
FC"L.‘R(Z) = 1- lc - cl/’Li zE€ [C - "Lic) (5)
0 otherwise

Triangular shapes are to be preferred because they are simple and have
been proven to be sufficient in scores of application domains. The center

and spreads may be considered as weights on the input links, analogous to
the approach taken with radial-basis-function units in neural networks [20].

Layer 3 implements the conjunction of all the antecedent conditions in a
rule. A node in layer 3 corresponds to a rule in the rule-base. Its inputs
come from all nodes in Layer 2 which participate in the if part of that rule.
The node itself performs the min operation, which we have softened to the
following continuous, differentiable softmin operation:

. -e‘k“i
Ops=w, = %"‘;Tm (6)

11



Here, p; is the degree of match between a fuzzy label occurring as one of the
antecedents of rule r, and the corresponding input variable. This softmin
operation gives w,, the degree of applicability of Rule ». The parameter k
controls the hardness of the softmin operation, and as £ — oo, we recover
the usual min operator. However, for k finite, we get a differentiable function
of the inputs, which makes it convenient for calculating gradients during the
learning process. The choice of k is not critical.

A Layer 4 node corresponds to a consequent label. Its inputs come
from all rules which use this particular consequent label. For each of the
w, supplied to it, this node computes the corresponding output action as
suggested by rule . This mapping may be written as

F'C-Vl,lvl ,'Vn(w")

where V indicates a specific consequent label, ¢, sz, sp parameterize the
membership function as before, and the inverse is taken to mean a suitable
defuzzification procedure applicable to an individual rule. In general, the
mathematical inverse of 4 may not exist if the function is not strictly mono-
tonic. We propose a simple procedure to determine this inverse: if w, is the
degree to which Rule r is satisfied,

Byl (w,) is the X-coordinate of the centroid of the set {z : uy(z) = w,}

This is similar to the Mean-of-Maximum method of defuzzification [8],
but the latter is applied after all rule consequents have been combined,

whereas we apply it locally, to each rule, before the consequents are com-
bined. We will refer to this variation as the LMOM (Local Mean-of-Maximum)
method! (see Figure 6). ,

“For triangular ﬁhétibii;, LMOM gives
S 1
”cvl,ovl_,av;;(wr) =cy + E(JVR - SVL)(I - w'.) (7)

For the case w, = 0, the limiting value of yp~!(w, — 0%) is used (which
is ey + (svr + svRr)/2). It is easy to see that the set u~1([0,1]) is the

tAlthough LMOM was independently derived in our work, but we were referred to
Yager’s level set method[30] later on by a reviewer of this paper. The LMOM and level
set methods are similar in nature although Yager [30] does not discuss the case for skewed
and convex fugzy sets in any details.

12



projection of the median of the triangular membership function on the X-
axis. If the membership function is monotonic, then x~1(w,) is just the
standard mathematical inverse, with appropriate limiting values.

The unusual feature of a unit in Layer 4 is that it may have multiple out-
puts carrying different values, since sharing of consequent labels is allowed.
For each rule feeding it a degree, it should produce a corresponding output
action which i3 fed to the next layer. However, this nonstandard feature
can be eliminated for many classes of membership functions. For triangular
functions, such a node needs to output only the value

Ovs=(cv + %(JVR - -’VL))(E w,) — %(SVR - -’VL)(Z wf) (8)

In general, whenever 4~!(z) is polynomial in z, only one output is sufficient,
regardless of the number of inputs. This transformation is possible because
of the form of the computation done in the next layer.

eLayer 5 will have as many nodes as there are output action variables. Each
output node combines the recommendations from all the fuzzy control rules
in the rulebase, using the following weighted sum, the weights being the rule
strengths: -
— Er wf“_l(w")
F==5" ®)
By taking advantage of the transformation used in layer 4, this may be
rewritten as 5,0
F=&V Vs 10
2 rORs (10)
where the inputs come from Layer 3 and Layer 4. The node simply sums
up each set of inputs and takes their quotient. This delivers a continuous
output variable value which is the action selected by the ASN. F will always
be defined if each dimension of the input space is completely covered by the
antecedent label functions.

Modifiable weights are present on input links into Layer 2 and 4 only.
The other weights are fixed at unity. This means that the gradient descent
procedure effectively works on only two layers of weights, rather than all
five.

13



4.3 Stochastic Action Modifler

This uses the values of # from the previous time step and the action F rec-
ommended by the ASN to stochastically generate an action F’ which is a
gaussian random variable with mean F' and standard deviation o(#(t — 1)).
This o() is some nonnegative, monotone decreasing function, e.g. exp(—#).
The action F” is what is actually applied to the plant. The stochastic per-
turbation in the suggested action leads to a better exploration of state space
and better generalization ability. The magnitude of the deviation [F’ - F| is
large when # is low, and small when the internal reinforcement is high. The
result is that a large random step away from the recommendation results
when the last action performed is bad, but the controller remains consistent
with the fuzzy control rules when the previous action selected is a good
one. The actual form of the function ¢(), especially its scale and rate of
decrease, should take the units and range of variation of the output variable
into account.

The perturbation at each time step is denoted
_F@)-F)
0= S6e=1) )
and is simply the normalized deviation from the ASN-recommended action.
This will contribute as a learning factor in the ASN,

5 Learning Mechanisms

5.1 Learning in AEN

Weight-updating in this network is similar to a reward/punishment scheme
for neural networks. If positive (negative) internal reinforcements are re-
ceived, the values of the weights are rewarded (punished) by being changed
in the direction which increases (decreases) its contribution to the total sum.
The weights on the links connecting the units in the input layer directly to
the units in the output layer are updated according to the following:

Bilt + 1] = bift] + A7t + 1zift] (12)
where 8 > 0 is a constant and #[t + 1] is the internal reinforcement at time

t+1.

14



Similarly, for the weights on the connections between the hidden layer
and the output layer, we have:

cilt +1] = cit] + At + 1wilt, ¢] (13)

The weight update function for the hidden layer is based on a modified
version of the error back-propagation algorithm [24]. Since no direct error
measurement is possible (i.e., knowledge of correct action is not available),
as in Anderson [1], # plays the role of an error measure in the update of the
output unit’s weights: if 7 is positive, the weights are altered so as to increase
the output v for positive input, and vice versa. Therefore, the equation for

updating the weights is
ai;[t + 1] = a;;[t] + Bt + 1pilt, (1 - wilt, t])sgn(cilth=ilt]  (14)

where 8, > 0. Note that in the above equation, the sign of a hidden unit’s
output weight, rather than its value, is used. This variation is based on
Anderson’s empirical results that the algorithm is more robust if only the
sign of the weight is used rather than its value.

5.2 Learning in ASN

The ASN is a map from input to output space, denoted Fp(x). Here, p
is the vector of all the weights in the network, which includes the centers
and spreads of all antecedent and consequent labels used in the fuzzy rules.
The intent of computing F is to maximize v, so that the system ends up
in a good state and avoids failure. Hence, v is the objective function which
needs to be maximized as a function of p, given the state. This can be
done by gradient descent, which estimates the derivative v/8p, and uses

the learning rule
' v v 8F

Ap = ﬂa—p' = ”a_F'E
to adjust the parameter values. To do this, we need the two derivatives on
the right hand side, which in general, will depend on the state.

(15)

Even though F is directly dependent on p, the dependence of v on F
is quite indirect. Each application of the force F is state-specific, and the
new state depends in a complicated way on the dynamics of the plant. In
addition, the transfer function of the AEN has to be taken into account to
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see how the change in state affects v. Since part of this is unknown, and
part of it is computationally complex, we have made the approximation that
Ov/8F can be computed by the instantaneous difference ratio

dF " dF ~ F(t)-F(t-1)
Since this ignores the change in state between successive time steps, it is
a very crude estimator of the derivative. We will therefore only use its

sign, and not its magnitude. Of course, the existence of the derivative is an
implicit assumption as well.

The other term 0F/8p is much more tractable. Since F is known and
differentiable, a few applications of the chain rule through the 5 layers of
the ASN give the following set of learning rules. In what follows, Con(R;)
and Ant(R;) are the consequent label and antecedent labels used by Rule j.
A label V is parameterized by py, which may be one of center, left spread
or right spread. -

For consequent labels V' with parameters py, with z standing for u-1,
the action F is linear in py, but nonlinear in w;. Substituting for z; using
(7), and differentiating

F = %"—;—‘1 (17)
wlw) = v+ 3(svr—svr)(1-w,) (18)
‘%FV- B E}'—":hcg(nj)wjg% (19)
-gcﬂv =1 (20)
o= = i-w) (21)
;,‘:L = —3(1-w) (22)

These derivatives can be combined to compute av_ If only consequent
labels are to be tuned, this is all that needs to be calculated. In many
problems, this may be sufficient as well, since some error in the specification
of antecedent labels can be compensated for by modifying the consequent
labels.
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For antecedent labels, the calculations proceed similarly. The action
depends on the degrees w,, which in turn depend on the membership degrees
Wi generated in layer 2.

OF w.z(w,)+ Z(w,)-F

dw, Ei wy (23)

OQw, _ e *¥i(1 + k(w, — p;))

Op; Yiekn =
OF _ 8F Owy (25)

OBV ye dme(ry) T Onv

where z/(w,) is the derivative with respect to w,.

These are the variables controlled by the parameters of the antecedent
labels.

OF _ OF duy
— D ———— 26
Bov B Oy (26)
S v(t) —v(t-1)
37 ~ *®lFy=Fe=1) (27)
The above derivatives can now be combined to get the gradient.
v 6v OF
dpy  OF 8py (28)

An appropriate multiplicative learning rate factor is used with this estima-
tion of the gradient. This consists of the perturbation s(t) computed by
the Stochastic Action Modifier, and the internal reinforcement # generated
by the AEN, in addition to a constant n, which is set to a small positive
value. The reason for using s(t)7(t) as a learning factor is that if a large
perturbation results in a good action, then there should be an extra reward
given to the weights, since probabilistic search has really helped the system
in this case. Conversely, if the large random deviation is not beneficial, then
it should have minimal effect on the weights.

Since we are interested in mazimizing v,

Bpr(t) = ne(t)F(t) 5 (29)

is the learning equation. The derivatives can be computed locally by each
node after receiving relevant values backpropagated through the network.
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The only nodes whose weights will change are the ones in layer 2 and 4. All
other edges have weights fixed at 1.

A word about the existence of these derivatives. If the () used in layer
2 are differentiable everywhere, then all the relevant derivatives will exist.
However, for triangular membership functions, the derivative does not exist
at three points, since the two limits are not equal at these points. The
formally rigorous way to handle this is to consider the convex combination
of all the gradients at the singular point, and to pick the one direction
from this set that benefits the optimization algorithm most. A heuristic
approximation to this scheme is to use an average of the two limits for
the derivative at the singular points. We have chosen the simpler heuristic
approach. Note that such a problem does not arise in layer 4 functions, since
the LMOM method to compute u~!() gives a differentiable function, even
if the corresponding p is triangular in shape.

The other potential problem with derivatives in gradient descent meth-
ods is flat spots. When 2L is 0 because the inputs lie outside the range of
pv, then no learning will occur for py. Strictly speaking, this is reasonable
since V played no role in determining the action for this particular input.
However, if the input data is confined to a portion of the input space such
that V' does not play any role at all, then the parameters controlling V will
not be modified. In other words, the system will fail to generalize over parts -
of input space where there is little or no data available. This problem is
partially avoided by using the Stochastic Action Modifier, which randomly
perturbs the action performed so that the state trajectory of the system will
not remain confined to a region of small volume. In our experiments, we
have also used random starting configurations after a failure occurs. This
removes sensitive dependence of the learning system on initial conditions.

Slow learning may also occur because the process is caught in a narrow
ravine with a gradually sloping bottom (as is known to happen with gradient
descent methods in neural networks). This can be avoided by use of a
momentum term [24], or some sort of linesearch technique to determine
the optimal step size at each point [15]. We have not used any of these
methods in our simulations because we did not encounter prohibitively slow
learning. However, since a standard gradient descent is being used, any of
these variations and additions to speed it up can always be used.
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6 The Cart-Pole Balancing Problem

We now apply the GARIC approach to solve an interesting control problem.
In this problem a pole is hinged to a motor-driven cart which moves on
rail tracks to its right or its left. The pole has only one degree of freedom
(rotation about the hinge point). The primary control tasks are to keep the
pole vertically balanced and keep the cart within the rail track boundaries.

Four state variables are used to describe the system status, and one
variable represents the force applied to the cart. These are:

¢ z: horizontal position of the cart;

e Z: velocity of the cart;

¢ 0: angle of the pole with respect to the vertical line;
o §: angular velocity of pole ;

o f: force applied to the cart.

The dynamics of the cart-pole system are modeled by the following non-
linear differential equations [4]:

G- gsinf + cos 0['5'"‘192 'i“”""""@)] - E"fxé

me.+m
3
I3 - %5

5= f +mi[6%sin @ — 6 cos ] — p.sgn(z)
m.+m
where g is the acceleration due to gravity, m, is the mass of the cart, m is
the mass of the pole, [ is the half-pole length, u, is the coeflicient of friction
of cart on track, and yx, is the coefficient of friction of pole on cart. These
equations were simulated by the Euler method, which uses an approximation
to the above equations, and a time-step of 20 msec.

We assume that a failure happens when || > 12 degrees or |z| > 2.4
meters. However, we later show that the system learns even when the these
two bounds are tightened. Also, we assume that the equations of motion
of the cart-pole system are not known to the controller and only a vector
describing the cart-pole system’s state at each time step is known. In other
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Table 1: The membership functions: 14 labels for the antecedent and 9
labels in the consequent

Label | Center Left  Right | Label | Center Left  Right
spread spread spread spread
PO1 0.3 0.3 -1 PL 20.0 5.0 -1.0
ZE1l 0.0 0.3 0.3 PM 10.0 5.0 6.0
NE1 -0.3 -1 03 |PS 5.0 4.0 5.0
VS1 0.0 0.05 0.05 | PVS 1.0 1.0 1.0
PO2 1.0 1.0 -1.0 | NL -20.0 -1.0 5.0
ZE2 0.0 1.0 1.0 |NM -10.0 6.0 5.0
NE2 -1.0 -1.0 1.0 NS -5.0 5.0 4.0
VS2 0.0 0.1 0.1 | NVS -1.0 1.0 1.0
PO3 0.5 0.5 -1.0 ZE 0.0 1.0 1.0
NE3 -0.5 -1.0 0.5 :
PO4 1.0 1.0 -1.0
NE4 -1.0 -1.0 1.0
PS4 0.0 0.01 1.0
NS4 0.0 1.0 0.01

words, the cart-pole arrangement is treated as a black box by the learning
system.

Figure 7 presents the GARIC architecture as it is applied to this problem.
The AEN network has 4 input units, a bias input unit, 5 hidden units and
an output unit. The input state vector is normalized, so that the pole and
cart positions lie in the range [0,1]. The velocities are also normalized, but
they are not constrained to lie in any range. The 35 weights of this net
are initialized randomly to values in [-0.1,0.1]. The learning rate for these
weights is fixed at 0.3. The external reinforcement (i.e., the failure signal r)
is received by the AEN and used to calculate the internal reinforcement #.
The discount factor 4 used in this calculation is 0.9.

6.1 The Action Selection Network

The fuzzy control rules used to balance the pole successfully are shown
in Table 6.1 and explained below. These completely determine the width of
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PO1 PO2 null null PL
PO1 ZE2 null null PM
PO1 NE2 null null ZE
ZE1l PO2 null null PS
ZE1l ZE2 null null ZE
ZE1 NE2 null null NS
NE1 PO2 null null ZE
NE1 ZE2 null null NM
NE1 NE2 null null NL
VS1 VS2 PO3 PO4 PS
VS1 VS2 PO3 PS4 PVS
VS1 VS2 NE3 NE4 NS
VS1 VS2 NE3 NS4 NVS

.Figure 1: The 13 rules used with 7 labels for force.

each layer in the ASN. There are 4 inputs, 14 units in layer 2 (the number
of antecedent labels), 13 units in layer 3 (the number of rules), 9 units in
layer 4 (the number of consequent labels) and finally, one output unit to
compute the force. The initial definitions of all the labels are also shown in
the table. These directly translate into the initial weights of Layers 2 and 4
in the Action Selection Network.

The design of the rule base for this fuzzy controller follows the algorithm
developed in [9, 11] which is based on a hierarchical process which considers
the interaction of multiple goals.

As mentioned earlier, the rule base of a fuzzy controller consists of rules
which are described using linguistic variables. As shown in Figure 8(a) and
Figure 8(b), four labels are used here to linguistically define the value of the
state variables: Positive (PO), Very Small (VS), Zero (ZE), and Negative
(NE). Nine labels are used to linguistically define the force value recom-
mended by each control rule: Positive Large (PL), Positive Medium (PM),
Positive Small (PS), Positive Very Small (PVS), Zero (ZE), Negative Very
Small (NVS), Negative Small (NS), Negative Medium (NM), and Negative
Large (NL). The forward calculations in this network are based on fuzzy
logic control as described earlier. Nine fuzzy control rules were written for
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balancing the pole vertically and four control rules were used in positioning
the cart at a specific location on the rail tracks [11]. These rules are shown
in Table 6.1. In Figure 7, the presence of a link between an input unit j and
a unit i in the hidden layer indicates that the linguistic value of the input
corresponding to unit j is used as a precondition in rule i. The first nine
rules, corresponding to the hidden layer units 1 to 9, are rules with two pre-
conditions (i.e., §, and §). The rules 10 through 13 have four preconditions
representing the linguistic values of 8, 8, z, and .

For any particular control problem using the GARIC architecture, the
fuzzy rules and their initial shapes and definitions need to be set up. We
have used triangular membership functions for all antecedent and conse-
quent labels. This choice is general enough to be applicable to many other
problems besides cart-pole balancing. There are 13 rules for this 4-input
system, and they use 23 linguistic labels in all. The spreads of a fuzzy mem-
bership function lie in the range (0, o). If a spread is oo, this parameter will
not be changed during learning, and the defuzzification procedure (LMOM)
will work by inverting the non-¢onstant portion. In addition, the softmin
parameter k is set at a value of 10, and the learning rate n is 0.01.

The labels and rule descriptions are presented in Figure 8. Given the
rule base, the parameters may be thought of as a means of controlling the
meaning of the linguistic terms. When the parameters change, this meaning
is being tuned to be consistent with the rules, such that good performance
results. In fact, performance is the only objective criterion of “correctness”
of the label definitions, in the context of the fixed rulebase.

6.2 Results

A trial in our experiments refers to starting with the cart-pole system set to
an initial state and ending with the appearance of a failure signal or success-
ful control of the system for an extended period*. The default parameters
for the simulations are: half-pole length .5 m; Pole mass 0.1 Kg; Cart mass
1.0 Kg; learning rate in the consequents .001. The starting configuration af-

ter each failure was varied in numerous ways including randomly. The rules
and starting label descriptions were varied by large amounts. The damages

!We say that the system has learned to control the cart-pole if no failure is observed
before 100 000 time steps. This time corresponds to about 33 minntes of real time.
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to the labels which are the variations from labels original definitions, as well
as changes in the parameters, are described with each figure. A starting
position of 0.1, for example, implies that all 4 state variables were set to
0.1 after each failure. A randomized start means that after each failure, the
initial configuration (all 4 parameters) were independently and randomly
chosen. In the graphs, each curve shows the value of a state variable and
is in four pieces. The first and second pieces show this value for the first
few time steps of the first and second trials respectively. If the trial lasted
less than 300 time steps, then the entire trial is shown, but if not, only the
first 300 time steps are shown. The third and fourth pieces of the curve
show the first 300 and last 300 (from 99700 to 100000) time steps of the last
(successful) trial, when the experiment was terminated. Of course, failure
occurs whenever 0 or z exceed their respective bounds.

Figure 10 shows the performnance of the controller during the learning
process. This is to clearly demonstrate how the membership functions are
shifted to the correct place by learning. In this experiment, we shifted the
center of the membership function for ZE by 5 N (this is shown in the figure’s
caption by ZE +5). The system learned to shift it back to about 0 as shown
in Figure 9. This change is sufficient for success, given the robustness of
the fuzzy inference process. Other labels were also shifted by about 1 N,
which is minimal change. The start state was non-random. Modifications
to all force labels are shown in Table 2. Figures 11, 12, 13, 14, 15, and 16
illustrate the performance of the learning system under different scenarios
which are described in the figure captions.

6.2.1 Additional Experiments

Two additional sets of experiments were performed. In the first set, we var-
ied the number of labels for force from 9 to 7 and redefined their membership
functions as shown in Table 3. Figures 17, 18, 19, 20, 21, 22, and 23 show
" the results of further experiments using the new membership functions with
the rules which are shown in table 4.

Further experiments were performed using 9 modified labels for force as
shown in table 5. The following table summarizes the results of these runs.
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Table 2: Force labels after learning

Label | Center Left Right
spread spread
PL 19.89 5.10 -1.00
PM 8.25 5.84 5.16
PS 6.73 3.99 5.80
PVS | 1.08 0.99 1.01
NL -20.29 -1.00 4.71
NM -9.72 5.69 5.30
NS -7.28 6.14 2.85
NVS |-0.09 031 1.68
ZE -0.18 1.86 0.14

Table 3: The membership functions for the 7 force labels in the consequent

Label | Center Left Right
spread spread
PL 20.0 1.0 -1.0
P$S 5.0 1.0 1.0
PVS | 1.0 1.0 1.0
NL -20.0 -1.0 1.0

NS -5.0 1.0 1.0
NVS | -1.0 1.0 1.0

ZE 0.0 1.0 1.0
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Table 4: The 13 rules used for set 1 with 7 labels for force.

PO1 PO2 npull nul PL
PO1 ZE2 null null PL
PO1 NE2 null null ZE
ZE1 PO2 null null PS
ZE1 ZE2 null null ZE
ZE1l NE2 null null NS
NE1 PO2 null null ZE
NE1 ZE2 null null NL
NE1 NE2 null null NL
VS1 VS2 PO3 PO4 PS
V81 V582 PO3 PS4 PVS
VS1 VS2 NE3 NE4 NS
VST VS2 NE3 NS4 NVS

Table 5: Revised membership functions for force

Label | Center Left Right
spread spread
PL 150 100 -1
PM |90 120 0
PS 0 0 80
PVS [0 0 20
NL -150 -1 100
NM |-90 0 120
NS 0 80 0
NVS |0 20 0
ZE 0 0.2 0.2
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Experiment Description No. of Trials to learn
ZE +5., start from 0., learn rate = 0.01 34
Same as above, learning rate = 0.1 89
Same as above, learning rate = 0.001 32
Same as above, learning rate = 0.0001 85
ZE(force) +5,+5,+5 33
ZE1 +0.2 0

7 Discussion

GARIC’s architecture is similar to the structure proposed by Anderson [2],
but the action selection network in our architecture is a synthesis of fuzzy
logic control and neural networks. Using the structure of a fuzzy controller,
Anderson’s approach is extended to provide for continuous representation of
the output value and inclusion of the human expert operator’s control rules
in the action selection network. It should be noted that Anderson’s goal
in [1] was to discover interesting patterns and strategy-learning schemes.
Not much effort was spent on making the process learn faster. In our work,
although we allow some of the strategy learning to occur automatically, we
start from a knowledge base of fuzzy control rules and tune them by learning
in the neural networks.

Also, the stochastic action modifier unit in GARIC has similarities to
Gullapalli’s method [13] although we use a completely different approach for
defining the internal reinforcement. Lee and Berenji [17] and Lee [16] have
used a single layer neural network which requires the identification of the
trace functions for keeping track of the visited states and their evaluations.
The generation of these trace functions is a difficult task in larger control
problems. However, the approach suggested in GARIC does not use trace
functions. The neural network representation of the fuzzy control rules in
GARIC allows faster development and faster learning. Also, in the single
layer model, only the generation of the output values were considered. The
preconditions of the fuzzy control rules were left untouched. However, in
GARIC, based on reinforcements received from the environment, both the
preconditions and the conclusions of rules can be modified.

The ARIC and GARIC architectures both use external reinforcements to
form internal evaluations of states and control actions. Also, they both use
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internal reinforcements to guide the process of tuning the rules. However,
GARIC extends the theory for using reinforcement learning in fuzzy control
in many respects including:

. Lea.fning is achieved bry full integration of fuzzy inference into a feed-
forward network, which can then adaptively improve performance by
using gradient descent methods.

¢ The fuzzy memberships used in the definition of the labels are modified
(tuned) globally in all the rules rather than being locally modified in
each each individual rule.

¢ GARIC can compensate for inappropriate definitions of fuzzy mem-
bership functions in the antecedent of control rules. We showed this
attribute by damaging the labels used in the antecedents and observ-
ing how the system can learn a new control policy to succeed. To the
best of our knowledge, GARIC is the first architecture to do this.

GARIC introduces a new conjunction operator in computing the rule
strengths of fuzzy control rules. '

¢ GARIC introduces a new localized mean of maximum (LMOM) method
in combining the conclusions of several firing control rules.

Only monotonic membership functions are used in ARIC. However,
GARIC allows any type of differentiable membership functions to be
used in construction of fuzzy logic controller.

8 Conclusions

With the GARIC architecture, We have proposed a new way of designing
and tuning a fuzzy logic controller. The knowledge used by an experienced
operator in controlling a process can now be modeled using approximate
linguistic terms and later refined through the process of learning from ex-
perience. GARIC provides a well-balanced method for combining the qual-
itative knowledge of human experts in terms of symbolic rules and learning
strength of the artificial neural networks. Therefore, we believe that this
architecture is general enough for use in other rule-based systems which
perform fuzzy logic inference.
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Figure 10: The ZE force label was set to +5. The system shifted it back to about 0, which is enough
for success, given the robustness of the fuzzy inference process. Other labels were also shifted by
about 1 N, which is minimal change. Start state was non-random. The system learned in 322 trials.
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Figure 11: Here the starts are randomized. Other parameters are the same as abovare required to
learn but not much more. Again, the system brings back the label from 5 to near 0. The system
learned in 367 trials.
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Figure 12: Antecedents change: ZE1 +0.2, ZE2 -0.4, PO3 -0.1, NS4 -0.1, ConsequenStart: ran-
domized. The consequents are all adjusted by small amounts. ZE is brought back again because it
is the most critical label in some sense. If this label is not correct, balancing is impossible even if
the system has started from a good state. Here, the system learned in 312 trials.
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Figure 13: More damage in addition to above. Antecedents changed : ZE1 -0.2, ZE2 -0.4, PO3
-0.1, NE3 -1.0,0,+1 PO4 +0.3,+0.3,0 PS4 +0.3 NS4 -0.1. Consequents changed : PL +5, PM +3,
PS +2, NM +1, ZE -2. Start : randomized. Again, ZE is corrected and the others are shifted by
comparatively smaller amounts. PM is brought back near to its original value. In general, there is
less pressure to correct the less-frequently used labels (such as PL), since once the system is in a
good area of state-space, it can completely avoid using PL after it has made the important repairs.
Learning took 550 trials.
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Figure 14: Parameter damage : maximum pole position = 0.1 rad and maximum cart position
= 0.2 m which have been reduced from 0.2 rad and 2.4 m respectively. Start was randomized.
Learning took 82 trials.
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Figure 15: Pole half-length was reduced to 0.2 m from 0.5 m, and the start was randomized. Only
4 trials required for learning.
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Figure 16: Cart mass was doubled to 2.0 kg. Random starting state. 2 trials were enough for
success. The PL and NL shift their centers away by small amounts to compensate for the heavier
cart. Similar effects are observed in other labels. The shifts are all small, since the effect is
distributed over a large number of parameters.
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Figure 17: Damages of: PO4 (40.4,4+0.4,0), NE4 (+0.2,0,-0.2), PS4 (+0.5,0,0), NS4 (-0.5,0,0),
starting state = 0.1. Learned in 2 trials.
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Figure 18: Cart mass = 4.3 kg (increased from 1 kg), starting position = 0.1, learning occurred in

3 trials.
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Figure 19: Damages to all labels of ¢ : (40.2,40.2,0),(4+0.2,0,0),(-0.2,0,40.2),(-0.1,0,0) to
PO1,ZE1,NE1,VS1 respectively. Starting position = 0.05. It took 29 trials to succeed.
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Figure 20: Damages to all labels of § : (+0.4,40.6,0),(+0.1,0,0),(-0.2,0,+0.4),(-0.1,4+0.3,0) to
PO2,ZE2,NE2,VS2 respectively. Starting position = 0.05. The learning time was 24 trials.
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Figure 21: Damage to consequents = (-5,-1,0,5.5,1,0,0). Starting position = -0.19 (which is very
close to failure). 136 trials were required.
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Figure 22: Major damage to consequents : PL +40.0, NL +5. Randomized starting positions. 15
trials were sufficient.
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Figure 23: Max cart position = 0.5 (from 2.4). Randomized starts. Antecedent damage : ZE1
+0.3, ZE2 0.6, VS2 40.2, PO3 -0.4, NE4 +0.5, PS4 +0.1, NS4 +0.3. Learned in 140 trials.
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