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ABSTRACT

A new flight research vehicle, the Rotorcraft-Aircrew Sys-

tems Concepts Airborne Laboratory (RASCAL), is being

developed by the U.S. Army and NASA at Ames Research
Center. The requirements for this new facility stem from a

perception of rotorcraft system technology requirements for
the next decade together with operational experience with
the Boeing Vertol CH-47B research helicopter that was

operated as an in-flight simulator at Ames during the past

10 years. Accordingly, both the principal design features of
the CH-47B variable-stability system and the flight-control

and cockpit-display programs that were conducted using
this aircraft at Ames are reviewed. Another U.S. Army

helicopter, a Sikorsky UH-60A Black Hawk, has been
selected as the baseline vehicle for the RASCAL. The

research programs that influence the design of the
RASCAL are summarized, and the resultant requirements
for the RASCAL research system are described. These

research programs include investigations of advanced, inte-

grated control concepts for achieving high levels of agility
and maneuverability, and guidance technologies, employ-

ing computer/sensor-aiding, designed to assist the pilot
during low-altitude flight in conditions of limited visibility.

The approach to the development of the new facility is pre-
sented and selected plans for the preliminary design of the
RASCAL are described.

INTRODUCTION

Over 40 years ago, the first variable-stability aircraft in the
United States was developed and operated by the National

Advisory Commiuee for Aeronautics (NACA) Ames Aero-

nautical Laboratory, Moffett Field, California. This single-
pilot F6F-3 aircraft with a variable-stability aileron and
rudder servo system accumulated over 400 hours of

research flight investigating the effects of variations in
lateral-directional dynamics. Since that time, a long succes-
sion of variable-stability aircraft, including conventional,

STOL, fixed-wing V/STOL, and rotoreraft configurations,

has been developed at Ames to serve as research facilities
for aeronautical research and development (R&D)
activities.
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In 1965, the U.S. Army and the National Aeronautics and

Space Administration (NASA) signed an agreement for
joint research participation based on a common interest in
aeronautical R&D, particularly in the area of rotorcraft, and

established what would eventually become the Army

Aeroflightdynamics Directorate, collocated with the
NASA's Ames Research Center. The presence of this Army

research laboratory at Ames had a profound effect on the

decision of NASA Headquarters to select Ames as the lead
center for its rotorcraft R&D program in 1976. A major

aspect of the NASA/Army joint agreement has been the

development and operation by Ames of a series of heli-
copter in-flight simulators, using Army aircraft on loan to
NASA, to complement and supplement its computational,
wind-tunnel, and ground-simulation research facilities. 1
The first of these aircraft, the UH- 1H V/STOLAND heli-

copter, was in use at Ames for almost 10 years, beginning
in 1977, for investigations into guidance and control con-

cepts and generic handling-qualities effects, principally dur-

ing terminal area operations. The NASA/Army CH-47B
helicopter (Fig. 1), described in this paper, was transferred
from NASA Langley Research Center to Ames in 1979 and
accumulated 450 research flight hours at Ames before its

return to the Army in 1989.

During this same period, helicopter in-flight simulators
were being developed and operated by government research
laboratories in other nations. 1 The National Aeronautical

Establishment of Canada has operated variable-stability

helicopters since 1961; the most recent being a Bell 205, in
operation since 1969 and logging over 3,000 flight hours.
Under the auspices of a Memorandum of Understanding
between the United States and Germany, NASA/Army

engineers and pilots at Ames participated with their Ger-
man counterparts in experiments associated with the devel-
opment of the variable-stability Bo-105 Advanced Tech-

nologies Testing Helicopter System (AT'I'HeS) by the
German Aerospace Research Establishment (DLR).

Recently, the French have developed a fly-by-wire
Aerospatiale Dauphin for generalized active control
research.

During the planning for two new research programs at
Ames in 1988---the Automated Nap-of-the-Earth Flight

(ANOE) and Superaugmented Controls for Agile Maneu-

vering Performance (SCAMP) programs---it became clear
that a research vehicle with more advanced capabilities was

required to attain program objectives. An in-house study
was conducted to identify the required attributes of this new

vehicle and to provide a comparative evaluation of candi-
date aircraft. In addition to a need for substantially more



inherentmaneuverabilityandagility in the basic vehicle,
the research system installed in the aircraft would have to

provide a capability well beyond that of the traditional
"in-flight simulator." What was required was a flexible
"airborne laboratory" capable of supporting investigations

of advanced rotorcraft guidance and control concepts for
both civil and military mission tasks. The ANOE and
SCAMP programs were both initiated at Ames in 1988. In

1989, the CH-47B helicopter was returned to the Army,
and, in that same year, the Army provided a Sikorsky

UH-60A Black Hawk helicopter (Fig. 2) to Ames to serve
as the basis for the development of the new research vehi-
cle: the Rotorcraft-Aircrew Systems Concepts Airborne

Laboratory (RASCAL).

This paper provides a summary of the design features of the
NASA/Army CH-47B variable-stability helicopter and the

highlights of the research programs which it supported. It
then describes the development of the requirements for the
new research vehicle and summarizes the results of the in-

house evaluation of candidate aircraft. Finally, the plans for
the development of the RASCAL are described, including

the research system design requirements, design philoso-
phy, and the approach to be taken in its development.

CH-47B CAPABILITIES AND RESEARCH
PROGRAMS

Facility Description

The NASA/Army CH.-47B variable-stability helicopter
(Fig. 1) was operated at Ames Research Center from 1979
to 1989, during which time it accumulated approximately

450 flight hours. Its original configuration upon transfer
from NASA Langley is described in Ref. 2. Its capabilities
were improved at Ames as described in Ref. 3, which also

reviewed the research programs conducted on the vehicle
through 1985. Those capabilities are next summarized,
followed by a review of the research that was conducted
from 1986-1989. The aircraft was returned to the
manufacturer in October of 1989 for D-model conversion

and subsequent return to the U.S. Army inventory.

A schematic of the CH-47B research system is presented in

Fig. 3. The aircraft was equipped with full-authority, elec-
trohydraulic actuators in each of the four control axes: dif-
ferential collective (pitch), lateral cyclic (roll), differential

lateral cyclic (yaw), and collective (heave). The research
actuator motions were transmitted to the flight-control sys-

tem of the basic CH-47B through electrohydraulic rotary
clutches, thereby moving the safety pilot's controls. The

research system was essentially a single-channel, fail/safe
design in terms of sensors, computers, and actuators. Safety

in the event of excessive actuator motion was guaranteed

by means of in-line, triply-redundant, digital control-rate

monitors. These monitors were independent of the flight
computers and were set to disengage the research system

whenever any control rate exceeded 50% of the full throw
of the pilot's controls per second. There were also manual

disengage switches at each pilot station and at an operator's
console. Finally, in the event of a failure to disengage, the

clutches could be slipped by the safety pilot with a moder-

ate amount of force until a safe landing could be made.

With these safety features, the research system was quali-
fied for use up to 120 knots and for hover operations to
touchdown.

The evaluation pilot cockpit was equipped with conven-
tional controls, but the center-stick controller included a
programmable artificial feel and trim system (AFTS). In

addition, a right-hand, four-axis, small-displacement side-
arm controller could be used in any combination with the

conventional collective and pedal controllers. To support
display research, a programmable Sperry Flight Systems
color electronic auitude indicator was installed in the

instrument panel.

Computing capability on-board the aircraft consisted of a
Sperry 1819A minicomputer programmed in assembly law

guage and, after 1986, a ruggedized Digital Equipment
Corporation PDP 11/73 microcomputer that was pro-

grammed in FORTRAN. A TR-48 analog computer was
available to facilitate special signal-conditioning require-

ments associated with sensor inputs and command outputs.

CH-47B Flight Experiments, 1986-1989

The flight experiments conducted during the last 4 years of

CH-47B operation made extensive use of its capabilities
that had been developed up to that time. Particular use was
made of the explicit model-following control system ,4.5

which was designed for near-hover maneuvering. An

extensive investigation of the effects of high-order dynam-
ics on the bandwidth of helicopter flight control systems
was also carried ouL 6 The experiments included control-
and display-law design 7"12 and handling-qualities
investigations, 13-14 as well as use of the CH-47B as an

instrumented platform. 15 The variety of study topics is

illustrative of the flexibility of the CH-47B research

system.

Reference 7 describes the development of a piiot-selectable

automatic hover control-law. A prerequisite for that work
was the generation of precise position and ground velocity

signals using the available ground-based laser tracker com-
bined with on-board Doppler radar, linear accelerometers, a

radar altimeter, and an inertial navigation unit for Euler
angle measurements. The linear velocity and position sig-

nals generated using these sensors were smooth, accurate,
and robust to dropouts in any of the sensors. In Ref. 8, the
hover-hold law was used as one of several modes in a

multi-mode control-law experiment that investigated issues
relating to pilot selection of control modes in realistic,
divided-attention mission tasks.

The position and velocity estimates developed for those

experiments were essential to three display-law design

investigations performed on the aircraft and described in
Refs. 9-11. Those investigations sought to determine the

design goals and handling-qualities issues associated with
the symbol drive laws for hovering displays such as that

used in the AH-64 Apache Pilot Night Vision System. The
importance of properly specified controlled-element

dynamics was demonstrated, and, display-law design



techniquesforenhancedoperationaleffectivenesswere
developedthatintegratedthedisplayandvehicledynamics,
consideringworkloadandperformance.Theflightexper-
imentreportedinRef.12validatedadvanced,integrated
control-anddisplay-lawsforblindverticallandingsas
appliedtoajetVTOL fighter.

Fundamental handling-qualities data were gathered in the
experiments of Refs. 13 and 14. The first investigation
quantified the effects of pitch-roU cross-coupling in either
the pilot controls or the aircraft angular-rate response. The

second investigated the effects of center-stick controller
characteristics, with an emphasis on the physical parame-

ters that affect the controller dynamics. Both experiments
made substantial contributions to the rotorcraft handling-

qualifies flight data base.

Finally, the experiment of Ref. 15, conducted to support the
ANOE program, obtained digital video image records of
terrain obstacles in low-altitude flight to be processed and

compared with true aircraft and obstacle position data.

TRANSITION TO RASCAL

Although the CH-47B proved to be a versatile and produc-
tive research tool, it had limitations that prevented investi-

gation of such critical topics as high-bandwidth flight con-
trol and agility/maneuverability. As with any digital flight-

control system, the achievable bandwidth was limited by
system delays and by potential destabilization of the rotor
modes. 6 Most important, the actuator rate monitors, while

ensuring safety and minimizing the requirements for exten-
sive software validation and verification and for hardware

redundancy, limited aggressive maneuvering by the pilot.
Nuisance disengagements were a common occurrence

unless the experiment and task designs were tailored to
avoid them.

In the late 1980s, NASA and Army research goals were
revised to include the flight validation of integrated control

technologies that enhance maneuverability, agility, and
mission effectiveness. These goals precipitated the search
for a more suitable host helicopter. The search was com-

pleted in 1988, when the UH-60A Black Hawk helicopter
was selected to be the RASCAL vehicle.

The selection was based on the evaluation of several candi-

date aircraft against a set of appropriatecriteria. Those cri-
teria included performance parameters such as payload and

power available; airspeed, load factor, and sideslip enve-
lopes; and handling-qualities capabilities such as control

power, damping, inherent cross-coupling, linearity of
response, and vibration. Other considerations included
physical characteristics such as cabin volume, sla'uctural

strength for cockpit modifications, operations and mainte-
nance factors in the NASA environment, safety and crash-

worthiness, and available research support tools such as
mathematical models. Ten vehicles were considered ini-

tially, and demonstration flights were conducted by NASA

test pilots in four of the most likely candidates. Of these,
the UH-60A was determined to have the advantage in most
categories and, on balance, was found to be the best avail-

able choice for the Ames SCAMP and ANOE programs. In
October of 1989, the JUH-60A that had been used as a

demonstrator vehicle for the U.S. Army's Advanced
Digital-Optical Control System (ADOCS) program was

assigned to Ames as the RASCAL vehicle.

RASCAL RESEARCH PROGRAMS AND SYSTEM

DESIGN REQUIREMENTS

The design requirements for the research system to be
developed and integrated into the RASCAL aircraft are

driven by the requirements of several major NASA and
Army R&D programs that involve the utilization of

RASCAL as a flight research facility. These programs
include the following.

1. Superaugmented Controls for Agile Maneuvering
Performance (SCAMP): Analysis, ground simulation, and

flight research to investigate methods for the enhancement
of rotorcraft maneuverability and agility through the appli-
cation of advanced flight-control concepts

2. Automated Nap-of-the-Earth Flight (ANOE): Anal-
ysis, ground simulation, and flight research to develop low-

altitude guidance algorithms and pilot display laws for
rotorcraft terrain-following/terrain-avoidance and obstacle
avoidance

3. Rotoreraft Agility and Pilotage Improvement
Demonstration (RAPID): In-flight validation and demon-
stration of ground-simulation-derived solutions to selected
Army-identified "technology barriers" to the development

of next generation/future systems

SCAMP Requirements

The increasing use of rotorcraft in more demanding mis-

sions such as higher-speed near-terrain flight, automated
NOE flight, and air combat places a premium on vehicle

agility and maneuverability. The U.S. Army has made the
enhancement of maneuverability and agility one of its top
R&D program objectives. Limitations on agility and

maneuverability are typically the result of design trade-offs
in the rotor system combined with an inability to control
effectively the influence of rotor dynamics on vehicle sta-

bility. To alleviate the costs of these trade-offs and to
exploit additional capabilities that are prohibited by current

control-system design procedures, the integration of new

interrelated control strategies is required. Typically, even in
state-of-the-art rotorcraft, these strategies are either not
used at all, or are used with no integration with other ele-

ments of the control-design task. Reference 16, the
"AeroTech 2000" report, states that "experience, tools, and
criteria for multidisciplinary design of integrated controls

for highly interactive elements are lacking." Therefore, the

development of such tools and criteria was given a high
priority in that document. In addition, this same need was

reinforced by a rotoreraft industry working group--the

Systems Automation and Intelligence (SAINT) working
group---in its recommendations to NASA during the 1985-

1987 period.



Accordingly. the goals of the SCAMP program are (1) to

provide methods and criteria for integrated control design
for rotorcraft and (2) to use these integrated control

methods to provide significant increases in rotorcraft
maneuverability and agility

To achieve these goals, the specific objectives are as
follows.

1. Develop an accurate mathematical model of the
UH-60 helicopter rotor modes, airframe, drive train, and

power plant including all interactions; and validate the
model with UH-60 flight data from the RASCAL and other
sources

2. Design, and evaluate in ground simulation, incre-
mentally integrated high-bandwidth inner loop controls,

rotor-state controls, propulsion/flight controls, higher har-
monic controls, and flight-envelope-onhancing controls and

displays

3. Validate the simulation results using piloted evalua-
tions conducted in the RASCAL

The approach to be taken includes a progressive buildup of
integration methods leading to flight evaluations in the
RASCAL for each phase of the buildup.

These research goals and objectives have major implica-
tions for the design of the RASCAL research system. To

support the SCAMP program, the RASCAL research sys-

tem must include the following.

1. A high-quality instrumentation, signal-
conditioning, and data-acquisition system, including rigid-
body, rotor-state, and propulsion-system sensors suitable

for experimental data and flight-control applications

2. A programmable, fly-by-wire research flight-
control system including high-performance actuators; a
flight-control computer, programmable in a higher-order

language, with a hardware/software architecture necessary

for the throughput and speed requirements of the various
control concepts; and a high-speed data bus with sufficient

capacity for the anticipated bus traffic

3. The capability to evaluate both conventional con-

trollers, using an artificial force-feel system, and integrated,
multi-axis side-stick controllers

4. A programmable digital engine conlrol system

5. A flexible, programmable cockpit display system

6. An in-fright researcher interface with the system

for monitoring the experiments and for effecting configura-
tion changes to allow productive use of the available flight
time

7. A ground-based development facility to allow

software checkout before its implementation in flight

ANOE Requirements

The ANOE program is focused on the development of
technologies for enhancing piloted low-altitude flight-path
management through means of computer and sensor aiding.
A lack of the technology required for computer-aided NOE

flight was clearly identified in the early stages of the U.S.
Army's RAH-66 Comanche development program. This
deficiency led to a recommendation of the NASA Research

and Technology Advisory Committee in 1985 for NASA to
initiate a basic research program in this area. The research

objectives were further refined through a series of SAINT
working group meetings through 1987. The long-term

objective of ANOE is to achieve levels of automation for
aiding the pilot in NOE flight and includes a flight demon-
stration of the resulting computer/sensor aiding concepts.

ANOE includes two elements which will be investigated in

separate flight research activities, integrated, and eventually

coupled with the RASCAL research flight-control system.
They are (1) pilot-directed guidance/control concepts and
(2) vision-based obstacle/hazard detection.

The first of these elements will result in the development of

a highly intelligent path-control capability to aid the pilot in
terrain-following and, eventually, NOE flight. Two basic
control modes will be developed: fully autonomous and
autonomous with the capability for pilot direction. Refer-

ence 17 describes a piloted simulation program which was

conducted as part of this program element to evaluate a tra-
jectory-generation algorithm and pilot's display for low-

altitude flight. The second element of the ANOE program
involves the development of real-time image sensor pro-

cessing techniques and motion-estimation algorithms to
allow NOE navigation and obstacle detection using on-
board passive and active sensors. Reference 18 provides an

analysis of the problem to be solved during this element.
Integration of the results of this element with those of the

first element of the program will yield the obstacle-
avoidance capability required for automated NOE flight.

In order to provide the capability required for the in-flight

development, evaluation, and demonstration of ANOE con-
cepts, the RASCAL research system must include the

following.

1. A functional research flight-control system pro-

grammed with SCAMP control laws suitable for low-
altitudeflight

2. An on-board precision navigation system suitable

for low-altitude flight

3. Appropriate passive (e.g., TV or FLIR) and active "
(e.g., radar or laser) sensors for image-based guidance and

navigation including obstacle detection/avoidance

4. On-board computational capability for real-time

image processing, vehicle motion estimation, guidance

algorithm generation, and pilot's display generation

4



5. Terrain data-base storage for low-altitude naviga-

tion with no image sensor-aiding

6. A flexible, programmable pilot's display system

including a digital map display and a helmet-mounted pre-
sentation of guidance commands and sensor-based imagery

7. A capability for the integration of the autonomous

guidance commands with the research flight-control system

8. An insta'umentation and data-acquisition system to
provide a complete determination of ANOE system per-

formance during both local and remote site operations

9. An on-board researcher's station for monitoring

and controlling piloted evaluations

RAPID Requirements

Four technical elements are included under the U.S. Army's
RAPID program:

1. Agility/Maneuverability: the development of
rotorcraft agility/maneuverability assessment techniques,

specifications, and stability and control augmentation sys-
tem (SCAS) designs to enhance agility and maneuverability
for a modem rotor system

2. Carefree Maneuvering: the development of con-

trot/display techniques to allow the pilot to make maximum
use of the inherent vehicle capability with a minimum of
added workload

3. Integrated Flight/Fire Control: investigations of
improvements in weapon system effectiveness for air-to-air

or air-to-ground combat which may result from including a
fire-control mode in the SCAS control laws

4. Slung-Load Operations: the development of con-
trol and display laws suitable for the stabilization and con-

trol of a suspended load conducted day or night in adverse
weather conditions

RASCAL research system requirements to suppon this

Array program include the fo//owing.

1. The SCAMP research system

2. An on-board computational capability for addi-

tional control and display laws, including maneuver-
envelope limiting and cueing, integrated fire and flight

control, and slung-load control modes

3. An extension of the RASCAL in-flight simulation

software to include simulated air-to-air and air-to-ground
combat with a fire-control and weapon system, and slung-
load operations

RASCAL Summary

Figure 4 provides a pictorial summary of the major compo-

nent requirements for the RASCAL research system. The

succeeding sections of this paper describe the approach to

be taken during the initial development effort and the sys-
tem architecture design philosophy, including system per-
formance and flight safety issues.

RASCAL RESEARCH SYSTEM DEVELOPMENT
STRATEGY

The buildup of the RASCAL research facility will occur in
phases that correspond to the requirements of the major

R&D programs which it supports. At the end of each suc-
ceoding phase of development, the RASCAL will possess a

full capability for conducting flight research programs to
support specific elements of each program. Table 1 pro-

vides a summary of the development phases planned for the
RASCAL and the resultant research capabilities at the end
of each phase.

RASCAL FLIGHT-CONTROL SYSTEM DESIGN

This section discusses the RASCAL design philosophy,

design and safety goals, and general system architecture as
they relate to the flight-control system development

through the end of Phase I.

Dermition of Design Goals

In addition to serving as the platform for the SCAMP,

ANOE, and RAPID research programs, specific design
goals for the flight-control system require achieving the

agility and handling standards defined by ADS-33C
(Ref. 19). This requirement will demand the minimization

of phase lags from all system components, ranging from the
conditioning of sensor signals, to computer cycle time and

actuator response. In addition, the incorporation of rotor-
state feedback is envisaged to enable the UH-60 to achieve
the flight-control system bandwidth requirements of

ADS-33C, and to demonstrate the potential of this
technology.

To categorize the design and mission goals, a set of per-

formance capability objectives has been established that
embody both maneuver aggressiveness and operating envi-

ronment. These performance capability objectives range
from precision landing and hover tasks through aggressive
hover maneuvering (as defined by the maneuvers listed in

ADS-33C) to air combat and NOE flight tasks at various
altitudes. The more ambitious the performance objective,

the more stringent the system design requirements from a
safety and reliability point of view.

Configuration studies began formally in 1989 with the

study reported in Ref. 20. Two piloted simulations have
also been conducted. The objective of these efforts has been

to determine specifications for the research system, princi-
pally the performance of the fly-by-wire _h actuators

and trip thresholds associated with monitors for hardovers

and other unexpected transients that are both critical ele-
ments of system design.



Design and Safety Philosophy

The distinguishing feature of this type of fly-by-wire
research aircraft is the retention of the basic mechanical

control system, connected in parallel and monitored assidu-
ously by the safety pilot. This continuous readiness to
resume control constitutes a fail-safe design philosophy
which can permit significant savings in system complexity

over fail-operate concepts. The design challenge is to
exploit this potential for simplicity without compromising
either safety-of-flight or mission envelope.

However, the key to achieving an acceptable fail-safe

design lies in implementing highly effective and reliable
fault prevention, detection, and isolation, particularly for

failure modes that can result in the generation of hardover
or other unexpected mansients in the fly-by-wire flight con-

trol system. Several approaches are being employed simul-
taneously to guard against such events: component reliabil-

ity, distributed redundancy, and extensive internal
monitoring.

Even after system hardware has been designed and inte-

grated in a manner that analytically achieves the desired
levels of reliability, there remains the critical issue of

research software. Rather than striving, at prohibitive
expense, to achieve the goal of extreme reliability for the
research software, an alternative approach involving risk

reduction is being considered. For example, certain test
conditions may require that operating altitudes be restricted

or that maneuver aggressiveness be limited. In the follow-
ing, the basic system architecture is outlined, some of the
monitoring concepts are discussed, and an approach to the

research software is presented.

System Architecture

Senso_

Figure 5 illustrates the hardware integration of sensor,
computer, and actuation elements required for fly-by-wire
control. Critical elements such as the inertial measuring

unit (used mainly as the source of basic strapdown data),
the flight-control computer (FCC), critical data pathways,
and the servo control unit (SCU) are of U,S. military-

standard quality and reliability. Where deemed important

from a failure-probability ot failure-effects point of view,
sensors and other components are duplicated and their out-

puts comparison-tested to permit the earliest possible and
most source-specific identification and isolation of system

malfunctions. For example, dual-redundant radar altimeters
may be included to allow more reliable determination of

signal dropout and recovery. Alternatively, the inherent
reliability and extensive self-monitoring of the fundamental

angular rate and linear acceleration data from the ring-laser-
gyro inertial unit may be considered sufficient to preclude

redundancy. The precise mix of dual and simplex sensors,
interfaces, and flight-control computers is yet to be defined.

A particular task of the SCAMP research programs is the

investigation of rotor-state feedback to provide the neces-
sary stability margin for high-bandwidth superaugmented

flight control. Although not a Phase 1 requirement, various
means of measuring the rotor flapping-angle and the blade
lead-lag positions are being investigated to meet this

requirement.

Computation

The high-performance flight-control systems that are the
focus of the SCAMP research will require more computa-
tional power than has been available in the past for research

rotorcraft. The algorithms associated with high-bandwidth
SCAMP flight control must cycle quickly, significant signal

conditioning must be employed to achieve minimum phase
lag in sensor signals used in the feedback control loops, and

complex mathematical models will be required in any
applications of the aircraft as an in-flight simulator. In
addition, SCAMP control laws will be required throughout

the full flight-envelope. The design goal for control-law

cycle time is 5 msec.

Currently, a likely candidate for the flight-control computer

is a multiprocessor environment employing VME and VSB
bus architecture and the latest military-qualified micropro-

cessors. This architecture is widely supported with both

commercial and military standard hardware and software,
permitting cost-effective ground-development and flight
facilities. A structured software approach, using a pro-

gramming language such as C or Ada, is planned. To man-
age tasking and timing control in the flight environment,

several commercially available real-time operating systems
are being evaluated. An in-house laboratory evaluation of
the capabilities and limitations of a particular hardware/

software combination is in progress.

To support the initial display processing requirements of
the ANOE and RAPID programs, a ruggedized high-

capacity commercial graphics processor will be integrated
with the FCC. This computer will be host to non-flight-

critical guidance and display algorithms.

The full-authority electrohydraulic parallel actuators arc the

critical elements in the design. To avoid unacceptable
effects of hysteresis and lost motion in precisely controlling

the swashplate, they are to be located downstream of the
UH-60A's mechanical mixing box. They will be mounted

on a bridge structure allowing them, when engaged, to
drive the input linkages of the UH-60A primary actuators.

Because of the high linkage gains at this point, faults that
reach the research actuators can have a very significant

effect on the safety pilot's controls and on vehicle response.
In addition, in order to exploit the full potential of the
UH-60, actuator rates and bandwidths are very high, match-

ing the capabilities of the primary swashplate actuators of
the basic UH-60. Consequently, their action must be moni-

tored very closely and with extreme reliability.

Although these actuators will very likely be powered by the
UH-60 backup hydraulic supply, they are essentially inde-

pendent of the basic UH-60A flight-control system. Conse-
quently, the benefit to flight safety of redundant pushrods



orhydraulicsupplies is debatable. However, extensive
monitoring of the servo, its control valves, and the associ-

ated servo-loop hardware will be used in the SCU, which
itself, along with each actuator and the associated engage-
and disengage-hardware, must be a highly reliable device

meeting rigorous design standards. Presently, the SCU is
envisaged as a hybrid computer, incorporating analog loop-
closure circuits, very high-speed digital monitors, and logic

controlling the engagement and hydraulic bypassing of the
research actuators.

otherwise be fruitful approaches to improved reliability,
such as redundant and dissimilar software, are impractical.

Independent specification of control laws and completely
separate implementation with different languages is inap-
propriate to the fundamental goals of a research facility.

Instead, thorough module testing, maximum practical use
of validation and verification methods, and conservative

flight-test procedures will be employed which together will

provide the necessary levels of reliability and risk
reduction.

Hardover Protection Monitors CONCLUDING REMARKS

While monitoring and comparison testing will be conducted
at all levels within the system architecture, an important

design feature will be the incorporation in the SCU of addi-
tional monitoring to block unacceptable command signals
that may reach or occur at the research actuators. To inves-

tigate the performance requirements for these final system

monitors, and to evaluate different monitor design con-
cepts, two piloted simulations were conducted in the Verti-
cal Motion Simulator at Ames Research Center. The first

simulation determined that a fault that resulted in a large
full-authority step command to an actuator had to be

detected and isolated within 100 msec. The pilot rating
scale descritexl in Ref. 21 was developed especially to

describe the effects of these failures and the pilot's ability
to recover from them, thereby providing data to define the
performance requirements for the hardover protection
monitors.

The genesis of a modern rotorcraft in-flight simulator at
Ames Research Center has been described. Although the

design requirements for this flight research facility emanate
from the specific need to support several major NASA and

U.S. Army research and development programs, it is clear
that the long-term role of the Rotorcraft-Aircrew Systems

Concepts Airborne Laboratory (RASCAL) will be as a flex-
ible flight research facility tailored to the needs of projected
future research user requirements. The RASCAL will have

the potential to support future programs designed to deal

with evolving and new rotorcraft mission tasks, the rapid
advancements in rotorcraft guidance and control technolo-
gies, and the need to develop guidelines and criteria for the

integration of these technologies in a manner that enhances
the ability of the pilot to conduct an effective mission.
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Figure 1. NASA/Army CH-47B Variable Stability Research Helicopter

Figure 2. Rotortraft-Airatw Systems Concepts Airborne Laboratory (RASCAL)
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