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Acquisition and Improvement of Human Motor Skills:

Learning Through Observation and Practice

WAYNE IBA °

AI Research Branch, Mail Stop 269-2
NASA Ames Research Center, Moffett Field, CA 94035

Abstract

Skilled movement is an integral part of the human existence. This is exemplified in a range of

behaviors from concert violin performance, to picking up and drinking a g_ss of milk. A better

understanding of motor skills and their development is a prerequ_ite to the construction of truly

flexible intelligent agents. Existing computational models have mostly focused on low-level issues

of controlling manipulators rather than on capturing skilled movements as conceptual units. The

psychological literature provides very high-level abstract theories or low-level analysis of specific

movement phenomena. Furthermore, the acquisitien of skills is largely ignored in both bodies

of work. In response to these issues, we present M_ANDEIt, a computational model of human

motor behavior, that uniformly addresses both the acquisition of skins through observation and the

improvement of skins through practice.

M2SANDr.R Consists of a sensory-elfector interface, a memory of movements, and a set of per-

formance and learai_ mechanisms that let it recognize and generate motor ski]Is. The system

initially acquires such skills by observing movements performed by another agent and constructing

a concept hierarchy. Observed movements are parsed and stored internally as motor schemas. Two

subsystems of _ASD]_a interact to allow observed movements to be recognized and stored skills

to be executed. The OxBow module is responsible for constructing and modifying the skill h/er-

archy according to the observed experiences. Given a stored motor skill in memory, the M__aGI_.

component w_l take the motor schema and cause some effector to behavior appropriately. Errors in

execution can be corrected through a closed-loop feedback control mechanism_ All learning involves

changing the hierarchical memory of skill concepts to more closely correspond to either observed

experience or to desired behaviors.

One can evaluate the effectiveness of a model in a number of ways. We evaluate M_ANDZR

empirically with respect to how well it acquires and improves both art/tidal movement types and

handwritten script letters from the alphabet. We also evaluate M2SANDER as a psychological model

by comparing its behavior to robust phenomena in humans and by considering the richness of the

predictions it makes.

" WayneIba is a_Yated with RECOM Technolopm.
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CHAPTER 1

Context for the Dissertation

1.1 Motivating a Study of Motor Learning

The ability to manipulate objects in the environment is one of the intrinsic features that demon-

strates intelligence, and human intelligence is distinguished from that of most other species by the

sophisticated level of such manipulation (Rosenbaum, 1991). Learning is an especially important

issue to any model of motor behavior, as evidenced by the difficulties encountered in constructing

flexible and powerful robotic mechanisms. When considering human motor behavior, the signifi-

cance of learning becomes even more apparent in the contrast between the breadth and proficiency

of an adult's motor skills and that of a child.

Until recently, the topic of motor skills has been largely ignored within the machine learning

community. We are encouraged by the recent interest demonstrated by efforts aimed at learning

sequences of operators that can control effectors external to the learning agent (e.g. Laird, Hucka,

Yager, & Tuck, 1990; Mason, Christiansen, & Mitchell, 1989; Moore, 1990). However, it is not

clear that these methods can describe the kinds of complex movements involved in skills such as

dance, Tai Chi Chaung, or violin playing. Furthermore, human learning involves both acquiring

skills through observation and improving them through practice. A comprehensive model of motor

behavior should address both of these issues.

There are two reasons to study human motor skills. A better understanding of the mechanisms

involved in motor behavior may facilitate improved treatments for certain physical disorders. Also,

a good model of skilled behavior in humans will help identify important issues and processes in

the design of an artificial movement systems. Such a computational model will contribute greatly

towards developing an intelligent agent that interacts with a complex environment.

Similarly, there are two reasons to study learning. As already mentioned, learning is an integral

process in human behavior. But learning also addresses the knowledge acquisition "bottleneck".

That is, appropriate domain knowledge is an integral part of intelligent behavior, and encoding

that knowledge can be time consuming. Learning through observation is one way to simplify the

knowledge encoding process.



2 LEARNING HUMAN MOTOR SKILLS

1.2 Goals of the Research

Our purpose in pursuing the research described in this dissertation has been to develop a compu-

tational model of human motor behavior. That is, we want to construct and test a system that

exhibits slcilled performance, where this refers specifically to motions involving jointed ma_ipuiators.

Secondly, and wherever possible, we want our model to be patterned after our knowledge of human

constraints, performance, and learning. A complete model of human motor behavior is beyond

our grasp and we must accept reasonable limitations on what we accomplish. Four characteristics

identify the specific scope of our work.

The first characteristic our model should exhibit, mentioned briefly above, is the ability to both

recognize and generate movements. We view much of intelligent behavior as a two-step process

involving understanding and expression. For a given task, humans frequently acquire an initial level

of skill through observation, and then refine their abilities through practice performing the task.

Likewise, our model should acquire a knowledge base of movement skills by recognizing observed

actions performed by some other agent. Given such a knowledge base, the model should be able to

generate its own movements and improve these movements through practice.

We also intend our model to address movements that are concerned with the trajectories of

limbs, as in dance or handwriting. This is in contrast to aiming tasks, which address moving an

arm to a desired position (Fitts & Peterson, 1964). Likewise, this class of skills is distinct from

maintenance tasks, such as driving a car or balancing a pole (Michie & Chambers, 1968; Selfridge,

Sutton, & Barto, 1985; Sutton, 1984). We recognize the importance of these other tasks and do

not suppose that the class we address subsumes them. Rather, we assume the presence of many

low-level mechanisms that each contribute to a total understanding of motor skills, only one of

which we consider here.

A third characteristic of our desired model is that its scope should include a wide range of

movement complexities within the class of skills. That is, the representation, organization, and

learning of movement skills should be flexible enough to handle both the simplest of movements

and very complex ones. This is necessary to establish the flexibility and applicability of the model.

Finally, we desire that the model's behavior in recognition and execution correspond to that of

humans for similar tasks. Computational models that address psychological phenomena have often

proved insightful both to artificial intelligence and psychology. There are many well-documented

phenomena in human motor behavior that have been identified and numerous models to explain

them. We view these as constraints on the design and behavior of any psychologically plausible

model. An ideal model should, within a single framework, account for a large portion of the

phenomena that have been identified.

In summary, we want a computational model of skilled motor learning that addresses both the

acquisition of skills through observation and the improvement through practice. The types and

complexities of skills that the model handles should be as broad as possible, and its structure and

behavior should be compatible with knowledge of human motor skills and learning. This particular

conjunction of characteristics requires us to attend to and draw upon ideas from the fields of

artificial intelligence, machine learning, and cognitive science. We want to pull together a number
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of issues,problems, and techniquesthat have never been framed together before. We hope to

connect high-levelplanning and low-levelmotor controlby creatinga model of skillsthat operates

somewhere between the levelof abstractionsat which each work. That is,we want to provide

a bridgebetween the "pick-up"and "move-to" operatorscommon in planning and the very low-

levelcontrolmechanisms necessaryto move a realarm. We hope that both machine learningand

psychologistscan benefitfrom an intermediatemodel somewhere in between the two corresponding

fields.We expect differentaspectsof the resultingmodel to make contributionsto both fields.

1.3 Evaluation of the Research

Laterin thisdissertationwe presenta computationalmodel thataddressesthe above characteristics.

A naturalquestionto considerfor any such model ishow wellitsatisfiesthe purposes for which

itisintended. Langley (1987) outlinesgeneraltypes of evaluation- empirical,theoretical,and

psychological- that would be applicableto any theory or computational model. In thiswork,

we empiricallyevaluateour model as a machine learningsystem and compare itsbehavior,both

quantitativelyand qualitatively,to behaviorobserved in humans.

Emprical evaluationattempts to demonstrate the utilityof the model's representations,perfor-

mance methods, and learningmechanisms. Kibler and Langley (1988) have outlined numerous

approaches to empiricallyevaluatinga machine learningsystems. Although we utilizea number of

theirideas,we emphasize the modest scope of our experiments.We argue that the conjunctionof

goalsdescribedabove isunique and that,at thisstage,itissufficientto demonstrate the feasibility

of our particularcomputational model.

Psychologicalevaluationinvolvescomparing some aspectof an artificialmodel to what isknown

about humans. This can be done in a number ofways. One can compare the grosscharacteristicsof

the model's designand assumptions tohuman physiology.Additionally,one can eitherqualitatively

or quantitativelycompare behavioralcharacteristicsof the model and the human. In order to

establishour model as psychologicallyplausible,we employ allof theseapproaches to evaluation.

1.4 Outline of the Dissertation

The characteristics presented as the goals of this research amount to a design specification for a

computational model of human motor learning. In the remainder of this dissertation we proceed

to develop and test such a model. We call this model MSANDZR, and show that it satisfies, to

varying degrees, the above characteristics.

In the next chapter we review a number of the psychological phenomena that our model should

exhibit. We also look at several psychological theories of human motor behavior to determine

if we could transform one of these into a computational model. Finally, we consider previous

computational models to see if any could be extended or modified to satisfy our current goals. We

conclude that none of the theories or existing computational models are satisfactory for our design

specifications.
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In lightof these findings,in Chapters 3, 4, and 5 we present M_EANDER, together with its

requirements,assumptions, and organization.Chapter 3 presentsthe contextualenvironment in

which M_EANDER was developed and tested,as well as the assumptions of the model. Chapter

4 describesthe detailsof Oxsow, our model of memory management. This chapter includesa

descriptionofthe mechanisms that recognizeobservedmovements and acquiremovement concepts

through observation.Chapter 5 presentsthe detailsof MAGGIE, a system thatembodies our ideas

on movement generationand modificationmechanisms.

We empiricallyevaluate MJEANDER in the followingtwo chapters. In Chapter 6 we consider

OXBOW's abilitytorecognizemovements as a functionofobserwtions. Then in Chapter 7 we eval-

uate M,_ANDER'S abilityto generatemovements and improve the qualityofgeneratedmovements

through practice.Here we alsoconsiderM]EANDER's behavior with respectto severalaspectsof

human performance and learning.

We closethe dissertationwith Chapter 8, which reviews both the contributionsembodied in

M_EANDER and the areas in which the model was found wanting. In closing,we also discuss

potentialresponsesto theseweaknesses,thus suggestingdirectionsforcontinuingthislineofwork.



CHAPTER 2

A Review of Human Motor Behavior:

Phenomena Theories and Models

2.1 Introduction

Motor skills play an essential role in human behavior. The modifications that humans make to

their environment reflect high-level thought processes and planning, but the basic means available

for such manipulations come through the use of our arms and hands. Note that many mammals are

able to walk or run within minutes of birth, whereas humans generally require a year of development

before taking their first tottering steps. Because learning plays such an important part in human

motor behavior, we are interested not only in how humans control their limbs in interesting and

skillful ways, but also in how such abilities axe acquired through observation and practice.

Researchers must address both planning and control issues in order to gain a greater under-

standing of how humans interact and manipulate their world and how they acquire this ability.

This involves understanding a variety of issues, including high-level thought processes, cognitive

development, and muscular control. We would like to find a computational theory that cuts across

all of these areas.

The study of limbed movement is called kinesiology or, more simply, human motor behavior. This

field is largely a synthesis of muscular physiology and experimental psychology. Historically, the

earliest notions on the subject were proposed by the fathers of modern psychology (e.g., James).

When behaviorism became popular, interest in motor behavior died, as all actions were thought

to be explained by stimulus-response theory. During World Wax II, interest in motor control was

renewed in an attempt to understand the performance requirements for tasks of interest to the

military. This stage was largely influenced by cybernetics and control theory due to the feedback-

driven nature of radar tracking and gunnery tasks. More recently, researchers have focused on

developing process-oriented theories that account for a range of phenomena pertaining to the control

of limbs. Since then, more experimental work attempts to validate and falsify the predictions and

explanations made by the various theories that have been proposed.
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In this chapter, we identify connections between theories of human motor behavior, and the

design and control of artificial manipulator systems. Furthermore, we want a computational model

that incorporates both motor issues and cognitive issues. However before beginning on this goal,

we must decide how to recognize a good theory when we have found one. We start by considering a

number of the phenomena that have been identified from research on human motor control. In the

next section, we describe the nature of these phenomena, the empirical evidence upon which they

are based, and their respective implications for theories of human motor control. In Section 2.3 we

focus on psychological theories of motor control, presenting three theories of human motor skills.

We rate each based upon their ability to explain and account for the phenomena and according to

their suitability for computational implementation. Of course, complete coverage of the phenomena

is not imperative, and we are looking for a semi-formal means of comparison. In Section 2.4, we

consider systems for controlling artificial limbs. We consider these systems with respect to their

adequacy as models of human motor learning. In the closing section, we evaluate the psychological

theories and computational models with respect to our original goal - a computational theory of

human motor learning dealing with complex behaviors. We conclude that the theories surveyed

in this chapter provide insights along various dimensions, but that none are satisfactory for our

stated goals in Chapter 1. In the following chapters we proceed to present our computational model

designed with these specifications in mind.

2.2 Phenomena of Human Motor Control

Science attempts to explain and predict phenomena. These phenomena are regularities in events

that, given similar situations, can be repeatedly observed. For the purposes of this chapter, we will

focus on phenomena that have already been identified rather than on predictions made by theories

of motor control.

Learning always occurs in the context of some performance task, so we will also examine per-

formance aspects of human motor control. We will consider these issues separately, first reviewing

the performance phenomena and then the learning phenomena. We will concentrate on robust

regularities that have been repeatedly observed. We are concerned mostly with _ohether a given

theory or model accounts for a particular phenomenon, and not as much with how such an explana-

tion is made. In each subsection, we will focus on describing the phenomena and the experiments

associated with them, delaying discussion of explanations until the next section.

2.2.1 Performance Phenomena

The first two phenomena that we will consider reflect performance issues in the execution of motor

skills. These are exhibited during the course of movements and do not depend upon any improve-

ment in performance quality over time. That is, these phenomena are observable at any stage of

learning to varying degrees of influence.
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THE SPEED-ACCURACY TRADEOFF

Perhaps the most well documented phenomenon in the study of human motor behavior is the

speed-accuracytradeoff.This isthe seemingly obvious regularitythat,the fastera particularskill

isattempted, the more difficultitisto perform the skillaccurately.Although othersdiscussedthis

phenomenon even earlier,Fitts(1954,1964) was possiblythe firsttorigorouslyexamine, study,and

reportthe phenomenon. His carefulstudiesled to the formulationof a relation,known as Fitts'

law,that captures the maxim "hastemakes waste" with quantitativevalues.This law relatesthe

movement time (MT) to the index of difficulty (ID),

MT = a + biD (1)

That is, if the constants a and b are known (for a particular set of time and distance units), then

the MT of the arm for a task with a particular ID can be predicted.

Fitts (1964) motivated the index of difficulty using information theory, defining it with the

equation
2A

ID = log2--_ (2)

This amounts to the ratio of the movement amplitude (A) to the target width (W). Now let us

examine how this is demonstrated and observed in movements in the laboratory.

Fitts and Peterson (1964) manipulated two independent variables in a discrete motor task: the

distance or amplitude to be moved and the width of the target to be touched. Subjects were

required to make rapid aimed movements to one of a pair of targets; the appropriate target was

indicated by a stimulus light. The targets were replaceable with variable widths and at different

distances from the starting button. The subjects would hold a stylus on the starting button and

move the stylus to the appropriate target as rapidly as possible. Fitts and Peterson reported

several slight variations on this procedure, but the results were essentially identical and the results

conformed to the predictions made by Fitts' law.

In an alternative methodology, Schmidt, Zelaznik, Hawkins, Frank, and Qninn (1979) used a

time-matching task to test this tradeoff. In this case, the subject is required to enact a movement

to a target at a fixed distance D, but must match the duration of the movement to a target time

T. This temporally constrained task (Meyer, Abrams, Kornblum, Wright, & Smith, 1988) yields a

quite different tradeoff relation. Schmidt et al.'s (1979) results conform to the equation

D

S=a+b-_ ,

where S isthe standard deviationof the movement endpoints in space (variableerror),D isthe

mean movement distance,and T isthe mean movement duration.Ifwe think ofthe variableerror

as an effectivetargetwidth, then thisrelationdescribesmovement time as a lineartradeoffin

distanceand targetwidth. That is,we can rewritethisrelationas:

D

T=bs --a

where S corresponds to the target width W in equation 2.
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Apart from the quantitative differences, these two relations qualitatively capture the comple-

mentary nature of distance and precision. Each applies in particular tasks but all tasks exhibit the

general qualitative effect of decreased accuracy with increased speed. Of the phenomena discussed

in this chapter, the speed-accuracy tradeoff is especially well documented. Many other studies

have shown that Fitts' law generalizes to other types of movements, including ones using joints

other than the shoulder and elbow. Langolf, Chafl_n, and Foulke (1976) have demonstrated that

movements of the finger, wrist, and arm all conform to Fitts' law, but that the constants differ from

one set of joints to another. That is, the wrist is more accurate than the arm and the fingers are

more accurate than the wrist. These results are for finger movements of around _ inch in length

and wrist movements of _ inch in length performed under the magnification of a microscope. Thus,

no matter what the task, a model of human motor behavior should reflect this robust tradeoff.

INTER-LIMB SIMILARITIES FOR SKILLS

The other performance phenomenon that we will consider involves the similarities observed when

a skill is performed on different limbs. This can be thought of as transfer of skill between limbs3

More specifically, characteristics of skills learned with one limb are evident when the same skill

is performed by another limb. This result suggests a single underlying representation for a given

movement skill.

For example, consider a comparison of samples from someone's handwriting or signature with

various limbs, such as the dominant hand, opposite hand, foot, and mouth. This is a well-known

demonstration, and the comparison is usually done qualitatively by simply looking at the handwrit-

ing samples and noting common characteristics (1Laibert, 1976). Figure 2.1 shows several samples

of handwriting generated by a single subject using different limbs.

There is additional evidence for corresponding characteristics for movements executed on different

limbs in Rosenbaum's (1977) study of fatigue in the rotor task. His experiment examined two

basic conditions. Rosembaum had subjects either crank a handle in a circular motion as rapidly

as possible for 30 seconds, or twisted a handle back and forth for 30 seconds. With minimal

interruption, the subjects were then required to crank or twist (a 2 x 2 factorial design) with the

other hand as rapidly as possible. The dependent measure of interest was the speed of cranking or

twisting with the second hand. The results indicated that fatigue from one task transferred to the

same task but not to the other task.

Both the qualitative results in the handwriting comparison and the quantitative results from the

fatigue study support the notion of a uniform underlying representation for motor skills. Although

the transfer of skills between limbs is not as well documented as the speed-accuracy tradeoff, these

two phenomena provide a starting place from which to compare models of motor control along

performance dimensions. Next we consider several learning phenomena in turn.

1. One should not confuse this phenomenon with the more widely studied issue of transfer of learning between tasks

(see Schmidt, 1975a).
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C

E

Figure 2.1. Five samples of handwriting from the same person using the right hand (A), right arm (B), left
hand (C),mouth (D),and rightfoot(E),takenfrom Raibert(1976).

2.2.2 Learning Phenomena

Learning is demonstrated through the improvement in performance of a particular task. Often,

improvement comes as a result of experience or practice. The phenomena we consider here relate to

factors that influence the rate of such gains in performance, or describe the conditions that facilitate

improvements. Also, we consider how the attentional overhead associated with performance can

change as a result of learning.

THE POWER LAW OF PRACTICE

In general, performance appears to improve with practice, but this is not the full story. The type,

quality, quantity, and scheduling of practice are all significant factors that influence the degree

to which improvements (if any) are gained. In this section we consider a quantitative result that

relates the improvement in performance speed to the mount of practice.

This relationship has been known as the log-log linear learning law (Snoddy, 1926), as DeJong's

law (Crossman, 1959), and simply as the power law of practice (Newell & Rosenbloom, 1981). All

versions of this law make the same claim - that a logarithmic improvement in performance speed

requires a logarithmic amount of additional practice. Performance speed is simply the time required

to complete a given task. The phenomenon has yet again been referred to as the law of dirninishin 9

returns, referring to the fact that the practice necessary to improve performance by a given amount

increases over time.
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Figure 2.2. Cigar manufacture time as a function of the number of previous cigars manufactured on loga-

rithmic scales (from Crossman, 1959).

This regularity was well documented by Crossman (1959), who studied a number of workers

making cigars. The cigars were made on a machine that was operated by the workers in the study.

Over a period of seven years, data were collected for the same workers on how fast they were able

to make a cigar.

Figure 2.2 shows a graph of the time to make a single cigar as a function of the number of cigars

previously made. The results indicate that decreases in the time to make a cigar were achieved

only after increasingly greater amounts of practice. That is, the rate of improvement declines with

increasing practice. When plotted using log scales for the horizontal and vertical axis, the data

points describe a straight line up to two years. At two years the operators appear to have stopped

improving. Crossman attributed this to the minimum cycle time of the cigar making machines;

that is, after two years the operators were producing cigars in the minimum time allowed by the

machinery.

Newel] and Rosenbloom (1981) present a comprehensive discussion of power laws and how the

experimental data fit these theoretical curves. As they point out, it is not clear if the data are

better fit by a power law or an exponential curve. They suggest that there may be other learning

processes involved that mask the power-law curves. Whether it is a power law or exponential, this

quantitative relation has only been demonstrated to hold for speed of performance. We might also

expect it to apply to other aspects of performance, such as the amount of error and the need for

attention. Although speed and error are related by the speed-accuracy tradeoff discussed above, in

these types of learning studies, error is kept constant at a minimum level. Whether this relation

also holds for skills such as free-throw accuracy remains to be demonstrated. Next we turn to

the need for attention during the performance of a task and how that need changes as a result of

practice.
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TRANSFER FROM CLOSED-LOOP TO OPEN-LOOP BEHAVIOR

Considerableattentionhas been paid to the automation of skills.However, much of the discussion

generatedaround thisissuehas focusedon definingand identifyingautomation. That is,what does

itmean fora skillto become "automatic"and when does such a transitionoccur? We willconsider

a trend toward automation to be a reductionin the attentionalresourcesnecessary to perform a

particulartask.Unfortunately,thisonly pushes the problem back one level.What do we mean by

attentionand how do we measure it? For our purposes,the amount of attentionnecessaryfor a

given taskisdirectlyrelatedto the amount ofinterference(inperformance) caused by a coincident

distractiontask.

A common method of exploringthisinterferencehas been the use of a secondary reactiontime

task.That is,during the performance of a main motor task,the subjectisrequiredto respond to

a probe as quicklyas possible.The degree to which the tasksinterfereshould be reflectedin an

increasedreactiontime to the probe. Ells(1969)usedjustsuch a designwith a main taskofmoving

a pointerto a targetas quicklyas possibleand varying the temporal presentationof the probe.

The resultsindicatedthat,with practice,subjectsreduced theirreactiontimes on the secondary

probe task.

Unfortunately,the resultsfrom thisand otherexperimentsdo not tellus clearlywhat isactually

happening with respectto automation and attention.Currentlythereisconsiderabledebate about

the nature ofattentionand about skillsthatare saidto be "automatic". Other studieshave shown

that combining two tasksor skillscan resultin interference,whereas one ofthe two pairedwith yet

another task willyieldno interference.For now, however, our main concern issatisfiedby these

results.They indicatethatwhen two tasksdo interfere,practicetends to reduce such interference.

This aspectof the phenomena isalsocloselyassodated with what can be calledthe shiftfrom

closed-loopto open-loopcontrol(Pew, 1966).Closed-loopcontrolimpliesfeedback,errordetection,

and errorcorrection;a movement performed in open-loop controlreceivesno feedback and isrun

to completion without opportunity for adjustments. Here, the issueis the presence and use of

feedback instead of the availabilityof attentionalresources.But dearly these are closelyrelated

in so far as itrequiresattentionto evaluatefeedback informationand determine what to do to

improve the movement. A restatementofour phenomenon then would be that through learninga

subjectisable to shiftmotor controlfrom a jerky,feedback-dependent performance to a smooth

executionoffeedback-freemovement.

PRACTICE VARfABILITY EFFECTS

Most of the phenomena in our list have historically been explored in their own right and then later

included and explained in a particular theory of motor learning or control. The practice variability

effect is unusual in this respect in that it was predicted by Schmidt's schema theory (1975b).

The prediction can be stated as follows: the more varied the practice, the more accurately a

novel but related task wRl be performed. McCracken and Stelmach (1977) tested this prediction in

an experiment requiring subjects to make timed movements of 200 msec. The goal was to reach a

barrier marking the end of the movement distance as close to 200 msec. as possible. The length of
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the movement was manipulated according to the experimental conditions. There were two training

conditions - high variability and low variability. In the high-variability condition, subjects were

trained on four different length movements. In the low-variability condition, subjects were trained

only on a single length movement. After training, both groups were required to perform a novel

movement, where the length had not been previously performed, again in a 200 msec. time period.

The results demonstrated a weak support for the initial prediction - that the high-variability

practice group would perform better on the transfer task. Although the low-variability group

appeared to have lower errors than the high-variability group on the initial task, the high-variability

group had significantly lower errors on the transfer task. Other researchers have demonstrated

similar results, and Frohlich and Elliott (1984) have extended these results beyond motor control.

They have obtained variable practice effects in operating dynamic systems that are external to the

human motor system. Unfortunately, there are also studies that fail to support this phenomenon

(Melville, 1976) or that even present contradictory evidence (Zelaznick, 1977). Although some

controversy exists around this phenomenon, it is clearly in operation in some circumstances and

the question becomes one of qualifying those contexts. Therefore, a good model of human motor

control should be able explain the phenomenon in some situations but not others. Now let us turn

to some of the psychological motor theories that have been proposed and see whether they account

for the phenomena discussed above.

2.3 Psychological Theories of Motor Control and Learning

As we have stated, early research on motor behavior was characterized by the identification of

phenomena. Of course, this is an important stage of any developing discipline. Ultimately, however,

such phenomena must be collected into a coherent theory that explains as many of the known

phenomena as possible and makes predictions about new phenomena. As predictions made by one

theory are falsified, new theories arise that make the "correct" prediction and additionally make

new predictions. Such is the progression of science.

This is precisely what has happened in the field of human motor behavior. Adams (1971)

proposed one of the first comprehensive theory of human motor behavior. Concurrently, Pew

(1974, 1970) suggested an alternative theory that emphasized different aspects of the complete

story. In response to these (and other accounts), Schmidt (1975b) proposed his own theory, which

has gained acceptance and has stood the test of time quite well up to the present.

Certainly there were other theoretical results before, during, and after this period, and we are

not intending to exclude this work. However, we are considering a theory to be corapreher_i_e if it

includes at least the following: a reasonably detailed description of the memory structures required,

a detailed outline of the modules responsible for the production of motor behavior, and a careful

description of the processes involved in acquiring the representations in memory used to generate

movement. As an example, in this light Saltzman (1979) would not be considered as comprehensive

as those mentioned above. Although he provides an extremely detailed analysis of representation

structures, he only alludes to the production and acquisition components. Thus, we will consider
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only the theories we have mentioned above and focus on their memory structures, performance

mechanisms, and learning processes.

2.3.1 Adams' Closed-loop Theory of Motor Learning

The scope of Adams' (1971) theory isintended to include "the instrumentallearningof simple,

self-paced,graded movements, likedrawing a line,even though the implicationsextend further.

And the bounds includeonly learningby humans old enough to have a verbalcapability"(p.122).

As the titleof the theory implies,itisa closed-loop,feedback-centeredapproach. Drawing upon

earlyservo-mechanism ideas,Adams' model resemblesthe classicclosed-loopcontrolmechanism

found in controltheory.

MEMORY STRUCTURES

There are two basic memory structures in Adams' theory - the perceptual trace and the memory

trace. The perceptual trace is memory of previous experience in movements, and the memory trace

is the pattern used for generating movements.

The perceptual trace is based upon multiple sources of sensory feedback. Proprioception is a

predominant source, but visual and tactual information are also very important. Even auditory

feedback can be useful in many situations. For example, the sound of the ball on a bat resulting

from a "good" hit is distinctive and will provide cues for predicting the result. Although the

perceptual trace is thought of as a single memory structure, Adams (1971, p. 125) states that

"in actuality it is a complex distribution of traces." The movement on any given trial creates a

trace that contributes to the total distribution of traces. Each individual trace will tend to fade

and ultimately be forgotten, but the distribution somehow manages to get stronger, although this

process is not explained. The strength of the perceptual trace, thought of as a unit, is an increasing

function of the number of trials on which feedback was given. As similar traces are repeated over

and over, the mode of the distribution becomes strong and allows a distinctive trace to arise as the

means of comparison. The perceptual trace comes to correspond to the sensations associated with

the correct end point of a particular movement.

In the context of simple, self-paced movements and feedback control, the extent of a movement

is the predominant controlling property. In such movements, feedback plays an integral role, but

the feedback must be compared to some standard of reference to determine the correct extent of

the movement. The perceptual trace performs this role in Adams' theory.

It might seem that the perceptual trace alone is sufficient for the generation and control of

movement; however, there are several problems associated with this position. First, every movement

will appear to be correct if it is initiated by the same structure as is used for the reference in a

typical closed-loop system. Also, using only the perceptual trace as the reference of correctness

requires feedback, which is not available until approximately 200 msec. into the movement. Finally,

results from verbal behavior indicate that recall and recognition, or the production and recognition

of responses, respectively, are based on two different memory states (Adams & Bray, 1970; Kintsch,
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1970). To account for these,Adams includesin his theory another structurecalledthe memory

trace.

The memory trace is introduced to "select and initiate the response, preceding the use of the

perceptual trace" (p. 125). This structure is responsible for controlling a movement once initiated,

until sensory feedback can be compared with the perceptual trace. The remainder of the movement

is governed by feedback and the perceptual trace. Adams admits that he is uncomfortable with

this form of two-state memory, but sees it as the most reasonable choice given the closed-loop

assumptions and the nature of the proposed perceptual trace. He contrasts the perceptual trace,

which controls the extent of a movement, with the memory trace, which controls the selection of

a movement. Here the limiting context of self-paced straight line movements mentioned above is

particularly evident, as more complex movements cannot be described by duration or length.

PRODUCING AND IMPROVING MOVEMENTS

In Adams' theory,the performance component isquite simplistic,so we willconsiderboth per-

formance and learningissuestogether.Consider how the memory structuresdescribedabove are

utilizedto produce voluntarymovements. The productionofmovements inAdams' theoryinvolves

using the perceptual and memory tracesin a typicalclosed-loopfeedback controlsystem. The

memory traceisthe (initial)generatorand selectsthe path to be followed.After the initialdelay,

feedback becomes availableand the perceptualtracecomes intoaction,controllingthe remainder

of the movement. The perceptual traceiscompared with the sensoryfeedback,and adjustments

axe made in an effortto reach a zeroerrorend state.

In orderto improve performance,one or both ofthe memory structuresused to controlmovement

must somehow be modified. The memory trace is strengthenedas a function of knowledge of

resultsand practice.However, Adams dalms thatthisisnot the sourceofsignificantimprovement.

Instead,the buildingand strengtheningofthe perceptualtraceiscreditedwith improvements.

As stated above, the strength of the perceptual trace is a function of the sensory feedback

experiencedon each triM. Improvements could be gained simply from the driftin the mode of

the distributionof sensorytracesas a resultof more correctsensoryexperience,but thisimplies

a consciouschange in the tendency of the movements. Learning actuallyoccurs when the subject

uses the knowledge of resultsto make the next response be differentthan the previousone. That

is,the perceptualtraceismodified and appliedwith respectto the previousknowledge ofresults.

Sincemovement in Adams' theoryisexplidtlycontrolledby the perceptualtrace,an "average"

over many similarexperiences,it cannot explainthe generationof differentmovements, except

with differenttraces.This requiresa separatetraceforevery movement everproduced, even when

two movements are relativelysimilar,therebyintroducinga massive memory load. Below, we see

that Pew (1974) presentsa theory that addressesthisissueby includinga more generalmemory

structure.
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2.3.2 Pew's Closed-loop Theory

Pew (1974) presents a closed-loop theory of human motor performance that is very similar to

Adams' but with a somewhat different flavor. Although the theory is oriented towards perfor-

mance issues, Pew does outline what would be involved in the acquisition of motor skills within his

framework. Most of the attention is focused on performance, leaving representational issues more

sketchy than in Adam's theory.

MEMORY STRUCTURES

The basicmotor memory structurein Pew's theoryisthe movement pattern.This issimilarto the

conceptofa motor program, insofaras itisa stringofmotor commands thatcan acceptparameters

to slightlyalterthe resultingmovement along certaindimensions.The movement pattern"may be

thought ofas a storedrepresentationofa path in spacethrough which the members ofthe body will

move" (Pew, 1974,p.31).These patternsarestoredorcollectedunder the second memory structure

- the schema. The idea forschema learningiscreditedto Bartlett(1958)and Posner and Keele

(1968),but probably goes much furtherback than that.However, inPew's theory,the exactnature

ofthe schema iseven more unclearthan the movement patterns."What propertiesof a movement

patternare encoded? What propertiesare intrinsicto a particularschema and what propertiesare

only dimensionalparameters that are freeto vary from one executionto another?'(p.28) These

are allquestionsthat Pew asksbut leavesunanswered.

The schema and the schema instance(which isnothing more than the movement pattern gen-

erated or selectedfrom a given schema) are the necessarymemory structuresfor the generation

of movements. But as we saw in Adams' theory,thisisnot sufficientfor the closed-loopcontrol

of voluntary movements. Pew positsthat the resultof selectinga particularmovement pattern,

the schema instance,isthe generationof an image of the sensoryconsequences experiencedwhen

actuallyexecutingthe movement pattern. The sensoryconsequences are analogous and perform

the same roleas the perceptualtracein Adams' theory.Itisthe image ofthe sensoryconsequences

that allowsthe detectionand correctionof errorsinmovements while they are in progress.

PRODUCING MOVEMENTS

Since both Pew and Adams' presentclosed-looptheories,the means of movement generationwill

be very similar,though the memory structuresused are different.In Pew's theory,a particular

movement pattern isselectedfrom the schema (thegeneralizedsourceof movement information)

accordingto the stimulatingconditionsexistinginthe environment. Of course,the selectionprocess

depends upon both the dynamic stateof the subjectand the environment at the current time.

Once the schema instancehas been selected,itmust be translatedintoa temporal stringof motor

commands recognizableby the limb effectors.Pew suggeststhatat thisstagethe timing (orspeed)

informationisadded to the stringof muscle commands. This allowsthe movement to be speeded

up or slowed down as a whole. Schmidt et al. (1985), Schmidt (1982b), and Armstrong (1970)

present evidence that practiced movements maintain their temporal relationships independent of
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performance speed. This suggests a speed parameter applied to a string of motor commands that

stretches and shrinks the entire movement uniformly.

Once the temporal sequence of muscle commands is formulated, all that remains is to execute

this program. The muscles are then activated according to this sequence, producing a movement in

space and time. However, for v'arious reasons movements do not always proceed exactly as intended.

In these cases, one needs some correction mechanism.

One interesting point about Pew's theory is that he stresses multiple levels of feedback and

expected consequences. For example, he describes knowledge of results as a high-level feedback

and details about the goal to be achieved as high-level expected consequences. At a lower level,

the actual sensory consequences received from executing the movement pattern can be compared

with the perceptual trace of expected sensory consequences. He lists these two levels as examples

of a possible larger set of levels that interact during the performance of movements. Therefore, it

is difficult for Pew to explicate the comparison process that results in alterations to the ongoing
movement.

However, a unique point in this matter is that, in Pew's opinion, "corrections are executed ... not

on the basis of deviations from a predetermined path but rather on the basis of revised estimates of

where the target is with respect to where the subject's hand now is'(p. 25). This implies not only a

significantly different comparison and correction mechanism from Adams', but also a more complex

one involving the integration of multiple sources of information. Information from the high-level

goals, the sensory consequences, and the limbs must all be integrated to allow modifications to

either the schema instance selector or the actual generalized schema. Given sufficient execution

time, Pew allows modifications to ongoing movements either by low-level corrective mechanisms

to the movement pattern or the initiation of a modified schema instance. But we want to know

how the schema structure is updated according to corrections made during a movement so as to

improve the same movement in the future.

Pew hedges at this point and claims that, at the time of his theory, it was too early to de-

termine the nature of the changes resulting from experience. He hazards the guess that learning

involves modifications to the generalized schema structure, to the process of choosing a schema in-

stance based upon environmental conditions, and to the nature of the implementation of the motor

command sequence as generated by the movement pattern. These latter two imply that learning

involves changes in the processes that control the generation of movement. In general, this is an

undesirable position unless satisfactory constraints are imposed on the allowable changes. However,

remember that Pew was mainly focusing on performance. He does make an important point about

learning, once again relating to the multiple levels of feedback. He claims that the knowledge of

results for a given movement is not sufficient to allow the subject to improve performance. Accord-

ing to Pew's model, "information about the expected sensory consequences, and about the actual

sensory consequences together with the success or failure of the movement pattern, all converge in

the Comparator Mechanism to produce the basis for modifications to the generalized schema, the

instance selection rules, and the temporal implementation of the command sequence'(p. 32).
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This broader view of feedback and comparisons, which incorporates multiple levels of information,

gives Pew's theory more explanatory power than Adams' account. But before comparing these two

theories, we turn to Schmidt's schema theory, which synthesizes those of Adams and Pew.

2.3.3 Schmidt's Schema Theory

Adams' and Pew's theories, proposed in 1971 and 1974, spurred a flurry of experimental studies

testing the predictions and claims contained therein. Schmidt proposed his schema theory (1975b)

largely in response to explanatory weaknesses that were revealed as a result of these studies. How-

ever, Schmidt credits both Adams and Pew for his conceptual foundations, and the similarities to

both are striking.

MEMORY STRUCTURES

Schmidt takes the ideas of the motor program (movement pattern) and the schema from Pew and

develops them more fully. The latter avoided the term motor program, although he did think

of his schema instance as "a computer program waiting to be read'(p. 31). The motor program

here is analogous to Pew's schema instance, but perhaps a bit more generalized. It is presented

as requiring multiple parameters for full instantiation. Parameters include speed, as with Pew's

schema instance, but also force, distance, and the possibility of others that are unmentioned. The

motor program is intended to provide the means of producing a whole class of similar movements

from a single memory structure. This occurs in the same way that a program designed to calculate

the average of a set of numbers is usually not limited to the calculation of a single average for a

fixed set of numbers. Instead, it can calculate virtually any average given the input data. In this

way, Schmidt's motor program is actually a means of producing a sequence of muscle commands

based upon parameters and is not the actual sequence of commands itself. The motor programs

are stored collectively under, or at least are indexed through, the motor schemas.

As mentioned above, the idea of the motor schema is not new. In Schmidt's theory, it is viewed

as a general rule that can be used for generating, or selecting, a motor program. In this respect

it is like Pew's schema, which bundled the movement patterns. However, Schmidt proposes three

different types of motor schemas - the recall schema, the recognition schema, and the error-labeling

schema - and goes into greater detail of description than Pew. Like the work on verbal behavior

and memory, the recall schema is responsible for producing movements, whereas the recognition

schema is responsible for recognizing particular movements.

The recall schema is an abstraction of previous attempts at a particular class of movements.

Specifically, the abstracted information includes the initial conditions at the beginning of the move-

merit, the response specifications, and the response outcome from each movement. The initial

conditions are simply a representation of the beginning state of the subject and the environment.

The response specifications correspond to the parameter values used in the motor program that

generated a particular movement instance. Finally, the response outcome is a qualitative assess-

ment of whether or not the original higher level goal was satisfied. This is commonly referred to

as knowledge of results, since there is an implied ability to make a judgement about the success of



18 LEARNINGHUMANMOTORSKILLS

themovement.Thesethreepieces of information are collected and stored, as in a vector, and it is

the relationship among all of them that is captured as a recall schema.

The recognition schema is similar to the recall schema, but instead of storing the response

specifications, it stores the actual sensory consequences. As before, the sensory consequences are the

trace of feedback (not limited to proprioceptive) resulting from a particular movement. Thus, the

initial conditions and the response outcome are again stored, along with the sensory consequences,

and the relationship among these three is abstracted to form a schema.

Finally, the error-labeling schema takes the raw sensory signals coming from the limbs and the

environment, and converts this input into a qualitative evaluation of the completed or ongoing

movement. This labeled error signal is known as subjective reinforcement and can be substituted

for true knowledge of results, although it will be less accurate. The error schema stores the past

sensory signals along with the actual knowledge of results and builds a relation between knowledge

of results and the sensory signals received. Once this relation is well developed from previous

experience, it can be used to predict the movement outcome just from the sensory consequences.

In summary, Schmidt proposes three types of schemas - the recall, recognition, and error-labeling

schemas - in addition to the motor program. Next we look at how these structures are used together

to produce skilled, controlled movements.

PRODUCING MOVEMENTS

The performance component of Schmidt's theory can be split into two parts or phases - the move-

ment preparation stage and the actual movement generation. These happen in sequence, but they

can loop as well. His theory assumes that a motor response schema (combined recall and recognition

schemas) already exists.

The movement preparation stage involves taking the specified desired outcome and determining

the initial conditions. Based upon the relationship developed over previous movement experience

between these two variables and response specifications, the motor program is supplied with a new

set of response specifications (hopefully appropriate to the situation and desired outcome). The

initial conditions and desired outcome may never have been encountered before, and the resulting

response specifications will be determined by "interpolating among past specifications'(p. 236).

This may result in novel behaviors that have never been performed before. Simultaneously, the

response schema selects the expected proprioceptive and exteroceptive feedback based upon the

relationship between previous outcomes, initial conditions, and sensory consequences. Once the

motor program and expected sensory consequences have been prepared, the actual movement can

be initiated by running the motor program on the limb effectors.

As the muscles are activated by the motor program, the movement proceeds uninterrupted for

the first 200 msec. That is, the motor program completely specifies the movement for at least

this initial period. When sensory feedback becomes available, it is compared against the expected

sensory consequences as given in the recognition schema. Note that the actual sensory information

is coming both from the limbs and the environment, and that the expected sensory consequences

likewise include multiple modalities. This comparison leads to a raw error signal which is fed back
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to the schemas so that adjustments may be made if necessary. The error signal is also input to the

error-labeling schema for a qualitative evaluation that results in subjective reinforcement.

Once the raw error signals and subjective reinforcement are available, the entire process begins

again. The desired outcome will be the same, but there will be new initial conditions and a

potentially different motor response schema based upon the immediately prior movement. Each

segment is performed in open-loop mode. This cycle repeats, effectively yielding closed-loop control,

until the resulting error signals indicate no further movement is necessary, or until the subjective

reinforcement predicts the accomplishment of the desired outcome.

MODIFYING THE I_ESPONSE SCHEMAS

Schmidt proposes that the schema structures are modified by the trace from each movement. A

trace starts with the initial conditions and response specifications, with the sensory consequences

being added when they become available. Finally, at the end of the movement, the outcome of

the movement is added to the trace, either in the form of knowledge of results or as subjective

reinforcement. These four items are used to revise the means of predicting sensory consequences

and response specifications on future trials. A trace is hypothesized to be rather short-lived in

duration. Although this trace is unstable as a memory structure, it persists long enough to modify

the recall and recognition schemas in memory.

The schemas are much more permanent memory structures that are generally resistant to for-

getting. The strength of the schema increases in proportion to the number of trials of a particular

class that are "sufficiently similar" to be grouped together. Also, the reliability of the relationship

given in the schema increases with better quality feedback from the response outcomes.

However, the nature of the modification to the schemas is difficult to assess. Schmidt uses the

term "abstraction" to describe the process of bundling up the four pieces of information described

above. He states that "it is the relationship among the arrays of information that is abstracted

rather than the commonalities among the elements of a single array'(p. 235). By this he seems to

mean that the multi-way relationships between the four items is more important than the relation-

ship between any particular set of initial and final conditions, response specifications, and sensory

consequences. This is important because the methods for choosing the response specifications (and

sensory consequences) rely on interpolating between previous experiences or using a function that is

based on an interpolation of previous experiences. Recall and recognition schemas are both treated

similarly with respect to learning.

The formation and modification of the error-labeling schema is even less well formulated than

with the recall and recognition schemas. The strength of this schema again depends on the amount

and the quality of prior experience. Previous raw error signals (the discrepancies between the

expected and actual sensory states) have been stored in association with the resulting qualitative

feedback (knowledge of results). Of course, the schema as a whole would have to be associated

with the recalland recognitionschemas to allowretrieval,sincethe initialand finalconditionsare

not part of thismemory structure.Again, asin Adams' and Pew's theories,we see that Schmidt's
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framework leaves much of the learning processes to the readers' imagination. However, we can still

compare these theories' learning components, their explanatory powers, and their complexities.

2.3.4 Analysis of the Three Theories

Although there are many similarities among the theories we have discussed, each has strengths in

different aspects. All three theories contain feedback components, but only the first two, Adams'

and Pew's, should be considered as closed-loop theories of motor control. In these models, once

the movement is going, the control is based on feedback compared with the standard of correct

movement. On the other hand, Schmidt's theory uses feedback to revise the selection of open-loop

movements in the course of trying to satisfy the desired behavior designated to the motor system.

In SctLmidt's theory, each individual segment is considered to be under open-loop control. This

actually blurs the distinction between closed-loop and open-loop processing.

Furthermore, Adams' and Pew's theories are very much alike in form and process (with the ex-

ception of Pew's omission of learning), but mainly different in representation. Adams recognizes the

need for two memory structures, whereas Pew avoids this point by introducing a second structure,

the expected sensory consequences, from the movement pattern used to generate the movement.

On the other hand, Pew's inclusion of a schema memory structure allows greater flexibility in move-

ment generation. Schmidt's overall framework bears many similarities to Pew's in representational

structure, but borrows from Adams' in processes for learning and the basis for the recognition

schema. From a purely theoretical and structural view, Schmidt borrows heavily from previous

work, but his synthesis stands as a significant improvement.

As we stated at the beginning of the paper, the purpose of considering the human phenomena

was to evaluate and constrain theories of human motor learning. All of these theories can account

for the speed-accuracy tradeoff by the greater number of chances to correct errors during slower

movements. However, whether the quantitative results from these theories would correspond to

those predicted by Fitts' law is an open question. Such verification would require instantiating

these theories as computational models - which has not yet been done. Similaxly, the transfer

of skills between limbs could probably be handled by appropriately transforming the memory

representation for a given skill to be executed on another limb.

Since Pew's theory does not explicitly address learning issues, we cannot say much about his

theory with respect to the learning phenomena. Certainly, all three theories predict improvement

b'ased upon experience, but whether any of them would yield power-law learning curves is difficult

to answer. Even if the theories were stated in computational terms and allowed the collection

of numerical results, there would still be the problems associated with discriminating power-law

curves from exponential ones (Newel & Rosenbloom, 1981; Rosenbloom, 1986).

The closed-loop and open-loop distinction provides a better contrast between the theories.

Adams' and Pew's models cannot easily account for any open-loop behavior. The former's memory

trace could conceivably become sufficiently strong that simple movements could be performed in

open-loop mode. Pew's schema instance can be forced into open-loop mode, since it is converted

to a temporal sequence of muscle commands that theoretically could be executed entirely without
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feedback. Schmidt's theoryis almost entirelyopen loop,although it can givethe appearance of

closed-loopbehavior.However, none of the theoriesgivegood explanationsof how behavior could

progressfrom dosed loop to open loop as a resultofpractice.

Finally,only Schmidt'sschema theoryisableto explainthe practicevariabilityeffect.Of course,

thisphenomenon was predictedby (and observed after)the introductionof his schema theory.

As discussedby Schmidt (1975b),Adams' theory has no way to account for such a phenomenon.

However, Frohlichand Elliott(1984)claim that even Schmidt'sexplanationistoo weak and they

presentan alternativeview on thissubject.Although the empiricalresultsare stillinconclusive,it

seems clearthat,atleastin some cases,the effectholdsconsistently.A fulltheoryofhuman motor

learningshould be ableto account forat leastsome oftheseeffects.

Allof the theories(induding Pew's with a hypotheticallearningcomponent) explainthe psycho-

logicalphenomena ratherwell(notsurprisingly).However, they are alllimitedto simple,ballistic

movements. Most work has been done on single-jointtasksin one dimension. Consequently, the

existingpsychologicaltheorieshave littleto say about more complex tasksinvolvingthe interac-

tionofmultiplejointsin non-trivialmanners. As mentioned above,a computational model ofthese

theorieswould facilitatea more thorough evaluationand, in general,could provide much needed

insightto the nature of such theories.

2.4 Computational Approaches to Motor Behavior

Now letus considermodels of jointedmotor controlthat specifythe representation,performance,

and learningprocessesas computational mechanisms. Again, we must choose some method or

dimension to limitthe systems we considerin thischapter.In thiscase,we willfocus on heuristic

methods that employ learningtechniquesto sidestepweaknesses in computational power, along

with systems that are heavilygeared toward modeling some aspectofhuman motor control.This

means excluding much of the roboticsliteraturein so far as the methods commonly used in that

area are intended to fred exact or optimal trajectoriesfor mechanical manipulators. Also, such

methods tend to focuson low-levelmotor control,involvingtorquesand voltages,which we intend

to ignore.

We willalsoexcludethe literatureon robot planning (e.g.,Segre,1987; Andreae, 1985),which is

mainly concerned with problems ofplanning and operatorsequencing,as opposed to the execution

of variedlimb movements. Of course,both thistype of work and the low-levelroboticswork are

important in theirown right,but they are not directlyrelatedto the concerns of thischapter.

As we statedbefore,we are interestedin theoriesor systems that address both the cognitiveand

physiologicalaspectsof motor behavior.

We startby consideringseveralsystems thathave been designed as models ofthe human motor

system or that have paid closeattentionto constraintsimposed by thissystem. Then we turn

to severalother implementations that deal with the controlof dynamic systems and that could

conceivablybe appliedtojointedlimbs,but which are not explicitlypresentedas models ofhuman

motor control.We dose by examining the plausibilityof both types of systems with respectto the

constraintsand phenomena we introducedearlier.
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2.4.1 Chunking Goal Hierarchies as a Model of Motor Learning

Rosenbloom (1986) presents a model that accounts for both the power law of practice and the

reaction time data on stimulus compatibility. The latter phenomenon concerns the effect on the

reaction time to a given stimulus, according to the compatibility between that stimulus and the

required response. For example, if a tone in the left ear requires a button press with the right hand,

the reaction time will be longer than if a button press with the left hand were required.

Rosenbloom's XAPS architecture accounts for both of these phenomena. The representation

consists of goal hierarchies that determine the solutions to particular tasks. These are mostly

simple choice reaction-time tasks in which an appropriate response must be selected to a given

stimulus. The nature of the goal hierarchies used to solve these tasks gives rise to the compatibility

effect. Learning consists of creating chunks from sequences of subgoals that have been solved in

a given situation, and the coinciding decrease of necessary processing explains the power law of

practice.

This model can be viewed as an explanation of task-independent practice effects; however, we

are specifically taking a motor learning perspective. It accounts for the two phenomena mentioned

above, as well as a number of others, but it does not explain such phenomena as the speed-accuracy

tradeoff, sequential dependencies, interference, discrimination, and reaction time distributions. The

model has been applied only to tasks that involve minimal motor control - the execution of a se-

lected response - and these responses have been modeled as primitive operators. However, one can

imagine adapting the architecture to include lower-level motor primitives, allowing the creation of

goal hierarchies of motor movements and subsequent chunking of portions of such hierarchies. A

further limitation is the absence of a mechanism that can acquire the necessary goal hierarchies.

Several extensions are described that could conceivably alleviate this limitation. Although Rosen-

bloom's theory is rather weak on issues of motor control, it is the only model we wKl consider that

significantly address cognitive aspects. As such, it perhaps holds the greatest promise for addressing

both high-level planning issues and low-level control issues, but the details have not been specified,

and so we turn to a model that focuses on low-level control issues.

2.4.2 A State-space Model of Motor Learning

R_bert's (1976) model of motor control and learning is one of the most serious attempts at care-

fully dealing with issues in the human motor system. He presents four properties of this system

that he attempts to model: the ability to gain control of the limbs through experience, the ability

to maintain control in the context of changes to the limbs, the ability to compensate for mechanical

interactions between serial joints, and the ability to convert a desired movement from one repre-

sentation to another. He qualifies this model as only a sub-system of a more complete model of

motor control and learning. In particular, this sub-system is responsible for acquiring appropriate

feed-forward commands. This constraint allows the model to ignore interactions with the environ-

ment (which would require a feedback mechanism) and the issue of motor programs (although their

existence is not questioned). The model is intended to process the class of ballistic movements,

such as swatting a fly or swinging a bat.
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llaibert's work focuses on the construction of a translator that takes descriptions of desired

movements and converts them to commands directly interpretable by muscles or motors. The main

difficulty of such a task is encoding or solving the mechanics of the particular limb. In Raibert's

model, this information is extracted from the relationship between the limbs' inputs and outputs

that result from previous attempts to move or position the limb. This extraction is made feasible by

discretizing time and space. Time is sliced up into sufficiently small pieces to allow the simplification

of the equations describing the motion of the jointed limb to a set of constants. These constants

cannot be stored for the infinite number of possible states of the arm, so the state space of the

arm must be divided into regions or hyper-cubes. This memory associates one set of constants

with each hyper-cube in the state space. These constants are assumed to be satisfactory for "near"

states, or ones within the same hyper-cube (given sufficiently small hyper-cubes). This process is

referred to as a piece-wise linearization of the mechanical system representing the limb.

Learning in this model involves the storage of the parameters for individual states of the state-

space memory. The constants stored are based on averages of previously calculated values for

given situations. The calculation is based on the commands issued to the limb and the resulting

accelerations (see Raibert, 1976, for details). As experience occurs, more parts of the state-space

memory are visited and filed. On average, behavior will improve as a greater percentage of this

memory is filled in. Noise in measuring the accelerations of the joints is dampened by averaging

the calculated constants with existing values in a particular hyper-cube of the state-space memory.

One might obtain practice variability effects from this model, since the novel task will be "closer"

in the hyper-space to previous experience in the variable practice condition than in the constant

practice condition.

2.4.3 Generalizing Motor Control Using Knowledge

One of the limitations of 1L_ibert's (1976) tabular approach is that transfer between dissimilar

movements is difficult or impossible. Atkeson (1987) presents an adaptive feed-forward method

that overcomes this limitation. His system acquires a global model of the arm dynamics that

requires one to learn only one set of parameters for the equations. This contrasts with the many

sets of parameters necessary in tabular approaches, where each set of parameters applies only to

the small, corresponding region of the state space. Not only does Atkeson's approach reduce the

number of necessary parameters, it also reduces the learning necessary to achieve a comparable

level of performance. As stated above, the state-space method must "explore" the space of possible

arm states and store parameters for each, whereas the global model can be learned in just a few

"test movements". The system requires torque/force sensors at the wrist and arm joints in order

to measure the torques resulting from the test movements. Given the relationships between the

measured values and the commands, the system can infer a model of the rigid body dynamics for

the arm. Note that the table lookup methods did not require torque sensing devices on the arm

but only the ability to sense where the arm was currently positioned in joint coordinates.

The global model lets the parameters be used for controlling a variety of movements within the

given arm's state space. Unfortunately, using the global model to assign the parameters introduces

small errors, which arise because the arm is not entirely rigid, as the global model inference mecha-
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nism assumes. If the global model were modified to correct for these small errors in one particular

trajectory, the performance on other movements would in turn deteriorate. Instead, Atkeson in-

dudes a mechanism for learning single trajectories that takes advantage of both the global model

and the feedback information from a particular attempt at executing the trajectory. Given several

practice attempts, the commands for the trajectory can be improved to a level arbitrarily close

to the sensitivity of the manipulator hardware. The introduction of a single-trajectory learning

mechanism involves altering the control system memory to allow the storage of commands for par-

ticular trajectories. The details of this memory are not discussed, and it appears to be an unwieldy

addition to the system.

For future research, Atkeson proposes the use of local models that would store the more correct

dynamic model for local portions of the space. This proposal involves either learning the dynamics

of a "central" movement for a set of similar movements or a tabular approach giving the dynamics

for a local portion of the space. Either way, the local model would serve as a correction factor to

the global model when generating the feed-forward commands of a movement related to the local

model. A unique feature of this proposal is that it effectively suggests a hierarchy of models. This

allows a tradeotf between the generality of the global models and the accuracy of the local models

that would "gain the benefits of each and the drawbacks of none'(p. 30).

2.4.4 A Connectionist Approach to Hand-eye Coordination

Recently, connectionist and neural network architectures have received considerable attention as

models of human cognitive processes, and Mel (1988) presents a robot arm controller called MURPHY

that utilizes such an architectural framework. Although he did not specifically intend this system

as a psychological model, the design process was constrained by knowledge of nervous system

structures and their operation.

The architecture is based on two interconnected sets of neuron-like units. A visual array rep-

resents the field of view and a kinematic population represents the angles of the three joints that

are controlled by MultP_Y. These units are overlapping, so that a single image or joint angle

will activate a small population of units; this distinguishes the approach from state-space schemes.

Learning involves the creation of weighted associations between these two populations of units.

The visual units that are activated by the joints are associated with the joint angle units that

describe the position of the arm. Because of the overlapping structure of these populations, the

level of activation for a given set of units decays gradually as the arm moves away. Training consists

of stepping through a representative portion of the possible joint configurations and creating the

weighted associations.

After training, MURPHY can "grab" a visually presented object. The distance from the tip

of the arm to the goal is evaluated and a move is selected that will reduce the distance by the

greatest amount. This is described as an internal search, after which the arm is moved to the

target destination in a single execution. Mel presents no results on learning, but it seems plausible

that the number of search steps should decrease with the extent of trig. Alternatively, the

search trajectory should approach the straight line between the initial and target configurations
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as training is increased. The approach is an interesting one, although the current system is very

limited in that it has no facility for the representation, execution, or acquisition of arbitrary arm

trajectories. Still, it bears further attention as MURPHY continues to be developed.

2.4.5 Adaptive Feedback Control

All of the systems we have considered in this section have either used a constant feedback controller

or ignored feedback entirely. Improvements in performance were gained by modifying the commands

responsible for generating the original movement. There has also been considerable research in the

area of adaptive mechanisms for feedback control; that is, feedback controllers that learn from errors

in previous experience. Several of these studies have focused on the "pole-balancing" task (Michie

& Chambers, 1968), which consists of a cart on a one-dimensional track with a pole attached via

a hinge. The cart can be moved left or right with a constant force. The goal is to keep the pole

in a near vertical position by selecting appropriate sequences of left and right forces on the cart.

Although these systems have not been proposed as models of human motor control, in some cases

they have been associated with claims as to the viability of the approach for robotics in general

(Sutton, 1984; Selfridge, Sutton, & Barto, 1985).

Michie and Chambers (1968) implemented an early program, Boxzs, utilizing a reinforcement

learning mechanism in the pole-balancing domain. They used an independent-association approach

that involved discretizing the environment into a state space using pre-defined ranges. The average

time to failure (falling of the pole) was updated from experience and the action with the longest

average was selected for a given state. This should not be confused with Raibert's state-space

memory, which discretized only memory and not experience. That is, Ralbert distinguished between

arm configurations down to the resolution of the sensing equipment, but used the same set of

constants in the dynamics equations for both configurations if they fell within the same hyper-

cube. In Box_.s, two cart-pole configurations are considered identical if they fall within the same

region of the discretized space. That is, as the system learns the appropriate action to make in

given states, the only generalization would be to other configurations considered as the same state.

Sutton (1984) and Selfridge et al. (1985) present another reinforcement learning method using a

linear-mapping approach. This also required the discretizing of the space into regions, but the

choices made in a region are based on the probability of maintaining balance. The number of trails

required to learn to balance the pole for some criterion number of time steps was significantly less

than BoxP.s. Connell and Utgoff (1987) present another program, CART, that does not discretize

the space and further reduces the required learning time. Their system employs a Shepard function

to determine the degree of desirability of a particular state (cart-pole configuration), and learning

involves adding a point from the cart-pole space with an evaluation of its desirability (provided

by a critic) to the instance memory. CART learned to balance the pole in less than 16 trials, as

opposed to an average of 75 for Selfridge et al. and 600 for BoxEs.

Although these systems have no provision for motor programs or feed-forward control of any sort,

they represent important progress in adaptive feedback control. A mechanism that can improve its

responses to errors is an important part of a complete model of human motor behavior. However,

the amount of increased understanding from these systems is limited. The approaches are made
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manageable by the simplicityofthe pole-balancingdomain, in which thereare only two operators.

Also,when appliedto the controlof roboticarms, the complexity of the statespace willincrease

dramatically.This does not mean that theseproblems cannot be overcome, but itdoes mean there

remains a need forcontinuedwork in allareasofmotor control.

2.5 Conclusions

In this chapter, we have attempted to cover multiple facets of the literature on motor behavior

and learning. There exists an enormous amount of previous work and some means of constraining

the coverage must be employed. We have focused this survey around our goal of developing a

computational theory of human motor behavior that can learn to perform complex tasks such

as swinging a golf club, shooting a basketball, or juggling pins. We selected some of the more

significant phenomena as a basis for constraining the type of motor model we would examine. The

leading psychological theories were considered in this context, followed by a number of implemented

computer models and systems.

Our real interest lies in a computational model of human motor learning on reasonably complex

tasks. That is, we want to move beyond ballistic movements to skills with complex trajectories.

In such movements, the path of the arm is of primary importance rather than the ending position.

The survey of phenomena was intended to constrain and help evaluate psychological models, but

we considered existing theories in the hopes of building on previous work.

Although the psychological theories accounted for the phenomena rather well, we were unsat-

isfied with their level of operationality. Considerable amounts of detail were left to the reader's

imagination, and it is relatively easy to account for phenomena if the level is abstract enough.

Even if the effort were made to implement these theories, they would still be limited in scope to

simple, ballistic movements. In contrast, our model of motor behavior, described in the next few

chapters, borrows many ideas from the psychological theories reviewed here, but is not a direct

implementation of any of them.

For the most part, the computational work on motor control has focused on low-level issues of

controlling the hardware. These contributions tell us little about how humans direct their limbs

or the types of behaviors one can expect from humans in particular situations. Furthermore, the

computational work has ignored the task of recognizing motor skills when performed by another

agent. Finally, these models typically address only one movement task at a time. They do not

present accounts for how different skills can be stored and organized as concepts in long-term

memory.

In summary, there remains a need for a computational model of human motor behavior. The

phenomena identified in the literature provide a set of constraints for such a model and a framework

for evaluating it. The psychological theories provide many ideas for organizing the processes that

control the recognition and generation of motor skills. The computational approaches provide little

theoretical influence for the kind of model we want, but they do provide low-level mechanisms that

our model may rely upon for manipulating jointed limbs. We now turn our attention to the design

and implementation of MJEANDER_ Our approach to the goals set out in Chapter 1.



CHAPTER 3

A Computational Theory of Motor Learning:

An Overview of the Mmander System

3.1 Introduction

In the previous chapter we examined a number of phenomena that have been consistently observed

in humans. These provide a number of possible constraints for a computational model of human

learning behavior. Additionally, in Chapter 1 we specified a set of characteristics, one of which was

that our desired model address complex movements. The psychological work discussed in Chapter

2 has not addressed the range of movements we are targeting. We want our model to go beyond this

set of carefully studied phenomena, yet still be consistent with them. We want to begin answering

more general questions such as "How is a tennis serve initially learned?", "How do children learn

to write and draw shapes?", and "How do adults master extremely complex or difficult motor tasks

like playing a violin or throwing a knuckle ball pitch?" The range of tasks represented in this set

of questions involves at least two well-defined stages or types of learning. First, people learn from

observing others performing particular skills and, second, people learn through practicing those

skills.

These two types of learning imply an acquisition mechanism and an improvement mechanism.

We posit that any comprehensive theory of motor learning must address both of these stages. In

order to acquire a skill, either it must be created from nothing (e.g., through exploratory practice),

or it must be communicated by another agent (e.g., through demonstration or advice). In a

rich environment, such as the one in which humans live, both sources are constantly providing

information from which to learn. To make sense out of the host of observations available, a given

movement must be classified or recognized. When attempting to improve a skill through practice,

the agent must assign blame to the current form of the skill. This can occur either through a

teacher who observes the practice and informs the learner of mistakes, or by comparing feedback

to a "mental" image of the desired movement that was previously acquired through observation.
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Unfortunately,the questionsposed above aretoo broad tobe dealtwith effectivelyby the current

stateofthe art.In orderto progresstoward such a complete theory,we need to constrainthe search

in two generalways: we must limitthe tasksthat areaddressedby the theoryand we must simplify

the world in which thesetasksare performed.

3.2 Refining the Task Specifications

The term skill has been used in a wide variety of contexts not limited to motor behavior. In this

work we will narrow its use to refer to the specific task of representing and following trajectories

of the parts of a limb in two dimensions. That is, we are interested in models that let a trajectory

be represented, stored in memory, and replicated with a given manipulator or set of etfectors. This

contrasts with the more commonly studied task of reaching for an object at a specified position,

where the desired or final state of a movement drives performance. In our task, the movement itself

determines the resulting endpoint, which is secondary to the behavior generated.

In light of the preceding discussion, we define two performance tasks and two learning tasks.

The performance tasks correspond to two (of the potentially many) competencies that must be

addressed by a general theory of skilled movement. The first of these two tasks is:

• given: an observed movement in the environment;

• classify: the movement according to previously stored experiences.

That is, a new observed movement is considered in the context of the agent's current level of knowl-

edge about movements in general. This amounts to recognizing the new movement as either similar

to some type of movement previously observed or as something completely new. We measure suc-

cess on this task by determining how well the learner classifies or recognizes an observed movement.

Recognition of an observed movement implies the ability to predict some missing information about

the movement. For example, in American Sign Language, many words or concepts are denoted by

motions - not just configurations of the hands and arms. Recognition in this case means retrieving

the appropriate concept from long-term memory given the observed movement. Furthermore, if an

agent observes the first portions of a "throw" concept, the agent might recall that such movements

precede moving projectiles, recall that such a projectile would intersect the agent's position with

high probability, and decide to get out of the way.

The associated learning task is to improve the ability to recognize or classify movements as a

result of experience. This statement of learning as "improvement in recognition" will be viewed

in the context of unsupervised learning, where the observations are not labeled by a teacher and

must be organized and labeled by the learner. Improving the ability to recognize could imply a

more rapid or efficient classification process; however, here we will focus on increasing the accuracy

with which the trajectories of the various movement types are recognized. We will measure the

similarity between the observed movement and the average trajectory associated with the selected

concept that classifies the new movement. But these are evaluation issues, to which we will return

in Chapters 6 and 7.
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The secondtaskthatisnecessarytoour comprehensive theoryofmovement skillsisthe generation

of movements. Again, because we are limitingour discussionto followingtrajectories,we willnot

addressthe fullrange ofgenerativebehaviors.Our taskcan be statedas:

• given:a desiredtrajectoryfora jointedlimb

• move: the limb through positionsover time that correspondto the desiredtrajectory.

This assumes that the agent can controlitsmanipulator within the environment. We willturn to

theseissuesof controlshortly.We willmeasure the performance of an agent on thistask by com-

paring the similarityof the generatedmovement to the desiredtrajectory.Given the performance

task outlinedabove,the obvious learningtask isto improve the movement ofthe limb as a result

of movement experienceor practice.Naturally,improving a movement skillmeans modifying itin

such a way that itcorrespondsmore closelyto the desiredmovement.

The firstlearningtask above can be thought of as unsupervised trajectorylearning,whereas

the second can be thought of as supervisedtrajectorylearning.In the next severalchapters we

present Mh_ANDER, a computational model of skilledmovement acquisitionand improvement, as

a response to both of these tasks. In accord with the previous chapter, thismodel has been

designed to account fora number of the constraintsand phenomena that have been identifiedin

the psychologicalliterature.

In the remainder of thischapter we outlinethe envisionedcontexts in which Mh_ANDER will

function,describethe simplifyingassumptions that we have made, and provide an overview of

the system architecture.In the followingtwo chapters we considerthe two major components

of Mh_ANDER - OXBOW and MAGGIE. These chaptersprovide detaileddescriptionsof the tasks

introduced above and the mechanisms that achievethesetasks.

3.3 Mmander's World View

Skill learning cannot occur in the absence of some performance task, and any performance task

requires some environment in which to perform. In this section we describe the associated features

and requirements that make up the environment within which M_gANI)ER operates. As imple-

mented, our model interacts with a simulated environment that contains a jointed limb in two

dimensions. The features and requirements for this simulated environment can be thought of as a

set of inputs to the model.

3.3.1 Inputs to the Model

M_AN DER'S performance component incorporates only very general assumptions about the nature

of the agent and its environment. Additional inputs required for its operation include:

• a simulated environment in which to operate, along with a set of objects existing in this

environment; 2

2. Some of these objects will correspond to the agent's e_ectors, which it can use to manipulate the environment.
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• an effector such as an arm, which can be manipulated by the agent and which has well-specified

relations with other objects in the environment;

• a sensorimotor interface, which handles communication between the agent and the environ-

ment.

We will consider each of these inputs in turn.

THE SIMULATED ENVIRONMENT

Rosenbaum (1985)has argued that motor behaviorimpliespurposes and thatpurposes necessitate

an agent.However, itmakes no sensetorefertoan agentin the absenceofthe environment inwhich

itoperates.One can conceiveof alternativeenvironments that obey physicallaws differentfrom

those in the realworld,but sincewe are interestedin human motor behavior,we willconsidera

"standard"environment. However, thisflexibilityindicatesone ofthe advantagesofusingsimulated

environments.

A complete specificationof an environment entailslistingallthe objectsand theirassociated

attributes.Interactionsbetween objectsmust be defined,such as the nature of connectionsand

collisions.For the purposes of developingand testingour model, we have implemented a simple

environment that containsobjectswith position,length,and velocity,but that ignoresmass, fric-

tion,and force. In the experiments reported in thisdissertation,the only objectsin the world

are the components of the agent'sarm. We could directlyapply M_EANDER to a more complex

environment that includesfreeobjectsand interactionsbetween them. However, given the current

setofsimplifyingassumptions describedbelow,thiswould not add richnessto the work.

THE ARM

We think of an arm as a collectionof objectsin the environment thatan agent can manipulate in

certainpredefinedways. Although the components or linksof the arm are specifiedas ordinary

objectsin the environment,the arm meritsspecialtreatment herebecause ofadditionalattributes

that are inherentlynecessaryforjointedmovement.

We can think of the linksof the arm as regularobjectsthat are connected by joints.A joint,

ratherthan being an objectin the world,isa relationthat existsbetween two objectsthat are

attached to each other. This relationdetermines the relativepositionsand orientationsbetween

two kinematiclinks.Such a relationhas certainpropertiesthatinfluenceor determine the behavior

of the two linksthat are connected.

In general,a joint'sattributeswould includethe type ofjoint,itsfrictioncoefficient,itsmaximum

forceand velocity,and itsrange ofmovement. However, forthe purposes ofour implemented system

M_ANDER, we have made a number of simplifyingassumptions. First,the jointswe considerare

restrictedto hinge joints- those having a singledegree offreedom. These would be analogous to

the human elbow joint.Multiplehinge jointscan connect arbitrarylinks,but the axisofrotation

must be perpendicularto a common plane.That is,we limitallmovement to be in the plane.
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Finally, we have ignored effects of mass, friction, force, and inertia. This reduces the mea_fingTul

attributes to the limits on allowable rotations and on rotational velocity. Currently, we restrict

each joint's motion to the range (-_r, _r) with respect to the zero or resting position, This allows

a complete circular movement, since the range lets the arm rotate halfway around a circle in each

direction, but it prevents any continuous circular movements where the arm is repeatedly swinging

in circles.

THE SENSORIMOTOR INTERFACE

An agent cannot interactwith itsenvironment unlessitcan perceivethat environment and control

itseffectors.In our simulation,both of theseaxe accomplished through a sensorimotorinterface.

The 'motor'component ofthe interfaceletsthe agent controlthe motion of itsarm. The 'sensory'

component relayssensoryinformationto the agent about the locationofobjects- in thiscase,just

the arm.

The transferofsensoryinformationcan be viewed asa filteringoperation.Essentially,the sensory

filtertakesa complete descriptionofthe world and passesa subsetofthisinformationto the agent.

M._ANDER acceptstwo forms ofsensoryinput:visualinformationgivingthe absolutepositionsand

velocitiesof objects,and proprioceptiveinformationgivingthe relativepositionsand velocitiesof

the arm's jointswith respecttothe previousjoint.3 Visualinformationisgivenin a v_ewer-centered

representation,whereas proprioceptiveinformationisprovided in a joint-centeredrepresentation.

We givedetaileddescriptionsfor both of thesecoordinatesystems in the next two chapters.

The motor interfacecan alsobe viewed asa filter,sincenot allpossiblemotor commands arelegal

in the simulated world. For instance,ifthe agent specifiesan arm movement that would exceed

the allowed ranges,the interfacefiltersor "clips"the command so that the resultingmovement is

within the allowedlimits.Likewise,ifa sequence of commands would cause a jointto exceed the

rateat which itisallowed tomove (rotationalvelocity),then the resultingmovement would reflect

the maximum allowablevelocityduring those periodsin which the limitwas exceeded and would

thereforenot end up where the sequence of commands specified.Except forsuch cases,controlling

the arm in M_ANDER a_ottnts to simply settingthe relativepositionsof arm components to

the valuesspecifiedby the agent'smovement commands. Of course,these commands must be

given in a representationthat correspondsto the localrotationsof each joint.This joint-centered

representationwillbe discussedinfulldetailin Chapter 5.

3.3.2 Assumptions of the model

At the most abstract level, the items discussed above can be thought of as inputs to our theory.

That is, the model's operation is partly dependent on the instantiation of the above inputs. In

the discussion of these inputs we introduced several simplifying assumptions. To review, we ignore

friction, mass, force, and inertia, we restrict each joint to a single degree of freedom, and we allow

joints to move in two dimensions only. It is important to note that these assumptions relate to

3. We define the previous joint as the joint that is adjacent and closer to the base of the arm in the kinematic chain.
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our currentimplementation of MIEANDER and not to the model itself.However, our theory does

includeseveralassumptions that axe more fundamental, but that axe based upon what isknown

about human movement. These assumptions can be consideredas constraintsimposed by the real

world.

First,we assume that the motor interfacereceivescommands specifyingthe rotationalincrement

for each of the jointsand causes the arm to move accordingly.This impliesa complete set of

mechanisms whose responsibilityitisto calculateand apply the appropriatetorquesateach ofthe

respectivejointsgiven the currentstateof the arm. On the computational side,thisisthe domain

of traditionalroboticsapplications,and we axe happy to assume that such lower-levelmechanisms

axe availablein pre-packaged form. With respectto human motor behavior,evidence indicates

that humans can "set"the positionsof limbs without feedback (Kelso,1982). Therefore,we will

continuewith our high-levelapproach and not concernourselvesfurtherwith low-levelneuro-motor

issues.

We alsoassume thatmovement representationsaxe invariantwith respecttotime. In our model,

movements axe carriedout by a sequence of commands specifyingthe rotationalvelocitiesof each

joint(in a localpolax-coordinatesystem) for each time-sliceover the course of the movement.

Internally,MIEANDER representsthese movements as a few controlpoints. Therefore,a single

representationcan be used to executea movement atdifferentspeeds.The speed would be declared

at run time insteadof being storedinmemory. Again, thisassumption isconsistentwith existing

knowledge about the observationand generationof human movements (Rubin, 1985; Schmidt,

1982b;Kelso,1982).

We want our model toexplainand relateto a wide range ofmovements and experience;however,

we have restrictedourselvesto the classof movements that axe generated by linearaccelerations

at each of the joints. By thiswe mean that the rotationalaccelerationat each jointchanges

linearlyover time.4 The motivation forthispositionisour use of a cubic parametric equation to

describemovements; we discussthesedetailswhen we introduceour representationofmotions inthe

followingchapter.The implicitassumption in thisdesigndecisionisthat the space of movements

generatedwith linearaccelerationsisa richand variedspace of movements.

We propose that skillimprovement occursaftereitherobservingor executinga movement. This

impliesthe existenceof a memory that can storeinformationabout the arm positionsduring a

recentmovement. We willcallthisstructurethe motor buffer.Thisisanalogoustoa pre-perceptual

storethathas rapid decay,therebyallowingonlylimitedaccess(Sperling,1960).Schmidt (1975b)

assumes an analogousstructurein the contextofhisrecognitionschema discussedin Section2.3.3.

Finally,we know from experiments on human subjectsthat there is a minimum time that is

requiredbefore alterationsto an ongoing movement can be initiated.This cycletime has been

found to be 200 msec. in humans (Schmidt,1982a; Pew, 1974). This means that ifan errorin a

movement isdetected,at least200 msec. must pass beforethe subjectcan initiateany corrective

measures. We refer to the minimum cycle time as the feedback delay.

4. Naturally, we allow the slope of the line to change at rpedfied transition points. With a sufficient number of
transitions, arbitrary acceleration patterns can be simulated. However, relatively few transitions are necessary

within our scheme to generate surprisingly complex behaviors.
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We will address each of these assumptions in later parts of this dissertation, but explicitly stating

each of them here will facilitate explanation. Again, these assumptions reflect constraints on

psychologically plausible models, which are imposed by our understanding of the human motor

system. This contrasts with the simplifying assumptions discussed earlier, which we introduced to

limit problems to a manageable size and number.

3.4 The Structure of Maeander

In Section 3.2, we identified two different tasks our theory will address - movement recognition

and movement generation. M_ANDER's architecture predominately consists of two subsystems.

OXBOW is largely responsible for recognizing movements and acquiring movement concepts, whereas

MAGGIE is mostly responsible for generating and improving behavior using the movement concepts

stored in memory. However, the subsystems do not divide cleanly along the task boundary of

movement recognition and movement generation. Although OXBOW has the dominant role in

movement recognition and MAGGIE has the dominant role in movement generation, each overlaps

into the other. That is, portions of MAGGIE are necessary to the working of OXBOW, whereas

MAGGIE must use OXBOW as an entire sub-routine.

Another way of looking at this distinction is to consider the functionality of each sub-system.

OXBOW can be viewed as the memory management and indexing system, which handles all mod-

ifications to memory and any recalls from memory. Because learning to recognize movements is

undirected and mainly involves cataloging observed experiences, OXBOW dominates the movement

recognition process. On the other hand, MAGGIE Can be thought of as an execution system that

takes abstract movement representations as they are stored in memory and transforms them into

movements. This involves a closed-loop feedback control mechanism and a learning mechanism to

improve movement representations.

However, for changes to be remembered, they must be stored in M_ANDER'S memory. OXBOW

handles this storage process, but MAGGIE is largely responsible for movement generation as specified

above and for suggesting the changes that could lead to improved performance on future movements.

The rest of MSA I_DEI_ deals with communications between the two modules and between the agent's

sensors and effectors.
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CHAPTER 4

Learning to

Recognize Observed Movements

4.1 Introduction

Human motor behavior covers a remarkable range of abilities - from simple tasks such as an infant's

learning to reach for and grasp toys, to complex tasks such as learning to play a violin or to throw

a knuckle ball. Although motor learning is usually thought of as improvements in performance as

a result of repetitive practice, an agent must first acquire an initial movement in order to improve

it. A learner acquires initial movement representations when it is generating movements by chance,

observing another agent (such as a teacher) perform a particular skill, or problem solving to achieve

a particular goal. In this chapter, we consider the case in which the learner observes movements as

they are performed by another agent. As a function of multiple observations, a person acquires the

ability to "understand" or recognize a new movement as being similar to a set of previously observed

movements. This understanding consists of two steps: breaking a stream of sensory information

into a sequence of states (parsing the movement), and finding the most appropriate match of the

parsed movement with movements that have been previously experienced and stored in memory

(classifying the movement).

Acquiring the ability to understand motion involves clustering sets of similar movements that,

taken together, correspond to "concepts". For example, we would think of "throws" as a class of

movements involving an arm and an object (say a ball) that are similar in many ways. Furthermore,

we could distinguish among types of throws; for pitching a baseball we might have classes for fast

balls, curve balls, and sinkers. As the system learns from observing throw movements, its set of

classes should adjust to accurately reflect the domain. Over time, this set of concepts should let

the learning agent better recognize and classify movements it observes in the environment.

In this chapter we will focus on movement recognition and show its relationship to the task of

concept formation. In the next section, we give a statement of the problem addressed here. Next,

we introduce Oxsow, a computer system that embodies some of our ideas about motor learning.

To do this, we discuss the system's representation for movements and concepts, its approach to

parsing and classifying movements, and the learning that occurs during movement recognition. We

close with a summary of the recognition task as it fits in the context of M_AND_.a, our overall

model of motor behavior.
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4.1.1 Statement of the Problem

Movement recognition is the process that occurs when an agent observes others performing par-

ticular skills. To attach meaning to an observation, it must be classified and related to previously

stored knowledge or experiences. We refer to this performance task as movement recognition, and

define it as:

• Given: an observed movement in the environment;

• Classify.. the movement according to stored knowledge, s

Classifying a movement means that the system chooses some "movement concept" (a stored de-

scription for a class of movements) as most appropriate for the new movement.

Movement recognition requires that each observed movement be compared to previously stored

knowledge. One way to access and update a set of experiences is to duster them into concepts and

arrange these hierarchically. This is one version of the unsupervised concept formation task:

• Given: a sequential presentation of instances and their associated descriptions;

• Find: clusterings that group those instances in categories;

• Find: characterizations or abstractions of these dusters;

• Find: a hierarchical organization for these abstractions.

These two task descriptions define both learning and performance for concept formation in general;

in this dissertation, we are concerned with the formation of movement concepts.

One important aspect of concept formation is that it is an incremental process. This means that

learning occurs with each instance, and that the system does not need to reprocess all previously

seen examples in order to learn. This is a fundamental constraint imposed by psychological results:

humans observe a never-ending sequence of instances, and they can use their learned knowledge at

any point in time.

Given the specification of our performance and learning tasks, we now present OxBow, a system

designed to form concepts for use in movement recognition. The methods implemented in this

module incorporate many ideas from two earlier concept formation systems - CLASSXT (Gennari,

Langley, & Fisher, 1989) and COBW_.B (Fisher, 1987).

4.2 Representation and Data Structures in Oxbow

Any computational model of motor skills requires some representation to operate upon. Likewise,

if such a model is to store and retrieve skills, then it must also have a means of organizing their

representations in a flexible manner. In this section we introduce Oxsow's format for representing

observed movements and its method for organizing these representations.

5. In order to classify the movement, it must first be parsed into a sequence of states. We will describe this process
in more detail in Section 4.3.
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4.2.1 Representation of Movements

We assume that movements given to OXBOW are generated by a jointed limb and that information

about each of the joints is available to the system. This generation may either be observed or

performed by the learning agent. In this chapter we focus on observed movements, but our repre-

sentation is similar for generated movements. Furthermore, although the representation described

in this section describes movements of only a single llmb, the extension to multi-limb movement is

straightforward. A movement is presented to the system as a sequence of state descriptions that

characterize the arm at uniform intervals of time. These intervals reflect the granularity of the

system's perception of continuous time. The state of an arm is described by listing the positions,

rotations, and velocities for each of the joints at a given time.

Although we present movements to the system as a complete sequence of state descriptions,

OxBow does not store these representations in a long-term memory. Instead, the information

necessary to recall and carry out a movement is stored as a motor schema. This is similar in

intent to Schmidt's (1982b) use of the term. As with our definition of an observed movement, we

represent a motor schema as a sequence of state descriptions. However, instead of storing state

descriptions for every time slice, a schema specifies the state of the arm at only a few times during

a movement. That is, we claim that smooth continuous movements are often adequately described

by just a few state descriptions. The intermediate positions of the arm (between state descriptions)

are implicitly specified by an interpolation mechanism. We use the Hermite form of a parametric

cubic function, which produces a smooth transition between two points based on their positions

and the velocities at both endpoints (Foley & _ Dam, 1982). Because a motor schema explicitly

represents arm positions at only a few selected points over the course of a movement, we refer to a

schema as sparse with respect to time.

More formally, we define a motor schema as a sequence of states, ($1,$2,... ,Sn), where each

state Si - (t_,{(Jk,p,I)),...}) contains a time value ti, and a set of 3-tuples. The states, Si, axe

ordered such that the time values, ti, are in an increasing sequence: t_ < tj for i < j. Each 3-tuple

contains: a joint name Jk, which identifies the joint described by the 3-tuple; a position p, which is

the intended position of the specified joint at time ti; and a velocity vector 1_, which describes the

desired velocity of the joint upon reaching the position p. Each state contains a set of such 3-tuples,

each of which describes one of the effector's joints, although not all joints need be specified. 6 The

exceptions axe the first and last state descriptions in the schema, which must specify a 3-tuple for

every joint.

Figure 4.1 gives a pictorial example of a movement and a schema. The movement in Figure 4.1(a)

shows the position of the arm at equal time slices or snapshots during the course of the movement.

Tightly packed arm positions correspond to slow velocities, whereas more loosely spaced positions

indicate higher speeds. Note that the movement shows the position of the arm at every time during

the movement (with respect to the granularity of the simulation). In contrast, motor schemas

specify arm positions only at a few times during the course of a movement. This can be seen in

the schema shown in Figure 4.1(b), which represents the movement shown in Figure 4.1(a) but

6. In this chapter we do not utilize this capability. In general, the information for each of the joints may not be

available initially and so we have designed our representation to handle such situations.
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Figure 4. I. Pictorial representation of (a) a movement and (b) a motor schema.

only specifies information for the arm three times. In our framework, movements and schemas are

closely related. In Section 4.3.1 we will discuss the parsing mechanism that takes a movement and

returns a schema based upon that movement.

The representation used here derives its flexibility for both recognition and generation of move-

ments by way of alternate formats used to specify joint information. The positions and velocities

of the joints as given in the 3-tuples can be represented in either viewer-centered or joint-centered

coordinates. Because these two formats are based upon differing coordinate systems, they give rise

to two types of schemas that lend themselves to different performance tasks. In this chapter we are

mainly concerned with viewer-centered schemas, but in the next chapter we focus on joint-centered

schemas, which are used by M/EANDER to generate movements.

A viewer-centered schema represents the position and velocity vectors using Cartesian two-space

coordinates with the origin centered at the agent. For the purposes of this chapter, the center of

an agent will always be located at the base of its arm. Therefore, in a viewer-centered schema,

the first 3-tuple (describing joint ,To) would specify the z and y coordinates at the end of the first

arm segment (actually the location of joint J1) relative to the origin located at the base (or joint

I0). Similarly, the information stored at each joint Ji reflects the position and velocity of joint Ji+l

relative to the base at joint ,7o.

The viewer-centered representation gets its name from the source of this information -- the

agent's visual sensors. These can be thought of as generalized world sensors: anything that lets

the agent observe objects and their positions relative to the agent's current location. In the case



RECOGNIZING OBSERVED MOVEMENTS 39

of a more complete agent, one can imagine other origins for a viewer-centered schema, such as

the agent's eyes. The choice of origin and axes should not affect the behavior if we assume a

linear translation from the chosen origin to the base of the effector. This translates any given

viewer-centered representation into our canonical viewer-centered representation.

4.2.2 Probabilistic State Descriptions

When motor schemas are combined to form abstractions or generalizations, one can think of the

resulting structures as concepts. In order to represent multiple instances with a single item, the

values representing a movement must somehow be relaxed. One way to represent concepts in this

type of model is to use probabilities (Smith & Medin, 1981). In the previous section we described a

motor schema as a sequence of states in which each of the states contained specific values describing

the set of joints. Here we introduce the skill concept, which represents both specific and abstract

schemas in memory. Each skill concept consists of two components, a viewer-centered schema

and a joint-centered schema. These two components have their own internal structure and have

an associated conditional probability of occurring given an instance of the skill concept. The

schema components are structured as described above, but each specific value has been replaced

by a normal probability distribution defined by a mean and a variance. Additionally, each state

description in the schema has a conditional probability of occurring given an instance of the specific

schema type within the skill concept. That is, a state has a certain probability of appearing in a

given schema and, if it does, then the values for its time and joint positions each have associated

probability distributions. Likewise, the given schema has a certain probability of appearing for a

given concept. Our notion of skill concepts is quite similar to our original description of motor

schemas, except that there are two schema types for a single concept and each value in a state

description is replaced by a mean and a variance. Note that nothing prevents one of the schema

types in a skill concept to be unused or empty. Therefore, a skill concept can be either a very

specific motor schema with minimal variance (a schema representing a single movement), or a more

abstract entity with both viewer-centered and joint-centered schemas, each having values with high

variance (a schema representing many movements). In further discussion, we will simply use the

term viewer-centered and joint-centered schemas to refer to the appropriate component of a skill

concept.

In general, concept formation systems may use discrete (nominal or ordinal) attributes or con-

tinuous (real-valued) attributes. In this dissertation we win only consider continuous, real-valued

attributes, since we describe the positions and rotations of joints numerically. However, OXBOW

has been implemented to allow either nominal or continuous attributes. Whether discrete or con-

tinuous attribute values are used to describe the joints, the information can be represented with

a probability distribution. The only difference between the two cases is that in the nominal case

the probabilities axe stored explicitly for each possible value of a given attribute, whereas in the

continuous case, the observed data are summarized as a normal distribution (using the mean and

standard deviation of that distribution). This is a common assumption in work on concept forma-

tion (Fried & Holyoak, 1984; Cheeseman et al., 1988; Gennari et al., 1989; Anderson & Matessa,

1991).
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In the following sections we discuss in detail how OXBOW acquires and uses skill concepts, focusing

on using viewer-centered schemas to observe and recognize another agent's movement. In the next

chapter we briefly describe how skill concepts containing both viewer-centered and joint-centered

schemas are used to generate movement. Thus, our representation can be used for both recognizing

a movement and monitoring the progress of a self-initiated movement.

4.2.3 Memory Organization

We have introduced a representation for movements that we refer to as the motor schema. However,

in order to access or retrieve stored schemas, they must be organized in some consistent manner that

facilitates efficient access according to some retrieval mechanism and that fares well with respect

to representational economy. Here we describe the organization used to store these schemas in

long-term memory.

In OxBow, knowledge about movements is organized into a hierarchy of skill concepts. Nodes

in this hierarchy are partially ordered according to generality, with concepts lower in the hierarchy

being more specific than their ancestors above them. Thus, the root node summarizes all instances

that have been observed, terminal nodes correspond to single instances, and intermediate nodes

summarize clusters of observations. Fisher and Langley (1990) review arguments for organizing

probabilistic concepts in a hierarchy.

Figure 4.2 shows a possible hierarchy for observed baseball pitching schemas. 7 This represents

the memory of an agent that has experienced a sidearm pitch and three overhand throws -- a

fasl:-ball, a curve-ball, and a fork-ball. The leaf nodes of the tree in the figure represent

the motor schemas from specific observed pitches. However, instead of simply storing the observed

values, these values become the means (with a very small standard deviation) for the most "specific"

concepts in the hierarchy. The node labeled overhand represents a generalization of the three

specific throws stored below it in the hierarchy. This generalization is also a motor schema, but

instead of specific values, the generalization contains means and variances for each attribute in

its state descriptions. The higher variance makes the representation more abstract than a motor

schema resulting from a single observed movement, in that more instances will readily match an

abstract concept than a specific one.

Recall that our skill concepts consist of two components - a joint-centered schema and a viewer-

centered schema. These schemas can be thought of as components of the entire skill. Furthermore,

recall that a motor schema consists of a sequence of state descriptions. These states can, in turn,

be thought of as components of the motor schema. It is important to note that this representation

of skills is structural in nature. In particular, the sequential representation of state descriptions im-

poses a structure based upon temporal relations, as opposed to the more traditional spatial relations

in the context of PART-OF hierarchies. This structural nature of skills and schemas significantly

complicates the concept formation task as it is commonly conceived, s As a further complication,

7. Figure 4.2 only shows a conceptualization of the skill concepts without any joint-centered schemas present. Keep

in mind that there woald at least be place holders if no joint-centered information was available

8. For one conceptualization of the concept formation problem in the context of structured representations, see

Gennari et al. (1989). Thompson and Langley (1991) present another approach to solving this extended problem.
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Figure 4.2. An IS-A hierarchy of schemas for "throw _ movements, along with a portion of their internal
structure.

there may be a variable number of states in a given motor schema. In Section 4.4.2 we discuss our

response to these issues, but for now one needs only to understand the structural nature of our

representation for skills and motor schemas.

The way OxBow stores and organizes state descriptions introduces an additional hierarchy of

state descriptions. Earlier we said a node in the skill hierarchy represented a movement concept that

generalized some set of motor schemas. Now let us add that within the node, the state descriptions

comprising the motor schemas are organized into their own IS-A hierarchy of state descriptions.

Thus, each schema in a skill concept of the main hierarchy has its own private state hierarchy. The

top level of this hierarchy represents the PART-OF relations between each state and the schema as a

whole. That is, the set of classes at the top level of the state hierarchy will be the state descriptions

comprising the motor schema and will be ordered according to the values for the time attribute in

the respective nodes.

Figure 4.2 shows the node in the skill hierarchy corresponding to overhand throws in slightly

more detail (again, only for the viewer-centered information); the other nodes in the hierarchy are

similarly represented but we have not attempted a complete presentation of the memory structures

for the purpose of clarity. The root of the internal hierarchy of state descriptions is stored at (but is

distinct from) the skill concept that the state descriptions represent. This tree of state descriptions

captures the structure of the abstract schema, and the time values stored in the state descriptions

determine the temporal ordering. The figure shows the internal nature of one node in the hierarchy

of state descriptions within the viewer-centered schema of the overhand node. The mean and

standard deviation for each of the attributes correspond to the first node in the three "overhand"

schemas. Remember that each node in the hierarchy of motor skills consists of two components,
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both of which have their own internal hierarchies of state descriptions analogous to the one shown

for the viewer-centered schema of the overhand skill concept.

4.3 Recognizing a Movement with Oxbow

As previously described, OXBOW's performance task is to recognize an experienced movement in

the environment according to the current knowledge base of movements. The recognition process

can be broken into two sub-processes -- parsing the motion and classifying the resulting parsed

structure. This section describes these performance aspects of OxBow, while the next section

will focus on the learning methods used to modify and update the knowledge base in response

to experience. As we mentioned in the introduction to this chapter, learning and performance

are closely tied in our view of concept formation. We separate them here only for the sake of

presentation.

4.3.1 Parsing a Movement

A movement is a continuous experience over some period of time. In order to understand a move-

ment, OXBOW breaks the continuous experience into a set of discrete representations. This results

in a sequence of snapshots of the environment (specifically the arm) over the course of a particular

movement. Recall that our motor schema representation for movements stores only a few points in

time for a given movement. The movement parser is responsible for selecting the points that are

to be used for recognition and remembering.

We base our parser on Rubin and Richards' (1985) theory of elementary motion boundaries.

They propose four primitive motion boundaries: starts, stops, steps, and impulses. The first two,

starts and stops, represent zero crossings in velocity and are obvious choices for boundary points,

since without them it would be impossible to distinguish a period of movement from a period of

rest. The second two, steps and impulses, refer to discontinuities of force. However, as Rubin and

Richards state, this set of motion boundaries is insufficient to represent many of the movements

that we are interested in for this work. We have augmented these elementary boundaries with

an additional boundary that represents zero crossings in acceleration. This gives us the desired

representational power at the expense of additional motion boundaries or states in a schema.

Given the boundaries defined above, we must still define how these are used to parse a given

movement. The agent observes a movement (in discrete time slices as described in Section 2.1) and

maintains current values for position, velocity, and acceleration for each of the joints in the arm.

Whenever the value for either velocity or acceleration at any one of the joints in the arm has a

change in sign, the position and velocity information for all the joints 9 is collected and formed into

a state description as specified in Section 3. Over the course of a movement, these boundary states

9. This represents a simplification on our part. Alternatively, we could store only the information for the joint that
triggered a break point. Although our representation handles this, our implemented mechanisms would become
rather more complicated.



RECOGNIZING OBSERVED MOVEMENTS 43

Table 4.1. Oxsow's algorithm for movement classification.

Classify (movement, skill-node)

If leaf(skill-node) or recognized(movement, skill-node),
Then return skill-node;

Else for each child of skill-node,
Compute a score for Incorporating(child, movement).

Let best be the child with the largest of these scores.
If the score for putting movement by itself

is greater than the score for best,
Then return the skill-node;

Else Classify(movement, best).

areidentified,generated,and collected.At the completionofthe movement, the resultingsequence

of statesisreturned as a singlemotor schema.

Note that the entiremovement isparsed and that itis the resultingschema that isgiven to

the classificationmechanism for recognition. Theoretically,it would be possible(and perhaps

desirable)to have the parserand dassilicationmechanisms working more hand in hand. That is,

as each boundary isobserved and the associatedstateisgeneratedand appended to the end of the

partialschema, thispartialschema could be classified.This could conceivablylead to advantages

in constrainingthe work necessaryforlaterclassificationsof the more complete schema. We leave

thisas an idea to pursue in futurework.

4.3.2 The Classification Mechanism

Table 4.1 presents the basic OXBOW classification algorithm. At this level of abstraction, the

classification process is no different from that used in Fisher's (1987) COBW_.B and Gennari et al.'s

(1989) CLASSlT. In these concept formation systems, the processes of classification and hierarchy

formation are tightly coupled. We have separated these two components to provide a different

perspective on this algorithm.

Upon encountering a new instance I, the system starts at the root and sorts the instance down

the hierarchy, using an evaluation function (described below) to decide which action to take at each

level. The termination condition of this recursive algorithm corresponds to the instance already

having been recognized. This can occur in two cases: the current node may be a leaf in the

concept hierarchy, or the evaluation function may consider the current node to be close enough to

the instance that no further descent is necessary. The latter case requires the use of a recognition

criterion; as described in Gennari (1990), this parameter determines when the system "recognizes"

an instance and is especially useful in noisy domains.

At a given node N where the instance I is still unrecognized, OxBow retrieves all children and

considers placing the instance in each child Ck in turn; it also considers the case where the instance

would be treated as a separate child. The algorithm uses its evaluation function to determine which
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of the resulting partitions is "best",1° and then continues either by recursively classifying with the

chosen best or stopping and returning the current node as the classification of the new instance.

More specifically, if the instance I is sufficiently different from all the concepts in a given partition

according to the evaluation function, I is considered to be a member of a new category and no

further classification is necessary (or useful). The current parent class is returned as the label of

the new instance. The classification process halts at this point, since the new node has no children.

4.3.30XBOW's Evaluation Function

We have mentioned that Oxsow uses an evaluation function to determine the appropriate branch

to sort new instances down during classification. Since a major goal of concept formation is to

let the agent categorize new experience and make predictions, the system employs category utility

-- an evaluation function that attempts to maximize predictive ability. Gluck and Corter (1985)

originally derived this measure from both game theory and information theory in order to predict

basic-level effects in psychological experiments, and Fisher (1987) adapted it for use in his COBWEB

model of concept formation. The measure assumes that concept descriptions are probabilistic in

nature, and it favors clusterings that maximize a tradeoff between intra-class similarity and inter-
classdifferences.

One can definecategoryutilityasthe increaseinthe expectednumber ofattributevaluesthatcan

be correctlypredicted,given a setof K categories,overthe expected number of correctpredictions

without such knowledge, normalized by the sizeof the partition.This expressionwas originally

designed for nominally valued attributesand summations of probabilitiesof attributevalues.As

used by COBWEB, theseprobabilitieswere computed from storedcountsof attributevalues.11

OXBOW works with continuous attributes,and the originalexpressionfor category utilityhad

to be modified for such domains (Gennari et al.,1989). For such attributes,probabilitiesare

computed by assuming a normal distributionof valuesand findingthe standard deviationover

observed instances.More precisely,categoryutilityforcontinuousattributesis

K I I

• O'ih . _ip
|

K ' (1)

where P(Ck) isthe probabilityof classC#,,/i"isthe number ofclassesat the currentlevelof the

hierarchy,¢r_ is the standard deviationfor an attributei in classCk, and a_p is the standard

deviationfor attributeiin the parent nodeJ 2

However, thisexpressionassumes that every classconsistsof a simple listof attributes.For

OXBOW, we must extend thisto considerclassesmade up oftwo components, a joint-centeredand

10. This letsthe system avoid the need for an all-or-nonematch between the nodes in a given partition and a new

instance being classified.

11. See Fisher and P_zzani (1991) or Thompson and Langley (1991) for more details and discussion of COBWEB's

category utility equation.

12. As discussed in Gennaxi et al. (1989), the value of 1/_ is undefined for any concept based on a single instance. We

adopt their solution of using an acuity parameter, but we axe not greatly concerned with its value. See Gennm-i

(1990) for empirical analysis of the impact of this parameter on performance.
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a viewer-centered schema. Each schema, in turn, consists of a set of components or, in this case,

state descriptions. We break this into two parts; the first equation describes the score attributable

to a particular schema, and the second calculates the total score over both schemas for all the skill

concepts in a given partition of the main hierarchy. For the first part, the information in each

component is weighted by the probability of that component, because the number of states is not

the same for all schema instances. The partial category utility score of a viewer-centered schema

m stored as part of a skill in the hierarchy is given as

J I 1

• vc(r ) = P(m) , (2)
j

where P(Srnj) is the probability of the jth state description of the viewer-centered schema m. This

is the proportion of all state descriptions from schema instances stored in rn that are locally stored

under the state description Smj. The term P(Araji) is the conditional probability of seeing the ith

attribute given a state description in state S,nj. The leading term P(rn) is simply the probability

of the schema itself occurring given the skill concept to which it belongs. The score CUjc for the

corresponding joim-centered schema is similar and is not shown here. Given this expression, we

may compute the overall category utility for a partition of the skill hierarchy as

K

EP(Ck)(' vc(Ck..)+ -- +
K , (3)

where P(Skj) is the probability of the jth state description in class Ck, or the proportion of all the

state descriptions from schema instances of node Ck that are classified at state description Ski. The

probability P(Spm) is similarly defined for the ruth state description in the parent of the current

partition.

4.4 Learning from Unsupervised Experience

In our introduction to this chapter, we introduced a learning task associated with the recognition

of motor schemas. To review, the task involves incorporating a newly experienced movement and

parsed motor schema into long-term memory in such a way that one can more accurately recognize

similar movements when they are presented in the future. In Chapter 6, we define exactly what

we mean by "more accurately" and present some experimental results that support our claim

that OXBow accomplishes this learning task. We begin this section by describing the learning

algorithm at a high level, at which the system borrows many ideas from Gennari's CLASSIT and

Fisher's COBW_.B. Then we proceed to the details of incorporating new movements into an existing

schema class; this is where OxBow makes some important extensions to previous work.

4.4.1 The OxBow Learning Algorithm

Table 4.2 provides a brief description of OxBow's learning algorithm. Again, because learning

and performance are integrated, the learning algorithm looks similar to the classification algorithm
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Table 4.2. OXBOW's learning algorithm.

Build-Tree (movement, skill-node)

If leaf (skill-node) or recognize(skill-node, movement),

Then halt ;

Else for each child of skdi-node,
Let best be the result of

Incorporate(child, movement) with the best score.
Let second be the result of

Incorporate(child, movement) with second best score.
Compare four cases, letting selected.child be the best of:

best;
by-itself;
serge (best, second) ;
split (best).

If selected-child is by-itself,
Then halt;

Else Build-Tree(movement, selected-child).

introduced earlier. The primary difference is that the system makes permanent changes to memory

structures when learning, whereas the original memory structure is retained for future use when

classifying. There are some subtle differences as well. As with classification, the system considers

incorporating the new instance in each of the existing children of the current node, as well as

creating a new child with the single instance. If the instance I is sufficiently different from all the

concepts in the current partition, a new singleton class is created containing I. In this case, the

learning procedure halts since the new node has no children. However, when learning, the instance

must be permanently incorporated into the nodes of the schema hierarchy along the path from the

root to the leaf where the instance is finally placed.

Sometimes peculiarities in the order in which movements are observed can lead to an "incorrect"

hierarchy structure. For example, this can occur when, after forming two classes of movements

based on experience, the system observes several new instances that at first appear to be minor

variants of one of the two existing classes. However, as OXBOW gains additional experience, it

becomes clear that this "variant" is actually a distinct class representing a separate movement

concept. In such cases, the concept formation system should be able to gracefully recover from

previous errors. Therefore, in addition to comparing the result from incorporating instance I into

the best of the current children and creating a new singleton class containing I, OxBow considers

two alternative actions. One involves combining the two best existing children into a single node.

In this case the subtrees axe spliced together such that the new node's children are the union

of the children of the best and second best nodes. This new combined node is evaluated within

the partition with the remaining nodes. The other alternative replaces the best child with its

constituent subtree branches. That is, all the children of the best node are promoted and become

direct children of the current node, and the best node disappears.

These final two actions are referred to as merge and split operations. They are intended to aid the

system in recovering from poor choices earlier in training, perhaps due to order effects. Fisher and
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Pazzani (1991) argue that some form of "backtracking" operators are necessary for any incremental

learning system, particularly in pure hill-climbing systems such as OXBOW, which can get stuck

at local optima. One can imagine additional operators that would take larger steps through the

space of possible partitionings. However, these amount to some sequence of applications of the

simple merge and split operators. This does not mean that such compound operators may not be

necessary in order to find an ideal concept hierarchy (a learning evaluation issue), but they are not

necessary in theory.

We now turn to the largest difference between OXBOW and concept formation systems such as

CLASSIT - the instance incorporation process. This difference arises due to the structural nature

of our motor schema representation.

4.4.2 Incorporation of Motor Schemas

Every concept formation system must address the question of how to incorporate a new instance

into an existing class. This is the essence of learning in these systems. An evaluation function can

be used to determine which node, out of a set of candidates, should have the instance incorporated.

But the incorporation process actually changes the memory structures and lets one make predictions

from the stored information.

In Fisher's COBWEB, incorporating a new instance was a simple matter of updating the counts

associated with a class node based on the attribute values occurring in the instance. The system

assumed that each instance had a fixed set of uniquely labeled attributes, although an instance

could omit a value for a given attribute. Gennari et al.'s CLASSIT (1989) extended this approach

to include a notion of structured objects made up of multiple components. These objects were

restricted to a single level of components, where each component was a primitive object analogous

to the objects given to COBWEB. Also, CLASSIT assumed that each structured object had the same

number of components and that each component occurred in each instance. That is, the structure

of these objects was uniform across all classes and did not vary.

Here we are interested in forming concepts of movement representations (as defined earlier), and

neither COBWEB nor CLASSIT has satisfactory mechanisms for handling this task. Recall that a

skill concept consists of two components - a viewer-centered schema and a joint-centered schema.

This much structure could be handled by CLASSIT as described in Gennari et al. (1989); one simply

provides the correct mapping, since there are always exactly two. However, recall that a motor

schema is also a compound object made up of components that represent the states of the arm at

specified time values. Each state satisfies the notion of a primitive object since we are mainly dealing

with the parts of the arm; each joint contributes its own unique attributes to the total description of

a state. 13 However, because a motor schema may have any number of state descriptions, there may

not be a one-to-one correspondence between two schemas' states. Therefore, one cannot uniquely

associate the attributes (at the state description level) from one schema to another.

13. Of course, one could think of each state again as a compound object made up of components corresponding to

the parts of the arm. This goes beyond the scope of the current research and we leave it to future work.
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OXBOW includes a solution to this state correspondence problem that is specific to temporally

structured domains, but that allows more flexibility than the one implemented in CLASSIT. Both

systems must determine mappings between components in an instance and components in a stored

concept. However, OXBOW can combine an instance and a concept with differing numbers of states

by allowing multiple states in the instance to map onto a single state in the concept, and by

allowing individual states in the instance to become new and separate states in the concept. The

category utility scores for incorporating single states from the instance into the hierarchy of state

descriptions determines the mapping between the instance and the concept. This method is clearly

more flexible and (we believe) more elegant than CLASSlT's, although both methods have the same

O(n 2) computational complexity, where n is the number of components in the concept.

For example, suppose OxBow observes a movement that is parsed into a schema having three

states. In the process of incorporating this schema into the memory presented in Figure 4.2, the

system must consider including it as an overhand schema. This involves establishing the mapping

between the states in the observed movement and those in the schema node. The general solution

applied here is to use category utility as an evaluation function for determining how to match states

from respective schemas with each other and for deciding when to leave states unmatched (in the

case where category utility prefers creating a new disjunct). This application of category utility is

based upon treating each state of a new schema to be incorporated as a separate instance in and of

itself. However, instead of passing each state down through the hierarchy of motor schemas, they

are passed through the separate PART-OF hierarchy within the schema node under consideration.

More specifically then, for a given state, S, and a hierarchy of states associated with a node in

the hierarchy of schemas, we execute the same learning algorithm as described in Table 4.2 with the

following differences. First, at this level "incorporate" simply involves updating all the attribute

counts, means, and variances for the given state. State descriptions can be thought of as primitive

objects with a fixed set of attributes that can be compared between states. Second, the evaluation

function used is a simplified version of category utility. Because its goal is to capture the temporal

structure present in the data, OxBow only considers the time attribute in determining the score,

instead of summing over all the attributes. 14 The resulting form of the equation is

K J M

Ep(ck)Ep(ski)_ Ep(spm)_ ' 2
k' j I"_tim,e m re'Pitit"l's•

K , (3)

where akj.., and a_,n.._, are the standard deviations for the time attribute in the jth state of

class Ck and the rath state of the parent, respectively. All of the attributes that describe a state

are updated when a new state is incorporated, but only the time attribute is considered when

evaluating the score for a node and its children. Also, notice that this form of the category utility

equation applies to both of the internal hierarchies, one for viewer-centered states and the other

for joint-centered ones.

The incorporation of a new schema instance effectively establishes a mapping among states.

As each state in the new instance is considered individually, it is either "mapped" onto one of

the existing states and is incorporated, or onto nothing and becomes a separate state by itself.

14. We have implemented the latter alternative as well and pilot studies show little difference in overall behavior.
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Given thisimplicitmapping, we can ignorethe structureof the schema and compute the score

of the partitionat the motor schema level.We remove the structuralinformation by treating

the attributesof each state'sdescriptionas unique at the motor schema level.That is,a schema

consistingof three statedescriptions,each with 13 attributes,would have three times that many

(3× 13 = 39) unique attributesusedin the calculationofcategoryutility.This processisreflectedin

the additionalnestedsummation inequation (2):sum overstates,and foreach state,sum over the

state'sattributes.In other words, statesare classifiedonly with respectto time, whereas schemas

are classifiedwith respectto allof the attributes.

Since schemas are composed of the first-levelnodes beneath the root of the statehierarchy,Is

we may think of thishierarchyas representingthe PART-OF structurefor the schema. We believe

thisway of viewing concept hierarchiesisone of the contributionsofour work, and itisbased on

the insightthat the firstlevelof the treereflectsa partitionofsome outer environmental context.

The COBWEB a,nd CLASSIT systems use categoryutilityto determine IS-Arelationshipsbetween

instances(and classes)and more generalclasses.OxBow uses the same function to determine

appropriatematches between parts of complex objects. Every instance processed by a concept

formation system can be thought of as PART-OF the environment being addressed. That is,some

agent or mechanism parsesthe world and hands "instances"to the learningagent one at a time to

be incorporated.These instancesare used to constructa concept hierarchyin which the children

of every node share IS-A relationswith the abstractionstoredat theirparent.

We are not claiming that the top-levelnodes are parts of the generalizationstoredat the root

of the hierarchy;likewise,the top-levelconceptsare not instances(specializationsof an abstract

description)of the outer context or environment. Instead,we claim that the top-levelnodes are

items that make up, or are parts of,the environment. Therefore,we have a PART-OF structureat

the top-most levelof the hierarchywith respectto the environment from which the in.stancesare

observed.In applicationto OXBOW, our claimisthatthe top-levelnodes of a statehierarchyshare

PART-OF relationswith the associatedschema concept in which they are stored.For example, the

firststatein the internalhierarchyofthe ovsrhand node from Figure4.2isnot PART-OF itsparent

in the statetree(the root node isnot shown), which summarizes allthe statedescriptionsof the

overhand schemas. Rather, thisstateisPART-OF the overhand concept,which summarizes the skill

concepts below itin the hierarchyofmotor schemas (ratherthan statedescriptions).

OXBOW takesadvantage of thischaracteristicby creatinghierarchiesofstatesin which the top

levelprovides the statesto be used in the motor schema. This works out convenientlybecause

motor schemas are presented as parsed structuresconsistingof a sequence of states.Although

we do not propose our system as the finalsolutionto learningstructuredconcepts,we considerit

satisfactoryforour presentpurposes and the intended contextofour work.

15. Lower levels of the state hierarchy Lre retained in case subsequent splits _re necessary. They do not enter into

the current _rgument.
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4.5 Conclusion

In this chapter, we have presented a computational model of movement recognition. As we have

stated in Chapter 1, a comprehensive model of motor learning should address both this task and

that of movement generation. In the next chapter we present MAGGIE, the subsystem of M_AN-

DER responsible for executing motor skills. MAGGIE generates movements using the joint-centered

schemas alluded to earlier. The joint-centered schemas specify the desired behavior of the joints

in terms of local rotations that, when executed, should correspond to the generalization of the

movements observed and stored by OXBOW.

At one point in this chapter we alluded to an integration of parsing and recognition. Before

moving on to a discussion of MAGGIE and movement generation, we want to summarize these

thoughts. Interleaving the parsing and classification mechanisms would entail trying to recognize

partial schemas before they were completely finished. Ideally, as the movement proceeds and

more information is available, the classification process should gracefully adjust and make better

recognitions. In our evaluation of OxBow in Chapter 6, we take the first step toward this by testing

the system's ability to classify partial schemas. Additionally, this would reduce the necessity of the

motor buffer introduced in Chapter 3, as significant events or zero crossings could immediately be

appended to the structure in short-term memory that is currently being classified.

We feel that OxBow makes a number of important contributions. First, we have built a flexible

representation for modeling movements. This representation allows the flexible recognition of newly

observed movements, as well as the generation of movement behavior, as we show in the next

chapter. Furthermore, the representation should be applicable to a wide range of motions. As we

said earlier, this representation fdls a gap between robotics, which generates movements with low-

level models, and psychology, which employs high-level models but without complete computational
mechanisms.

Second, we have uncovered an exciting duality between IS-A and PART-OF relations. The duality

depends upon the context of the instances that are being observed by the concept formation system

and the interpretation of the root node. An instance stored in the hierarchy IS-A member of the

set of all experiences, but it is also a PART-OF the learning agent's environment, at least at some

point in time. We are currently exploring the implications of this duality and believe that a more

complete understanding of concept formation will result from this insight.

Finally, by exploiting this duality, we have been able to extend concept formation methods to a

new class of domains. Although there has been some research in concept formation with structured

data (Segen, 1990; Thompson & Langley, 1991; Stepp & Michalski, 1986; Levinson, 1985), most

work has been restricted to instances described by simple attribute-value vectors. By using category

utility on the nodes in the part-of tree, and therefore by establishing a labeling between states in

a new instance and states in a stored motor schema, we have applied the concept formation ideas

Of COBWEB and CLASSIT to structured objects.



CHAPTER 5

Skill Improvement Through Practice

5.1 Introduction

By its very nature, skill is exhibited only through active performance. In the previous chapter, we

focused on Oxsow, the component of M_EANDER that builds the memory structures that represent

observed movements. This is only the first part of developing a skill; the next part is performing

the movements that correspond to the acquired skill. The memory structures acquired through

observation let an agent recognize a particular movement as being similar to movements observed

in the past. Additionally, they allow a quantitative evaluation of the accuracy of self-initiated

movements. However, they do not provide the means for an agent to enact a particular movement.

In this chapter, we present MAGGIE, the second significant subsystem of M_ANDER. We address

the problem faced by an agent that has acquired a concept of a particular skill (as evidenced by

recognition) but wishes to perform the skill. As we noted in Chapter 4, viewer-centered schemas

are not executable structures. They are appropriate for recognizing visually observed movements,

but they are not useful for manipulating the arm. MAGGIE controls the joints of the arm by

specifying rotations in each joint's local (polar) coordinate system. Below we describe the joint-

centered schema that represents such values. We also describe how a joint-centered schema is

initially generated and how movements described by a joint-centered schema are actually executed.

Recall that the schema only specifies the positions (joint angles) and velocities at a few time points

during the course of a movement. We introduce the motor program as the executable structure

that describes all the intervening positions of the movement.

When an agent manipulates an arm, the resulting movement may not turn out as intended. In

MAGGIE, errors can result from starting with a poor initial joint-centered schema, from inherent

variance in the mechanical system, or from external interference. In order to overcome any of these

problems, MAGGIE has a simple mechanism for error correction. This mechanism is uses simple

closed-loop feedback control with the viewer-centered schema serving as the standard of reference.

Thus, MAGGIE'S performance task is to move the limb through a movement trajectory specified

in a joint-centered schema; this involves obtaining a joint-centered schema, generating a motor

program, running the program on an arm, and possibly checking for errors and correcting them.
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As before,we want our model to exhibitimprovements inperformance overtime. We are not just

concerned with a performance task,in thiscase movement generation;we alsowant the agent's

skilllevelto increasethrough practice. The learning task for MAGGIE, in the context of the

performance component outlinedabove, isto improve the qualityof generated movements as a

resultof experienceor practice.In the next sectionwe review the schema representationfrom

the previouschapter and describeMAGGIE's joint-centeredschemas. Then we describeMAGGIE's

performance component, which operatesupon these representationsto achievemovements with

the arm. In Section5.4 we presentthe learningcomponent that produces modifiedjoint-centered

representationsand how itincorporatesthesechanges intolong-termmemory.

5.2 Representations for Generating Behavior

In Chapter 4, we showed how motions were parsed into motor schemas and storedin memory.

Before M/EANDER Can perform actionswith itslimbs,it must convert the stored schemas into

a form that iscompatible with the effectorinterface.Recallfrom Chapter 3 that thisrequires

the specificationof the arm's behavior at each simulated time slice.In thissectionwe review

the joint-centeredschema and MAGGIE convertsitintoan executableform. We alsoreview how

viewer-centeredand joint-centeredschemas axe associatedand organizedin long-termmemory.

5.2.1 Joint-centered Schemas

Recall from the previous chapter that a motor schema consists of a sequence of states, in which

each state describes the status of each of the joints in the arm at a specified time. Also, remember

that the states were sparsely distributed (in time) across the duration of a movement. That is, a

few points were satisfactory to describe a complete action. In particular, we introduced the notion

of a viewer-centered schema, in which the positions and velocities at each joint are represented in a

Cartesian coordinate system with the origin at the base of the arm. These viewer-centered schemas

represent motions that were observed, and they allow recognition of similar movements.

In this chapter we describe the counterpart to the viewer-centered schema - the joint-centered

schema - which is used for generating or executing movements rather than recognizing them. The

structure is essentially identical to the viewer-centered schema, but the information stored within

the schema is quite different. As before, each state in the sequence specifies the state of an arm

(positions and velocities for each joint) at a particular time during the movement. In the viewer-

centered representation presented earlier, the positions and velocities associated with given joint

describe the movement of the end of the link that is attached to the joint. In a joint-centered

schema, the positions and velocities of each joint refer to the state of rotation for the joint itself.

More specifically, the position and velocity for a given joint in a joint-centered schema refer to

the rotation and rotational velocity of the joint. These rotational values are given in local polar

coordinates, where rotations are defined with respect to the y axis. This reference for each local

coordinate system is a linear extension of the previous joints' link member as described in Chapter 3.

P
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The joint-centered and viewer-centered schemas may be thought of as dual representations. That

is, there exist well-defined 16 functions that convert one representation into the other in either

direction. However, we will only be interested in converting from viewer-centered to joint-centered

representations. Any realizable arm position can be described or represented in either of the

formats. Although the viewer-centered information refers to the link end position (and velocity)

and the joint-centered information describes each joint's specific rotation (and rotational velocity),

the values are constrained by the lengths of the links in the arm. Because these are fixed in length

and because the local coordinate system for each joint is based upon the previous joint's link, a

straightforward transformation can convert one format into the other. Although both frameworks

are representationally equivalent, each is better suited for some types of movements than for others.

The different nature of compatible movements arises from the way MtEANDER treats motor schemas

when extracting the movement from the schema. We discuss this treatment in more detail below.

Just as the viewer-centered schemas were motivated by the visual sensory system of the agent,

the joint-centered schemas are motivated by the control mechanisms of joints. From psychological

studies, we know that humans can move limbs to a specified location without any feedback, either

visual or proprioceptive (Kelso, 1982). In robotics, artificial jointed limbs are controlled by spec-

ifying torques or voltages at each individual joint (Hardy, 1984). Joint-centered schemas specify

the local rotations of each joint and are therefore appropriate when generating behavior. When

dealing with artificial limbs (robot arms), it is regularly assumed that local joint control commands

are given to the hardware level. These are typically voltage or torque values, but an analogy holds

for velocities and positions. It is common for robotics problems to involve both a work space (our

viewer-centered representation) and a joint space (our joint-centered representation). These factors

motivate our dual representations of viewer-centered and joint-centered schemas.

The sparse representation of a motor schema seems plausible for storing motor skills in long-term

memory, but to actually generate motor behavior, one must specify the missing points. We use the

term motor program to refer to such a dense representation for a skill. A motor program can be

viewed as the corresponding structure to an observed movement prior to parsing, as described in

Chapter 4. It is important to distinguish motor programs from joint-centered schemas. The latter

specify the rotations and velocities of joints only at selected times; in contrast, motor programs

specify joint rotations at e_erF point in time (with respect to the granularity of the temporal

simulation). Such information can be generated dynamically from a joint-centered schema, as we

discuss in Section 5.3.

5.2.2 Memory Organization in Review

As we discussed in the previous chapter, a skill concept is represented in memory as a pair of

viewer-centered and joint-centered schemas. Each of these schemas, in turn, is represented as a

hierarchy of probabilistic state descriptions (the internal state hierarchies within a ski]] concept).

In Chapter 4, we focused on the hierarchy of viewer-centered state descriptions, but joint-centered

schemas are stored in an identical hierarchy as part of a given skill concept. The joint-centered

16. As described earlier, we restrict rotations to be in the interval (-lr, _r), thereby keeping a one-to-one mapping.
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data are stored in state descriptions that are analogous to those containing the viewer-centered

data. In this case, each state description has attributes for each of the joints representing the local

rotations and rotational velocities, instead of the x,y position in Cartesian coordinates as used

for viewer-centered state descriptions. When learning, both types of motor schemas in the skill

concept can be accessed and manipulated independently of each other. Whenever a schema is to be

executed, both the viewer-centered and joint-centered schemas are extracted from the skill concept.

This organization of the skill concept resolves the issue of establishing correspondences between

a joint-centered schema and a viewer-centered schema. If the two schemas for a given skill were

stored separately in memory, then we would have to propose a mechanism for linking them. Such a

mechanism would create links between a joint-centered representation and viewer-centered schema

that describes the desired movement for the joint-centered schema in question. Instead, we suggest

that the information is stored together in a single node of the skill hierarchy. The representation

we have chosen reflects the way we think of a a skill as a single concept that contains (at least)

two sets of data with two representations: one for recognition and feedback control and the other

for execution. This organization bears obvious similarities to some psychological theories of motor

control discussed in Chapter 2 (e.g., Schmidt, 1975b; Pew, 1974).

5.3 Executing Motor Skills in MAGGIE

We have stated our concern with generating accurate movements. In order to do this, MAGGIE must

be able to use the representations constructed by Oxsow and those introduced in the previous

section. A formal statement of the performance task is:

• Given: a viewer-centered schema describing a desired movement;

• Move: the limb through the trajectory specified in the viewer-centered schema.

This implicitly assumes that the intended limb is known (if there are more than one) and that

the desired speed of execution is given. Again, the desired trajectory is specified by the viewer-

centered schema which, along with the joint-centered schema, is extracted from the skill node that

is selected for execution. M_EANDEIt'S performance system attempts to carry out this behavior

using the specified limb. This involves a number of processes. First, the joint-centered schema

must be 'run' by generating an executable motor program and carrying out the specified actions.

Simultaneously, the agent may monitor the resulting states, comparing actual positions with the

intended ones as given in the viewer-centered schema. In this case, execution and monitoring

proceed in parallel until an error is detected. In the event of a detected error, the system invokes

an error correction mechanism to return the limb to the desired path. Below we consider each of

these steps in more detail.

5.3.1 Retrieving the Joint-centered Schema

We assume that the viewer-centered schemas that M_EANDER wants to execute have been acquired

by observing another agent's actions, as described in Chapter 4. Naturally, if there is a joint-

centered schema associated with the given viewer-centered schema, then it is used for generating
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the movement. However, the first time a particular motor skill is performed there can be no joint-

centered information present. One approach to obtaining this initial joint-centered schema is to

apply an inverse kinematic transform 17 to the given viewer-centered schema. That is, the position

of each joint Ji in Cartesian coordinates (with origin at the base of the arm) is converted to a

rotation of the previous joint Ji-1. This reflects an offset correspondence between joints at the

ends of Iinks in the viewer-centered format and joints that have attached links in the case of joint-

centered descriptions. The resulting rotation is based upon the position of this joint and all the

previous joints back to the base of the arm.

Applying this transform to every state description in the viewer-centered schema would result in a

complete joint-centered representation that can be directly executed. Unfortunately, this transfor-

mation must be done serially across the joints of a limb, making this a time-consuming computation.

First the base joint must be evaluated and then each successive joint must be processed in turn.

We choose to minimize our use of this transform by only applying it to the first state description

of the given schema and only when there is no joint-centered information available at all. The

result of transforming just the first state in the viewer-centered schema is a joint-centered schema

that, when executed, will hold the arm motionless. That is, we assume that an arm is in place and

ready to go (similar to meeting the preconditions of an operator) when a skill concept is retrieved

for execution, but that the arm will stay still (except for error corrections described below) if no

previous experience has informed otherwise.

5.3.2 Executing the Joint-centered Schema

Joint-centered schemas only specify the positions and velocities of the joints at selected points in

time. Within our framework, the control of actual motor effectors requires the specification of the

relative rotational velocities for every joint at every simulated time step. As described above, a

motor program satisfies this requirement, since it specifies the respective joint positions for every

time value. M_ANDER does not store motor programs in memory; the system creates them in real

time as it executes the skill. This is accomplished by generating a spline for each joint between

successive pairs of the states specified in the joint-centered schema, is During a movement, when

the limb reaches the end of the spline segment between two state descriptions, $i-1 and Si, the

latter becomes the source and the next state in the sequence, Si+l, becomes the target for the next

spline. This method yields a smooth, continuous curve throughout the execution of the schema.

This process is the logical inverse of the parsing mechanism described in Chapter 4. Instead

of taking a raw movement representation specifying arm states at every time step and producing

a motor schema, the interpolation process takes a joint-centered schema and produces a motor

program that specifies (joint-centered) arm states at every time. This process is also used to

17. This transform re-represents a state of the arm given in global Cartesian coordinates as a state described by local

joint rotations for each respective joint. The details of this transformation are not important to this discussion,

but they can be found in Wylie (1975).

18. We assume that low-level neural circuitry can take relatively sparse inputs from a schema and generate such

a motor program in real time. Specifically, in M_ANDER we use a Hermite parametric spline that interpolates

between two state descriptions with given velocities. This splining technique maintains smoothness in both

position and velocity.
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determine the trajectories of the desired movement specified by a viewer-centered schema. Instead of

interpolating between joint angles, MAGGIE interpolates between Cartesian coordinates describing

the positions of the joints in viewer space. However, interpolations in Cartesian space may result in

joint positions that are physically impossible because the links of the arm are of fixed length. We

define the arm state specified by the interpolation of a viewer-centered schema to be the positions

of the arm if each of the links were "pointing" through the interpolated point. Mathematically,

this amounts to the expression

= (lcos(arct (y'l ')), ,

where I is the length of the link that is attached to the joint in question and (x I, yl) are the

coordinates given by the spline function. For each subsequent joint, the resulting (x, y) position is

used to adjust for the actual position of the previous joint.

Like the inverse kinematic transform, the process of generating the motor program is assumed

to take some time. However, it is not necessarily a serial process and we do not consider it a

bottleneck. In experiments with humans, a preparation period is observed prior to the actual

movement of joints (Fischman, 1984). In M_ANDER, we interpret this to correspond to the "set-

up" time necessary to retrieve the schemas from the movement concept and to generate the motor

program itself.

5.3.3 Monitoring the Progress of a Movement

At any stage of learning, there will typically be some discrepancy between the movements described

by the viewer-centered and joint-centered schemas of a given skill concept. This is most pronounced

before M,_BANDER has had an opportunity to practice movement (i.e., when there is no joint-

centered schema). Thus, MAGGIE must have some means of detecting errors, and this is the role of

the monitoring process. If we consider the viewer-centered information to represent Mi_BANDER'S

notion of a desired movement, one can detect errors whenever the state of the arm (as controlled

by the motor program during execution) diverges from the desired state given by the associated
viewer-centered schema.

In order to detect deviations, MAGGIE compares the state of the arm during a movement exe-

cution to the description of the desired trajectory itself. In the present implementation, we only

consider visual sensory feedback on the state of the arm. x9 This information is represented in viewer-

centered coordinates. The desired trajectory is obtained by interpolating between the points given

in the viewer-centered schema, as described above. This interpolated information is analogous to

the motor program, but it is useless for actually controlling the joints of the limb. MAGGIE com-

pares the information from these two sources when monitoring the execution and determines the

difference, or error, between them. When the difference obtained from this comparison becomes

noticeable (i.e., exceeds a parameterized threshold), the system does two things. First, the .failure

point, which describes the errors for each joint at the current time of comparison, is stored in a

motor buffer for later processing. Second, MAGGIE invokes the error correction process with respect

19. Proprioceptive feedback is an additional source of information that would naturally benefit performance and that

seems to be used in humans. We do not explicitly limit the feedback sources to visual senses.
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to thisfailurepoint. This process(describedin the next section)does not interruptthe ongoing

executionbut ratheraugments the movement alreadydetermined by the motor program.

A monitorin9 frequencyparameter determines how often MAGGIE examines the ongoing move-

ment. We have implemented MAGGIE to monitor on a regularcyclebased on the settingof this

parameter with a random offsetfrom the startof the movement. However, nothing precludesthe

model from sometimes monitoring frequently(perhaps with novel skills)or not monitoring at all

(in the case of highly automated skills).We envisiona higher-levelcontrolmodule (outsidethe

scope of thiswork) that would determine when to attendto sensoryfeedback.

5.3.4 Correcting Detected Errors

Once MAGGIE detectsa significantdivergencefrom the desiredtrajectory,itmust stillrecoverfrom

thaterror.When invoked by the monitoringprocess,the errorrecoverymechanism appliesa "burst

of force",or correction,in a directionthat willreduce the sizeof the error.This processmodels

the type of correctionsthat resultfrom errordetectionat the brain levelof the nervous system,

and not correctionsresultingfrom servomechanisms at the spinallevel.That is,we think of these

correctionsas purposefulresponsesto recognizederrorsduringthe courseof a movement.

The nature of the correctionis determined by the observed errorand two system parameters.

We use an invertedU-type correctionbased on the absolutevaluefunction,which causesa gradual

change in the limb'sactualmovement over the lifetimeof the correctionprocess. The correction

magnificationparameter controlsthe sizeof the generatedcorrection(relativeto the sizeof the

error)and the correctiondurationparameter controlsthelengthofthe correctioninsimulatedtime.

In the defaultcondition,the magni_cation factorissetat one;inthiscasethe areaunder the curve

isthe same as the amount of errordetectedand the durationparameter issetso that corrections

are completed beforeanother monitoring cyclebegins.This means that ifthe trajectoryspecified

by the motor program does not divergefurtherfrom (or get closerto) the desiredtrajectory,then

the llmb would be back at the desiredpositionat the end of the correction.However, ifthe arm

behavior was convergingwith the desiredtrajectory,then the correctionadjustment willcause the

arm to overshoot. Likewise,ifthe errorisgettingworse, then the correctionwillbe insufficient

to bring the arm back to the desiredpath. Such casesrequiremultiplecallsto the errorrecovery

process.

Accessingthe visualsensorybuffers,performing the comparison with the desiredtrajectory,and

determining the type of response (ifany) alltake some amount oftime. In humans, the minimum

cycletime from errorin the environment to initiationof correctivemeasures isapproximately 200

msec. Although implemented as a parameter, the error-correctiondelaydeterminesthe granularity

ofour simulation.That is,the lengthofa simulatedtime stepisdetermined by dividing200 msec. by

the error-correctiondelay.Itisimportant to understand the distinctionbetween thisdelayand the

monitoring frequency introduced above. The lattercontrolshow often MAGGIE checksfor errors,

whereas the former determinesthe time from an error'sdetectionto the beginningofitscorrection.

Taken together,monitoring and errorcorrectionmake up a relativelybasicand straightforward

closed-loopfeedback mechanism. We have mentioned some of the parameters that impact this
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mechanism's behavior:the sensitivityof the system to divergences,the frequency of checkingfor

errors,the duration of error corrections,and the magnificationof correctionsfor a given sized

error.The particularsettingsof theseparameters are not important to the theory implemented as

M_ANDER, and we willshow in Chapter 7 thatthe behavior ofthe system isrelativelyrobustwith

respectto a range ofsettingsfortheseparameters.

When movements, even novelones,axeperformed slowlyenough, monitoring and errorcorrection

allowa nearperfectreproductionofthe desiredmovement. However, not only do agentssometimes

need to perform movements quickly,consciousmonitoring and errorcorrectionconsumes cognitive

resourcesthat might betterbe spent on other processes.Therefore,thereisgreatincentiveto im-

prove therepresentationofthejoint-centeredschema sothatthe path willmore closelyapproximate

the desiredtrajectoryeven toithoutmonitoring and errorcorrection.This isthe job of MAGGIE's

learningcomponent.

5.4 Learning from Execution Errors

Let us reiterate the learning task we are addressing. For a given motor skill present in memory,

M._AN DER should improve its ability to perform the movement through practice. Any improvement

should be independent of monitoring and error correction. That is, an improved representation must

yield superior performance whether or not the system monitors for errors and corrects them. In

MAGGIE this is accomplished by modifying the joint-centered schema according to information from

a recent execution so that its behavior diverges less from the associated viewer-centered schema

the next time itisexecuted.As a whole, M_ANDER employs two interactinglearningmechanisms

to improve itsjoint-centeredschemas. In thissectionwe describethesemechanisms.

Improvement through practicein MAGGIE ismore activethan simply incorporatingmovement

aftermovement intolong-term-memory. In the previouschapter,we consideredthe OxBow subsys-

tem, which carriesout pure unsupervisedlearning;itstaskisto constructsummary descriptionsof

movements thatithas observed.In MAGGIE, learningoccursin a self-supervisedmanner (Sammut

& Banerji,1986;Langley,1985;Mitchell,Utgoff,& Banerji,1983).There are two partsto directed

experience:the firstinvolvesdeterminingwhen to learnand the second concerns determiningwhat

tolearn.These issues,addressedby allsupervisedlearningsystems,are discussedin the remainder

of thissection.

We have seen that errordetectioninvokesthe errorrecoveryprocess,but italsotriggerslearn-

ing. Whenever the path of a jointdivergesnoticeablyfrom the desiredpath, the failurepoint is

temporarilystoredin the motor buffer.This letsMAGGIE delay learninguntilafterthe execution

has been completed. Table 2 presentsthe model's basiclearningalgorithm. Since a number of

errorsmay occur in a given trial,the firststep involvesselectinga failurepoint from which to

learn. MAGGIE selectsthat failurepoint in the motor bufferwith the largesterror.Thus, larger

errorsare reduced beforesmallerones. Once MAGGIE has selecteda failurepoint,itappliesa setof

criticsthatgeneratecandidatereplacement motor schemas. The system evaluatesthesecandidates

and selectsone as the best revision.This fax,MAGGIE has improved the joint-centeredschema

in question,but ithas no memory to remember thisimprovement. Therefore,OxBow isused to
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Table 6.1. MAGGIE'Sschema revision and learning algorithm.

Modify-Schema(joint-schema, viewer-schema)

Let fail.point be the largest error from the motor buffer.
Let new = applying(velocity-critic, fail-point, joint-schema).
Find the percentage _provement over the current form of the schema.
If _provement(new, jc-schema) < bias,

Then let new = applying(add.point-critic, fail.point, joint-schema,
¢e21 OXBOWwith new and viewer-schema.

incorporatethe new schema structurein M_ANDER's long term memory of movement concepts.

We now considereach of thesestepsin more detail.

5.4.1 Monitoring and Opportunities to Learn

Every learning system must address the issue of determining when to learn. Oxsow and many

related unsupervised learning systems (Fisher, 1987; Gennari, 1990) learn from every instance that

is presented, unless it is specifically presented as a test instance. In MAGGIE, aS in a number of

supervised learning systems (Iba, Wognlis, & Langley, 1988; Aha, 1990), this is not the case; learning

occurs as the result of detected errors during the execution of a skill. That is, the monitoring process

provides the opportunities for MAGGIE to improve its representation of a movement skill.

As already mentioned, the failure point from the memory of corrections is selected for further

processing. This seems plausible in so far as the largest errors receive the most processing and

therefore should decay the least rapidly (Massaro, 1975). That is, limitations on memory access

constrain the types of learning that take place in humans (and therefore in MAGGIE). Although

MAGGIE retrieves the largest error, we do not require this as part of the model. Alternative schemes

could be based on recency or primacy, as long as only a single event is recalled and processed further

by the learning component.

Thus, MAGGIE focuses on the largest error detected for a given movement skill. Note that

this implies that the current level of quality for the given joint-centered schema determines the

error information that will be available to the learning process. In this way, the opportunities

forlearningwithin a singlemovement concept are constantlychanging as MAGGIE's skillat the

concept improves. This approach to determiningwhen to learnimplicitlyselectsthe information

that determines what to learn.

5.4.2 Critics and Modified Motor Schemas

Determining what to learnessentiallyinvolvesdecidinghow to modify a particularrepresentation

such that futureperformance willbe improved. To accomplish this,MAGGIE employs a set of

criticssimilarin principleto those used in HACKER (Sussman, 1975). The criticsare responsible

for constructingcandidatejoint-centeredmotor schemas based upon the motor schema that was

originallyexecuted and the largesterrordetected during execution.Strictlyspeaking,the critics
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do not really affect the long-term memory structures. 2° Instead, as we will see shortly, one of

the candidate schemas is selected and given to OxBow to be incorporated into the hierarchy of

movement skills, thereby modifying memory. The learning operators (the critics) are responsible

for constructing effective revised motor schemas, and it is OXBOW's responsibility to see that they

axe stored appropriately and can be remembered in the future.

Theoretically, there is no limit to the number of critics that could function simultaneously, each

producing its own candidate. However, recall that MAGGIE specifies a motor schema as a sequence

of states, each describing the locations and velocities of a set of joints. This suggests two natural

approaches to modifying joint-centered schemas:

• modifying one of the fields in an existing state for a particular joint; or

• modifying the structure of a schema by removing or adding a state.

The first of these seems the less drastic action, since it leaves the basic structure of the schema

unaltered. However, there may be limits to what can be accomplished by modifying numeric

values; in such cases, one may need to revise the schema structure by adding or removing states.

For example, a given movement may be overshooting a particular location during the course of its

movement, indicating that the velocity is too high during the previous portion of the movement. A

modified schema would reflect this by substituting a smaller velocity in the state description just

prior to the failure point. After several such revisions, the schema may be at a point where no

adjustment to the velocity will further improve the position of the arm at the time of the failure

point. At this point, a completely new state description could be added that would help guide the

arm through the proper locations at the appropriate times.

To review our representation, each state description specifies a time value and a set of 3-tuples,

each of which consists of a joint identifier, a position vector, and a velocity vector. In principle,

any of the values in a state description may be modified except the joint identifier. The current

model only considers adjusting the values of velocity vectors and, in regards to structural changes,

only considers adding state descriptions. Furthermore, MAGGIE considers modifying only the two

data points that delimit the segment of the schema containing the time of failure. That is, for

the throw schema of Figure 1 in Chapter 4, if the selected failure point was at time 7, then the

second and third state descriptions would be said to 'contain' the failure point and would be

considered for modifications. However, selecting among real-valued modifications still leads to an

infinite branching factor, so we require some simplifying assumptions to help reduce the effective

search space. We employ a constrained generate-and-test method to select among the alternative

modifications generated.

For two state descriptions Si and Sj that contain the failure point, the amount of adjustment A

applied to each is inversely proportional to their respective distances (in time) from the failure point.

That is, the closer the failure point is to DPi, the larger the adjustment made to £)Pi's velocity.

Although this does not guarantee an optimal modification, it provides a reasonable alteration based

upon the limited information available from the motor buffer. The amounts of adjustment that are

20. Recall that OxBow serves as M£AND_R's (and therefore MAGOIE'S) interface to long-term memory.
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considered axe Ai = Emi to DPi and Aj = Ernj to DPi, where mi and m i axe computed by

mi -- tF - ti and mk- tk - tF
tk -- ti tk -- ti

for failure point tF, error vector E, and the associated time values for DPi and DPj, tl and tj.

Based on this calculation, MAGGIE considers all four possible ways of psirwise incrementing

and decrementing the two data points discussed above by their respective amounts. Because the

failure point may overshoot or undershoot based upon the velocity values at either (or both) of the

containing state descriptions, any one of these four critics may yidd the most improvement.

The remaining critic suggests adding a state description in the joint-centered schema as out-

fined above. The new state description is generated using the time of the failure point and the

inverse kinematic transform of the desired positions and velocities of the joints as given by the

viewer-centered schema. This new state description is inserted appropriately into the sequence

that comprises the joint-centered schema. Given this revised schema and the four based upon

velocity adjustments, the evaluation function chooses among them as described below.

5.4.3 Selecting the Modified Schemas

The selection of the candidate motor schemas is based on the predicted performance of each at

the time of the failure point. MAGGIE estimates predicted performance by generating a partial

motor program for each choice and evaluating the error at the specified time. The candidate

that minimizes error at this time is selected for further processing as described below. 2] However,

because states specified in the schema axe generally guaranteed to be reached at their respective

times, this simple scheme would always favor the creation of new points when comparing the new

partial motor program, with the result of adding a completely new state description.

As mentioned above, adding a new state is a more drastic modification to the schema than simply

modifying the velocity values, and it should be avoided if alternatives can suffice. Moreover, in the

context of memory storage through OxBow described below, adding a new point may sometimes

decrease performance. For this reason, we have included a b/a6 against this choice. As long as

the best of the four possible velocity modifications results in an improvement that is greater than

the bias factor, the modification is preferred. That is, if the bias factor is set at one-half, and a

modification to the velocities can correct 70% of the detected error, then MAGGIE will prefer this

modification over the addition of a new state. Only when none of the modifications considered can

sufficiently improve the error (at the time of failure) will the system add a new state to the schema.

As mentioned above, modifications to velocities may have a limited improvement. MAGGIE's use

of the bias factor can effectively knock the system out of local minima, which can lead to improved

search through the space of joint-centered schemas.

21. Another method would involve executing all four revised schemu in their entirety and comparing their resulting

overall deviations. However, this would be very expensive computationally and we find it unlikely that humans

carry out such computations unconsciously.
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5.4.4 Modifying Long-term Memory

Once MAGGIE has selected the best of the candidates from among those proposed by the critics,

there still remains the need to alter memory for producing future movements. As we stated before,

OXBOW is M_ANDER'S sole interface to the movement hierarchy. In Chapter 4, we saw how

observed movements could be parsed and incorporated into the movement hierarchy to allow more

accurate prediction of path trajectories. In this chapter, we have focused on joint-centered schemas

and how movements are actually generated, rather than recognized.

M_EANDER improves its motor skills by passing the best candidate produced by MAGGIE'S crit-

ics, in conjunction with the viewer-centered schema that it originally retrieved, to OxBow as an

"observed" instance. These two schemas are given together to OXBOW. Recall that the two types

of schemas are kept distinct, but they are stored together under the same skill concept. When an

observed movement is parsed and the resulting viewer-centered schema is incorporated by OXBOW,

the information represented in the joint-centered portion of the skill is unaffected. However, when

both the revised candidate schema and the viewer-centered schemas are incorporated into the move-

ment hierarchy, the information for both schemas in the skill concept is modified. Typically, the

viewer-centered information will be sufficient to classify the combined movement structure to the

same place from which it was taken; in such cases the viewer-centered schema will be reinforced,

because the means were used when extracting the viewer-centered schema. Occasionally, misclas-

sifications will occur and the viewer-centered schema stored in a node of the movement hierarchy

may become degraded. After considerable experience, any single misclassification will have a van-

ishingly small impact on the viewer-centered schema. Of course, this leads to predictions about

learning rates and the effect of practice prior to acquiring a good viewer-centered schema on the

learning of joint-centered schemas. We will return to this prediction in Chapter 8.

Finally, we should note the distinction between the learning method described above and mental

practice. MAGGIE takes an actual execution with monitoring information and produces a candidate

schema to be stored in memory. In all probability, the candidate joint-centered schema that is passed

to OXBOW has never been observed or executed. This should not be misconstrued as mental

practice, which is an observable phenomenon that results in improved performance (Stelmach,

Kelso, & Wallace, 1975; Gallway, 19;'4). Mental practice involves imagining the execution of a

movement and comparing the imaginary movement to the desired movement. Changes can be

made based on detected errors, but naturally the quality of the "feedback" is not as good as when

physically practicing the movement. In M_ANDEIt, there is currently no provision for mental

practice. Therefore, our model cannot account for the differing benefits from these two practice

schemes. In the final chapter, we briefly return to this issue and describe what would be necessary

for M_ANDEIt to account for this phenomenon.

5.5 Discussion

In this chapter we addressed the second half of our primary research goal - the generation of

movement skills. Throughout the discussion, we touched upon constraints and issues related to
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what is known about the generation of motor skills by humans. But predominantly we described

MAGGIE, our computational model of skill generation.

After defining the problem, we reviewed MSANDEa's general representations for movements,

schemas, and motor skills. Here we formally introduced the joint-centered schema, which is the

memory structure that MAGGIE uses to control its jointed limb. One of MSANDER's important

contributions is the flexible representation it uses to represent observed and generated behavior

through the two coordinate frameworks. Furthermore, because it stores schemas simply as se-

quences of state descriptions, the representation supports movements of quite different levels of

complexity.

Next we described MAGGIE's performance and learning mechanisms. The former consists of a

straightforward feedback control system, but the latter represents one of MAGGIE'S contributions

as a computational models motor learning. By employing a set of critics to suggest revisions and

relying on OXBOW to store the changes, we have developed a unique combination of supervised

and unsupervised learning mechanisms.

In closing, we observe that OXBOW and MACGIE, the two major subsystems of MSANDER, each

call the other for some aspect of their associated tasks. Again, note that the separation between

these components is more complete when looking at the tasks instead of the subsystems. The task

of acquiring representations of observed movements is handled entirely by OXBOW. However, the

comparison of an observed movement and the movement spedfied by a concept in memory requires

that the points in the viewer-centered schema be expanded by MAGGIE'S interpolation mechanism.

The task of improving the ability to perform a given skill is mostly the responsibility of MAGGIE,

but again, OXBOW is necessary to access and update the hierarchy of movement concepts.
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CHAPTER 6

Evaluating Movement

Recognition in Mmander

6.1 The Experimental Method

As we saw in Chapter 4, OxBow provides a method both for representing jointed limb movements

and for acquiring a concept hierarchy of movement concepts. Naturally, before we can make

conclusions about the usefulness of such a system, we must know how well the system operates and

improves with respect to some performance task. In this chapter we evaluate Oxsow's behavior

on the performance and learning tasks defined at the beginning of Chapter 4. We first present our

performance measure, followed by a number of experiments. These demonstrate that OXBOW can

recognize observed movements and improve this ability with experience.

6.1.1 The Tasks and a Metric

The performance task for OxBow is to classify a newly presented movement with respect to the

current state of the movement knowledge base. As discussed in Chapter 4, this involves associ-

ating the new instance with a node in the concept hierarchy that represents previously observed

movements similar to the new movement. We have implemented OxBow to let classification occur

without modifications to the concept hierarchy. That is, we use a trimmed version of the learning

algorithm that does not consider tree modification operators and that does not alter the contents

of the nodes in the tree.

A general metric for evaluating a system's ability to classify instances is predictive accuracy

(Fisher, 1987; Gennari, Langley, & Fisher, 1989). For movement recognition, the metric we use

compares an observed movement trace to the movement trace stored with the concept chosen for

classification. We evaluate the system's performance by comparing an idealized test movement to

the movement described by the node of the schema hierarchy at which the test instance is classified;

the result of this comparison is a mean absolute error over the course of the movement. This measure
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indicateshow far,on average,the limb was from the desiredpositions.The errorscoreiscomputed

by findingthe Euclidean distancebetween correspondingjointsof the arm at correspondingtimes

forthe two movements. We takethe absolutevalueofthesedistancesand averageoverthejointsof

the arm and over the time slicesoccurringduring the testingmovement. This correspondsclosely

to the absoluteerrormeasure used in psychologicalstudiesof human motor behavior. The error

scoreswe reportin the followingexperimentsreflectthisaveragingoverjointsand simulatedtime

slices.The units given are foran arm with two jointsoperatingin a reachableworkspace of 200

unitdiameter.

As a conceptformationsystem,OXBOW addressestwo distinctproblems. First,itmust determine

appropriategroupings of movement instancesand, second,itmust form usefulgeneralizationsof

these groupings. The latterisan issuefor OXBOW because itmust establisha mapping between

the structuralcomponents of movements. We can easilycontrolthe firstof thesetwo problems by

presentingonly a singleclassof movements, thereby lettingus evaluateOXBOW's generalization

behavior.That is,we can evaluatehow wellitcharacterizesa setofmovements thathave already

been correctlygrouped. In the next sectionwe testOxsow's generalizationmechanisms and then

move on to itsclusteringmechanisms inSection6.3.The followingtwo sections,6.4and 6.5,contain

the resultsof additionaltestswith differenttasks,and the chapter closeswith severalconclusions

about OXBOW's behavior.

6.1.2 An Artificial Movement Domain

Our experiments with OXBOW have primarily involved an artificial movement domain. 22 We have

created artificial templates that roughly correspond to four natural movements - a slap, a throw,

a wave, and a salute.

As described in Chapter 4, schemas consist of states describing the positions and velocities for

each of the joints in an arm. In our templates, the time, position, and velocity values specify a
L

normal distribution from which values are drawn when generating a new movement instance. The

values (time, position, and velocity) each have their own distributions with independent variances.

Table 6.1 lists the four templates used to generate our artificial movements. The notation cor-

responds to that used in Chapter 4 when we introduced the motor schema. Because these are

joint-centered schemas, the vectors (in square brackets) have only one component specifying the

joint rotation and rotational velocity in polar coordinates. The two arm segments are both 50 units

long and would be the p value for polar coordinate pairs if we had shown them in the table; we have

left this out of the table since they remain constant. The values for time, rotation, and rotational

velocity axe given as means, with the standard deviation shown as the subscript (/_o).

In our experiments with this domain, observed movements were produced by motor schemas

instantiated from the templates. Each value of an instantiated motor schema was generated as a

random sample from the normal distribution having the appropriate mean and standard deviation.

That is, each place holder in the template has its own distribution from which values were drawn

22. However, we also present initial studies of the system applied to actual movement data from cursive letter

generation. Here we describe our artificial domain and delay discussion of handwriting until Section 6.5.
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Table 6.1. The artificial movement templates for the four movement types. Values are denoted as means
with subscripted standard deviations (#a).

sal.ut •

(lo.o,{(Jo,[0.0o.o5],[0.0o.oi]),(J1,[0.0o.o5],[0.0o.oi])})

(300.3,{(Jo,[l.5o.d,[0.0o.oi]),(J1,[-3.0o.15],[0.0o.oi])})

(5Oo.o,{(Jo,[O.To.os],[O.Oo.o,]),(3,,[O.Oo.o5],[O.Oo.oi])})
throw

(Io.o,{(Jo,[-1.5o.o5],[0.00.oi]),(J1,[-1.50o.os],[0.0o.oi])})

(200.2,{(Jo,[0.0o.15],[0.115o.o5]),(Jl,[0.0o.15],[0.115o.o5])})

(40o.o,{(Jo,[1.5o.o5],[0.0o.oi]),(J1, [1.5o.o5],[0.0o.oi])})

slap

(lo.o,{(Jo,[0.0o.o5],[0.0o.oi]),(J1,[-1.0o.05],[0.0o.oi])})

(20o.o,{(Jo,[1.57o.o_],[0.1o.o5]),(J1,[0.00.05],[0.25o.1])}))

wavo

(lo.o,{(Jo,[1.5o.o5],[0.0o.oi]),(Jr,[0.00.05],[0.0o.oi])})

( 5o.2,{(Jo, [0.0o.,5],[-0.09o.o2]),{J1,[-3.0o.15],[0.0o.o2])))
(500.0, {(Jo, [-1.5o.os], [0.0O.Ol]), (Jl, [0.0o.o5], [0.0o.ol])})

when instantiatingmotor schemas. The resultingschema was executed by MAGGIE (without error

correction)and the movement was observed and parsed (inCartesiancoordinates)by Oxsow.

We can adjustthe varianceof the distributionsby a scalefactorto produce setsof movements

that contain differentamounts of variability.We use the term variabilitylevelin the following

experiments to referto the value of thisscalar,which adjuststhe individualdistributionsused to

determine the valuesof a newly generated schema. That is,for a given levelof variabilityk and

a place holderin the template/_, we sample the random numbers from the modified distribution

having a mean of # and a standard deviationof ka. The motor schema generated in thisfashion

isexecuted as describedabove, but the resultingbehavior willhave eitherlessor more variation

from the prototype,as definedby the means ofthe template.

6.2 Learning Single Movement Concepts

By considering only movements of a single type during a given training run, we can control for

clustering errors, as described above. However, even with this control, there are still two potential

sources for error. One is from the process that incorporates an observed movement into the hierarchy

of motor skills (generalization); this process involves finding a best match between state descriptions

in an instance and a stored concept. A second potential source of error is the process that classifies

an observed movement (recognition); this process amounts to retrieving a schema from memory

that is most similar to the observed movement. In this section, we first examine the issue of

incorporating a new motor schema and then turn to the issue of retrieving a motor schema from

memory.
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6.2.1 Constructing the Appropriate Schema

Recall that the learning algorithm treats schemas in two passes - first as a set of individual states,

in order to find the best match to a particular schema concept, and then as a complete sequence of

states, to find the most similar schema among the siblings at the current level of the hierarchy. One

of the first things to verify is that the inner treatment - the determination of the PART-OF structure

for the movement concept at large - is behaving appropriately. We predict that the structure and

values of an abstract schema concept, acquired from instances of a single type (assuming a uniform

sample from the class of movements), would closely reflect the structure and mean values of the

prototype for the class. Therefore, in our first experiment we isolate and evaluate the task of

forming an abstract schema (skill concept) from a set of observed movements. This lets us control

for possible confusions between movements of different types, and lets us determine how sensitive

the generalization process is to variance in the observed data.

To this end, we first trained and tested OxBow on instances sampled from only a single movement

type. In this experiment, we tested each movement type in isolation over 20 runs, with 40 learning

trials in each run. A single learning trial consisted of presenting OxBow with a parsed movement

generated at random. We repeated runs at four different levels of variability (0.25, 0.5, 0.75, and

1.0) for each of the four movement types (slap, throw, wave, and salute) and measured the system's

performance after every other learning trial. The performance metric used to evaluate OxBow in

this experiment compares the prototype with the schema stored at the root node of the schema

hierarchy. Because there is only one movement type presented in a run, and the root represents

the summary over all the observed instances, this comparison lets us control for possible retrieval

problems. Figure 6.1 shows four learning curves, summarizing the reduction of error as a function

of experience and variability level. Each learning curve represents the decrease in error for a single

level of variation, averaged over the four dii_erent movement types.

We can draw two conclusions from this figure. First, the learning rate decreases as the amount

of variation increases. We would expect the system to require more samples in high variability

domains before it could form a satisfactory summary description. Note that after the first few

instances, error has decreased drastically at all four levels. 23 However, at the lowest level error

drops to its asymptote after two training instances, and at the highest level it requires several more

training instances. Second, we see that the asymptotic levels increase with the variability level.

These results indicate that OXBOW has trouble finding the central tendency in domains with high

variance. Because the data comes from a single prototype, we would expect that the prototype

would be recoverable. This effect of variability on asymptote level could either be due to problems

determining the values within the states of the learned motor schemas, problems finding the correct

structure of the states in a schema, or a combination of both.

To help clarify this issue, Figure 6.2 shows the same data in a different format, graphing the

asymptotic error levels for each movement type separately as a function of the structural complexity

inherent in the data. We define complexity as the number of states in a parsed description of an

23. Prior to any learning, we can define error to be the prototypicsl movement compared to a stationary arm, but

we do not show this in Figure 6.1. We have arbitrarily defined the no.l_nowledge condition to leave the arm in

the initial po6ition of the prototype.
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Figure 6.1. Average learning curves when trained separately at four levels of variation in the data.

observed movement. For a given movement type and a single level of variability or noise, we

computed the average complexity over 20 randomly generated movement instances. This graph

shows a number of interesting points. First, it is apparent from the differing asymptotic levels

for the four movement types that the artificial movements we are using are not of equal difficulty.

Additionally, it shows how the asymptote and complexity changes for the different levels of variation

in the data.

From Figure 6.2 we see that changing the variability in the generated movements does not cause

large changes in the structure or complexity of the parsed movements. That is, the number of zero

crossings detected by the parser is roughly uniform for the different levels of variability. For example,

with the "slap" movement, as the variability of the observed movements increases, the asymptotic

error increases, but the structural complexity of the learned schema changes only minimally. The

"wave" and "salute" movements do show some increase in structural complexity, but these have

relatively little increase in asymptotic error. This stability of the parsed structures with respect

to variability suggests that the increased asymptotes in Figure 6.2 do not result from failure to

determine the appropriate PART-OF structure for the movement concept, but rather from problems

in determining the correct values within the states.

This figure also reveals a surprising result - that increasing complexity tends to decrease asymp-

totic error level. This non-intuitive result is not without precedent; for instance, vision researchers

found that more complexity in the environment makes things easier to disambiguate (Waltz, 1975).
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Figure 6.2. A comparison between asymptotic error rates and complexity of input data at different levels of
variation.

This suggests that OXBOW should scale up to more complex environments and movements. In

future work we intend to study this particular result and evaluate the extensibility of our methods.

Overall, this first experiment indicates that OXBOW captures the PART-OF structure found in

observed movements when faced with only a single type, but that its ability to form accurate

state descriptions is hampered by increased amounts of variability in the movement data presented

during training. That is, we showed that the variability level affects asymptotic error rate but not

movement complexity. Furthermore, the results indicate that greater complexity in the training

movements leads to improved asymptotic performance.

6.2.2 Retrieving the Appropriate Schema

In Chapter 4 we saw that OxBow relies on its retrieval mechanism to locate a stored concept

that is similar to an observed schema. In the previous subsection we used the root of the concept

hierarchy as the source for comparison and measurements of error. For an initial study of learning

single movement concepts, this was appropriate because we only presented instances of a single

type and the root should provide the best "average" or summary of all the observed movements.

Retrieving a more specific concept would be considered overfitting and should yield a higher error

score. However, we predict that there are situations in which performance is actually improved by
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Figure 6.3. A plot of the difference between asymptotic error in the root retrieval condition and the standard
retrieval condition (root - regular) for the four levels of variability considered.

retrievinga more specificconcept than the most generalsummary description.The reasoninvolves

the nature of the abstractionor characterizationprocess. Whenever heuristicsearchisinvolved

in the generalizationprocess(matching structuralcomponents, and especiallypartialmatching),

mistakes in the search can lead to non-optimal concept representations.This leavesopen the

possibilitythat the root node, as the "complete summary" over both component structureand

attributevalues,may leadto largererrorsthan more specificnodes in the schema hierarchy.Given

the nature of OxBow's partial-matchingmechanism for statedescriptionswithin a schema, we

predictthat such willbe the casehere.

To testthisprediction,we repeated the firstexperiment but insteadused Oxsow's standard

mechanism to retrievethe schema used forcomputing errorscores(seeChapter 4). In the current

context of singlemovement domains, thiswould usually be expected to sufferfrom overfitting

and perform more poorlythan observedin the previousexperiment.We referto thisas the regular

condition,and inthisexperiment compare itsresultsto thepreviousrootcondition,where we simply

used the root node as the best classification.We are not particularlyinterestedinlearningratesin

thiscase,sincethisstudy only variesthe retrievalmechanism. _4 Therefore,Figure 6.3 shows the

differencebetween asymptotic errorlevelsinthe rootconditionand the regularcondition.Negative

24. That is, the same instances were presented in the same order and the same classification choices (during learning)

were made in both conditions.
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Figure 6.4. Plots of the differences in asymptotic error levels for the root and standard retrieval conditions
(root - regular) for each individual movement type. Results are displayed for a variability level
of 0.125 in addition to the levels from Figure 6.3.

values indicate that the standard retrieval in the regular condition is doing worse than the method

of selecting the root node; this is the standard notion of overfitting. The asymptotic values are

given for the four levels of domain variability averaged over the four movement types. The results

support our prediction. Although the overfitting condition generally does worse than the root

condition, the degradation decreases with the amount of variability in the domain and, at the 0.25

level of variability, performance in the regular condition exceeds the root condition averaged over

the four movement types. From this trend, we hypothesize that at levels of noise lower than 0.25,

even greater advantages are gained over the root condition.

To test this hypothesis, we ran OxBow under both conditions of retrieval at a lower level of

movement variability. As expected, we found that the regular condition outperformed the root

conditionto an even greaterextentthan shown in Figure6.3.However, the resultsforthe individ-

ual movement types revealanother interestingcharacteristic.Figure 6.4 presentsthe asymptotic

differencesas computed forFigure6.3,but foreach ofthe movement classesplottedindependently.

From thisgraph we see that each movement type reaches the cross-overpoint,where standard

retrievalbeginsto deteriorateperformance,at differentlevelsofnoise.Furthermore, thereappears

to be a correlationbetween schema complexity and the trade-offpoint similarto that found in

Figure 6.2.
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In summary, we have established a baseline of error levels to which we can compare later results.

Furthermore, we have found that increased variability in the domain leads to greater asymptotic

error levels and that individual movement complexity correlates inversely with asymptotic error

level. We also compared two retrieval methods and found that what would normally be thought

of as "overfltting the data" actually produced better results in some cases. Although the root

condition was shown to be superior for most variability levels, this retrieval method was only

applicable because the system was learning a single concept. In general, we are interested in

evaluating OXBOW'S ability to appropriately form multiple classes present in the observed data,

and this requires that we rely upon the regular retrieval mechanism. Having collected the results

in the regular condition for single movements, we can compare them to OXBOW's results on the

problem of acquiring movement concepts drawn from a domain with multiple movement classes.

6.3 Concept Formation for Multiple Movements

If we had first tested OxBow on acquiring multiple concepts simultaneously, we would not have

known whether performance errors were caused by confusions between categories when classifying

an observed movement, problems identifying the appropriate PAKT-OF structure for a particular

node in the hierarchy, or both. The previous study established a baseline for comparison. We can

expect that errors above and beyond those reported in the previous section are a result of problems

distinguishing between movements of different types. In particular, we predict that having more

concepts to learn at a time will slow down learning (require more training instances to reach

asymptote) because instances of each individual concept will be observed less frequently than in

the separate training condition. Additionally, we predict that the asymptotic levels should not be

significantly affected, even though the learning rate should be.

To study these predictions, we ran an experiment in which Oxsow observed movements from all

four of the classes, each with an equal likelihood. We presented 40 training instances, from which

the system constructed its hierarchy of movement concepts. After every other training instance,

we stopped learning and tested the system's performance as described above. We repeated this

process at the same four variability levels as before. Figure 6.5 shows the average error (over the

four movement types), again as a function of experience and noise level. The errors are averaged

over 20 runs with different training orders of the movement types.

The results support our main prediction; that increasing the number of concepts decreases the

rate of learning. Comparing Figures 6.1 and 6.5, it appears that OXBOW reaches asymptote at

between two and four instances in the separate training condition, and after about 20 instances in

the mixed condition.

Since the movement types are selected randomly, more instances are required in order to reliably

have observed three or four of each type. In this case, the 20 trials to asymptote is what we might

expect given that there are four movement classes and that, individually, three or four trials are

needed. As it appears that misclassifications are not a significant problem, this slowdown of learning

rate gives some indication that OxBow accurately distinguishes between observed movements of

different types.
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Figure 6.5. Learning curves when trained on multiple classes simultaneously (mixed training condition) at
four levels of variation.

The evidence for the second part of our prediction - that asymptotic error should not be sig-

nificantly affected - is less dear. Figure 6.6 compares the asymptotic performance from Figure

6.5 under the mixed training condition to the asymptote levels found for learning single concepts

under the regular retrieval condition. The corresponding asymptotes are plotted for each of the

noise levels. The curves indicate a small but definite increase in asymptotic error levels between

the mixed and separate training regimes. An analysis of variance indicates that this difference is

statistically significant at the p = 0.031 level, but there is no significant interaction effect between

noise in the input and the number of concepts being learned. Although this difference was sta-

tistically significant, we do not believe that it represents a strong relation between the number of

concepts and the asymptotic error level. Additionally, the difference between the conditions was

very small - apprtvdmately a single percentage point.

We carried out an additional study to help identify the strengths of the previous findings. We

predicted that the number of trials to asymptote would vary significantly with the number of con-

cepts learned, but that the asymptotic levels should not vary. This experiment evaluated OxBow's

learning rate and asymptote for learning two and three concepts at a time. Because our earlier

experiments on learning single movement types indicated that the difficulty of the four artificial

movements varied, we considered all possible ways of choosing two and three concepts out of the

four. This led to four sets of runs for the three-concept condition and six sets for the two-concept
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condition.In each case,the selectedmovements were equallylikelyto be observed. We ran 15

trainingsequences for each possiblecombination of two and three concepts,then averaged the

results.The resultsgiven in Figure 6.7 support our predictions.The number of trialsneeded to

reach asymptote increasesregularlywith the number of concepts being learned.More important,

the levelof the asymptote appears unaffectedby the number of concepts in the domain. This

suggeststhat Oxsow's recognitionperformance isrobustwith respectto increasingthe number of

concepts.

6.4 Predicting Unseen Movement

In the previous experiments, the performance measure corresponded to what has been termed

recognition in the psychological literature. That is, the complete prototype of a particular movement

class was classified and a comparison was made across the entire duration of the movement. In real

life, one would more likely observe a partial movement and need to predict the continuation of the

movement. Observing a portion of a movement and predicting future movement corresponds to the

task of recall in the psychological literature. If we ignore issues of learning, varying the amount of a

test movement that is observed provides a method for adjusting the difficulty of OxBow's retrieval

task, thereby allowing a more direct assessment of its contribution to error.
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Figure 6. 7. Three separate learning curves for learning two, three, and four concepts at a time.

Thus, in a third experiment, we trained OXBOW as described before, but we altered the perfor-

mance task as alluded to above. When testing, we presented only a portion of the prototypical

movement and then measured error over the remaining unobserved movement. Note that complete

movements were given during training and only when evaluating system performance did we limit

the extent of the observed prototype. We can compare errors among different lengths of predicted

movements because we average the total error by the number of time slices compared during predic-

tion. Any differences in errors can be attributed to classification problems during retrieval, because

the knowledge base is the same for each level of observation at a given point in training.

This formulation of the task suggests a prediction: as less of the movement is observed, classi-

fication should become more difficult and mistakes should lead to greater measured error. Simply

stated, the more one is able to observe, the more one should know about what will happen next.

Figure 6.8 shows the learning curves from an experiment in which we varied the portion of the

movement to be predicted. We fixed the variability level at 0.5 and averaged the results over ten

runs of 30 training instances each.

The figure shows that when OXBOW is predicting 80% of the movement (observing only the

first 20% of the movement), the errors are consistently the highest (except very early in training,

when not all the movement types have yet been seen). However, there is little difference between

predicting 50% of the movement and only 20%. This result suggests that the system is not severely

affected by having less information available for classification, except in extreme cases like the
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80% condition.Itfollowsthat there must be some point at which classificationaccuracy begins

to significantlysuffer.From previousexperiments we know that increasingthe variabilityin the

domain increasesthe asymptotic errorlevels.We have supposed thattheseraisederrorlevelsoccur

because the increasednoise makes itmore difficultto constructhigh-qualitygeneralizationsfor

the concepts. It seems reasonableto suppose that poor representationsin memory make correct

classificationsof new instancesmore difficult.Above we showed that observing lessof a test

movement makes classificationmore difficultand eventuallyleads to increasederror (attributed

to misclassifications).When two factorsinfluencethe same mechanism - in thiscase noise and

observationlevelboth making classificationmore difficult- the factors'influencesmay interact

in a multiplicativefashion.This leads to another prediction:as the trainingdata becomes more

variable,the system should requirelargerportionsof the testmovement in order to prevent the

errorfrom increasing.

To testthisprediction,we ran OXBOW in partialpredictionmode while trainingon data with

differentlevelsof variability.In a singleexperimental run for a given levelof noise,we trained

OXBOW on 60 observed movements and testedpredictiveperformance afterevery four training

instances. We consideredfour levels(80%, 60%, 40%, and 20%) of the portion of movement

that was observed and availableto the classificationmechanism. As before,the remainder of the

movement was predictedusing the node retrievedfrom the schema hierarchy.For each condition
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Figure 6.9. Asymptotic error leveh after 60 training instances for four levels of domain variability and four
levels of the portion of test instance to be predicted.

of noise and observation level, we averaged the results over 20 different training orders to control

for order effects.

In this experiment, we again were only interested in asymptotic error levels because we had

already considered the affects of variability upon learning rate (shown in Figure 6.7). Altering the

performance task in this way should not affect learning rates. Figure 6.9 shows the asymptotic error

rates for the four levels of noise as a function of the portion of each test movement to be predicted.

The graph indicates similar asymptote levels for the 0.25 variability condition but a wide range of

asymptotes for 1.0 level. Separate analyses of variance for these two variability conditions reveal a

statistically significant difference in 1.0 condition (p < 0.001) but no difference in the 0.25 condition

(p > 0.1). This would seem to support our prediction of an interaction between noise and portion

observed. However, an analysis of variance over all the data shows a significant main effect of the

portion to be predicted, but no significant interaction between the two factors. 2s Although our

prediction was not strongly supported, the results indicate a relative robustness of the system's

retrieval mechanism with respect to noise; that is, when learning from highly variable data, the

system is no more adversely affected by incomplete data than when learning from very regular data.

25. An analysis of vaxiuce for a design containing only high and low levels of noise (removing the 0.5 and 0.75 noise

levels) indicates a significant interaction with p < 0.05.
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More important, the above experiments hold the learning system constant while varying the

amount of information in the test movement, thus indicating the sensitivity of the classification

process. The results suggest that OXBOW is not making misclassifications when given partial

structures in the input. This provides supporting evidence that the increase in error observed

in conjunction with increased variability in the domains is due to problems in the generalization

process when incorporating new experience. Understanding and reducing these errors remains a

topic for future research.

6.5 Recognizing Handwritten Letters

The artificial movements introduced above served a useful purpose for evaluating our method of

movement acquisition through observation. They were defined by an explicit prototype from which

a class of similar movements was generated. However, it is sometimes possible to lose complexities

inherent in real-world domains when constructing artificial domains in order to evaluate a particular

system or theory. Testing a model on a "real-world" domain helps support a claim that the model's

methods are generally useful. In this section we present experiments testing OXBOW'S recognition

of handwritten letters of the alphabet. Note that this is not the recognition of letters themselves,

but rather recognition of the movements that generate letters.

For the following studies, we consider the letters m, a, 0, i, and e. The author generated 63

instances of each letter with his non-dominant hand using a computer mouse. Each letter instance

was generated by dragging the mouse, which controlled the endpoint of the arm, and collecting

the positions and velocities of the hand during the generation of the letter. For a two-jointed arm

with an initial configuration and a fixed base, the movement of the elbow joint is determined by

the movement of the hand. This procedure resulted in 315 raw movement traces, which were then

parsed as described in Chapter 4 and handed to OxBow. These letter movements were divided into

a training set of 210 instances (42 of each letter) and a test set of 105 instances (21 of each letter).

In the following experiments, training letters were randomly drawn (with replacement) from the

training set of 210 instances and the system was tested on the entire set of 105 test instances. 26

In the previous studies we compared the prototypical movement with the movement stored at

the node of the schema hierarchy where the prototype was classified. In this way we quantified

the error introduced by OXBOW. However, in this case we have no such prototype for comparison.

Instead we have fallen back to a simpler task - that of letter-type prediction. In this context, the

letter name (e.g., "a') of a training movement is stored at each node in which the movement is

incorporated during the classification process. That is, the letter-name attribute is updated as

if it were just another attribute in the instance description, but this particular attribute is not

used to calculate category utility when determining the quality of competing classifications. The

recognition "accuracy" of a given test letter is then computed by considering the letter names of

the instances stored at the node of the schema hierarchy where the newly observed movement is

classified. The most frequently occurring letter at the node is compared to the observed letter. If

26. We should note that this data set is extremely noisy due to two factors: the movements were generated by the

non-dominsmt hand, and they were recorded using ,_ Sun 3/60 workstation running Unix.
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Figure 6.10. Letter recognition accuracy on a test set of 105 hand-drawn script letters plotted as a function

of the number of training letters observed.

they are the same, then the letter has been correctly recognized. If n letters are equally the most

frequent and if the label of the observed letter is one of these, then (under a random selection

scheme) the letter is said to be correctly recognized at the l/n level. Otherwise, this test letter is

incorrectly recognized. From this method we obtain the percentage of correct classifications over a

set of test instances at a given stage of training.

Our first study with recognizing letter movements considered the main effect of improved letter

recognition as a function of observation experience. Just as we saw error decrease in the artificial

movement domain, we predict that classification accuracy should increase from an initial level of

20% (chance in the case of five letters). Figure 6.10 shows the learning curve averaged over 15 runs

of 160 training instances each, and uses a logarithmic scale for the number of training instances.

We evaluated OxBow's performance after 5, 10, 20, 40, 80, and 160 instances on each run. The

curve in the figure shows the average classification accuracy at each of these training levels. As

predicted, the scores increase as a function of experience but the equal increments in recognition

accuracy require successively greater amounts of training experience. However, a question remains

about whether the learning rate for letter recognition is affected by the number of letters being

learned, as we saw in Figure 6.7 with artificial movements.

As a further test, we partially replicated the earlier experiment in which we varied the number of

concepts to be learned. Our prediction is that, as in the artificial movement domains, the number
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Figure 6.11. Learning curves for training (and test) alphabet sizes of two, three, four, and five letters as a
function of training experience plotted on a logarithmic scale.

of lettersin the alphabet should affectlearningratebut not asymptotic level.As a testof this

prediction,we ran OxBow with two, three,and four lettertrainingand testsetsas described

above._7 However, in thiscaseitwas not practicalto testallpossiblecombinations of two, three,

and fourlettersout offive.Insteadwe selectedsinglesetsoftwo,three,and fourletterstorepresent

the differentnumbers of conceptslearnedsimultaneously.The appropriate42 trainingand 21 test

instancesforthe selectedletterswere collectedintonew trainingand testsets.Figure 6.11shows

the resultsfrom two, three,and fourlettersat a time superimposed upon the resultsfrom Figure

6.10,which shows fivelettersat a time. As in our earlierexperiments,we see that reducing the

number of concepts to be learned - in thiscaseletters- increasesthe learningrate.

We mentioned that one drawback of naturaldomains was the difficultyof quantifyingthe "de-

sired"conceptualstructure.However, one significantadvantage isthat we can easilycompare the

resultsproduced by a fabricatedsystem to the resultsproduced by humans on the same type of

task.In thiscase,we can considerthe typesof mistakes OxBow makes during letterclassification

and seewhether they correspond to the typesof errorsthat people make.

In thisstudy,we slightlymodified the evaluationprocedure.Insteadofrecordingthe prediction

of a letter'slabel as corrector incorrect,we storedthe actualletterpredictionsin a confusion

27. Given our performance task and our metric for the letter movement domain, learning a single letter at a time

would always yield 100% predictive accuracy.
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TabJe 6.2. Confusion matrix for observed letters (left-hand column) and their classifications (row) after 160
trials.

m a g i e

m 0.768 0.060 0.003 0.104 0.064

a 0.106 0.803 0.041 0.053 0.006

9 0.000 0.009 0.962 0.028 0.000

i 0.044 0.022 0.009 0.744 0.179

e 0.073 0.084 0.000 0.197 0.646

matrix. For each of the five possible letters given as a test instance, a set of cells stored the number

of times each respective letter was given as the test letter's classification. The resulting 5 x 5

array gives us a picture of the types of confusions made by the classification system. The natural

prediction is that similar letters, such as i and e, will be readily misdassiiied as each other and have

low individual classification scores, but that distinctive letters, such as 9, will have few confusions

and willhave high classificationscoresfls

Table 6.2 shows the confusion matrix for the set of runs in Figure 6.10. The values in each cell

axe averaged over the 15 runs. Inspection of the table reveals that e and i axe the most frequently

confused of the letters. This agrees with our prediction that i and e are the most similar of ra, a, g,

i, and e, and should therefore be the most difficult to identify and to discriminate. Furthermore, we

see that e's are more frequently mistaken as t's than t's are for e's. Also, we see that the letter 9, the

only letter of the set that descends below the line, is the most accurately recognized. These three

observations support a claim that OxBow is making the same types of error that we would expect

humans to make. We might further expect that e's and i's are located close to one another in the

schema hierarchy, giving further explanation for the confusions. This is an issue of tree structure

and is beyond the scope and intent of the current work, but this study points to confusion matrices

as a possible method for understanding the behavior of concept formation systems.

6.6 Conclusions

The experiments describedinthischapterwereintended toevaluatethe claimthat OXBOW provides

a viablemechanism forthe storageand organizationofmotor schemas. Taken together,theyprovide

strongsupport forthisview.

In particular,we argued fourimportant points.Firstwe claimedthatthe partialmatching mech-

anism findsappropriatecorrespondencesbetween the temporal structureininstancesand concepts.

28. Keep in mind that similarity is determined in the space of handwritten letters. The letters i and e are similar in

shape and the letter _ is the only descender in the group of chosen letters.
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The partialmarcher representsone of OXBOW'S advances over other concept formation systems,

so the resultsin Figure 6.2,which showed an actualimprovement with increasingmovement com-

plexity,were especiallysignificant.A secondpointisthatthe learningand recognitionmechanisms

seem robustwith respectto the number of concepts presentin the domain. This isan important

point to establishifwe expect our system to scaleup to more complex applications.Third, we

showed thatOXBOW couldrecognizepartiallyobservedmovements, and thatclassificationaccuracy

was not criticallysensitiveto the amount ofthe movement observed.Any real-worldsettingwould

seem to requiresome analogous capabilitythat letsan agent predictfutureeventsbased on cur-

rentones. Finally,we showed that OXBOW handles a real-worlddomain that involvesrecognizing

cursivelettermovements. We alsonoticedthat OXBOW made the same types of mistakes that we

would expect humans to make; thisamounts to a predictionthat could be empiricallytestedin

the laboratory.Our predictionemphasizes a point that has been largelyignoredin thischapter;

the majority ofmotor phenomena reportedin the literaturehave addressedgenerationratherthan

recognition.In the future,connectingthispart ofour researchto psychologicalphenomena willbe

a high priority.

At the beginning of thisdissertation,we stated that recognitionof movements and learning

through observationwas only the firstpart of our goals.We expect the same mechanisms to par-

ticipatein the generationofmovements and the improvement of such generationthrough practice.

In the next chapter,we evaluateM_ANDER inthe contextofgeneratingmovements thathave been

previouslyacquired through observation.
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CHAPTER 7

Evaluating Movement

Generation in Mmander

7.1 Introduction

In the previous chapter we demonstrated that MJEANDER, using Oxsow, could learn to recognize

classes of movements through observational learning. However, we set out to construct a compu-

tational model that addressed not only the recognition of movements, but also the generation of

movement skills acquired through observation. MAGGIE serves this role in M_EANDER by taking a

skill concept from OXBOW and using the joint-centered schema to perform a movement that is as

ddose as possible to the one described by the viewer-centered schema. Furthermore, we noted in

Chapter 5 that the quality of the model's generated movements should improve through practice.

Accordingly, MAGGIE refines the joint-centered schema when it notices errors during performance,

and asks OXBOW to store the revised schema with the corresponding viewer-centered schema. In

this chapter we evaluate M_ANDER'S ability to achieve these goals using MAGGIE's generation

capabilities and Oxsow's mechanisms for memory organization and retrieval.

The tests described below follow the experimental methodology developed in the previous chapter.

All the movements considered occur in the plane with the two-jointed arm described in Chapter

3. Here we use the same set of artificial movement classes introduced in Chapter 6, as well as the

handwritten letter set. Recall that we view motor skills as being first acquired through observation,

and then improved through practice. In this vein, we first primed M_EANDER'S knowledge base of

movements by having OXBOW construct an initial concept hierarchy by observing 120 randomly

selected instances from the artificial movement domain. (We will discuss the handwriting domain

later.) We generated these instances at the 0.5 level of variability and sampled the four concepts

in a random order. This initial hierarchy had a mean absolute error of 6.09 during recognition

of the prototypical test instances; this is close to the average asymptotic values found in Figure

6.7. 29 M._ANDER started with this initial knowledge for all of the experiments using the artificial

movement domain that we report in this chapter.

29. As in Chapter 6, the units given in this chapter reflect a two-jointed arm with a reachable work space of 200 unit

diameter.
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In testing M_EANDER'S ability to generate acquired movement skills, the system first retrieved a

movement and then attempted to generate it. The retrieval was done as before, using prototypes as

probes, and the retrieved node was then used to generate the behavior. Prior to learning through

practice, no joint-centered information was available. In this case, the retrieved viewer-centered

information was used to create a schema that holds the arm motionless at the initial position. The

resulting error was not the worst possible, but it was still quite large. Once practice has caused

joint-centered information to be stored at the retrieved node, an improved joint-centered schema

was available for recall and execution. In either case, the generated behavior was compared to the

movement described by the viewer-centered schema at the retrieved node.

In Chapter 2 we discussed a number of phenomena that have been observed in human motor

behavior. In the following section we address the behavior of MAGGIE's movement generation

component with respect to those phenomena pertaining to performance. Next, we evaluate the

system's learning operators and their behavior, and consider M$ANDER's behavior both as a com-

putational model and as a psychological one. We conclude with a summary of the results from

these experimental studies of MSANDER's generation and improvement of motor skills.

7.2 Behavior of the Performance System

To review from Chapter 5, MAGGIE'S performance task is to generate motions that are similar to

movement concepts acquired through observation. As usual, the learning task is to improve behavior

on the performance task through experience and, in this case, to modify the representation based

on errors detected during practice. In this section we ignore learning and focus on factors that

influence the quality of generated movements at a given level of generative expertise. These factors

include the parameters that control the performance mechanism and the speed of execution.

7.2.1 Parameters affecting performance

Our description of MAGGIE in Chapter 5 introduced several system parameters that could influence

various aspects of the overall behavior. In general, we want the system's performance to be robust

with respect to particular settings of those parameters. That is, the system's behavior should not

change radically as a result of small changes in any of the parameters. In our first experiments we

evaluate MAGGIE'S sensitivity to changes in those parameters that might affect performance. In

the case of each parameter, we predict that, at worst, the system's behavior will reflect a graceful

degradation with changes in the parameter.

Recall that when MAGGIE detects an error its default response is to generate an error correction

that exactly compensates for the current error. Frequently, the model detects an error as the

deviation is becoming progressively greater, and radical corrective action is in order. However,

such a remedy can also result in overcompensation, leading the model to 'overshoot' the desired

position or trajectory. The compensation parameter controls how much the system overcorrects or

undercorrects by scaling the magnitude of the error correction in response to a detected error.
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Figure 7.1. Schema execution performance averaged over the four movement types plotted as a function the
compensation parameter, a scalar controlling the magnitude of error corrections.

To study the effect of this parameter on performance, we ran the system on all four movement

types at nine different compensation settings. In this experiment (and all the parametric studies

to follow) we primed M_EANDEIt's knowledge of movements with 60 practice trials after the 120 ob-

served movements mentioned above. For the compensation parameter, the initial practice prevents

a bias toward overcorrections in response to a schema describing a motionless arm. This scheme

does not confound performance and learning, in that the knowledge base is held constant for the

different settings of the parameters.

Figure 7.1 presents the effects on the model's behavior as one alters the value of this parameter.

We see a shallow U-shaped curve, indicating that error increases gradually with over- and under-

compensations. This supports our prediction of a graceful performance degradation. One thing

the graph does not show is the nature of the movements generated with the different settings of

the parameter. Although the mean absolute error does does not increase rapidly until above 1.75,

the characteristics of the movements change noticeably even at the 1.25 level. For instance, instead

of a movement with smooth corrections as necessary, the hand may follow a jagged line that cuts

back and forth across the desired path. This effect becomes quite significant at the 1.75 level, even

though absolute error is still relatively low. Although we did not plan the model to behave in this

fashion, we believe it makes sense. A high setting for the correction parameter will cause the system
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Figure 7.2. Average movement error as a function of the duration, a scalar parameter controlling the length
of time a correction is applied.

to overcompensate, and this can lead to oscillations. 3° This characteristic behavior is frequently

observed in humans, especially when performing novel or di_cult tasks.

Another of MAGGIE'S parameters determines the duration of an error correction. That is, an

error correction of a given magnitude can be applied all at once with a great burst of force, or over

a longer period of time with a more gentle force. As long as this duration parameter is less than

the monitoring frequency, changes to the duration should have little or no effect. However, when

the duration extends beyond a single cycle, we would predict that the effect should be similar to

that observed for over-compensation. This should result because the longer duration stretches the

correction over a long period. When it is time to monitor again, only part of the original error has

actually been corrected, and therefore the remaining portion will be counted twice. This should

cause the next error correction to be artificially large, as the extra error would have been corrected

eventually by the previous cycle of monitoring and error correction.

Figure 7.2 shows the results of varying this parameter over a range of settings, from correcting all

of the error in two time slices to stretching the correction out over a total of three monitoring cycles

(four time slices each). In agreement with our prediction, we see the mean absolute error increase

as the duration parameter increases. The amount of increase corresponds closely to the increment

in error when increasing the compensation parameter. However, in this case there is a way to avoid

30. The default value of the compensation parameter is one.
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this performance degradation. Pew (1974) suggests that information about corrections in progress,

is shared across between monitoring cycles. This approach avoids the multiple avoids the multiple

correction problem we observe here. 31

A final parameter that we should consider is the frequency of monitoring during a movement.

This parameter controls how often the error-correction mechanism has the opportunity to improve

a movement. We view the frequency of monitoring as a parameter that should be under the

conscious control of the acting agent. This is related to the issue of attention. When the monitoring

frequency is small (i.e., the agent is paying close attention and monitoring frequently), errors are

quickly detected and corrected before they become large and significantly degrade performance.

We predict that, for a given movement at a luted skill level, the larger the monitoring frequency

(the fewer actual opportunities to make corrections), the larger the error.

Figure 7.3 shows MAGGIE'S performance over a range of values for this parameter. At first

glance, the results appear to contradict our prediction, instead showing the most severe errors

when monitoring very frequently. However, as we discussed above in the context of the duration

parameter, this is not surprising because we held the duration parameter at its default of four time

31. We have chosen not to implement this type of mechanism because we are focusing on the integration of skill

acquisition and skill improvement. Nothing precludes such a mechanism, and we intend to follow up on this issue

in future work. Our default value of the duration parameter is the same as the default monitoring frequency,

which is set to four.



90 LEARNING HUMAN MOTOR SKILLS

slices.Accordingly,when the monitoring frequency islessthan the correctionduration,we can

expect such amplifiederrors.Again, the mechanism suggestedby Pew would correctthissituation.

However, the resultsforsettingsabove fourwould not be alteredby thisproposed mechanism and

they currentlyconfirmour originalprediction.

In summary, each ofthe parameters consideredhereshows some effecton performance,but none

of them indicatesa brittlenessin the system that would be consideredundesirable.One caveat

isthe high errorratesresultingfrom low valuesof the monitoring frequencyparameter; we have

accounted forthisbehavior and suggestedhow itcan be correctedwithinMJEANDER's framework.

Also,ifwe considerthe data forthe movement typesindividually,we seeconsistentbehaviorswith

respectto changes in the parameters.Therefore,we may assume that the defaultvaluesfor these

parameters axe not requiredin order for MAGGIE to perform reasonably. Now let us turn our

attentionto how wellthe performance model accounts forpsychologicalphenomena.

7.2.2 Human Performance Phenomena

In Chapter 2, we discussed a number of phenomena in the psychological literature that constrain

plausible models of human motor behavior. We noted that one of the most robust findings in

human performance involved a tradeoff between the speed at which a movement is generated and

the accuracy of the resulting movement. Although we presented two different versions of this

tradeoff, our task most closely corresponds to the time-matching tasks in which the linear tradeoff

holds (Schmidt et al., 1979; Write & Meyer, 1983). Since MAGGIE call run motor schemas at

different speeds, we can test the model's ability to account for this tradeoff. We predict not only

that error will increase as execution speed increases, but that the rate of increase should be linear.

To test this prediction, we primed the knowledge base with the 120 observed movements as

before. In this case, the movements generated were based upon a naive joint-centered schema that

holds the arm motionless at the initial position. We varied the speed by multiplying the movements

by a scalar factor. Figure 7.4 shows a scatter plot of the errors for each of the four movement types

at differing execution speeds. Clearly, executing the schemas at higher speeds leads to greater

errors, thereby confirming the Krst part of our prediction. This effect emerges naturally from the

inherent delay in error corrections. The more quickly the system runs a joint-centered schema, the

farther the arm will travel during the fixed delay. Note that this is not a sufficient explanation of

the tradeoff in psychological terms, as ballistic movements of shorter than the delay for humans

(200 msec.) also display this tradeoff. We acknowledge that other mechanisms contribute to the

phenomenon (Schmidt, 1985; Meyer et al., 1990).

The second part of our prediction, the linearity of the trade)if, is less clear from our results. Ap-

plying a linear regression to the data produces a good fit (r -- 0.8903), but one that is not extremely

strong by psychological standards. One explanation for the weakness of this fit is that each move-

ment type is inherently different in character and difficulty. The psychological experiments used

to study this phenomenon compare results from a single movement pattern at different speeds and

distances. Viewed in this light, our regression is comparing apples and oranges, and the reasonably

good fit we obtained is surprisingly good! If we follow this idea and perform regressions on the data
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Figure 7.4. The best linear model fit to the execution data showing mean absolute error as a function of
movement speed.

from the individualmovement types at variedspeeds,we get much strongercorrelationcoefficients

(r = 0.9960,0.9550,0.9851,and 0.9668,respectively).In terms of Schnddt et al.'s(1979)tradeoff

function,S = A -{-B(D/T), we can interpretthe differentslopesofthe regressionlines(not shown)

as a reflectionof movement di_culty.32 This notion issupported by Figure 6.2,which revealed

that the asymptotic errorlevelsforeach ofthe movement types differedconsiderably.

We believethat thistradeoffdemonstrates the continuum between open-loop and closed-loop

behavior (Stelmach, 1982),which reflectsthe amount ofmonitoring thatoccursduringmovements.

When performing a skillslowly,one can make frequentadjustments,thus operatingina closed-loop

mode. As the speed of the skillisincreased,the performer monitors lessoften,thereby moving

performance towards the open-loop end of thiscontinuum. We address a number of other issues

elsewhere (rva _z Langley, 1987).

Our model also provides an account for the transfer of motor skill between limbs (Raibert, 1976).

This phenomenon concerns the qualitative similarities between stylized movements performed us-

ing different appendages. M_ANDEIt stores each joint-centered schema without reference to the

particular limb involved. Thus, the system could take a schema designed for shoulder, elbow, and

wrist joints and execute it on a different arm or even on a hip, knee, and ankle. However, to the

32. Recall from Chapter 2 that S is the studard deviation (variable error), D is the distance traveled, T is the length

of time taken by the movement, mad A and B are constants.
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extent that learning has fine tuned the schema for a given set of joints, performance will degrade

drastically when it is run on limbs with different physical characteristics. However, the overall

qualitative characteristics inherent in the schema would still be present. We have not yet run tests

of this sort, but we predict this behavior would follow naturally; this is one of our priorities for

future research.

One final performance phenomena (not discussed in Chapter 2) that we mention here is the

longer reaction times necessary to initiate more complex movements (Fischman, 1984). This "set-

up" time is explained in M_ANDER as the longer time required to classify a complex motion.

Again, we define complexity relative to the number of state descriptions in a schema. Retrieving a

joint-centered schema from an indexed concept node takes an amount of time proportional to the

number of state descriptions in the probe.

In summary, MAGGIE explains a number of well-known phenomena relating to motor perfor-

mance. However, our main concern is with learning. In the following section we describe the

model's empirical behavior on this dimension and its relation to human motor learning.

7.3 Behavior of the Learning System

In addition to MAGGIE'S performance characteristics, which we considered in the previous section,

we are naturally interested in how the system improves its performance as a result of practice.

However, in the context of learning, recall that OXBOW serves as MAGGIE's sole memory inter-

face. Therefore, in order to evaluate improvement, we consider M_ANDER as a complete system

made up of OXBOW and MAGGIE. We assumed this in our experimental studies of performance,

but here we make this explicit: in order for improvements to be realized, OXBOW must properly

store and retrieve the modified schemas that MAGGIE generates. Where appropriate, we view our

experimental studies in the light of those psychological phenomena that pertain to learning.

7.3.1 Improvement Through Practice

Naturally, we would expect that, as M,4EANDER gains experience through practice, its performance

will improve on later executions. Furthermore, we would expect improvements to be significant

early on but that performance should approach an asymptote with later practice. To test this main

learning effect, we again primed Oxsow with 120 observed movements sampled randomly from the

fourartificialmovement types.These traininginstanceswere generatedat the 0.5 variabilitylevel.

With the resultinghierarchyofviewer-centeredschemas, we had MAGGIE practicethe fourmove-

ment types (inrandom orderings)for 100 practicetrials.We measured performance by comparing

the executed behaviorto the viewer-centeredschema thatwas retrievedby a probe ofone ofthe four

prototypes.Figure7.5shows the reductionin MAGGIE'S absoluteerrorover the courseof practice.

These valuesare averaged over the fourmovement types and over ten differenttrainingorderings.

The figureindicatesthat,as expected,the system'sperformanceimproves quiterapidlyafterinitial

practice,but then improves more slowlyand levelsoffaltogetherwith subsequent practice.
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Figure 7.5. A basic learning curve showing the reduction in execution error as a function of practice experi-
ence, averaged over the four artificial movement types.

In Chapter 5 we introducedMAGGIE'S two learningcriticsand the biasparameter thatdetermines

which one isappliedin a given situation.In another experiment we examined the model's learning

behavior for differentvaluesof the bias parameter. As with the parameters considered in the

previous section,we predictthat behavior - in thiscaseimprovement over practice- willnot be

seriouslyaffectedby moderate changesinthisparameter. We testedfivelevelsofthe biasfactorfrom

zeroto one. For each level,we startedthe system with an initialhierarchyof 120 viewer-centered

schemas. A singlerun consistedof 50 practicemovements with performance evaluationafterevery

fivetrials.Each parameter settingwas testedin thisfashionover ten runs of differentschema

orderings.The results(not shown) were fairlyuninteresting.An analysisofvarianceindicatedno

significantdifferencesin eitherthe learningratesor asymptotes forany of the levels.On a closer

look,we noticedthat the velocity-modifyingcriticwas rarelyused. Even at the zerolevel,in which

the system prefersto make velocityadjustmentsifany improvement isanticipated,thiscriticwas

selectedlessthan eightpercentof the time. Over most of the range,MAGGIE always preferredto

add points,and learningbehavior was identicalforeach ofthose conditions(0.25__bias< 1.0).

To explainthisfinding,we hypothesized that,because the initialknowledge base given to the

system was only observed schemas (no joint-centeredschemas),the velocitycriticwas at a severe

disadvantage.Recallthatwhen no joint-centeredinformationisavailable,a singlestatedescription

describinga motionlessarm isused to generatethe "action".In thiscase,adjustingthe velocities
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(definedto be zero)may make thingsworse when evaluatingthe arm positionsat the time of the

errorpoint. Therefore,we testedthe system with an analogous procedure in which the initial

knowledge base alsohad 60 practicetrialsincorporated,but again we found no significantdiffer-

ence between parameter levels.Furthermore, thisvariationcaused no noticeableincreasein the

frequencyofuse forthe velocitycritic.Although thisindicatesthat,as we predicted,our system is

not overlysensitiveto changesin thisparameter,italsoindicatesthatwe could simplifyour model

by deletingthe parameter and the criticresponsiblefor modifying velocityvalues.There are two

possiblereasonsthat the velocitycriticisbeinglargelyignored.Eitherthe criticitselfissuggesting

modificationsthat are not improvements, or the evaluationfunctionisnot evaluatingthe critic's

suggestionsproperly.However, previousstudiessuggestedthat the velocitycriticwas significantly

usefulfor at leastone type of movement (Iba& Langley,1987),and we intendto focus attention

on thisissueas part ofour futureresearch.

7.3.2 Human Learning Phenomena

Above we considered some performance characteristics of MAGGIE and how they relate to the

phenomena presented in Chapter 2. Now let us consider M_ANDER in the context of phenomena

that describe human motor learning. As we mentioned before, improvement over time is not

sufficient for a psychologically plausible model of motor learning. The nature of MAGGIE's learning

mechanism, as described in Chapter 5, theoretically leads to power law improvements in mean

absolute error. This should arise from attending to the largest errors first, causing the most dramatic

improvements in performance during early stages of practice. However, our preliminary results

about improvement through practice are inconclusive. Figure 7.5 certainly shows a decreasing

reduction in absolute error, suggestive of a power function. However, it is relatively easy to fit a

power function to any data and so we remain hesitant. An added problem is that the reported

human learning curves have measured performance either as the number of units produced per

time, or as the average time to completion of task. We must find new ways to test MAGGIE, since

our studies measure the quality of the trajectories. Although we cannot make strong claims at this

time, the results displayed in the figure are not discouraging.

In section 7.2.2, we showed how our performance model accounted for the speed-accuracy tradeoff.

However, it seems natural to expect learning to affect this phenomenon. We predict that as the

skill level increases, the severity of the speed-accuracy tradeoff should decrease; that is, the slope

of the best fit line in Figure 7.4 should become more level as a function of practice. We tested

thispredictionby stopping M_EANDER at severalpointsduring practiceand testingthe various

movements at a range of speeds. A singlelearningrun consistedof practicing28 movements and

measuring errorsat speedup factorsof 0.25,0.5,1.0,2.0,and 4.0 afterevery four practicetrials.

Again, we averaged our resultsover ten runs with differentorderingsof traininginstances.

Figure 7.6 shows that MAGGIE's speed-accuracytradeoffchanges with practiceaveraged over

the fourmovement types.As the skilllevelimproves,the tradeoffcurve becomes flatter.That is,

modificationsto the schema letthe system'sbehaviorrelylessheavilyupon monitoring and error

correction.This means that MAGGIE can execute the schema at a higher speed - even though
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there are fewer chances formonitoring- without seriouslydecreasingitsaccuracy.33 After making

thispredictionand carryingout our experiments,we found evidence that suggeststhisholds for

human behavior. Sugden (1980)showed that the index of difficultyforidenticaltasks decreased

with the average age in the groups. Regardlessof the particularform of the tradeoif(log,linear,

or power function),thisimpliesthat errorswilldecrease as variousskillsare improved, which is

usuallycoincidentwith gettingolder.

Although we have shown that executionspeed affectsperformance error,we would alsopredict

that itshould affectthe learningrate.As movement speed isincreased,not only are there fewer

occasionsforerrorcorrectionbut alsofewer opportunitiesto learn.MAGGIE focusesitsattention

on a singleerrorpoint;thus,as long as at leastone errorisdetected,thereisthe opportunityfor

improvement regardlessof speed. However, the qualityor representativenessof the detectederror

pointwillnot be the same in allcases.We predictthat slowerexecutionallowsmore representative

errorsampling and leadsto more effective,or rapid,learning.Sinceboth conditionshave accessto

the same data in the long run, thereisno reason to expect that the asymptotes willdiffer.

33. These results suggest another prediction: learning should produce a transition in skills from closed-loop processing

to open-loop mode, in which feedback is unnecessary and a motor skill can be carried out accurately with little

attention.
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To test this prediction, we ran another experiment in which we varied the practice speed during

trahfing. As before, we started M_ANDEIt with the initial hierarchy of observed schemas, but we

slowed down the practice movements during training by different amounts in two conditions. We

evaluated performance for both cases by running the schemas at the standard rate and measuring

errors as before. Figure 7.7 shows the results of this experiment over ten random practice orderings

of 50 practice trials each. Clearly, our prediction was borne out, as the slower practice condition

improved more rapidly than the 0.5 slow-down condition. Also notice that both learning curves

achieve the same asymptotic levels. An analysis of variance indicates a significant difference between

the conditions at the p - 0.002 level.

In this section, we showed that M_ANDEa, using both Oxsow and MAGGIE, gradually improved

its performance as a function of practice. Additionally, we examined the effect that the velocity

modification critic has on learning and found it to be seldom used. In future work, we will either

replace the critic or modify the evaluation function. We also demonstrated the richness of our

framework by exploring two predictions of the model's behavior. One of these, the effect of prac-

tice on the speed-accuracy tradeoff, was later found to be supported in the literature, and both

predictions could be tested on human subjects. In summary, the previous sections have shown that

MAGGIE'S performance and learning mechanisms are effective and robust, that M_EANDEIt's behav-
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ior conforms to the behavior observed in humans, and that the model providespotentialinsights

intounexplored human phenomena.

7.4 Generating Script Letters

In Chapter 6, we demonstrated OxBow's ability to recognize handwritten letters of the alphabet,

giving evidence of M_ANDER'S applicability to real movement data and "real-world" domains. A

natural second step is to have M_ANDER attempt to generate the letters it has learned. Below we

describe our efforts in this direction. As before, we first presented a sequence of observed letter

movements; in this case we used a sequence of 160 letters drawn randomly from our set of 210

letters. As described earlier, the training procedure involved selecting a movement to generate

using a probe letter, practicing the movement described by the retrieved concept, and storing the

revised joint-centered schema together with the retrieved viewer-centered schema. However, our

evaluation metric was more complex than in the previous study. During testing, OxBow retrieved

a movement concept based on a given probe. The retrieved movement was then executed and the

resulting action was presented to OXBOW as an "observed" movement. This latter movement was

classified with respect to the initial hierarchy (i.e., the concept memory prior to any practice).

In this way we could quantitatively measure the "recognizability" of the letters that M#EANDER

generated.

We first ran the system over a single ordering, measuring ct_mulative classification error for the

"observed" movements generated by MAGClE. The results (not shown) revealed no improvement.

Thinking the problem resulted from the high noise in the data set, we created a smaller data

set by filtering out letters that were considered poor quality. On a second run using this data set,

MAGGIE's performance improved to 60% classification accuracy but then degraded to 40% (random

guessing would yield 20%). Although performance still failed to reach the ideal, this study revealed

the nature of the problem.

In both runs, the probe letters were usually correctly classified, even those that we considered of

poor quality. The problem was that the indexed concepts lacked joint-centered information, even

after considerable training. Recall that a probe is a skill concept that consists of a viewer-centered

schema, which describes the movement that M_ANDER is intended to generate, and an empty joint-

centered schema. OxBow is supposed to take the probe and perform pattern completion over the

joint-centered schema based on prior practice with MAGGIE. That is, given a probe with a missing

joint-centered schema, we wanted OXBOW to retrieve the joint-centered schema from long-term

memory that is associated with the closest match to the viewer-centered information present in the

probe. This point is important, and we will return to it later in this section.

For example, when given the letterg as a probe, OxBow should retrievea skillconcept from

memory in which the joint-centeredschema summarizes one or more practicetrialson the letter

g. Insteazl,the system retrieveda skinconcept with a very similarobserved g but without any

joint-centeredschema. Therefore,MAGGIE startedfrom scratchand revisedthe initialmotionless

joint-centeredschema. But when M_ANDER triedto storethe combined retrievedviewer-centered

and revisedjoint-centeredschemas, OXBOW storedthe new pair at a place in the skillhierarchy
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where it had previously stored complete instances - those having both viewer-centered and joint-

centered information. Although OXBOW might have been constructing a very good joint-centered

schema in this portion of memory, the next time a g probe was presented (with the missing joint-

centered information), the same observed viewer-centered schema was retrieved without the benefit

of the prior practice. In short, M_ANDER was losing access to portions of its long-term memory.

Naturally, we want to know why this behavior is occurring. Filling in a missing component

of a two-component concept should be no more difficult for OXBOW than predicting unobserved

movement based on an initial phase of the movement, as we considered in Chapter 6. Both in-

volve completing missing structure based on partial information, and OXBOW performed quite well

on predicting unseen movement. However, in the prior study there were no concepts in memory

that represented partial movements, and here there are concepts that have missing joint-centered

components. Ironically, it seems OXBOW is doing its job too well. An instance with a missing com-

ponent is more similar to a stored concept missing the same component than to a complete concept

(even one that has an identical first component). It is important to note that MAGGIE'S learning

critics improve the joint-centered schemas to the point where generated letters are recognizable;

the problem lies in how OXBOW stores and retrieves this information. Actually, that is only the

surface problem.

The real problem lies in the discrepancy between our task design for this study and the formal

problem statements in Chapter 4. That is, what we wanted OXBOW to do was not what we des/gned

it to do. Originally, we stated that, given an observed instance, OXBOW should retrieve a concept

from memory that is most similar to the given instance. Instead, we are essentially asking it to

find the best component that is associated with the given instance. The emphasis here is placed

on completing or filling in missing information in the instance, rather than matching the instance,

in its current form, to concepts in memory.

There are several classes of responses to this situation. The first involve "hacks" to the retrieval or

storage mechanisms that directly address the desired behavior (which we did not specify). One idea

is to let MAGGIE's selected critic modify the joint-centered information of the retrieved skill concept.

This would change the joint-centered schema in long-term memory without having to reclassify the

viewer-centered and joint-centered schema pair. Another approach involves altering the category

utility function to evaluate matches only on the basis of the viewer-centered information in a

concept. Both of these proposals implicitly modify the original goals of our system, and make

intrusive changes to M_ANDER's mechanisms.

A second class of responses involves explicitly changing the nature of the task addressed in our

current study to one that corresponds to the intended purposes of OXBOW. This approach also

seems unsatisfactory, as the task we have outlined here really is quite reasonable. A third response

involves augmenting the probe data that is given to OXBOW when retrieving a skill concept. For

example, instead of an empty joint-centered component, we might present the "naive" joint-centered

schema, which consists of a single state description. This would encourage OXBOW to classify the

probe with a skill concept that has at least some joint-centered information. The last two approaches

will require further research, and we feel the first set of responses are inappropriate. In the final
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chapter, we return to the issues discussed in this section and outline the approach we intend to

follow toward correcting this problem.

7.5 Conclusions

The studiespresentedin thischapterwere designed to demonstrate M/EANDER's overallabilityto

generatemovements previouslyacquiredthrough observation,and to improve itsgenerationbased

upon practice.The resultsfrom thesestudiescertainlydemonstrated thisability,although they

alsorevealeda few problems.

In summary, we made fourgeneralclaimsinthischapterthatwere supportedby the experimental

results.Firstwe argued that MAGGIE'S system parameters axe not overlysensitiveto particular

settings.That is,the model in not dependent upon one particularcombination of valuesin order

to functionproperly.Second, we showed that MAGGIE exhibitsa speed-accuracytradeoffthat is

consistentwith the appropriateresultsreported in the literatureon human motor behavior. We

alsoshowed how the learningcriticsin MAGGIZ, in conjunctionwith OXBoW's concept formation

mechanisms, reduced errorin movement trajectorieswith increasingexperience. This is crucial

to a claim of improvement through practice.Finally,we demonstrated M_ANDER's richnessas a

psychologicalmodel ofskilllearningthrough comparisonsto,and predictionsabout,human learning

phenomena. Unfortunately,our lastexperiment indicatedthatM.4EANDER could not achievea high

levelof competence in the real-worlddomain of drawing cursiveletters.However, the resultsdid

show some improvements, and we outlinedour assessmentofthe problem and a number ofpossible

solutions.All thingsconsidered,we view M_EANDER as a success,based especiallyon the results

supporting the firstfourclaims.

In Chapter 1 we statedour goalas the constructionof a computational model ofmotor behavior

that possessed severalcharacteristics.Without going into details,the resultsreported in this

chapter and the previousone certainlysatisfythesegoals.In our finalchapter we returnto these

originalissuesand theirimplicationsforfutureresearch.
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CHAPTER 8

Discussion

8.1 Introduction

In Chapter 1 we set our goal as the development of a computational model of human motor behavior

that possessed certain characteristics. The most important characteristics were that the model

should learn to recognize movements through observation and that it improve its generation of

movements through practice. At this level of specification, we can say MSANDER satisfies our goal.

That is, in Chapter 6 we demonstrated that OxBow learned to recognize various movements, and

in Chapter 7 we showed that MAGGtE could generate and improve stored motor skills. However, we

specified several characteristics in Chapter 1, and we should consider M_EANDER'S accomplishments

and weaknesses with respect to these characteristics.

In this chapter, we close our discussion of M_ANDER by reviewing the contributions and advances

made by the model, and the shortcomings that became apparent. At the same time, we consider why

M_EANDER fails to fullymeet our expectationsin some cases.This servesas a naturalspringboard

for an outlineof possibledirectionsto take thiswork in the future. We discussseveralof the

many extensions and improvements that could be made to our system, and we close with a final

evaluation of the model, its behavior, and its significance.

8.2 Contributions of Mmander

The research reported in this dissertation holds significance for the study of both machine learning

and human motor behavior. The model builds on both fields and contributes to both in one way

or another. In this section, we consider the major contributions of the research, particularly in the

context of our initial goals outlined in Chapter 1.

An implicit requirement of our model of motor behavior is that it be formulated in computational

terms, and M_ANDZR certainly satisfies this requirement. But more importantly, we stated that

a model of motor behavior should address both the recognition and generation of movement skills.
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We have demonstrated this quality through OxBow and MAGGIE, and we have integrated these

modules in M_EANDER. Although M/EANDER does not consist of a single mechanism that handles

both recognition and generation, neither are its two components tailored to individual tasks that

have been spliced together. OXBOW handles all memory management tasks such as the storage,

orga_fization, and retrieval of movement knowledge encoded in the form of motor schemas. MAGGIE

handles monitoring and error correction and it suggests changes to the memory structures managed

by OxBow. The rest of MJEANDER consists of an interface between these modules, and the system's

sensors and effectors. This includes the parsing and interpolation mechanisms that are necessary

to convert movements to schemas and visa versa. In order to evaluate the two facets of our

primary goal - the recognition and generation of movement - we separated the tasks and issues

and, consequently, we emphasized OXBOW and MAGGIE separately. More appropriately, M/EANDER

should be thought of as a single computational architecture.

A second contribution of our model is that the representation of skills are sufficiently rich to

describe both very simple and very complex movements. The simplest movement (i.e., a motionless

limb) can be represented as a single state description, and an arbitrarily complex movement can

be represented as a sequence of states that indicate zero crossings in velocity or acceleration. The

artificial movements used in the experimental chapters reveal some of this continuum. The SLAP

movement is very simple and short, consisting of three states in its parsed form on average, whereas

the SALUTE movement averages around ten. Both movement concepts reside in memory at the same

time without serious interference. This shows even more strongly that M_ANDER'S representation

and learning mechanisms are robust and flexible.

Another issue related to flexibility is that of generality. We described the domain our model

would address as containing those movements in which the form of the trajectory was of primary

importance. In contrast, much of the psychological work on human motor behavior concerns

ballistic aiming movements. Such tasks are easy for the experimenter to control and vary in the

laboratory, but they may have limited applicability to more complex skins. Likewise, a fair amount

of work has been done in artificial intelligence on control problems like the pole-balancing task.

Both of these approaches are useful for studying some issues, but they are not very interesting with

respect to many real-world tasks, such as playing a violin or performing martial arts. The class of

trajectory-following movements we have addressed should allow considerable breadth in the types

and complexities of skills that M,EANDER can learn and perform. Although we do not claim that

this class subsumes the others, we view M_EANDER as an important contribution in terms of the

tasks addressed by computational models.

: : Finally, as one of our initial goals we wanted the behavior of our computational model to conform

wherever possible to phenomena observed in humans. In the preceding chapter, we compared

MSANDEK's behavior to a number of these phenomena and, in some cases, found that the match

was quite good. MAGGIE accounted quite well for the speed-accuracy tradeoff, and a quantitative

comparison of our model's behavior to the psychological model was quite strong. The model also

accounted for the qualitative phenomenon of transfer of skill between limbs. Based on the structure

of our model, we made a number of predictions about phenomena that are not widely reported but

that might be observable in humans. One of these, the change in the speed-accuracy tradeoff with
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practice, was later found to be supported in the literature. These successes give us confidence that

M,_ASDSR represents an interesting computational model of complex human motor behavior.

In addition to providing a viable model of motor learning and performance, M_ANDER has made

at least one other contribution: the extension of previous techniques for concept formation. When

starting this research, we were not explicitly interested in issues of concept formation and looked for

an off-the-shelf conceptual clustering system that could be used with our representation of schemas.

As we found that there were none and considered various adaptations of existing methods to meet

our needs, we confronted some fundamental problems in this subfield of machine learning. One

issue involved finding partial matches between components in a new instance and those in a stored

concept - particularly when the instance and concept may have different numbers of components.

We believe our approach to this problem is an elegant one and that it has revealed an interesting

correspondence between PART-OF and XS-A relationships in structured domains. In summary, it is

the collection of contributions described above, intended or otherwise, that represents M_EANDEK'S

most significant contribution. It is the first computational model to address such a range of tasks

and issues that are relevant to researchers from several fields.

8.3 Limitations of the Model

Although M_ANDEB. makes a number of important contributions, like any theory or model, it is

not without its faults. We see a number of issues or areas in which the model is lacking. One of

these drawbacks involves OxBow's generalization mechanism. In Chapter 6, we pointed out that

this process appeared to be sensitive to the level of noise in the domain. Although the system

found good matches between state descriptions, it had trouble finding the correct values for the

individual states. This was not a significant problem and only increased error by a few percentage

points (approximately five units on a 130 unit improvement). However, we did not expect this

behavior and should look more closely to determine its cause.

Another issue, more an oversimplification than a weakness, involves the method of arm control.

MAGGIe. controls its simulated arm by setting the change in position for every time slice of the

simulation. We claimed that this was a reasonable design based on supporting psychological results

and available computational mechanisms. However, we feel it is important to connect the model

to a real robot arm. This requires that we address the issues we ignored via the assumption, and it

would provide an opportunity and motivation to have the model itself handle low-level control. We

think this could be accomplished within the current framework. One approa£h would determine

the rotational accelerations (and ultimately torques) from the velocity information that is specified

and use this information to drive the arm. However, it may be desirable to directly represent the

accelerations as part of the skill concepts in long-term memory. Representing the positions and

velocities of the joints may be appropriate in the case of viewer-centered schemas, but perhaps joint-

centered schemas should be specified in terms of rotational accelerations or torque. We anticipate

that the general mecha.nisms used in M_ANDER will transfer to schemas that specify torques instead

of positions, or to a hybrid situation that utilizes both representations.
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In the previous chapter, we identified an issue involving the method M_EANDER uses to associate

viewer-centered and joint-centered information. This was exemplified in the system's failure to

improve performance on the letter generation task through practice. However, an analysis of the

problem showed that OxBow was classifying probes as well as could be expected. Indeed, it was

doing exactly what it was supposed to do - finding concepts in long-term memory that were similar

to a given probe. The problem involved our formulation of the experimental task for the letter

generation study. This task implicitly asked OxBow to complete a pattern rather than find the

best match. That is, we wanted M_ANDER to retrieve the joint-centered information associated

with a probe, but OxBow was designed to find the best match to a probe. In Section 8.4, we

consider several approaches to resolving this conflict between tasks.

We axe also dissatisfied that MAEANDER has a number of limitations as a model of human motor

behavior. For each of the phenomena addressed and exhibited by M_ANI)ER, there axe many more

that it cannot handle. For instance, the current model cannot account for the practice variability

effect described in Chapter 2, although this is perhaps the least robust of the phenomena discussed

there. Another limitation involves the tasks that M_ANI)ER can address. Currently we have not

applied the system to tasks that involve manipulating objects in the environment (e.g., shooting

basketballs or juggling balls). Although these tasks axe not strictly trajectory-following tasks, such

as we have addressed, the model should be able to handle them. This is a limitation of the research

that has been completed to date, rather than of the model itself. One other limitation in this

context is M2EAND_.R'S inability to address the many phenomena involving knowledge of results,

that is, the qualitative feedback an agent receives after a movement that communicates the success

or failure of the goal. Because the model has no goals, it cannot reason about their success or

failure. This point brings us to the final limitation that we consider here.

MJEANDER models movement recognition and generation, but it is independent of a rational

agent. That is, recognizing a movement does not inherently provide useful high-level information

and generating a movement does not directly allow the accomplishment of some higher-level goal.

Instead, these behaviors (recognition and generation) must be merged into a cohesive plan. Con-

structing useful sequences of motor skills (learned and stored by MJEANDER) should be handled by

a higher-level planning mechanism that interacts with our model. Furthermore, some of the mech-

anisms in MAGGIE, included out of necessity, axe more properly the responsibility of a higher-level

mechanism. For example, monitoring is part of a more general attention process and should be

under the conscious control of an agent attempting to accomplish a goal. If the agent has high con-

fidence that the current action will be completed to its satisfaction, then it should attend to other

issues. On the other hand, if an unfamiliar movement is necessary to accomplish one of the agent's

goals, then it should pay close attention to the execution and take corrective measures as needed.

This situation and the limitations discussed above suggest several directions for improvement.

8.4 Future Work

We have reviewed several areas in which M_EANDER is limited as a useful model of motor control

and learning. In discussing these limitations, we have touched on a number of directions for future
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work. In this section, we elaborate on our responses to some of these limitations and present

additional directions to extend the model. We view further work on MEANDER as falling into

two different areas. One area addresses problems and extends the capabilities of the system as a

computational model, whereas the other addresses phenomena and tasks that pertain to M/EANDER

as a psychological theory. In this section we consider each area in turn.

8.4.1 Improving the Computational Model

Throughout this dissertation, we identified issues that implied relatively minor modifications to

the model, but for one reason or another had not been implemented to date. For example, in

Chapter ? we encountered a problem in which errors were corrected more than once, thereby

leading to overcorrections. We introduced mechanism envisioned by Pew (1974) that would share

information between monitoring events so that this problem would not arise. There are numerous

similar that would improve and clean up the model, but that would not modify its applicability.

We also think of the first two limitations in the previous section - the problem with OXBOW'S

generalization problem and connecting MAGGIE to a real arm - as being of this sort. Both would

be implementation changes within the current framework.

A more significant problem relates to M_ANDER'8 retrieval of joint-centered schemas. Above

we discussed how the retrieval task for joint-centered schemas was distinct from the basic task

of concept formation. There are several possible approaches one could take. First, MAGGIE's

modifications to the joint-centered schema based on practice could be made directly to the long-

term memory structure, rather than invoking Oxsow to store it appropriately. This might work

in principle, but there would be no sharing of learned knowledge. Each node in the hierarchy

would have to be trained separately, losing the benefit of generalizations. Another alternative

would explicitly associate joint-centered schemas with particular viewer-centered schemas. This

approach would provide greater flexibility by letting more than one viewer-centered schema index

a single joint-centered schema. This could save memory space and speed the learning process,

but it would require additional mechanisms to determine which joint-centered schema should be

associated with a given viewer-centered schema. Finally, we could address the problem by providing

different information in the probe. This would avoid OXBOW's current preference for retrieving a

skill concept with an empty joint-centered schema. Each of these ideas has some merit and we will

pursue them in our ongoing research on M_SANB_.a.

We see two other important directions to improve MJEANDER as a computational model. The first

would extend the flexibility of the schema concepts constructed by Oxsow. Currently, a schema

is based on a particular coordinate system (either Cartesian or local polar) and it is described as

particular values within that system. There is no provision for specifying arguments to schemas that

would let them apply in novel situations or over different ranges than in which they were originally

acquired. One approach we will consider would include schema parameters as part of the structure

of the skill concept. The parameters would provide a means to specify detailed information and

the schema would represent the invariant structure of the movement, independent of the speed or

orientation in which it is performed.
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The final direction involves broadening the class of skills addressed to include objects in the

environment besides the components of the arm itself. For example, we would like the model to

learn and represent target skills such as darts. Schemas would represent not only the trajectories of

the limbs, but also those of any objects involved in the skill. This would let M_EANDER manipulate

objects and move the model closer to functioning in a complex environment.

8.4.2 Improving the Psychological Model

As mentioned earlier, we also want to strengthen the psychological basis of our model, and one

priority is to search the literature for phenomena regarding the observation of movements. The

phenomena themselves will suggest changes to the model, depending on whether MSANDER can

account for them. This provides an exciting opportunity - finding phenomena that the model was

not designed to explain but that are compatible with its behavior. We will also continue to explore

the literature for phenomena pertaining to movement generation.

At the same time, we have already made several predictions about MSANDER's behavior that

need to be tested. For example, in Chapter 5 we briefly discussed mental practice and its effects

on performance. Currently, M_EANDER has no means of accounting for this behavior. We should

extend the model to include a "mind's eye" that could observe the mental rehearsal of a motor skill

and provide feedback for MAGGIE to suggest revisions to the schema. The important feature here is

that internal feedback is less accurate or useful for schema modifications. We could include a noise

signal, but we want to avoid adding unnecessary baggage to the model. Instead, we will look for

a principled reason for such degraded feedback. Another prediction was that practice early in the

development of a viewer-centered schema could lead to slower learning, due to reinforcement of the

partially learned viewer-centered schema. The predictions about MSANDEIt's behavior are implicit

predictions about human behavior. Testing these on the model may confirm our expectations or
cause us to revise them.

In either case, the next step is to test such predictions on human subjects. MSANI)Ea has

already demonstrated behavior that should be viewed as a prediction of human performance. For

example, in Chapter 6 we showed that OxBow made certain characteristic mistakes when classifying

handwritten letters. The pattern of these errors was intuitively what we would expect humans to

produce, but this has not been explicitly tested. This is an example of how the model can drive

further psychological experimentation.

Finally, in Section 8.3 we mentioned the need for a planning mechanism if we wanted to account

for phenomena pertaining to knowledge of results. We axe currently attempting to integrate M_AN-

DER with a comprehensive cognitive architecture ICARUS (Langley et al., in press). This architecture

includes a planning mechanism, a memory module analogous to OxBow, and a mechanism that

controls and generates drives. The drives provide the top-level goals for the planner, which in turn

creates subgoals that are eventually executable by MIEANDEIt. The architecture is being developed

with a simulated environment that supports three-dimensional objects that obey standard laws of

physics. Such an integrated architecture would greatly expand the range of motor phenomena that

MJEANDER Can explain.
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8.5 Closing

In the previous pages we have described M/EANDER, a computational model of motor performance

and learning. The model addresses both the recognition of observed movements and the generation

of such movements. Motor skills are acquired in a natural progression, starting with observations of

another agent performing a skill and contintdng with improvements to this acquired representation

through practice.

We evaluated M_ANDER both as a computational model and as a psychological model. We

demonstrated both aspects of the system's behavior through numerous experiments, including

studies in the domain of cursive lettering. The model accounted for a number of phenomena

observed in human behavior, and it made several interesting and testable predictions.

M,EANDER represents a significant contribution to two fields: machine learning and human mo-

tor behavior. The system's memory management component, OXBOW, extends the techniques of

concept formation in new and interesting ways. As a computational model satisfying the con-

junction of characteristics in Chapter 1, M_ANDEa serves as an initial bridge between low-level

control and high-level planning mechanisms, as well as psychological and computational models of

motor control. Much work still remains, but the current system constitutes clear progress in our

understanding of motor skills and their acquisition.
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Constraint-Ba_ed Scheduling
MONTE ZWEBgN September 1991

The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space

Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based

iterative repair, using this technique, one encodes both hard rules and preference criteria into data

structures called constr_ts. GERRY repeatedly attempts to improve schedules by seeking repairs for

violated constraints. The _s_stem provides a general scheduling framework which is being tested on two
NASA applications. The later of the two is the _Space Shuttle Ground Processing problem which entails

• Y .... t

the scheduling of all the inspecl_0n, repmr, _ mmntenance tasks required to prepare the orbiter for fllgh .
The other application involves p_er alloc_]on for the NASA Ames wind tunnels. Here the system will be
used to schedule wind tunnel tests With/the goal of minimizing power costs. In this paper, we describe the

GERRY system and its application _he Space Shuttle problem. We also speculate as to how the system
would be used for manufacturing, _/ansp_rtation, and military problems.

FIA-91-28 / \

Introduction to IND and _ecursive Partitioning \'.,

WRAY BUNTINE AND I_CH CARUANA ''_'x October 1991

This manual descrihe'sthe IND package for learningtreecI_d,fiersfrom data. The package isan integrated

C and C shellre-i_lementation oftreelearningroutinessuch a_ART, C4, and variousMDL and Bayesian

variations.The package includesroutinesforexperiment control,_teractiveoperation,and analysisoftree

building. The/nanual introducesthe system and itsmany option_ gives a basic review of tree learning,
containsa guide to the literatureand a glossary,liststhe manual pages forthe routines,and instructionson

installation.

FIA-91-29

Aequistion and Improvement of Human Motor Skills: Learning Through Observation and Practice

WAYNZ IBA November 1991

Skilled movement is an integral part of the human existence. A better understanding of motor skills and their

development is a prerequisite to the construction of truly flexible intelligent agents. We present MJRANDER,

a computational model of human motor behavior, that uniformly addresses both the acquisition of skills

through observation and the improvement of skills through practice. M]BANDER consists of a sensory-

effector interface, a memory of movements, and a set of performance and learning mechanisms that let

it recognize and generate motor skills. The system initially acquires such skills by observing movements

performed by another agent and constructing a concept hierarchy. Given a stored motor skill in memory,
M_ANDER will cause an effector to behave appropriately. All learning involves changing the hierarchical

memory of skill concepts to more closely correspond to either observed experience or to desired behaviors. We
evaluate M_ANDER empirically with respect to how well it acquires and improves both artificial movement

types and handwritten script letters from the alphabet. We also evaluate M_ANDER as a psychological

model by comparing its behavior to robust phenomena in humans and by considering the richness of the

predictions it makes.
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