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ABSTRACT

The optimal design of compact spur gear reductions includes the

selection of bearing and shaft proportions in addition to the gear mesh

parameters. Designs for single mesh spur gear reductions are based on
optimization of system life, system volume, and system weight including

gears, support shafts, and the four bearings. The overall optimization
allows component properties to interact, yielding the best composite
design. A modified feasible directions search algorithm directs the
optimization through a continuous design space. Interpolated polyno-

mials expand the discrete hearing properties and proportions into contin-
uous variables for optimization. After finding the continuous optimum,
the designer can analyze near optimal designs for comparison and selec-
tion. Design examples show the influence of the bearings on the opti-
mal configurations.

NOMENCLATURE

A distance from inboard roller bearing to gear or pinion, in.

a bearing life adjustment factor

B distance from outboard ball bearing to gear or pinion, in.

B gear tooth surface material constant, psi

b Weibull slope

C center distance, in.

C dynamic capacity, lb

D shaft outside diameter, in.

E elastic modulus, psi

©! goodness of fit error limit

F force, lb

Fd dynamic tooth load, lb

f gear face width, in.

Vf unit gradient in the feasible direction

Vh unit gradient in the violated constraints

J AGMA bending strength tooth form factor

Q service life, hr

_: load cycle count

M merit function

Vm unit gradient in the merit function

N number of teeth

Pd diamvtral piu:h, in."1

p load life factor

R reliability

AS optimization step size

V inequality constraint

v bearing load adjustment factor

X independent design parameter

Y scaled independent design parameter

F gamma function

0 characteristic life, hr

v Poisson's ratio

p radius of curvature, in.



a stress, psi

dp pressure angle, deg

Subscripts:

av mean

b bending

g gear

H Hertzian

i design variable index

j optimization step index

k constraintindex

n total number of design variables

p pinion

r radial

s system (whole transmission)

t tooth

10 90 percent reliability

INTRODUCTION

The design of compact gear sets is an optimization problem which

has received considerable at_ntion ('Ducker, 1980; Savage et al., 1982;
Carroll and Johnson, 1984; Savage vtal., 1991; and Erriehelio, 1989).
Tucker (1980)summarized thetraditionalgeardesigntradeoffbetween

involuteinterferenceand toothbendingstrength.The traditionalmethod

yieldedmany successfulgeardesignswithoutthe aidof a digitalcom-
pute. Savage etal.0982) appliedcomputeroptimizationto f'mdthe

compact gearmesh designswhich balanceresistanceto geartoothbend-

ing,gearsurfacepitting,and geartipscoring.Carrolland Johnson

(1984)extendedthisapproachtosearchintheactualdesignspaceof

whole toothgearswiththeAGMA bendingstrengthformulas.In a pre-

liminaryefforttothisresearch,Savage etal.(1991)appliedthemod-
ifiedgradientoptimizationprocedureof thiswork tothe compact gear

mesh designproblem. Similarresultstoearlieroptimizationstudies

were obtained.Ea'ichvllo0989) adaptedtheoptimalgeardesigndemr-

ruinationof minimum weightgearsback toa hand calculationproc©-

duns. Once a designoptimum has been identified,he rightlystatesthat

similardesignscan be obtainedwithoutretracingtheoptimizationpath
for each design.

However, optimization with the assistance of the modern digital
computer offers a designer the opportunity to expand the scope of the

gear selection process. Initial efforts in optimal gear design have

focused on the gears due to the complexity of the gear mesh and its
loading. One logical extansion is to treat the entins mmsmi, ion as a
complet_ system.

In aircraft transmissions, service life between overhauls is affected

mainly by the lives of the bearings which support the gears (Astridge

and Savage, 1990;and L_wickietal.,1986). Insteadof designing

optimalgearsand thensizingbearingsand supportshaftsto accommo-

dam thegears,a betterapproachwould be tode.signthetransmissionas

an optimizedsystemcomposed of gears,bearings,and shafts.The over-

allservicelife,weight,and sizeofthereductionarcmore important
propertiesthanthe life,weight,and sizeof any component.

Lundberg and Palmgren (1952)davelopeda theory forthelifeand

capacityof balland rollerbearings.This lifemodel isbasedon the

two-parameterWeibullstatisticaldistribution(Weibull,1951)and isthe

inten'nationalstandardforbearinglifeand capacitycalculations(Harris,

1984).Coy etal.(1976)extendedthistheorytodescribethepitting
fatiguelifeof spurgears.In turbinepowcaed transmissionswhich see

littleshock loading,thepittingfatigueofthegearteethisthedominant

lifeparameterforgearsdesignedto withstandtoothbreakageand scor-

ing.The pittingmode of failureexhibitsno thresholdstrengthfor
infinitelife.

Savage etal.(1989)combined thewsmodels intoa system life

model basedon the two-parameterWeibulldistributionfortransmissions

composed of bearingsand gears.Thissystemmodel enablesthe design

of a transmissionforlongservicelifeincombinationwithothertrans-

missionpropertiessuchas low weightand compact size.

Many optimizationtechniquesare availablefrom zeroorderrandom

search procedures through f'trst order gradient and modified gradient
procedures to more complex higher order procedures CCanderplaats,

1984). A modification of the feasible directions gradiem method of

Zoutendijk (1960) provides balance I_tween algorithm complexity and
efficiency for the desk top computing environment. All discrete vari-
ables and parameters are fit with continuous polynomials to allow
gradient calculations. After finding a continuous optimum, one can
select and analyze proximate realistic designs.

This paper describes the compu_rized optimal design of an
enclosed parallel shaft spur gear reduction. The reduction should

transmit an input torque and speed to an output shaft at a given reduc-
tion ratio. Standard hall or roller bearings may support the input and
output shafts in one of several pre-selected configurations. Inequality
constraints restrict the designs to have adequate tooth bending strength,
tooth scoring resistance, involute contact geometry, and shaft strength

and stiffness at the full AGMA estimated dynamic load (AGMA Stand-

ard, 1988). Independent design parameters include the gear mesh
diametral pitch and face width, the number of teeth on the pinion, the

axial locations of the four support bearings, and both shaft diameters.
The merit function for this study is the transmission life divided by

the cubed product of the component weights and the transmission vol-
ume. This combined objective criterion yields compact designs with

long lives. After finding a continuous optimum, the program displays
the values and properties so the designer can modify the design by
selecting nearby realistic parameter values. The program checks and

displays the modified design and once again, gives the designer the

opportunity for modification. Optimal designs are reported and
compared.

TRANSMISSION MODEL

Configurations

The transmission configurations for _=sign are variations of the

single mesh spur gear reduction. An input shaft supports a pinion on
two rolling element bearings, and an output shaft supports a larger gear
on two more rolling element bearings. Standard 100-, 200-, or 300-
series ball or roller bearings may support the input and output shafts.

The bearing type and series are specified for a given design as arv the

bearing tife and capacity adjustment factors. Designs with all ball
bearing support, all roller bearing support, and a mixture of ball and

roller bearing support on each shaft are possible.

Three bearing support configuration geometries, shown in Fig. 1,
are treated as separate design problems. These configurations are:

(1) Overhung support for both gsars with the pinion support
bearings on one side and the gear support bearings on the other
side

(2) Overhung support for both gears with all supporting bearings

on the same side of the two gears
(3) Straddle support for both the pinion and gear.
For all configurations, the total gear mesh force acts along the line

of action with radial and tangential components in the direction of the



(a) Opposite overhung.

(b) Single sided overhung. (c) Straddle.

Figure 1 .--Bearing support configuration geometries.

lineof centersand pitchcircletangent.The foilloadproducesthe

resultant radial reactions on the bearings, while the radial component
produces the separating deflection of the pinion and gear shafts and the
tangential component produces the misaligning shaft slope along the
gear teeth.

Gear Strength
The bending fatigue model uses the AGMA I factor (AGMA

Standard, 1988) to estimate the bending stress with the load at the
highest point of single tooth loading on the pinion. The load is esti-

mated as the full dynamic load, Fd, using the AGMA velocity factor
model (AGMA Standard, 1988). The formula for the bending stress is:

Fd "Pd (l)
o"b =_

The maximum contact stress and gear tip Hertzian pressure are
calculated as:

Fd Pp Pg JJa H = (2)
7rfcos, l-v2p l-v2g

4-

The maximum contact stressoccurs at the lowest point of single tooth
contact on the pinion tooth. The gear tip Hertzian pressure uses one
half of the total dynamic load since the load is shared between two tooth
pairs at this point.

The gear tip scoring model includes the pressure times velocity
factor and the critical oil scoring temperature model from lubrication

theory. The normal pressure times sliding velocity is proportional to the
frictional power loss of the gear seL This factor is the highest for con-
tact at the gear tip, where the normal pressure is the gear tip Hertzian

pressure.

Life
The life model comes from rolling element bearings (Lundberg and

Palmgren, 1952). Lundberg mad Palmgren determined that the scatter in
the life of a bearing can be modeled with a two-paremeter Weibull
distribution:

In terms of a 90-percent probability of survival life, Rt0, the two-
parameter Weibull distribution is:

(3)

(4)

The life to reliability relationship of Bq. (4) is for a specific toad

which determines the _t0 life. This load, F, is related to the component
dynamic capacity, C, as:

(5)

Sincethe life at the dynamic capacityis one millionloadcycles,itdoes
notappearas a variableintheequation.

The Roiling-ElementsCommittee of the LubricationDivisionof the

ASME modifiedEq. (5)withadjustmentfactors(Bamberger etal.,

1971).These factorsextendEq. (5)to covermany differentend use

situationsso that designers can size bearings properly. The revised code

equation for _10,a, the adjusted 90-percent reliability life for the bearing,
is:

a C (6)

In F.q. (4), the Weibull slope, b, is normally 10/9 for ball and 9/8
for straight roller bearings, and in Eqs. (5) and (6), the load-life expon-

ent, p, is 3.0 for ball bearings and 3.33 for miler bearings.

Gear tooth pitting failures are similar to bearing failures, with the

possible difference of surface initiation. So the two-parameter Weibuil
distribution also describes the scatter in gear life with a different

Weibull slope. The life of a gear, _t0a' is relat, d to the life of a tooth

on the gear, It0,t, by:

_10,g" _lo,t (7)

A relationshipforthedynamic capacity,Ct,of a spurgeartoothas a
functionof Buckingham's Inad-stressfactor,B, which has thedimen-

sionalunitsof stress(AGMA Standard,1988)is:

The dynamic capacityof thegear,Cg, intermsof thedynamic
capacityof a singletooth,Ct,is:

(8)

c,

_k:I/P Ngi/(b_)
(9)



Drive system reliabiliv/, Rv is a strict series probability of all the
component reliabilities (Savage, et al., 1989), which makes it the product
of the reliabilities of all the components. The system life can also be
expressed as a two-parameter Weibull distribution in terms of the system

reliability parameters, bs and _10,s:

(10)

In termsof the_I0lifo,the mean timebetween overhaulsforfulltrans-
missionreplacementisthemean life,which iscalculatedusingthe
gamma function:

llo • r (1 . l/b)
Car = (11)

(In(uo.9))_'

Size
Two measuresof transmissionsizeareincorporatedinthemerit

function:component weightsand transmissionvolume. The component

weightsincludethe weightsof steeldiscswiththeoutlinesof thecom-

porumts. Alldiscsarehollow withtheshaftoutsidediametertakenas

the inside diameter of the gears and bearings and the shaft inside diam-
eter being i/2 in. less than the outside diameter. The second measure of

transmission size is the volume of the smallest rectangular solid which
includes the two gears and four bearings.

The bearing properties of outside diameter, width, and dynamic
capacity are expanded from catalog data (Harris, 1984) with low-order
polynomial curves. The polynomials describe continuous properties
which increase monotonically with bearing bore for the gradient calcula-
tions. On checking the designs, a table look up of prope_ies for stan-

dard size bearings produces practical bearing characteristics.

OPTIMIZATION METHOD

As with most optimization techniques, the procedure begins with
several vectors. These vectors are the independent design variables, X;

the inequality constraints,V; the parametersof the merit function,P;and

the constants which define the specific problem, C. An optimization
solution is the design variable values, X, which minimize or maximize

the merit function value while maintaining all constraint values, V,

inside their specified limits. A procedure starts with a guess for the

design variable, X, and iterates with some logic to find the optimal
design variable.

To maintain balance among the independent design parameters, the

design space is scaled into a continuous, dimensionless design space.

The scaled design parameters, Y, vary from -1.0 to + 1.0 as specified by
upper and lower bounds on the independent design parameters, X.

Gradient

Central to the method is the gradient calculation. This is per-
formed with small perturbations in the design variables from the nom-

inal position. The gradient in the merit function, VM, is the vector of

partial derivatives in the merit furmtion, M, with respect to the scaled
design variables, Yi"

The magnitude of the gradient vector is given by:

IVMI = aM

1

(12)

For minimization, the direction of change in Y which reduces the merit
function, M, at the greatest rate is determined by the unit vector, Vm:

Vm = - VM (13)

For rnaxim_tion, the sign in Eq. (13) reverses.

In the simple gradient method, Eq. (13) defines the direction for the

step change in the scaled design vector.

Yj+I = Yj ÷ AS Vm (14)

where AS is the scalar magnitude of the step. If no constraints arc
violated, this will be the next value for Y in the search.

Step size, AS, is a significant element of any optimization proce-

dure (Vanderplaats, 1984). For stability and direcmess, the step size is
nominally fixed. Initially, the step size is 5 percent of the range of a

single design parameter. But the procedure halves the step whenever a
local minimum is reached or the search it trapped in a constraint comer.
On completion, the search declare, a solution when the percent change

in the merit function, M, is less than a pre-set limit.

(15)

Initial Value

The optimization procedure described above is scaled, fixed step,
and steepest decent. When the initial guess is in the acceptable design
space, and the optimum is a relative minimum, this method works quite
well. However, placing the initial guess in the acceptable design region
is often difficult. Also when the best design is determined by a "trede-
off" among conflicting design constraints at the edge of the feasible

design space, a direct merit function gradient iteration cannot slide along

the constraint boundary toward the optimum.
These problems are addressed with a second gradient in a con-

straint variable:

Wk (16)
Vv k = -

where Vv k is a unit vector in the direction of decreasing value in the

constraint, Vg. For upper bound constraints, moving through the design
space in the direction of Vv k reduces the constraint value V k. For lower
bound constraints, a sign reversal in Eq. (16) produces an increase in the

constraint value, Vk, for motion in the gradient direction. The vector
sum of the gradients in the violated constraints, Vh, is the second gra-
dient of the algorithm:

VVk

Vh = k (17)

The gradient in the violated constraints, Vla, points towardsthe

acceptable design space from the unacceptable design space. By itself,

it enables the algorithm to turn an unacceptable initial guess into an

acceptable trial design by a succession of steps:

Yj+t = Yj + AS Vh (Ig)

Feasible Direction

Once inside the acceptable design region, the algorithm proceeds

along the steepest descent direction until the calculated step places the



nexttrial outside the acceptable design space. To avoid this condition,
the algorithm selects a feasible direction for the next step. Figure 2
shows a constraim limit intersecting contour lines of improving merit
function values. The figure shows gradients in the merit function, era,
and the impending constraint, Vh. The feasible direction selected, Vf, is

the unit vector sum of these two gradients:

Vf = Vm + Vh (19)
lyre + Vhl

And the next design step becomes:

Yj.I = Yj ÷ AS Vf (20)

tit
1 I ,_ limit

= I/l=
IVml/ II

/I I "l x
/ I I I Yi+1

Merit contour

Figure 2.--Feasible direction gradient vector.

Algorithm Use
By using subroutines to calculate the merit function and constraint

values for each design trial, the procedure separates the logic of the
algorithm from the analysis necessary to define the problem. This

allows the design problem to be changed without concern for the optimi-
zation procedure. The directness of the procedure adds additional steps,
but enables the program to run on a personal computer.

An additional benefit of separating the analysis routines from the

optimization logic is the ability to modify the design at execution and

verify the characteristics of similar, more practical designs with the same

program. The optimization procedure works with a continuous design
space, which includes gears with fractions of teeth and nonstandard

bearings. By allowing the user to see the ideal continuous variable

solution and to modify this to designs with whole numbers of teeth and

standard sizes, the procedure enables a designer to determine a practical
optimum design easily.

TRANSMISSION DESIGN

Consider the design of a 2:1 gear reduction to transmit an input

torque of 600 ib/in, at 1000 rpm at a power level of 9.5 hp. Due to the

higherloadsnearthegears,rollerbearingsam placedadjacentto the

pinionand gearand lowercapacityballbearingsareplacedatthemore

lightlyloadedoutboardpositions.
Designs are obtained with all bearings of the same series or with

miler bearings of one series and lighter series bali bearings. Support
configurations include opposite overhung support, single-sided overhung
support and straddle support as shown in Fig. 1.

Nine

problem:
(I)
(2)
(3)
(4)
(5)
(6)

independent design variables were used for the design

Gear diametral pitch (1/in.), Pd
Gear mesh face width (in.), f

Number of pinion teeth, Np
Distance from the pinion to its miler bearing (in.), Ap
Distance from the pinion to its ball bearing (in.), Bp

Distance from the gear to its roller bearing (in.), Ag

(7) Distance from the gear to its ball bearing (in.), Bg
(8) Pinion shaft diameter (in.), Dp

(9) Gear shaft diameter (in.), D=.
The first three determine the gear design and the last six define the

location and size of the support bearings. Figure 3 shows these location

and size parameters. The number of teeth on the gear is twice that on
the pinion and the gear center distance, C, is three-halves of the number

of teeth on the pinion divided by the diametral pitch.
The design constraints include:

(1) Pinion tooth bending strength limit (Savage et al., 1991)

(2) Gear tooth surface contact stress limits (Savage et al., 1991)
(3) Gear scoring limits of contact pressure times sliding velocity

and oil flash temperature (Savage et al., 1991)

(4) Involute interference avoidance limit (Savage et ai., 1982)
(5) Minimum axial clearance between the pinion or gear and its

roller bearing equal to one-half the combined width of the gear

and bearing
(6) Shaft outside diameter limit below the maximum gear rim

diameter for a rim thickness equal to three-halves of the tooth
height

(7) Maximum pinion or gear slope limit (Young, 1989)
(8) Maximum pinion or gear deflection limit (Young, 1989).

For the single-sided overhung support and straddle support cases, an
additional constraint is added which limits the sum of the maximum

pinion bearing outside diameter and the maximum gear bearing outside
diameter to be less than twice the center distance by a specified
clearance. •

The merit function to be maximized in the design is the transmis-

sion life as measured by its mean time to failure divided by the cube

of the product of the transmission volume and the weight of its
components.

Dp

'I t

Dg --

i

l i

Figure 3.--Location and size design variables.



Exampt_
For a first try at this design problem, a different merit function of

life divided by volume and weight was used. In this case, the bearing
life dominated the designs. A trade-off design, for which the merit

function is at a relative maximum, was reached, but the design was
lightly loaded and large. Figure 4 is a schematic of the overhung bear-

ing design for 300-series roller bearings close to the gears and 200oseries
ball bearings away from the gears. A l-in. square box is included for
scaling.

!

Figure 4.--Bearing dominated opposite overhung support
designwith a transmission mean life of 9 747 600 hr, a
volume of 6345 in.3 and a component weight sum of 44.6 lb.

The gears are thin and of large diameter with a face width of
0.1875 in. and a center distance of 12.75 in. Table I lists the design

parameter and merit function component values for this and all reported

designs. The first column lists the initial guess values for all designs,
and the second column lists this design's values. The roller bearings are

placed as close to the gears as possible, considering the fifth design
constraint of axial clearance, and the shaft sizes are large with a pinion

shaft diameter nf 90 mm and a gear shaft diameter of 85 ram. A long
mean transmission life between overhauls of 9.75= 106 hr or 1120 years

results.
This transmission configuration favors the bearings. Large diame-

ter gears with thin widths carry small loads. Large shaft diameters and

small bearing overhangs place strong bearings under minimum load to
maximize the life of the inboard roller beatings. Since these are the

most heavily loaded bearings in the transmission, maximizing the life of
the weakest component, maximizes the lifo of the transmission.

In obtaining this design, the pinion and gear shaft diameters were
increased from the initial values to improve the bearing capacities. In

the final constraint summary, the active constraints were the axial
clearances between the roller bearings and the pinion and gear. Bring-

ing these bearings as close as possible to the two gears reduced the

loading on the bearings while enlarging the shaft diameters increased
their capacities. The transmission has a volume of 6345 in.3 and a

component weight sum of 44.6 lb. The gears are not loaded to their

capacity with a pinion bending stress of 85 percent allowable and a
maximum surface contact pressure of two-thirds the limit.

When the optimizing program used the merit function of the trans-
mission life divided by the cube of the product of the transmission

volume and weight, the selected designs were smaller and had more

balance between the gear and bearing capacities. Figure 5 is a sche-
matic diagram of the design for the same conditions as that of Fig. J,
with only the merit function changed. A shorter life of 55 970 hr or
6.4 years of continuous service is available from a gearbox which is
smaller at 710 in. 3 and lighter with 21.2 lb of components. The design

also has changed shape with the gears having a greater face width of
0.75 in. and smaller center distance of 4.5 in. The parameters of this

design are listed in the third column of Table I.

1--1

L

Figure 5.--Composite opposite overhung support design with
a transmission mean life of 55 970 hr, a volume of 710 in.3
and a component weight sum of 21.2 lb.
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Mesh face ill.
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TABLE I. - DESIGN PARAMETER VALUES

Initial

guess

14

1.0

53

3.0

5.0

3.0

5.0

50

5O

Opposite Opposite

overhung overhung

U(Wt'Vol)

Figure 4 Fig_r_ 5

S 16

0.1575 0.75

65 45

I.$75 2.375

6.875 5.2.5

I.$75 2.5

625 5.0

9O 65

S5 70

9 747 61_ 55 970

6345 710

44,6 2L.2

Single [ Straddleovert'hung

I/(Wt.Vol) 3

Figure 6 t Figure 7

12 I 14

05 0.625

l

46 50

1.75 2.75

5.25 3.S75

2.0 2.75

5.25 3.$75

55 55

6O 55

148 500 414 800

560 630

15.8 i 21.1



Higher volume and weight penalties have led to a more heavily

loaded transmission. Since the gear load life factor of 8.93 (AGMA

Standard, 1988) is nearly throe times the roller hearing load life factor of

10/3, gear life affects heavily loaded designs more than lightly loaded

designs which are strongly influenced by bearing life. The selected

bearings have shorter lives than those of the first design.

Maximizing gear life alone would make the face width larger and

the gear diameters smaller to conserve space. The pinion diameter was

at its minimum possible for the shaft size which the bearing capacities

required. In this design, the roller bearings were not pulled in to the

gears as tightly as they were in the first design. Pinion and gear slope

limits contributed to the shaft sizes and the gear bending stress was at

the allowable limit, showing d_e balance in the design.

Applying the same procedures to _¢ other two cases of single-

sided overhung support and sl_addle support configurations produced

similar results. In both cases, the designs were more compact and had

longer lives. An additional in_.rference constraint was added to both

cases to maintain a clearance separation between the bearings of the two

shafts. Figures 6 and 7 show the design configurations for single-sided

overhung transmissions and straddle support transmissions. Their design

and merit function parameters _ listed in the last two columns of

Table I.

Both of these designs were obtained with the merit function which

divides the transmission life by the cube of the product of transmission

volume and component weight. And the active constraints for both

designs were the gear and pinion shaft slope limits. As the designs

become more heavily loaded and the shafts reduce in size, the ability of

the shaft to maintain gear and miler bearing alignment decreases.

The single-sided overhung design of Fig. 6 has a center distance of

5.75 in. and an average life of 14g 500 hr or 17 years of continuous

service before pitting failures require maintenance. Its pinion tooth

bending stress is also at the design limit.

The straddle design of Fig. 7 uses the same set of 300-series roller

bearings and 200-series ball bearings for comparison with the other

designs. The lighter capacity ball bearings are placed further from [he

Figure 6.--Compact single sided overhung support design with

a transmission mean life of 148 500 hr, a volume of 560 in. 3

and a component weight sum of 18.8 lb.

1 n

li
Figure 7.--Compact straddle support design with a transmission

mean rife of 414 800 hr, a volume of 630 in. 3 and a component

weight sum of 21.1 lb.

gears to reduce their loading in optimizing the life of the transmission.

The pinion tooth bending stress is 85 percent of the allowable stress, its

center distance is 5.36 in., and the transmission life is 414 800 hr or

47.5 years -- longer than the other compact designs.

Which merit function should be used to select a design is not

obvious. It should be set by the relative importance of life, size, and

weight in the application. To get a more direct comparison between

designs, one could select one factorin the merit function such as life

and make it a lower bound against which to minimize the weight and

volume of the transmission. If this were done, all designs would have

the same life and comparisons could be based on size and weight

considerations.

CONCLUSIONS

Optimization has been applied to the design of a transmission in

the form of a single gear mesh reduction with its two support shafts and

four support bearings using a system description of the transmission.

The object of the design was to determine a small, light-weighttrans-

mission with a long service life.System models of the transmission's

mean service life,volume, and component weights were obtained.

Three configurations of the transmission were treated: double overhung,

single sided overhung, and straddlesupport. Nine independent design

parameters and 26 different design constraints were applied in the

optimization. The merit function was the transmission life divided by

the cube of the product of the volume and weight.

The optimal designs were determined by a combination of bearing,

shaft, and gear characteristics with the bearings and support geometry

influencing the designs more than the gear mesh parameters. For lightly

loaded designs, the bearing properties dominated the optimal designs.

With the interactive nature of the optimization procedure, actual

bearing and gear proportions can be entered in a checking stage to

determine the performance of realistic designs. Graphical output aids

the interpretation of different designs. Additional changes in the merit

function and constraints of the optimizing procedure may tailor the

design procedure to match different actual design situations easily.



REFERENCES

AGMA Standard, 1988, "Fundamental Rating Factors and Calculation
Methods for Involute Spur and Helical Gear Teeth," ANSI/AGMA
2001-B88, Alexandria, Va.

Astridge, A., and Savage, M., 1990, Rotorcraft Drivetmin Life Safe W

and Reliability, AGARD-R-775, Advisory Group for Aerospace
Research & Development, NATO, Neuilly, Sur Seine, France.

Bamberger, EN., et al., 1971, "Life Adjustment Fac_rs for Ball and
Roller Bearings," ASME Lubrication Committee, New York.

Carroll, R.K., and Johnson, G.E., 1984, "Optimum Design of Compact
Spur Gear Sets," Journal of Mechanisms t Transmissions and Automation
in Desi_g._ Vol. 106, No. l, pp. 95-101.

Coy, JJ., Townsend, D.P., and Zaretsky, E.V., I976, "Dynamic
Capacity and Surface Fatigue Life for Spur and Helical Gears," Journal
of Lubrication Technology, Vol. 98, No. 2, pp. 267-276.

Errichello, tL, 1989, "A Rational Procedure for Designing Minimum-
Weight Gears," Proceedings of the 1989 International Power Transmis-
sion and Gearing Conference, ASME, Chicago, Ill., Vol. 1, pp. 111-114.

Harris, T.A., 1984, Rolling Bearing Analysis, 2nd ed., Wiley,
New York.

Lewicki, D.G., et al., 1986, "Fatigue Life Analysis of a Turbo-Prop
Reduction Gearbox," Journal of Mechanisms_ Transmissions and Auto-
mation in Design, Vol. 108, No. 3, pp. 255-262.

Lundberg, G., and Paimgren, A., 1952, "Dynamic Capacity of Roller
Bearings," ACTA Pol_echnica, Mechankal Engineering Series, Vol. 2,
No. 4, pp. 5-32.

Savage, M., et al., 1989, "Computerized Life and Reliability Modeling
for Turbo-Prop Transmissions," Journal of Propulsion and Power,
Vol. 5, No. 5, pp. 610-614.

Savage, M., et aL, 1991, "Maximum Life Spur Gear Design," NASA
TM-104361.

Savage, M., Coy, J.J., and Townsend, D.P., 1982, "Optimal Tooth
Numbers for Compact Standard Spur Gear Sets," Journal of Mechanical

Vol. t04, No. 4, pp. 749-758.
Tucker, A.I., "The Gear Design Process," 1980, ASME Paper

80-C2/DET- 13.

Vanderplaar.s, G.N., 1984, Numerical Optimization Techniques for
Engineering Design: with Applications, McGraw Hill, New York.

Weibull, W., 1951, "A Statistical Distribution Function of Wide

Applicability," Journal of Applied Meehanics, Vol. 18, No. 3,

pp. 293-297.
Young, W.C., 1989, Roark's Formulas for Stress & Strain, 6th ed,

McGraw Hill, New York.
Zoutendijk, G., 1960, Methods of Feasible Directions: A study in

Linear and Nonlinear Programming: Elsevier, New York.





Form Approved
REPORT DOCUMENTATION PAGE OMBNo.OZO,_-OISS

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing elate sources,

gathering and maintaining the _.ta needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection ot information, including suggestions for re<iucing this burden, to Washington Heaclquartsrs Services, Directorate for information Operations end Reports, 1215 deffm'son

Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Prolect (0704-0188). washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPOR;I"TYPE AND DATES COVERED

September 1992 Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Optimal Design of Compact Spur Gear Reductions

6. AUI:HOR(S)

M. Savage, S.B, Lattime, J.A. Kimmel, and H.H. Coe

7. PERFORMING ORGANIZATION NAME(S) AND ADDi_ESS(ES)

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAMES(S) AND AODRESS(ES)

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

WU-505---63-36

1L162211A47A

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-7048

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM- 105676

AVSCOM TR-91-C-041

11. SUPPLEMENTARY NOTES

Prepared for the Sixth International Power Transmission and Gearing Conference sponsored by the American Society of Mechanical Engineers,

Seottsdale, Arizona, September 13-16, 1992. M. Savage, S.B. Lattimc, and .I.A. Kimmel, The University of Akron, Akron, Ohio 44325 (work funded
by NASA Grant NAG3-1047). H.H. Coe, NASA Lewis Research Center. Responsible person, H.H. Coe, (216) 433-3971.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 37

13. ABSTRACT (Maximum 200 words)

The optimal design of compact spur gear reductions includes the selection of bearing and shaft proportions in addition

to the gear mesh parameters. Designs for single mesh spur gear reductions are based on optimization of system life,

system volume and system weight including gears, support shafts and the four bearings. The overall optimization allows

component properties to interact, yielding the best composite design, A modified feasible directions search algorithm

directs the optimization through a continuous design space. Interpolated polynomials expand the discrete bearing prop-

erties and proportions into continuous variables for optimization. After finding the continuous optimum, the designer

can analyze near optimal designs for comparison and selection. Design examples show the influence of the bearings on

the optimal configurations.

14. SUBJECT TERMS

Gears; Optimization; Fatigue life; Computer programs; Design

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITYCLASSlRCATION
OF ABSTRACT

Unclassified

15. NUMB_ OF PAGES

16. PRICE CODE
A02

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std Z39-18

298-1 02


