
NASA Contractor Report 177593

Army-NASAAircrew/Aircraft Integration
Program.: Phase IVMI Man-Machine
Integrahon Design and Analysis System
(MIDAS) Software Detailed Design Document
Carolyn Banda, David Bushnell, Scott Chen, Alex Chiu, Betsy Constantine, Jerry
Murray, Christian Neukom, Michael Prevost, Renuka Shankar, and Lowell Staveland

(NASA-CP-1775q)) ARMY-NASA AIRCREW/AIRCRAFT

INTEGRATION PROGRAM: PHASE 4 A(3)I

MAN-MACHINE INTEGRATION DESIGN AND ANALYSIS

SYSTEM (MIDAS) SOFTWARE 0ETAILEO DESIGN

OOCUMENT (Sterling (Walter V.)) 51# p G3/5#

N?2-2941J

Unclas

0104022

CONTRACT NAS2-13210
December 1991

National Aeronautics and
Space Administration

NASA Contractor Report 177593

Army-NASAAircrew/AircraftIntegration
Program: PhaseIV A;_IMan-Machine
IntegrationDesignandAnalysisSystem
(MIDAS) SoftwareDetailed DesignDocument
Carolyn Banda, David Bushnell, Scott Chen, Alex Chiu, Betsy Constantine, Jerry Murray,
Christian Neukom, Michael Prevost, Renuka Shankar, and Lowell Staveland

Sterling Federal Systems, Inc.
1121 San Antonio Road

Palo Alto, CA 94303-4380

Prepared for
Ames Research Center

CONTRACT NAS2-13210
December 1991

National Aeronauticsand
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

Table of Contents

1.0 INTRODUCTION ... 1
1.1 IDENTIFICATION OF DOCUMENT 1
1.2 SCOPE OF DOCUMENT .. 1
1.3 PURPOSE AND OBJECTIVE OF DOCUMENT 1

2.0 RELATED DOCUMENTS .. 2
2.1 APPLICABLE DOCUMENTS .. 2
2.2 INFORMATION DOCUMENTS ... 2

3.0 CONCEPT .. 2
3.1 DEFINITION OF SOFTWARE ... 2

3.1.1 Purpose and Scope ... 2
3.1.2 Goals and Objectives ... 3
3.1.3 Description .. 4

3.2 USER DEFINITION ... 6
3.3 CAPABILITIES AND CHARACTERISTICS 6
3.4 SAMPLE OPERATIONAL SCENARIOS 7

4.0 REQUIREMENTS ... 8
4.1 REQUIREMENTS APPROACH AND TRADEOFFS 8

4.1.1 Incremental Development .. 9
4.1.2 Development Techniques .. 10

4.1.2.1 Rapid Prototyping ... 10
4.1.2.2 Distributed, Tick-Based Simulation 11
4.1.2.3 Graphic & Iconic Interface I I

4.2 HARDWARE ENVIRONMENT .. 11
4.2.1 Symbolics Lisp Machines ... 12
4.2.2 Maclvory Workstation ... 13
4.2.3 Silicon Graphics Computers .. 13
4.2.4 Networking Hardware ... 15
4.2.5 Peripherals .. 15

4.3 SOFTWARE ENVIRONMENT ... 15
4.3.1 Object-Oriented Programming .. 15
4.3.2 Source Code Control ... 15

4.4 EXTERNAL INTERFACE REQUIREMENTS 17
4.4.1 User Interfaces .. 17
4.4.2 Integration ... 17

4.5 REQUIREMENTS SPECIFICATION 20
4.5.1 Process and Data Requirements 20

5.0 DESIGN ... 21
5.1 ARCHITECTURAL DESIGN .. 21

5.1.1 Phase IV Development Summary 22
5.1.1.1 Symbolic Operator Model 22

5.1.1.1.1 Scheduler (Z) 23
5.1.1.1.2 Task Loading Model 23

• 5.1.1.2 Symbolic Equipment Models 24
5.1.1.3 Visual Editor and Simulation Tool (VEST) 24
5.1.1.4 Display Layout Analysis (DLA) tool 24
5.1.1.5 Anthropometric Model (Jack) 24
5.1.1.6 Vision Models 25

5.1.1.6.1 Volume Field of View Model 25
5.1.1.6.2 Cockpit Display Visibility Model 25

5.1.1.7 Aerodynamics & Guidance Model (AGM) 26
5.1.1.8 Simulation Executive and Communications

Module ... 26

iii

PRECEDING PAGE BLANK NOT FILIV_.D

6.0
7.0
8.0

9.0

5.1.1.9 Training Assessment Module 26
5.1.2 Demonstration Scenario ... 26
5.1.3 Programmatic Information .. 28

5.1.3.1 Constraints ... 28
5.1.3.2 Risks .. 28

5.1.3.3 Summary of Results .. 29
5.2 DETAR.J_ DESIGN ... 30
USER'S GUIDE ... 30
ABBREVIATIONS AND ACRONYMS .. 30
NOTES .. 30
8.1 LIMITATIONS .. 31
8.2 FUTURE DIRECTIONS ... 31
HISTORICAL INFORMATION ... 31
9.1 PHASE I DEVELOPMENT ... 31

9.1.1 Requirements and Design Approach 32
9.1.1.1 Summary Level .. 32
9.1.1.2 Mission Modelling .. 32
9.1.1.3 Graphics .. 32
9.1.1.4 Human Performance Modelling 33
9.1.1.5 Demonstration Scenario 33

9.1.2 Hardware Environment .. 33
9.1.2.1 Symbolics Lisp Machines 34
9.1.1.2 Silicon Graphics Computers 34
9.1,2,3 Other Processors .. 35
9.1.2.4 Networking Hardware 35
9.1.2.5 Peripherals ... 35

9.1.3 Software Environment ... 35
9.1.4 Programmatic Information .. 35

9.1.4.1 Constraints ... 35
9.1.4.2 Risks .. 36
9.1.4.3 Summary of Results .. 36

9.2 PHASE II DEVELOPMENT .. 37
9.2.1 Requirements and Design Approach 37

9.2.1.1 Summary Level .. 37
9.2.1.2 Modelling Environment 38

9.2.1.2.1 Mission Editor 38
9.2.1.2.2 Modeller ... 38
9.2,1.2.3 Visual ModeUer 38
9.2.1.2.4 State Display Editor 39

9.2.1.3 Pilot Models ... 39
9.2.1.3.1 Anthropometric Model 39
9.2.1.3.2 Loading Model 39

9.2.1.4 Vehicle/Systems Models 40
9.2.1.4.1 Dynamics and Guidance Models 40
9.2. 1.4.2 Cockpit Display Editor 40

9.2.1.5 World Models ... 40
9.2.1.5.1 World Models 40
9.2.1.5.2 Views .. 40

9.2.1.6 Analysis and Decision Aiding 41
9.2.1.6.1 Training Resource Requirements

Prediction ... 41
9.2.1.7 Demonstration Scenario 41

9.2.2 Hardware Environment .. 41

9.2.2.1 Symbolics Lisp Machines 42

iv

I0.0

9.2.2.2 Silicon Graphics Computers 43
9.2.2.3 Other Processors .. 43
9.2.2.4 Networking Hardware 43
9.2.2.5 Peripherals ... 43

9.2.3 Software Environment ... 44
9.2.4 Programmatic Information .. 44

9.2.4.1 Constraints ... 44
9.2.4.2 Risks .. 45
9.2.4.3 Summary of Results .. 45

9.3 PHASE III DEVELOPMENT ... 46
9.3.1 Requirements and Design Approach 46

9.3.1.1 Summary Level .. 46
9.3.1.2 Symbolic Modelling CSCI 46
9.3.1.3 Graphic Views CSCI 46
9.3.1.4 Cockpit Design Editor (CDE) CSCI 47
9.3.1.5 Anthropometric Model or JACK CSCI 47
9.3.1.6 Aerodynamics & Guidance Module (AGM) CSCI 47
9.3.1.7 Communications CSCI 48

9.3.1.8 Training Assessment CSCI 48
9.3.1.9 Scheduler ... 48
9.3.1.10 Demonstration Scenario 48

9.3.2 Hardware Environment .. 49
9.3.2. I Symbolics Lisp Machines 50
9.3.2.2 Silicon Graphics Computers 51
9.3.2.3 Networking Hardware 52
9.3.2.4 Peripherals ... 52

9.3.3 Software Environment ... 52
9.3.4 Programmatic Information .. 54

9.3.4.1 Constraints ... 54
9.3.4.2 Risks .. 55
9.3.4.3 Summary of Results .. 56

ANNEXES .. 57
ANNEX A m
ANNEX B
ANNEX C
ANNEX D
ANNEX E
ANNEX F
ANNEX G
ANNEX H
ANNEX I
ANNEX J

SYMBOLIC OPERATOR MODEL 57
SCHEDULER (Z) MODULE .. 57
TASK LOADING MODEL .. 57
SYMBOLIC EQUIPMENT MODELS 57
VISUAL EDITOR AND SIMULATION TOOL (VEST) 57
DISPLAY LAYOUT ANALYSIS 57
ANTHROPOMETRIC MODEL "JACK". 57
VISION MODELS .. 57
AERODYNAMICS/GUIDANCE &TERRAIN MODULE 57
SIMULATION EXEC.,COMMUNICATIONS MODULE 57

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.

Figures

Functional Content of MIDAS .. 5
A3I Program Timeline .. 10
Phase IV Hardware Configuration .. 12
Distribution of Phase IV Software Components and Displays within
the A3I Lab .. 17
MIDAS Phase IV Integration N2 Chart .. 18
MIDAS Phase IV Top Level Software Architecture 22
Phase I Hardware Configuration .. 34
Phase I Software Modules ... 35
Phase II Hardware Configuration ... 42
Phase II Software Components & Displays 44
Phase III Hardware Configuration .. 50
Distribution of Phase HI Software Components and Displays within
the A3I Lab .. 53

vi

MAN-MACHINE INTEGRATION DESIGN & ANALYSIS SYSTEM
(MIDAS) SOFTWARE DETAILED DESIGN DOCUMENT

PHASE IV:

OVERVIEW

,1.0 INTRODUCTION

1.1 IDENTIFICATION OF DOCUMENT

This document is the Software Product Specification for the Man-Machine Integration
Design and Analysis System (MIDAS). Inu'oductory descriptions of the processing
requirements, hardware/software environment, structure, I/O, and control are given in the
main body of the document for the overall MIDAS system, with detailed discussion of the
individual modules included in Annexes A-J.

1.2 SCOPE OF DOCUMENT

The A3I Program is a phased development program in which software development takes
place in well-defined cycles, beginning with an off-site planning meeting to establish
requirements, progressing through system design and development and culminating in
demonstration to interested persons in government, academia and industry. After the
demonstrations, the software is documented and then a new phase begins. This document
records the requirements and design of MIDAS as it existed at the end of Phase IV. A
similar document has been produced during each phase of development, tracking the
history of changes to the configuration, and more importantly, the motive for such
changes. For historical information regarding Phases I, II and III, the reader is urged to
consult Section 9, Historical Information. Documentation from previous phases is
referenced in Section 2.2, Information Documents.

This document is intended for use by programmers and other technical specialists working
with MIDAS. Sufficient high level information is provided to allow any reader to become
familiar with the objectives of the A3I Program, the current (as well as previous) overall
architecture and development philosophies, while at the same time containing
implementation detail useful to programmers involved with specific application software
modules.

1.3 PURPOSE AND OBJECTIVE OF DOCUMENT

The purpose of this document is to meet three objectives: one, to record the status and
philosophy of design of MIDAS as it existed at the end of Phase IV, two, to provide
programmers with sufficient implementation detail to facilitate use or modification of
MIDAS in particular application environments, and three, to provide technically oriented
readers with a more detailed description of MIDAS than can be given in a typical 3-hour
demonstration.

Page I

2.0 RELATED DOCUMENTS

2.1 APPLICABLE DOCUMENTS

Army-NASA AircrewlAircraft Integration Program, A31, Executive Summary, 1 Sept,
1990

2.2 INFORMATION DOCUMENTS

A31Phase H Human Factors�Computer-Aided Engineering Workstation Suite Architecture
Description Document, Revision 1, 30 Nov 87

Cody, William J., Recommendations for Supporting Helicopter Crew System Design, US
Army Human Engineering Laboratory Contract No. DAAD05-87-M-L584 to Search
Technology, Inc., June 1988.

Human Performance Models for Computer.Aided Engineering, National Research Council
Committee on Human Factors, National Academy Press, 1989

Product Specification Documentation Standard and Data Item Descriptions (DID) Volume
of the lnformation System Life-Cy¢le and Do¢umentation Standards, Release 4.3, NASA
Office of Safety, Reliability, Maintainability, and Quality Assurance,Software Management
and Assurance Program (SMAP),Washington, DC, February 2g, 1989.

Army-NASA Aircrew/Aircraft Integration Program (A3I) Software Detailed Design
Document: Phase III, Contractor Report 177557, NASA Ames Research Center, Moffett
Field, California 94035-1000, June 1990.

Smith, B., Six Years into the A31 Program: Progress & Problems. Paper presented at the
AFHRL Workshop on Human-Centered Design Technology for Maintainability, 12-13
September, 1990

3.0 CONCEPT

3.1 DEFINITION OF SOFTWARE

MIDAS is an integrated suite of software components that constitutes a prototype
workstation to aid designers in applying human factors principles to the design of complex
human-machine systems. MIDAS is intended to be used at the very early stages of
conceptual design to provide an environment wherein designers can use computational
representations of the crew station and operator, instead of hardware simulators and man-
in-the-loop studies, to discover problems and ask "what if' questions regarding the
projected mission, equipment, and environment.

3.1.1 Purpose and Scope

The purpose of MIDAS is to provide design engineers/analysts with interactive symbolic,
analytic, and graphical components which permit the early integration and visualization of
human engineering principles guiding design. Currently hosted on a number of networked
Symbolics and Silicon Graphics workstations, MIDAS serves as the framework in which
research findings and models, developed by, or sponsored through the Computational
Human Engineering Research Office, are incorporated.

Page 2

MIDAS contains tools to describe the operating environment, equipment, and mission of
manned systems, with models of human performance/behavior used in static and dynamic
modes to evaluate aspects of the crewstation design and operator task performance. The
results are presented graphically and visually to the design engineers, often as a computer
simulation of "manned flight." In this sense, MIDAS is similar in concept to computational
tools such as finite element analysis and computational fluid dynamics which are used to
improve designs and reduce costs.

Seventy to eighty percent of the life-cycle cost of an aircraft is determined in the conceptual
design phase. After hardware is built, mistakes are hard to correct and concepts are
difficult to modify. Engineers responsible for developing crew training simulators and
instructional systems currently begin work after the cockpit is built and too late to impact its
design. MIDAS gives designers an opportunity to "see it before they build it", to ask
"what if' questions about all aspects of crew performance, including training, and to
correct problems early. The system is currently focused on helicopters, however its model
and principle basis permits generalization to other vehicles.

3.1.2 Goals and Objectives

The A3I Program has three major goals organized under a research and development umbrella
covering a wide range of activities from the sponsoring and conduct of basic research in
perception to the application of software engineering practices to provide useable human
factors tools. These goals are:

1) Develop an integrated methodology for crew station prototyping based on
models and principles of human factors and engineering psychology. This
methodology shall be developed around a flexible facility for collecting and using
tools/models which initially can answer specific critical questions required by the
existing crew station design process.

2) Advance the capabilities and use of computational representations of human
performance in the conceptual design, synthesis, and analysis of manned systems.
These representations or models should be normative if possible, and focused for
use in a simulation with explicit inputs and outputs.

3) Transfer the relevant technology/findings, amassed from the above, to interested
research and practitioner organizations in industry, government, and academia. The
A3I Program (through consortia) must lay the foundations for participation by the
larger community of researchers and designers who are contributing to the
development of computational human factors or who might become users of the
methods and models developed by researchers in the field.

These goals are to be accomplished by developing a Human-Factors / Computer-Aided-
Engineering (HF/CAE) system, called MIDAS, which assists designers in considering
human performance characteristics to be an integral part of the overall system operation
from the earliest stages of the design process. To meet the overall Program goals, the
software system, MIDAS, must meet the following objectives.

1) MIDAS must be maintained as a flexible integrated modeling environment. An
enormous amount of modeling is anticipated throughout the life of the Program, with the
operator, vehicle and world as the major categories of models. Many of these models, and the
subsequent tools based on them, will exist in various formats and stages of development.
Consequently, the architecture of MIDAS must be modular, allowing for the existence of a

Page 3

collectionof models rather than one monolithic model. The collection of tools will grow and
change over time. MIDAS must be designed as a framework within which a heterogeneous
collection of tools and models can be integrated and used effectively by a design team. It is
also intended that the MIDAS workstation will serve a dual purpose by providing an
integrated environment for inspection and testing of new models. As the workstation
architecture evolves, it is expected that both deterministic and stochastic constructs will be
required within the same simulation environment to make use of the widest possible range of
extant models. The use of abstraction is also strongly encouraged as part of this integrated
environment. The goal is to be able to simplify each model from precise computational
representations to approximate, qualitative models, as determined by the interactions under
study and the answers desired.

2) MIDAS must be supportive of a wide range of designer activities. As described in a
study commissioned by the A3I Program (Cody 1988), the crew station designer engages in a
wide array of activities. Initially, the tools and models contained within the MIDAS
workstations must support design specification, static analysis and dynamic analysis, growing
into the more complex synthesis task once successful at these. To support the specification
phase, MIDAS must contain tools to allow the user to input or "specify" the elements of the
mission, crew, cockpit, vehicle performance, and environment that are given or known. Where
possible, routine static analysis tasks such as assessing reach or visibility under fixed conditions
must also be supported. However, the majority of the difficult and interesting crew station
design problems will require a dynamic simulation and analysis capability. Only through this
capability will users be able to discover the inherent complex interactions among the operator,
task, equipment, and environment which drive aspects of workload, performance, and training.

3) MIDAS must support and facilitate interdisciplinary communication. Historically, a
major impediment to rational cockpit design has been the lack of communication among the
practitioners of the various design disciplines involved in the development process. Even
when placed in proximity on a development team, there is frequently a lack of appreciation by
team members for each others' positions, due in large part to differences in training, language
(terminology), objectives, and points of view. Development team specialist disciplines may
include design engineers, avionics engineers, mission specialists (operations and doctrine),
pilots, engineering psychologists, training systems specialists, reliability/maintainability
analysts, and cost and production experts. MIDAS must attempt to provide a basis for
communication among these specialists, integrating the information generated by them,
possibly arbitrating between them, alerting users to the need for specialists not currently
engaged, and mediating between the design team and the end-product user or sponsor.

3.1.3 Description

MIDAS consists of a set of software components providing multiple perspectives or
"windows" which contain information about the mission, operator, and environment in
varying levels of modeling detail. Visualization is emphasized, with 3-D graphic and iconic
representations used as the major means of communication to the wide range of potential
users.

Figure 1 depicts what is notionally expected to be contained within MIDAS and shows how
these various components might interact and overlap to address the various stages of crew
station design and analysis.

Page 4

f

SPECIFICATION
& DESIGN

Assessment Me_loc[s

STATIC ANAL YSIS

L D)'NAMIC
ANAL)'SIS

i i

Toolsto Design
theCockpit

andDescribe
the Mission

Methodsto Assess
SpecificOperator
Performanceand

BehaviorMeasures

A DynamicSimulation
toObserveResults

of the Complex
Interactions

ii

Figure 1. Functional Content of MIDAS

Forming the core of this system will be a number of human behavior and performance
models, intended to address the critical areas of perception, cognition, workload, etc. as
shown. Surrounding and augmenting this core will be heuristic methods or knowledge
bases. These are needed to supplement what is explicitly known and capable of being
modeled about the operator in order to complete the human representation and form a
closed-loop system. Included within this overall functional context will be a number of
tools and methods to design and describe elements of the cockpit, environment, and task,
used as stimuli for a range of models. Finally, analytical methods are also included to
address anticipated training requirements, summary mission results, and task analysis
parameters.

These notional elements are shown distributed among the specification, static analysis, and
dynamic analysis stages, indicating a high degree of overlap between these phases.
Arrows between such phases are meant to depict that the process is not constrained to
follow a linear progression from specification to static analysis and then dynamic analysis,
but instead could be used to begin with results from a particular stage, and then progress
backward to find out characteristics of the crew station or environment which are the

"drivers" for such predictions.

Page 5

3.2 USER DEFINITION

The study cited above (Cody 1988) found that crew system design involved manipulating
the effects of six major system factors and their interactions. These factors are aircrew
selection, training, equipment design, job design, aiding, and protection. Furthermore,
they found that designers, as individual problem solvers, engage in seven major classes of
activity: problem formulation, synthesis, consequence finding, consequence analysis,
fabrication and prototyping, evaluation and judgement, and information control.
Additionally, the study found that approximately 50 distinct disciplines, ranging from
acoustics to probability theory, were involved in the crew station design process,
representing 15 major fields of study. Finally, the report surveyed existing and emerging
forms of design support and found that less than one third of the design problem space
(characterized as a matrix of the aforementioned activities and factors), had some form of
tool for support. More significantly, virtually none of these models o_ tools surveyed
addressed the complex interactions between combinations of the design activities and
system factors.

The substantial body of data and information generated during the simulation must be
interpreted in a manner that is meaningful and relevant to various specialists evaluating a
candidate cockpit design. Because the crew station design process involves professionals
from a wide range of disciplines, the A3I Program has chosen to emphasize visualization as
the primary form of information output. Graphic and iconic representations are
predominantly used as a means to foster interdisciplinary communication.

Furthermore, because the crew station design process includes extremely varied activities,
the tools and models contained within the workstation are designed to support specification
and static analysis as well as dynamic analysis and simulation. For example, analysis of
reach and fit of cockpit controls can be performed on geometric representations of the
cockpit without the need for elaborate vehicle dynamics/systems or human performance
simulation models. On the other hand, modeling the complex interactions of competing
tasks during the performance of a mission requires considerable dynamic modeling of both
human behavior/performance and vehicle systems to capture the context-sensitive, time-
varying nature of task sequencing and resultant loads.

3.3 CAPABILITIES AND CHARACTERISTICS

The components of MIDAS at the end of Phase IV include:

1) The Symbolic Operator Model, which contains methods to 1) represent and
decompose decomposition of mission goals to their lowest level, 2) sort these matched
goal-activity patterns by priority, 3) find matching equipment operation patterns or
activities which will satisfy them, 4) interact with the scheduling and loading operator
model components as appropriate and 5) execute these activities subject to physical
resource (hand, eye, etc) requirements, Visual Auditory, Cognitive, and Psychomotor
(VACP) load limits, and temporal/logical constraints.

2) The Scheduler (Z), which solves for a near-optimal sequence and schedule
based on a strategy of either time minimizing or load balancing, intended to represent
possible operator behaviors.

3) The Task Loading Model, which, in accordance with current research in
multiple resource theory, classifies individual tasks in terms of their demands on the

Page 6

Visual,Auditory, Cognitive and Motor processing dimensions based on attributes of the
mission tasks, world state, operator, and crew station equipment.

4) The Symbolic Equipment Models, which allow characteristics of the crew
station equipment to be represented in terms of both physical and functional attributes
which are used to specialize the mission tasks prior to a simulation.

5) The Visual Editor and Simulation Tool (VEST), which provides an interactive
3-D tool used to create, control and observe, from several perspectives, the 3-D graphic
environment of the mission simulation. VEST includes the The Cockpit Design Editor
(CDE) component, containing 3-D CAD utilities for graphically prototyping the crew
station geometry, instruments, controls, and displays using a built-in library of primitive
cockpit objects.

6) The Display Layout Analysis (DLA), which is a prototypical tool intended to
provide designers with assistance in determining the spatial configuration of cockpit
displays.

7) The Anthropometric Model (Jack), which provides realistic and physically
quantifiable human figure definition and motion within a 3-D space environment.

8) The Vision Models, which are fully integrated into the Jack environment,
include the Volume Field-of-View Model, which provides computer graphic methods for
representing the relationship between two-dimensional visual field maps and the three-
dimensional visual space they serve, and the Cockpit Display Visibility Model, which
provides an assessment of the visibility of cockpit objects imaged on the retina in terms of
a visual system footprint.

9) The Aerodynamics & Guidance Model (AGM), which represents rather generic
helicopter guidance and dynamics for uncoupled controls.

10) The Simulation Executive and Communications Module, which facilitates inter-
machine communication and dynamic message sharing between all MIDAS components,
using a "data pool" concept during the simulation to synchronize and distribute state
variables among the simulation processes and objects.

I I) The Training Assessment Module, which provides a means to estimate the
Iraining media, instructional techniques, and time necessary to qualify in the cockpit under
development. This module was developed in Phase III and not modified during Phase IV;
detailed documentation of this module is included in the Phase III design document.

3.4 SAMPLE OPERATIONAL SCENARIOS

One type of user of MIDAS, a crew station designer, might f'wst approach MIDAS with a
requirement to design a new crew station. He/she would have a mission that must be
performed and from that derive a preliminary specification of the kinds of information that
must be presented to the operator in the crew station. The initial point of contact with
MIDAS could be through the Display Layout Analysis tool, through which the designer
could plan and evaluate alternate configurations for displays in the crew station. With an
initial configuration in mind, the designer could then use the Cockpit Design Editor to
render a 3D graphic representation of the displays and conlrols in the cockpit. The designer
could then put Jack in the cockpit and perform some static analyses of reach and fit using
figures with different physical characteristics. Field of view and visibility analyses could
be performed in the context of Jack using the Vision Models.

Page 7

TopeTformadynamicanalysisof theinteraction of a human model in the cockpit
environment, a mission scenario, with goals and activities would be defined in the context
of the Symbolic Operator Model. In addition, he/she would specify both the physical and
functional characteristics of the cockpit equipment by selecting or building equipment
models. With the mission and cockpit environment defined, the designer could run a
simulation of the mission scenario and observe a 3D graphic rendition of Olm'ator behavior
in the proposed cockpit and world environment. Data on satisfied and unsatisfied goals
could be obtained from the Symbolic Operator model. Mission tasks could be evaluated by
the Task Loading Model to obtain load traces in the four dimensions: visual, auditory,
cognitive and motor.

4.0 REQUIREMENTS

A number of key developmental aspects must be mentioned prior to describing Phase IV
specifics because they are central requirements for the overall A3I Program. Perhaps most
importantly, the Program attempts to use extant software and systems to the greatest extent
possible. A considerable amount of research effort and money has been expended
nationally, over more than two decades, to produce analytic methods, models and
structures representing the behavior and functions of human operators, avionics systems,
and missions, with varying degrees of success. The A3I Program is not expressly
chartered to develop new models and methods. Where possible, the staff will selectively
employ those which have already been developed and will engage in research and
development of new models/methods only when a critical void is encountered. The advice
and guidance of the National Research Council's Committee on Human Factors (offered by
the study group on Human Performance Models and the report Human Performance
Models for Computer-Aided Engineering) has been solicited and followed on this matter.

An enormous amount of modeling is anticipated throughout the life of the Program, with
the operator, vehicle and world as major categories of models. The A3I Program has
elected a simulation-based approach to system design and evaluation that proposes to make
extensive use of graphic and iconic representations of the underlying model structures.
Models will generally be prescriptive, providing results relevant to mission success in
terms of such parameters as performance, errors, duration, and rates. Wherever practical,
input-output models with 5-10 years of development and validation, supported by a
substantial body of empirical data, will be utilized. However, many instances will require
the use of models emerging from ongoing research, where final verification and validation
has yet to be completed, as well as qualitative models emerging from the AI field. It is
expected that the MIDAS workstation will serve a dual purpose in aiding this process by
providing an integrated environment for model inspection and testing.

4.1 REQUIREMENTS APPROACH AND TRADEOFFS

On the first day of the A3I Program, what needed to be done and why, was known, at least
in general terms. How to do it was not known, nor could one predict very far into the
future as to progress which might be expected. The inability to clearly specify the ultimate
end product dictated the adoption of certain approaches to ensure that even in the face of
uncertainty, this highly ambitious program could be directed toward its goals while
managing risk and ensuring that intermediate products could be made available to interested
users and collaborators.

Page 8

4.1.1 Incremental Development

In the A31 Program, a standard practice, incremental development, has evolved to take the
following programmatic form. Development is accomplished in phases, with each phase
consisting of planning, design, development, testing, demonstration and documentation of
software to fulfill a specific set of requirements. A development phase begins with an off-
site meeting, lasting three to four days and attended by the full in-house staff, extramural
associates, and invited peer reviewers, which is held at a location conducive to

•uninterrupted deliberations. During the off-site, plans are made for the next phase of
development based on what has been learned during the previous phase, advice from
reviewers and associates, assessment of weaknesses in current methods, and
comments/recommendations made by visitors and reviewers of the previous development
phase. The products of the off-site are a formal statement of requirements for the next
phase of development, an agreement as to the length of the development period (usually 8
to 14 months), and an understanding among the staff and extramural members of what is
expected to be accomplished -- a common vision.

Upon our return to NASA-Ames and the laboratory, the details of the work are finalized
and development begins. Work breakdown structures and schedules are developed to
track phased development in each major work area. Depending on the length of the
development period, a number of in-progress reviews (IPRs) are held to monitor the
development and discover/correct problems. Two weeks before the end of the
development, the writing of any new code is terminated. Final checks of the code and
models are made and any bugs corrected.

The end of the development phase is marked by a series of demonstrations highlighting the
work produced during that phase or the integration of new work with products of the
previous phase(s). These demonstrations are broadly advertised, and as the Program has
grown so have the number of visitors, and therefore, the number of demonstrations. The
demonstrations average about two and one half hours, but have been known to exceed five
hours. Depending on the audience, the detail of the demonstrations may go down to the
code level. Much is learned during these demonstrations from the visitors to the
laboratory. Many are from academia in the fields of psychology, AI, and Computer Science
and their suggestions and comments are extremely helpful, frequently being used as inputs
for the next phase of development.

At the end of the demonstration period, effort is devoted to documentation (primarily this
Software Detailed Design Document) and recording of lessons learned in preparation for
the next off-site meeting. By this method, the program has been "boot-strapping" itself
along very successfully since the first off-site meeting in the Fall of 1985.

Page 9

Figure 2 below depicts major phase milestones since the Program's inception.

85 86 87 8 8 89 90 91 92 93

i i i i i J i J J

-_ Planning; Acquire Equipment & Staff

PHASE l [[Proof of Concept w/Prototype Mission

Review, Planning,"D°cl" I
! ! Tools and Architecture

PHASE II l , I Development

Review, Planning, Documentation i !
I I Workstation Architecture

PHASE III I I & Modeling Expansion

Review, Planning, Documentation, Tech Xfer 1. !
I]Tool & Model Refinement

PHASE IV [[Apply to New Cockpit Oev.

Review, Planning, Documentation ! /
" I iArchitecture

PHASE V I lOlveloprnlnt
Empheeis on
Simulation

Figure 2. A31 Program Timeline

4.1.2 Development Techniques

MIDAS is a networked collection of graphical, numeric, and symbolic processors which
forms a flexible, integrated modeling environment. One of the central challenges is to
design and implement a general environment that can easily accommodate models written in
various languages by a variety of developers, while maintaining inspectability and
modularity at various levels of modeling abstraction. A number of methodologies have
been used to satisfy these requirements.

4.1.2.1 Rapid Prototyping

Since its inception, the A3I Program has emphasized the evaluation of architectural issues

and model requirements through rapid prototyping. Much of what is being attempted by
the software development staff is radically new with no known, proven methods. Rapid
prototyping as a means to develop the various tools and models has both guided and
facilitated subsequent effort, providing the opportunity for scientific scrutiny and user-
community feedback before an overwhelming development effort is expended.

Page 10

4.1.2.2 Distributed, Tick.Based Simulation

The key characteristic of MIDAS is its support for a realistic dynamic analysis or simulation
capability. At each step in the selected scenario, human performance models interact with
the aircraft dynamics models, equipment models, and environment to generate the next
event-step in the scenario as it unfolds. Thus if mission demands, display interpretation
requirements, information handling demands, or multiple tasking, etc. exceed reasonable
human capabilities, the operator performance and behavior models should indicate that
reduced performance would be expected. In MIDAS, the various models and tools are
diswibuted across a number of platforms and inter-machine communication is achieved
through an internally developed communication package which uses standard EtherNet and
TCP/IP protocol. The Communications module sends ticks across the network to each
module, implementing a discrete, scaled time or tick-based simulation of the objects or
models of interest, This computer graphic simulation of a man-in-the-loop simulation
provides results relevant to mission success in terms of parameters such as performance,
errors, duration, and rates, by maintaining world, operator, and equipment states and
propagating their effects over time. Since computational models and principles of human
performance replace the human operator found in typical man-in-the-loop simulations,
MIDAS contains no requirement for a real-time simulation capability.

4.1.2.3 Graphic & Iconic Interface

Visualization methods were chosen as the preferred method for presenting complex
computational results. MIDAS' emphasis on visualization carries several important
connotations. First, it is hoped that visualization will facilitate the use of the system in a
design/analysis session without requiring an undue amount of knowledge about the
underlying implementation. Second, data and information selected as interesting can be
presented in a form the designer/user finds easy to interpret. Alphanumeric tabular forms,
though easiest to generate, are often ill-suited to designer needs. Hence, alternate forms such
as graphic and iconic representations are provided to facilitate the designer/user's easy insight
into the overall progress of the simulation or analysis session and a global understanding of
complex and interrelated man-machine factors. Finally, visualization is perhaps the best way
for MIDAS to facilitate communication between designers from different technical
disciplines. Commonly-understood pictures can be substituted for words, which may have
different meanings to each. The result is a depiction of the impact of design decisions in a
form which is meaningful to a wider range of potential users.

4.2 HARDWARE ENVIRONMENT

The A3I Program has adopted the requirement to use existing and proven hardware,
namely networked Silicon Graphics Workstations and Symbolics Lisp machines. The
hardware architecture in place at the end of Phase IV is depicted in Figure 3 below. These
components, together with their resident software and peripherals are described in further
detail in the subsections which follow. The specific computational hardware environment
for each module is described in detail within Annexes A-J. The history of changes in the
hardware environment throughout the development phases is described in Section 9,
Historical Information.

Page 11

Figure 3. Phase IV Hardware Configuration

4.2.1

Model

Model

Symbolics Lisp Machines

3675 Color Workstation (Barracuda) consisting of:

Monochrome Console with OCLI filter

Keyboard & Mouse

45 MB 1/4" Cartridge Tape Drive
Ethemet Controller and Transceiver

22.5 MB RAM

Enhanced Performance Option

338 MB Fujitsu Ea$1¢ Disk
550 MB CDC Disk

Model CGTO-FB02 High Resolution, 24-bits]Pixel Color Frame Buffer
Tektronix 19" Color RGB Monitor

Model OP36-FPAI Floating Point Accelerator

Symbolics # SLAN-FORT Fortran 7"/Compiler
Symbolics # STCP-1 TCPflP Software

S-Group (S-Paint. S-Geometry, S-Render, S-Dynamics, and color 6.0 V405.13)
Genera 7.2

3640 Color Workstation (Puffer) consisting off

Monochrome Console with OCLI Filter

Keyboard & Mouse
45 MB 1/4" Caru-idge Tape Drive
Ethernet Controller and Transceiver

11.25 MB RAM

2-140 MB Disks

CAD Buffer

Tektronix 19" Color RGB Monitor

Page 12

Model

Model

Symbolics # SLAN-FORT Fortrea 77 Compiler

Syrnbolics # STCP-I TCP/IP Software

S-Group (S-PLint, S-Geometry, S-Reader, S-Dynamics, and color 6.0 V405.13)
Genera 7.2

3640 Monochrome Workstation (Squid) consisting of:

Monochrome Console with OCLI Filter

Keyboard & Mouse
Ethernet Con_oller _ Transceiver

13.5 MB RAM
2-140 MB Disks

Symbolics # SLAN.FORT Forta-ma 77 Compiler
Symbolics # STCP-1 TCP/IP Software
Genera 7.2

Automated Reasoning Tool (ART) Version 3.2

3620 Monochrome Workstation (Sea Slug) consisting of:

Monochrome Console with OCLI Filter

Keyboard & Mouse
Ethemet Controller and Transceiver

18 MB RAM

190 MB ST506 Disk

Symbolics # SLAN-FORT Fort_ea 77 Compiler
Symbolics # STCP-I TCP/IP Software
Genera 7.2

4.2.2

Apple

Maclvory Workstation

Macintosh IIx Workstation with Symbolics Maclvory board (Otter) consisting of:

19" Radius Monochrome Monitor

Keyboard & Mouse

Ethernet Interface card

21 MB RAM (5MB SIMM CPU memory + 16MR Nubus memory c_rd)
300 MB External Disk

Internal 3.5" floppy disk drive

40 MB mini camidge tape drive

Maclvory floating point accelerator
Maclvory 7.4

Macintosh system software version 6.0.2
Microsoft Word 4.0

MacDraw II 1.1

4.2.3 Silicon Graphics Computers

W-2500A Workstation (Orca) consisting of:

19" High Resolution Monitor

Keyboard & Mouse

45 MB 1/4" Cartridge Tape Drive
Ethemet Conlroller mad Transceiver

12 MB RAM

2 474 MB Fujitsu 10.5" Disk Drives

HU-T04 Turbo Option W/4MB RAM

H3-FPA Floating Point Accelerator

H-DM4A 1024x1024x4 Display Memory

H-ZC2 Z Clipping Assy
C-WTCP IP//'CP Software

P-DBX Dial/Button Box

Unix System V with BSD 4.2

Page 13

NFS

C Compiler

IRIS Graphics Library II and Window Manager

W-3120 Workstation (Manta) consisting of:

19" High Resolution Monitor
Keyboard & Mouse
Ethemet Controlla and Transceiver

8 MB RAM

72 MB Winchester Disk Drive

H3-FPA Floating Point Accelerator

H-DM4A 1024x1024x4 Display Memory

H-ZC2 Z Clipping Assy
C-WTCP IP/TCP Software

P-DBX Dial/Buuon Box

Unix System V with BSD 4.2
NFS

C Compiler
IRIS Graphics Library rI and Window Manager

W-4D 120GTX PowerSeries Workstation (Coral) consisting of:

19" High Resolution Monitor

Keyboard & Mouse
Ethemet Cona-oller and Transceiver

32 MB RAM

380 MB ESDI Winchester Disk Drive

Double Buffered 1280x1024x4 Display Memory

Double Buffered Alpha
24 bit Z buffer

C-WTCP IP/TCP Software

P-DBX Dial/Button Box

IRIX System V release 4DI-3.1D

NFS

C Compiler
C,++ Translator

Fortran 77 Compiler

IRIS Graphics Library 11 and 4Sight Windowing System

W-4D220GTX PowerSeries Workstation (Starfish) consisting of:

19" High Resolution Monitor

Keyboard & Mouse
Ethemet Controller and Transceiver

32 MB RAM

2 780 MB ESDI Winchester Disk Drives

Double Buffered 1280x1024x4 Display Memory
24 bit Z buffer

C.WTCP IP/TCP Software

IRIX System V release 4DI-3.1D
NFS

C Compiler
C-c+ Translator

Fortran 77 Compiler

IRIS Graphics LibTary Il and 4Sight Windowing System

W-4D20G Personal IRIS Workstation (Urchin) consisting of:

19" High Resolution Monitor

Keyboard & Mouse
Ethernet Contloller and Transceiver

8 MB RAM

170 MB SCSI Winchester Disk Drive

Page 14

1280x1024x4 Displsy Memory
Double Buffered Alpha
C-WTCP IP/TCP Software
IRIX System V release 4DI-3. ID
NF$

C Compiler
IRISGraphicsLibraryIf,4SightWindowing System,md Environmmt Man_

4.2.4 Networking Hardware

CableTron MT-800 Ethemet/IEEE 802.3 Transceiver

4.2.5 Peripherals

Okidata Model 2410 Dot Matrix Printer
Apple LaserWriter Plus Laser Printer
Seiko Instruments D-Scan CH5312 Color Printer & Multiplexor
GraphOn GQ-250 ASCII Terminal & Keyboard (2)
Hewlett-Packard HP 700/22 ASCII Terminal & Keyboard (3)

4.3 SOFTWARE ENVIRONMENT

The A3I Program office made a decision to standardize on software, such as system software
and languages, rather than on hardware. This factor, coupled with the requirements and
technical approach appropriate to the Program, led to the selection of the following software:

Symbolic Mode!s/Tools Numeric & Graphic Models/Tools

Operating Systems Genera UNIX
Languages Common Lisp FORTRAN, C
Object-oriented methods Flavors C++
Machine Class Symbolics Silicon Graphics IRIS

In addition to the sofiware/OS packages described above, two key software development
approaches support the A3I Program goal of providing a flexible environment in which
various models of system and human performance can be integrated.

4.3.1 Object.Oriented Programming

The A3I Program has adopted the use of object-oriented programming methods, where
practical, in an effort to manage the complexity of the simulation software through
modularity and abstraction, as well as to promote graceful incremental software
development. While not universally applied to every component, the object-oriented
paradigm is a natural match to the structure of the man-machine integration problems
investigated. Object-oriented techniques support extensive reuse of software structures and
are an evolving standard in the software development community. Additionally, use of
object-oriented techniques may reduce the ultimate code bulk by making extensive reuse of
software structures and can be written to be virtually self-documenting.

4.3.2 Source Code Control

Software for which the A3I Program does not have access to source code (with
modification rights) is generally not permitted in the configuration. Encumbrances to

Page 15

success, since technology transfer is a primary concern. However, to date, some
exceptions have been allowed for packages with clearly defined and easily accessible
software interfaces that would be inappropriate for the Program to develop, or software
development utilities (shells, debuggers, process performance metering, function libraries,
etc) that offer superior performance which other organizations have ready access to.
Exceptions to the desire to avoid encumbrances arc two software packages used in Phase
IV, MulfiGen TM, a commercial 3D modeling package with a hefty license fee and the
Generic Expert System Tool, (GEST), a package with a moderate but not inconsequential
license fee produced by Georgia Technical Research Institute (GTRI).

Generally, the graphic design and analysis tools were built using C, Unix System V with
BSD 4.3 extension, and the IRIS Window Manager/Graphics Library II. The MultiGen TM

modeling package was used as the underpinning for the CDE and VEST components, as
well as a visualization medium for the Aerodynamics & Guidance Module. Most Lisp tools
and models were built using Symbolics Common Lisp, with the Havors extension, under
Genera 7.2. The S-Packages were available for use in displays, although not heavily relied
upon during this phase. Communication software used the TCP/IP protocols to
communicate between the Silicon Graphics and Symbolics workstations over Ethemet.

Two expert system shells were introduced in Phase IV to facilitate devdopmcnt of
knowledge-based approaches in certain modules. The Generic Expert System Tool,
(GEST), produced by Georgia Technical Research Institute (GTRD, was used as the basis
for the Scheduler. This shell includes a blackboard architecture, which facilitated
development of this module. The C Language Information Processing System (CLIPS),
developed by NASA-Johnson Space Center, was used for the rule-based portion of the
Display Layout Analysis tool. Source code is available for both of these shells and both arc
available at relatively modest cost to users of MIDAS, although GEST is more expensive
than CLIPS.

The distribution of the Phase IV models, tools, and displays across the available
workstations is shown in Figure 4 below.

Page 16

Mission Build Cocker Anima_on Co¢_it Build
Equipment Modening Ar_ro_neuy _ Anlrr_on

I_] Task Decoml_$ilion Analysis Vilibilily Am_iis

I a_n_umr [] Symbolic Operator Mod_ Volun_Fk_dofView
I [] S_mula_onMonitoring C_. __'mlt_

J _1 FUNCTIONS: "HI _ _ ::_:1

FLIN_'IONS Wo_l View _l

I

FUNCTIONS: '

I _ Tr_nin 9 Requirements "
II Prediclions

II

Figure 4. Distribution of Phase IV Software Components and Displays
within the A3I Lab

4.4 EXTERNAL INTERFACE REQUIREMENTS

4.4.1 User Interfaces

The user's interface to the computational tools and models of MIDAS is extremely
important. However, since the Program's charter is to develop prototype facilities in an
architecture that is continually evolving and may or may not be common to prospective
delivery platforms, a polished, consistent interface across all of the applications has not
been developed or considered a priority in Phase IV. As an interim solution, each
application developer was encouraged to use pop-up windows, pull-down menus, and the
manipulation of graphic or iconic representations as the principle mechanisms of user
interactions.

A high priority in Phase V will be to design a unified, principle-based approach to the
implementation of user interfaces that is based on a thorough study of user requirements as
well as human-computer interactions (HCI) research (previous and ongoing) at various
universities and industry centers.

4.4.2 Integration

A considerable degree of integration among the various modules of MIDAS was achieved
in Phase IV. The data flow within MIDAS during Phase IV is shown in detail using an N 2
format in Figure 5. The components involved are pom'ayed in the shaded boxes located on

Page 17

the diagonal of the figure. As shown in the legend, inputs arc on the vertical axes of each
box and outputs on the horizontal axes.

mssso.' ._o.
EDITOR Reqn_tl

[God Fcs'm)

_Dmponert
Funcliords
Smm :EOUIP. i

_c_v,_s) uooet.s

T_k

LocalJor_
Name of
C_Ds

Done

_iii!i,ii,_iiiii_i!iii!iiii!!iiii!ii_iiiii!i_
iiiiiiiii!UM,!ili_iiiiii!i!i

Done

Done

i i
Done

Done

:)pm_x _ypoints
_lJviles ,_1 desired

_,y,z.HclQ,

l"ick

Tuk List,
Consnints

VAGP,
MODEL: Horizon

: i

NllwTuk

_Kiuerlce,

& Loads

D_nds

for Control
Movement

Tick l"_k

AtUibums
ol Ol_rllor ' k::¢*pt/R,je_
World, Tm_, C(x_rols
a sq_.

l-kmd / Heed

Position,
Reach

Slatus

TJ_,
_IEDULR Base VACM

VACJ_islot :2i:TASKi2isi_i_;
LOADING)!i:

Tuk MODEL:i :I
Combos,

:VEHICLE _nb'ol

!MODEL:

i

Position, VEHICLE:

orientation, DYNAMICS
speed

Tick

P,elch-lo_
& Look-at

Con_ol &

Oi_y
Slltes

T_k

Hdg, .4Ut,
Mmc A/C

S_ilch
Movements

B_y

VEST
! : !!i !i: i:!!i_!

! :! i iiii:i!!! i :: i

Inpuls

..ill-,...

Figure S. MIDAS Phase IV Integration N 2 Chart

For example, during each simulation "tick", the Vehicle Guidance Model computes the
demands for control movement based on the current vehicle position, orientation, and
speed (from the Dynamics Model) together with the next desired waypoint location,
airspeed, and altitude (from the Mission Editor). These control requirements are then

Page 18

passedtotheSymbolic Operator Model, which either accepts or rejects the controls based
on other task demands. If accepted, the Guidance Model's computed controls are input to
the Vehicles Dynamics Model and a new aircraft position and attitude are determined.

Integrationbetweencomponentsisachievedinpartby the sharingofstatevariables
througha "datapool"whichexistsaspartoftheCommunicationsModule. Inall,thereare
afew hundredvariablesinthedatapool.The statevariablessharedamong thePhaseIV
MIDAS modulesarelogicallygroupedbasedon thefunctionstheyserve.Listedbelowarc
themostfrequentlyreferencedgroupstogetherwiththeirmembers.

Jack reach command:

Type of reach activity,
Reach site name.

Positionand availabilityofpilot'sleftand fighthandsand headorientation:

Left hand position (x, y, z),
A flag indicating the availability of the left hand,
Right hand position (x, y, z),
A flag indicating the availability of the right hand,
Head orientation (yaw, pitch).

Ownship's position, orientation, and important aerodynamic parameters:

Position (x, y, z),
Orientation (yaw, pitch, roll),
Altitude above ground level,
Z component of velocity,
Airspeed,
Heading,
Turnrate.

Convoy vehicle's position and orientation:

Position (x, y, z),
Orientation (yaw, pitch, roll).

Waypoint:

Waypoint ID,
Position (x, y, z).

Multi-Function Display navigation page:

Format (Centered or Decentered),
Scale.

Multi-Function Display aircraftpage:

Torque,
Specific fuel range,
Endurance,
Aft tank fuel quantity,

Page 19

Forwardtankfuel quantity,
Total fuel quantity,
Engine 1 fuel flow,
Engine 2 fuel flow,
Total fuel flow.

Multi-Function Display communication page:

Challengecode,
Replycode,
FrequencyDisplayBuffer.

4.5 REQUIREMENTS SPECIFICATION

4.5.1 Process and Data Requirements

The thrustofthedevelopmentwork inPhaseIV was toimprovethebreadthand depthof
existingmodules,developandintegratenew componentsand achieveahigherdegreeof
integrationamong thevariouscomponentstoimplementadynamicsimulationofamission
scenario.

By the end of Phase IV, the requirements for MIDAS had resulted in development, both in-
house and through grant/contract, of the following software components, hosted on
networked Silicon Graphics IRIS and Symbolics computers:

1) The Symbolic Modeling component, written in Symbolics Common Lisp,
contains methods to represent and decompose mission goals to their lowest level, match
them to equipment-dictated activities, interact with the scheduling and task loading
components, and execute activities subject to resource constraints.

2) The Schedulermakes useoftheblackboardarchitectureavailableintheGeneric

ExpertSystemTool(GEST) fromGTRI, toimplementacons_dint-basedschedulerusing
two alternateschedulingstrategies,timeminimizationandloadbalancing.

3) The TaskLoadingModel,writteninCommon Lisp,classifiestasksaccordingto
their demands on the Visual, Auditory, Cognitive and Motor processing dimensions and
passes those values of operator loading to the Symbolic Operator Model to establish
resource constraints and to the scheduler for use in scheduling tasks.

4) The Symbolic Equipment Model, written in Symbolics Common Lisp, models
the cockpit equipment as finite state machines to represent the detailed physical and
functional attributes and to specify the operation of equipment during the simulation.

5) The Visual Editor and Simulation Tool (VEST), written in C as an extension to
the commercial modeling package, MultiGen TM, provides an interactive 3-D tool used to
create, control and observe, from several perspectives, the 3-D graphic environment of the
mission simulation. The Cockpit Design Editor (CDE), a subsystem of VEST, contains 3-
D modeling utilities for prototyping the cockpit geometry, instruments, controls, and
displays. Links can be made m other models or data files for animation of selected controls
& displays.

6) The Display Layout Analysis (DLA) tool, written in C and also using the Expert
System shell CLIPS, developed by NASA, is a prototypical tool intended to provide
designers with assistance in determining the spatial configuration of cockpit displays.

Page20

7) The Anthropometric Model (Jack), is a 3-D, interactive, anthropometric human
model or graphic mannequin. This component is written in C and developed by Dr Norm
Badler at the University of Pennsylvania.

8) The Vision Models, written in C and fully integrated into the Jack environment,
include the Volume Field-of-View Model, developed by Dr. Aries Arditi at The Lighthouse
in New York, and the Cockpit Display Visibility Model, developed by the Drs. J. Bergin
and J. Lubin of the SRI/David Sarnoff Research Center.

9) The Aerodynamics & Guidance Model (AGM), written in Fortran, was
developed by Dr Anil Phatak of Analytical Mechanics Associates and modified in-house. It
contains rather generic equations of motion for a helicopter, providing pitch, roll, yaw, and
translation in each axis as a function of decoupled cyclic, collective, and pedal movements.
Guidance routines provide outer-loop speed and horizontal/vertical path control feedback as
a simple representation of piloting activities.

10) The Communications Module, written in both C and Lisp, provides the data
pool through which the simulation components share state variables as well as driving the
tick-based simulation by sending ticks to the other modules.

11) The Training Assessment module, written in Symbolics Common Lisp and
Automated Reasoning Tool (ART) code, provides heuristic methods to estimate the training
media, instructional techniques, and time necessary to train various operators to "initial
qualification" based on individual task characteristics. This component was developed in
Phase m and not modified during Phase IV; detailed documentation of this module is
included in the Phase III design document.

5.0 DESIGN

5.1 ARCHITECTURAL DESIGN

Figure 6 below shows the components of MIDAS at the end of Phase IV and how they
relate to one another. The shaded boxes are components of MIDAS and the rounded boxes
show the nature of the information flowing between the modules. The Mission Editor and
Task Representation modules are essentially components of the Symbolic Operator Model
at the present time. Jack is integrated with VEST and the cockpit environment created with
the CDE to represent the pilot and CPG in their cockpit with the DMA terrain visible
through the windscreen. The Vision Models are not integrated with the simulation, nor is
the Display Layout Analysis tool or the Training Assessment Module. The Scheduler and
Task Loading Model are not actually integrated with the simulation, although the
communication protocols have been established. The Symbolic Operator Model bypassed
the functions that the Task Loading Model and Scheduler were designed to perform during
the simulation.

Page 21

Figure 6. MIDAS Phase IV Top Level Software Architecture

5.1.1 Phase IV Development Summary

Responses to the Phase III demonstrations, as well as discussion at the Phase IV off-site
reinforced the need not only to continue the development of the core set of A3I models and tools
but to fully integrate them into a designers workstation. Also, emphasis would have to be
placed on explicitly addressing how such models and tools would be sensitive to cockpit design
change. In particular, there was interest in determining the potential ramifications of introducing
the "glass cockpit" concept, that is the use of Multi-Function Displays (MFD) in place of
dedicated displays in the cockpit. Accordingly, the focus of the phase was to use a portion of a
typical mission segment as the setting for a comparison of the Apache AH-64A cockpit, with
dedicated displays, and the new Apache Longbow model, in which many functions omrcnfly
performed with dedicated equipment arc incorporated into Multi-Function Displays (MFD). The
intention was to show how MIDAS could be used to compare operator performance in the same
mission scenario with two different cockpit designs. These objectives required a degree of
integration and detail previously impossible, and drove the design requirements for the individual
MIDAS components. The major components of MIDAS in Phase IV arc described briefly
below. Further detail may be obtained from Annexes A through J which contain more detailed
documentation for individual components.

5.1.1.1 Symbolic Operator Model

This model, coded in Symbolics Common Lisp, contains the data structures and methods
used to represent and decompose the required mission, environment and, human

Page 22

performance models of the crew. This component expresses mission activities in terms of
goals or states to be achieved, allowing the user to explicitly allocate such tasks to
equipment or human operators, as well as providing for event-related operator responses
which cannot cleanly be represented in an hierarchical fashion. The focus for the Symbolic
Modeling component during this phase was on the design and coding of a generalizable
framework for symbolically representing the functions of cockpit equipment used to
accomplish mission tasks. This framework allows various cockpit alternatives to be
evaluated without completely re-editing the mission decomposition, since the design
maintains a distinction between the physical structure (or state operators) of the equipment,
and the functional requirements (or inferred goals) required by the task. Previous A3I
symbolic models of the mission and pilot tasks failed to explicitly depict the relationship of
the equipment design and the primitive task actions, loading values, or timelines.

This component is understandably one of the most complex and continually evolving. It
currently contains two major subcomponents, the scheduling and loading models described
below. During a simulation, this model attempts to execute assigned mission activities
subject to specified constraints, state variables, and other simulation object requirements.
This model accomplishes this action by: 1) updating the simulated operator's goal list to
delete terminated or inappropriate goals, 2) examining equipment and world state variables
to determine if event-response activities are required, 3) tracing the decomposition of
mission goals to their lowest level, finding matching equipment operation patterns or
activities which will satisfy them, 4) sorting these matched goal-activity patterns by
priority, 5) interacting with the scheduling and loading operator model components as
appropriate (although during the demonstrations, this interaction was not performed) and
6) executing these activities subject to physical resource (hand, eye, etc) requirements,
Visual Auditory, Cognitive, and Psychomotor (VACP) load limits, and temporal/logical
constraints.

Mission, task, environment, or operator objects are instantiated when their conditions are
met, executing their assigned procedures and spawning new activities. Contained within
the various task objects is information on temporal relationships, preconditions, logical
constraints, loading, subtasks, and relative priority. In this manner, the decomposed
mission serves as a forcing function, "driving" the interaction of various models used
during a simulation. Refer to Annex A for a more detailed description.

5.1.1.1.1 Scheduler (Z)

This constraint-based, opportunistic model of operator scheduling behavior was developed
using the blackboard architecture provided as part of the Generic Expert System Tool
(GEST). Display portions of this component are written in Symbolics Common Lisp.
Provided a task queue of indeterminate length, along with data about each task (such as
logical constraints, estimated duration, resource requirements, etc.), Z solves for a near-
optimal sequence and schedule based on a strategy of either time minimizing or load
balancing, intended to represent possible operator behaviors. The scheduler contains
modular components or knowledge sources that represent individual stages in the
scheduling process, with an extended task-based decomposition (a "divide-and-conquer"
technique) used to partition the overall scheduling problem. Z closely interacts with the
MIDAS task loading model for reasoning about resource interactions between plausible
concurrent tasks. Refer to Annex B for a more detailed description.

5.1.1.1.2 Task Loading Model

Page 23

Thiscomponent, written in Symbolics Common Lisp, is based on cttrrent research in
multiple resource theory, scaling, workload, and perception. Based on attributes of the
mission tasks, world state, operator, and crew station equipment, a resource classification
taxonomy is used to classify individual tasks in terms of their demands on the Visual,
Auditory, Cognitive, and Motor processing dimensions. In addition, conflict matrices are
used to describe the interactions of these resource demands across different processing
dimensions and tasks. Refer to Annex C for a more detailed description.

5.1.1.2 Symbolic Equipment Models

These generalizable structures, written in Symbolics Common Lisp, allow characteristics of
the crew station equipment to be represented in terms of both physical and functional
attributes which are used to specialize the mission tasks prior to a simulation. In this
manner, MIDAS can support the generation of explicit operator actions which are sensitive
to specific equipment designs. These structures also provide a model-based means to
maintain and manipulate equipment state variables which drive the animation of graphical
cockpit controls and displays. Refer to Annex D for a more detailed description.

5.1.1.3 Visual Editor and Simulation Tool (VEST)

VEST is an interactive 3-D tool used to create, control, and observe from several visual
perspectives, a 3-D graphic representation of vehicles traversing through DMA terrain
during a simulation. Users can select by mouse a viewing position from anywhere within
the mission gaming area, zoom in on specific controls and displays for study, as well as
include a representation of the Jack Anthropomelric model within the crew station for
visualizing operator movement during a simulation. The Cockpit Design Editor (CDE), a
subsystem of VEST, contains interactive 3-D modeling utilities for graphically prototyping
the crew station geometry, instruments, controls, and displays using a built-in library of
primitive cockpit objects. Links can be made to other models or data files for animation of
selected controls & displays. A significant extension has recently been made to this
component, allowing the creation and animation of multi-function displays (MFD)
containing graphical features, text strings, and dynamic fields. This component is written in
C as an extension to a commercial modeling package from Software Systems, Inc. called
MultiGen TM. Refer to Annex E for a more detailed description.

5.1.1.4 Display Layout Analysis (DLA) tool

The Display Layout Analysis (DLA) tool, is an initial prototype of a tool intended to assist a
crewstation designer in laying out the displays which provide the pilot with windows to the
information sources which he/she needs to successfully operate the aircraft. Display layout
assistance is guided by a set of design metrics incorporated into the tool, which can be
operated both in an analytic, design-aiding mode and in an evaluative mode. In the analytic
mode, human factors design guidelines form networks of relations between information
sources and other information sources, between information sources and controls, and
between information sources and regions of the display surfaces. A rule-based advisor can
be invoked which issues warnings for detected violations of display layout guidelines.
This component is written in C, using the Expert System shell CLIPS for the rule-based
advisor. Refer to Annex F for a more detailed description.

5.1.1.5 Anthropometric Model (Jack)

A 3-D, dynamic anthropometric model has been developed through a grant to Dr. Norman
Badler at the University of Pennsylvania in order to address fundamental human
anthropometry and motion considerations. This model, called Jack, is written in C and

Page 24

runson the Silicon Graphics 4I) series, providing realistic and physically quantifiable
human figure motion within a 3-I) space environment. Jack allows the user to select
different sized human figures or graphic mannequins that include the 5th through 95th
percentile male and female, based on NASA astronaut demographics. These mannequins
can then be placed within a 3-D object environment created and stored using a number of
modeling packages. Articulation is achieved using a goal-solving technique based on
specifying body joint orientations or end-cffector (limb) goals. Joint limitations have been
installed to eliminate unreasonable movements. Kinematic and inverse kinematic controls

are applied so that goals and constraints may be used to position and orient the figure, with
external/internal forces and torques applied to produce motion. A movement time
calculation has been incorporated based on Fitts Law, using reach site distance and target
width.

Supportinggraphicoutputinwireframc,solidfilled,orsmoothshadedmodes,key poses
can bc storedand interpolatedforanimation,allowingenvironmentallimitationstobe
detectedasa functionofhuman sizeand movement characteristics.Inaddition,by
attachingthe"view"oftheenvironmenttothemanncquin'seye,Jackdisplaysa
perspectivecorrespondingtowhat themannequinwould "see"whilemoving inthe
environment,providingthefirststeptowardfurtheranalysisand conclusionsaboutobject
occlusionand visibility.RefertoAnnex G foramore detaileddescription.

5.1.1.6 Vision Models

Refer to Annex H for a more detailed description of the Vision Models.

5.1.1.6.1 Volume Field of View Model

This model of binocular human visual representation in 3-D space was developed by Dr.
Aries Arditi at The Lighthouse of New York. It provides computer graphic methods for
delineating and testing hypotheses about the relationship between two-dimensional visual
field maps and the three-dimensional visual space they serve, under the conditions of:
I) changing eye position; 2) occlusion by structures that are part of or are mounted on the
observer such as facial structures, goggles, or headgear;, 3) occlusion by environmental
objects; 4) normal and abnormal defects of the visual field such as blind spots and areas of
temporarily reduced visibility due to local adaptation and photopigment bleaching; and
5) variables that alter the focus of environmental objects on the retinas (accommodation and
pupillary response). Instantaneous field of view volumes based on these factors are
visualized by projecting their intersection with the object space in different colors. This
model, written in C, is fully integrated with the Jack anthropometric model, which is used
to determine the operator's head position and point of regard in the field of view.

5.1.1.6.2 Cockpit Display Visibility Model

This analytical model, written in C and also fully integrated into the Jack environment, was
developed by Drs. Jim Bergin and Jeff Lubin at the SRl/David Sarnoff Research Center. It
allows the designer to assess the visibility of cockpit objects imaged on the retina in terms
of a visual system footprint. This footprint represents the projection onto the crew station
of the sensory capabilities of the human visual system when considered as a detector/filter
system. The existing MIDAS graphical, anthropometric, and vision modeling capabilities
are used to describe the physical characteristics of potential designs and define the
instantaneous volume field of view. Based on such information, this component provides
methods to project the retinal photoreceptor apertures onto the cockpit model and support
empirically-based predictions about the legibility of characters and symbols. Because the
human retina is highly inhomogeneous, the retinal footprint produced is also highly

Page 25

inhomogeneous,depicting contours of visual performance data which describe the
probability that certain imaged information will or will not be legible. Because factors such
as ambient illumination in the cockpit, the adaptive state of the operator, and the reflective
/emissivepropertiesofdisplaysarecriticaltoconsiderinsuchcontexts,thismodel
addresseseachoftheseaspects.

5.1.1.7 Aerodynamics & Guidance Model (AGM)

The MIDAS AGM is a two-part Fortran model, initially developed by Analytical Mechanics
Associates Inc., which represents rather generic helicopter guidance and dynamics for
uncoupled controls. Given the current position, orientation, and angular rates, the
guidance portion of the model determines the control inputs required to fly to the next
waypoint with its associated position, altitude, and airspeed. The aerodynamics portion of
the model uses the computed controls to determine the helicopter's next position,
orientation, etc., based on the simulation tick interval. The AGM's input and output is
integrated with the symbolic pilot model and anthropometric model such that during a
simulation, the computed flight control requircmcats are passed to the symbolic pilot model
as resource demands, with their actual start times and duration determined by the evaluation
of such demands in the context of other pilot psychomotor activities. Flight control
movements arc graphically depicted by attaching the Jack antAropornctric model's cad
effectors to the appropriate controls and using inverse kinematics to "pull" the appcadages
to the computed control positions. Refer to Annex I for a more detailed description.

5.1.1.8 Simulation Executive and Communications Module

This component, written in both C and Lisp, uses TCP/IP protocol to facilitate inter-
machine communication and dynamic message sharing between all MIDAS components. A
"data pool" concept is used during the simulation to synchronize and distribute in excess of
200 operator, world, and equipment state variables among the simulation processes and
objects. Refer to Annex J for a more detailed description.

5.1.1.9 Training Assessment Module

The training assessment module provides heuristic methods to estimate the media,
instructional techniques, and time necessary to train various operators to "initial
qualification" based on characteristics of the operator, task, and crew station equipmcat.
This prototype knowledge-based system is implemented in ART TM (the Automated
Reasoning Tool) and Common Lisp on the Symbolics. This tool uses the instructional
systems design (ISD) methodology to assign each task a set of learning experiences (such
as explanation, demonstration, part-task training, and full task training) along with a
medium for each learning experience (such as textbook/workbook, slide/tape, lecture,
videodisc, and a wide range of simulation devices). For each learning experience and
media assignment, a time to train is computed, based on the task, operator, and equipment
attributes. This module was devclopcd in Phase Ill; detailed documentation is included in
the Phase III Detailed I)csign Document.

5.1.2 Demonstration Scenario

The PhaseIV demonstrationsconsistedofa 15minuteintroductorybriefingby the
programmanager,followedby alittlemore thantwo hoursofdemonstrationsby the
developmentstaff.The demonstrationobjectivewas todescribeand demonstrate
individualcomponentsofMIDAS aswellastodcmonswatetheintegratedmission
simulationcapability.The demonstrationsmade useofdataforcontrols,displays,mission

Page 26

profiles, and operator task descriptions obtained from the on-going McDonnell Douglas
AH-64 Apache Longbow Program.

Beginning with the CDE, the procedures to build and animate a set of displays/controls on
the cockpit panel were shown. A detailed demonstration of the new tools for representing
and animating multi-function displays was also shown. Then, still in design/specification
mode, the Display Layout Analysis tool was demonstrated. There arc two modes in the
DLA tool; one is the network tension mode where the relationships between displays and
other elements in the environment are visualized as springs of various tension. In the other
mode, a rule-based system evaluates a given layout and gives advice and warnings about
possible violations of human factors principles.

Some new capabilities of Jack were then demonstrated, including lifts and balanced
reaches. A sequence was shown in which Jack, sitting in the Apache Longbow cockpit,
reached for the left multi-function display with his right hand, showing how Jack could be
used to determine feasibility of reaches. The interactive user interface of SAS, a
spreadsheet containing anthropometric data, was also demonstrated.

The VisionModels werethendemonstratedintheJackenvironment.The volume fieldof

viewmodel was shown withJacksittingina simplifiedLongbow cockpit.The abilityto
changetheviewpointwas demonstrated,aswellastheabilitytoprojectretinalimagesonto
the3D world.The visibilitymodel was demonstratedusingdataforthe"O" and "Q"
charactersfromthcLongbow multi-functiondisplay.Probabilityofcorrectdiscrimination
betweenthetwo characterswas projectedoutontothecockpitdisplaypanelundervarying
conditionsofambientlightingand multi-functiondisplayluminance.

Next, the mission editing component of the Symbolic Modeling component was
introduced, showing the terrain map and the ability to enter a route of flight and mission
requirements for the mission. The mission to be simulated was an enroute segment with
some required radio calls. A briefing was given describing the goal structure and the
process of matching a goal to the equipment-dependent operator activities that could satisfy
that goal. The point was made that the goal need not change if different equipment were
placed in the cockpit, but that different equipment would dictate different activities. The
Equipment Models were also described in a briefing, with emphasis on the distinction
between physical and functional attributes. Then the goal processing procedures were
described, which include 1) updating the simulated operator's goal list to delete terminated
or inappropriate goals, 2) examining equipment and world state variables to determine if
event-response activities are required, 3) tracing the decomposition of mission goals to
their lowest level, finding matching equipment operation patterns or activities which will
satisfy them, 4) sorting these matched goal-activity patterns by priority, 5) interacting
with the scheduling and loading model components as appropriate (although this was not
done during the demonstrated scenario), and 6) executing these activities subject to
physical resource (hand, eye, etc) requirements, Visual Auditory, Cognitive, and
Psychomotor (VACP) load limits, and temporal/logical constraints.

The Scheduler was then demonstrated, using a set of tasks for starting an APU. A
comparison was shown between the two scheduling strategies, time minimization and load
balancing. The Task Loading Model was described and a brief demonstration of the
computation of load in the four dimensions, visual, auditory, cognitive and motor, for a set
of tasks was shown.

A briefing was given explaining how the Simulation Executive and Communications
module worked, with one Symbolics machine and three Silicon Graphics IRIS machines
networked together during the integrated dynamic simulation run.

Page 27

The demonstrationswereconcludedby demonswatingthe fullyintegrateddynamicmission
simulationcapabilityofMIDAS. The helicopter,withfullypopulatedcockpitsand models
ofthepilotand copilot/gunner(CPG),was placedinthegamingarea,drivenby the
aerodynamicsand guidancemodel,and viewedfromthreeperspectives,aworldview
showingthehelicoptermovingovertheDMA terrain,aviewofthepilotcockpitfromover
hisshoulderand aviewoftheCPG cockpitfromoverhisshoulder.

The programgoalforPhaseIV had bccntobeabletodemonstratethesimulationofagiven
missionscenariointwo cockpitenvironments,theApache AH-64A and theApache
Longbow, and toobtaincomparativedataacrossthetwo designsgiventhesame mission
goals.Intheevent,however,PhaseIV demonstrationsincludedonlytheLongbow
cockpitconfiguration.The simulatedmissionranatapproximatelytentime.srealtime,
necessitatingselectionofonlyalimitedsegmentofthesimulatedmissionscenarioforthe
demonstration.A shortsegmentofthescenariowas shown,inwhich theCPG selecteda
radiofrequencyby manipulatingthemulti-functiondisplaypages.

5.1.3 Programmatic Information

5.1.3,1 Constraints

Following thePhaseIV off-site at Asilomar ConferenceGrounds July 26-28,1989, the
groupbegandesignanddevelopmentwork forPhaseIV. NeartheendofthePhaseIV
developmentperiod,ajuniorC programmer,Dr.ChristianNeukom, was hiredtobecome
theA31 in-houseJackexpert.Justbeforethedemonstrationp_od, Dr.BetsyConstantine
was hiredasTask Manager fortheSterlingstaff.By theend ofPhaseIV,thein-house
staffconsistedof3 Lispprogrammers,4 graphicsprogrammers,ahuman factors
specialist/juniorLispprogrammer,aTaskManager withaLispbackground,asystem
administratorand aCAD draftspcrson.

In the computer lab, two machines were acquired, A new Silicon Graphics PowerSeries
4D220GTX, containing parallel graphics and central processors added significant new
graphics capability, and a Macintosh II with a Symbolics Maclvory board was purchased to
enhance the Lisp programming capabilities.

Funding for the Lighthouse of New York and the SRI/David Sarnoff Research Lab was
continued for applied vision models. These components have proven to be extremely
valuable models for MIDAS, eliciting considerable interest at the demonstrations.

The new organization plan for A3I, which established two principal scientist positions and a
new technology transfer group called the Industry Liaison Section has been partially
implemented. The group is fortunate to have been able to fill the Principal Scientist for
Cognition position by hiring Dr. Kevin Corker, a cognitive scientist with a long history of
involvement with the A3I program. He brings exciting new concepts in the simulation and
cognitive modeling area to the program and will be directing the research and design efforts
in Phase V. Dr. James Latimer is still acts in the role of Principal Scientist for Perception.

5.1.3.2 Risks

Selection of the appropriate level of detail at which MIDAS design and analysis tools are
intended to operate remains a difficult issue. The A3I Program Office has made it clear that
MIDAS is intended for the conceptual development phase of crewstation design because of
the high "payoff" for properly incorporating human engineering principles during this

Page 28

period. However, it is becoming increasingly clear that most of the human performance
models and analysis methods currently or potentially incorporated in MIDAS require as
inputs task, equipment, and environmental data which is more appropriate for detailed
design. This apparent conflict between the model/analysis needs and the intended use of
MIDAS is still unresolved. It may be true that even though MIDAS is intended to be used
in the early conceptual stages of design, its use may require a degree of detailed analysis
and specification that is not usually performed at the conceptual design stage. This need
may require a change in the design process and could have serious implications for the
Program's success in developing a prototype workstation which meets the needs of its
projected users.

5.1.3.3 Summary of Results

There was a very positive response to the traditional end-of-phase demonstrations. Begun
in June 1990, these demonstrations were attended by more than 200 people from NASA,
the US Army, other DoD components, several universities as well as from industry,
particularly the major helicopter manufacturers.

There was a great deal of interest in the Scheduler with its two scheduling strategies, both
as evidence of real progress toward cognitive modeling and for its potential stand-alone
usefulness. There were questions about whether the scheduling strategies that were
implemented actually represented human operator scheduling behavior. This question will
be addressed in Phase V when empirical data will be obtained in an attempt to validate the
results obtained from the Scheduler.

The Task Loading Model was of considerable interest, particularly to industry visitors,
who must produce loading estimates for their designs. Again, the biggest issue was
whether the MIDAS Loading Model had been validated. In Phase V there will be a high
priority placed on obtaining empirical data appropriate for use in validating the Task
Loading Model.

The Display Layout Analysis tool was a big hit with many visitors, partly because it
incorporates a very effective visualization technique that immediately connects with the
observer and partly because it was quite clear just how a designer might use such a tool. It
demonstrates direct aiding of designers as they solve a specific design problem and
provides a clear means of evaluating a proposed display configuration according to
established human factors principles.

The Vision Models elicited a great deal of interest from most visitors. Design questions
about visibility are easy to understand and are key issues to be addressed during the design
process. The Vision Models, integrated into the Jack environment, present at_active and
useful visualizations of the kind of answers a designer might want from such a tool. These
models were seen as useful interactive tools for a static analysis of visibility.

On the slightly negative side, the integrated simulation ran so slowly that it was difficult to
imagine how a designer would interact with the dynamic analysis aspect of MIDAS. A
decision was made not to artificially speed up the demonstration by running the graphics
from files obtained earlier, because it was important to have visitors understand that true
integration of many of the modules involved in the mission simulation had been achieved.
The Scheduler and Task Loading Model, however, while integrated with each other, were
not integrated with the Symbolic Operator Model during the actual demonstration, although
the required communication protocols had been established.

Page 29

A fewimportant things were missing from MIDAS at the time of the demonstrations.
There was virtually no integrated analysis capability, although the Symbolic Operator
Model collected data during the simulated mission scenario that could have served as raw
data for analysis. Also, the intention had been to demonslrate a comparison of two
different cockpit designs, the Apache Longbow and AH-64A, with the same mission
scenario. This comparison was not available and the simulated mission scenario was run
with only one cockpit, the Longbow.

5.2 DETAILED DESIGN

Please refer to Annexes A-J for detailed design information for each component of MIDAS.

6.0 USER'S GUIDE

Please refer to Annexes A-J for User Guide information for individual modules.

7.0 ABBREVIATIONS AND ACRONYMS

A3I
AGM
AMA
APU
ART
BBN
CAD
CBT
CDE
CFT
CLIPS
CPG
CPS
CPT
CSCI
DIED
DMA
DOF
EES
HF/CAE
I/O
ISD
MFD
MIDAS
NFS
NRC CoHF
OFf
SCDD
SGI
TCP/IP
USGS
VEST
WST

Army-NASA Aircrew/Aircraft Integration
Aerodynamics/Guidance Model
Analytical Mechanics Associates, lnc.
Auxiliary Power Unit
Automated Reasoning Tool
Bolt, Beranek and Newman Laboratories, Inc.
Computer-Aided Design
Computer-Based Training
Cockpit Design Editor
Cockpit Familiarization Trainer
C Language Information Processing System
Copilot/Gunner
Computer Program System
Cockpit Procedures Trainer
Computer Software Configuration Item
Digital Terrain Elevation Data
Defense Mapping Agency
Degrees-of-Freedom
Expert-EASE Systems, Inc.
Human-Factors Computer-Aided Engineering
Input/Output
Instructional Systems Development
Multi-Function Display
Man-machine Integration Design & Analysis System
Network File Software
National Research Council Committee on Human Factors
Operational Flight Trainer
Software Component Description Document
Silicon Graphics Inc.
Transmission Control Protocol,rlnternet Protocol
United Stated Geological Survey
Visual Editor and Simulation Tool

Weapon System Trainer

8.0 NOTES

Page 30

8.1 LIMITATIONS

One critical limitation of Phase IV MIDAS is the lack of any kind of user interface for
specifying the mission scenario with its associated goals and tasks. Also lacking was any
non-programming means of specifying the physical and functional characteristics of the
cockpit equipment. Anyone wishing to use MIDAS to do anything other than run the A3I
demonstration scenario with the Longbow cockpit design would have to encode the goals,
tasks, equipment models and equipment-dependent activities in Com_n_n Lisp.

Another limitation in the usefulness of MIDAS to potential designer/users is the current
dependence of the cockpit modeling and simulation graphics on the MultiGen TM package.
The license fees for MultiGen TM are high enough to stand as a considerable barrier to the
dissemination of MIDAS.

8.2 FUTURE DIRECTIONS

At the transition between Phase IV and Phase V, MIDAS is conceived as having two
distinct modes, a dynamic simulation and analysis mode and an interactive static analysis
mode. The main focus in the next phase of development will be on the dynamic simulation
aspect of MIDAS and, in particular, on the development of cognitive models within the
Symbolic Operator Model. Also, since it must be clear how the MIDAS workstation
improves the present iterative, man-in-the-loop design process, analysis and evaluation of
simulation results will be emphasized and more complete integration of all components of
the simulation will be stressed. For the simulation, software will conform to a highly
distributed, object-oriented architecture, sometimes called an agents or actors architecture.
This architecture will enhance the ability of MIDAS to function as a framework for
incorporating a variety of models developed elsewhere, for as long as a model conforms to
the message-passing protocols of agents with which it must communicate, it can be
introduced without disturbing the functioning of the remainder of the system.

At the end of Phase V, MIDAS is envisioned as running on two machines networked
together, one Symbolics machine and one SGI IRIS machine. For the interactive tools, a
common graphics environment, running on the SGI IRIS machine, will be chosen. This
graphics environment must not have serious encumbrances, like the license fees for
MultiGen TM. Translators will be written to allow data files from certain CAD packages to
be read into the MIDAS environment without being re-drawn. All interactive tools will
operate in the chosen graphics environment, with a common user interface. A unified user
interface for the Phase V MIDAS will be developed, based on X Windows running on both
the Symbolics and IRIS machines.

Additional conceptual design work to be done on the user interface in Phase V will include
a careful analysis of who the various kinds of users will be and the way they will want to
interact with MIDAS. This study will help guide further development of MIDAS in
subsequent phases as well as provide a principled specification of the future user interface.

During Phase V, a high priority will be given to establishing collaborations with
organizations with access to empirical data suitable for use in validating some of the
MIDAS models, particularly the Task Loading Model and the Scheduler. Attention will be
given to validating other models as they are developed.

9.0 HISTORICAL INFORMATION

9.1 PHASE I DEVELOPMENT

Page 31

9.1.1 Requirements and Design Approach

9.1.1.1 Summary Level

The inidal phase of development of the prototype HF/CAE workstation found the Program
in serious danger of extinction due to insufficient funding caused by regular and sizable
cuts from guidance funding levels. It was believed that a visually-compelling, proof-of-
concept demonstration was required to communicate the essence of the Program to
individualsunfamiliarwiththe particularsofthe science involved.Maximum visualutility
was demanded of every expenditure and development.

A baseline simulation capability was required that demonstrated mission modelling, human
performance metrics and helicopter-pilot interactions within a controUable, time-stepped
environment that provided multiple graphic "views" into the underlying model(s). The
simulation needed to be incrementally extensible, hence only a framework for more
elaborate modelling was required for this phase, given the time constraints imposed.
Several areas of development emphasis were identified:

9.1.1.2 Mission Modelling

The overall A3I Program model architecture calls for a mission model driving the closed
loop pilot-vehicle system. The model would be developed with a dynamic, interactive task
analysis framework for systematically describing tasks involved in ce_ain classes of
advanced helicopter operations. The framework will provide a feasibility demonstration of
the methodology, including all critical mission and flight management functions within a
pre-specified sample scenario.

Typically, scout-attack helicopter missions are largely opportunistic or discretionary in
nature. Consequently, the mission model generated by the mission decomposition
methodology must allow this component to be represented, either by providing conditional
branching based on some pilot model parameter, or stochastic event triggering.

Bolt, Beranek and Newman (BBN) had already started development (under a NASA
contract initiated prior to the PDR) of a "Mission Decomposition Methodology" that would
provide essentially the entire simulation structure for Phase I. Refer to the respective
software component description document for the Phase I Mission Editor for details.

In order to drive and manipulate the specific mission model generated by the Mission
Decomposition Methodology, a simulation executive was required that allowed greater user
control of the simulation than conventional executive programs. Future integration of a
vast number and variety of models within this executive structure was projected as well,
hence flexibility as well as functionality was required. Refer to the software component
description document for the Phase I Modeller for details.

Communications software was required to link the Symbolics 3670 running the mission
model with the Silicon Graphics IRIS 2500T displaying dynamic, 3-D graphic views
driven by the mission. The link was Ethemet under TCP/IP protocol. Refer to the
software component description document for Phase I Communications for details.

9.1.1.3 Graphics

Page 32

3-D, color, dynamic mission representation displays were required to provide intuitive
understanding of simulation progress. Further, these so-called "views" became extremely
valuable as debugging aids for programmers developing software on the system. Refer to
the software component description document for the Phase I Graphic Views for details.

In addition to view graphics, a state display editor was required to allow designers to select
appropriate model variables for run-time observation, and determine how and where the
values were to be displayed. This tool allowed designers to individually select which
simulation variables were of interest for monitoring, and the nature of their display (i.e.
dial, bar, graph, etc.). Refer to the software component description document for the
Phase I Icon Editor for details.

9.1.1.4 Human Performance Modelling

The first phase needed to demonstrate the capability to model, structure and analyze the
human component of complex and interactive pilot-helicopter systems by elucidating the
effects of human performance limitations on mission effectiveness. The mission had to be
responsive to changes in pilot performance, and conversely, the pilot's loadings should be
reflected in task loadings imposed by execution of the prescribed mission.

It was decided that emphasis should be placed on developing some meaningful
demonstration of training effects as provided by profiles of novice and experienced pilot
representations. Refer to the software component description document for Phase I
Training Implications for details.

9.1.1.5 Demonstration Scenario

The demonstration scenario consisted of the capability to perform multiple consecutive
simulations. Variables included:

I)

2)

A novice and experienced pilot profile that may be menu-selected
prior to a simulation run to illustrate training effects.

Convoy return of missile fire at any point in the mission subject
to the discretion of the designer.

It was possible to have extensive run-time control over the running of models from menu
items. It was also possible to examine data and information both after the run, and during a
model freeze state. Menu selection of these capabilities required no programming
experience to start, operate and evaluate the simulation.

9.1.2 Hardware Environment

Figure 7 below indicates the Phase I hardware configuration. These components are
described in further detail in the subsections which follow.

Page 33

TCP/IP ETHERNET

II
J,vM,o.,c,

8&W

MONITOR

KEYBOARO I

I o,o.I
Io.-,.,I

II

I

Figure 7. Phase I Hardware Configuration

9.1.2.1 Symbolics Lisp Machines

Model 3670-1433 Color Workstation consisting of:

8MB Main Memory
Ethemet Controller and Transceiver
335 MB Fixed Disk
Monochrome Console

Keyboard & Mouse
SYS36 20 MB System Software
Documentation
Model CGT0-FB02 High Resolution, 2A-bits/Pixel Color Frame Buffer
Model CGOP-OIL 19" Color RGB Monitor

Model OV36-FPA1 Floating Point Accelerttor
Model CGSW-PKG Softwme Package consisting of:
SCGR-DYNA Dynamic Animation System
SCGR-PAINT Paint System
SCGR-GEOM Geometry System
SCGR-RENDER Rendering System
Symbolics # SLAN-FORT Fortran 77 Compiler
Symbollcs # STCP-I TCP/IP Software

9.1.1.2 Silicon Graphics Computers

W-2500A Workstation consisting of"

1/4" Tape Drive
HU-T04 Turbo Option W/4MB RAM
H3-FPA Floating Point Accelerator
H-DM4A 1024x I024x4 Display Memory
H-ZC2 Z Clipping Assy.
C-WTCP lP[rCP Software

Page 34

9.1.2.3

None.

9.1.2.4

P-DBX Dial/But_n Box
R-UNIF Forum Compi]_

Other Processors

Networking Hardware

TCL Incorporated Model 2010EC Ethemet Transceivers (tap-type)

9.1.2.5 Peripherals

Okidata Model 2410 Dot Matrix Printer

9.1.3 Software Environment

Generally, the graphic design and analysis tools were built using C, Unix, and the
Replicore 3-D modelling package. Lisp-based tools and models were built using
Symbolics Common Lisp under Genera 6.2, and the S-Packages were often used for
Displays. Communication software was written to enable inter-machine message passing
and simulation synchronization. The distribution of the Phase II models ,tools, and
displays is shown in Figure 8 below.

I

REPUCORE 3-D MODELLER

NIMATION EXEC.

TCP/IP ETHERNET I

II
._YMBOLICS I MODELLER

ICON EDITOR

3670 I COMPILERS

I
StateDisplays

Figure 8. Phase I Software Modules

9.1.4 Programmatic Information

9.1.4.1 Constraints

The demonstrations had to be conducted prior to July, 1986, hence there was litre time to
develop the demonstration in time to impact the next year's fiscal funding. Technical
planning began late in June, 1985. The Phase I Preliminary Design Review (PDR) was
conducted on 25 October 1985, where general objectives were established.

Page 35

Staffinginitially included 1 EE (software integration task manager), and 1 systems
programmer. A LISP programmer was added in October, 1985, followed by a senior
graphics specialist is April, 1986 and an entry-level programmer in May, 1986. Training
and familiaritywas requiredforany programmerworkingwiththeSymboliccomputer
(oftenquotedtob¢a 6-monthlearningcurve).

Due tothestaffinglimitations,subcontractswererequiredtoperformsome ofthe
necessarywork. Inparticular,3-D graphicviewwork was initiallysubcontractedtoa
smallbusinessmarketinga3-D CAD modellingpackage.Deliveryofthework was
ultimatelyseveralmonthslate,and incomplete,causingin-houseprogrammingstafftobe
severelypressedtointegrateand debugothersoftwarepriortotheestablished
demonstrationdeadline.Futurecontractualendeavorscannotinvolveorganizationsthatare
atriskofbeingunresponsive,orthataredevelopingcomponentsthatmay beconsidered
criticalpathitems.

The Program owned a Symbolics 3670 LISP computer with 24-bit color system at the time
of the PDR. A procurement began shortly afterward to acquire a Silicon Graphics IRIS
2500T graphics computer, which arrived at Ames in January, but was not in working
condition until February.

9.1.4.2 Risks

The majority of Phase I applications developments were under contract or subcontract.
This condition poses some risk of failure caused by potential incompatibilities at the time of
integration, competing priorities inherent within respective organizations, lack of control
over developments and progress, and other problems that cannot be treated or corrected by
the Program Office. While appropriate for this initial phase (due to constraints), each
instance of reliance on organizations that the Program Office does not have direct control
ovcr should bc carefully considered.

SincethePhaseIarchitecturewas minimal,therewerefew technicalrisks(outsideof

meetingdcadlincs)thatmightprohibitsuccess.The majorsourceofuncertaintyinvolved
networkingtheSymbolicsand IRISthroughTCP/IP Ethemet.Unfortunately,latedelivery
ofgraphicssoftwareforcedasuboptimum (almostfrenzied)approachtocommunications
debugging,sincein-housestaffdidnothavethenecessaryfamiliaritywithTCPflPprotocol
details.Consultantswere usedtoassistwithdebuggingandoptimizingthelink.

9.1.4.3 Summary of Results

Preliminarydemonstrations(ofthemissionmodel)wereheldinFebruary1986,followed
by thefirstofseveralformalPhaseIdemonstrationsstartinginlateJune 1986.The
demonstrationsconsistedofthreecomputerdisplays(twoincolor):

I) Three-dimensional(3D),color,dynamic,missionrepresentations
composed ofworld,pilotandplanviewsofthesimulatedmission.

2)

3)

Missionmodel set-up,controlanddatadisplay.

Coloriconic"statedisplays"providingcontinuousdisplayofmissionmodel
variablevalues.

Page 36

Thesimulationexecutive (on the Symbolics 3670) controUing the mission model provided
appropriate data via EtherNet TCP/IP to 3D graphic "views" resident on the IRIS 2500T to
drive each dynamic simulation object. Mission model programming began in November of
1985, state display work began about the same time, while graphic display work started in
late January, 1986. Over .50 man-months of combined programming effort was dedicated
to this Phase, generating nearly 5000 lines of Fortran code (3000 in-house, 2000 contract),
1200 lines of C (in-house), and 7800 lines of Lisp (3800 in-house, 4000 contract) in this
eight month period.

Numerous design and implementation compromises were made in the first phase of
development due to the severe time constraints (start 11/1, complete by mid June), and
minimal staffing available. Future phases must address more long-term strategic
approaches.

9.2 PHASE II DEVELOPMENT

9.2.1 Requirements and Design Approach

9.2.1.1 Summary Level

Phase II was intended to devise more long-term approaches to the development of the
workstation. Another primary purpose was to assemble a team of individuals (both in-
house and outside) appropriate for this activity. This team would be composed of both
researchers and implementers, since the Program's approach is to employ contemporary
techniques to integrate the best models of human behavior/performance, vehicle/systems
and environment available.

Phase I had succeeded in demonstrating that the concept of a prototype workstation for
aiding early helicopter cockpit design with regard to human performance limitation was
viable. The implications of attempting to develop such a system were also more clearly
understood after Phase I. The purpose of Phase II was to:

1) Develop modelling and simulation tools
2) Develop graphics tools
3) Integrate 6 DOF helicopter dynamics
4) Develop a more representative mission
5) Design and implement a more modular architecture
6) Gain additional insight into modelling and the design process
7) Build an appropriate in-house implementation team
8) Establish working relationships with various centers-of-excellence

At the completion of Phase I it was evident that more long-term strategies to development
would have to be adopted if the Program were to ultimately succeed. It was also
recognized that a more active effort was necessary in the area of integration of research
results if less mature fields such as human-computer interaction and predictive human
modelling were to gain any acceptance.

New software development requirements in Phase II centered around modelling
environment, pilot models, vehicle/systems models, world models, analysis and decision
aiding, and user interfaces Work Breakdown Structure (WBS) elements. The specific
applications chosen are described in the subsections that follow.

Page 37

9.2.1.2 Modelling Environment

9.2.1.2.1 Mission Editor

Development of the Mission Editor continued in Phase II under subcontract with BBN with
domainexpertiseand integrationsuppliedby in-housestaff.BBN designeda graphic
editing interface utilizing the mouse and pop-up menu templates to relieve the user of Lisp
code editing. A manual decision interface was also implemented to override the previous
"selection by aspect" method of simulated pilot decision-making. The Mission/Task Editor
is an application initially developed BBN that serves as the human performance modelling
framework whereby more elaborate computational models of human behavior and
performance may be installed or "activated" in the workstation contingent on the type and
level of analysis required to answer a particular question. For example, the framework
provides a default toplevel directed aeyclic graph form of human task modelling that can be
used to evaluate task sequencing and resultant human resource loadings (visual, auditory,
cognitive and psychomotor) based on empirical data. However, it is possible to integrate
detailed predictive computational models of human performance such as dynamic
anthropomemc models that are able to compute rates, durations, reach, comfort factors and
other parameters. These detailed models can be utilized as an alternative to the more
subjective toplevel empirical models that the system provides by default. The framework
also provides interfaces to simulation models of the vehicle/systems and environment at
various levels of abstraction. Most importantly, the framework provides contingent task
behavior subject to vehicle and environmental state variables. Refer to Appendix 1 of the
Phase II System Architecture Description Document (SADD) for details.

9.2.1.2.2 Modeller

The Modeller serves as the Phase II simulation executive. It provides all modes of
interaction with the simulation, including build/edit, test/verify, experiment frame, run,
analysis and document/report The ultimate goal of the Modeller is to provide the complete
environment for construction, integration, testing, simulation analysis and reporting of
results. The most developed mode of the Modeller is the run mode, whereby the user
controls the execution of the simulation models. Model selection, data specification and
run-time display (state-displays and views) configuration is provided through the
experiment frame mode of the Modeller. Refer to Appendix 2 of the Phase II SADD for
details.

9.2.1.2.3 Visual Modeller

The Visual ModeUer is a prototype visual programming language for dynamic systems
modelling developed under subcontract by Expert-Ease Systems Inc, of Belmont, CA. It
allows the user to select components such as dividers, summers, integrators, sources and
sinks from an extensible library of components and assemble them on a graphic
"worksheet" to form working models. Connections between component input and output
ports are make graphically, as is specification of initial conditions and parameters. Models
are subsequently run as interpreted code (versus compiled) subject to boundary conditions
(start time, end time, step size) supplied by the user. The application was initially
developed as a stand-alone tool for evaluation, hence it has yet to be integrated with other
MIDAS workstation elements. It is anticipated that some form of visual programming
language will be developed for the Modeiler build/edit mode that utilizes the same type of
interface as the Visual Modeller. This tool would become the primary means of developing
and integrating vehicle/systems and world models for the simulation. Refer to Appendix 3
of the Phase II SADD for details.

Page 38

9.2.1.2.4 State Display Editor

The State Display Editor is an enhanced version of the Phase I Icon Editor, which is based
on the Graphics Editor from Steamer, an application developed by BBN for the Navy
Personnel Research and Development Center (NPRDC) in San Diego, CA. The State
Display Editor is used to conveniently build displays composed of graphs, bars, dials,
sliders, text, etc. for indicating the state of some selected dynamic variable during a
simulation. The user interface has been substantially reworked to mimic the Apple
Macintosh desktop metaphor. It also takes advantage of improvements to the Symbolics
operating system (Genera 7.1) such as infinitely scrollable windows in both vertical and
horizontal dimensions. Other features added to the original Icon Editor include
"Macintosh-like" text handling, keystroke commands (to supplement pull-down menus)
and numerous bug fixes that had existed from the original Steamer code. No programming
is required to use this tool. Refer to Appendix 4 of the Phase II SADD for details.

9.2.1.3 Pilot Models

9.2.1.3.1 Anthroporaetric Model

The A3I Anthropometric Model was developed under a NASA/Ames grant to Dr. Norman
Badler at the University of Pennsylvania's Department of Computer and Information
Science. The POSIT/HIRES model provides human body dimensions, reach and position
based on CAR (Crewstation Assessment of Reach, Boeing Corp.) database link sizes,
driven by task/goal specifications (HIRES). Unlike other systems that statistically utilize
anthropometric databases, POSIT allows the user to specify each link independently and
establish motion constraints for any link or joint in the model. Since the anthropometric
model is an ongoing research effort at the University of Pennsylvania, a working version
of POSIT was not received by the Program until 1 month prior to the end of Phase II.
Consequently, the capabilities of the system were demonstrated off-line as a stand-alone
system, although the graphic databases generated by other MIDAS workstation tools were
immediately made compatible with POSIT/HIRES, as well and the Missionfrask Editor's
output. Future Phases of the Program will see integration of the next generation of
POSIT/HIRES (JACK/GOALTENDER), which is expected to include dynamics and field-
of-view modelling capabilities. Refer to Appendix 5 of the Phase II SADD for details.

9.2.1.3.2 Loading Model

The loading model currently used to measure human performance is based on data
accumulated at the Army Research Institute at Ft. Rucker, AL, that was subsequently
committed to computer hardware within a modelling framework developed by BBN. The
model generally states that task performance requires human resources from visual,
auditory, cognitive and psychomotor (VACP) dimensions. This approach is loosely based
on Chris Wickens Multiple Resource Theory and subsequent model implementation by
Aldrich & McCracken at Anacapa Sciences Incorporated. The data from ARI is based on a
survey of active helicopter pilots who were asked to estimate the VACP loadings for
various tasks on a scale of 0-7, given very specific guidelines and criteria for each level in
that range. The advantages of this approach are visibility, simplicity, and intuitive appeal.
The disadvantages are that VACP values obtained from the survey are context dependent,
thus to model variations in loading as a function of vehicle/system or world state, as well as
pilot variables (training level, stress, fatigue, workload) there is no empirical data available
to support alteration of baseline VACP values as a function of these variables.

Page 39

9.2.1.4 Vehicle/Systems Models

9.2.1.4.1 Dynamics and Guidance Models

The typeofhelicopterdynamicsand guidancemodelsusedinPhaseIwerediscretepoint-
mass. Thesemodelsdidnotprovidethenecessarydataintranslationaland rotational
degreesoffreedomtoanalyzevehicleorientation(pitch,roU,yaw)asafunctionofcontrol
movements. The dynamicsmodel usedinPhaseIIhad beenusedatAmes previouslyin
motionsimulationstudieson VAX VMS hosts,thusthemajorityoftheeffortrequiredto
usethismodel was aporttotheSymbolicscomputer.This,however,was notasimple
taskdue tocompilerdifferencesand theProgram'snccdto"package"modelsina modular
fashionthatsimplifiesintegrationand interactionwithothercode,mostnotablyLisp.The
guidanceroutineswerealsobasedon existingcodeusedinmotionsimulatorfacilities,
althoughextensiveenhancementswererequiredand performedby AnilPhatakand Huan
TranofAnalyticalMechanicsAssociates(AMA), Inc.Theseincludedouter-loopspeed,
horizontalandverticalpathcontrolfeedbacktoprovidepathfollowingthatwas more
representativeofrealpilotstrategies.An importantlessonlearnedinPhaseIIwas thatitis
notadvisabletoattempttointegratemodelsthatarestillundergoingdevelopmentintoa
systemthatitselfisevolving,particularlywhen therearelanguagecompatibility
complications(e.g.Fortranand Lisp).Althoughthiswas necessaryinPhaseIIdue totime
constraints,futurePhasesshouldavoidthisthroughbetterplanning.

9.2.1.4.2 Cockpit Display Editor

The Cockpit Display Editor (CDE) is a new application developed for the construction and
editing of cockpit displays and controls. Its interface is based on the MultiGen TM visual
database editing program developed by Software Systems of San Jose, CA. Software
Systems and Sterling Software entered a joint development agreement which allowed
Sterling source code rights to the MultiGen TM software in exchange for developing
enhancements to MultiGen TM (described in the Graphic Views SCDD). The CDE is 3-D,
color, dynamic, and has a user interface modelled after the Apple Macintosh. Displays can
be conveniently linked to model parameters, or animated from stored datafiles. The CDE
contains the database of all positional and geometric attributes of displays and controls in
the simulated cockpit. This database will eventually be utilized by human behavior and
performance models such as signal detection and visibility to analyze optimal
instruments/control placement.

9.2.1.5 World Models

9.2.1.5.1 World Models

World models have not changed significantly over Phase I, with the exception of replacing
flat terrain and gaussian hills with Defense Mapping Agency (DMA) terrain data.
Architecturally, considerable effort was devoted to separating the simulation of world
objects from pilot and vehicle/systems simulation models in anticipation of migration to
distributed or parallel processing hardware.

9.2.1.5.2 Views

Geometric representations of world objects have changed appreciably from Phase I with the
addition of enhanced MultiGen TM software. As mentioned in world models, flat terrain and
gaussian hills have been replaced with (DMA) terrain data, and objects/vehicles have real-
world dimensions since they were obtained form a simulator out-the-window visual system

Page 40

database(Singer-LinkDIG).TheDMA data can be read directly off a tal_ and u'ansformed
into a 3-D, colored image by the graphic modelling system. The simulation views have
been enhanced as well, since MultiGen TM features provide interactive, Macintosh-like
editing of objects (it is an object-oriented editor) and subsequent viewing with 3
translational and rotational degrees of freedom. Model-driven or stand-alone animation of
objects is also provided as a feature that was added to the basic MultiGen TM software.

9.2.1.6 Analysis and Decision Aiding

9.2.1.6.1 Training Resource Requirements Prediction

The impact of training was demonstrated in Phase I by providing 2 types of pilot models
(skilledand novice)andcomparingtheperformanceresultsinasimulatedmissionforeach
case.The two modelswerebasedon theassumptionthaton theaverage,alessskilled
pilotrequireslongerand perceivesa higher(VACP) loadintaskperformancethana skilled
pilot.PhaseIIendeavoredtodemonstratethatitwould bepossibletoperforman analysis
ofa simulatedmission'stasksand extrapolatethetrainingresourcerequirementsnecessary
totrainan individualtoperformsuchamission.The approachdrew heavilyfrom
InstructionalSystemDevelopment(ISD)methodologies.Hence thefocuswas upon post-
simulationanalysisand trainingrexluiremcntsestimation,ratherthatattemptingtoshow the
effectsofskilllevelvariationson missionperformance.Bothareconsideredimportantfor
theMIDAS workstation.

9.2.1.7 Demonstration Scenario

The PhaseIIScenarioinvolvedwalkingdemonstrationattendeesthroughasimulated
missionand cockpitbuild,anthropometryanalysis,and taskloading/timclineinspection.
Emphasiswas placedon "running"asmany componentstogetherinanintegratedfashion
fora slightderivativeoftheAmbush ScenariofirststartedduringPhaseI.

9.2.2 Hardware Environment

Figure 9 below indicates the Phase II hardware configuration. These components arc
described in further detail in the subsections which follow.

Page 41

r_ 45MB 1/4"

TCPnP ETHERNET

LO!

/4

ilSERIAL
INTERFACE
SWITCH

Figure 9. Phase 1I Hardware Configuration

9.2.2.1 Symbolics Lisp Machines

Modcl 3675 Color Workstation consisting of:

Monochrome Console

Keyboard& Mouse
45 MB 1/2" Clrllid|e Tape Drive
Etheme¢C_olla andTrmsceivet
12MB RAM

Enhmc, Perrorm_ Oe6o.
474 MB Fujitsu Faille Disk
515 MB CDC Dud(
Model CO70-FB02 HiBh Resolution, 24-b/ts/Pixel Color Frame Buffer
Tekuenix 19" Color ROB Monitm

Model OP36-FPAI FloatingPointA(x:slwstor
S_boScs # SLAN-FORT ponnm 7"/Compiler
Symbol/cs # STCP.1 TCP/IP Softwm

Page 42

Model 3640 Color Workstation consisting of:

Monochrome Console

Keyboard & Mouse
Ethemet Cone'ollermadTransceiver
6MB RAM
2-140 MB Disks
CAD Buffer
Tekuonix 19" Color RGB Monitor
Symbolics # SLAN-FORT Fortran 77 Compiler
Symbolic$ # STCP-I TCP/IP Software

Model 3620 Monochrome Workstation consisting of:

Monochrome Console
Keyboard & Mouse
Ethemet Con_oUer and Tramceiver
4MB RAM
368 MB Disk

Symbolic$ # SLAN-FORT Fortran 77 Compiler
Symbolics # STCP-I TCP/IP Software

9.2.2.2 Silicon Graphics Computers

W-2500A Workstation consisting of:

45 MB 1/2" Caruidge Ttpe Drive
Ethernet Controller m_dTransc_var
HU-T04 TurboOption W/4MB RAM
H3-FPA Floating Point Accelerator
H-DM4A I024x I024x4 Display Memory
H-ZC2 Z Clipping Assy
C-WTCP IP/I'CP Software
P-DBX Dial/Button Box
R-UNIF Fortran Compiler

W-3120 Workstation consisting of:

Ethernet Controller and Transceiver
H3-FPA Floating Point Acoeleralor
H-DM4A 1024x1024x4Ditplty Memory
H-ZC2 Z Clipping Assy
C-WTCP]P/rCP Softwm'e
P-DBX Dial/Button Box

9.2.2.3 Other Processors

Digital Equipment Corp. MieroVax II

9.2.2.4 Networking Hardware

TCL Incorporated Model 2010EC Ethemet Transceivers (tap-type)

9.2.2.5 Peripherals

Okidata Model 2410 Dot Matrix Printer
Apple LaserWriter Plus Laser Printer
GraphOn Graphics Terminal

Page 43

9.2.3 Software Environment

Generally, the graphic design and analysis tools were built using C, Unix BSD 4.3, and
the IRIS Window Manager/Graphics Library II. The MuitiGen TM modelling package was
used as the underpinnings for the CDE and Views components. Most Lisp tools and
models were built using Symbolics Common Lisp under Genera 6.2, with the Flavors
extension, and the S-Packages were often used for for Displays. Communication
software was written to enable inter-machine message passing and simulation
synchronization. The distribution of the Phase II models,tools, and displays is shown in
Figure !0 below.

TCP/IP ETHERNET

]COCKPIT DISPLAY
S.G. IRIS IEDITO R

3120]POSIT

I
Anthropometry

Analysis

Iris Color Display

OFFLINE

S.G. IRIS

2500T

VISUAL DATABASE
EDITOR

ANIMATION EXEC.

I

Pilot View Editors

Plan View Inspectors
FIv.thru

IrisColor Display Sym.. B&W Display

3-D "VIEWS" SIM. EXEC

MODELLER

3675 1 MIISSION
| EDITOR

I I MODELS

Mission Modell I

Edit _

Syrn.. Color Display

DISPLAYS

Figure 10. Phase II Software Components & Displays

9.2.4 Programmatic Information

9.2.4.1 Constraints

Following the Phase II offsite planning meeting at Saint Francis Retreat, a schedule was
developed for the work that had been identified during the planning meeting. The schedule
indicated that the end of Phase 11would require a period of approximately 1 year.
Although the end of phase demonstrations would as a consequence likely miss affecting the
following year's funding cycle, the plan was accepted.

Phase 12development did not start until in late December, 1986 due to the need to prepare
extensive budget proposals while at the same time developing technical plans. At that time,
there were 6 in-house programming staff members composed of 3 Lisp programmers
(2 junior, 1 intermediate), 2 graphics programmers (1 senior, 1 junior), a systems
administrator and a task manager to perform and coordinate the implementation of the
above mentioned 11 applications in cooperation with 2 subcontractors (BBN and AMA).
In March, 1987, the senior graphics programmer left the Program to head another project,

Page 44

followed by the systems administrator shortly thereafter. These individuals wea-c replaced,
as well as the addition of 4 new staff member and 4 subcontracts by July, 1987.

A decision was make in July to complete Phase II by early October and begin Phase H in an
effort to complete Phase III in time to influence the following year's funding. Although the
staff required to perform work planned for Phase H were not available until very near the
end of the phase, and the length of the phase was reduced by 2 months, sufficient work
was completed to demonstrate the essential concepts planned for Phase II.

• Equipment was a severe limitation until the delivery of two additional Symbolics computers
and an IRIS workstation by June. Additional mass storage, dynamic memory and
hardware upgrades were ordered for existing equipment. With the exception of the
Symbolics upgrade to a 3675, most of the hardware was received and installed in time to
improve the productivity of staff.

9.2.4.2 Risks

By the end of Phase II there were 6 subcontracts and 1 NASA grant under the management
of in-house implementation staff. This represents a sizable risk that the contributions of
these subcontractors be appropriate, cost-effective and carefully monitored. The limited
funds of the Program could not tolerate any waste of manpower or funds.

The decision to attempt to integrate discrete-event Lisp-type and continuous Fortran-type
models in Phase II, without the benefit of a specialist in simulation modelling, could have
proven to be a disaster. Although successful, the process was inefficient and frustrating.
Future attempts at such model integration must be made with the aid of an expert in
simulation modelling.

Hardware technological risks were again minimized by the use of standard, proven
computers and software. Communications was TCP/IP protocol, and special hardware had
been purchased to monitor network data packets in the event of any problems.

The composition of the in-house implementation staff is currently engineers, programmers,
mathematicians, computer scientists, physicists and a helicopter pilot. There are no
cognitive psychologists or human factors specialists. This is a serious void for a team
developing a prototype workstation for human factors analysis. Nonetheless, this void has
been temporarily filled by subcontracting for this expertise.

9.2.4.3 Summary of Results

The first set of demonstrations was conducted for NASA and local personnel on October
22, 1987, followed by numerous scheduled and non-scheduled demonstrations over the
course of the next 6 weeks. The feedback was without exception positive, although it
became clear, after several comments, that in the next phase of development it would be
necessary to address some concrete design issues rather that remaining general and abstract
with regard to what the MIDAS workstation could accomplish.

Late in Phase II the Program Office obtained a Chief Scientist to direct ongoing research
activities that are slated for eventual integration in the workstation. This addition
tremendously improves the Program's ability to evaluate and respond to new research

Page 45

resultsthatmay be relevant to the design of complex man-machine systems. Similarly, two
consultant subcontractors involved with the Program have extensive experience in the field
of human behavior and performance modelling.

As Phase II was aimed at more long-term, strategic approaches, there will be a substantial
amount of code reuse as well as coding momentum carried into Phase III. This momentum
isfurtherfacilitatedby reasonablesuccessinassemblingatcarnofindividualswith
appropriateskillsand interestsforthisProgram.Theseinterestsincludehuman
behavior/performancemodelling,training,graphicalmodellinglanguages,integrative
frameworks,decisionaidingand userinterfaces.

9.3 PHASE III DEVELOPMENT

9.3.1 Requirements and Design Approach

9.3.1.1 Summary Level

Responses to the Phase II demonstrations, as well as discussion at the Phase III off-site
reinforced the need to continue the development of the core set of A3I models and tools.
However, emphasis would have to be placed on explicitly addressing how such models
and tools would be sensitive to cockpit design change. Furthermore, the enhancement of
the present applications and the start of new components must be anchored to a "real
world" application for effective demonstration positions. The Program office decided to
use a detailed, "vertical slice" of the conceptual development process as a method to
illustrate the intended use of the workstation. The AH-64A mission and cockpit was the
focus of the phase, with empirical flight test results from an AH-1 Cobra Communication
Study as a source of specific task data. These objectives required a degree of integration
and detail previously impossible, and drove the following development requirements for
the individual MIDAS components:

9.3.1.2 Symbolic Modelling CSCI

Consisting of a mission editor, task decomposition aids, as well as state displays for task
analysis, the focus for the Symbolic Modelling CSCI during this phase was on the design
and coding of a generalizable framework for symbolically representing the functions of
cockpit equipment used to accomplish mission tasks. This framework allows various
cockpit alternatives to be evaluated without completely re-editing the mission
decomposition, since the design maintains a distinction between the physical structure (or
state operators) of the equipmen t, and the functional requirements (or inferred goals)
required by the task. Previous A3I symbolic models of the mission and pilot tasks failed to
explicitly depict the relationship of the equipment design and the primitive task actions,
loading values, or timelines. Results of the "vertical slice" example (report phase line)
were used to demonstrate this process and successfully compared to actual data from a
similar AH-1 flight test conducted by the Aeroflightdynamics Directorate. Task timeline,
resource use, and loading displays were similar in concept to those used during previous
phases.

9.3.1.3 Graphic Views CSCI

Phase IIl development requirements for the Views CSCI are best described as
enhancements to the well-received capabilities existing in Phase II. The internal resolution
of the geometric modelling package was reduced from 3/8 inch to 1/256 inch, permitting
sharper and more detailed rendering of the DMA terrain and moving models made possible.

Page 46

Alsoadded was the capability for the user to select a viewing position from anywhere
within the mission gaming area. Existing low-detail helicopter models were also replaced
by the fully populated AH-64A model developed using the CDE. Finally, the Views CSCI
was ported to the new IRIS 4D and modified as dictated by a new version of the underlying
MultiGen TM software.

9.3.1.4 Cockpit Design Editor (CDE) CSCI

Existing CDE software was ported to the IRIS 4D and improved with the addition of pop-
up user windows, an hierarchical data base of instrument information and characteristics
for human factors analysis, and improved mouse operations. The CDE was successfully
used to build a detailed 3-D model of the complete AH-64A pilot cockpit and
instrumentation, providing both a feasible application of its capabilities, as well as
cockpit/craft models for the remaining workstation elements. An F-16 cockpit was also
created for potential use within the fixed-wing community. A fair amount of debugging of
the initial CDE code took place with these fuU-scaie CAD attempts along with code changes
brought about by a new version of the underlying MultiGen TM software.

9.3.1.5 Anthropometric Model or JACK CSCI

Under our grant to Dr Norm Badler and the University of Pennsylvania, the 3-D dynamic
anthropometric model was also ported to the IRIS 4-D and now includes fully defined body
parts, limb joint constraint settings, adjustable eye viewpoints, as well as improved
animation capabilities. This model was placed inside the AH-64A cockpit designed with
the CDE and saved in a Psurf format, and "instructed" to perform elementary psychomotor
operations through mouse operations. An somewhat unrealized goal for this phase
involved "driving" Jack through the task decomposition commands on the Symbolics.
Although demonstrated in a small scale, this level of integration during a simulation was
not pursued due to the lack of a synchronizing "time concept" within Jack. A number of
miscellaneous improvements were also added by the developer including a spread-sheet
style anthropometric database with editing options, increased functionality in shaded (rather
than wire-frame mode), and a new sliding window user interface. Jack was used during
the phase to perform reach analyses and a simplified visual occlusion test using 5th and
95th percentile males/females in the Apache Cockpit.

Far more rigorous vision models were kicked-off this phase with a grant to the New York
Association for the Blind, and a contract with the David Sarnoff Research Center. These
models of volume field of view and legibility, respectively, will be integrated within the
Jack environment but are not detailed within this document since preliminary versions are
not expected until Phase IV.

9.3.1.6 Aerodynamics & Guidance Module (AGM) CSCI

The AGM CSCI was ported from the Symbolics computer to the IRIS 4D and almost
entirely translated from Fortran to C to take advantage of the additional compute power.
One of the specific desires this phase was to demonstrate that A3I indeed had a viable aero
model which could be used to provide position, orientation, and rate information to other
components. Modifications were made to provide user-selectable action points during
simulation, a graphical (MultiGen TM based) representation of helicopter pitch, roll, and yaw
characteristics, simulation of cyclic, collective, and pedal inputs, and improved interface
with simulated pilot models. A high degree of integration between the AGM and Symbolic
Modelling CSCI's was attempted but made difficult due to limitations of the AGM in
accurately portraying some piloting activities required in the demonstration scenario.

Page 47

9.3.1.7 Communications CSCI

The IRIS to Symbolics Communications software developed during Phase II was used
essentially "as is" for Phase IH. Some modification was necessary due to the receipt of
two new]RIS's during the phase. Because most of the application developments
addressed during this period were "stand-alone" oriented, the major use of this CSCI was
to transmit position, orientation, rate, and engine characteristics from the AGM to the
Views and CDE CSCI's for animation.

9.3.1.8 Training Assessment CSCI

Training assessment was greatly augmented and refined during Phase ITI. During Phase II,
an instructional system was assigned (by table look-up) to train each task by matching task
characteristics with attributes of instructional systems within the task's learning category.
The Phase Ill approach used ART (the Automated Reasoning Tool) and Common Lisp on
the Symbolics to develop a prototype knowledge-based system. This processes uses the
instructional systems design flSD) process to assign each task a set of learning experiences
(such as explanation, demonstration, part-task training, and full task training) along with a
medium for each learning experience (such as textbook/workbook, interactive slide/tape,
lecture with visual aids, videodisc/CBT, CFT, CPT, OFT, WST without and with motion,
and the actual system). For each learning experience/media assignment, a time to train is
computed, based on the task, operator, and equipment characteristics. The Phase III
training approach was heavily based on previous work performed by the Logicon
Corporation under contract to the Air Force. Training assessment is accomplished on an
individual task basis, with no attempt made to address the grouping of tasks into lessons or
courses.

9.3.1.9 Scheduler

Work was also begun this phase on a dynamic reactive scheduling component to address
the sequencing and scheduling a pilot may perform as a means to control his task
performance and timeliness. While not committed to code during Phase HI, significant
headway into the specific objectives and approaches for this state-of-the art component
were achieved. Because it was not completed during the phase, formal documentation for
the scheduler is not provided as part of this Phase III SDDD.

9.3.1.10 Demonstration Scenario

The Phase 11Idemonstrations consisted of a 30 minute introductory briefing by the
program director, followed by 1.5 hours of application demonstrations by the staff. The
"vertical slice" into the development process was emphasized as the attendee was
essentially "walked through" the conceptual development process for a potential
communication switch change on the AH-64A. The demonstration objective was to
describe the potential interactions and conflicts arising from moving the radio select button
from the ICS panel on the front bulkhead to the cyclic (as was done in the AH- 1 flight test).
The capability for A3I to support three phases of the design process was stressed:
specification, static analysis, and dynamic analysis.

Beginning with the Views CSCI, the projected DMA gaming area was portrayed as the
mission environment and the inherent capabilities of visualization emphasized. Next, the
mission editing component of the Symbolic Modelling CSCI was introduced, along with
it's facilities to input the scenario for an unmasking maneuver combined with several radio
calls. The Aerodynamics & Guidance CSCI was then demonstrated in a stand-alone

Page 48

fashion, traversing over simulated flat terrain and viewed in sevend perspectives.
Following the AGM, the CDE was demonstrated. Because of the maturity and visual
nature of this component, a fair amount of detail was provided--beginning with the
procedures to build an individual gauge, attaching it to a control panel, animating it, placing
it in a cockpit, building a vehicle structure around the cockpit, and finally, placing the
completed helicopter in the world prior to the simulation. As the last demonstration of the
MIDAS specification capabilities, the Symbolic Modelling CSCI was returned to. This
time it was used to portray a further decomposed mission with the design-dependent

•operator activities fully described as a result of the symbolic equipment models for the
alternative communication switch configurations.

Jack was then used to perform some basic reach sequences in the AH-64A cockpit, using
the maximum ranges of the human model data. The fact that the operator could not reach
the panel-mounted communications panel when restricted to moving from the shoulder only
(simulating a locked inertial reel) was demonstrated. Additionally, the potentially
dangerous glare shield occlusion of the tailwheel lock and master arming switch was
shown for "miler" pilots by attaching Jack's camera to the mannequin's eye during an
animation sequence.

The Training Assessment CSCI demonstration was then conducted for two send-radio
message tasks with the alternative radio switch configurations. The input, output, and
processing characteristics of this component was described, as the attendees were shown
bow a knowledge-based system operates.

The newly initiated applied vision models were then introduced through a briefing. An
Amiga-based prototype of the New York Association for the Blind's volume field of view
model was used to render the binocular retinal maps, facial occlusions, and physiological
blind spots for a series of mouse-selected f'Lxationpoints.

The demonstrations were then concluded with the dynamic analysis capabilities of MIDAS.
The fully populated cockpit was placed in the gaming area, driven by the aerodynamics and
guidance model, and viewed from several perspectives. A summary output screen from a
"simulation run" was then shown on the Symbolic Modelling color monitor. This screen
showed the loading and task timelines for the two potential designs and made use of
different colors to describe physical resource conflicts between the scenario's flying tasks
and the radio selection actions. Approaches for hypermedia-like access to Boff &
Lincoln's Human Engineering Data Compendium (once it comes out on CD-ROM) was
then shown through a simulated key-word search. The intent was to describe how analysts
would be able to get exuemely valuable context-sensitive information for areas such as
"performance under vibration" or "effects of the use of gloves" to make cockpit design and
mission decisions.

9.3.2 Hardware Environment

The hardware architecture in place at the end of Phase HI is depicted in Figure 11 below.
These components, together with their resident software and peripherals are described in
further detail in the subsections which follow.

Page 49

Figure 11. PhaseIll Hardware Configuration

9.3.2.1 Symbolics Lisp Machines

Model 3675 Color Workstation (Barracuda) consisting of:

Monochrome Console with OCLI filter
Keyboard & Mouse
45 MB 1/4" Cartridge Tape Drive
Ethemet Controller and Transceiver
22.5 MB RAM

Enhanced P_fom_ O_on
338 MB FujitsuEa$1eDisk
550 MB CDC Disk

Model CGTO-FB02 High Re_lution, 24-bitMPixel Color Frame Buffer
Tektronix 19" Color RGB Monitor
Model OF36-FPAI Floating Point Accelerator
Symbolics # SLAN-FORT Fortran 77 Compiler
Symbolics # STCP-! TCP/IP Software
S-Group (S-Paim, S-Geometry, S-Render, S-Dynamics. and color 6.0 V405.13)
Genera 7.2

Model 3640 Color Workstation (Puffer) consisting of:

Monochrome Console with OCL.] Filter

Keyboard & Mouse

Page 50

Model

Model

45 MB I/4" Cartridge Tape Drive
FxhernetComroIler and Trmw,ceiver
I 1.25 MB RAM
2-140 MB Disks
CAD Buffer
Tekxronix 19" Color RGB Monitor
Symbolics # SLAN-FORT Fortra_ 77 Compiler
Symbolics# STCP-I TCPIIP Software

S-Croup (S-Palm, S-Geometry. S-Render, S-Dynmnics, and color 6.0 V405.13)
Gon_a 7.2

3640 Monochrome Workstation (Squid) consisting of:

Monochrome Console with OCLI Filter
Keyboant & Mouse
F_en_t Controlla md Transceiver
13.5 MB RAM
2-140 MB Disks
Symbofics # SLAN-FORT For_an 77 Compiler
Symbolics # STCP-I TCP/IP Software
_a 7.2
Automated Reasoning Tool (ART) Vta-sion 3.2

3620 Monochrome Workstation (Sea Slug) consisting of:

Monochrome Console with OCLI Filter
Keyboard & Mouse
F.,th_ Cona'oller and Transceiver
ISMB RAM
190 MB 5"I"506Disk

Symbo}ics # SLAN-FORT Fortran77 Compiler
Symbollcs # STCP-I TCP/IP Software
C,¢n_a 7.2

9.3.2.2 Silicon Graphics Computers

W-2500A Workstation (Orca) consisting of:

19" High Resolution Monitor
Keyboard & Mouse
45 MB I/4"CmqridgeTape Drive
F.,thernet Con_oll_ and Transceiver
12MB RAM

2 474 MB Fujitsu10.5"Disk Drives
HU-T04 Turbo Option WI4MB RAM
H3-FPA Floating Point Accelerator
H-DM4A 1024x1024x4Display Memory
H-ZC'2 Z Clipping Assy
C-WTCP IP/TCP Software
P-DBX Dial/Button Box
Unix System V with BSD 4.2
NFS
C Compiler
IRIS Graphics Library I1 and Window Manager

W-3120 Workstation (Manta) consisting of:

19" High Resolution Monilor
Keyboard & Mouse
Ethemet Cona'oller and Transceiver
8 MB RAM
72 MB Winchestca" Disk Drive
H3-FPA Floating Point Accelerator

Page 51

H-DM4A 1024x1024x4 Display Memory
H-ZC2 Z Clipping Auy
C-WTCP IP/TCP SoftwEe
P-DBX Ditl/BuuonBox

UnixSystem V withBSD 4.2
NFS

C Compiler
IRIS Cgaphics IAbr,arylI and Window Manager

W-4D 120GTX PowerSeries Workstation (Coral) consisting of:

19" High Resolution Monitor
Keyboard & Mo_xse
Ethemet Conu.oner end Trine.civet
16MB RAM
380 MB ESDI Winchester Disk Drive
Double Buffered 1280x 1024x4 Display Memory
Double Buffered Alpha
24 bit Z buffer
C-WTCP IP/TCP Softwsre
P-DBX Dial/Buuon Box
IRIX System V release 4DI-3.1D
NFS
C Compiler
C++ Translator
Fortran 77 Compiler
IRIS Graphics Library lI and 4Sight Windowing System

W-4D20G Personal IRIS Workstation (Urchin) consisting of:

19" High Resolution Monitor
Keyboard & Mouse
Ethernet Controller and Transceiver
8MB RAM
170 MB SCSI Winchester Disk Drive
1280x1024x4 Display Memory
Double Buffered Alpha
C-WTCP IP[I'CP Software
IRIX System V release 4DI-3.1D
NFS
C Compiler
IRIS Graphics Library H, 4Sight Windowing System, and Environment Manager

9.3.2.3 Networking Hardware

CableTron MT-800 Ethemet/IEEE 802.3 Transceiver

9.3.2.4 Peripherals

Okidata Model 2410 Dot Matrix Printer
Apple LaserWriter Plus Laser Printer
Seiko Instruments D-Scan CH5312 Color Printer & Multiplexor
GraphOn GQ-250 ASCII Terminal & Keyboard (2)
Hewlett-Packard HP 700/22 ASCII Terminal & Keyboard (3)

9.3.3 Software Environment

Generally, the graphic design and analysis tools were built using C, Unix BSD 4.3, and
the IRIS Window Manager/Graphics Library II. The MultiGen TM modelling package was

Page 52

used as the und_pinrdngs for the CDE and Views components, as well as a visualization
me_lium for the Aerodynamics and Guidanc_ CSCI. Most Lisp tools and models w_'c built
using Symbolics Common Lisp, with the Flavors extension, under Genera 7.2. The
Training Analysis Module uses the Automated Reasoning Tool (ART) as a shell for its
inference requirements. The S-Packages were available for use in displays, although not
heavily relied upon during this phase. Communication software written in previous
phases was used to enable inter-machine message passing and simulation synchronization.
The distribution of the Phase III models, tools, and displays is shown in Figure 12 below.

FUNCTIONS: FUNCTIONS:

Training Volume Field of

R oquimment$ View Pmjoclion
Predictions

Figure 12. Distribution of Phase III Software Components and Displays
within the A3I Lab

Absent from the figure above is the Communications CSCI. This component is actually
distributed among all of the various Symbolics and Silicon Graphics machines as dictated
by the integration requirements. Currently, the capability exists to share the following
variables among the graphic and symbolic computers during a simulation.

For each Helicopter (Ownship and Wing): *Ownship only

Helicopter position (x, y, z)
Helicopter orientation (yaw, pitch,roll)
Altitude (AGL), Airspeed,Groundspeed
Velocity in each axis
Engine torque
*Cyclic position, pedal position, collective position

Page 53

Foreach Truck or Ground Vehicle (up to 6):

Truckposition(x,y,z)
Truckorie.nlafion(yaw)

For eachMissileon boardaHelicopterorGround Vehicle(upto9):

Missileposition(x,y,z)
Missile orientation (yaw & pRch)

Additionally, each object above has several "flags" which can bet set to communicate when
an event such as a "hit" or an "explosion" occurs.

9.3.4 Programmatic Information

9.3.4.1 Constraints

Following the Phase HI off-site at Asilomar Conference Grounds in December 1987, the
group began Phase III in earnest. The demonstrations were initially set for June of 1988,
but then slipped to November 1988 for a variety of reasons.

Funding for Phase IIIessentially dictated a no growth policy for the in-house staff, along
with minimal new subcontracts/grants or equipment purchases. In general, the computing
equipment available during this phase was well-matched to the development requirements
--a rather distinct change from previous phases. In addition, shortly before the
demonstrations, the A3I lab was completely remodelled, greatly improving the staff's
working conditions through additional table space, improved lighting, and a sharp
appearance. Approximately 2 weeks of development time was lost during this period,
although all the computing equipment managed to handle the movement well. The
additional space enabled us to take receipt of a new SGI 4D70G IRIS and have it up and
running quickly. Subsequent upgrades to this configuration allowed A3I to be one of the
first users equipped with the new PowerSeries 4D120GTX, containing parallel graphics
and central processors. Although this capability was not really exploited during the phase,
valuable experience with the new architecture was gained.

In contrast to the above, the impacts to staffing and outside efforts due to the funding level
were not so benign. Overall, staffing levels were inadequate to meet all the goals set forth
by the Program office. Although a new deputy director for A3I (government employee)
was added during August 1988 and his background in simulation/training devices was very
helpful with the Training Assessment CSCI, the crunch was felt by the Sterling Software
staff. Throughout the majority of the phase, the in-house staff consisted of 3 Lisp
programmers (2 senior, 1 junior), 3 graphics programmers (2 senior, 1 intermediate), and a
system administrator who doubled as an applications analyst for the Jack CSCI. Problems
with identifying and hiring a suitable Task Manger after Mr Lakowske's departure in March
1988 severely complicated any serious integration efforts. The fact that the A3I Program
has essentially been without a permanent and competent first line supervisor for over a year
has definitely delayed progress in general. It has also made coordination and
communications between the Program's diverse efforts nearly impossible.

To mitigate the staffing deficiencies, Dr Yan Yufik (Yufik and Associates) received a
subcontract during this phase for assistance in cognitive modelling and training.
However, his ideas for an analytical complexity assessment were not universally well

Page 54

received and his support was not renewed after November 1988. Similarly, Dr Anil Phatak
from AMA aided the in-house staff with minor AGM improvements, but was also
unfunded during FY89. An active subcontract with BBN was also maintained during this
phase but not funded.

Despite the relatively weak year in funding, new outside efforts were initiated with the New
York Association for the Blind and the David Samoff Research Lab for applied vision
models. Spearheaded by Dr James Latimer, the chief scientist for A3I, these new
components promise to be extremely valuable models for MIDAS. However, prior to the
demonstrations (June 1988), Dr _er was promoted to Branch chief, and while still
within ASHFRD, his oversight and guidance for these efforts was diminished.
Furthermore, his more critical role of overall scientific guidance for A3I was lost. A
suitable replacement has not been found.

Dr Larimer's departure, combined with the fact that virtually no one on the development
staff was formally trained in human factors, complicated our ability to develop and
convincingly demonstrate the use of MIDAS in a "real world" cockpit design application.
The present organizational structure has required each programmer/analyst to be not only a
software developer, but a part-time scientist and domain expert as well.

Following the documentation requirements at the end of the phase, two senior graphics
programmers left the project to pursue positions outside of Ames. However, this period
marked a turning point. Crippled by the loss of in-house personnel, recruiting activities
began immediately. By June 1989, two outstanding software engineers were hired. A
new CAD draftsperson, a system administrator, a human factors analyst, and a senior Lisp
programmer were also hired during the summer, rounding out an A3I development staff
which was now back to full strength. Although a Task Manager had not been hired, we
had several promising leads and were well-poised to enter Phase IV.

On a related topic, a program office reorganization plan was approved by the US Army
Aeroflightdynamics Director and the NASA Director of Aerospace Systems. This
reorganization expanded A3rs principal scientist positions from one to two, and established
a new technology transfer group called the Industry Liaison Section which would be
headed by a government project manager. A3I's core research and development
responsibilities would be split between the two scientists, with one steering cognitive
aspects and the other perceptual issues. This division is a specific recommendation of the
National Research Council study and report entitled Human Performance Models for
Computer-Aided Engineering. The dual scientist positions would hopefully allow better
monitoring and guidance for our extramural grants and contracts, as well as more time
devoted to and specific direction for the in-house software development staff. The ILS
section would respond to the increasing number of requests to disseminate in-house
technology by intensifying efforts to transfer the appropriate A3I lab products to other
government agencies and industry. Unfortunately, the filling of this government post was
not authorized during Phase IV, so the benefits of the new organization were not realized.

9.3.4.2 Risks

The majority of the risks faced by A3I during Phase III were management-oriented and not
technical in nature. They stemmed from unclear and conflicting development direction
combined with the aforementioned staffing situation. A program with the ambitions and
scope of this magnitude cannot tolerate a continuance of these problems.

Page 55

One quasi-technicalriskdidexistand shouldbe mentionedhowever,h oenterson thelevel
ofdetailappropriatefortheIPIIDASdesignandanalysisobjectives.The ProgramOffioe
hasmade itclearthatMIDAS isintendedfortheconceptualdevelopn_ntphaseof
crewstationdesignbecauseofthchigh"payoff"forproperlyincorporatinghuman
engineeringprinciplesduringthisperiod.However,most oftheknown human
performance models and analysis methods require as inputs task, equipment, and
environmental data which is more appropriate for derailed design. This apparent conflict
between the model/analysis needs and the intended use of MIDAS was (and still is)
unresolved. Its resolution will have serious implications for the Program's success in
developing a prototype workstation which meets the needs of its projected users.

9.3.4.3 Summary of Results

The program had a tremendous response to the traditional end-of-phase demonstrations.
Begun in November 1988, these demonstrations were attended by approximately 170
people from NASA, the US Army, other DoD components, as well as several universities.
We were then asked by the Aeroflightdynamics Director to extend invitations to industrial
sources, particularly the major helicopter manufacturers. The detailed demonstrations
which resulted were actually conducted more as joint working groups and continued
periodically through April 1989. This activity precipitated a significant amount of effort
which can best be described as technology transfer. Lockheed Missiles and Space
Company used our CDE package and vehicle dynamics interface to demonstrate a proposed
Autonomous Underwater Vehicle concept. Boeing Commercial Aircraft Company spent
three days at our facilities, understanding the tools, walking through code, and taking both
software and documentation back to Seattle to set up a MIDAS-like design workstation at
their company. Finally, the Marine Advanced Amphibious Attack Vehicle (AAAV)
program office became very interested in the MIDAS capabilities, and we completed some
vehicle prototyping design work for their review. Similar activities with the Fiber-Optic
Guided Missile (FOG-M) program office and Boeing Helicopter Company also may
evolve.

The few criticismswhich wereleviedessentiallyboileddown tothreeareas.First,a
numberofpeopleexpectedtoseemore explicithuman performancemodels,especiallyin
thecognitivearea.Functionssuchasdecisionmaking,planning,scheduling,etcwcz¢ not
emphasizedthisphase.Even wherepresent,suchmodelswereoftenembedded withinthe
missiondecomposition/simulationcomponentcomplicatingtheirobservation.Additionally,
anumber ofattendeesindicatedtheywantedmore "hardanalysis."Peoplewantedtoknow
specificallyhow MIDAS couldenablethem tofindthe"best"designintermsofany
number of measures---both quantitative and qualitative. They also wanted to get to a
"bottom line" in terms of mission success, etc. While "bottom line" aspects have never
been a particular focus of MIDAS, significant room does exist for us to improve the
analysis capabilities included for design evaluation. Finally, a number of folks dug deeply
enough to see that we haven't yet reached the level of integration among the CSCIs which
is intimated. Distinct equipment models exist on both the graphic and symbolic sides.
Task information needed by the Training Assessment CSCI is not contained in the task
objects under the Symbolic Modelling CSCI. Jack was only demonstrated in a stand-alone
mode. The lack of a properly functioning simulation capability at the start of the
demonstrations certainly contributed to this criticism. However, the point was generally
accurate. The degree of integration among the CSCIs was not where is should have been at
that point in the overall development--primarily because it is the most difficult area of all to
manage.

Page 56

10.0 ANNEXES

ANNEX A _ SYMBOLIC OPERATOR MODEL

ANNEX B -- SCHEDULER (Z) MODULE

ANNEX C- TASK LOADING MODEL

ANNEX D- SYMBOLIC EQUIPMENT MODELS

ANNEX E _ VISUAL EDITOR AND SIMULATION TOOL (VEST)

ANNEX F- D/SPLAY LAYOUT ANALYSIS

ANNEX G- ANTHROPOMETRIC MODEL "lACK"

ANNEX H _ VISION MODELS

ANNEX I _ AERODYNAMICS�GUIDANCE &TERRAIN MODULE

ANNEX J _ SIMULATION EXEC.,COMMUNICATIONS MODULE

Page 57

Annex A

Army-NASA Aircrew/Aircraft Integration Program: Phase IV

Man-Machine Integration Design and Analysis System (MIDAS)
Software Detailed Design Document

Symbolic Operator Model

prepared by

Jerry Murray

Table of Contents

1.0 INTRODUCTION ... 1
1.1 IDENTIFICATION OF DOCUMENT .. 1
1.2 SCOPE OF DOCUMENT ... 1
1.3 PURPOSE AND OBJECTIVE OF DOCUMENT 1

2.0 RELATED DOCUMENTS ... 2
2.1 APPLICABLE DOCUMENTS ... 2
2.2 INFORMATION DOCUMENTS ... 2

3.0 CONCEPT .. 2
3.1 DEFINITION OF SOFTWARE .. 2

3.1.1 Purpose and Scope .. 2
3.1.2 Goals and Objectives .. 3
3.1.3 Description ... 4

3.2 USER DEFINITION ... 4
3.3 CAPABILITIES AND CHARACTERISTICS 4

4.0 REQUIREMENTS .. 5
4.1 REQUIREMENTS APPROACH AND TRADEOFFS 5
4.2 EXTERNAL INTERFACE REQUIREMENTS 6
4.3 HARDWARE ENVIRONMENT ... 6
4.4 SOFTWARE ENVIRONMENT .. 6
4.5 REQUIREMENTS SPECIFICATION .. 7

5.0 DESIGN ... 8
5.1 ARCHITECTURAL DESIGN ... 8

5.1.1 Architectural Design Description 8
5. I. 1. I Environment Modeling 9

5.1.1.1.1 Terrain ... 9
5.1.1.1.2 Static Objects 9
5.1.1.1.3 Abstract Objects 9

5.1.1.1.3.1 Scenario 9
5.1.1.1.3.2 Crew-mission 10

5.1.1.2 Active Objects .. 11
5.1.1.2.1 Agents ... 11
5.1.1.2.2 Activities ... 13

5.1.1.2.2.1 Script-Based Agent Behavior 14
5.1.1.2.2.2 Goal-Directed Agent Behavior 14

5.2 DETAILED DESIGN .. 16

5.2.1 Detailed Design Approach And Tradeoffs 16
5.2.1.1 Activity Definition ... 16
5.2.1.2 Activity Templates ... 18
5.2.1.3 Activity Instances .. 19
5.2.1.4 Goal Definition ... 21
5.2.1.5 Goal Templates ... 23
5.2.1.6 Goal Instances .. 24
5.2.1.7 Goal/Activity Matching 25
5.2.1.8 Integrating Jack .. 26
5.2.1.9 Integrating the Task Loading Model 27
5.2.1.10 Integrating the Scheduler 27
5.2.1.I I Output Available for Analysis 28

5.2.2 Detailed Design Description .. 28
5.2.2.1 Scenarios .. 28
5.2.2.2 Crew-Missions ... 29
5.2.2.3 Agents ... 32
5.2.2.4 Goals .. 34
5.2.2.5 Activities .. 37

6.0 USER'S GUIDE .. 40

Table of Contents

6.1 INSTALLATION AND INITIALIZATION 40
6.2 STARTUP AND TERMINATION "" "'"•"..... 41

Table of Contents

Figure 1. Symbolic Modeling Development ... _8

Figure 2. Activity Data Structures .. 23
Figure 3. Goal Data Structures ..

iii

MAN-MACHINE INTEGRATION DESIGN & ANALYSIS SYSTEM
(MIDAS) SOFTWARE DETAILED DESIGN DOCUMENT

PHASE IV:

SYMBOLIC OPERATOR MODEL

1.0 INTRODUCTION

1.1 IDENTIFICATION OF DOCUMENT

This is the Software Product Specification for the Symbolic Operator Model module of the
Man-machine Integration Design and Analysis System (MIDAS).

1.2 SCOPE OF DOCUMENT

The material in this document is directed toward three categories of readers:

1) those who wish to learn what the MIDAS Symbolic Operator Model
module does,

2) those who wish to use the Symbolic Operator Model software to investigate the
interactions between an operator and a specific crew station design within the
context of a given mission,

3) those who might want to modify and update the Symbolic Operator Model
software.

1.3 PURPOSE AND OBJECTIVE OF DOCUMENT

This document attempts to describe the methodologies used to represent an object-oriented
simulation environment in which crew member activities are sensitive to crew station
design. The primary purpose of this document is to present the Phase IV methodology for
representing mission goals and crew member activities and their interactions with other
models during a simulation. This methodology provides a framework in which models of
human performance may be integrated for the purposes of evaluating alternative crew
station designs.

This document presents the results of work accomplished in Phase IV. It is important to
remember when using this document that the primary objective for symbolic modeling in
Phase IV was to demonstrate a general framework for representing mission requirements
and crew member activities and how these representations could interact with other models
to provide a driving function for a simulation and task history for later analysis. Many of
the functions and data structures used were selected on the basis of how they contributed to
achieving this objective. As is typical in any rapid prototyping environment, many of these
functions and structures will not be appropriate in future phases. However, attempts have
been made to present what is available in a manner which will support development in
future phases.

A majority of the code developed in Phases I, II and III was not required to meet the
current objectives and not incorporated into Phase IV. A significant portion of that code,
however, does address issues which remain major concerns of the MIDAS program and

Page A-1

maybeusefulin future phases. This document does not intend to supersede previous
documentation which address many issues not addressed in Phase IV, especially in the
areas of decision modeling. In many cases, techniques developed in previous phases may
be incorporated in future work with little or no modifications.

2.0 RELATED DOCUMENTS

2.1 APPLICABLE DOCUMENTS

James Allen, "Maintaining Knowledge about Temporal Intervals", Communications of the
ACM 26 (11), 832-843, 1983.

Army-NASA Aircrew/Aircraft Integration Program (A31) Software Detailed Design
Document: Phase 11I, Contractor Report 177557, NASA Ames Research Center, Moffett
Field, California 94035-1000, June 1990.

Symbolics Genera 7.2 Documentation, Symbolics Publication Number 999079,
Symbolics, Inc., Cambridge, Massachusetts, 1988.

Development of an Advanced Task Analysis Methodology and Demonstration for Army-
NASA Aircrew/Aircraft Integration, BBN Laboratories, NASA Contract No. NAS2-
12035.

Boff, Kenneth R. and Lincoln, Janet E., Engineering Data Compendium, Human
Perception and Performance, Harry G. Armstrong Aerospace Medical Research
Laboratory, Wright-Patterson Air Force Base, Ohio, 1988.

Operator's Manual for Army AH-64A Helicopter, TM 55-1520-238-10, Headquarters,
Department of the Army, 28 June 1984.

A Computer Analysis to Predict Crew Workload During LHX Scout-Attack Missions,
Anacapa Sciences, Inc. October 1984

2.2 INFORMATION DOCUMENTS

A Comprehensive Task Analysis of the AH-64 Mission with Crew Workload Estimates
and Preliminary Decision Rules for Developing an AH-64 Workload Prediction Model,
Anacapa Sciences, Inc., October 1986.

Sacerdoti, E.D., The Non-linear Nature of Plans, Advance Papers of IJCAI-1975,
Tbilisi, USSR.

Stefik, M.J., Planning with Constraints, Artificial Intelligence, 16, pp 111-140. 1981.

Sussman, G.J., A Computational Model of Skill Acquisition, Ph.D. Thesis,
Massachusetts Institute of Technology, Cambridge, MA., 1973.

3.0 CONCEPT

3.1 DEFINITION OF SOFTWARE

3.1.1 Purpose and Scope

Page A-2

Thedevelopmentofadynamicandinteractiveanalysismethodologyforinvestigating
environment, design, mission and crew interactions in the context of a mission simulation
requires that the designer or planner be provided the freedom to modify any of the
significant elements being analyzed at varied levels of detail. In response, the simulation
must provide for a reorganization and reordering of the tasks executed by the pilot, and a
recalculation of performance and workload metrics as a function of the designer-imposed
changes. Standard decomposition procedures tend to have a "Bottom-up" structure. The
Symbolic Operator Model takes a different approach. In order to capture the characteristics
that pilots bring to task performance, and to provide the flexibility described above, this
module employs two interacting perspectives to guide the mission decomposition.

• The first perspective views the mission from the aircrew's goal structure in mission
performance.

• The second perspective is that of the software implementation architecture providing an
object-oriented representation for the fundamental task units which are derived from the
system design style.

The Symbolic Operator Model combines a goal / activity oriented mission perspective and
an object-oriented software structure, with a detailed description of the tasks performed in
service of the mission's operational goals. This description includes characterization of
task performance time, performance load, models of pilot's decision and response
characteristics and mission specific doctrine pertaining to task performance. The module
provides for the integration of models of the environment, equipment design, mission and
crew as the forcing function for a mission simulation.

Although current features of the Symbolic Operator Model, and the A31 system in general,
have been accepted as useful for evaluating various design alternatives, the evolving design
has not been limited to purposes of evaluation but it is intended to remain open to
investigations of other applications of the system to the conceptual design process.

The code developed in Phase IV has probably not progressed far enough to attempt
applying it to an actual domain problem; however, the general framework for using goals
and templates is clearly presented. It was clear during the Phase IV demonstrations that
these techniques provide a significantly more powerful task decomposition methodology
than was employed in previous phases. However, this methodology is also significantly
more complex and labor intensive; it was not clear during the demos that the advantages the
approach provides were perceived to justify the additional effort. Since many functions,
methods and structure were at various stages of development at the end of Phase IV, it is
recommended that the basic approach be reviewed and the requirements for a general
framework be clearly stated before additional development or modification is attempted.

3.1.2 Goals and Objectives

Goals for the Symbolic Operator Model in Phase IV included development of:

• A domain independent representational framework to which domain-specific details
could be added without writing system level code.

• Operator activities using multiple levels of abstraction with the lowest level defined
in terms of primitive actions specified by equipment component functions.

• Explicit representations of mission specific, design-independent goals.

Page A-3

• Mechanisms for function allocation based on context.

• An integration framework for utinzinganthropometric, loading and scheduling
models.

Objectives for Phase IV included:

Demonstration of methods for representing key attributes of goals and activities as
instance variables instead of determining attributes by inheritance from flavor
components. This establishes an architecture which permits a wide range of user
interfaces and editing mechanisms.

Development of basic attributes for goal representation as opposed to development
of detailed data structures for future phases. Although the structures for goal
representation used in Phase IV will need to be modified or reimplemented, the
mechanisms developed provide a framework for specifying future goal
representation requirements.

Demonstration of context-dependent methods for agent allocation. This objective
focussed on the control of when the agent allocation functions would be evaluated:
in the definition, initialization, or simulation phases.

Demonstration of integrating Jack commands into the activities. Methods for the
automatic generation of Jack commands were demonstrated in Phase IV.

3.1.3 Description

The Symbolic Operator Model provides a model-based simulation mechanism for
representing an operator's interaction with complex crew station design in an attempt to
satisfy mission requirements. The mechanism provides a design independent
representation of mission requirements and generates a time-ordered set of operator
activities. The system is unique in its ability to represent environmental context sensitivity
in computing performance and load information.

3.2 USER DEFINITION

The user of the Symbolic Operator Model is considered to be a member of the design team
interested in using the Symbolic Operator Model to represent simulated operator activities
to evaluate the design of a crewstation.

3.3 CAPABILITIES AND CHARACTERISTICS

A requirement for the MIDAS simulation capability is that changes in mission requirements
or crew station design affect mission perfomaance and operator activity load. Mission
requirements are represented as goals and provide performance metrics suitable for
comparing alternative crew station designs. Operator activities control the interaction of
operator models with equipment system models and provide the Task Loading Model with
the data necessary for calculating the load values representing the "cost" associated with
performing a given set of activities. Operator activities also provide a means of integrating
other components, such as the anthropometric model, into the simulation as well as
generating data necessary for graphical simulation displays.

Page A-4

A majorarchitecturerevisioninPhaseIV was theexplicitrepresentationofgoalsas
scparatcdatastructures.Inpreviousphases,missionrequirementswereimplicitly
representedina taskactivities.Inpracticethismade itcxm_mcly difficulttocompare
missionsperformedwithalternativecrew stationdesignssinceitproveddifficultto
scparatedesign-independentmissionrequircmentsfromdesign-dependenttasksand
preconditions(cf..AH-64A vs.AH-64 Longbow vs.AH-I ruskanalyses).

Another problem associated with implicidy representing mission requirements in tasks
concerned the actual implementation used in previous phases. In these implementations,
failing to perform a task (duc to load constraints) resulted in less load with no loss of
performance since the requirement was expressed in a activity structure never activated and
only activated activities were stored for later analysis. By representing mission
requirements as separate data structures, all mission requirements are visible during post
simulation analysis.

In previous phases, the operator's activities were determined solely by a single hierarchical
task decomposition. An assumption stated with this design were the constraints on how
mission tasks could be decomposed. The mission (the top node of the hierarchy) was
decomposed into phases, phases were decomposed in segments, segments into functions,
functions into tasks, and tasks into subtasks (with continuing levels of subtasks into
subsubtasks). A constraint on the task decomposition representation was that an operator
would only be concerned with the functions and tasks of a single segment at one time.
This constraint assumes that the functional interaction of defined segments can be managed
in a sequential order. For example, all tasks associated with egress functions are
accomplished only in the egress segment after the ingress and mission segments have been
completed. However, it is extremely common to have functions clearly associated with one
segment to have subtasks more appropriately performed in earlier segments. For example,
entering a navigation egress waypoint during the ingress segment.

Another side effect of having a single hierarchical decomposition is that contingent
behaviors associated with responding to the environment (e.g., evade radar lock) which are
appropriate throughout the mission are required to be modeled as either separate segments
or with multiple representations in each segments with dramatic effect on the computational
tractability of the task network.

The structures developed and implemented in Phase IV address these problems while
allowing these constraints as heuristics when permitted by the specific details of the
selected domain application. The solution provided by the Phase IV design results from
allowing multiple hierarchical decompositions of functions in which hierarchies are allowed
to overlap during execution and provides structures for which a single hierarchy could be
created during post-simulation processing to aid analysis.

4.0 REQUIREMENTS

4.1 REQUIREMENTS APPROACH AND TRADEOFFS

The MIDAS system is intended to be a general tool for analysis of mission requirements and
cockpit design. In order to do this, it is necessary to account for the component processes of
the environment, aircraft systems, mission and crew and the relational complexity of these
processes. The requirements for the Symbolic Operator Model include:

• Environmental models including representation of terrain elevation, simple features
such as roads, and miscellaneous friendly and hostile vehicles and systems.

Page A-5

Aircraft systems models to represent the basic aircraft and component systems at
adjustable levels of detail.

A mission model which is the representation of actual mission requirements and
associated doctrine and procedures as normally presented in a operations briefing.
It is not a representation of the execution of a mission but rather a model which
helps drive a mission simulation and the standard by which the results of a
simulation are evaluated.

• Crew models to generate performance capabilities and task decomposition structures
that are sensitive to context and crew station design.

The Symbolic Operator Model is built upon the premise that the design of a crew station
must be evaluated within the contexts in which it will be operating. It is necessary for the
designer to be able to vary characteristics of the pilot, mission and environment in order to
provide the necessary contexts needed to evaluate design alternatives.

The MIDAS system contains a tick-based simulator which provides a discrete time model-
based simulation of the interactions of the operator (agent), equipment and environment.
The simulator has the form of a tree consisting of objects. Each object in it has a parent (or
is the top-level object) and each object has component objects. At each beat of a driver
clock, a tick message is sent to the top-level object (in this case, the MIDAS simulator). It
performs whatever procedures it has been programmed to carry out during a tick, then
passes the tick to each of its component objects, They carry out their tick procedures, then
pass the tick downward, and so on. This approach was taken to meet the design goal of
modularity. Anything that handles a tick message may be added to a list of component
objects. This architecture allows for great flexibility and modularity in building simulations.

4.2 EXTERNAL INTERFACE REQUIREMENTS

The Symbolics Operator Model is required to communicate with external models through
the Communications module, which is described in Annex J.

4.3 HARDWARE ENVIRONMENT

The Symbolic Operator Model software runs on the Symbolics 3600 series of workstations
with 22.5 MB of RAM and 338 and 550 MB hard drives and an Ethemet Controller and
Transceiver.

4.4 SOFTWARE ENVIRONMENT

The Symbolic Operator Model software is written under the Genera 7.2 operating system,
with extensive use of Flavors for object-oriented programming. TCP/IP software
communication software is required for integration with other modules of MIDAS.

A decision was made in the beginning of the phase to continue to use the Symbolics Flavor
System for object-oriented programming for Phase IV development. However, the
general acceptance of the Common Lisp Object System (CLOS) and the release.of
Symbolics Genera 8.0 with CLOS indicate that future development should probably be
developed within CLOS. It was apparent throughout Phase IV that the Flavor System was
probably not appropriate for long term development and that a transition to a more standard
Common Lisp and CLOS should be accomplished. It is clear, in retrospect, that the
decision to stay with the Flavor System for Phase IV was correct since time and resources
would not have permitted a major transition. Rather than produce production/deliverable

Page A-6

quality code, the emphasis in Phase IV was directed at exploring basic concepts including
the introduction of explicit goals, the use of templates for activities and goals, and the
integration of external components such as the anthropometric model. The real value of
code developed in Phase IV is not how a specific solution was implemented but rather the
identification of the problems. For example, a template mechanism developed in CLOS
will probably be significantly different than the approach use in Phase IV but it is clear that
careful attention will need to be made to how values are passed from templates to goals or
activities.

4.5 REQUIREMENTS SPECIFICATION

The requirements for the Symbolic Operator Model are:

* Symbolic representation of the environment, including terrain models and other
vehicles and operators to the extent that they affect the primary operator's activities.

. Integration with the representations of the operator's vehicle, crew station and
associated subsystems.

• Symbolic representation of a mission for a complex, rotary wing aircraft.

• Symbolic representation of an operator performing tasks in a complex crew station
in which the operator's activities are sensitive to the design of the crew station.

• Symbolic representation of concurrent activities within constraints of resources and
load factors.

• Activities generated by mission requirements sensitive to context and not limited to
planned sequence.

• Activity sequence, duration and load sensitive to human performance models and
equipment design.

• Integration of the symbolic operator model with anthropometric, loading and
scheduling models.

• Integration of symbolic models with graphical models existing on other hardware
by means of an independent communications program.

• Provide a task decomposition and a simulation driving function which are
dependent on the interactions of the mission, operator, vehicle and environmental
models

• Task allocation based on context.

• Mechanisms for adding domain specific functions and attributes without requiring
system level code development.

• Mechanisms for crew interaction.

Page A-7

5.0 DESIGN

5,1 ARCHITECTURAL DESIGN

5.1.1 Architectural Design Description

The symbolic modeling components of a MIDAS simulation are developed in three phases:
definition, initialization and simulation phases. These phases must be performed in
sequence. If a definition for a default value is changed, the initialization and simulation
phases should be redone. These three phases are illustrated in Figure 1.

Definition
Phase

InitializationS<
Phase

Crew Mission

' Event-Response
7i i Goals

* i Mission
i ! Goal

Subgoal A Subgoal

Simulation
Phase

Subgoal B1

................... ,_:..;i!_.......

i Activity B1 _.i

Subgoal B2

i ActivityB21

t! Equipment
i Models

Functions

..... DefaultActivity
Templates

..: Activity
(Subact)

SubactivityB2a SubactivityB2b

Figure 1. Symbolic Modeling Development

5.1.1.1 Environment Modeling

Page A-8

Although not a requirement, det-ming the environment model is typically the first step in
developing a MIDAS simulation. The environment is modeled using a digital elevation
terrain model (DEM) and a collection of static, abstract and active objects.

5.1.1.1.1 Terrain

The DEM model is defined as an object with an area specified in reference to the Universal
Transverse Mercator (UTM) coordinate system and provides elevation in feet above sea
level (MSL) for given x and y values. The DEM model also provides a transformation
between the UTM coordinates and an intemai coordinate system of x and y (in feet) used
for graphics and aerodynamic modelling. A method of the DEM object is a predicate
function which determines if line of sight is possible between two 3-D points and is used to
determine line of sight between environmental objects. The actual structure of the DEM
object may be varied as desired and terrain elevation values may be stored within the
structure itself or accessed with foreign function calls to terrain models provided by the
Silicon Graphics. Simulation objects should reference the terrain model by the same DEM
methods regardless of whether the elevation values are stored within the DEM object or
accessed by DEM methods from the Silicon Graphics machines

5.1.1.1.2 Static Objects

Static objects arc used to represent environmental features whose characteristics (i.e.
location, shape, etc) remain constant during a simulation. Roads and buildings are
examples of potential static objects for a MIDAS simulation. Static objects require
definition of their location in terms of x, y, and z values. Additional object features may be
added as required by the domain.

5.1.1.1.3 Abstract Objects

Abstract objects are features of the environment, such as phase lines and operations orders,
which do not necessarily physically exist and normally will not have a graphical
representation in the Views module. Abstract objects may be implemented as actual object
instances or implied by reference. When implied by reference, the object should be
accessible by a clearly defined method (e.g. the method "(phase-lines)" provided access to
the phase lines defined in Phase IV although they are actually implemented as values in a
list instead of as an object).

Two abstract objects used in a MIDAS simulation include the scenario and crew-mission
objects.

5.1.1.1.3.1 Scenario

The scenario object is a data structure used to store initialization values and logic for
controlling the simulation during execution. This abstract object specifies the initial
position of physical objects in the domain and provides a mechanism for controlling
external events during the simulation.

Scenario instances are created during the simulation initialization and a new instance is
created for each simulation run.

Page A-9

Parameters for scenario instances include the following (full structural details provided in
later sections):

sim-name
sim-id
envir-context

world-objects
e-transmissions

initial-time
cttrrent-time
current-tick
control-events
int--cued-events
int-active-events
int-terminated-events

=> a string representing the scenario name
=> an unique id for each instance
=> list of <environmental-parameter> <value> pairs

For example:
:envir-context

'(:phase-lines
;;; A phase line called RED from grid location
;;; 48008400 to 48007900 and controlled by
;;; D- 1/26CAV
((RED 48008400 48007900 D- 1/26CAV)
;; A phase line called BLUE from grid location
;;; 50008400 to 50007900 and controlled by
;;; B- 1/26CAV
(BLUE 50008400 50007900 B-1/26CAV))

:acps ;;; Air Control Points (AC,P)
;;; An air control point called ACP-DELTA
;;; located at grid 48208030 and controlled
;;; by the tactical operations center (TO(?)
((ACP-DELTA 48208030 TOC))

:farp 47008000 ;;; Forward Arm and Refuel Point
(FARP)

:flot ;;; Forward Line Own Troops (FLOT)
'(54008400 54007900))

=> used to designate active world objects
=> time-tagged electronic transmissions.

Transmitting a mission causes the message to
be posted here with frequency and time tags.

=> indicates what scenario time should be at tick 0.
=> provides central location for current time representation
=> provides central location for current tick representation
=> events used to control simulation flow
=> identifies when events should happen during the simulation
=> scenario controlled events in progress
=> history of terminated scenario events

5.1.1.1.3.2 Crew-mission

The crew-mission object is a data structure used to provide information normally provided
by operations orders, standard operating procedures (SOPs), and doctrine. Callsigns and
assigned frequencies, required reports, and planned route waypoints are among the
information provided by the crew-mission. The actual representation of the planned means
of executing the mission is the result of integrating the crew-mission information with the
procedures of the mission goal hierarchy into a task hierarchy. This task hierarchy is
created by instantiating subgoal templates with arguments supplied by the associated default
goal templates and crew-mission details. These subgoal templates are used during the
simulation to create the actual instances of goals. It should be noted that one subgoal
template may create many different instances of a goal since values for the goal's instance
variables may be determined at run-time according to context. For example, a goal for
"turn-to-assigned-heading" will have different values for the heading to achieve. In fact,
even the agent allocated the goal may vary during since the subgoal template may specify
that the goal should be allocated to the crew member currently flying. At the time the goal

Page A-10

is instantiatedduringthesimulation(i.e.as result of an radio call assigning a new heading)
the value for the agent-allocation parameter is determined simply by which agent is
currently flying.

Crew-mission instances are created during the simulation initialization and a new instance is
created for each simulation run. Parameters for crew-mission instances include the
following (full structural details provided in later sections):

mission-name

assigned-crew
mission-role
callsign
goal-net
point-of-departure

waypoints
routes

planned-route
default-comm-assign
ceoi

comm-req

=> string representing mission name
=> instances of agents
=> role symbol (e.g. 'TMI-AC1 ---Aircraft 1 of Team 1)
=> assigned communication callsign (e.g. 'YST46)
=> specifies top-level goal node for planned mission goals
=> grid location of mission's point of departure.

Note: since the simulation may represent only a segment
of a mission, the aircraft may never actually be at the
point of departure during the simulation.

=> preplanned navigation waypoints
=> preplanned routes
=> preplanned route with altitude information
=> planned communication task assignments
=> Communications Electronic Operating Instructions (CEOI)

Callsigns, frequencies and communications nets.
=> required communication tasks (e.g. report-crossing-phase-lines)

Information that is typically available to a crew member performing a mission in the real
world is normally provided to the agent model representing that crew member by the crew-
mission object. Information that is necessary for a simulation and does not correspond to
real life missions is normally provided by the scenario object.

5.1.1.2 Active Objects

Active objects represent items which can respond to changes in the environment or have
internally defined behavior resulting in state changes during the simulation. Active objects
may represent functional systems, agents, or complex man-machine systems.

Functionally active objects, such as electro-mechanical systems, may be represented by
defining a "tick" function to determine changes in the object's state for each increment of
time during the simulation. This function is associated directly with the object and is
evaluated once each time the object is sent a "tick" message. Inputs to this function may be
state parameters of other objects or parameters changed by agents by means of activities.

5.1.1.2.1 Agents

Human operators are represented as agents whose behaviors are defined in terms of
activities. Activities are implemented as instances of action using an object-oriented data
structure and may be predefined as a set of actions in a partially ordered sequence
(equivalent to a pre-defined script) or driven by goal directed behavior. Activities provide a
mechanism for an agent to interact with equipment and the environment and will be
discussed in detail in later sections.

Complex man-machine systems, such as other vehicles and radar sites, may be represented
with explicit agent models linked to functional equipment models or abstracted to functional
objects in which the crew member's control of the system is implicit in the "tick" function

Page A- 11

or by adding activities to a functional objecL It is important that a MIDAS user is not
constrained to one representational method and the decision of which technique is used
should be determined by the domain requirements. In previous phases, convoy vehicles
and other aircraft were adequately modeleA with one object structure (as opposed to a
"truck driver" object interacting with a "truck" object) by adding activities to the vehicle
object.

Agents interact with their environment (and other agents) by means of activities. Each
agent is permitted to perform concurrent and overlapping activities when resources and
loading limitations permit. Agent resources in Phase IV consisted of the left and fight
hands and visual reference as defined by a 3D point in space. These resources were
defined to be compatible with Jack, the anthropometrie model provided by the Univea'sity
of Pennsylvania. Load limitations were based on a system which describes load in terms
of visual, auditory, cognitive and motor (VACM) components. Each action has associated
VACM components and an agent's VACM load components are computed by the Task
Loading Model based on the agent's activities. The Task Loading Model is presented in
detail in Annex C. An agent is allowed to perform concurrent activities if resource and load
limitations are not exceeded and within the physical limitations of the crew station design.
Extensive mechanisms have been implemented and demonstrated in Phase IV to provide a
framework which insures agent activities are consistent with crew station design. This is
accomplished by defining equipment specific activities with component functions defined
by the Symbolic Equipment Model.

Two mechanisms were developed in Phase IV to control the selection and sequencing of an
agent's activities. The first involved a generalization of mechanisms developed in previous
phases for controlling activities from within other activity structures and is a logical
progression of work done in those phases. The second mechanism involved controlling
activities by explicitly representing goals. Goals were introduced for multiple purposes.
First, to provide a means of more clearly comparing separate designs since activities of one
design often do not easily map into the alternative design. Second, goals provide a means
of delaying until run-time the construction of a task hierarchically (or multiple hierarchies).
This allows the use of context to reduce search space. This appears especially necessary in
domains where extensive contingency behavior is required. In domains where the
sequencing of an operator's actions is generally predictable, the use of goals may not
provide a computational advantage. The use of goals to control activities is presented in
detail in a later section.

An AGENTs instance variables include the following:
(see later sections for full structure details)

ID:

ROLE:

E-R-GOALS:
GOALS:
TERMINAL-GOALS:
GOAL-FILE:

ACTIVITIES:
CUED-ACTIVITIES:
TERMINAL-ACTS:
ACT-FILE:
INT-TEMP-VACP:

=> unique id made by "AGENT"+ gensymed number
(e.g. AGENT-323)

--> function role (e.g. PILOT or CPG)

=> list of instances of event-response goals
=> list of instances of decomposable goals
=> list of instances of terminal goals
=> history of goals from the above lists which have terminated

=> list of instances of current decomposable activities
=> list of activity instances waiting to start - (activity wait list)
=> list of instances of terminal activities.
=> list of terminated activity instances
=> used internally to allocate resources

Page A-12

RESOURCE-COMMIT:
VACP-HISTORY:

=> record of resource allocations
=> time-tagged history list

-_ The remaining variables concern ant_opomewic modeling =-_ -
(see Annex G for details)

Separate instance variables for both right and left hand for:
<RH or LH>-REACH-ID: => reach type
<RH or LH>-REACH-SITE:
<RH or LH>-X:
<RH or LH>-Y:
<RH or LH>-Z:
<RH or LH>-STATUS:
<RH or LH>-LAST-SITE:

=> predefined site
=> x location of hand
=> y location of hand
=> z location of hand

=> estimated reach time remaining - 0 = hand at site
=> site reach initiated from

HEAD-TURN-ID:
SITE-TO-LOOK-AT:
HEAD-YAW:
HEAD-PITCH:
LAST-SITE-LOOKED-AT:

5.1.1.2.2 Activities

=> specialization ofreach-id
=> predefined site
=> direction head is turned
=> angle head is tilted up or down
=> last preadefmed site to which the head was fLxed

Activity structures are used to describe agent behavior. An activity is an object-oriented
data structure which represents a specific instance of an agent's action. Agent behavior
may be represented with many levels of abstractions since each activity may be
decomposed into a hierarchical network of subactivities. Activity smactures are either
decomposable or terminal. Decomposable activities have subactivities which in turn may
be decomposable or terminal. Terminal activity structure.s, the lowest level of activity
decomposition, provide mechanisms for integrating an agent's action with other objects.
The mechanisms enable a terminal activity to change either the agent's or other object's
state by executing the component functions describe in the activity's structure. These
component functions are defined based on equipment system design and provide the means
of making an agent's behavior sensitive to design. Component functions are described in
Annex D.

Each activity has a discrete temporal extent with associated times for initiation, start, and
termination. Activity initiation time represents the earliest time an activity could have
started. Initiation time may vary from staat time due to delay in starting an activity because
of resource constraints. Activities which have been initiated but not yet started are
classified as cued-activities. Activities which have started are classified as active activities.
Termination time represents when an activity finished which could result from completion
or interruption. Since activities have discrete temporal extent, an action which is
interrupted and resumed is represented with two activity object instances with the
relationship between the two expressed explicidy in the activity at the next higher level of
abstraction.

Control of activity initiation, starting and termination is accomplished with initiation, start
and termination conditions defined in the activity structure. A number of mechanisms have
been provided which reduce the effort necessary to define activities by allowing initiation,
starting and termination conditions to be defined once for a set of activities in the structure
of the activity at the next higher level ("parent activity") of abstraction. These mechanisms,
which include definitions of sequential, parallel and rotational activities, are described in
detail in later sections.

Page A-13

5.1.1.2.2.1 Script-Based Agent Behavior

As in previous phases, control of an agent may be accomplished by providing the desired
control logic within the structures of activities. This is accomplished by specifying an
activity as the top node in a hierarchy. This activity specifies subactivities and the temporal
relations between each of the subactivities. The temporal relations may be expressed as a
general relation which applies to the subactivities in the order that they are specified. For
example, top-level activity X is specified as a sequential activity and specifies subactivities
A, B, and C. In this example, subactivity A will start when the activity X starts.
Subactivity B will start after subactivity A has been completed and C will follow B
likewise. Rotation activities would work in a similar manner. Parallel activities actually are
implemented in a different manner than in previous phases. In this phase, a default logic
was implemented in which all subactivities will be started unless otherwise constrained (i.e.
by a sequential relation specification, resource constraints, etc). As a result, an activity
specified as a parallel activity simply allows each subactivity to start. The main difference
between this approach and that taken in previous phases concerns the specification of what
had been called parallel-stop activities. In previous phases, a parallel activity would
continue to be active until all subactivifies were completed. Parallel-stop activities,
however, stop as soon as any subactivity completed. This mechanism was provided by
specifying parallel-stop as a flavor component of the activity. In this phase, however,
parallel-stop activities are specified by including in the termination conditions a test which
returns "true" ff any subacfivity is completed. The differences between parallel and
parallel-stop activities in this phase from those in other phases are related to implementation
and conceptually remain the same.

This new default logic, however, provides a more complex and flexible mechanism for
controlling subactivities than those provided previously. In previous phases, temporal
relationships between the subactivities were limited to a single term which was applied to
all subactivities. Using the new default logic, it is now possible to express temporal
relations (actually any type of constraint) which can be applied to a subset of the
subactivities (i.e. C follows A independent of the status of B). These temporal relations
can be point-based or interval-based (using James Allen's temporal intervals). Also, non-
temporal constraints, such as resource constraints, can be used to control the sequencing of
activities. This basic mechanism provides a means of implementing any type of script-
based scenario.

5.1.1.2.2.2 Goal-Directed Agent Behavior

A major development in Phase IV was the introduction of explicit goals. Goals were
introduced as a means of controlling the generation of top-level activities enabling an agent
to have multiple activity hierarchies. There were many factors that influenced this decision.
First, activities are intended to represent actions that the agent performs and a separate
structure was desired to represent states that should be achieved during a mission. An
ahernative approach would be to use the same activity structures. This raises problems,
however, when tasks are shed or neglected. Additional problems arise during multi-agent
interaction when a side effect of one agent's action achieves the states that another agent is
try!nl_ to achieve. In this case, the "goal" has been achieved but it is unclear which agent's
acuvaty structure should represent this. By explicitly representing goals as separate
structures, it is easy to represent shed/neglected tasks and, in the multi-agent example,
represent one agent's activity achieving another agent's goal. Second, it seem
advantageous to have an representation that explicitly represented the standards since
alternative crew station designs may have different activities for the same mission. Hence,

Page A-14

thegoalsareintendedtorepresentdesignindependentstandards by which competing
designs could be compared.

Goals in Phase IV were represented in a manner similar to activities. A goal may have
subgoals and similar expression of temporal relations was provided. A goal which has
subgoals specified is referred to as a decomposable goal. At the lowest level in a given
goal hierarchy are terminal goals which have no subgoals but specify states that need to be
achieved or maintained. These states are expressed in terms which are mappable to states
achieved by an agent's activities or equipment systems.

Goals are characterized from a number of perspectives. First, as explained above, goals
are either decomposable or terminal. Second, goals are either achievement or maintenance
goals. Third, goals are classified as to whether they are satisfied. Fourth, goals may be
either current, active or inactive. Fifth, goals may have either abstract or explicit function
allocation.

Achievement goals specified a state (e.g. "target detected") and the goal is considered
satisfied as soon as this state is achieved. Achievement goals are classified as either
satisfied or not-satisfied.

Maintenance goals specify states (e.g. "maintain heading 135") which must be maintained
for a specified duration. Maintenance goals are classified as:

currently-satisfied = state maintained but duration of goal has not yet
been completed

not-currently-satisified = state not maintained but duration of goal has not
yet been completed

satisfied = state maintained and duration completed
not-satisfied = state not maintained and duration completed.

Goals are considered cu_ent when it is possible to test if the desired state has been
achieved. A goal to "pass over point A at 5000 feet" can only be tested at the time the
aircraft passes over point A.

Goals are considered active when the desired states of the goal influence actions currently
being taken. In order to achieve "pass over point A at 5000 feet", some actions (i.e.
establish descent) may need to be achieve prior to the time of passing A. The requirements
for satisfying the preconditions of a goal are identified when a goal becomes active.
Inactive goals are merely goals which do not influence current behavior.

Goals have explicit function allocation when the goal identifies a unique agent (e.g. "the
pilot"). A new feature was introduced in Phase IV which enables goals to be dynamically
allocated based on context by specifying an abstract function allocation. An abstract
function allocation is accomplished by specifying a set of agents and a Lisp form to be
evaluated at run time which will select one of these agents based on context. For example,
a goal could be assigned to the crew (i.e. the set of pilot and cpg) and provide a form which
selects the crew member with the lowest task requirements.

During a simulation, each agent responds to a tick message in the following
manner:.

1. Update Current-Time.
2. Delete any goals no longer justified or completed from active and matched goal

lists.
3. Identify new event-response goals.
4. Add newly activated goals from the mission hierarchy.

Page A-15

7. Identifymatched-goalswithterminatedorcompletedactivities.Move goalfrom
matchedgoallisttoactivegoallist.

7. Map activitiestogoalsinactivegoallist.Add actiontoactivitywaitlist.
8. Sortactivitywaitlistbasedon goalpriorities.
9. Foreachactivityinwaltlist,startactivitywhen resource,load,and temporal

constraintsperm/t.
10.Testterminationconditionstoeachcurrentactivity-deleteactivitywhen conditions

indicate.

11. Execute tick procedure for each active activity.
12. Signal simulation executive cycle completed.

In previous phases, relationships between activities were determined by the details of a
single hierarchy and contingency behavior was represented as branches of the hierarchy. If
an event that indicated some activities should be performed had the potential of occurring at
different segments of the mission, the activity for responding to this event had to either be
modeled as a separate preemptive segment or modeled repetitively in each segment that the
event potentially could occur. As a result, adding contingency behavior to respond to
multiple events possibly occurring throughout the mission would produce an activity
hierarchy that would be hard to manage if not intractable.

The approach used in Phase IV addresses this problem by allowing multiple activity
hierarchies.From a planningperspective,themechanismsprovidemeans ofresolving
conflictsarisingfromresourcecompetition.The approachdoesnotresolveconflicts
arisingfromconflictingstatesequencessuchastheSussrnanAnomaly (Sussman,1973),
however,inmany situationsthisdoesnotpresentaproblemsincemany concurrent
activitiesdo notinvolvestatesthatintersect.For example,theinteractionsbetween
concurrentactivitiesoftransmittingaradiomessageandupdatinganavigationsystem
involvesresourcesmore thanequipmentstatedependencies.Sinceresourcecommitments
aremade atthetimcan activityisactivated,thcapproachisinsome ways similarto
plannersallowingpartialordering(Saccrdoti,1975)and constraintposting(Stefik,1981).
The objectiveinPhaseIV was nottodeveloporimplementanactualplannerbutto
demonstratehow suchsystcmscouldbeintegratedintothesimulation.The state
dependenciesofdiffcrcntfunctionson aMulti-FunctionDisplayclearlyindicatea
requirementforapproachesthataddresstheissuesofconflictsbetweensubgoalstate
sequences.Itisbelievedthatsuchapproachescouldbeintegratedintothefrarncworkof
theagent'stickmethodpresentedabove.

5.2 DETAILED DESIGN

5.2.1 Detailed Design Approach And Tradeoffs

5.2.1.1 Activity Definition

A key objective of the Symbolic Operator Model is the development of an agent model
whose behavior is sensitive to changes in crew station design. In order to achieve this,
terminal activities are defined using equipment component functions as the mechanisms for
the agent to interact with equipment models. Equipment component functions arc defined
during the process of developing an equipment model (see Annex D). These component
functions specify state changes which should occur as result of a specified action. By
defining terminal activities using these component functions, any change in the crew station
equipment models will have a direct effect on the agent's behavior. The state changes
resulting from executing an equipment component function are specified in a manner that
clearly represents the duration of the action and how state is changed during each "tick" of

Page A-16

timeduringtheaction. Within an terminal activity, equipment component functions are
executed in sequential order.

In order to provide an activity modeling environment in which activity definitions can be
described and changed without encountering the problems associated with changing
mentioned previously concerning flavor definitions, a mechanism was developed in Phase
IV to aid the process of activity definition. The key feature is the use of template data
structures instead of flavor definitions. Templates are used to define default activity
parameters and specify global changes to an activity class definition, for specialization of
both class and instances to provide exceptions to activity class default values, and to make
activity instances context sensitive.

Templates are provided at two levels:

• First, default templates which provide a definition of a general activity class.

• Second, subact templates which provide specialization of default activity templates
based on the context of the mission and the environment.

Default activity templates are defined by the users during a pre-simulation activity definition
phase which must be accomplished after the equipment models have been defined. Subact
templates are later automatically generated during a pre-simulation activity initialization
which must be performed after activity definition and mission definition phases have been
completed.

If a user wants to change a parameter value associated with all instances of a specific
activity class, the specifications in the default activity template should be changed. The
default activity templates for decomposable activities indicate how sub-act templates should
be created for its subactivities. If the subactivities are to be created with the values

specified by a default activity template, the user need only specify the name of the activity
and a sub-act template will be created using the default values. If the user, however, wants
to make changes to the default values when certain conditions apply or for a subset of an
activity class, the user can specify conditions in the parent default activity template that one
its subactivities should be created from a template with values other than the defaults (see
later sections for details). These mechanisms provide logic for controlling inheritance both
globally and locally. The alternative approach of defining separate activity templates for
both global and local definitions would require producing a significant larger number of
user defined templates and possibly obscure whether the intention was to redefine the class
or just define a subset with minor variations.

Default activity parameters are defined using DEFAULT-ACTIVITY-TEMPLATES.
These templates are instances of the flavor DEFAULT-ACTIVITY-TEMPLATE and the
desired activity parameters are specified as values of instance variables. These activity
template instances define a class definition for typical activities. Unlike previous phases in
which changes in the definition of a class of activities required recompiling flavor
definitions, class definitions can be modes. Class definitions can be modified simply by
changing an instance variable.

It should be noted that the approach using flavor definitions provides a
means of changing previously defined instances when a class definition is
changed. This, however, does not seem to offer any significant advantage
since reinitializing activity instances after changing class definition appears
to be computationally tractable and logically in sequence.

Page A-17

Afterdefault activity templates and the mission have been defined, sub-act templates are
generated during an initialization process. These templates are used to ere.ate the instances
of activities which are instantiated throughout a simulation. Since them templates may
provide functions to be evaluated at run-time for determining the value of an activity
parameter, this approach provides a flexible mechanisms for context dependent activities.

Structurally, any default activity template can be used to represent the top-level node in an
activity hierarchy. Normally one default activity template is defined to represent a
procedure associated with a specific domain function (e.g. "enter NAV waypoint"). This
aedvity template will specify the next lower level activities in the activity hierarchy with
lower level activities defined in the default activity templates for the indicated subaetivities.
As described in previous sections, terminal activities represent the bottom nodes of an
activity hierarchy which is the level at which an agent's actions interact with equipment.
This process is recursive until the indicated subacdvities are terminal activities. The
resultant activity hierarchy represents the desired procedure.

.._..._'J[_..T__E.M_P__T...E__._.!n_s.tar_.esJ
[DEFAULT-ACTIVITY-TEMPLATE_- {..!_;_:i:_II_I__I_;II_I_---::------:::_---::::---:_

:...,....j7
i ACTIVITY-TEMPLATE [- /!nitialization Values
...................._FJ_y_O_.r_..........._ ... ! PassbyFunction
.................... -_ SUBACT-TEMPLATE _l

_, Flavor _'_, SUBACT-TEMPLATE|

Passby Function

__...._._._.___....__._.____

Figure 2. Activity Data Structures

5.2.1.2 Activity Templates

BothDEFAULT-ACTIVITY-TEMPLATES and SUB-ACT-TEMPLATES aredefined with
ACTIVITY-TEMPLATES as a component flavor, as illustrated in Figure 2. ACTIVITY-
TEMPLATES include the following parameters (full, detailed structure is describe in later
sections):

act-name
act-short-name
agent-allocation
equip-context
act-keys

act-goal-keys

=> a string representing the activity name
=> a string abbreviating activity name - for graphing
=> which agent should perform
=> specifies required crew station design
=> provides a generalized parameter - value list structure:

<parameter- 1> <value>...<parameter-n> <value>
This enables new parameters to be defined without recompiling.

=> used to pass parameters to activity instances.

Page A-18

act-type

required-resources

functions

pliority
initialization-procedures
preconditions
com-fcn-procs

explicit-local-constraints

estimated-duration
start-procedures
tick-procedure
termination-conditions

termination-procedures
vacp-data
matching-pattern
sub-act-list

=> indicates general temporal relationships of subactivities
"sequential" specifies subactivities should be processed in sequence.
"parallel" specifies all subactivities should start when activity

starts assuming constraints allow. Indicates subacdvities are
anticipated to be all started at once.

"rotation" specifies sequential order which is to be repeated until
termination conditions cause activity to stop.

"complex" specifies all subactivities should try to start. Indicates
constraints are anticipated to delay the start of some activities.

=> specifies required-resources, activities may be constrained from
starting when a required resource is not available. These
resources include:

visual
auditory
cognitive
motor
left / right hand
point-of-fixation (look-at site)

=> high level text description of activity for display purposes.
=> currently user defined priority.
=> procedures to be run when activity is initialized.
=> state-activity pairs for indicating possible preconditions/actions.
-> defined only for terminal activities. Specifies a list of equipment

component functions which to be executed in sequential order.
=> will be tested when activity tries to start. Indicates

subactivities are anticipated to be delayed from starting.
=> expressed in ticks - 100 ms.
=> procedures to be run when activity is started.
=> specifies forms to be evaluated each tick.
=> specifies forms to evaluated each tick. When one of the

forms returns "TRUE", the activity will be will be terminated.
=> specifies forms to be evaluated when the activity terminates.
=> context-free estimate of VACP values for this activity.
=> used to match activities to goals.
=> used only for decomposable activities.

5.2.1.3 Activity Instances

Activity instances are created during the simulation and represem a unique instance of an
agent performing action. Parameters for activity instances include the following (full
structural details provided in later sections):

act-name
act-id

agent-allocation
act-keys

act-goal-keys
act-type

=> a string representing the activity name.
=> string produced by ACT<gensym-number> (e.g. ACT425).
=> which agent should perform.
=> provides a generalized parameter - value list structure:

<parameter- 1> <value> ...<parameter-n> <value>
This enables new parameters to be def'med without recompiling
the template definition.

=> used to pass parameters to activity instances.
=> indicates general temporal relationships of subactivities

"sequential" specifies subactivities should be processed in sequence.
"parallel" specifies all subactivities should start when activity

Page A-19

required-resources

priority
initialization-procedures
preconditions
com-fcn-procs

estimated-duration
start-procedures
tick-procedure
termination-conditions

termination-procedures
vacp-data
mapped-goal
tick-started
tick-ended
sub-activities
activity-history

starts assuming constraints allow. Indicates subactivities are
anticipated to be all started at once.

"rotation" specifies sequential order which is to be repeated until
termination conditions cause activity to stop.

"complex" specifies all subactivities should try to start. Indicates
constraints are anticipated to delay the start of some activities.

=> specifies required-resources, activities may be constrained from
starting when a required resource is not available. These
resources include:

visual
auditory
cognitive
motor
left-hand

right-hand
point-of-fixation (look-at site)

=> currently user defined priority.
=> procedures to be run when activity is initialized.
=> state-activity pairs for indicating possible preconditions/actions.
=> defined only for temainal activities. Specifies a list of equipment

component functions which to be executed in sequential order.
--> expressed in ticks - 100 ms.
=> procedures to be run when activity is started.
=> specifies forms to be evaluated each tick.
=> specifies forms to evaluated each tick. When one of the

forms returns "TRUE", the activity will be will be terminated.
=> specifies forms to be evaluated when the activity terminates.
=> context-free estimate of VACP values for this activity.
=> used only for top level activities - an instance.
=> time (in ticks) activity was started.
=> time (in ticks) activity ended.
=> used only for decomposable activities - active instances.
=> used to store terminated subactivities.

Mechanisms have been developed which provide for automatic generation of
anthropometric model commands. When a terminal sub-act template is instantiated, the
"make-instance after" methods tests each procedure in the list of equipment component
function procedures and appropriate anthropometric commands are inserted.

EXAMPLE:

Assume an activity is defined with the following component function
procedures:

comp-fcn-procs => (cfp-1 cfp-2 cfp-3 cfp-4)

cft-1 representing a component function of switch "X"
cfp-2 representing a component function of display "Y"
cfp-3 representing a component function of switch "Z"
cfp-4 representing another component function of switch "Z"

Testing the first procedure, "cfp-1 ", the equipment model for switch "X" is
queried for a predefined site location and a command is generated for the
appropriate "reach-for" action. Testing "cfp-2" would generate a "look-at"

Page A-2{}

command. It should be noted that both "cfp-Y' and cfp-4" will generate the
same reach command, resulting in the following list (code simplified):

comp-fcn-procs => ((reach-for "X")
cfp-I
(look-at "Y")
cfp-2
(reach-for "Z")
cfp-3
(reach-for "Z")
cfp-4)

It should be noted that unless some other activity is overlapping, the last reach command
will be asking for a hand to move to its current position. As detailed in the Jack
documentation, Annex G, a request for a movement that is currently achieved will be
signaled by a completed message during that tick. This results in the mechanism being
context sensitive in that only movements that have to be made will have a duration beyond
one tick. The one tick duration of the null movements has not seemed significant and this
mechanism appears sufficient for modeling movement which is conditional upon the initial
state of the required resources.

It should also be noted that at the end of the activity, one hand would remain on switch
"Z". If it is desired for the hand to return to a neutral position, it can be handled in two
ways. First, the user defining the activity can specifically include the movement during the
initial specification as follows:

comp-fcn-procs => (cfp-1 cfp-2 cfp-3 cfp-4 (reach-for <site-n>))

Second, the user can define an event-response goal indicating that the hand should return to
a predefined neutral position after a specified period of inactivity.

5.2.1.4 Goal Definition

In order to provide goals which definitions can be described and changed without
encountering the problems associated with flavor definitions, a mechanism was developed
in Phase IV to aid the process of goal definition that is closely related to the process used
for activity definition. As with activity definition, the key feature is the use of template data
structures instead of flavor definitions. Templates are used to define default goal
parameters and specify global changes to a goal class definition, for specialization of both
class and instances to provide exceptions to goal class default values, and to provide
context sensitive activity instances.

Templates are provided at two level:

• First, default templates which provide a definition of a general goal class.

• Second, subgoal templates which provide specialization of default goal templates
based on the context of the mission and the environment.

Default goal templates are defined by the users during a pre-simulation goal definition
phase. Subgoal templates are later automatically generated during a pre-simulation
initialization which must be perfomled after the mission definition phase has been
completed.

Page A-21

Ifauserwantsto changeaparametervalueassociatedwithallinstancesofaspecificgoal
class,thespecificationsinthedefaultgoaltemplateshouldbechanged.The defaultgoal
templatesfordecomposablegoalsindicatehow sub-goaltemplatesshouldbecreatedforits
subgoals.Ifthesubgoalsarctobecreatedwiththevaluesspecifiedby adefaulttemplate,
theuserneedonlyspecifythename ofthegoaland asub-goaltemplatewillbe created
usingthedefaultvalues.Iftheuser,however,wantstomake changestothedefaultvalues
when certainconditionsapplyorforasubsetofagoalclass,theusercan specify
conditionsintheparentdefaultgoaltemplatethatone itssubgoalsshouldbecreatedfroma
templatewithvaluesotherthanthedefaults(seelatersectionsfordetails).Thisprovides
logicforcontrollinginheritancebothgloballyand locally.

Default goal parameters are defined using DEFAULT-GOAL-TEMPLATES. These
templates arc instances of the flavor DEFAULT-GOAL-TEMPLATE and the desired goal
parameters are specified as values of instance variables. These template instances define a
class definition for typical goals. After default goal templates and the mission have been
defined, sub-goal templates are generated during an initialization process. These templates
arc used to create the instances of goals which are instantiated throughout a simulation.
Since these templates may provide functions to be evaluated at run-time for determining the
value of a goal parameter, they provides mechanisms for context dependent goals.

In a manner similar to activities, structurally, any default goal template can be used to
represent the top-level node in a goal hierarchy. Normally one default goal template is
defined to represent the planned mission. This goal template will specify the next lower
level goals in the goal hierarchy by specifying the desired subgoals in a list structure. This
list structure is compose of symbols and/or sublists. The symbols in the list refer to names
of default goal templates which in turn can specify a lower level of subgoals. The sublists
provided a default goal template name as the f'trst element and the remaining elements arc
used as arguments to override default values provided by the default template. This process
is re,cursive until the indicated subgoals are terminal goals. The resultant goal hierarchy
represents the planned mission.

Although some contingencies can be incorporated into the planned goals, another
mechanism was developed in Phase IV using event-response goals. Event-response goals
arc similar to other goals with the exception that a state is specified that determines when
the goal becomes active for an agent. When activated, an event-response goal creates an
additional goal hierarchy (although possibly only one level deep) for an agent. The number
of event-response goals which may be assigned an agent is unlimited and the agent's ability
to handle multiple goal hierarchies is constrained primarily by the agent's resources. The
current system requires the user to define resolution methods for conflicting goal state
requirements.

Page A-22

GOAL-ACT,V,TY- I

...i FI_ -:------:_

1 GOAL-TEMP_TEt_'_"_.......... _'_ /,nir.izationVa,ues
Flavor PassedbyFunctiof_'._ " _ ..i SUBGOAL-TEMPLATE/ PassedW Fun_

i Flavor _'_"_'_"--"t su_OAL-TEMPLATE

¢,,,.,,,:::..
Passedby Function

I GOAL Flavor L __i

Figure 3. Goal Data Structures

5.2.1.5 Goal Templates

GOAL-TEMPLATE is a flavor that is used as a flavor component of the flavor def'mitions
for both DEFAULT-GOAL-TEMPLATE and SUB-GOAL-TEMPLATE definitions, as
illustrated in Figure 3. The following instance variables are common to both:

goal-name
context-name
goal-id
goal-ref-id
goal-level
goal-priority
terminal-p
goal-keys
matching-pattern
matched-act-template
event-response
goal-test
agent-allocation
agent
functions
activation-tests
currency-tests
initialization-procedures
preconditions
contin-conditions
sub-goal-list
tick-procedures
termination-conditions

=> a symbol representing a goal name.
=> name with context added

--> creates unique id
=> a unique id set by the default goal templates
=> highest goal is level 1
=> larger values have priority
=> achieve or maintain if terminal

=> misc keys
=> pattern to match goal to design activities
=> template indicated by pattern above
=> what happens to template after event is true
=> function indicating achievement status
=> who is responsible for this goal
=> instance of agent
=> intended state changes achieved by activity
=> event tests for event-response goal
--> when is this goal actually a requirement
=> to be completed when goal is instantiated
=> list of state/goal-templates pairs necessary
=> list of state/goal-templates pairs necessary
=> list of goal names and keywords
=> what to do each tick
=> when to end

Page A-23

termination-procedures
temporal-relations

=> what to do when I end
=> describes temporal relations of goals

DEFAULT-GOAL-TEMPLATEs include the above instance variables and the following
two variables:

source-file
subgoals-func

=> file defining this goal
=> functions for determining mission subgoals

SUB-GOAL-TEMPLATEs include the instance variable defined by GOAL-TEMPLATE
and the following two instance variables:

parent-template
sub-goals

=> goal templates creating this subgoal
=> subgoals

5.2.1.6 Goal Instances

Goal instances are created during the simulation and represent a unique instance of a task
requirement. Parameter values are inherited from the related goal template or derived by an
function provided by the template. Parameters for goal instances include the following (full
structural details provided in later sections):

goal-name
context-name
goal-id
parent-goal
mission
goal-level
goal-priority
terminal-p
goal-keys
act-goal-keys
matching-pattern
matched-activity
event-response
status
achievement-status

template
agent
sub-goal-templates
sub-goals
activation-tests

currency-tests
current-p
tick-created
tick-activated
tick-terminated
precondit
contin-condit
goal-test
achieved-p
tick-procedures

=> goal name.
--> name with context

=> creates unique id
=> higher-level goal
=> instance of crew mission
=> highest goal is level 1
=> larger values have priority
=> nil when decomposable, t if terminal
=> misc keys
=> used to pass arguments to methods creating activities
=> pattern to match goal to design activities
=> instance of activity result of pattern above
=> t if this goal is an event response goal
=> describes activity response to goal
=> specifies if goal is satisfied
=> goal template specifying default values
=> who is responsible for this goal
=> templates used to create sub-goals
=> instances of goals
=> event tests for event-response goal
=> when is this goal actually a requirement
=> tick when this goal became current
=> tick goal created and initialized
=> when goal became an active goal
=> when goal became inactive
=> list of state/go'd-templates pairs necessary
=> list of state/goal-templates pairs necessary
=> function indicating achievement status
=> t or nil list for maintenance goals
=> what to do each tick

Page A-24

termination-conditions
termination-procedures
data-pit

=> when to end
=> what to do when goal ends
=> used to store data concerning state values

5.2.1.7 Goal/Activity Matching

A key feature of the Phase IV approach to agent modeling is the mechanism developed for
the agent to select an activity as an attempt to satisfy a given goal. Since a primary
objectiveoftheMIDAS systemistohaveagentbehaviorsensitivetochangesineither
missionorcrew stationdesign,aflexiblemechanism was neededtomatcheachmission
goaltoavarietyofactivitiesassociatedwithalternativecrew stationdesigns.This
mechanism shouldalsobe sensitivetosituationsinwhichthemissionisvariedand specific
designactivitiescan beusedforavarietyofmissions.The approachusedinPhaseIV
involvestheuseofmatchingpatternstomap activitiestogoals.Matchingpatternsarc
definedforeachgoalandthispatternisusedby amatchingfunctiontoidentifiedthe
appropriateactivity.Matchingpatternsmay bcexplicitlydef'medinthedefaultgoal
templatesduringthedefinitionphase:

matching-pattern => '(cpg send :FM1 msg)

They may also be defined by functions specified during the definition phase which will
produce a context sensitive pattern at run time :

matching-pattern => (,(comm-task-assign *mission* 'flt-coord) ;;; backquote implied
send

,(task-radio-type *mission* 'flt-coord
(comm-task-assign *mission* 'flt-coord))

msg)

In this example, the forms preceded by the comma (backquote implied in code not
shown) are evaluated at run time within the context of the mission scenario. The fn'st
form evaluated, ",(comm-task-assign *mission* 'flt-coord)", accesses the crew-
mission object by the global variable *mission* and checks to see which agent is
currently asssigned flight coordination Cflt-coord") responsibilities. The second form
evaluated: ",(task-radio-type *mission* 'flt-coord (comm-task-assign *mission* 'fit-
coord))", identifies which radio should be used for this task. The resulting pattern
could be one of the following:

matching-pattern => '(pilot send :FM1 msg)
matching-pattern => '(pilot send :VHF msg)
matching-pattern => '(pilot send :UHF msg)
matching-pattern => '(cpg send :FM 1 msg)
matching-pattern => '(cpg send :VHF msg)
matching-pattern => '(cpg send :UHF msg)

These matching patterns are then passed as an argument to a agent's matching method,
(MAP-ACTIVITY-TO-GOAL AGENT) which returns the appropriate activity instance. In
Phase IV, simple hashing was used in the matching method since it serve the intended
purpose of demonstrating how the mapping could be context sensitive. For more complex
problems, a more powerful mapping function may be desired such as one using a many
sorted logic. New mapping techniques may be easily integrated simply by redefining the
agent's "MAP-ACTIVITY-TO-GOAL" method.

An important feature of using the matching-pattern approach is that goals and activities can
be defined in a modular manner and links between goals and activities defined later and will

Page A-25

allow separate and parallel development. This is important since it became clear during
Phase IV that a symbolic modeling approach to simulation is extremely labor intensive and
will require a significant team to work on all but the most trivial design models.

5.2.1.8 Integrating Jack

An anthropometric model developed at the University of Pennsylvania, commonly referred
to as Jack, was integrated with the Symbolic Operator Model in Phase IV. Jack was used
to model body movements and drive graphical displays during the simulation. By
incorporating Fitt's Law into the reach movements, Jack was able to provide a model-based
estimate of the duration required to perform various reaches. Head movements were also
provided for the simulation; however, these movements were either made by having the
head follow the hand during a movement or by simple shift of position which would be
accomplished in one tick (100 ms). Integration of Jack was accomplished by predef'ming a
set of three dimensional sites and having terminal activities generating commands to reach
(or look) at a given site.
These commands were implemented in the form of component functions and could be
intermixed with component functions defined by equipment. The duration of these
commands would be determined by the Fitt's Law estimate provided by Jack. The
commands generated a data set which was passed to a data pool (see Annex J).

The data set generated by these commands have the form:

(<data-pool-identifier> <reach-type> <reach-site>)

<data-pool-identifier>
<reach-type>
<reach-site>

=> an integer
=> an integer
=> a string. The first character of the string is significant
and limited to the following rules:

"R" identifies the site is on the right multifunction display
"L" identifies the site is on the left multifunction display
"x" is used for all other sites

When a command is generated to reach to a new site, the reach type determines if the reach
is made from the shoulder or the waist by checking the reach type code which also
determines if the head will follow the hand during the movement. After the initial tick, the
data pool will update the appropriate variables for the agent including a variable for the
"X", "Y", and "Z" position of the hand and the status variable. The status variable
indicates the remaining time to finish the movement and will indicate "0" when the
movement has been completed. Agent objects can check to see if a hand resource is
committed simply by checking the the status variable for that hand.

It should be noted that many movements are affected by the last movement performed. For
example, during testing a command was generated which cause the CPG agent to reach
down and to the rear of where the hand had been located. This cause the anthropometric
model to generate a bending of the wrist which seemed appropriate for that movement.
However, the next command generated a reach to a site on the multi-function display.
During the execution of this movement, the wrist was not straightened and, since the reach
was for the tip of the finger to touch the screen, most of the hand was "pushed" through the
display so the finger could make contact. There were also some movements of the head to
the rear that should have been possible but appear illegal since the head would fall off.
During Phase IV, these problems were interesting but not serious problems since realistic
movements could be generated after some trial and error. A more serious issue arose from
the requirement to predefine 3-D sites. The number of sites in a typical crew station could

Page A-26

beextremely large and the requirement to define a "site" after having defined symbolic and
graphical models seems redundant. Generating predefined sites to "Look-at" outside the
aircraft presented obvious problems if it was desired to have the agent look at a moving
object. (See the Jack documentation, Annex G, for a complete discussion of the
anthropometric model.)

5.2.1.9 Integrating the Task Loading Model

One intended use of a MIDAS simulation is the comparison of the workload imposed by
ahemative crew station designs. This is accomplished by associating load attributes with
each activity and providing a function which determines how these individual activity loads
are combined to represent the agent's load. Currently, load attributes are characterized into
one of four channels: visual, auditory, cognitive and motor (VACM). As in previous
phases, the Symbolic Operator Model provides the user a means of specifying the VACM
values of an activity during the definition phase by either specifying the individual values or
providing a function which will be evaluated at run time to produce context sensitive
values. The module also provides a means of combining these activity load attributes into
agent load attributes by a simple function which is typically a additive function.

This approach requires extensive effort on the part of the user if it is desired to reasonably
show how activities interact to produce combined load values that are not simply additive.
A new module, the Task Loading Model (TLM), was developed in Phase IV to address this
issue. The TLM module can be dynamically integrated with the Symbolic Operator Model
by passing the list of concurrent activities to the TLM module as each new activity is
started. The TLM module then returns a set of values representing the combine VACM
load for the agent. This combine load value is then used by the agent model to determine if
load requirements are sufficiently low to allow other activities to start.

The TLM module can also be statically integrated with the Symbolic Operator Model by
allowing a full simulation to proceed use the default additive method of combining load
attributes and then using the TLM model to perform a post-simulation analysis to indicate
where overloads would have been experienced.

Both of these approaches require that base estimates of individual load attributes for each
activity be estimated during the definition phase. Additional requirements are imposed by
the TLM models concerning requirements in the def'mition phase. For full details of these
requirements, see the Task Loading Model documentation, Annex C.

5.2.1.10 Integrating the Scheduler

The agent model allocates resources to activities as the activities are activated. For activities
which are activated at the same time, resources are allocated according to the priority of the
associated goal. In situations where some goals may have a window of opportunity, this
strategy may prove inefficient since reordering of activities may allow more effective
allocation of resources. In Phase IV, a scheduler was developed to provide additional
strategies for resource allocation. The default strategy provided by the agent model is
essentially a constraint-based, least-commitment approach which will sequentially allocate
any available resources to a set of activities which have sorted by goal priority. The new Z-
Scheduler was designed to be integrated into the simulation by allowing the scheduler to
post additional constraints prior to the actual allocation of resources. In this way, the
scheduler can direct resources to be first allocated to an activity with a lower priority if the
higher priority activity competing with that resource will still have time to be completed
within a specified time window. This provides of means of intermixing the subactivities

Page A-27

associatedwithmultiplegoalsinamannertominimizetimeortomaximizeuseof
resources.

Althoughtheintegrationoftheschedulerwas notshown during the demo, asimple
mechanism was testedatvarioustimesduringdevelopment.Thismechanism isclearly
inefficientbut,sincethemechanismcanbcreplacedwithmore efficientmoduleswithout
havingtomake otherchanges,itprovidesmcans ofevaluatingtheuseofthistypeof
schedulerinasimulation.

The integration approach used during Phase IV development was to modify the agent's tick
method in the following manner. Normally, after the activities are sorted by goal priority,
resources are allocated to each activity in sequence unless that activity is restricted from
starting by a constraint. The modified agent's tick method added a new step after the
activities were sorted and before the activities were allocated resources. This new step
wrote activity details, including constraint descriptions, to a file which was read by the Z-
Scheduler. At this point the agent model waits until a new file is written by the Scheduler.
The Scheduler reads the activity description file and evaluates it as a scheduling problem.
The solution developed by the Scheduler is expressed as a set of additional constraints
which are written to the file that the agent model is waiting to read. Upon reading the new
constraints from the file written by the Scheduler, the agent proceeds in the normal manner
of activating activities and allocating resources as permitted by constraints which now
includes the new constraints. Although the method of passing data by writing to a fde is
clearly simplistic and inefficient, it can be replaced by a more sophisticated method without
requiring changing other mechanisms.

It should be noted that the Z-Scheduler used in Phase IV takes a series of tasks and
constraints as input and returns a amended constraint list as its output. Additional
approaches will need to be developed to address situations in which the ordering/reordering
of activities result in task shedding. Also, since the scheduler requires estimates of each
task's duration which is independent of task sequencing, the scheduler is not sensitive to
issues concerning how the duration of various activity schedules are effected by reach times
or preconditions.

5.2.1.11 Output Available for Analysis

During a MIDAS simulation, each terminated goal and activity is stored for later analysis.
Goals provide details needed for performance since goal satisfaction is stored within each
goal object.

Activities provide information required to analyze how crew station design affects crew
member workload. Agent load attributes are not currently recorded for analysis but can be
reconstructed from activity histories.

5.2.2 Detailed Design Description

Details concerning the design of the basic objects are provided in the following sections.

5.2.2.1 Scenarios

Objects of flavor SIM-SCENARIO have the following instance variable values:

SIM-NAME: User defined string "Enroute Segment 3".

SIM-ID: Not currently used.

Page A-28

ENVIR-CONTEXT: Usedto record and access context dependent information.
This variable is a list with the following format:

(<parameter- 1> <parameter- 1-value>
<parameter-2> <parameter-2-value>

<parameter-n> <parameter-n-value>)
Ex_'np]e:

(:PHASE-LINES
((RED 48008400 48007900 D- 1/'26CAV)
(BLUE 50008400 50007900 B-1/'26CAV))

:ACPS
((ACP-DELTA 48208030 TOC))

:FARP 47008000
:FLOT '(54008400 54007900))

WORLD-OBJECTS: Objects which should be given a tick message.

E-TRANSMISSIONS: Instance of radio messages.

INITIAL-TIME:

CURRENT-TIME:

Time tick 0 represents (e.g. tick 0 is 0630 - 6:30 AM).

Time in military format.

CURRENT-TICK: Time in ticks.

CONTROL-EVENTS: Not currently used. Included to provide a slructure for
adding events controlled by the simulation. The structure
is of the form:

((<test- 1> <event- 1>)
(<test-2> <event-2>)

(<test-n> <event-n>)
Each form is tested every tick: if the test evaluates to true, the
event is executed (e.g. a message being sent).

INT-CUED-EVENTS: Not currently used.

INT-ACTIVE-EVENTS: Not currently used.

INT-TERMINATED-EVENTS: Not currently used.

5.2.2.2 Crew-Missions

Objects of flavor CREW-MISSION have the following instance variable:

MISSION-NAME: User defined string (e.g. "Enroute-l").

MISSION-ID: Not currently used - provided for managing multiple missions.

ASSIGNED-CREW: List of agent instances.

CREW: Instance of the crew flavor.

Page A-29

MISSION-ROLE: Symboldesignatingrole (e.g. TM1-AC1 => Aircraft 1 in Team 1)
This symbol is also referenced in the CEOI.

CALLSIGN: Standard military format:
<alpha><numeric><alpha><numeric><numeric>
Y5T46 => "Yankee Five Tango Four Six"

EQUIP-SYSTEMS: Not currently used.

GOAL-NET: Symbol used to reference top level activity used to represent
the planned mission (e.g. ENROUTE-1).

WAYPOINTS: Hash table of waypoints.

POINT-OF-DEPARTURE: Grid coordinates of take-off point (e.g. 43407910).

ROUTES: List of predefined routes in the following format:
((<route-number> (<waypoint-a> ...<waypoint-n>))

(<route-number> (<waypoint-a> ...<waypoint-n>))
: : : : : :

(<route-number> (<waypoint-a> ...<waypoint-n>)))
Example:

((1 (1 2 3 4)) (2 (1 4)) (3 (1 2 3 5 6 7)))

DEFAULT-ROUTE-A/S: Not currently used - but provided for interface purposes.

DEFAULT-ROUTE-ALT: Not currently used - but provided for interface purposes.

PLANNED-ROUTE:

ASSIGNED-ROUTE:

List of planned route in the following format:
((<route-number>

(<waypoint-a> <altitude-to-wp> <airspeed-to-wp>))
(<waypoint-b> <altitude-to-wp> <airspeed-to-wp>))

: : : : : : :

(<waypoint-a> <aldtude-to-wp> <airspeed-to-wp>))
Example:
(I (I50 50)

(2 50 50)
(3 50 5O)
(4 50 0))

List of currently assigned route. This will be the same as the
planned-route unless the route changes during the mission.

LAST-PLANNED-ROUTE: For debugging purposes.

WAYPOINTS-FLOWN: List of waypoint id integers for waypoints overflown.

NEXT-WP: Should be deleted - use next-waypoint instead.

NEXT-WAYPOINT: Integer representing id of next waypoint.

CURRENT-ROUTE-HDG: Not currently used - provided for future display purposes.

CEOI: Provides information relating to communication tasks.
Represents information normally provided by the

Page A-30

CommunicationsElectronic Operating Instraetions (CEOI).
Uses the following format:
(<parameter- 1> <parameter- 1-value>
<parameter-2> <pararneter-2-value>

<parameter-n> <parameter-n-value>)
During Phase IV the format was specialized to:

(:callsigns (<entity- 1> <callsign-l>
<entity-2> <callsign-2>

<entity-n> <callsign-n>)
:net ((<comm-net-1 <net-radio-type> <net-freq> <slring-for-display>)

Example from Phase IV demo:
CCALLSIGNS

((BN-CDR P7F78)
(CO-CDR Y5S92)
(TOC Y5M14)
(TM I-LD Y5T46)
(TM 1-AC2 Y5T52)
(TM1-AC3 Y5T73)
(rM2-LD Y5V43)
(TM2-AC2 Y5V67)
(TM2-AC3 Y5V25)
(FARP Y5D37)
(D- 1/26CAV G3W54)
(B-1/26CAV H6L39)
(ADA J2Q87))

:NET ; communication nets

; Battalion Commander
; Company Commander
; Tactical Operations Center
; Lead- Team I
; Aircraft 2 - Team 1
; Aircraft 3 - Team 2
; Lead - Team 2
; Aircraft 2 - Team 2
; Aircraft 3 - Team 2
; Forward Arm Refuel Point
; D Troop, 1/26 Cavalry
; B Troop, 1/26 Cavalry
; Air Defense Net Control

((COMPANY :FM1 38.5 (C0-CDR TM1-LD TM2-LD)
"Company FM1 net")

(COMPANY :VHF 126.5 (CO-CDR TM2-LD TM2-AC'2 TM2-AC2)
"Company VHF net")

(TEAM1-CMD :UHF 234.1 (CO-CDR TM1-LD TM1-ACR TM1-AC2)
"Team 1 UHF command net")

(I'EAM1 :FM1 40.9 (TM1-LD TM1-AC2 TM1-AC3)
"Team 1 internal FM net")

(I'EAM1 :VHF 140.7 (TM1-LD TM1-AC2 TM1-AC3)
"Team 1 internal VI-IF net")

(TEAM2 :FM1 44.0 (TM2-LD TM2-ACR TM2-AC3)
"Team 2 internal FM net")

flEAM2-CMD :VHF 147.9 (C0-CDR TM2-LD TM2-AC2 TM2-AC3)
"Team 1 VHF command net")

(TEAM2 :UHF 237.2 (TM2-LD TM2-AC2 TM2-AC3)
Team 1 internal UHF net")

(TOC :FMI 54.9 (TOC BN-CDR CO-CDR)
"Bn command net")

(ADA :FM1 48.5 (ADA TM1-AC2 TM2-AC'2)
"ADA net")

(D-I/26CAV :FM1 34.8 (D-1/26CAV TM1-AC2 TM2-AC2)
"D- 1/26CAV command net")

(B-1/26CAV :FM1 46.4 (D-I/26CAV TM1-AC2 TM2-AC2)
"B-1/26CAV command net")))

Page A-31

DEFAULT-COMM-ASSIGN: Describeshow communicationtaskswereinitiallyallocated.
InthePhaseIV dcmo, The pilotwas assignedtomonitor
thecommand neton UHF and theteam neton VHF. The

CPG was assignedtomonitorthecompany FM netand
make requiredflightcoordinationcallson FM which

would requirechangin_frequencybetweenmonitoring
company FM and makingrequiredflightcoordinationcalls.

Example fromPhaseIV demo:
(:PILOT

((TEAMI-CMD :UHF)
CrEAMI :VHF))

:CPG

((COMPANY :FMI)
(FLT-COORD :FMI)))

COMM-ASSIGN: Thisshouldbedifferentfromdefault-cumin-assignonlyiftherehas
bccnareallocationoftasksduringthemission(i.e.function
allocationforloadleveling,etc.)

COMM-REQ: Listofsymbolsindicatingarequirement.Thisprovidesan easy
means of editing and changing an agent's requirements of editing and
changing a crew task requirements.

Example:
COMM-REQ: (REPORT-CROSSING-PHASE-LINES)

LAST-POS-REPORT: Time (in ticks) of last position report. This is hard-coded as
instance variable only to demonstrate capabilities. In the future,
this should probably be one of many parameters in a more
generalized variable.

$.2.2.3 Agents

An object of flavor AGENT has the following instance variables:

ID: Automatically generated id string in the format of
Agent-<a gensymed number> (e.g. "Agent-355").

CREW: Not currently used - intended for agent abstraction.
Agent abstraction specifics that one agent of the crew
should be allocated this goal but does not indicate if it
is the pilot or cpg.

ROLE: Role of agent - a symbol - Pilot or CPG

;;; The following instance variables are specific to the anthropometric model.
;;; See the documentation for this model for details concerning the values.
;;; Reach/Head-turn ids specify how the model should move (e.g. from the
;;; waist or shoulder, etc). Sites specify a predefined 3-d location to which a
;;; movement/look should be made.

LH-REACH-ID:
LH-REACH-SrrE:
LH-X:
LH-Y-

Page A-32

LH-Z:
LH-STATUS:
LH-LAST-SITE:
RH-REACH-ID:
RH-REACH-SITE:
RH-X:
RH-Y;
RH-Z:
RH-STATUS:
RH-LAST-SITE:
HEAD-TURN-D:
SITE-TO-LOOK-AT:
HEAD-YAW:
HEAD-PITCH:
LAST-SITE-LOOKED-AT:

;;; end of anthropometric variables
ooo

E-R-GOALS:

GOALS:

TERMINAL-GOALS:

Instances of event-response goals not yet activated.

Instances of activated decomposable goals.

Instances of activated terminal goals

GOAL-FILE: Instances of terminated goals

;;; The following variables were included to keep track of where the agent had
;;; been looking. These values could be tested to see if the agent had been
;;; monitoring required items. This was not fully developed in the demo and
;;; probably should be removed as hardcoded variables and developed within
;;; the representation of a cognitive architecture.

LAST-CHECKED-ALT:
LAST-CHECKED-A/S:
LAST-CHECKED-HDG:
LAST-CHECKED-PWR:
LAST-CHECKED-TRAN:
LAST-CHECKED-FREQ:
LA ST-CHECKED-CW 1:
LAST-CHECKED-LWIN:
LAST-CHECKED-RW1N:
LAST-CHECKED-FWIN:
LAST-CHECKED-NAV:

;;; end of variable group
ooo

ACTIVITIES:

CUED-ACTIVITIES:

Decomposable activity instances

Activities not yet started

TERMINAL-ACTS: Terminal activity instances currently executing

ACT-FILE: List of terminated activities

SCHEDULER-TRIGGER: Not currently used.

Page A-33

VISUAL-REF:

INT-TEMP-VACP:

RESOURCE-COMMIT:

VACP-HISTORY:

ASSERTIONS:

MSGS-REC:

Not currently used.

Used to allocate resources to activities.

Used to record how resources are allocated.

Not currently used - had been simple recording of time-tagged
additive VACM values.

Not currently used - intended for conclusions based on rule
interpretation of perceptual data fusion.

Not demonstrated in demo - but provided to handle the
processing of messages monitored.

An object of the flavor agent has the following methods:

Methods for accessing and setting the all local instance variables.

MAP-ACTIVITY-TO-GOAL -see code for documentation

TICK - see code for documentation

HEAD-MOVE-COMPLETED-P
RH-REACH-COMPLETED-P
LH-REACH-COMPLETED-P
LOOK-AT
RH-REACH
RH-BLIND-REACH
RH-REACH-FROM-WAIST
RH-REACH*
LH-REACH
LH-BLIND-REACH
LH-REACH-FROM-WAIST
LH-REACH*

5.2.2.4 Goals

Objects of flavor GOAL have the following instance variables:

GOAL-NAME: User defined string (e.g. "FLY-TO-WP").

CONTEXT-NAME: User defined format statement which produces
a context sensitive string (e.g. "FLY-TO-WP2").

GOAL-D: Automatically generated id string in the format of
G-<a gensymed number> (e.g. "G-355").

PARENT-GOAL: Instance of a goal which specifies this goal as a subgoal.

Page A-34

MISSION:

GOAL-LEVEL:

GOAL-PRIORITY:

TERMINAL-P:

GOAL-KEYS:

ACT-GOAL-KEYS:

MATCHING-PATYERN:

MATCHED-ACTIVITY:

EVENT-RESPONSE:

STATUS:

ACHIEVEMENT- STATUS:

TEMPLATE:

AGENT:

Instance of crew-mission.

Integer - higher numbers represent lower levels in a hierarchy.

Integer - higher numbers represent higher priority.

T or NIL - T if terminal goal, NIL otherwise.

Used to record and access context dependent information.
This variable is a list with the following format:

(<parameter-1> <parameter-1-value>
<parameter-2> <parameter-2-value>

<parameter-n> <parameter-n-value>)

Only used by terminal goals.
Used to pass parameters to activities.

Only used by terminal goals.
A pattern that is defined by the user and is passed to
a matching function to identified an activity that
may satisfy the goal (e.g. FLY-COURSE-TO WP)

Only used by terminal goals.

Not currently used - flag now indicated by having a form
in the activation-tests variable.

Not currently used.

Not currently used - achieved-p used instead.

For debugging purposes.

Instance of agent - the goal was allocated to this agent.

SUB-GOAL-TEMPLATES:

SUB-GOALS:

AC'ITVATION-TESTS:

Only used by decomposable goals.
Used to store references to subgoals which should not
be created when the goal is initially created (e.g. all
but the first subgoal for a sequential goal) but will be
created later.

Only used by decomposable goals.
List of goal instances which are subgoals of this goal.

Only used by event-response goals.
Specifies a form to be evaluated each tick. When the
form evaluates to true, the goal is activated. Event-
response goals are stored in the event-response goal
instance variable (i.e. e-r-goals) of the agent and the
activation test of each goal in this list is tested each

Page A-35

CURRENCY-TESTS:

CURRENT-P:

TICK-CREATED:

TICK-ACTIVATED:

TICK-TERMINATED:

PRECONDIT:

CONTIN-CONDIT:

GOAL-TEST:

tick by the agent's tick method. When the goal is
activated, it is removed from the list and placed in
the appropriate decomposable or terminal goal list.

Used to test satisfaction of the goal. Defined by the user.
The use of backquotes is common here since the
user can specify when a subform should be evaluated.
During development, the use of embedded forms
using backquotes was tested so evaluation of user
defined forms is performed in two stages. The first
stage, completed during the initialization phase, results
in the specialization of the embedded, second form
which is evaluated during the simulation.
For example, the goal for sending a required message
has a currency tests variable. During the
definition phase, the user defines the goal with the
following form (the baekquote is not shown):

:currency-tests (,(list '> '(utm-x *aircraft*)
(- (cadr report) 20)))

After initialization, the currency-test has been specialized
to the following by evaluating the backquoted form
which produces a form which can test the if the
x-coordinate location of the aircraft is greater than
20 meters before the phase line :

:currency-tests (> (utm-x *aircraft*) 4780)

The form, (> (utm-x *aircraft*) 4780), is then tested
during the simulation.

Indicates if the goal is current - T or nil.

Time (in ticks) goal was created.

Time (in ticks) goal was activated.

Time (in ticks) goal was terminated.

Not currently used.

Not currently used.

Appropriate only for terminal goals.
Specifies how goal satisfaction should be
tested. A list with the following structure:

(<goal-temporal-type> <goal-test-form>)
Goal temporal type can be either ACHIEVE or
MAINTAIN. The goal test form can be any valid
lisp form which returns T or nil.

Example:
('MAINTAIN

(EQL (COURSE-IND *AIRCRAFT*)76))

Page A-36

ACHIEVED-P:

TICK-PROCEDURES:

TERMINATION-CONDITIONS:

TERMINATION-PROCEDURES:

DATA-PIT:

Indicatesif goal has been satisfied.
Achievement goals are classifiedaseither

satisfied or not-satisfied.
Maintenance goals specify states (e.g. "maintain

heading 135") which must be maintained for
a specified duration. Maintenance goals are
classified as:

currently-satisfied = state maintained but goal has
not yet been completed

not-currently-satisified = state not maintained goal has
not yet been completed

satisfied = state maintained and goal
completed

not-satisfied = state not maintained and
duration completed.

Not typically needed but retained for special purposes.

Tested each tick - ff evaluates to True the goal is
terminated.

Example:
((< (DISTANCE-TO *AIRCRAFT* 10170 3445) 400))

Procedures which should be run when goal terminates.
Not typically needed but retained for special purposes.

Used to store terminated subgoals.

$.2.2.5 Activities

Activity instances are created during the simulation and represent a unique instance of an
agent performing action. Parameter values are inherited from the related activity template or
derived by an function provided by the template. Parameters for activity instances include
the following:

act-name

context-name

act-short-name

act-id

agent-allocation

act-template

equip-context

act-keys

a string representing the activity name.

a string including context dependent descripters.

a string abbreviating activity name - for graphing.

string produced by ACT<gensym-number> (e.g. ACT425).

which agent should perform.

used for debugging.

specifies crew station design.

provides a generalized parameter - value list structure:
<parameter- 1> <value>...<parameter-n> <value>
This enables new parameters to be defined without recompiling

Page A-37

the template definition.

act-goal-keys used to pass parameters to activity instances.

act-type indicates general temporal relationships of subactivities
"sequential" specifies subactivities should be processed in sequence.

"parallel" specifies all subactivities should start when activity
starts assuming constraints allow. Indicates subactivities are
anticipated to be all started at once.

"rotation"specifiessequentialorderwhichistoberepeateduntil
terminationconditionscauseactivitytostop.

"complex"specificsallsubactivitiesshouldtrytostart.Indicates
constraintsareanticipatedtodelaythestartofsome activities.

required-resources specifies required-resources, activities may beconstrainedfrom
startingwhen arequiredresourceisnotavailable.These
resourcesinclude:

visual

auditory
cognitive
motor
left-hand

right-hand
point-of-fixation (look-at site)

functions high level text description of activity for display purposes.

priority currendy user defined priority.

initialization-procedures procedures to be run when activity is initialized.

preconditions state-activity pairs for indicating possible preconditions/actions.

com-fcn-procs defined only for terminal activities. Specifies a list of equipment
component functions which to be executed in sequential order.

remaining--cornp-fcn-procs used internally to keep track of which component function has
been completed. Initially this list is set to a copy of
comp-fcn-procs. As component functions are completed, they
are deleted from this list.

explicit-local-constraints will be tested when activity tries to start. Indicates
subactivities are anticipated to be delayed from starting.

estimated-duration expressed in ticks - 100 ms.

start-procedures procedures to be run when activity is started.

c f-procedures not currendy used - use com-fcn-procs instead.

tick-procedure specifies forms to be evaluated each tick.

termination-conditions specifies forms to evaluated each tick. When one of the
forms returns "TRUE", the activity will be will be terminated.

Page A-38

termination-procedures

compute-vacp-data

vacp-load-form

vacp-data

vacp-data-history

mapped-goal

tick-cued

tick-started

tick-ended

sub-activities

activity-history

specifiesformstobcevaluatedwhen theactivityterminates.

flagindicatingVACP valuesshouldbcdeterminedby formin
thevacp-load-formslot.

formusedtoproducecontextdependentVACP values

context-free estimate of VACP values for this activity.

time-tagged VACP values.

used only for top level activities - an instance.

time (in ticks) activity was initially tested for starting.

time (in ticks) activity was started.

time (in ticks) activity ended.

used only for decomposable activities - active instances.

used to store terminated subactivities.

PageA-39

6.0 USER'S GUIDE

6.1 INSTALLATION AND INITIALIZATION

Files for the Symbolic Operator Model are maintained in a directory called MIDAS2. This
directory is organized into subdirectories as follows:

BASIC1

BASIC2

COMM

DEMO

DISPLAYS

- Defines flavor definitions and global variables.

- Defines basic functions and methods.

- Defines data pool as required by the communications module.

- Defines mission, objects, agents, goals and activities specific to the
the Phase IV demonstration.

- Defines the Symbolic Operator Model display constraint frame.

The Symbolic Operator Model has been defined as a system using the Genera Development
System Tools in a file named "midas.system" in the MIDAS2 directory.

Loading the system requires that the Equipment Modeling and LONGBOW systems be
loaded in sequence. The Phase IV demonstration also requires a binary file to be loaded
from the MIDAS directory. This file defines a terrain digital elevation model (DEM) which
was used during development. Since it was the stated objective of the Program Office to
maintain DEM's only on the IRIS machines, the code should be changed to access
elevation values from the IRIS instead of from the structure created by the binary fde in
the MIDAS directory.

To install the Symbolic Operator Model at a new site, the newest lisp f'des from the
MIDAS2 directory should be copied to the new site. Besides the Symbolic Operator
Model, files defining the Equipment Models and the Longbow System will be required.
Details for installing these systems are provided in Annex D. Files required for
communications are detailed in Annex J and these files must be loaded prior to any
simulations. Also, the current Symbolic Operator Model requires one binary file,
"terrain>p4-dem.bin", from the MIDAS directory. This file should be recreated and moved
from the MIDAS directory into the MIDAS2 directory for future development (the MIDAS
directory was used as the development directory).

Although it is not required prior to loading the system, prior to running any simulation it is
necessary to load whatever files are required by the Communications modules and initialize
the IRIS machines as instructed in the Communications module documentation, Annex J.

After the required files have been loaded onto the fileserver, the file "midas.system" must
be edited to reflect any changes in logical pathnames.

Programmers should be aware that many of the files in the "DEMO" directory were created
to produce a small demonstration in Phase IV. Any future experimentation with code
developed will require changes to many of the definitions provided in these files.
Experimentation with Jack can be accomplished without changing files in other directories.

The Symbolic Operator Model may then be loaded by the following top level commands:

Page A-40

promp_ Load System Midas2

The system will load the Equipment Modeling and Longbow systems ffthey are not loaded
into the current environment. Any files required by the Communications module should
then be loaded.

The Symbolic Operator Model display may be selected by:

SELECT Symbol-Shift-E

In/tialization is accomplished by selecting the "RESET SIM" menu item in the MIDAS
display. The system is ready for a simulation after this has been completed.

6.2 STARTUP AND TERMINATION

Simulation starting and termination is accomplished by Simulation Executive commands.
Refer to Annex 3 for details.

Page A-41

Annex B

Army.NASA Aircrew/Aircraft Integration Program: Phase IV

Man-Machine Integration Design and Analysis System (MIDAS)
Software Detailed Design Document

Scheduler (Z)

prepared by

Renuka Shankar

Table of Contents

1.0 INTRODUCTION ... 1
I. 1 IDENTIFICATION OF DOCUMENT ... 1
1.2 SCOPE OF DOCUMENT ... I
1.3 PURPOSE AND OBJECTIVE OF DOCUMENT 2

2.0 RELATED DOCUMENTS .. 2
2.1 APPLICABLE DOCUMENTS ... 2
2.2 INFORMATION DOCUMENTS .. 2

3.0 CONCEPT .. 3
3.1 DEFINITION OF Z-SCHEDUI_R .. 3

3.1.1 Purpose and Scope .. 3
3.1.2 Goals and Objectives .. 4
3.1.3 Description ... 5

3.2 USER DEFINITION ... 7
3.3 CAPABILITIES AND CHARACTERISTICS 8
3.4 SAMPLE OPERATIONAL SCENARIOS $

4.0 REQUIREMENTS .. 9
4.1 HARDWARE ENVIRONMENT ... 9
4.2 SOFTWARE ENVIRONMENT .. 10
4.3 EXTERNAL INTERFACE REQUIREMENTS 11

4.3.1 Interface with Task Generator ... 11
4.3.1.1 Input from the Task Generator to Z-Scheduler 11
4.3.1.2 Output to Task Generator from Z-Scheduler 12

4.4 REQUIREMENTS SPECIFICATION ... 12
4.4.1 Process and Data Requirements 12

4.4.1.1 Input Representation ... 12
4.4.1.1.1 Input Task Representation (I) 12
4.4.1.1.2 Resource Representation (R) 13
4.4.1.1.3 Primary Strategy Representation (P) 13
4.4.1.1.4 Secondary Strategy Representation (S) 14
4.4.1.1.5 Constraint Representation (C) 14

4.4.2 Performance and Quality Engineering 16
4.4.3 Implementation Constraints ... 17

5.0 DESIGN .. 18
5.1 ARCHITECTURAL DESIGN .. 18

5.1.1 Design Approach and Tradeoffs 20
5.2 DETAILED DESIGN .. 23

5.2.1 Detailed Design Description .. 23
5.2.1.1 Constraint Solver Knowledge Source 23
5.2.1.2 Task Selector Knowledge Source 28
5.2.1.3 Resource Allocator Knowledge Source 29
5.2.1.4 Constraint Propagator Knowledge Source 29

5.2.1.4.1 Intra-PDG-propagation 29
5.2.1.4.2 Inter-PDG-propagation: 33

5.2.1.5 Truth Maintainer Knowledge Source 33
5.2.1.6 Z-Scheduler Display Design 34

5.2.1.6.1 Task Stack Display 34
5.2.1.6.2 Task Frame Display 35
5.2.1.6.3 Dependency Graphs 36
5.2.1.6.4 Scheduling Chart (Gantt Chart) 37
5.2.1.6.5 Visual Loading Plot 39

5.2.2 External Interface Detailed Design 41
6.0 USER'S GUIDE ... 42

6.1 OVERVIEW OF FILE STRUCTURES ... 42

Table of Contents

6.2 INSTRUCTIONS FOR RUNNING Z-SCHEDULER
DEMONSTRATION ... 43

6.2.1 Initial Setup .. 43
6.2.1.1 Halt Machine .. 43
6.2.1.2. Boot ... 43
6.2.1.3 Load Z-Scheduler files ... 43
6.2.1.4 Run Z-Scheduler partially 43

6.2.2 Input Representation Demo .. 44
6.2.2.1 Show a task frame ... 44
6.2.2.2 Show a constraint frame 44

6.2.3 Schedule Generation Demonstration 44
6.2.3.1 Resume Z-Scheduler ... 44

6.2.4. Scheduling Strategies Comparison Demonstration 45
6.2.4.1 Bring up the display ... 45

7.0 ABBREVIATIONS AND ACRONYMS ... 45
g.0 NOTES .. 45

8.1 MISCELLANEOUS .. 45
8.2 LIMITATIONS ... 45
8.3 LESSONS LEARNED ... 45
8.4 FUTURE DIRECTIONS .. 46

9.0 APPENDIX A .. 47

Table of Contents

Figure 1. Three Categories of Users of this Document 1
Figure 2. Scheduler in Relation to Symbolic Operator Model 7
Figure 3. Temporal Constraint Categories in Z-Scheduler 15
Figure 4. Categories of Disjunction Relationships .. 16
Figure 5. Software Architecture of Z-Scheduler .. 19
Figure 6. Constraint Satisfaction Problem ... 22

iii

Table of Contents

Table 1 Temporal Transform -- Unconditional-Relative Constraint Propagation 24
Table 2 Temporal Transform -- Unconditional Absolute Constraint Propagation 27

iv

MAN-MACHINE INTEGRATION DESIGN & ANALYSIS SYSTEM
(MIDAS) SOFTWARE DETAILED DESIGN DOCUMENT

PHASE IV:

Z - SCHEDULER

1.0 INTRODUCTION

1.1 IDENTIFICATION OF DOCUMENT

This document establishes the requirements and detailed design of the Z-Scheduler module
of the MIDAS system. The Z-Scheduler document has to be read within the broader context
of the documentation of the Symbolic Operator Model (Annex A) and the Task Loading
Model (Annex C).

1.2 SCOPE OF DOCUMENT

The material in this document is directed towards three categories of readers as shown in
Figure 1 below.

Z-SchedulerUser

Z-Scheduler User Interface Layer

 m, Z-SchedulerApplicationsLayer
Z-SchedulerApplicationsProgrammer

Figure 1.

Z-Scheduler Tool Layer

Three Categories of Users of this Document

Page B-1

Thethreecategoriesofreadersare:

1) _: Those who are interested in learning what Z-Scheduler Module in
MIDAS does.The usersinteractwiththeZ-scheduler'suserinterfacelayerprimarilyto
inputasetoftasksand viewtheschedulethroughtheuserinterface.No programmingskills
are required to interact with the scheduler in this capacity.

2) Z-Scheduler Applications Pro_m'ammers: Those who wish to extend the capabilities of the
Z-Scheduler software. For example, when one wants to build upon or modify the existing
set of scheduling strategies in the scheduler. Some lisp programming and basic GEST
programming knowledge is recommended for using Z-Scheduler for this purpose.

3) Z-Scheduler tool pro_t_rammer: Those who might want to modify and update the Z-
Scheduler tool layer. Extensive knowledge of the Symbolics programming environment,
object-oriented programming, knowledge-based designing, and some experience in
programming with GEST is required to program Z-Scheduler in this capacity.

1.3 PURPOSE AND OBJECTIVE OF DOCUMENT

This document attempts to describe the methodologies used to represent the Z-Scheduler of
the MIDAS system. The Z-Scheduler was proposed, designed and implemented in Phase IV
of the A3I project. This implies that though there has been some references to the
Scheduling model in the previous phase documentation there has never been a powerful and
separate scheduling model in the earlier phases of this project.

2.0 RELATED DOCUMENTS

2.1 APPLICABLE DOCUMENTS

The following documents are referenced herein and are directly applicable to this
volume:

Symbolics Genera 7.2 Documentation, Symbolics Publication Number 999079,
Symbolics, Inc., Cambridge, Massachusetts, 1988.

GEST ver4.0 manual, GTRI, Atlanta, GA, 1989.

2.2 INFORMATION DOCUMENTS

The following documents amplify or clarify the information presented in this volume:

James Allen, "Maintaining Knowledge about Temporal Intervals", Communications of the
ACM 26 (11), 832-843, 1983.

David Ben-Arieh, "Knowledge Based Control System for Automated Production and
Assembly", Purdue Univ, Ph.D Dissertation, Aug 85.

S. Hart, "Research papers and publications 198 l-1987," NASA Technical memorandum
10001b, 1987.

Barbara Hayes-Roth, "A BlackBoard Architecture for Control", A/ 26 (1985) 251-321.

Page B-2

BarbaraHayes-RothandFrederickHayes-Roth, "A Cognitive Model of Planning",
Cognitive Science 3, 275-3 I0 (1979).

N.P. Keng, D.Y.Y. Yun and M. Rossi, "Interaction Sensitive Planning System for Job-
shop Scheduling". In Expert Systems and Intelligent Manufacturing, Michael D.Oliff
editor. Elsevier Science Publishing Co., 1988.

Johan de Kleer, "An Assumption Based TMS", A/ 28 (1985) 127-162.

Jay Liebowitz, Patricia LightFoot, "Expert Scheduling Systems: Survey and Preliminary
Design Concepts", Applied AI 1:261-283, 1987.

N. Morray, M. Dessouky, "Scheduling Models for Workload Prediction and Guidance",
EPRL report, U. of Illinois at Urbana-Champaign, Aug 89.

Jeff Rickel, "Issues in the Design of Scheduling Systems". In Expert Systems and
Intelligent Manufacturing, Michael D.Oliff editor. Elsevier Science Publishing Co., 1988.

P. Sanderson, N. Morray, "The Human Factors of scheduling Behavior", EPRL report #
90-09, U. of Illinois at Urbana-Champaign.

Peng Si Ow, Stephen Smith, and Randy Howie, "A Cooperating Scheduling System."
Expert Systems and Intelligent Manufacturing, Michael D.Oliff editor. Elsevier Science
Publishing Co., 1988.

In

Peng Si Ow, Stephen Smith, "Viewing Scheduling as an Opportunistic Problem-solving
Process", Annals of OR. Approaches to Intelligent Decision Support", R. G. Jeroslow
(editor), Baltzer Scientific Publishing Co., 1987.

3.0 CONCEPT

3.1 DEFINITION OF Z-SCHEDULER

Z-Scheduler is a constraint-based, opportunistic scheduling tool that represents one of
MIDAS' first cognitive models. The Z-Scheduler is provided with a task queue along with
data about each task (such as temporal constraints, estimated duration, resource
requirements, etc). The scheduler solves for a "near-optimal" sequence and schedule based
on a strategy of time minimization or load balancing, intended to represent possible operator
behaviors. Z-Scheduler uses a blackboard architecture -- the closest thing to a cognitive
architecture to date. Also, this architecture allows its components to be modular and easily
extensible.The components of Z-Scheduler are called knowledge sources and each
component represents a stage in the scheduling process. Z-Scheduler itself is modular and is
called on an "as-needed" basis by the task decomposition with a variable temporal horizon.
Z-Scheduler closely interacts with the Task Loading Model for learning about resource
interaction between plausible concurrent tasks. Z-Scheduler uses the extended task-based
decomposition (a "divide-and-conquer" technique) to partition the scheduling problem space
into subspaces, finds the local solutions for each of the subspaces and threads the individual
local solutions along to derive the global scheduling solution.

3.1.1 Purpose and Scope

The primary purpose of the Z-Scheduler is to extend the power and applicability of the
MIDAS symbolic operator model. As mentioned above, Z-Scheduler works at modeling the
pilot's strategic

Page B-3

schedulingbehavior.SpecificallytheZ-Schedulertakesa setoftasksgeneratedby the
plannerasinputandoutputsaspecificorderon theexecutionofthetasks.Z-Schedulerhas
bccnkeepingstrictmodularprinciplesinmind and hencethescopeofZ-Scheduler's
applicabilityisthereforewide.

3.1.2 Goals and Objectives

The primary goal of the Scheduler was to capture the scheduling behavior of an operator
into a computational model. The focus of the work has been modeling the scheduling
strategies that the operator applies while scheduling behaviors to achieve desired results.
The Z-Scheduler is currently geared to simulate two such operator scheduling strategies
namely, the minimize-time strategy and the balance-load strategy. The former strategy is
when the operator is concerned primarily with performing all the allocated tasks within the
shortest time window by extending his/her resources to the maximum limit possible. The
balance-load strategy simulates the operator delaying the execution of the tasks so as to
continue being at his/her comfortable resource load limit.

In the earlier phases of this project, the pilot activities whose preconditions are satisfied at
any moment in time, begin executing at that moment. There was minimal and in some cases
no mechanism to do the resource allocation in order to arrive at an opportune moment to
perform the task. In other words, there was no "look ahead" mechanism by which the
operator analyzes 'the currently active activities and decides on an order for performing the
task such that the tasks all get done in a more efficient manner. This is the aspect of the
operator model that the Z-Scheduler was targeted to address. Hence, a more general goal of
the Z-Scheduler was to enhance the symbolic operator model.

Four major objectives have been outlined for the Z-Scheduler for its fast developmental
stage during Phase IV of the A3I project. They are the following:

1. Simulate varied operator scheduling strategies.

2. Reflect changes in schedule with a change in environment.

3. Provide for predictive task analysis.

4. Assist in enhancing the operator model with a look-ahead feature.

The first objective of the Z-Scheduler was that Z-Scheduler should be able to demonstrate
scheduling behavior obtained as a result of applying varied scheduling strategies. It has been
proven in the human factors research on strategic behavior that a human's schedule is
dependent on the heuristics applied during scheduling and these heuristics are what gives
rise to strategies. In this phase of development of the scheduler, we isolated two such
proven strategies. We then, scheduled tasks using the two strategies as objective functions
to evaluate among alternate schedules and hence, demonstrate the difference in the schedule
generated by the two strategies.

Since, the broadest goal of MIDAS is to show the impact of the man-machine interface
design on human performance, it follows that all modules of MIDAS obey this guiding
principle. Since, Z-Scheduler assigns a time-line order to a set of tasks performed by
humans while interacting with the man-machine system design (in Phase IV the man-
machine system was the Apache helicopter), it can be easily seen that if the environment
changes the set of tasks will change and so will the schedule. Hence, using this logic we can
conclude that Z-Scheduler reflects changes in the schedule with a change in environment.

Page B-4

The tasksinputtotheschedulerarcthetasksthatgeneratedbasedon thepredictivecapacity
of the task generator and hence are the tasks are to be pefform_ in the near future (temporal
horizon). Hence, it can said that the time window that the scheduler is working on fitting all
the tasks is in some projected future time.

By incorporatinga schedulerintheMIDAS symbolicoperatormodel,questionspertinentto
our Phase IV objectives is addressed such as:

a. How close to an analyst-specified time was the pilot able to perform mission
related tasks?

b. What is effect on the schedule, when the set of imposed constraints are changed?
c. What happens when the pilot changes his scheduling s_'ategy (like optimizing

time, or making sure the loading is constant etc.)?
d. What are the changes in the schedule when the tasks arc performed in a different

environment, like moving from a traditional environment to a Multil::unction
Display 0VlFD) environment?

Z-Scheduler is designed to handle the above queries; hence justifying the requirement for a
scheduler in the MIDAS symbolic operator model.

3.1.3 Description

Z-Scheduler attempts to capture varied operator scheduling strategies into a computational
model. Two such strategies have been implemented in this phase of development of the Z-
Scheduler - the minimize time strategy and the balance load strategy. During the application
of the minimize time strategy the operator tries to perform the specified tasks in as short a
time window as possible by extending the resource capabilities to the maximum level
possible. The balance load strategy is one in which the operator is working towards being at
a comfortable resource limit and hence delays the execution of some tasks. In the literature,
especially work done by Sandy Hart, (Hart, 1987) these strategies arc well accepted.

The input to Z-Scheduler is a set of tasks to be scheduled. These tasks arc generated by the
planning component of the symbolic operator model. Each task description contains details
on the estimated duration for the task, the priority (the relative importance of a task to the
other tasks on the stack) and the resource utilization (the resources required for the effective
performance on a task). The resource structure for the Z-scheduler is a vector of four
elements, namely, the Visual, Auditory, Cognitive and Motor loadings and are defined in
the Task Loading Model.

Along with the stack of tasks, Z-Scheduler also gets a stack of constraints which arc defined
as some restriction placed on the execution of the tasks. Z-Scheduler can handle both
qualitative and quantitative time constraints. The qualitative constraints in the literature arc
called interval-based constraints and are useful in describing the temporal relation between
two tasks. For example, we can specify task A is before task B or any of the 13
relationships defined in (J. Allen, 1983). Also, tasks can be directly anchored to the
absolute time by specifying quantitative relations like 'Start-at task-A 5 sees". The effort of
merging both the qualitative and quantitative temporal constraints into a uniform framework
is one of the most significant contributions of the Z-Scheduler.

Before getting into the details of the dynamics in the Z-Scheduler, it would be important to
know the rationale for choosing the selected architecture and approach. On analyzing the
MIDAS scheduling problem based on the nature of input, we concluded that it falls into the
category of dynamic-multistage-routing problems. Simply stated this category of problems

Page B-5

arc at the complex end of the spectrum of difficulty where traditional OR techniques fail to
provide solutions and hence, we turned to knowledge-based techniques for the answers.

Just as the approach taken in the majority of past works, we have modeled the problem as a
constraint sausfaction problem (CSP). Generally, whenever a problem is modeled in this
manner, the solution space is divided into subspaces and the local solutions arc found for
eachspaceand theselocalsolutionsarcthreadedalongtogettheglobalsolution.The
method inwhichtheproblemspaceisdividediscrucialtotheefficiencyofthemodel.We
havechosentask-basedschedulingtosolvetheCSP.

Now moving totheheartoftheschedulingprocess,theblackboardarchitectureiscentralto
Z-schedulingprocess.The blackboardisacentralstructurethatcontainsallthescheduling
statedataand isdividedintosections,eachsectionrepresentingastageintheschedule
generationprocess.The knowledgerequiredtoperformthescheduleisalsopartitionedand
eachpartition,calledaknowledgesource,workson eachstageoftheschedulingprocess.

The firstknowledgesourcetobetriggeredistheconstraintsolverknowledgesource.The
primaryfocusofthisknowledgesourceistotranslatethehybridrepresentationalconstraints
intoa uniformframeworkforthetemporalreasoningprocess.Also,becauseofthenatureof
inputstoZ-scheduler,thetasksareobliviousoftheirconstraints.Hence,theconstraint
solvercontainsrulesforsolvingforone constraintata timethatincludescachingthe
constraintintherelevanttasksand incrementallybuildingnetworkscalledpartial
dependencygraphs.

The Z-Scheduler uses task-based scheduling for partitioning the scheduling problem space.
Task-based scheduling is a two step process. The first step involves the selection of a single
task from the task stack that contains only the unscheduled tasks. The second step involves
the commitment of a resource time slice to the selected task by evaluating all alternative
resource allocations for that task and selecting the best allocation based on certain decision
metrics. Each of these two steps is carried out in separate knowledge sources, the first being
implemented by the task selector knowledge source and the second being carried out by the
resource allocator knowledge source.

The metric in selecting tasks for resource allocation is called the task criticality measure.
This measure has three factors, one of them being the slack on that task. The more the slack
on the task less its task criticality. The heuristic applied in the task selector knowledge
source is that the task with the least amount of slack becomes the candidate for resource
allocation. The metric for allocating a resource time slice for the selected task is to pick the
solution that has minimum resource competition, the logic being that the solution must not
eat away into the opportunity of the tasks that have not yet been scheduled. This metric is
called the resource competition measure and is implemented by the resource allocator
knowledge source.

The constraint propagator knowledge source is a record keeping knowledge source. Every
time a task is scheduled it updates rest of the task windows accordingly by propagating the
temporal constraints in the partial dependency graphs.

The truth maintainer knowledge source is a high level monitor of the constraint propagating
activities. Whenever a conflict occurs during the process of constraint propagating, this
knowledge source halts the execution of the other knowledge sources by sending a message
via the blackboard. After halting the process that was responsible for the conflict (an
example of the conflict is that the window duration of the task becomes smaller than the
estimated duration of the task) the truth maintainer attempts to find the reason for the
conflict's occurrence and, on finding it out, resets all the knowledge sources to the point in

PageB-6

time that brought about the conflict. In other words, the truth maintainer is built on the
principle of chronological backtracking, where the amount backtracking is the previous
decision point.

3.2 USER DEFINITION

The Z-Scheduler resides within the symbolic operator model of the MIDAS system and
specifically is sandwiched between the Task Generator and the Simulation module as shown
in Figure 2 below:

Input from other modules Output/Simualtionresults

Task

Generator ::Exeeutive: :_:':

A31's Pilot Model in Phase 3

Input from other modules

I ,,

Task

Generator

:::::::'::::::::::..

r:::::

Output/Simualtion results

Simulation
Executive

i"

A31's Pilot Model in Phase 4

Figure 2. Scheduler in Relation to Symbolic Operator Model

Page B-7

It is important to distinguish Z-Scheduler from the task generator and the simulation
executive components of MIDAS. The responsibility of determining what activities need to
be performed to accomplish the generated/specified goals remains in the task generator.
Similarly, the functions of tick passing and synchronization with the other models will
remain within the simulation executive.

As mentioned above, Z-Scheduler only determines the optimum order and times for a list of
tasks, dictated by some objective function (such as time or load minimization) which
represents the pilot's strategic control of his/her behavior. To pertorm this function, the 7_,-
Scheduler receives as input a set of tasks with some specified constraints. The scheduler
uses these constraints to search through the solution spaces of all feasible schedules to arrive
at the optimal time-line order of the tasks.

3.3 CAPABILITIES AND CHARACTERISTICS

Z-Scheduler is a constraint-based, opportunistic scheduling tool that attempts to capture
varied operator scheduling strategies into a computational model. Provided with a task
queue along with data about each task (such as temporal constraints, estimated duration,
resource requirements, etc), the Z-Scheduler solves for a "near-optimal" sexiuence based on
the specified operator scheduling strategies. In Phase IV, we have implemented two such
operator scheduling strategies and they are the minimize time strategy and the balance load
strategy. The minimize time strategy is one in which the operator works towards performing
all the specified tasks in as short a time window as possible. The balance load strategy is
one in which the operator works towards being at a comfortable resource level and hence
delays the execution of some of the tasks.

3.4 SAMPLE OPERATIONAL SCENARIOS

The operational scenario for demonstrating the capabilities of the Z-Scheduler during Phase
IV was tasks extracted from the preflight segment of the AH64 task analysis. This segment
included two functions -- one being the communications function and the other being the
auxiliary power unit (APU) starting function. The former function included two tasks,
'transmit-cockpit-communication and' receive-cockpit-communication. The APU starting
function included seven tasks, the higher priority tasks being set-gen 1-switch and
set-gen-2-switch. The rest of the five tasks were routine monitoring tasks the details of
which are in file "puf:>Renuka>Z>tests>apu-startin - ks.g tas dryrun".

Some of these tasks were related to each other by the specifications of four constraints. The
primary constraints were that the set-gen-2-switch must be after the set-gen-l-switch, and
that transmitting communications comes before receiving communications. For obtaining the
details of the other constraints, refer to the above mentioned file.

On starting the execution of the blackboard controller (for the exact commands, please refer
to Appendix A), the first stage of the scheduling process, the constraint solving, is
performed. The user will notice all the input tasks stacked as cards in the window titled
"Unscheduled Task Stack". Similarly the constraints specified by the user will be shown in
the "Unsolved Constraint Stack" window. As the constraint solver solves the constraints

incrementally, the user will notice constraints being pulled out of the constraint stack and the
respective partial dependency graphs (PDG) being drawn. When the constraints are all
solved, the constraint solver redraws the original constraint stack, but this time under the
heading of "Applied constraint stack". After the constraint solver completes its function of
creating the PDGs, the constraint propagator knowledge source knowledge fires up.

Page B-8

At thispointtheusersattentionshouldbedirectedtowardstheGANTr chartwindow. The
userwillseethewindow ofopportunitybeingformedforeachtaskby thepropagationof
constraintsbetweenthetasks.The taskselectorknowledgesourcestepsinafterthe
constraintpropagationand workson calculatingthetaskcriticality.As aresultofthisthe
userwillnoticethetasksbeingshuffledandreorganizedinthetaskstackwindow.The
tasksthathavechangedtheirrelativepositionsinthestackarehighlightedforasmall
instant.The taskthatgetstobeon thetopofthestackbecomesthecandidateforresource
allocation.When theresourceallocatorknowledgesourcegainsconlzoloftheexecution,the
userwillnoticetheselectedtaskgcthighlightedintheGANTr chartand aslidingbarshift
acrossthespanofthetaskwindow.The Icngthofthemoving barsignifiestheestimated
durationoftheselectedtaskand thedifferentpositionsindicatespossibleresourceallocation
positionsforthattask.The resourceallocatorcompletesassigningtheresourceswhen the
usernor/ccsthetaskthatwas highlightedcarlicristransformedfromadouble-headedarrow
intoashadedbox.The userwillalsonoticethecumulativeresourcecurvesshowingup in
thefourresourcepanes.

The processtheniteratesbetweenthetask-selector,resourceallocatorand constraint
propagatorknowlcdgcsourceand,astheschedulingprogresses,theuserwillnoticethe
taskstackgcttingsmallerand when allthetasksarescheduledthestackbecomes empty.At
thesame time,theGANTT chartcontainsallthescheduledtaskand allaremarked by solid
boxes.

Forthesakeofclarifyingadisplaythatlookscomplexatfirstglance,alltheobjectsare
colorcoded.Each taskgetsassignedacolorand thesame colorshows offthetaskacross
themany windows.Also,atany pointduringtheschedulingprocess,theuseris
encouragedtoinspectthetasksandconstraints.Thismay be performedby suspendingthe
knowledgesourceexecutionifmany detailsarerequiredorcan be performed
simultaneouslyalongwiththeschedulingprocess.Whilechoosingthelatteroptiontheuser
bewarnedtherearcchancesthats/hemay beviewingdatathatmighthavealreadychanged
since the information was displayed.

4.0 REQUIREMENTS

Z-scheduler requires a blackboard architecture for its implementation. Rather than develop
the blackboard framework in house, we decided use an existing shell in order to save on
time and effort. Among, the few available alternatives we choose Generic Expert System
Too] (GEST), since it outperformed the other two alternative in terms of cost to features
ratios. GEST was cost effective, indeed its run time version was available on zero-cost basis
to the group and it offered a host of features that was lacking with the other two
frameworks, namely, the BB I software and the GBB tool During the time of evaluation of
the 3 alternates, GEST showed more maturity than the other two tools. GEST had a
reasonably good user-interface, which was among one its selling points too.

The Symbolics platform was desired for a host of reasons. The major reason being that,
during the past few phases, the operator models were all implemented on the Symbolics
machines. Since, Z-Scheduler is a part of the operator model, it followed that it would be
appropriate for Z-Scheduler to implemented on the Symbolics. Also, since GEST's favored
platform was the Symbolics machines, we decided that Z-Scheduler being built on top of
GEST should be on the Symbolics machine.

4.1 HARDWARE ENVIRONMENT

Z-Scheduler currently runs on a Symbolics 3640. It also requires a Color Monitor -
presendy uses Techtronix color monitor with supporting CAD Buffer boards.

Page B-9

The detailsofthemachineconfigurationisshown below.The detailsincludetl_circuit

boardspresentintheSymbolics3640 (host-nameis'Pufferand isintheA3I site).
Chassis

Datapath
Sequencer
Memory Control
Front End
2Meg Memory
CAD buffer

512K Memory
IO
FEP
IO Paddle Card

Summarizing the important cards shown above, Puffer includes 2.5 M Word of RAM and
CAD buffer among the other default cards. Ahematively, Puffer is a 3640 Processor with
2560K words Physical memory and 27177K words Swapping space. The disk drive for
Puffer has 30 MB capacity.

The Ethemet Address of Puffer is : 08-00-05-03-20-20

Additionally, Z-Scheduler may be ported to hardware that support Common lisp, Color and
the GEST system. Some of the possible platforms that Z-Scheduler may be ported to are
MacIvory, XL,1200, SUN4. It must be remembered here that these machines are only
candidates for porting and the author has not ported the software across these platforms and
hence will not make any commitments to the feasibility and ease of porting etc.

4.2 SOFTWARE ENVIRONMENT

Z-Scheduler currently uses a world load with containing the following systems along with
their versions.

Lv.s.c.m Version
Genera 7.2

System 376.158 (ECO level 6)
Utilities 27.29 (ECO level 4)
Server Utilities 28.5 (ECO level 1)
Hardcopy 118.17 (ECO level 1)
Zmail 165.20 (ECO level 1)
LMFS 102.7 (ECO level 1)
Tape 82.18 (ECO level 3)
Nsage 27.227 (ECO level 1)
Documentation Database 62.1
IP-TCP 67.8 (ECO level 3)
Experimental News 5.0
Generic Expert System Tool 296.0
Color 405.13
Color Support 409.13
Color Doe 408.0

SGD Book Design 2.6

The world for the above combination of environment is" FEP0:>Inc-Ocean-Color-
Gest.load.l".

Page B- I0

The interface between Z-Scheduler and the task generator component of the Symbolic
Operator Model is through the file input and output on the Chaos Net connection using the
Nfile protocol. The interface to the Task Loading model is achieved by having one image of
the model resident within Z-Scheduler.

Z-Scheduler has also been successfully ported to Genera g.0.

4.3 EXTERNAL INTERFACE REQUIREMENTS

The task generator (TG) projects into a near future (temporal horizon),tries to anticipate
tasks likely to happen and instandates instances of these projected tasks. Along with the set
of tasks it also generates a set of possible temporal constraints that might exist between the
tasks and appends this to a global constraint list. Each task spawned by the Task Generator
contains some task characteristics such as estimated duration, amount of resources roquireA
etc. The Task Generator feeds the set of tasks and the set of constraints to Z. Also, the Task
Generator specifies the total time available for the tasks and the scheduling strategy.

Z-Scheduler generates all the possible ordering of the tasks by inferencing on the constraints
into Partial Dependency Graphs (PDG), evaluates all the possible resource assignments for
each task by performing a task-based decomposition and then converges on the best
resource assignment for each task, thus forming the schedule. Z-Scheduler closely interacts
with Task Loading Model to learn about the resource interactions between tasks that may be
performed concurrently. The output of Z-Scheduler is a list of additional constraints that
appends to the global constraint list or is a list of constraints that is a subset of the input
constraint list - the extra elements being rejected by Z. The output constraints are generated
by reverse-parsing of the converged schedule, that is, translating the schedule into set of
constraints.

4.3.1 Interface with Task Generator

4.3.1.1 Input from the Task Generator to Z.Scheduler

The following are global variables that are shared between the task generator and the 7_,-
Scheduler

tasks-to-be-scheduled ::= instances of tasks to be scheduled

constraints ::= list of constraints on the tasks. Each
constraint is a list with unspecified number
of elements. The structure of the list is
defined as follows. The first element is the
category of the disjunction in the constraints.
Each of the other elements consist of three sub-
elements - the first is a type of constraint.
second is the task that the constraint belongs
to and the third is the constraining element-
can be a task,a constant time and also a form
to be evaluated.

primary-strategy ::= Minimize-time or level-load.

time-available ::= time allowed for the tasks to be executed.

Page B-11

secondary-su'ategies::=alistofsecondarystrategies.

4.3.1.2 Output to Task Generator from Z-Scheduler

output-constraint-list ::= list
; Similar in syntax to *input-constraint-list*
; Subset of the disjunction constraints in the
; *input-constraint-list* plus all the valid
; singular constraints plus all the new singular
; constraints generated by Z-Scheduler.

The Z-Scheduler can modify the input constraints list to create the output consu'alnt list in
the following way:

1. Prune the number of choices in the disjunctions - if possible just leave only one
behind.

2. Leave the singular constraints undisturbed.
3. For tasks that have no constraints, add constraints relating the task to other tasks.

4.4 REQUIREMENTS SPECIFICATION

4.4.1 Process and Data Requirements

From the above section, it can be seen that the data requirements to the scheduler is a set of
tasks and a set of constraints. The set of tasks fed into Z-Scheduler are flavor objects. Since
GEST can only infer on the frames, beliefs and what-if structures (refer to GEST manual
for more details), Z-Scheduler had to convert the flavor objects to GEST frames. Z-
Scheduler also has mechanism to convert the elements in the input constraint list into
constraint frames. The following section will give the structure description of the data
requirements for the Z-Scheduler as it is represented in GEST.

4.4.1.1 Input Representation

On an abstract level Z-Scheduler is a system whose input is described as (I, R, P, S, C)
where,

I- is the set of tasks to be scheduled(For example,. REACH-FOR-RADIO, TUNE-RADIO).
R- is the set of available resources(For example,. Left-hand).
P- a single high level(primary) strategy for the schedule(the scheduling

strategy). For example, MINIMIZE-TIME.
S- is a set of secondary performance measures for the schedule. For

example, MINIMIZE-MOVEMENT-TIME-B ETWEEN-TASK.
C- is the set of constraints on R and l.(For example,. REACH-FOR-RADIO is-before

TUNE-RADIO).

4.4.1.1.1 Input Task Representation (I)

The task representation for the tasks to be scheduled is an extension of the task formalism
that has already been proven in planning systems such as NON-LIN and the more recent O-
Plan(Tate, Drummond, 89). Successful scheduling such as OPIS, ISIS, ISA and many
others too use the same idea as in O-PLAN, i.e, a frame representation for the tasks. The
basic idea present in these systems, of representing each task as a frame, is also present in
the Z-Scheduler. The task frame in the Z-scheduler is described below. It contains slot
names whose values are either initially set during the time of conversion from flavors to
frames or is set during the manipulations of the scheduling decisions.

Page B- 12

Task
name
agent
priority
estimated-duration
cognitive-resource

EST-value
LET-value
ST-value
ET-value
EST-unscheduled-filters
EST-scheduled-filters
LET-unscheduled-filters
LET-scheduled-filters

Scheduling status
member-PDG

; The person/system performing the task.
; The importance of the task with respect to the other tasks.
; The estimated duration on the task.
; The VACP values on this task. This slot
; will interface to Task Loading Model.
; Earliest Start Time value
; Latest End Time value
; Start Time value
; End Time value

; Indicates whether the task has been scheduled or not.
; Indicates which Partial Dependency Graph the task belongs to.

4.4.1.1.2 Resource Representation (R)

The set of resources (R) that have to be allocated to the tasks use the representation shown
below. The explicit representation of the exhaustive list of all resources is not present in our
current implementation, and will be added, since it will be required for the scheduling
process.

Resources
list-of-all-cognitive-resources

instantaneou s-cumulative-visual-load

instantaneous-cumulative-auditory-load

instantaneous-cumulative-cognitive-load
instantaneous-cumulative-motor-load

; Cognitive resources are resources that
; may be shared. This set is dictated by
; Task Loading Model. Hence, if Task
; Loading Model's model has 4 (V A C P)
; channels, then this will be a list of 4
; elements. In the event Task Loading
; Model decides to have a 5
; channel model, then, it will be
; reflected in the slot. This slot helps
; in the integration.
; Cognitive resources are analog in
; nature. Hence, small chunks of such
; resources can be allocated to separate
; tasks that are performed in parallel.

; the total visual resources allocated
; at each instant.
; same as above, but for the auditory
; resource

4.4.1.1.3 Primary Strategy Representation (P)

The primary strategy (P) of the scheduler depends on the pilot's scheduling strategy. If the
pilot wants to complete all tasks as soon as possible, then this strategy, translated as
MINIMIZE-TIME, is the primary strategy. Z-Scheduler scheduling process always applies
the primary strategy at all decision points in its scheduling cycle. Hence, the primary

Page B- 13

strategywill betheprimarymeansof evaluating between the alternate schedules, and in
selecting the best schedule.

Primary-strategy
strategy ; MINIMIZE-TIME etc.

4.4.1.1.4 Secondary Strategy Representation (S)

The secondary strategy is the set of secondary performance measures that are applied to
measure the 'goodness' of alternate schedules. Assume that there are two alternate schedules
that equally satisfy the primary strategy. In such situations,the secondary performance
measures are applied to select the more optimal schedule among the two. Although this
structure is not represented explicitly in the design of the Z-Scheduler, its structure as
shown below will be implemented during future extensions.

Secondary-strategy
list-of-strategies ; Each element is a list that has 2 elements.

; The first is an evaluation function and the
; second is the desirable value for it. For example,
; the evaluation function may be
; TOTAL-MOVEMENT-TIME-BETWEEN-TASKS = sum of
; movement time of all tasks from itself to its
; succeeding task, and the desirable value may be
; MINIMAL.

4.4.1.1.5 Constraint Representation (C)

Constraints may be classified as shown below in Figure 3. Z-Scheduler takes the approach
that constraints from different sources like equipment, causal etc can all be translated into
uniform temporal constraints.

Page B- 14

Temporal Constraints

Absolute

Unconditional

\\
End.at

End-by

Relative

Conditional Unconditional Conditional

Before _eeW

Alter.Will \\\
"°"_"'// II \\ \ ="
Finished'by/ / II \ \ s,.,._._y

or,o:I /
Contains I _,Overalaped-by

Equals

Figure 3. Temporal Constraint Categories in Z-Scheduler

Z-Scheduler differentiates between local and global temporal constraints. The local
constraints can be represented in any of the categories shown above and are defined as being
local to a particular task. For example, specifying a constraint like, "Task-A before Task-
B" relates only to Task-A and Task-B and not to other tasks on the stack. Global
constraints are constraints that are applicable across all tasks, need never to be defined by
the user of the Z-scheduler and are internal to the scheduler. These constraints are shown
below

1. LET > EST

2. LET-EST >= Duration

3. ET > ST

4. ET-ST = Duration

The global constraints are used by the Truth maintainer knowledge source to check for
possible conflicts in the current schedule.

Among the local constraint categories, Z-Scheduler is currently geared to handle the
"Unconditional-Absolute" and the "Unconditional-Relative" categories. These local
constraints may be compounded to give complex constraints. The connection between these
local singular constraints can be made using logical relations like OR, AND etc.

Page B-15

Considering the OR logical connective between singular constraints, we have disjunctions
among constraints, within which we can specify categories as shown in Figure 4 below.

_# oftasks

"_sidcred

#of .
consent\
categories "N_

One

Many

One

i ! I

eg. (before A B)

SAME-RELATION-WITH-
SAME-TASK

Many

eg.(OR(beforeA B)
(beforeA (2)
(beforeA D))

SAME-RELATION-WITH-
MANY-TASKS

eg.(OR(beforeA B)
(equalsA B)
(overlapsA B))

MANY-RELATIONS-WITH
-SAME-TASK

eg.(OR(beforeA B)
(equalsA D))

MANY-RELATIONS-WITH-
MANY-TASKS

Figure 4.. Categories of Disjunction Relationships

In short, Z's local constraint representation is a merger of both the qualitative and the
quantitative time constraints and hence is more expressive than just any one of the
representations alone. It must be remembered here that Z-Scheduler uses the hybrid
structure of temporal constraints only for representation, and translates these constraints into
quantitative cons_aints for temporal reasoning, as will be clear later in the section on the
Constraint Solver Knowledge Source.

4.4.2 Performance and Quality Engineering

During a benchmarking session for the Z-Scheduler, the time taken for scheduling
nine tasks having four constraints is about 9 minutes. The 70% of the time taken for the
schedule generation was spent on performing input/output to the displays. Also, for this
instance, the scheduling solution space was large, or, in other words the solution density
was high and hence there was an increase in the deliberation time because the Z-Scheduler
was trying many more of the promising start time and end times for each task. Given below
are some of the performance improvements the author has made to fine tune the Z's
deliberation tirnc to a minimum.

1. Local Blackboards with each KS: It is a well known fact that greater a databases' size the
more time it takes to access objects from it. Similarly, viewing the Blackboard as a common
shared database among the knowledge sources, it becomes computationally expensive to
access and add objects in the Global blackboard. One of the solutions implemented to

Page B- 16

overcome the above problem was to strictly use only the information that is common across
two or many knowledge sources in the blackboard. The information that is required only by
a single knowledge source is stored in its own local blackboard and only information
pertaining to other knowledge sources are posted on the Blackboard. The concept is similar
to performing intermediate calculations on a scratch pad and only use the results of the
calculation in the next step while solving problems. Since, in GEST the knowledge sources
and their local blackboard are spaced closer in the physical memory, the access of an object
is twice as fast as when the same access is from the global blackboard.

2. Dynamic Priority of the knowledge sources: Although the blackboard architecture was
initially chosen for its intuitive parallel processing architecture, it was noticed that most of
the problem decomposition into knowledge sources turned out to be functional. This
functional decomposition of the knowledge sources dictated that most of them to be
activated serially. The mechanism in GEST to order knowledge sources is in terms of
shared and unshared queues. The shared queues are structures that allow simultaneous
execution of the knowledge sources (KS). For example when KS 1 and KS2 belong to the
same shared queue, and at any instant in time they both have rules that are active -- assume
it is rulel 1 and rulel2 in KS1 and rule 21 and rule22 in KS2. Then the execution will allow
rulell in KS1 to fire, fire rule21 in KS2, fire rulel2 in KS1 and then fire rule22 in KS2. If
KS 1 and KS2 belonged to the same unshared queue, then order of rule firings will be
rulel 1, rule 12, rule 21, rule22. Also, in both cases in every instance of time the controller
orders all the knowledge sources to inspect within itself the rules ready for f'tring which
means that each of the knowledge sources in the same queue must match in the patterns in
its rules to the contents in the Blackboard and its corresponding local blackboard to identify
the candidate active rules. Since most of our knowledge sources can only be activated in
sequence, this uniform instant to instant matching, conflict resolving in each KS was seen to
be expensive in terms of computational time. Hence, the design of the KS was such that any
time one KS was invoked, the first action would be to increase its own priority so as to
thwart any other KS to get the processing time. Also, when the knowledge source realizes
its function to be nearing completion it gracefully and voluntarily decreases its priority so as
to allow for other activated knowledge sources to run. The only exception to the above
dynamic priority to the KS is the Conflict resolver (Truth Maintainer) KS, since the very
function of this KS is to quickly identify conflict and this function is an aUtime one and
hence this KS constantly maintains higher priority than the rest of the knowledge sources.

3. Partitioning the Blackboard: As mentioned in above, one of the bottlenecks in the
performance of a blackboard application is the retrieval of objects from the blackboard. In
the Z-Scheduler, we have divided up the space using the frame hierarchy concept provided
in the GEST framework.

4. Choosing Extended Task-based scheduling: One of the crucial metrics for CSP
algorithms is the number of backtracks -- the greater the number lesser its time-efficiency.
The CSP algorithm chosen for the Z-scheduler is an extended version of the task-based
scheduling approach --- extended to schedule for multiple shareable resources with lower
deliberation times. This approach takes care of the interaction that arises between the
scheduled tasks and the unscheduled ones up front and hence, minimizes on the causes for
the conflicts, thereby reducing the number of backtracks.

4.4.3 Implementation Constraints

The Z-Scheduler is built on top of a knowledge-based tool from Georgia Tech Research
Institute called Generic Expert System Tool (GEST). Hence, appropriate access to GEST
tool is required for running the Z-Scheduler.
Details on acquiring GEST should be directed to

Page B- 17

Stefan Roth
GTRI, Atlanta, GA

spr@prism.gatech.edu

Since GEST keeps track of all the changes made to the working memory of all the
knowledge sources during the execution of the Z-Scheduler, 10000 blocks of
paging space is suggested for an acceptable response of the scheduler. This quantity of
paging space may be higher for an input containing more than 100 tasks.
Also it is suggested that between few runs of the Scheduler an immediate GC be performed.

5.0 DESIGN

5.1 ARCHITECTURAL DESIGN

The architecture for the Z-Scheduler is shown in Figure 5.

Page B-18

SOFTWARE ARCHITECTURE OF Z-SCHEDULER

INPUT TASKS AND CONSTRAINTS
FROM TASK GENERATOR / PLANNER

L.
PROCEDURES

Procedures

BLACKBOARD
i i

r

UnscheduledTuk Queue Conllrlmt Queue

I '1] 'I I'l I i / i t I

Pjrt_fly ordecedDopendecto/Grl_h

.. WindowCalculations

_ndowPropegltion

Conllct I:_sotution

Aoceptabfe Schedule- Time-LineOrder of TukAm

KNOWLEDGE

80URCES

Z-ConI_ol Module

OUTPUT CONSTRAINTS
FROM Z.SCHE[:)ULERTO

TC.VPLANNER

Figure 5. Software Architecture of Z.Scheduler

Page B- 19

Z-Scheduler uses a blackboard architecture. This architecture allows for its componems to
be modular and easily extendible.The components of Z-Scheduler arc calledknowledge
sources and each component represents a stage in the scheduling process. Z-Scheduler itself
is modular and is called on an "as-needed" basis by the decision making module. Z-
Scheduler uses the extended task-based decomposition (a "divide-and-conquer" technique)
to partition the scheduling problem space into subspaces, finds the local solutions for each
of the subspaces and threads the individual local solutions along to derive the global
scheduling solution.

Z's scheduling problem is been classified into sub-problems using the interaction-sensitive
task-based scheduling paradigm. This task-based scheduling problem decomposition has
been extended to apply to multiple shareable resources, to handle re.scheduling and tuned for
faster performance. Incorporating Z-Scheduler into the symbolic operator model allows the
model to reason about performance on tasks projected into the future (the temporal horizon),
thereby enhancing the predictive capability of the MIDAS task analysis.

Before discussing the details of the Z-Scheduler, we need to characterize our scheduling
problem. Doing so, will help the design of the scheduler. Based upon the nature of the input
we can fit our scheduling problem into the category of dynamic multi-stage routing problem
(Ben-Arieh, 1985). It is dynamic because the set of input tasks change (due to unexpected
events) over time. It is multi-stage because all the tasks to be scheduled may not be
homogeneous (in the same level of the mission decomposition structure); hence, the more
abstract tasks may have to be expanded further by the scheduler. It is a routing problem
because there may be situations where a task can be performed by alternate resources.

Traditional OR techniques have failed to provide effective solutions for such complex
problems (Si Ow et al, 1987,1988). Hence, we must turn to the more recent approaches to
scheduling for solutions. These applications have used AI techniques such as constraint
satisfaction algorithms, temporal reasoning mechanisms, search space pruning heuristics,
frame-based schedule representation, and problem space partitioning with considerable
SUCCESS.

5.1.1 Design Approach and Tradeoffs

This section explains the categorization of scheduling problems. Specifically this section
identifies the category that the A3I scheduling problem belongs to.

Scheduling problems are classified based on the following categories.

1. Static/Dynamic : This classification is based upon the arrival of tasks to be
scheduled. If all the tasks to be scheduled are available initially, then it is a static
problem. If the tasks arrive continuously then it is a dynamic problem.

2. $ingle-Stage/M_d_i-SIage : This classification is based on the number of subtasks
comprising a task. If a task cannot be further divided into subtasks then it is a
single-stage problem. If a task can be divided into subtasks then it is a multistage
problem.

3. OueuingSRouting : This classification is based on the execution resources
possessed by the tasks. If a task can be executed only by a unique resource then
it is a queuing problem (queue for that particular resource). If a task can be
executed on alternate resources than it is a routing problem (route to an alternate
resource to process a task).

Page B-20

The first categorization can also be viewed asa Schedu]ing/Rescheduling (static) vs Reactive
scheduling (dynamic) problem. At this point we want to distinguish between Rescheduling
and Reactive scheduling.Rescheduling is the schedulingprocess in which every time the
task queue changes, the ongoing scheduling processis interrupted, the scheduleso far is
dropped and the schedulingis startedafreshagain. Reactive scheduling is the scheduling
process where every time the task queue changes, the scheduling process is inrarruptedto
consider the addition to the taskqueue and scheduling this task by working around the
existing schedule.It has beenclear from the beginning that the MIDAS scheduling problem
is a Reactive (dynamic) scheduling problem. Additionally, we make the following
assumptions:

Assumption 1: In the MIDAS scheduling problem the tasks arrive continuously.
,_tl_3._: At present, we consider that the tasks to be scheduled are primitive

units which cannot be decomposed further. Hence we have a single-stage
problem. One of the future directions will be to schedule higher levels of the
mission plan. Then our problem extends to being a multi-stage one.

Assumption 3: Also, currently we assume that a task can primarily be peffonn_
only by one resource. This assumption makes our problem a queuing one. In the
future when this assumption is lifted then problem becomes a routing one.

Therefore, the current MIDAS scheduling problem is a dynamic single-stage queuing
problem with the possibility of extending it to be a dynamic multi-stage routing problem.
Scheduling can always be viewed as a constraint satisfaction problem (J. Allen, 1983).

Given the above description of Z-Scheduler's problem, it has been concluded in past
research that traditional OR algorithms fail to arrive at an acceptable schedule in an
acceptable time. Hence, we turned to knowledge based techniques to solve this scheduling
problem. Knowledge based techniques employ heuristics to arrive at an acceptable schedule
in an acceptable time by using these heuristics to limit the number of possible schedules
explored. The general approach while using this technique is to model the scheduling
problem as a constraint satisfaction problem (CSP). CSP has a structure as shown in
Figure 6 below.

Page B-21

CONSTRAINT SATISFACTION PROBLEM

1-1 mapping

POLOS

[3,4,5,61
'_ [3, 4, 5]

[7, e, O]

Figure 6. Constraint Satisfaction Problem

CSP contains a pool of variables that have a corresponding domain of values and the aim of
the algorithm that solves the CSP is to assign for all the variables a value from its
corresponding domain such that all the assignments do not violate any constraints between
the variables defined in the constraint pool. Whenever a problem is modeled in this manner,
the solution space is divided into subspaces and the local solutions are found for each space
and these local solutions are threaded along to get the global solution. The method in which
the problem space is divided is crucial to the efficiency of the algorithm that solves the CSP.
One of the metrics for the CSP algorithms efficiency is the number of backtracks performed;
lower the number of backtracks better the algorithm. In the Z-Scheduler we have chosen the
more recent task-based scheduling to partition the scheduling space, since the algorithm that
can solve the subproblems takes care of the interaction between variables due to the
constraints up front and hence minimizes on the backtracks to handle the conflicts. The
process is explained in depth in the Task Selector and Resource Allocator knowledge source
sections, Sections 5.1.2.2 and 5.1.2.3.

Page B-22

5.2 DETAILED DESIGN

5.2.1 Detailed Design Description

This section contains the descriptions of the procedures present in each of the knowledge
sources along with a description of the controlling mechanism that monitors the execution of
these knowledge sources.

5.2.1.1 Constraint Solver Knowledge Source

The Constraint Solver knowledge source primarily does a pre-processing function that
transforms the given constraints into a form that the other knowledge sources can infer over.
Preprocessing here means that the process is performed before any of the actual scheduling
processes and is performed only once during each run of the Z-Scheduler. The constraint
solving process can be divided into two phases, the constraint ordering phase and the partial
dependency graph (PDG) generation phase.

During the constraint ordering phase, the input constraint list is ordered according to the
following heuristics:

1. Order the tasks according to their user defined priority.
2. Group all the singular constraints of a task in the order specified in earlier step.

In the current version of the Z-Scheduler this step is not implemented, but the author sees
this as an important part of the constraint solver knowledge source that may help in avoiding
conflicts in the schedule later in the scheduling process.

The creation of PDGs is one of the main functions of the constraint solver KS. The PDG is
created by inferencing on the set of temporal constraints specified in the above order. This
process involves accessing the slot vtdues contained in each constraint frame one at a time
and shaping the PDGs. Concurrently it also encodes filters for the EST-value, LET-value,
ST-values and ET-values by performing look-ups to the temporal transform tables. The
notion of applying constraints one at a time is generally attributed to the work by Mark
Stefik in MOLGEN and is termed constraint posting. Additionally, during the PDG
generation process, the hybrid constraint representation is translated into point-based filters
by performing lookups to the temporal transform tabZes as shown below.

Page B-23

\ Constraints I I I I
\ I I I I

\ B_d'_ IDm'/ng lOre'laBs IM_.4s
Task-A's \ I I I I
Slot-values \ I I I I

I
I
kStans
I
I

Example

EST-value

EST-consu'aints-
unscheduled

EST-constraints-
scMdded

LET-value

l._T-constraints
unscheduled

LET-constraints
scheduled

Start-time-value

Starbtimc-cons-
-[rainls

End-time-value

I

l(Bdor_ A B)
I I I
I (During A B) I (Overlapsh B) I(Meets A B)
I I I
I I I
I I I
lEST(A) = EST(B)lEST(A)=EST(B) I EST(A) - EST(B)-D(A)
I +I I +I-IXA)
I I

lEST(A) = ST(B) lEST(A)= ST(B) EST(A) = ST(B)-D(A)
I +l I +I-D(A)
I I
I I
I I

I

I(Starts A B)
I
I
I
t EST(A) =
I EST(B)
I
l EST(A) =
I ST(B)
I
I
I

B.,ET(A)-- LET(B)B.,ET(A)= LET(B)R..ET(A)=LET(B) l LET(A) = LET(B)-D(B) ILEr(A)==

End-time-cons-lET(A)< ST(B)
traints I

I
Duration I
conslrainIs I

I

PDG-constraints IP(A) < P(B)
I

where P(A) = position of task A in its PDG.

I -D(B)-I[-I I-D(B)-I+D(A)
I I I
I I I

R._wr(A)= ST(B) R..ET(A)=ET(B) ILET(A)= ST(B)
-I I -I I -I+D(A)

I I
I I
I [
I I

[ST(A) > ST(B) [ST(A) < ST(B)
l [
I i
[[
i I

lET(A) < ET(B) lET(A) > ST(B)
l lET(A) < ET(B)
I I
ID(A) >= D(B)+2 1D(A) >= 2
I I
l I
• (A)= P(B) IP(A)= P(B)
I I

J

LET(A) = ST(B)

iST(A) = ST(B)-IXA)
I
I
i
I
lET(A) = ST(B)
l
I
I
i
I
IP(A)= P(B)-l
I
l

CL_-T(B)-
ID(B)+IXA)
I

LET(A) =
tST(B)
I+IXA)
I
I
I
IST(A) =
IST(B)
I
I
I
lET(A)=
)ST(B)+IXA)
I
I
I
I

/P(A)=P(B)
[
[

.cS.Table 1. Temporal Transform -- Unconditional-Relative Constraint

Propagation

Page B-24

\ Constraints I I I
\ I I !

\ _.qua_s _stsn_-by _inis_ea-by
Task-A's \ I I I
Slot-values \ r _ I

Example

EST-vaJue

EST-constraints
-unscheduled

EST-constraints
-scheduled

LET-value

(Equals A B)

EST(A)=EST(B)

EST(A)=ST(B)

LET-constraints LET(A) = LET(B)
-unscheduled I

I
LET-consuraints ILET(A)= ET(B)
-scheduled

Start-time-val_

Start-time-cons- ST(A) = ST(B)
-waints

End-time- value

End-time-cons- lET(A) = ET(B)
-traints I

I
Duration-coast- D(A)=D(B)
-mints I

I
PDG.constraints IP(A) ---P(B)

(started-by A B)

EST(A)=EST(B)

EST(A)=ST(B)

(f'mished-by A B)

EST(A)=EST(B)+D(B)-IXA)

EST(A)=ET(B)-D(A)

LET(A)=LET(B)-D(B)+D(A) LET(A)=LET(B)
I I
I I
[LET(A)=ST(B)+D(A) _.ET(A)=ET(B)
J I
f t
I I
I I
1ST(A)=ST(B) [ST(A)=ET(B)-D(A)

I I
I !
I l
[ET(A)=ST(B)+D(A) [E'I'(A)=ET(B)

Table l(cont). Temporal Transform -- Unconditional-Relative Constraint
Propagation

Page B-25

\ Constraints I I I I I
\ I I I I I

\ [Af_ K_ontains K_v.clapped.by IMeg-by [Finishes
Task-A's \ I I I I I
Slot-values \ I I I I I

I I I
Example I(Afier A B) t(Contains A B) I(Ove,rlapped-by

I t I A B)
EST-valu¢ I I I

I I I if D(A)<D(B)
EST..constraints lEST(A)=EST('B) lEST(A) = EST(B)I EST(A) = EST(B)
unscheduled I +D(B)+ll + D(B)+I-D(A) I +D(B)+I- D(A)

I
I
I

EST-consWaints lEST(A) = ET(B)
scheduled +1

LET-value

LET-constraints

LET-cons_aints
scheduled

Start-time-val_

Start-lime-cons- IST(A) > ET (B)
traints

End-time-value

End-time-cons-

Duration
constraints

PDG-conslraints IP(A) > P(B)
i
I

I otherwise
I EST(A)=STOi)41
I

EST(A)= ET(B)I if D(A)<D(B)
+I-D(A)I EST(A)ffiET(B)+ 1

I -D(A)
I otherwise
I EST(A)ffiST(B)+I
I
I

ILET(A)= LET(B)1 LET(A) ffiLET(B)
I-DfB)-I +D(A) I -1 +D(A)
I l

[I.,ET(A)ffiST(B) { LET(A)= ET(B)- I
I -I+D(A)I +D(A)
t
I
I
IST(A) < ST(B) ST(A) < ET(B)
I ST(A) > ST(B)
I
I
I
lET(A) > ET(B) ET(A) > ET(B)
I
I
ID(A) <= D(B)-2 D(A) >= 2
I
I
IP(A)= P(B) P(A)= P(B)
I
I

I I

I(Met-by A B) }(finishes
I lAB)
I I
I I
lEST(A) = ESTfS) lEST(A)= -
I +D(B) lEST(B)
t i+D(B)
t t-D(A)
I I

lEST(A)ffiET(B) IEST(A)=-
I ET(B)
I -D(A)
I
I
I
I

ILET(A)= LET(B) ILET(A)=
I+D(A) ILET(B)
} I
ILET(B) = ET(B) ILET(A)= -
I +D(A) I ET(B)
I I
I I
I I
IST(A) = ET(B) IST(A)= -
I lET(B)
J J.D(A)
I I
I I

ET(A) = ET(B) IET(A)= traints
I +D(A) lET(B)
I I
I I
I I
I I
IP(A)= P(B)+ I IP(A)=
I I P(B)
I I

Table l(cont). Temporal Transform -- Unconditional-Relative Constraint
Propagation

Page B-26

\ Constraints I I I
\ I I I

\ I Start-at I Start-by I End-at
\ i I ,

Slot-values \ [i I

I
I
i End-by
I
I

Example

EST-value

LET-value

Start-time-value

End-time-value

I(Start-atA 5) ;(Start-byA 6) I(End-atA 7)
I I
I I
I I
ILET = 6 + D(A)I
I I

5 I I
I I
I _ 7
f I

I(End-by A 8)

LET = 8

.c8.Table 2 Temporal Transform -- Unconditional Absolute Constraint
Propagation

PageB-27

The PDG generation stage includes taking one constraint at a time and inserting it into each of the
tasks and at the same time updating the partial dependency graph. The process will result in strips
of partial dependency graphs being formed. The function that forms the PDG takes in two tasks,
say, task-A and task-B, and PDG that the tasks belong to, say PDG-1 and PDG-2, and works in
the manner as shown below.

CASE-1 :

CASE-2:

CASE-3:

CASE-4:

CASE-5:

When PDG-1 = PDG-2 = nil

forma new-PDG framenamed PDG-AB withthetask-order-listas(A B).
insertintomember-PDG slotofeachofthetasksthenew-PDG frame

i.e.,PDG-AB.
When PDG-I = niland PDG-2 = PDG-B

InsertTask-AintoPDG-B and updateTask-A'smember-PDG slotto
pointtoPDG-B.
InsertTask-AintoPDG-B
When PDG-I = PDG-A andPDG-2 = nil

InsertTask-BintoPDG-A and updateTask-B'smembcr-PDG slotto
pointtoPDG-B.
InsertTask-BintoPDG-A
When PDG-I = PDG-2 = PDG-AB

Do notupdatethemembcr-PDG slotsintherespectivetaskframes.
When PDG-I = PDG-A and PDG-2 = PDG-B and PDG-A !=PDG-B

Merge PDG-A and PDG-B intoanew PDG = PDG-AB
updatethemcmber-PDG slotsoftask-Aand Task-B.

5.2.1.2 Task Selector Knowledge Source

The Z-Scheduler uses task-based scheduling for partitioning the scheduling problem space.
Task-based scheduling is a two step process. The first step involves the selection of a single
task from the task stack. The second step involves the commitment of a resource's time slice
to the selected task by evaluating all alternative resource allocations for that task and
selecting the best allocation based on certain decision metrics. Each of these two steps is
carried out in separate knowledge sources, the first being implemented by the task selector
knowledge source and the second being carried out by the resource allocator knowledge
source.

The metric in selecting tasks for resource allocation, is called the Task Criticality (rc)
measure. Task Criticality in its most simple form is the ratio of the execution time to the
window duration -- that is, it is a measure of the slack of a task. The more the slack on the
task less its task criticality. If TC equals 1, then it means that the task is very critical
because it has only a single solution for the task and does not have alternate solutions.
Since, the task-based scheduling (Rossi, Keng,1989) can only handle single resource
domains (schedules tasks that use a single machine), we had to extend this approach to
handle the multi-resource domain (dictated by the nature of HCI tasks). Each of these
resources were shareable (at any moment in time, a resource can handle more than 1 task by
giving x-units of resource to task-1 and y units of resource to task-2). Hence, the TC
calculations had to be extended to handle the multi-shareable resources.

The task criticality extended in the Z-Scheduler is a measure having three factors, slack on
the task, the user defined priority of the task and the resource requirement for the task. The
heuristic applied in the task selector knowledge source is that the task with highest task
criticality becomes the candidate for resource allocation.

Page B-28

Along with the task to be scheduled, the heuristic had to select a resource that needed to be
focussed upon and the logic is outlined below.

Task-criticality ::= TC ::= Priority * (Max[V A C P] *
(duration / (LET - EST)))

Task-selected ::= t ::- Task with Max TC

Resource-selected :=: R ::= Max [V A C P] of t

TC-for-tasks-that-use-resource-R-
in.the-window-duration-of-task-t

::= (TC)r ::= Priority * R * (duration/LET-EST))

5.2.1.3 Resource Allocator Knowledge Source

Similartocalculatingthecriticalityoftask,theresourcecriticalityiscalculatedinthe
resourceallocatorknowledgesource.The metricforallocatingaresourcetimesliceforthe
selectedtaskistopickthesolutionthathasminimum resourcecompetition,thelogicbeing
thatthesolutionmustnotcataway intotheopportunityofthetasksthathavenotyetbeen
scheduled. This metric is called the resource competition measure.

Resource-Competition.in-a-time-period ::-- (RC)t
::= SUM of (TC)r of tasks in that time-period

Resource-Competition-for-solution ::- (RC)s
::- SUM of (RC)t for the solution.

Resource-allocated-to-task-t ::= Min (RC)s
::= The solution selected is the one having the

minimum resource competition

Hence, if there are alternate solutions to allocating the resource to a task then, Z-Scheduler
picks the solution that has the least impact on the rest of the tasks, i.e, it selects the time
period of the resource that is least competitive.

5.2.1.4 Constraint Propagator Knowledge Source

The constraint propagator knowledge source is a record keeping knowledge source. Every
time a task is scheduled the constraint propagator knowledge source updates the rest of the
task's window of opportunity by propagating the temporal constraints in the partial
dependency graphs.

The effect of allocating time units of a resource to a task is propagated in two stages. The
first stage involves the propagation through the single PDG that contains the scheduled task
and is called the Intra-PDG-propagation stage. The second stage includes the propagation
between all the PDGs that have tasks that overlap the time units of the resource assigned
and is defined as the Inter-PDG-propagation stage.

5.2.1.4.1 lntra-PDG-propagation

The local constraints that relate two or more tasks help identify the preceding-tasks,
succeeding-tasks and concurrent-tasks for every task and this is useful for the purposes of
generalizing the constraint propagation mechanisms. The order in which the consnaints are

Page B-29

propagated also uses the grouping below. The constraints belonging to the prec_ling-tasks
of the task just scheduled are first propagated, followed by the c_nstralms belonging to the
succeeding-tasks and lastly, the constraints belonging to the concurrent-tasks are
propagated. The reason for doing so is that the preceding- and the succeeding-tasks reduce
the window of opportunity much more than the constraints belonging to the concurrent-
tasks.

The following task categories are formed by the given constraints and are as shown below.

Preceding-tasks = tasks that are constrained by the 'Before or Meets constraint types.

Succeeding-tasks = tasks that are constrained by the 'After, Met-by constraint types.

Concurrent.tasks = tasks that are constrained by the Overlaps, Overlapped-by, During,
Contains, Starts, Started-by, Finishes, Finished-by, and
Equal constraint types

The windows are initially calculated for the first time immediately after the constraint
solving knowledge source has finished execution. Incremental OR algorithms calculate the
initial window of opportunity for all the tasks. The window of opportunity is represented
as a time slice that is bound on the left by Earliest Start Time (EST) value and is bound on
the right by the Latest End Time (LET) value. The EST for each task is calculated by
finding the tasks that do not have any preceding tasks and assigning to the EST value the
start of the input temporal horizon and forward chaining to calculate the EST of the rest of
the tasks and is shown in detail below.

Initial window calculations:

Forward chaining to calculate the EST

For all tasks with

Preceding-tasks = nil
If ST or ET = nil i.e they are not scheduled yet
Then EST = start of the given temporal horizon

Loop for all succeeding-tasks of task
apply constraint-propagate-unscheduled (test only EST-constraints)

Else Loop for all succeeding-tasks of task
apply constraint-propagate-scheduled (test ST constraints and if fails

then EST-constraints)

Backward chaining to calculate the LET

For all tasks with
Succeeding-tasks = nil
If ST or ET = nil i.e they are not scheduled yet
Then LET = end of the given temporal horizon

Loop for all preceding-tasks of task
apply constraint-propagate-unscheduled (test only LET-constraints)

Else Loop for all succeeding-tasks of task
apply constraint-propagate-scheduled (test ET constraints and if fails

then LET-constraints)

Page B-30

The windows are updated after the execution of the resource allocation stage using a
recursive algorithm as shown below.

Recursion
Loop for each task constrained by the just scheduled task

calculate the EST and LET using the EST and LET constraint formulas
If EST and LET changed - then recursively do the recursion.

Calculation of the EST and LET from the constraint formulas is invoked by demon
procedures provided by the GEST tool. Depending which demon invokes the propagation
of the values, one of the following procedures are called. If the value being changed is the
EST or LET values, then 'constrairlt-pro_nagation-unscheduled'is called. If the values were
El" or ST then the 'constraint-propagation-scheduled' function is called. Each of these
functions is explained below.

constraint-propagation-scheduled

For each Predecessor in the preceding-tasks
If predecessor is scheduled
then do nothing.
else Identify ST-filter that relates the scheduled-task and the Predecessor

Apply that filter
If ST-value changes for the Predecessor
Then call constraint-propagation-scheduled ;; re.cursion! !
Identify ET-filter that relates the scheduled-task and the Predecessor
Apply that filter
If ET-value changes for the Predecessor

Then call constraint-propagation-scheduled ;;recursion!!
Identify EST-filter that relates the scheduled-task and the Predecessor
Apply that filter

If EST-value changes for the Predecessor
Then call constraint-propagation-unscheduled

Identify LET-filter that relates the scheduled-task and the Predecessor

Apply that filter
If LET-value changes for the Predecessor

Then call constraint-propagation-unscheduled

For each Successor in the succeeding-tasks
If successor is scheduled
then do nothing.
Identify ST-filter that relates the scheduled-task and the successor
Apply that filter

If ST-value changes for the successor
Then call constraint-propagation-scheduled ;;reeursion[

Identify ET-filter that relates the scheduled-task and the successor
Apply that filter

If ET-value changes for the successor
Then call constraint-propagation-scheduled ;;recursion!

Identify EST-filter that relates the scheduled-task and the successor
Apply that filter

Page B-31

If EST-value changes for the successor
Then call consu'aint-propagation-unscheduled

Identify LET-filter that relates the scheduled-task and the successor
Apply that filter

If LET-value changes for the successor
Then call consm£nt-propagation-unscheduled

For conc-task in the concun'¢nt-tasks
If cone-task is scheduled
then do nothing.
Identify ST-filter that relates the scheduled-task and the cone-task
Apply that triter

If ST-value changes for the cone-task
Then call consu'aint-propagation-scheduled ;;recursion!

IdentifyET-fflterthatrelatesthescheduled-taskand theconc-task
Apply thatfilter

IfET-valuechangesforthecone-task
Then callconstraint-propagation-scheduled;;recursion!

IdentifyEST-fflterthatrelatesthescheduled-taskandtheconc-task
Apply thatfilter

IfEST-valuechangesfortheconc-task
Then callconstraint-propagation-unscheduled

IdentifyLET-filterthatrelatesthescheduled-taskand thecone-task
Apply thatfilter

IfLET-valuechangesfortheconc-task
Then callconstraint-propagation-unscheduled

constraint-propagation-unscheduled

For each Predecessor in the preceding-tasks
If predecessor is scheduled
then do nothing.
Identify EST-filter that relates the unscheduled-task and the Predecessor
Apply that filter

If EST-value changes for the Predecessor
Then call constraint-propagation-unscheduled

Identify LET-filter that relates the scheduled-task and the Predecessor
Apply that filter

If LET-value changes for the Predecessor
Then call constraint-propagation-unscheduled

For each Successor in the succeeding-tasks
If successor is scheduled
then do nothing.
Identify EST-filter that relates the unscheduled-task and the successor
Apply that filter

If EST-value changes for the successor
Then call constraint-propagation-unscheduled

Identify LET-filter that relates the scheduled-task and the successor
Apply that filter

If LET-value changes for the successor
Then call constraint-propagation-unscheduled

Page B-32

Forconc-taskin theconcurrent-tasks
If conc-task is scheduled
then do nothing.
Identify EST-filter that relates the unscheduled-task and the conc-task
Apply that filter

If EST-value changes for the conc-task
Then call constraint-propagation-unscheduled

Identify LET-filter that relates the unscheduled-task and the conc-task
Apply that f'dter

If LET-value changes for the conc-task
Then call constraint-propagation-unscheduled

5.2.1.4.2 Inter-PDG-propagation:

Calculate the loading prof'de for the duration of the task-just-scheduled. For every peak (the
max resource capacity) form a frame for it, give it a name and assign its start and end times.

ALGORITHM- 1:

This algorithm saves initial procedures for iteration but does more checking.
Loop for each task in the Inter-DG-concurrent tasks

let EST-temp(task) ---EST (task)
LET-temp(task) ---LET (task)
Loop for peak and next-peak in peaks for all odd numbered peaks

If EST-temp (task) < = ST(peak)
Then If LET-temp > ST(next-peak)

Then MAY-BE-EST-n = EST-temp
MAY-BE-LET-n = ST(peak)
MAY-BE-EST-n+ 1 = ET(peak)
MAY-BE-LET-n+I = LET-temp (task)

Else ;;; i.e LET-temp >ST (next-peak)
MAY-BE-EST-n = EST-temp
MAY-BE-LET-n = ST(peak)
MAY-BE-EST-n+I = ET(peak)
MAY-BE-LET-n+I = ST(next-peak)
EST-temp = ET(next-peak)

Else If LET-temp > ET (peak) ;;; i.e., EST-temp > ST (peak)
Then If LET-temp < ST(next-peak)

Then
MAY-BE-EST-n = ET(peak)
MAY-BE-LET-n = LET-temp
EST-temp = ET(next-peak)

Else
No Solution - hence backtracking required.

Find the validity of each of the windows by checking if
LET-x(task) - EST-x (task) >= Duration (task)
If false, then drop that window duration from the list
possible-windows.
Among the valid windows select the largest one as the prime
candidate.
Call Intra-DG propagation using the largest window duration as
the changed reference.

5.2.1.5 Truth Maintainer Knowledge Source

Page B-33

The Truth Maintainer knowledge source is a high level monitor of the constraint propagating
activities. Whenever a conflict occurs during the process of constraint propagating, this KS
halts the execution of the other knowledge sources by sending a message via the blackboard.
Afterhaltingtheprocessthatwas responsiblefortheconflict--- an exampleoftheconflict
isthatthewindow durationofthetaskbecomes smallerthantheestimateddurationofthe

taskm theTruthMaintainer attemptstofindthemason fortheconflict'soccurrenceand on
findingitout,itresetsalltheknowledgesourcestothatpointintimethatbroughtaboutthe
conflict.Inotherwords,theTruthMaintainerisbuilton theprincipleofchronological
backtracking,where theamountbacktrackingistothepreviousdecisionpoint.

The conflictsaredescribedasany violationsoftheglobalconstraintsasdescribedinthe
sectionon conswaintrepresentation.Forexample,theglobalconstraintT.ET-EST >=
Duration'when violatedmeans thatthewindow ofopportunityfora taskislessthanthe
durationofthetask,hencemaking thetaskimpossibletoschedule.The truthmaintenance
algorithm,appliesalltheglobalconstraintswheneverany task'sEST-value,LET-value,
ST-valueorET-valucchangesduringtheconstraintpropagationstage.Currently,Z-
Schedulerperformsonlythechronologicalbacktrackingmechanismtohandletheconflicts
and hence,doesnothaveanydomain knowledgetorelaxtheconstraintwithout
backtracking.One ofthefutureextensionsof_c Z-Scheduleristoincludedomain
dependentstrategiesthathandletheconflictswithoutbacktracking,whichhappenstobe a
more psychologicallyvalidmethodforhandlingtheconflicts.

5.2.1.6 Z-Scheduler Display Design

The followingsectiondescribesseveraltypesofdisplaysusedinvisualizingthescheduling
process.Each ofthesedisplaysindistinctandcan bcimplementedseparately.The only
placeinwhichtheyoverlapisthatclickingon apresentationinone displaywillbringup a
differenttypeofdisplay.

Please note that :
Flavor classes appear in italic type.
presentation types appear in bold-italic type.
Function and variable names appear in bold face.

5.2.1.6.1 Task Stack Display

Thisdisplayshows theorderinwhich thetaskswillbcperformed.Thisdisplaywillbe
dynamicand willupdateitselfany timetheschedulerreordersthetasks.The window will
containapresentationobjectforeachtask.A taskobjectwilllooklikeaplayingcardwitha
labelon thetop.The taskobjectswillstackon on topofanothertoshow thetaskordering.

I Task C I
............... i

I TaskB I--
............... . [

ITaskA [--
I I
l [

task-stack-window: window flavor which will be used for task stack display.

task-card: presentation type for card like display of task object.

Page B-34

Clicking the mouse on this presentation type will pop up a window
describing the task object (see "Task Frame Display" below).

default.task.stack-character-style: Default font used to print task names in task
card presentations.

(show.task.stack ordered-task-list &key stream
(character-style *default-task-stack-character-style*)

returns a task-stack-window displaying the task ordering. If you specify a
stream the stream must be of type task-stack-window. If stream is not
specified you'll be prompted with the mouse for the window size and location.
Character style specifies font used to print task names.

(update.task.stack task-stack-window ordered-task-list &key highlight-time)
The scheduler must call this function to update the task-stack-window
whenever it reorders the tasks. If highlight-time is supplied, each task
presentation which has changed its position in the occlusion stack will be
highlighted. These task presentations will remain highlighted for
highlight-time seconds.

5.2.1.6.2 Task Frame Display

This is a simple display which shows the slot values of a task. It will look
something like Ibis:

Name: Task A
Agent: ...
Resource: ...

object-frame-window: window flavor for pop up windows showing slots of frame.

constraint: presentations type whose object is a list of (reference-task related-task)
mouse-left action pops up task frame window for related-task.
mouse-middle action pops up window with constraint frame slots and values.

default.frame-character-style: default font used to print slot values.

(show-task-frame task superior
&optional (character-style *default-frame-character-style*))

pops up a temporary window showing slot values. Window will disappear when
you click the mouse outside it. The function get-task-slots-for-display
deter_nes which slots are displayed, superior is the parent window of
the pop-up window (can be either color screen or main screen).

(get-task-slots-for-display) returns a list of slot-printer-pairs (see description below).

(show.constraint-frame constraint superior
&optional (character-style *default-frame-character-style*))

pops up a temporary window showing slot values. Window will disappear when
you click the mouse outside it. The function get-constraint-slots-for-display
determines which slots are displayed, superior is the parent window of

Page B-35

the pop-up window (can be either color screen or main screen).

(get-constraint-slots-for.display reference-task related-task)
returns a list of slot-printer-pairs (see description below).

The generic function for popping up a window showing the slots of a frame is
print-frame. This is the function called internally by show.task-frame and
show.constraint.frame.

(print-frame (framc slot-printer-pairs superior
&optional (character-style *default-frame-character-style*))

slot-printer-pairs is a list of pairs
(slot-name printed

printer specifies how to print the slot value
it must be one of

(non-mouseable-print default-print constraint-print pdg-print)

non-mouseable-print slot value will not be mouseable.
default.print slot value has same mouse functionality as values in lisp listener
constraint-print slot values will be printed as constraint presentations.
pdg-print slot values will be printed as dependency-graph presentations.

(see description of dependency-graph in "Schedule Chart" below)

5.2.1.6.3 Dependency Graphs

This display will contain a directed graph showing the dependency relationships
between task execution. For example, the display below shows that Task A must
occur before Task B and Task C.

Task B

Task A

Task C

default-task-node-character-style: default font used for labeling nodes in partial
dependency graph

default-color-cycle: list of colors we cycle through when drawing links.

pdg-task-node: presentation type for nodes in the graph.
They will be shown as an oval with a label in the middle.
Clicking the mouse on this presentation type will pop up a window
describing the task object (see "Task Frame Display" above).

(show-dependency-graph pdg &key stream (character-style *default-task-node-
character-style*))
returns a window containing the partial dependency graph. If you do not specify a
stream you'll be prompted with the mouse for the window size and location.
pdg is an object which contains a list of the tasks. Task objects contain a
succeeding-tasks slot which contains a list. Each element in the list is either

1. (task) we draw a single thickness line to the task node

Page B-36

2. (m-t-c-w-s-t taskl taskn)
we draw a double thick line to each task node

3. (s-t-c-w-m-t taskl ... taskn)
we draw a dashed line to each task node

For all tasks (taskl ... taskn) in case 2 or 3 we draw lines using the
same color. *default-color-cycle* is a list of colors we cycle through for
all succeeding tasks.

Task objects also contain a concurrent-tasks slot whose value is either nil
or a list of tasks.

To construct the partial dependency graph we look at the succeeding-tasks slot
and construct the links (drawing lines with arrowheads). We also look
at the concurrent-tasks slot and construct those links (drawing plain lines).

For example, if we have pdg-1 with tasks (A B C D) with the following task
descriptions we will get the partial dependency graph shown to the right.

task A
succeeding-tasks: (03) (C))

Task B
task B

succeeding-tasks: ((D)) Task A Task D

Task C

task C
succeeding-tasks: ((D))

task D

succeeding-tasks: nil

5.2.1.6.4 Scheduling Chart (Gantt Chart)

This display is a dynamic display showing the scheduling of tasks.

Initially, for each task within a partial dependency graph there will he a presentation
showing the time slice where it is possible to schedule the task. This presentation will look
like a line with arrows on the ends (<---> in diagram).

As tasks are scheduled we update the display to show the scheduled times for the tasks.
Once a task is scheduled the presentation for that task will change to a solid
rectangle (=_= in diagram).

The labels on the y-axis are dependency.graph presentations. Clicking left
on them brings displays the partial dependency graph in the proper pane of the frame.

Page B-37

The display will look something like this:

I
I < >
I < >

DGll
I

.

]
I

13(321
I < >
I <.................... >
[
I
I I I I I I I I I I I I I I I

schedule-window: window flavor. Clicking left in this type of window will bring up a
snapshot-schedule-window which shows the entire Gantt chart.

snapshot-schedule-window: window flavor which show entire Gantt chart. Clicking the
mouse outside this window will make it disappear.

un$ched-task-box: presentation for an unscheduled task within
a partial dependency graph. It will look like an thick line with arrowheads on
the ends.

Clicking left on this presentation type will pop up a
window describing the task object (see "Task Frame Display" above).

sched.task-box: as above but for scheduled tasks. Will look
like a solid rectangle.

default.pdg-labei-character-style: character style of dependency-graph
presentations

on left edge of Gantt chart.
default-task-load-character-style: character style used to label the load on task bars

when you are overlaying a load plot on the Gantt chart.

(show-schedule-window pdg-list start-time end-time &key stream load-type
cummulative-load-points)

returns a schedule-window, pdg-list is a list of dependency graphs,
start-time and end-time are used for labeling the x-axis.
We get the start and end times for each task in each pdg from the
task objects. If load-type and cummulative-load-points are supplied
we overlay a load plot on this display.

(modify-schedule-window task schedule-window)
The scheduler must call this function when it changes the start and/or end

times for a task. Updates presentation for task to reflect time changes.

(schedule-task task schedule-window)
The scheduler must call this function when it schedules a task.
Changes presentation for task to be a sched-task-box presentation.

Page B-38

(highlight-current.tasktask schedule-window)
The schedulermustcallthisfunctioneachtimeitbeginstowork
on schedulinga task.Putsabox aroundthepresentationfortask.

(snapshot-schedule-window pdg-list start-time end-time)
pops up a snapshot-schedule-window showing everything.

5.2.1.6.5 Visual Loading Plot

This display shows a plot where the x-axis is the same time frame as in the Gantt
scheduling chart and the y-axis is the load.

Each task object has slots
st-value: start time
et-value: end time
resource: (V A C P) list containing visual, auditory, cognitive and psychomotor loads.

For each task we put a circle on the plot showing (time, load). The circles will be the color
specified in the color slot of the task object.

Also, we conslruct a line which shows the cumulative load for all tasks at each time tick.

task-load-plot-window: window flavor. Clicking shift-left in this type of window will
bring up a menu which allows you to change parameters such as x-min, x-max,
number of tick marks etc. and replot the points.

task.load-point: presentation type for load point of a task.
Clicking left on this presentation type will pop up a
window describing the task object (see "Task Frame Display" above).

cumulative-point: presentation type for a cumulative load point.
Clicking left will show a cumulative load display. (this display needs to
be defined).

default-x-axis-character-style: default character style of labels on x axis
default-y.axis.character-style: default character style of labels on y axis
default-axis-color: default color used for drawing axis and tick marks
default-axis-label-color: default color used for labeling axis
default-cumulative-load-line-color: default color of load line in load plot window

(show-load-plot task-list cumulative-load-points load-type
&key stream
(x-axis-character-style *default-x-axis-character-style*)
(y-axis-character-style *default-y-axis-character-style*)
(axis-color *default-axis-color*)
(axis-label-color *default-axis-label-color*)
(load-line-color *default-cumulative-load-line-color*))

If stream is provided, displays load plot in stream, otherwise you'll be
prompted with mouse for size and location of window. Loads of each task are
presented as task.load.point presentations. Points in cumulative-load-points
are presented as cumulative-point presentations.

Page B-39

Color:

Whenusing the color monitor it is recomn_nded that you change the default character style
variable to be be larger than those you'd use on black and white screen. You must also set
the color variables.

The variat)les you should set are enumerated below. See the function
init-color.vars in file color.lisp.

default-interface-screen default screen on which the interface flame appears
When displaying on a color monitor set to (color:find-color-screen),

All Windows:

default.label-character-style

Task StackDisplay:

default-task-stack-character-style

Dependency Graphs:

default.task.node.character-style

Load Plots:

default.x-axis.character-style
default-y-axis-character-style
default.axis.color
default-axis-label.color
default-cumulative.load.line.color

Ganu Schedule Window:

default-pdg-la bel.character.style
task-load.character.style

dw::*default-ruler-normal-character.style* used for labeling axis margins is Gantt
chart
dw:: * default-ruler-small -character-style*

Files:

ruler.lisp:margincomponentfordisplayingascaleinthemarginofawindow
presentations.lisp:allpresentationtypesdefinedforabovedisplays,includescode

forpresentationactionsalso.
prim.lisp:some primitivefunctionsand variablescommon toseveraldisplaytypes.
plot.lisp:codeforgeneratingloadplots.
Gantt.lisp:codeforschedulingGanttchart.
pdg.lisp:code fordependencygraphs.
task-stack.lisp:codefortaskstackdisplay.
print-frarnc.lisp:codeforframedisplays.
frame.lisp:constraintframeflavorwhichincludespanesforeachdisplaytype

and possibleframeconfigurations.

Page B-40

color.lisp:variables and functions for displays on color monitors.

5.2.2 External Interface Detailed Design

Getting into the details of the interface requirements for Z-Scheduler, we have outlined them
in the implementation-independent BNF form.

The following arc Global Variables that should be set by the Task Generator during Z-
Scheduler's invocation.

Z-invoker ::= #<Z-invoker>
;Flavor instance that has a method (like "make-instance
;after" method) that invokes Z-Scheduler.

primary-strategy ::= MINIMIZE-TOTAL-TIME IBALANCE-LOAD
; The scheduling strategy.

time-available ::= integer; the time period within which all the
; input tasks need to be performed.

secondary-strategies::=((<performance-measure><desirable-value>).....)
;Each elementisalistthathas2 elements.
;The fn'stisan cvaluationfunctionand the
;secondisthedesirablevalueforit.For example,
;theevaluationfunctionmay be
;TOTAL-MOVEMENT-TIME-BETWEEN-TASKS = sum of
;movcmem timeofalltasksfromitselftoits
;succeedingtask,andthedesirablevaluemay be
;MINIMIZE.

<pcfformance-mcasurc::=(<function-name>)

<desirable-value>::=Integer Iminimize Imaximize

tasks-to-be-scheduled ::= (<task-l> <task-2><task-j> <task-n>)

<task-j>::=#<task-j>
;Isan instanceofflavortaskl.

#<task-j>musthavethefollowingacccssors.
name ::=symbol
agent::=#< pilot>
estimated-duration ::= integer ; integral multiple oftick.
priority ::= integer ; [1-10: default is 5]
resource-required::=(<V> <C> <A> <M>)
conslraints-by-Z::=nil ;theoutputwillbeplaced

; here according to the BNF
; format specified by Jerry.

#<pilot> := Instance of a pilot flavor.

<V>, <C>, cA>, <M> ::= integers

Page B-41

input-constraint-list ::= (<singular-constraint- 1>
<singular-constraint-2>

<singular-constraint-i>

<singular-constraint-n>

<disjunct-constraint- 1>
<disj unct-constraint-2>

<disjunct-constraint-j>

<disjunct-constraint-m>)
; List of n # of singular constraints and m # of
; disjunct constraints - where n and m are variables.

<singular-constraint-i> ::= (<type> <reference-task>
<relative-task/time>)

<disjunct-constraint-j> ::= (OR <singular-constraint- 1>
<singular-constraint-2>

<singular-constraint-r>)

<type> ::= Before V After V During V Contains V Overlaps V
Overlapped-by V Meets V Met-by V Starts V Ends V
Equals V Starts-at V Starts-by V Ends-at V Ends-by

<reference-task> ::= #<task-a> ; instance of task that is a member
; of *tasks-to-be-scheduled*

<related-task/time> ::= If <type> = Starts-at V Starts-by V Ends-at V Ends-by
Then <:related-task/time> ::= integer
Else <related-task/time> ::= #<task-b>

Although the above interface principles have been implemented in the Z-Scheduler its
soundness remains to be tested.

6.0 USER'S GUIDE

Please refer to the demo manual for the details in using the Z-Scheduler.

6.1 OVERVIEW OF FILE STRUCTURES

All the files constraining the source code for Z-Scheduler is neatly organized under the
directory

Puf:>Renuka>Z>.

Each knowledge source has its own directory. Hence the above directory has five sub
directories, viz.,

>constraint-solver-ks>

Page B-42

>task-selector-ks>
>Resource-allocator-ks>
>conslraint-propagator-ks>
>u'uth-maintainer-ks>

Eachknowledgesourcedirectorycontainsthecorresponding trdes, viz.,

*.rule
*.frame
*.log
*.lisp

6.2 INSTRUCTIONS FOR RUNNING Z-SCHEDULER DEMONSTRATION

The following instructions guide the user through the Z-Scheduler demonstration. The

demonstration is performed on Puffer, a Symbolics 3640 in the A3I lab.

Please note that:

The commands to be typed in by the user are underlined.

The prompt provided by Symbolics is printed in italics.

The keys that are to be pressed are outlined.

6.2.1 Initial Setup

6.2.1.1 Halt Machine

Type Halt Machine at the Command." prompt. The machine comes back with the following
prompt (figure 1) -
Do you really want to halt the machine y/n? Just type in _ or 2£and hit return.

6.2.1.2. Boot

Type B_tat the FEP Command: prompt, spacebar and then type fep0:>Ocean-Gest-

Color.boot and hit return. A lot of messages will be printed on the screen. This means that
the machine is in the process of booting. The whole process will take about 3 minutes.

6.2.1.3 Load Z-Scheduler files

At the Command: prompt type LQad File Puf:>renuka>z>data-interface>be_n-z.lisp and hit
return.

At the Command: prompt type (initial-setup-l) and hit _um. When a menu asking the
type of color monitor present pick "tectronix color monitor" from the menu.

At the CommAnd: prompt type (initial-setup-2) and hit return.

6.2.1.4 Run Z.Scheduler partially

Page B-43

Toselect the GEST controller, hit the select key and then depress the a_nbol and G keys
simultaneously and youll be in the blackboard controller frame.

To start the execution of the Knowledge sources, move the mouse up to the command menu
pane and mouse on KSactions and click the right button. A menu appears. Drag the mouse
down to Start Execution and click mouse left button.

This will lead to a lot of activities happening on the Z-frame on the color monitor. Let the Z-
Scheduler run for a few minutes. Poise the mouse over the
Suspend option and immediately after the cumulative resource curves are shown in the
VACM panes, click mouse left on this suspend option.

Now, you are all set for demonstrating the Z-Scheduler. You allow the Scheduler run this
far in order to focus on the visually compelling parts of Z-scheduling activity. Also, since
the time is limited, that is, the whole demonstration should fit the 15 minutes time slot
allocated for Z-Scheduler, you want the demo attendees to focus upon the most interesting
and intuitive parts of the scheduling cycle.

Move the mouse to the color screen by typing Function key and X letter key in the
respective order. The mouse will now be on the color window.

6.2.2 Input Representation Demo

6.2.2.1 Show a task frame

Mouse and click left on one of the tasks in the stack shown in the "Unscheduled Tasks"
window (placed in the upper left hand comer). This action will bring up a button- which
looks like a small right angle that moves with the movement of the mouse. This response
implies that the window that displays the task description needs to be shaped. In order to do
this, click mouse right and then, holding the mouse left button down, outline a window
about on quarter the size of the whole color screen and click the mouse left button again.
This action leads a display of the details of the chosen task in the window just created with
the mouse actions.

After describing the task's input, remove the task window by clicking mouse-left outside the
window.

6.2.2.2 Show a constraint frame

To show the constraint frame follow the same procedure as the above, but this time click on
one of the cards in the "Used-up Constraint Stack" window (the window place on the upper
right hand comer). Also, remember to size the constraint description window only 3 inches
in length and breadth. The smaller size of the window is reconmlended since very little
information will be displayed in the constraint description window. Once, again click
mouse-left outside the constraint description window to make that window disappear.

6.2.3 Schedule Generation Demonstration

6.2.3.1 Resume Z-Scheduler

Move the mouse over to the B&W monitor by hitting the Function and X keys. Once the
mouse is over the B&W screen, mouse on the Resume menu option and click mouse-left.
This action will spur the Z-Scheduler to continue the scheduling process from the point

Page B-44

where it left off due to the previous suspend action. After explaining the scheduling process
with the aid of the dynamic displays, mouse over the Suspend menu option and click
mouse-left again.

6.2.4. Scheduling Strategies Comparison Demonstration

6.2.4.1 Bring up the display

In order to bring up the s_ategies comparison displays, move to the Lisp Listener by hitting
Select and L keys simultaneously. At the Command: prompt type.._- ' -
compadson_. After about 2 minutes the Gantt charts and the resource loading plots are
displayed for the two strategies. Point to the difference and this marks the end of the demo.

7.0 ABBREVIATIONS AND ACRONYMS

A3I -- Army Aircrew Aircraft Integration
APU -- Auxiliary Power Unit
BB _ Blackboard
CSP-- Constraint Satisfaction Problem
EST-- Earliest Start Time
ET-- End Time
KS -- Knowledge Source
LET -- Latest End Time
MIDAS m Man-machine Interface Design Assistant
PDG -- Partial Dependency Graph
ST -- Start Time

8.0 NOTES

8.1 MISCELLANEOUS

During the many demos questions were raised about scheduler also performing the function
allocationand viewingtheequipmentas a resource.Althoughintheoriginaldesignof Z-
scheduler,equipmentwereconsideredasresources,inPhaseIV therewas aircadya
separate resource-handling mechanism for equipment allocation.

8.2 LIMITATIONS

Although the interface between the Task Generator and the Z-Scheduler is implemented, it
has not been exercised and hence its efficiency remains unknown.

8.3 LESSONS LEARNED

The blackboard architecture is a modular architecture and facilitates good software design.
However, a lot of analysis of the problem needs to be performed a-priori to coding in order
to capitalize on the benefits of this architecture. Z-Scheduler currently uses task-based
scheduling and each of the stages in this process is implemented as a separate knowledge
source. With a little analysis of this approach it can be seen that there is mostly serial control
between the execution of the knowledge sources although there is room for parallelism
within each knowledge source.

The concept of considering a time-line for scheduling forces one to always schedule tasks
around the chosen time unit. For example when the time line of length 10 seconds is divided

Page B-45

into a 10 units of 1 sec each, then each rusk must start at any of those 10 markings and
cannot startat 1.5 secetc. Hence, consideringa time line of discrete intervals constrainsthe
granularity of the schedule by the time interval of the smallest chosen interval. Of course,
the foremost reason behind discretizing the time line is for putting an explicit bound on the
time and space complexity of the scheduling algorithm.

8.4 FUTURE DIRECTIONS

As in most research work, there are always numerous ways in which the work can be
extended. Below are some of the enhancements that can make Z-Scheduler more powerful.

Task Hierarchies: Currently Z-Scheduler handles tasks that are the leaves of the
task hierarchy. It does not have the knowledge to either abstract the tasks into higher
groupings nor can it handle tasks given to it as a hierarchy. Z-Scheduler can neither
create hierarchies nor can it handle ready-made hierarchies. If Z-Scheduler were to
be extended to schedule task hierarchies, I foresee an impact on the time required for
scheduling:, i.e., this extension will shorten the time required for scheduling.

Resource Hierarchies: Having an abstraction of the resources might lead to a
more sophisticated and cognitively closer resource allocation model. Once again,
scheduling these type of resources might reduce the deliberation time (time required
for scheduling).

Schedule Repair: Assuming that there will be a fighter interaction between the
planner and the scheduler -- or the scheduler and the simulation in Phase V of this
project -- there will be a need to quickly repair the existing schedule to allow to new
tasks generated in response to some unexcepted events.

Logical relations relating temporal constraints: In the current version of Z-
Scheduler, its constraint mechanism can only handle singular temporal constraints
and not the logical relations (ORs, ANDs, EXORs, NOTs) that relate the singular
temporal constraints. In step with Kevin Corker's definitions of goals (logical
relations between goals) and procedures (temporal relations between procedures), if
Z-Scheduler were to handle both goals and procedures uniformly, its constraint
mechanism must be extended to reason over logical constraints too.

Learning Techniques in the Scheduler: There have been proven learning
techniques in the literature and some of them are yet to be tried in the scheduling
domain. From discussions with Sandy Hart's group, it was concluded that
investigating in this area too might lead to directions that will lead to a closer
cognitive model of human scheduling behavior.

Sophisticated backtracking mechanism: In its present version, the Z-
Scheduler uses chronological backtracking (refer to section 5.2.1.5)- Simply stated,
it backtracks to the last point where a decision regarding resource allocation was
made, finds the alternate choices available and picks the next best alternate and
continues to schedules from that point. Instead, if we were to have a dependency
directed backtracking -- in the event a conflict occurs -- the scheduler can backtrack
directly to the source of the conflict rather than just blindly backtracking in time.
This again is an efficiency measure of the scheduler's behavior.

Page B-46

Therearealsocertaindesirable extensions to GEST w the underlying tool that Z-Scheduler
USCS."

oTime-travelfunctionintheBB-Controller:Thisfunctionisveryusefulwhile

debugginganexpertsystem.AlthoughinGEST, thisfunctionisavailablefor
individualknowledgesourcesitisnotavailablefortheBB-controller.Itwould be
usefultobacktracktoaknown statewheneversome knowledgesourcestriggeredby

thecontrollerdoesnotbehaveascxpectcd.

oJustificationNetworkforeachoftheknowledgesources:Thisfeatureexistsin
ART, acommercialcxpcn systemshell,and maps thenodesasobjectsindatabases
withthearcsbeingspecificrulesthatexplainwhy a specificobjectwas changedthe
way itdid.Itisa usefulgraphicalexplanationutilitywhich islackinginGEST and
henceacandidateforfutureextensionfeaturein(}EST.

oFunctionsforviewingtheconflictset:Beforetheconflictresolutionstageand the
fn-ingstageoftherulesitwould bcusefultoviewalltherulesthatmatch the
contentsoftheworkingmemory atany instantintime.Viewingtheconflictsetwill

behelpfulineliminatingsome ofthetotallyunexpectedbehaviorintheknowledge
sources.

o User defined memory reclamation functions;_ This is very specific to the internal
implementation structures used by GEST. One function that provides the user
control on how much of the past record for each KS will be useful especially while
running large applications programs in GEST.

9.0 APPENDIX A

Page B-47

MIDASPhaseIV - Z - Scheduler PageB-|

APPENDIXA m SPEECH FOR Z-SCHEDULER PRESENTATION

Z-Scheduler attempts to capture varied operator scheduling strategies into a computational
model. In this demonstration I will be showing you two such strategies- the minimize time
swategy and the balance load strategy. During the application of the minimize time strategy
the operator tries to perform the specified tasks in as small a time window as possible by
pushing his/her resource capabilines to the maximum extent possible. The balance load
strategy is one in which the operator is working towards being at a comfortable resource
limit and hence delays the execution of some tasks. In the literature, especially work done
by Sandy Hart, these strategies are well accepted.

As you have just heard from the previous presenter (Presenter's name), the input to Z-
Scheduler is a set of tasks to be scheduled. These tasks are generated by the planning
component of the operator model when the operator tries to predict the future tasks within a
specific time horizon and hands over these tasks to Z-Scheduler to come up with an
acceptable order to perfarm the tasks. Shown here is the tasks to be scheduled bunched
together in this stack. Each task description contains details on the estimated duration for the
task, the priority- the relative importance of this task to the other tasks on the stack, the
resource utilization: the resources for Z-scheduler is the Visual, Auditory, Cognitive and
Motor as defined in the Task Loading Model which you will be seeing next.

Along with the stack of tasks, Z-Scheduler also gets a stack of constraints- constraints are
defined as some reslriction placed on the execution of the tasks. Z-Scheduler can handle
both qualitative and quantitative constraints. (point to the temporal constraint categories
graph on fhe poster); qualitative constraints in the literature are called inter-based constraints
and are useful in describing the temporal relation between two tasks. For example., we can
specify task A is before task B or any of the 13 relationships defined here.
Also, we can directly anchor the task to the metric time by specifying quantitative relations
like "Start-at tasks-A 5 seconds". In the AI literature these are termed point-based
constraints. Hence, as you can see, there has been lots of work put into providing an
expressive set of constraints for the user of this tool.

Now that the inputs of the Z-Scheduler are clear, I will explain the scheduling process. But
before that the scheduling problem needs to be analyzed. Depending on the nature of input,
Ben Arieh in his PhD dissertation from Purdue University, says that scheduling problems
can be classified and for each category of classification there are specific solutions that
apply. Following the same framework we have concluded that Z's scheduling problem is
dynamic-multistage-routing problem. Simply stated, this problem is in the complex end of
the spectrum and hence traditional OR techniques fail to solve the problem and hence we
turned to knowledge-based techniques for the answers.

As the majority of works in the past have handled this problem, we have modeled the
problem as a constraint satisfaction problem. Hence, whenever a problem is modeled in this
manner, the solution space is divided into subspaces and the local solutions are found in
each space and these local solutions are threaded along to get the global solution. The way
the problem space is divided is crucial to the solution. Among the three alternatives we have
chosen the more recent task-based scheduling to solve the CSP. This technique will be clear
as I get into the scheduling process itself.

Now moving to the heart of the scheduling process, the blackboard architecture is central to
Z-scheduling process. The blackboard here is a central structure that contains all the
scheduling state data and is divided into stages of the schedule generation. The knowledge

])age B-2 MIDAS Phase IV - Z - Scheduler

required to perform the schedule is also partitioned and each partition called knowledge
sources works on each stage of the scheduling process.

Going into the fli'st knowledge source is the constraint solver knowledge source. The
primary focus of this knowledge source is to translate the hybrid representational constraints
into a uniform base for the temporal reasoning. Also, because of the nature of inputs to Z-
scheduler, the tasks are oblivious of their constraints. So the constraint solver has rules that
grab one constraint frame at a time and cache the constraint in the relevant tasks and
incrementally build these partial dependency graphs (point to the graphs in the color
monitor).

Since we are using task-based scheduling, this is a two step process. The fast step is to pick
a task from the tasks to schedule and once the task is decided all alternative solutions for that
task are evaluated and, based on some metric, one of solutions is chosen and the task gets
scheduled _ that is, some resource is promised to that task. These two stages are reflected
in the task-selector and resource-allocator knowledge sources.

The metric in selecting tasks for resomv.e-allocation is called the Task-criticality measure.
This measure has few factors, one of them being the slack on that task -- the more the slack
the less the criticality. The task with least amount of slack becomes the candidate for
resource allocation. The metric for selecting a solution for the task selected is to pick the
solution that has minimum resource competition, the logic being that the solution must not
eat away into the opportunity of the tasks that have not yet been scheduled.

The constraint propagator knowledge source is a record keeping knowledge source. Every
time a task is scheduled it updates rest of the task windows accordingly. The truth
maintainer knowledge source is a high level monitor of the constraint propagating activities.
Whenever a conflict occurs during the process of constraint propagating, this knowledge
source halts the execution of the other knowledge source by sending a message via the
blackboard. After halting the process that was responsible for the conflict m an example of
the conflict is that the window duration of the task becomes smaller than the estimated
duration of the task m the Truth maintalnex attempts to find the reason for the conflicts
occurrence and on finding it out, it resets all the knowledge sources to that point in time
before the conflict was instantiated. In other words, the Truth maintainer is built on the
principle of chronological backtracking, where the amount backtracking is up to the last
decisionpoint.

Annex C

Army-NASA Aircrew/Aircraft Integration Program: Phase IV

Man-Machine Integration Design and Analysis System (MIDAS)
Software Detailed Design Document

Task Loading Model

prepared by

Lowell Staveland

Table of Contents

1.0 INTRODUCTION ...1
1.1 IDENTIFICATION OF DOCUMENT ... 1
1.2 SCOPE OF DOCUMENT ... 1
1.3 PURPOSE AND OBJECTIVE OF DOCUMENT I

1.3.1 Purpose of Document ... 1
1.3.2 Objectives of Document .. 2

2.0 RELATED DOCUMENTATION .. 2
2.1 APPLICABLE DOCUMENTS ... 2
2.2 INFORMATION DOCUMENTS ... 2

3.0 CONCEPT .. 5
3.1 DEFINITION OFTLM .. 5

3.1.1Purposeand Scope..6
3.1.1.1 Purpose of TLM .. 6

3.1.1.2 Scope of TLM .. 6
3.1.2 Goals and Objectives .. 6

3.1.2.1 Goals of TLM .. 6
3.1.2.2 Objectives of TLM ... 6

3.1.3 Description of TLM ... 7
3.1.3.1 Background ... 7
3.1.3.2 Definition of Loading .. 7
3.1.3.3 Approach to development 7
3.1.3.4 Conceptual Structure of the MIDAS-TLM 8
3.1.3.5 Dimensions of the MIDAS-TLM 9
3.1.3.7 Definition of Resources used in the MIDAS-TLM 12
3.1.3.8 Rank Order of Resource Use 12

3.1.3.8.1 Ranking procedure 12
3.1.3.8.2 Ranking scale 12

3.1.3.9 Generating Conflict Matrix Values 12
3.1.3.9.1 Generating within-matrix values 13

3.1.3.9.1.1 Example 1: Two tasks with two
near visual requirements 13
3.1.3.9.1.2 Example 2: Two tasks with a
near visual and a far visual requirement 14

3.1.3.9.2 Generating between-matrix values 14
3.1.3.10 Classifying the Pilot-Task Interaction 14

3.1.3.10.1 Cognitive Task Analysis (CTA) 14
3.1.3.10.2 MIDAS-TLM as a CTA Structure 15
3.1.3.10.3 Mapping a Task to the Taxonomy 15
3.1.3. I0.4 Taxonomic Subsets Used to Classify
Pilot-Task Interaction ... 15

3.1.3.11 Calculating the Loading Values 17
3.2 USER DEFINITION ... 19
3.3 CAPABILITIES AND CHARACTERISTICS 20

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.3.8
3.3.9
3.3.10
3.3.11

Architecture .. 20

Process Capabilities ... 20
Performance .. 20

Interfaces ... 20
Error recovery capabilities .. 21

Reliability ... 21
Maintainability ... 21
Flexibility and Expansion .. 21

Transportability ... 21
Quality ... 21

Adaptation to Various Operational Sites 21

Tableof Contents

3.3.12 Phased Implementation .. 22
3.3.13 General Flow of Data .. 22
3.3.14 General Flow of Execution Control 22
3.3.15 Networking Requirements .. 22

3.4 SAMPLE OPERATIONAL SCENARIOS 22
4.0 REQUIREMENTS .. 23

4,1 REQUIREMENTS APPROACH AND TRADEOFFS 24
4.2 HARDWARE ENVIRONMENT ... 24
4.3 SOFTWARE ENVIRONMENT .. 24
4.4 EXTERNAL INTERFACE REQUIREMENTS 24

4.4.1 The Designer's Interface .. 24
4.4.1.1 Purpose of the Interface 25
4.4.1.2 Information Content of Displays 25
4.4.1.3 Interacting with the Interface 25
4.4.1.4 Interface Constraints ... 25

4.4.2 The Interface to MIDAS Components 25
4.4.2.1 Purpose of the Interface 25
4.4.2.2 Information Content ... 25
4.4.2.3 Information Flow .. 26
4.4.2.4 Implementation Constraints 26

5.0 DESIGN .. 26
5.1 ARCHITECTURAL DESIGN .. 27

5.1.1 Design Approach and Tradeoffs , 27
5.2 DETAILED DESIGN .. 27

5,2,1 FG 1: The task editor and data-input functional group 27
5.2.2 FG2: The task-load calculator functional group 30
5.2.3 FG3: The display windows and menus functional group 34
5.2.4 FG4: The task-load formatting functional group 43
5.2.5 FG5: The midas-interface functional group 48
5.2.6 FG6: The system-initialization functional group 50
5.2.7 FG7: The tim-system functional group 51

6.0 USER'S GUIDE ... 51
6.1 OVERVIEW OF PURPOSE AND FUNCTIONS 51
6.2 INSTALLATION AND INITIALIZATION 52
6.3 STARTUP AND TERMINATION ... 52
6.4 FUNCTIONS AND THEIR OPERATION 53
6.5 ERROR AND WARNING MESSAGES .. 54
6.6 RECOVERY STEPS ... 54

7.0 ABBREVIATIONS AND ACRONYMS ... 54
8.0 GLOSSARY .. 55

9.1 LIMITATIONS ... 58
9.2 LESSONS LEARNED ... 58
9.3 FUTURE DIRECTIONS .. 58

10.0 APPENDIX A .. 58

Figure 1. Conflict Matrix for the Visual Dimension .. 13
FIGURE A-1 CONFLICT MATRIX FOR THE AUDITORY DIMENSION 60
FIGURE A-2 CONFLICT MATRIX FOR THE COGNITIVE DIMENSION 61
FIGURE A-3 CONFLICT MATRIX FOR THE MOTOR DIMENSION 62
FIGURE A-4 CONFLICT MATRIX FOR THE VISUAL-AUDITORY DIMENSION 63
FIGURE A-5 CONFLICT MATRIX FOR THE VISUAL COGNITIVE DIMENSION 64
FIGURE A-6 CONFLICT MATRIX FOR THE AUDITORY-COGNITIVE DIMENSION... 65
FIGURE A-7 CONFLICT MATRIX FOR THE MOTOR-COGNITIVE DIMENSION 66

Table of Contents

m of Dimensions and Paired Elements Classifying 10
Table 1. Taxono y es 11
Table 2. The Properties, Structures and Processes, and Stag 16
Table 3. Definitions of Paired Elements ..

°°.

111

MAN.MACHINE INTEGRATION DESIGN & ANALYSIS SYSTEM
(MIDAS) SOFTWARE DETAILED DESIGN DOCUMENT

PHASE IV:

TASK LOADING MODEL

1.0 INTRODUCTION

There are five main parts to this document: (1) the scope, purpose and objectives of the
document; (2) the reference list; (3) the scope, purpose, objectives and details of the model;
(4) the current and future detailed software and hardware requirements; and (5) the user's
guide.
1.1 IDENTIFICATION OF DOCUMENT

This document is the Software Product Specification for the Task Loading Model (TLM)
module of the Man-machine Integration Design and Analysis System (MIDAS).

1.2 SCOPE OF DOCUMENT

This document describes a computational approach to modeling human information
processing, and the objective task demands that are imposed on an operator of complex
systems.

The approach described in this document pertains to its use as one tool in the MIDAS
workstation, and its dependence on and relationships to the other tools that are integrated
within the MIDAS workstation.

The description contains details of the psychological theories and experimental results
underlying the model, and the computational methods by which the theories and results are
incorporated into the model and applied to the MIDAS simulation environment.

This document also provides the details of the software architecture and Lisp code that were
used to implement the TLM on the Symbolics computers. The functional and procedural
aspects of the TLM human-computer interface will be discussed together with the
associated Lisp code such that Lisp programmers will be able to change and modify the
code, and crew station design team members will be able to use the TLM.

Descriptions of the detailed processing requirements, structure, I/O, and control are
provided for each lower level Task Loading Model Software Component, unit, or function
contained within the TLM.

The readers of this document should have knowledge of different human performance
modeling techniques or human information processing theories, along with a familiarity
with the Symbolics programming environment and object-oriented programming.

1.3 PURPOSE AND OBJECTIVE OF DOCUMENT

1.3.1 Purpose of Document

The purpose of this document is to provide the users of the TLM the background of the
MIDAS Task Loading Model (TLM) necessary to understand and configure this model to

Page C- I

theirdomainofchoice,andtouseTLMtoevaluatealternativecrewstationconfigurations
duringtheconceptualphaseofcrewstationdesign.

ThisdocumentprovidesthesoftwareengineeringspecificationsforfutureTLM
developmentefforts.

1.3.2 Objectives of Document

This document provides a detailed description of the model's approach in order to provide a
metric that allows a member of a design team to compare the impact of different design
configurations on the information processing capabilities of a pilot or operator of a complex
system.

The material in this document is directed toward three categories of readers:

1) Those who wish to learn what the MIDAS "I'I.M accomplishes.

2) Those who wish to use the TLM software to investigate the interactions between an
operator and a specific crew station design vAthin the context of a given mission

3) Those who might want to modify and update the TLM.

2.0 RELATED DOCUMENTATION

2.1 APPLICABLE DOCUMENTS

The following documents are referenced herein and are directly applicable to this volume:

Baron, S., Kruser, D. S. & Huey, B. M. (Eds.). (1990) Quantitative Modeling of Muman
Performance in Complex, Dynamic Systems. Washington, D.C.: National Academy
Press.

2.2 INFORMATION DOCUMENTS

The following documents amplify or clarify the information presented in this volume:

Aldrich, T. B., Szabo, S. M., & Bierbaum, C. R. (1989). The development and
application of models to predict operator workload during system design. In G. MacMillan,
D. Beevis, E. Salas, M. Strub, R. Sutton & L. Van Breda (Eds.), Applications of human
p_ff_rmanc_ models to system design. (pp. 65-80). New York: Plenum Press.

Andre, A. D., & Wickens, C. D. (1989). |nf0mlalion processing and perceptual
characteristics of display design: The role of emergen_.t features and ob_iects (Report No.
ARL-89-8/AHEL-89-4). Urbana-Champaign: University of Illinois, Aviation Research
Lab.

Barnard, P., Wilson, M. & Maclean, A. (1988). Approximate modelling of cognitive
• activity with an expert system: A theory-based strategy for developing an interactive design

tool. The Computer Journal, 31(5), 445-456.

Boff, K.R., Kaufman, L. & Thomas, J. P. (Eds.). _oqk qf perfeption and human
performance (Vols 1-2). New York: John Wiley and Sons.

Page C-2

Boff,K.R.& Lincoln,J.E,(Eds.).(1988).Engineering data compendium: Human
perception and performance. (Vols 1-4). WPAFB, OH: AAMRIA-IFJCSERIAC.
Chase, W. G. (1986). Visual information processing. In K.R. Boff, L. Kaufman, & J. P.
Thomas (Eds.), Handbook ofperceptiorl and human performance: Vol H. Cognitive
processes and performance. (pp. 28-1 - 28-71). New York: John Wiley and Sons.

Derrick, W. (1988). Dimensions of operator workload. Human Factors, 30, 95-110.

Dunn-Rankin, P. (1983). _ Hillsdale, New Jersey: Lawrence Erlbaum
Associates.

Elkind, J., Card, S., Hochberg, J. & Huey, B. rEds.). Human performance models for
computer aided engineering. Washington, D. C.: National Academy Press.

Flach, J. M. (1989)..The ecolowy of human-machine systems (Report EPRL-89-12).
Urbana: University of Illinois, Engineering Psychology Research Laboratory.

Fleishman, E. A. & Quaintance, M. K. (1984). Taxonomies of human performance: The
description of human tasks. Orlando: Academic Press.

Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton
Mifflin.

Gopher, D. & Kimchi, R. (1989). Engineering psychology. Annual Review of
40, 431-55.

Gopher, D. & Donchin, E. (1986). Workload - An examination of the concept. In K.R.
Boff, L. Kaufman, & J. P. Thomas (Eds.), Handbook of perception and human
performance: Vol II. Cogniliv¢ processes and performance. (pp. 41-1 - 41-49). New York:
John Wiley and Sons.

Hart, S. G. (1989). Crew workload-management strategies: A critical factor in system
performance. Proceedings of the Fifth International Symposium on Aviation Psychology
(pp.). Colombus, Ohio.

Hart, S. G. & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index):
Results of empirical and theoretical research. In P. A. Hancock & N. Meshkati (Eds.),
Human mental workload (pp. 139-1830. Amsterdam, The Netherlands: North Holland.

Holley, C. D. (1989). A model for performing system performance analysis in predesign.
In G. MacMillan, D. Beevis, E. Salas, M. Strub, R. Sutton & L. Van Breda (Eels.),
Applications of human performance models to system design. (pp. 91-102). New York:
Plenum Press.

Hulme, A. J. & Hamilton, W. I. (1989). Human engineering models: A user's
perspective. In G. MacMillan, D. Beevis, E, Salas, M. Strub, R. Sutton & L. Van Breda
(Eds.), Applications of human performance models to system design. (pp. 487-500). New
York: Plenum Press.

Kantowitz, B. H. & Roediger, H. L. (1980). Memory and information processing. In G.
N. Bower & E. R. Hilgard (Eds), Theories of learning.Englewood Cliffs, NJ: Prentice-
Hall

Page C-3

Lachman,R., Lachman, J. & Butterfield, E. C. (1979). Co tmitive psychology and
inf01"mation processing: An introduction. (pp. 89-127). Hillsdale, N/: Erlbaum.

Linton, P. M., Plamondon, B. D., Dick, A. O., Bittner, A. C. & Christ, R. E. (1989).
Operator workload for military system acquisition. In G. MacMillan, D. Beevis, E. Salas,
M. Strub, R. Sutton & L. Van Breda (Eds.), Applications of human _tmrformanc¢ models
_. (pp. 21-46). New York: Plenum Press.

McCracken, J. H. & Aldrich, T. B. (1984). AImlyses of selected LHX mission functions:
Implications for otmrator workload and system automation _oals (Technical Note ASI479-
024-84). Fort Rucker, AL: Army Research Institute Aviation Research and Development
Activity.

Miller, R. A. & Jagacinski, R. J. (1989). The organization of perception and action in
complex control skills (Final Report Grant No. NAG 2-195). Moffett Field, CA: Ames
Research Center, NASA (P,F Project 763264/714826).

North & Riley (1989). W/INDEX: A predictive model of operator workload. In G.
MacMillan, D. Beevis, E. Salas, M. Stmb, R. Sutton & L. Van Brexla (Eds.),
of human _fformance models to system design. (pp. 81-90). New York: Plenum Press.

O'Donnell, R. D. & Eggemeier, F. T (1986). Workload assessment methodology. In K.R.
Boff, L. Kaufman, & J. P. Thomas (Eds.), Handbook of perception and human
performance: Vol II. Cognitive processes and performance. (pp. 42-1 42-49). New York:
John Wiley and Sons.

Pachella, R. G. (1974). The interpretation of reaction time in information processing
research. In B. Kantowitz (Ed.), Human information processing: Tutorials in performance
llad..f..e,f,.2gaRi_. Potomac, Md.: Eflbaum.

Polsen, M. C., Wickens, C. D., Klapp, S. T. & Colic, H. A. (1989). Human interactive
informational processes. In P. A. Hancock & M. H. Chignell reds.).
interfaces: Theory. research and design. (pp. 129-164). Amsterdam: Elsevier Science
Publishers B.V.

Posner, M. I. (1986). Overview. In K.R. Boff, L. Kaufman, & J. P. Thomas (Eds.),
Handbook of perception and human performance: Vol II. Cognitive processes and
performance. (pp. V-3 - V-10). New York: John Wiley and Sons.

Rasmussen, J. (1983). Skills, rules, and knowledge; Signals, signs, and symbols, and
other distinctions in human performance models. IEEE Transactions on Systems. Man. and
Cybernetics, 13(3), 257-266.

Roth, E. M. & Woods, D. D. (1988). Cognitive task analysis: An approach to knowledge
acquisition for intelligent system design. In G. Guida & C. Tasso (Eds.), Touics in ex__rt
_. (pp.). Amsterdam: North Holland.

Sanders, A. F. (1989). Human performance models and system design In G. MacMillan,
D. Beevis, E. Salas, M. Strub, R. Sutton & L. Van Breda (Eds.), Applications of human
performance models to system design. (pp. 475-486). New York: Plenum Press.

Schneider, W. & Fisk, A. D. (1982). Attention theory_and mechanisms for skilled
performances (Rep. HARL-ONR-8201). Champaign: University of Illinois, Human
Attention Research Laboratory.

PageC-4

Staveland, L.E. (1988). Combinatorial rules for generating workload ratings. Unpublished
master's thesis, San Jose State University, San Jose, CA.

Treisman, Anne. (1986). Properties, parts and objects. In K.R. Boff, L. Kaufman, & J.
P. Thomas (E,ds.), Handbook of_ocrceptiorl and human t_-rformance: Vol II. Cotmifive
processes and performance. (pp. 35-1 - 35-70). New York: John Wiley and Sotis.

Vicente, K. J. & Rasmussen J. (1990). The ecoloev_, of human-machine systems II:
Mediating "direct perception" in complex work domains (Report EPRL-90-01). Urbana:
University of Illinois, Engineering Psychology Research Laboratory.

Wickens, C. D. (1984). Processing resources in attention. In R. Parasuraman & D. R.
Davies (Eds.), Varieties of attention (pp. 63-102). Orlando, FL: Academic Press.

Wickens, C. D. (1987). Attention in Aviation. Proceedings of the 4th Conference on
Aviation Psychology. Columbus: Ohio State University.

Wickens, C. D. (1989a). Models of multitask situations. In G. MacMillan, D. Beevis, E.
Salas, M. Strub, R. Sutton & L. Van Breda (Eds.), Applications of human performance
models to system design. (pp. 259-274). New York: Plenum Press.

Wickens, C. D. (1989b). Resource management and time sharing. In J. Elkind, S. Card,
J. Hochberg & B. Huey (Eds.), Human performance models for computer aided
f.ngiIl.g.fLing. (pp. 180-202). Washington, D. C.: National Academy Press.

Wickens, C. D. & Andre, A. D. (1989). PAWES multiple resource analysis. (Report No.
AF Dayton RI-59630X). Urbana-Champaign: University of Illinois, Aviation Research
Lab.

Wickens, C. D. & Flach, J. M. (1988). Information Processing. In E. Weiner (F_,d.),
Human factors in aviation. (pp. 111-155).

Woods, D. D. & Hollnagel, E. (1987). Mapping cognitive demands in complex problem-
solving worlds. International Journal of Man-Machine Studies, 26, 257-275.

Woods, D, D. & Roth, E. M. (1988) Cognitive systems engineering. In M. Helander
(Ed.), Handbook of human-_omputfr interaction. (pp. 3-43). Amsterdam: Elsevier
Science.

3.0 CONCEPT

This section provides the purpose, scope, objectives and details of the TLM.

3.1 DEFINITION OF TLM

MIDAS loading model is an output, normative, bottom-up, multi-task human performance
model. It is an output model because it generates the loading values after being fed a task
description. It is normative because it assumes that the aircrews or system operators arc
highly skilled and motivated and would perform in a manner that is rational and consistent
with the information available, and with the constraints, risks and objectives that exist. It is
bottom-up because it generates the values based on rank orderings of the interactions and
combinations of basic perceptual, cognitive, and motor activities. In this sense, it also has
some process and prescription characteristics, because the basic activities can be diagnostic

Page C-5

of theproblemsintheconceptualdesigns(indicatedby highloadingvalues).It isamulti-
taskmodel becauseit evaluatestheloadingofavarietyoftasksperformedconcu_ntly as
wellasperformedserially.

Throughout the presentation of the concept, the term "user" refers both to humans (e.g.,
systems designers, engineers, psychologists) and to other MIDAS interfacing information
systems and components (e.g., the scheduling module and task decomposition module).

3.1.1 Purpose and Scope
3.1.1.1 Purpose of TLM

The MIDAS loadingmodelisacomputationalmodel ofhuman performancewhose
purposeistoaidengineersintheconceptualdesignofaircraftcrgwstations.The model
providestheuserswithatooltoevaluateandpredictthecharacteristicsandamount ofload
imposedon an operatorwhileperformingmissiontasks.

3.1.1.2 Scope of TLM

The MIDAS-TLM expands the previously used MIDAS loading model to include an
evaluation of the loads that are placed on pilots interacting with a given design within the
context of a series of flight activities or tasks that are generated during a simulated flight.

The model usesa definitionoftaskloadingastheaircrew'soroperators'capabilitiesto
perceiveandprocesstheinformationimposedon theirperceptual,cognitiveand motor
systemsby taskdemands. Thisapproachisbasedon aninformationprocessinganalysis
whichholdsthathuman performancecanbe objectivelyandquantitativelydescribedwith
informationprocessingstructuresinconjunctionwiththementalprocessesthatacton those
structures(Wickcns& Flach,1988;Lachman,Lachman & Buttcxfield,1979;Kantowitz&
Rocdigcr,1980;Posncr,1986:Chase,1986).

Thisdefinition and the embodied approachshouldenablethemodel tobe appliedtoany
conceptualdesignconfigurationintheaerospacedomain.The model maps thetasksthatarc
spawnedby thedesignunderconsiderationtohuman performancemeasureswhich may be
usedforevaluation.

3.1.2 Goals and Objectives
3.1.2.1 Goals of TLM

The goal of the MIDAS-TLM is to predict the loads on each of four psychological
dimensions for each task and task combination associated with a design, thus allowing the
designer to evaluate the loads a conceptual design imposes on a system operator.

3.1.2.2 Objectives of TLM

The objective of the TLM is to model the information processing capabilities of alrercws
such that systems designers can use it in conjunction with other MIDAS workstation
software components. These other modules are used to render a conceptual erewstation
design, and analyze the design to elicit the tasks that need to be performed. These tasks arc
used as input to the TLM, which evaluates and predicts the characteristics and amount of
perceptual, cognitive and motor load that the tasks might impose on an average airerew
member.

The MIDAS-TLM generates these values of load by classifying tasks according to a
taxonomy of perceptual, cognitive, and motor attributes. This is accomplished by mapping

Page C-6

informationprocessesandstructures underlying human performance to the taxonomy of
pexr.eptual, cognitive and motor attributes underlying task performance. Memory,
attention, and time demands and conflicts between attributes in the taxonomy are compared
in matrices and ranked. The ranks are combined according to a model of workload that
generates load estimates on visual, auditory, cognitive, and motor dimensions.

3.1.3 Description of TLM

The description of the TLM provides the experimental and theoretical details underlying the
development TLM. The description also provide the details of the operation and structure
of the model.

3.1.3.1 Background

The model of loading previously used in the MIDAS Workstation was developed by
McCracken & Aldrich (1984). It is based on Wickens' (1984) theory of multiple resources
that partitions loading into Visual, Auditory, Cognitive, and Psychomotor (VACP)
dimensions and uses them as component scales to measure pilot workload, which is
defined as "the attentional demands imposed on a pilot during flight" (Aldrich, Szabo &
Bierbaum, 1987).

This model does not meet the needs of the MIDAS Workstation because the loading values
are assigned by the design team through a task analysis either before or after a simulation.
This reduces the model's sensitivity to the contexts that interact with task performance. It is
important to incorporate contextual effects because task performance depends on the
environment in which it is performed, and the presence of other tasks, which can have a
dramatic effect on the loads imposed on aircrews. Without accounting for context,
predicted loads may reflect arbitrary differences between design alternatives.

The MIDAS-TLM will enhance the current loading model by rank-ordering task loadings
during a simulation, providing sensitivity to the context within which those tasks are
embedded, and by anchoring tasks to a timeline that matches a task to its load value. These
enhancements will provide some contextual basis for generating predictive estimates of
Visual, Auditory, Cognitive, and Motor (VACM) load based on certain pilot, world, and
environmental attributes that are generated during a simulation.

3.1.3.2 Definition of Loading

The definition of loading used in the model is the pilots' capabilities to perceive and process
the information imposed on their perceptual, cognitive, and motor systems by task
demands.

3.1.3.3 Approach to development

The developmental approach is based on an information processing analysis which holds
that human performance can be objectively and quantitatively described as the mental
structures and mental processes that act on those structures (Wickens & Flach, 1988;
Lachman et al, 1979; Kantowitz & Roediger, 1980; Posner, 1986: Chase, 1986).
Applying this analysis to the aerospace design environment yields the basic assumptions
underlying the MIDAS-TLM:

o An abstraction hierarchy can represent a set of invariant qualities (Vicente &
Rasmussen, 1990; Flach, 1989) that are common to the information processing
system's capability to represent (structures) and manipulate (processes) information

Page C-7

symbolically, the capability which Lachman et al, (1979) consider to be the essence
of the information processing paradigm.

An abstraction hierarchy of these su'uctures and processes can be mapped to a wide
range of pilot task interactions with cognitive task analysis (Woods & Hollnagel,
1987; Woods & Roth, 1988; Roth & Woods, 1988; Barnard, Wilson & Maclcan,
1988).

The structures and processes that map to a task can be compared in a conflict matrix
to rank the use and conflicts (North & Riley, 1989; Holley, 1989; Wickens &
Andre, 1989) among their memory, temporal, and attentional resources.

o Algorithms can be derived to calculate loading values from the ranking procedure
(Dunn-Rankin, 1984; North & Riley, 1989, Wickens & Andre, 1989).

3.1.3.4 Conceptual Structure of the MIDAS-TLM

Developing the MIDAS-TLM requires two frameworks that describe the objective aspects
of loading imposed by task demands: a taxonomy (Fleishman & Quaintance, 1984; Andre
& Wickens, 1989, Flach, 1989) and a conflict matrix (Linton, Plamondon, Dick, Bittner &
Christ, 1989; Sanders, 1989; Hulme & Hamilton, 1989; Wickens, 1988). These two
frameworks were selected as a means to describe certain attributes and interactions of one
or more tasks and are necessary to provide context sensitivity and to assign values to task
interactions. These frameworks incorporate the notions of invariant and variant properties
that are borrowed from Gibson's ecological approach to perception (1979).

The first framework abstracts the informational structures and processes into a hierarchical
taxonomy: structures are the symbolic representations of information present in the
perceptual, cognitive and motor systems that are connected by a set of relations; processes
are the perceptual, cognitive or motor activities that have structures as inputs or outputs
(Lachman et al, 1979).

This first framework, a taxonomy of dimensions and elements (Table 1), represent
different structures and processes in information processing, and incorporate the notion of
invariant properties. These dimensions and elements are abstracted from the invariant
properties of underlying structures and processes (Table 2).

The second framework incorporates the notion of variant properties to categorize the
interactions of the structures and processes. These properties vary with respect to the
structures and processes and their interactions.

This framework, a matrix of conflict values (Figure 1), compares and contrasts the variant
properties -- memory, attentional, and temporal resources -- underlying the interactions of
the elements in each dimension used in the MIDAS-TLM. The values in Figure 1 represent
the degree of conflict between the memory, attentional, and temporal resources on a relative
scale of 0 to 4.

3.1.3.5 Dimensions of the MIDAS-TLM

The top level of the taxonomy represents the dimensions that are abstracted from the
invariant properties relating the paired elements (Table 2). These dimensions and their
properties result from research on mental workload that suggests that loading is
multidimensional in nature (Hart & Staveland, 1988; Gopher & Donchin, 1986). Loading
has been measured in many different ways by many different researchers (see OZ_onnell &

Page C-8

Eggemeier, 1986 for a thorough review). Most researchers now conclude that loading is
not a uni-dimensional consu'uct and can not be measured by only one technique, but must
be measured by several techniques used in conjunction and combined at some theoretical
level to derive a loading value (Derrick, 1988).

Dimensions used in previous models. The set of dimensions used in the TLM was
developed by McCracken & Aldrich (1984) as a means to evaluate the U.S. Army's AH-64
(Apache) helicopter flight tasks. It is based on Wickens' theory (1984) of multiple
resources and partitions loading into dimensions of separable resources used during
information processing. Wickens treats resources as attentional demands -- that is, the
capacity of the system to attend to processing demands.

The McCracken & Aldrich workload assessment technique partitioned workload into the
Visual, Auditory, Cognitive and Psychomotor dimensions (VACP's) suggested by
Wickens' theory (1984). They used the VACP's as component scales to measure pilot
workload, which they defined as the attentional demands imposed on a pilot during flight
(Aldrich, Szabo & Bierbaum, 1987).

The MIDAS-TLM incorporates essentially the same dimensions that McCracken & Aldrich
(1984) use with psychomotor (P) changed to motor (M), but it treats resources as the
memory, time, and attentional demands (see framework #2 - Figure I).

Page C-9

Visu Auditory_ Motor

near visual

far visual

scan

fixate

integral

separable

objects
features

salient

masked

static

dynamic

orient

discriminate

signal

speech

salient

masked

direct

transformation

single choice

multiple choice

verbal

spatial

planned

unplanned

verbal

spatial

far

discrete

continuous

mouth

head

eye
hand

feet

finger

right
left

both

Table 1. Taxonomy of Dimensions and Paired Elements Classifying
Pilot-task Interactions

(Dimensions are underlined)

Page C- 10

Visual

Auditory

Cognitive

Motor

:NearVisual/ Far Visual

Scan / Fixate

Integral / Separable

Objects / Features

Salient / Masked

Static / Dynamic

Orient / Discriminate

Signal / Speech

Salient / Masked

:Direct / Transformation

Single Choice / Multiple

Choice

Verbal / Spatial

Planned / Unplanned

Verbal'/Spatial

Near / Far

Discrete / Continuous

Gross / Fine

]tmmm

Spatial Area

Spatial Search

Spatial Proximity

Spatial Grouping

Spatial Discriminability

Motion Cues

Auditory Localization

Auditory codes

Auditory Discriminability

Automatic / Controlled

Processing

Levels of Processing

Processing Codes

Priming

Response Codes

Response Proximity

ControlDynamics

ControlDynamics

S_cture

/Pr_css

Structure

Process

Structure

Structure

Structure

Structure

Process

Structure

Structure

Process

Process

Structur_

Process

Structure

Structure

Process

Process

Perceptual

input

Perceptual

Input

Cognitive

Processing

Motor

Output

Table 2. The Properties, Structures and Processes, and Stages
corresponding to the dimensions and paired elements of loading used in the

MIDAS-TLM
3.1.3.6 Invariant properties of the dimensions

To incorporate the multidimensional nature of loading into the MIDAS-TLM, the paired
elements are grouped into dimensions according to their invariant properties. The invariant
properties represent stages of processing, which Kantowitz & Rocdiger (1980) define as
roughly corresponding to the transformations of information.

Page C-11

Thereare essentially three stages -- input, processing, and output -- to which each of the
four dimensions (Visual, Auditory, Cognitive, Motor) correspond. The visual and
auditory dimensions correspond to the input stage because they are input modalities. The
cognitive dimension corresponds to the processing stage because cognition involves
processing information to various depths. The motor dimension corresponds to the output
stage because outputs are generated with various motor effectors.

3.1.3.7 Definition of Resources used in the MIDAS-TLM

In the MIDAS-TLM, the resources are the amount of memory, the amount of attentional
demands, or the amount of time each structure or process requires to process information.
All three types of resources are considered to be variant or perspective structures in the
Gibsonian sense (Gibson, 1979) because they vary as functions of the change in the
information extracted from the perceptual array. Consequently, these resources represent
the variant properties of the structures, processes, and stages comprising the elements and
dimensions in the taxonomy.

3.1.3.8 Rank Order of Resource Use

Comparing and contrasting memory, attention, and time assumes that the resource
requirements of each element can be explicitly rank-ordered in relation to the implicit
resource requirements of the other elements, an assumption based on research on the
resource requirements of the structures and processes underlying the elements.

3.1.3.8.1 Ranking procedure

Each element is entered into a conflict matrix and compared with itself and with all others.
Matrices are constructed for all the elements within a dimension (within-matrix) and for all
elements between dimensions (between-matrix). This results in four within-matrices and
four between-matrices.

The ranking process is simplified by separately comparing and contrasting the paired
elements, which are explicitly rank-ordered relative to the implicit resource requirements of
each element in the pair and relative to each element in the other pairs. This means that for
one pair of elements compared with itself or with another pair, there are four interactions
that are rank-ordered.

3.1.3.8.2 Ranking scale

The interactions among elements are ranked from 0 to 4:0 means few resources are
required or their interactions are meaningless (e.g. near speech/far speech) and 4 means the
greatest amount of resources are required. The rankings are strictly ordinal. Some
interactions were treated as inviolable, and assigned a rank of 9 as a flag that the interaction
shouldn't be used to calculate loading values. For example, focusing at an object in the
near visual field and at an object in the far visual field at the same time is considered to be
inviolable.

3.1.3.9 Generating Conflict Matrix Values

To construct a within-matrix for the visual dimension, the six pairs of elements in the visual
dimension are entered into both the rows and the columns of the matrix (Figure 1). The
point of intersection of each row and column defines an interaction of two dements: an
element in a row with an element in a column. The interactions of the six pairs are ranked

Page C-12

twopairsat a time until each of the pairs have been compared with each of the other pairs.
Comparisons are achieved by rank orde_'ing the four interactions gencrat_I by the four
possible combinations of the four elements within the two pairs.

VISUAL NE FA SC FI SE IN OB FE SA MAIST DY
DIMENSION

NEAR
FAR
SCAN
FIXATE
SEPARABLE
INTEGRAL
OBJECTS
FEATURES
SALIENT
MASKED

STATIC

DYNAMIC

1
999 2

1 2 5
2 3 9991 999
1 3 3 2
2 4 2 3
1 3 2 I
2 4 1 2
1 2 2 1
2 3 3 2
1 1 1 1
3 2 2 3

2
3 4
3 3 2

14 2 3
r l 1 1
2 2 2
1 1 2
2 3 1

4
1 1
2 3 5
1 1 2 1
2 1 1 2 ,

Figure 1. Conflict Matrix for the Visual Dimension
(NE=near, FA=far, SC=scan, FI=fixate, SE=separable, IN=integral, OB=object,

FE=features, SA=salient, MA=masked, ST--static, DY---dynamic).

3.1.3.9.1 Generating within-matrix values

The procedure for generating the values (ranks) for the within-matrix of the visual
dimension (Figure 1) requires ranking the 78 possible combinations of the six pairs, taking
two pairs at a time, which are entered in a triangular matrix that is symmetric about the main
diagonal.

For example, the first pair of elements (near visual/far visual) is entered into the matrix,
generating four possible interactions that are rank ordered: near visual/near visual, near
visual/far visual, far visual/near visual, far visual/far visual. However, since the near
visual/far visual and far visual/near visual interactions are redundant, only three interactions
need to be ranked. In the within-matrix, each pair of elements involves one redundant
interaction so that only three rankings are required for each pair.

This Ranking procedure is repeated to compare each pair of elements with itself and with
the other pairs in the same dimension in order to construct the within-matrices.

3.1.3.9.1.1 Example 1: Two tasks with two near visual requirements

Two tasks with two near visual requirements (the intersection of near visual and near visual
elements) requires fewer resources than two tasks with two far visual requirements. The
time demands are less because it probably takes less time to conduct a visual search near
than far (less search area). Less memory is needed because with less time there are
probably fewer items that need to be stored in short term memory or encoded into long term

Page C-13

memory.Theattentional demands may be less because they are needed for less time, even
though the same amount may be required for a given unit of time.

3.1.3.9.1.2 Example 2: Two tasks with a near visual and a far visual
requirement

Two tasks with a near visual and a far visual requirement will probably require the most
resources because it is hard to divide attention between the near and far visual fields. This
will probably increase the visual search time because a strategy of switching attention back
and forth between the near and far fields needs to be employed, and this requires more time
than focusing on only one or the other field. This strategy probably has more memory
requirements because information from each field has to be stored and recalled with each
switch in attention.

3.1.3.9.2 Generating between-matrix values

In order to construct the between-matrices the procedure for generating within-matrix
values is repeated to compare each pair of elements in one dimension with each pair of
elements in the other dimensions. This repetition of procedures results in eight conflict
matrices (four within and four between) constructed in a similar fashion to the matrix in
Figure 1 (see Appendix A, Figures A-1 through A-7).

There are only four between-matrices instead of the six that would result from all
combinations of the four dimensions, because information is assumed to be processed
serially from the perceptual input stage through cognitive processing to motor output stages
(Wickens &Flach, 1988). Therefore, the auditory and visual modalities interact within the
input stage (1 matrix), both interact with the cognitive processing stage (2 matrices), and
the cognitive processing stage interacts with the motor stage (1 matrix). Rank ordering all
possible interactions within the eight matrices results in around 500 conflict values that can
be used to generate the VACM loading values.

The rankings are based on the results of experiments that tested the structures and
processes underlying the interactions among the elements. Each interaction was assigned a
rank that matched experimental results testing either that interaction or a similar interaction.
In the cases where interactions could not be matched to specific experiments, rankings were
extrapolated from the most appropriate research. Boff, Kaufman & Thomas (1986) and
Boff & Lincoln (1988) were used extensively to obtain the experimental results used to
generate the rankings.

3.1.3.10 Classifying the Pilot-Task Interaction

In order to classify the pilot-task interaction with the taxonomy, the relevant attributes of
each task are mapped into the taxonomy using cognitive task analysis techniques.

3.1.3.10.1 Cognitive Task Analysis (CTA)

Cognitive task analysis provides the means to map a detailed representation of the pilot-task
domain because its main goal is to reveal the interactions among the current and desired
states of the world (tasks), the state of the agent (pilot), and the representations of the
world available to the agent (Woods & Roth, 1988) which are explicated and therefore
applicable to modeling.

The cognitive analysis results in "...an umbrella structure of domain semantics that
organizes and makes explicit what particular pieces of knowledge mean about problem

Page C-14

solvingin thatdomain"(Roth& Woods,1988pg.44-45).Thisumbrellastructure
providesaframeworkwithwhichtocapturethecognitivedemandsthatarewansportable
across reasoning situations, yet relevant to the domain because they are represented in the
domain semantics (Woods & Hollnagel, 1987; Woods & Roth, 1988; Roth & Woods,
1988).

3.1.3.10.2 MIDAS-TLM as a CTA Structure

The elements and dimensions of the taxonomy used in the MIDAS-TLM is essentially a
structure of domain semantics that organizes the perceptual, cognitive, and motor demands
in the pilot-task interaction. Since the domain semantics explicitly define the representations
of the structures and processes of the tasks that are available to the pilot, the MIDAS-TLM
taxonomy can guide the cognitive task analysis.

3.1.3.10.3 Mapping a Task to the Taxonomy

Task attributes are mapped to the elements and dimensions in the taxonomy through a
binary (present or absent) classification scheme. The result of constructing the principles in
this fashion is a taxonomy of dichotomous principles that represent the range of the
structures and processes that a pilot might possibly require to perform a task. Table 2
describes the properties, structures and processes, and stages that correspond to each pair
of elements and their respective dimensions.

The taxonomy contains seventeen pairs of elements, plus two other sets of elements in the
motor dimension that represent the anatomical constraints (mouth, head, eye, hand, feet,
fingers) and their combinations (right, left, both).

3.1.3.10.4 Taxonomic Subsets Used to Classify Pilot.Task Interaction

Not every element of the taxonomy will be used to classify a task and to characterize an
interaction because the taxonomy represents a range of the structures and processes that a
pilot might use, and different tasks require different structures and processes. Therefore,
only a subset of the elements in the taxonomy will be used to characterize a pilot-task
interaction, and that subset, one of the many possible subsets that can characterize the
interaction, will be selected according to how the attributes that define the task, world, and
equipment states are mapped to the taxonomy.

The subset characterizing the pilot task interaction results from selecting one element from a
pair that best characterizes the pilot-task interaction being mapped. Examples of some of the
possible criteria for selecting a task are listed in Table 3. Only one element can be chosen
since they are structured as two distinct but related properties. Therefore, each one is either
present or absent and, while both cannot be present at the same time, both can be absent.
Consequently, the subset can contain fewer than twenty elements, but not more. This
avoids forcing a task to be classified with elements that are irrelevant or inappropriate.

Page C- 15

Dimension

Auditory

Visual

Cognitive

!Elements

Orient/ Discriminate

Signal / Speech

Salient / Masked

Near Visual / Far Visual

Scan / Fixate

Integral / Separable

Objects / Features

Salient / Masked

Static / Dynamic

Direct / Transformation

Selection Criteria

Sul_system: Comm; Sensory: interpret words,
tones
Subsystem: Comm; Object: messages, alarms

World model state variables: jamming, high
ambient noise

If subsystem = internal visual field then near
else far
If sensory=(vb-list:orient) then scan;
else if (vl:read)
CDE: object clefs.; World model: external object
defs.
CDE: object defs.; World model: external object
defs.
World model state variables: night/day, rain/clear

Aero model state variables: stationary, in transit

If no change in inst., controls, then direct

Motor

Single Choice / Multiple

Choice

Verbal / Spatial

Planned / Unplanned

Verbal / Spatial

Near / Far

,Discrete / Continuous

Gross / Fine

else trans.
If dement= (list:direct,fixate-sep) then s-choice
else

if element=(list:trans, scan-sep) then m-choice

If speech, read (digits,words) then verbal
!else spatial
Scheduler, (Planner): interrupted task schedule

If sub'system = corn then verbai else spatial

If jack-reach < ?-distance then near else far

If control = (object lis0 then discrete
else continuous
If control = (type list) then gross else fine

Table 3. Definitions of Paired Elements
in terms of some possible criteria

(examples of state variables from other A3I models and the AH-64 task
analysis)

Page C-16

3.1.3.11 Calculating the Loading Values
The subset of elements characterizing the interaction between pilot and task determines
which ranks will be combined to calculate the loading values according to an algorithm
derived from one developed by North & Riley (1989) and by Wickens & Andre (1989).
The algorithm calculates a loading value for each dimension: LV, LA, 1.42,and L M. The

ranks of the paired elements in the conflict matrices are used to calculate these values.

The subset of elements that are selected via the mapping process to characterize a task are
the elements in the matrices whose intersections define their ranks. The ranks for the

appropriate subset of elements are extracted from each conflict matrix and used to calculate
the loading values for the within-dimension-matrix (CW) and between-dimension-matrix

interactions (CB). After the loading values from the between- and within-dimension-
matrices have been calculated, they are combined to calculate the values for each visual,
auditory, cognitive, and motor dimension.

When there is only one task, s=l, the equation for the within-dimension-ma_dx values,
CW, is given by

s n-2 n-1 n
Cw= E E E E

t=l i=l k=i+l j=k+l
[(atkiatji) + (atjiatjk)]

atki, atji, atjk = individual conflict rankings
i, j, k = indices to the columns and rows in the matrices
s = number of concurrent tasks
n = number rows and columns
t = task index

When there is more than one task performed concurrently, s>l, the equation for the within-
dimension-matrix values, CW, is given by

s [n-1 n-I n n-1 n n]CW:t_ 1 i=_l kE=l X (atkiatji)+ X k:_+l Z (atjiatjk)j=k+l i=1 j 1

atk i, atji, a!jk = individual conflict rankings
i, j, k = indices to the columns and rows in the matrices
s = number of concurrent tasks
n = number rows and columns
t = task index

Page C-17

Thebetween-matrixvalueis thesamefor eithers=l ors>l, theequationforthewithin-
dimension-matrixvalues,CB, is given by

sInl-1 1 1 n-1 n]CB = t_l k=_l i_l j=_+l (atkiatkj) + i=l]_ k=lY" m=_+l (atldatmi)

atki, atmi, atk_.= individual conflict rankings
i, j, k, m = indices to the columns and rows in the matrices
s = number of concurrent tasks
n = number of rows
1 = number of columns
t = task index

The load value for the Visual dimension is given by

LV= Vcw+ [(VAbw + VCbw) / 2]

Vcw = loading value for the visual within-matrix

VAbw = loading values for the visual-auditory between-matrix
VCbw = loading values for the visual-cognitive between-matrix

The load value for the Auditory dimension is given by

L A = Acw + [(VAbw + ACbw) / 2]

Acw = loading value for the auditory w'ithir_-matrix

VAbw = loading values for the visl::d-auditory between-matrix
ACbw = loading values for the audito_3_-cognilive between-matrix

The load value for the Cognitive dimensiol_ is given by

L C =Ccw + [(ACbw + VCbw + CMbw) / 3]

Ccw = loading value for the cognitive within-matrix

ACbw = loading values for the auditory-at_ditory between-matrix
VCbw = loading values for the visual-cognitive between-matrix

CMbw = loading values for the cognitive-motor between-matrix

The load value for the Motor dimension is given by

LM = M_.w + C_'_/b,v

Mcw = loading value for the motor within-matrix
CMbw = loading values for the cog,qidve mo,:or between-matrix

The appropriate ranks within each matrix arc t:ross-_)-_t_it_pliedin pairwise combinations to
penalize task(s) to the extent that the interacd_g clemctats have high mutual conflicts
(Wickens & Andre, 1989) -- cross-multiply_:;g high r;_.uksadds more to the resulting load

Page C-t8

valuesthancross-multiplyinglowranks.Thevaluesfromthepairwisecross-
multiplicationsaresummedwithineachmatrix.Whentherearesingletasks(s= 1),each
conflictmatrixisa2-dimensionalarrayofranksthatarecross-multipliedacrossrowsand
columnstoproduceeightmatrixvalues-- fourwithin-malrixandfourbetweenmatrix
values-- towhichanaveragingandsummingalgorithmisapplied.

Whentherearecombinedtasks(s = the number of tasks), each conflict matrix becomes a
3-dimensional array, with the matrix of ranks for each concurrent task represented as a
level of the third dimension. Matrix values for a set of tasks are calculated by cross-
multiplying, in a pairwise procedure meeting serial constraints, the ranks in the rows and
columns in one level (representing one task), with the ranks in the rows and columns in the
other levels (representing the other tasks). This procedure also produces eight values to
which an averaging and summing algorithm is applied.

This averaging and summing algorithm is based on workload research that suggests
averaging models under-estimate loads and additive models over-estimate loads, while the
"best-fitting" model incorporates an averaging model, plus an "additional cost" (Staveland,
1980). Consequently, the matrix values are averaged across the between-matrices meeting
serial constraints to which the appropriate within-matrix value is added.

The serial constraints used to compute the individual matrix values and the averages of the
between matrices are determined by the dimensions that interact during serial processing of
the information. The visual and auditory dimensions (the input modalities) interact with
central processing dimension (cognitive dimension) since they feed in the information, and
they interact with each other since they operate concurrently. The central processing
dimension interacts with motor performance (the motor dimension) since it determines and
monitors the course of action.

The final load value for each dimension is computed by adding the value of the within-
matrix calculation for a dimension to its corresponding averaged value. Adding the value
for the within-matrix to the average of the between-matrix values represents the "additional
cost" in the "best-fitting" model.

For example, the averaged load value for the auditory dimension is calculated by averaging
the auditory-visual and auditory-cognitive between-matrix values. Serial processing
constrains the auditory dimension to interactions with the cognitive and visual dimensions
but not motor dimensions. The final load value for the auditory dimension is computed by
adding the value of the within-matrix calculation for the auditory dimension to the initial
load value.

The resultant load values increase exponentially with each additional task because of the
number of multiplications associated with the number of interactions that are allowed.
Consequently, the load values are re-scaled using a log transform, then multiplied by ten to
generate a scale ranging from 0 to 100. Using this approach, this model should be able to
calculate the loading values for any single task, as well as any number of interacting tasks.

3.2 USER DEFINITION

A user is defined as either a member of the design team, or as a MIDAS component that
interfaces with the MIDAS TLM.

Members of the design team can range from high level managers to low level technical staff
including draftspersons, psychologists, engineers, programmers and human factors
analysts. Any member of the design team may be required to utilize the tools of the

Page C-19

MIDAS workstation including the TLM. All members should be able to understand the
output of the TLM sufficiently to judge the quality and efficacy of a conceptual design. The
TLM structures the output to achieve this goal, yet also provides sufficient information to
allow for a more detailed analysis of a conceptual design by specialists in the psychology
and human factoring of design. In order to understand the output in full, a member of the
design team wiU need to have a background in psychology or human performance
modeling, especially in information processing theory, and human perception and
performance.

There are only two MIDAS interfacing systems and components that use tim TIM: the
Scheduler and the task representation methods within the Symbolic Operator Model. In the
future, a planning model would also use the TLM. The scheduler calls the TLM during
run-time of a simulation to obtain the load values necessary to implement a load balancing
strategy. The task reprcsenta.tion methods currently call the TLM before a simulation to
obtain the load values necessary to sequence the tasks that need to be simulated. In order to
call the TIM, the scheduling component is only be required to make one function call.
However, the task representation methods have to pass the tasks to be sequenced to obtain
their single task load values, or pass the sequenced tasks to obtain their concurrent values.

3.3 CAPABILITIES AND CHARACTERISTICS

This section describes the major operational capabilities to be provided by the component,
and identifies which users' needs are supported by each capability.

3.3.1 Architecture

There are four parts to the TLM component: the task editor, the task adjustor, the load
calculator, and the user interface. The task editor classifies the tasks and the adjustor
dynamically changes the classifications to accommodate changes in the context of the
simulation. The load calculator generates the load values based on the classifications, and
the user interface displays the load values, tasks and task classifications.

3.3.2 Process Capabilities

The TLM can continually process tasks throughout the simulation, and can process from
one to n number of tasks simultaneously to simulate concurrent task performance.
Realistically, the TLM would only be required to process two to four tasks simultaneously
because processing any more would be simulating unrealistic human performance
capabilities.

3.3.3 Performance

The performance of the TLM is unknown to date because it hasn't been tested. Testing and
validation will occur in the next phase of development.

3.3.4 Interfaces

The design team members interact with the TLM via mouse sensitive items on the monitor
of a Symbolics 3640 machine. By selecting certain objects on the screen, designer can
select either single- or multi-task loading values of the aircrew members. The loading
values of the tasks and task combinations are displayed along with the taxonomic subset
classifying the task (s), the name(s) of the task(s), and the time corresponding to when the
task performance was simulated. The designer can scroll the display horizontally and

Page C-20

vertically to display the complete timeline with the complete task classific_ion and loading
profiles.

3.3.5 Error recovery capabilities

As ofyettheTLM doesnotincorporatemodelsofhuman error,and doesnothaveerror
recoverymechanismsforsimulationcrashesorinterruptions.

3.3.6 Reliability

The reliability of the TLMSCI is not known because it hasn't been tested or validated.
3.3.7 Maintainability

Currently the TLMSCI can be maintained only by an experienced Lisp programmer because
the interface code is limited, and the error recovery code is limited. In other words, the
TLM is still not very user friendly, and any maintenance and changes require delving into
the code and programming.

3.3.8 Flexibility and Expansion

The TLM is currently not very flexible from a hardware point of view. The software is in
Lisp and runs only on Lisp machines, although it is portable between Lisp machines.
Whether or not the TLM will be expanded to be portable between different computers is
undecided, but this may be required to port the TLM, within the MIDAS environment, to
industrial and commercial applications. From a designers point of view the TLM is more
flexible, because it can be applied to a wide range of design environments.

3.3.9 Transportability

The TLMSCI is not a stand-alone tool. It was designed to be used within the MIDAS
modeling and design environment. As such, it is only as transportable as the MIDAS
workstation. The goal is develop the MIDAS workstation to the point that it can be
transferred to industrial and commercial applications, but when this will occur is unknown.

3.3.10 Quality

The quality of the TLMSCI is currently unknown, and will remain unknown until it has
been tested and validated.

3.3.11 Adaptation to Various Operational Sites

The TLMSCI can be adapted to various sites, but since it is generic by nature, any tailoring
to specific sites will have to be done by the user. This will require creating a library of
tasks and simulation state variables in sufficient detail to be fed into the TLM. Once the

library is built, the TLM should run fairly autonomously. Designers would be required to
monitor task classifications to insure they are valid, and only make limited changes as
needed.

3.3.12 Phased Implementation

The TLM results from work conducted during only one phase, phase IV, the last phase that
was just finished as of June 1990. During this phase the TLM was created and a functional
model implemented in Lisp on a Symbolics 3640 Machine. The next phase is to begin
sometime in November of 1990 and will continue for 12 to 18 months. During this next

Page C-21

phasethe TLM will be tested and validated, and will be expanded to automatically classify
tasks and adjust task classifications, both of which are currently done manually by the
designer.

3.3.13 General Flow of Data

The flow of data occurs between the TLM and two other MIDAS models: the Scheduler
(the task sequencing model) and the task representation methods in the Symbolic Operator
Model (goal decomposing model).

The Scheduler calls the TLM during run-time of a simulation to obtain the load values
necessary to implement a load balancing strategy.

The task representation methods in the Symbolic Operator Model currendy call the TLM
before a simulation to obtain the load values necessary to sequence the tasks that need to be
simulated.

3.3.14 General Flow of Execution Control

The flow of execution is controlled by the task representation methods in the Symbolic
Operator Model. The Symbolic Operator Model determines the task sequences that will be
simulated, and in doing so decides when each task or concurrent tasks become active. At
this time, the TLM is called to evaluate the loads of the active tasks. The Symbolic
Operator Model also calls the TLM prior to the simulation for load values to help decide
how to sequence the tasks. The Symbolic Operator Model also can call the Scheduler to
help decide how to sequence the tasks. In turn, the Scheduler then calls the TLM for the
task loading values the Scheduler requires to implement a load balancing strategy for
scheduling tasks. The potential task schedules are then used by the Symbolic Operator
Model to help decide how to sequence the tasks.

3.3.15 Networking Requirements

Currently, the Scheduler, Symbolic Operator Model and the TLM use the CHAOS
medium, the Nf'de protocol and the File service to communicate between the Symbolic
Operator Model on the Symbolics file server, and the Scheduler and TLM on two other
Symbolics machines.

3.4 SAMPLE OPERATIONAL SCENARIOS

The following scenario illustrates the use of the TLM within the MIDAS environment. To
begin with, the user (member of a design team) formulates alternate cockpit designs that
would enable a pilot to fly a specific type of mission. The user then renders the design
using MIDAS CAD tools. Next, the user would use the Symbolic Operator Model to
describe and decompose the tasks for the simulation. The mission is decomposed down to
subgoals that are then mapped to various flight activities, which are in turn, decomposed
into subactivities that are mapped to their respective pieces of equipment. Mapping
subactivities to equipment allows the designer to compare the alternate designs that were
formulated.

The equipment-dependent subactivities are the tasks that will be simulated, but at this stage
the tasks are lists, not task sequences. To sequence the tasks of a simulation, the tasks and
task combinations are evaluated using the TLM to predict the Visual ,Auditory, Cognitive
and Motor (VACM) loads that would be imposed on a pilot flying an aircraft using one of
the formulated designs. If the predicted values for a given sequence of tasks are acceptable

Page C-22

(theyfall within tolerance limits determined by the design team), then the task sequence is
simulated. If the predicted values are outside the acceptable limits, then the task
sequence(s) arc evaluated using the Scheduler to generate alternate task sequences.

The Scheduler evaluates several sequences, and determines the best one using a load
balancingstrategy that specifies the acceptable limits of the task load values. The optimal
schedule based on the load balancing strategy is passed to the task representation methods
of the Symbolic Operator Model which hands the list to the Simulation Executive
component, which executes the simulation of the selected task sequence.

The TLM then evaluates the loads of the tasks that are active at each increment (tick, in the
current tick-based system) in the simulation and displays the predicted visual, auditory,
cognitive and motor loads of these active tasks along with their task classifications.

This process is repeated for each of the formulated designs. The respective task loading
profiles generated by the TLM are analyz.ed by the users to determine the design that best
matches the design criteria. The design criteria are pre-determined by the design team and
depend on the design objective, but the criteria could be whether load profiles were within
upper and lower boundaries, and whether the task combinations required unreasonable
pilot control inputs.

4.0 REQUIREMENTS

The TLM was developed to meet the following Phase IV requirements:
1) to provide some contextual basis for augmenting subjective estimates of projected

Visual, Auditory, Cognitive and Motor, (VACM) load, based on certain
characteristics or attributes of the task, world state, operator state, and equipment.

2) to develop a method of resource description that is general enough to describe any
helicopter aviation task.

3) to develop aa classification taxonomy and methods (e.g., conflict matrices) to
describe the interaction of resource demands across processing dimensions
(VACM) and tasks.

There are four major components of the TLM: the Task Editor, the Task Adjustor, the
Calculator, and the User Interface. These four components represent the functional
structure of the software, however, the physical implementation of the code involves an
overlapping file structure. There are eight files containing the data object types and the
operations performed on them (e.g., flavors, structures, methods, and functions) that are
required to run the TLM. The data object types are not separated in the files according to
the kind of component, but are separated according to the operations that are performed on
the data objects.

4.1 REQUIREMENTS APPROACH AND TRADEOFFS

The Lisp environment was used because object-oriented programming supports the
conceptual representation of human perception and performance, and supports the
manipulation of the state variables representing specific attributes of perception and
performance. The Lisp environment supports rapid development of conceptual approaches
for modeling an operator's behavioral states (perceptual, cognitive and motor performance)
that can be used to determine operator task loading. Different behavioral states can be

Page C-23

representedasobjects and the specific attributes of those behaviors can be modelled as state
variables. The same can be done for the physical system being modeled. In particular, the
physical designs rendered with the MIDAS workstation can be modeled as objects with
display attributes modeled as state variables with dynamically changing values.

The result of modeling both the operator's behavioral states and the system's physical
states is that the interactions between the two can be modeled and the interactions explored.
The values of state variables from other components in the MIDAS workstation can be
accessed and integrated into the TLM, making the interactions sensitive to changing
contexts in the simulation.

4.2 HARDWARE ENVIRONMENT

The Task Loading Model software runs on the Symbolics 3600 series with 3 MWords
CPU memory, 2 14MB fixed disk drives (127MB formatted), an Ethemet Interface card,
and a 17" landscape, monochrome monitor with OCLI filter and 1152 * 879 pixel
resolution. A minimum of 8 megabytes of memory is recommended to run the TLM.

4.3 SOFTWARE ENVIRONMENT

The Task Loading Model software was written under the Genera 7.2 operating system.
Common Lisp with the Flavor System for object oriented programming and the Symbolics
Dynamic Windows and Presentation Substrate Systems.

The Genera 7.2 and 8.0 software environment includes Zmail, Zmacs Editor, Symbolics
Common Lisp, Document Examiner, Genera windowing environment, CHAOSnet
networking software, and Namespace system. The software environment also includes a
FORTRAN compiler, IP-TCP communication software 4.2, V67.5, and LMFS (Lisp
Machine File System). All the software mentioned is used by the TLM except for the
FORTRAN compiler.

The TLM is run in interpreted mode during development efforts, but is run in compiled
mode when demonstrating the TLM.

4.4 EXTERNAL INTERFACE REQUIREMENTS

There are two categories of external interfaces, each with different requirements. These
external interfaces map directly to the two user groups: (1) a member of the design team, or
(2) a MIDAS component that interfaces with the MIDAS TLM.

4.4.1 The Designer's Interface

The designer's interface allows designers to interact with the TLM when evaluating
conceptual designs.

4.4.1.1 Purpose of the Interface

The purpose of the interface is to facilitate the use of the TLM by (1) displaying the
information about operator performance that is sufficient for a user to judge the quality and
efficacy of a conceptual design, and (2) by providing the user with the means to interact
with the information that is displayed.

4.4.1.2 Information Content of Displays

Page C-24

Theinterfacedisplaysdetailedinformationabout the tasks and the impact of those tasks on
an operator. The names of the conceptual design environment, crew selection menu, task
names, psychological dimensions and attributes, task loadings, task classifications, and
simulation timcline arc displayed. The type of design enviromncnt and crew members arc
displayed at the top of the interface. The task names arc displayed for each crew member.
Under each task name, the imposed task loads are listed with the label for each load, and
the attributes used to classify the task are listed along with attribute labels. The simulation
timeline is displayed at the bottom of the interface.

4.4.1.3 Interacting with the Interface

The user interacts with the display with the mouse. The user points at mouse-sensitive
items that display momentary pop-up menus. These menus allow the user to select the task
load data for each crew member, for single-tasks or combined-tasks, and whether the task
load data should be re-calculated or re-displayed. The user can use the mouse to point at a
scroll bar in the left margin to scroll vertically through the task load and task classification
data. The user can also use the mouse to point at a scroll bar in the bottom margin to
display the task load and classification data at each time or tick increment in the simulation.

4.4.1.4 Interface Constraints

The current interface is for conceptual designs of helicopter cockpits. There are very few
displayed items in the interface that are mouse-sensitive, which limits the application of this
version of the interface to different design environments. The user cannot change the
names of the system domain, the system operator labels, or the names of the tasks with the
interface. The user cannot change the task classifications or the task taxonomy. The user
also cannot change the amount of information that will be displayed. To effect any changes,
the user has to evaluate and change the appropriate underlying code and then recompile it.
Future versions of the interface will increase the number of mouse sensitive items in the
display providing the user with capability to adapt the display parameters to different
environments.

4.4.2 The Interface to MIDAS Components

There are two MIDAS interfacing systems and components that use the TLM: the Scheduler
and the Symbolic Operator Model.

4.4.2.1 Purpose of the Interface

The purpose of the interface is to provide the TLM with the information required to predict
the values of the imposed loads on system operators, and to pass the values to the MIDAS
components that require them.

4.4.2.2 Information Content

The scheduling component calls the TLM with a call to a single function, using the names
of the tasks as the arguments to the function. The function invokes the TLM, and finally
returns the load values associated with the tasks.

In order to obtain single task load values, the task decomposition component of the
Symbolic Operator Model writes the tasks that will be sequenced to a file that the TLM
reads. To obtain the concurrent task load values, the list of sequenced, or active tasks are
written to the same file. The TLM returns the values for each task or task combination to
the Symbolic Operator Model, or displays them on the TLM interface.

Page C-25

4.4.2.3 Information Flow

There are four ways for data to flow between the Symbolic Operator Model, the Scheduler
and the TLM:

1) _vmbolic Operator Model to TLM to Symbolic Operator Model: used when the
Symbolic Operator Model needs task load values to decide ta_ sequences. The task
names are the data passed to the TLM, which passes back four load values for each
task.

2)

3)

Symbolic Ope_rator Model to Scheduler to TLM to Scheduler to S_vmbolic Operator
Model:used when theSymbolicOperatorModel needsalternateschedulestodecide
thetasksequences.The datapassedby theSymbolicOperatorModel tothe
Schedulerarelistsofinstancesoftaskobjectsand constraints.The Scheduler
doesn'tpassdatatotheTLM butcallsfunctionsthatclassifythetaskobjectsand
evaluatestheirloads.The Schedulerthenpassesbacka scheduledlistofinstances
oftaskobjects.

Scheduler to TLM to Scheduler: used when the Scheduler needs task load values for
load balancing independent of the Symbolic Operator Model. The Scheduler
doesn't pass data to the TLM but calls functions that classify the task objects and
evaluates their loads.

4) SymbolicOpc_ratorModel toTLM: usedtodisplaythetaskloadvaluesfortherusk
sequencethatisbeingsimulated.The tasknames arcpassedtotheTLM, which
displaysthefourloadvaluesforeachtask.

4.4.2.4 Implementation Constraints

Currendy, the TLM cannot obtain information about the states of the simulation
environment to adjust the task classifications because the TLM does not interface with any
models on the Silicon Graphics machines, such as the aeroguidance model, jack model,
vision model, world model, or the data pool. The TLMS communicates only with other
Symbolics machines, and only uses information written to a file by the Symbolic Operator
Model. Consequendy, in Phase IV, all classifications are done manually.

5.0 DESIGN

This section discusses the design of the TLM in detail. It describes the architecture from
the system to the file to the individual functions in the files. It also discusses the rational for
implementing the architecture of the TLM.

5.1 ARCHITECTURAL DESIGN

The TLM consists of four major components: the Task Editor, the Task Adjustor, the
Calculator, and the User Interface.

5.1.1 Design Approach and Tradeoffs

The implementation of the TLM began with developing the TLM Calculator. This
component was considered to be the core because it calculated and produced the loading
values based on lists of element indices for each dimension. This was coded by Hank
Bushnell, as the author at the time was not a programmer. The author then built the current

Page C-26

implementation of the TIM asa series of files that fed the input to the calculator in the
correct format and output the task data to the display in the correct format. As a result of
this approach, the pieces of code were functionally organized into files after the bulk of the
code was developed,

5.2 DETAILED DESIGN

There are sixteen files in seven functional groups that implement the four major
components of the TLM. The definition of the seven functional groups (FG's) follow:

FG1) Three files contains the code that implements the Task Editor
FG2) One file contains the code that implements the Calculator
FG3) Two files defines the windows, window-panes, and menus that implement the User
Interface
FG4) Two files contain the code that formats the task loading data for the User Interface
FG5) Four files contain the code that link the TLM to the Symbolic Operator Model and
Scheduler
FG6) One file intializes the TLM
FG7) Three files implement the TLM as a system

This section on detailed design describes the code, logic flow and compilation units in the
seven functional groups.

5.2.1 FGI: The task editor and data-input functional group

FILE: SQUID:>stav>midas.tim>task-names.lisp

DESCRIPTION: This file contains the functions and hash tables containing the names and
indices of all the tasks used in the simulation

VARIABLES DEFINED: *CPG-TASK-NAME-TABLE* *PILOT-TASK-NAME-
TABLE*
PARAMETERS DEFINED: CPG-LONG-NAMES PILOT-LONG-NAMES
FUNCTIONS DEFINED: CPG-SHORT-NAME PILOT-SHORT-NAME CPG-
SHORT-NAMES-TABLE PILOT-SHORT-NAMES-TABLE

NAME: *PILOT-TASK-NAME-TABLE*
DESCRIPTION: defines and initializes the hash table for the short names of the pilot's
tasks
INITIAL-VALUE: nil

NAME: *CPG-TASK-NAME-TABLE*
DESCRIPTION: defines and initializes the hash table for the short names of the epg's

tasks
INITIAL-VALUE: nil

NAME: PILOT-SHORT-NAMES-TABLE
DESCRIPTION: makes the hash table containing the short names for the long task names

for the pilot
:size 200

INITIAL-VALUE: List of pilot task long-names

NAME: CPG-SHORT-NAMES-TABLE

Page C-27

DESCRIPTION: makes the hash table containing the short names for the long task nart_s
for the copilot
:size 200
INITIAL-VALUE: List of copilot task long names

NAME: PIlOT-SHORT-NAME
DESCRIPTION: retrieves the short name of a long task name from pilot-task-name-table
INPUTS: *pilot-task-name-table*
CALLING FUNCTIONS: (METHOD PRINT-TO-TASK-ELEMENT-AND-LOAD-

PANE TASK-LOAD-WINDOW-FRAME) (METHOD DISPLAY-TASKCOMBO-
LABELS TASK-TITLE-PANE)

NAME: CPG-SHORT-NAME
DESCRIPTION: retrieves the short name of a long task name from cpg-task-name-table
INPUTS: *cpg-task-name-table*
CALLING FUNCTIONS: (METHOD PRINT-TO-TASK-ELEMENT-AND-LOAD-

PANE TASK-LOAD-WINDOW-FRAME) (METHOD DISPLAY-TASKCOMBO-
LABELS TASK-TITLE-PANE)

NAME: PILOT-LONG-NAMES
DESCRIPTION: creates the list of long frames for pilot's tasks and assigns it to the

variable pilot-long-names
INITIAL-VALUE: nil

NAME: CPG-LONG-NAMES
DESCRIPTION: creates the list of long names for cpg tasks and assigns it to the variable

cpg-long-names
INITIAL-VALUE: nil

FILE: SQUID:>stav>midas-tim>tlm-task-load-data.lisp

DESCRIPTION: This file contains the functions required to access the task classifiaction
indices using the tasks names from the task name and index hash table
VARIABLES DEFINED: *CPG-TASK-LOAD-DATA-TABLE* *PIlOT-TASK-LOAD-

DATA-TABLE*
FUNCTIONS DEFINED: GET-CPG-TASK-INDICES-FROM-TABLE GET-PIlOT-

TASK-INDICES-FROM-TABLE GET-CPG-TASK-NAMES-FROM-TABLE GET-
PILOTTASK-NAMES-FROM-TABLE GET-CPG-ACTIVE-TASKS GET-PILOT-
ACTIVE-TASKS CPG-TASK-LOAD-DATA-TABLE PILOT-TASK-LOAD-DATA-
TABLE

NAME: *PILOT-TASK-LOAD-DATA-TABLE*

DESCRIPTION: defines and initializes the hash table containing the long task names and
their load indices for the pilot
INITIAL-VALUE: nil

NAME: *CPG-TASK-LOAD-DATA-TABLE*
DESCRIPTION: defines and initializes the hash table containing the long task names and

their load indices for the copilot
INITIAL-VALUE: nil

NAME: PILOT-TASK-LOAD-DATA-TABLE
DESCRIPTION: creates the hash table containing the long task names and their load

indices for the pilot

Page C-28

:size200
:initial-contents: list of pilot task names and indices

NAME: CPG-TASK-LOAD-DATA-TABLE
DESCRIPTION: creates the hash table containing the long task names and their load
indices for the copilot
:size 200
:initial-contents: list of copilot task names and indices

NAME: GET-PILOT-ACTIVE-TASKS
DESCRIPTION: gets a list of the task-load-indices of the active task from the *pilot-task-
load-data-table*
INPUTS: TASK-LIST
OUTPUTS: '(current-time list-of-active-tasks current-task)
CALLING FUNCTIONS: GET-AND-DISPLAY-PILOT-COMBINED-TASK-LOADS

NAME: GET-CPG-ACTIVE-TASKS
DESCRIPTION: gets a list of the task-load-indices of the active task from the *cpg-task-
load-data-table*
INPUTS: TASK-LIST
OUTPUTS: '(current-time list-of-active-tasks current-task)
CALLING FUNCTIONS: GET-AND-DISPLAY-CPG-COMBINED-TASK-LOADS

NAME: GET-PILOT-TASK-NAMES-FROM-TABLE
DESCRIPTION: gets the keywords from the hash-table - *pilot-task-load-data-table*
FUNCTIONS CALLED: maphash

NAME: GET-CPG-TASK-NAMES-FROM-TABLE
DESCRIPTION: gets the keywords from the hash-table - *cpg-task-load-data-table*
FUNCTIONS CALLED: maphash

NAME: GET-PILOT-TAS K-INDICES-FROM-TABLE

DESCRIPTION: gets the pilot's task names and indices from the hash table *pilot-task-
load-data-table*
OUTPUTS: '(pilot-single-task-name-list pilot-single-task-index-list)
CALLING FUNCTIONS: DISPLAY-PILOT-SINGLE-TASK-LOADS

NAME: GET-CPG-TASK-INDICES-FROM-TABLE
DESCRIPTION: gets the cpg's task names and indices from the hash table *cpg-task-load-
data-table*
OUTPUTS: '(cpg-single-task-name-list cpg-single-task-index-list)
CALLING FUNCTIONS: DISPLAY-CPG-SINGLE-TASK-LOADS

FILE: SQUID:>stav>midas-tlm>tlm-editor.lisp

DESCRIPTION: This file contains the code that was used to input the task indices to the
calculator (CCSCI). This file is no longer used in the TLM because of extensive changes.
The new input code and procedures are detailed in Section 6: USER'S GUIDE

Future changes and versions will modify this file to search for input data values in the data
pools distributed throughout MIDAS.

5.2.2 FG2: The task-load calculator functional group

Page C-29

FILE:SQUID:>Stav>midas-tlm>tlm-calculator.lisp

AUTHOR:HankBushneU
DESCRIPTION:Thisfile containsthefunctions,constants,andvariablesrequiredto
calculate the task load values
VARIABLES DEFINF.D: *COGNITIVE-MOTOR-CM* *AUDITORY-C(X_NITIVE-
CM* *VISUAL-COGNITIVE-CM* *VISUAL-AUDITORY-CM* *MOTOR-CM*
COGNITIVE-CM *AUDITORY-CM* *VISUAL-CM*
CONSTANTS DEFINED: These constants are the indices into the conflict matrices for
each element in each dimension: *MOTOR-BOTH* *MOTOR-LEFr* *MOTOR-
RIGHT* *MOTOR-FINGER* *MOTOR-FEET* *MOTOR.HAND* *MOTOR-EYE*
MOTOR-HEAD *MOTOR-MOUTH* *MOTOR-FINE* *MOTOR-GROSS*
MOTOR-CONTIN *MOTOR-DISCRETE* *MOTOR-FAR* *MOTOR-NEAR*
MOTOR-SPATIAL *MOTOR-VERBAL* *COG-UNPLANNED* *COG-
PLANNED* *COG-SPATIAL* *COG-VERBAL* *COG-MULTIPLE* *COG-
SINGLE* *COG-TRANSFORM* *COG-DIRECT* *AUD.MASKED* *AUD-
SALIENT* *AUD-SPEECH* *AUD-SIGNAL* *AUD-DISCRIM* *AUD-ORIENT*
VIS-DYNAMIC *VIS-STATIC* *VIS-MASKED* *VIS-SALIENT* *VIS-
FEATURES* *VIS-OBJECTS* *VIS-INTEGRAL* *VIS-SEPARABLE* *VIS-
FIXATE* *VIS-SCAN* *VIS-FAR* *VIS-NEAR*
FUNCTIONS DEFINED: SCALE-LOAD-VALUES GENERATE-LOAD MOTOR-
LOAD COGNITIVE-LOAD AUDITORY-LOAD VISUAL-LOAD BETWEEN-SUM-
OVER-TASKS-2 BETWEEN-SUM-OVER-TASKS-1 COGNITIVE-MOTOR-LOAD
AUDITORY-COGNITIVE-LOAD VISUAL-COGNITIVE-LOAD VISUAL-AUDITORY-
LOAD WITHIN-SUM-OVER-TASKS-2 WITHIN-SUM-OVER-TASKS-1 WITHIN-
SUM-OVER-ONE-TASK WITHIN-MOTOR-LOAD WlTHIN-C"OGNITIVE-LOAD
WITHIN-AUDITORY-LOAD WYI'HIN-VISUAL-LOAD PRINT-2D-ARRAY PRINT-
SYM-ARRAY MAKE-SYM-ARRAY ASET-SYM

NAME: ASET-SYM
DESCRIPTION:Sets both symmetric elements of a sytmnetric array whenever one is set.
INPUTS: SYMMETRIC-ARRAY VALUE I J
CALLING FUNCTIONS: MAKE-SYM-ARRAY

NAME: MAKE-SYM-ARRAY

DESCRIPTION: Creates and initializes a symmetric array.
INPUTS: &REST REST &KEY INITIAL-CONTENTS
OUTPUTS: SYM-ARRAY
FUNCTIONS CALLED: ASET-SYM

NAME: PRINT-SYM-ARRAY
DESCRIPTION: Print out a symmetric array, checking that it really is symmetric.
INPUTS: SYM-ARRAY &OPTIONAL (STREAM T)
OUTPUTS:

NAME: PRINT-2D-ARRAY

DESCRIPTION: Print out a 2-dimensional array.
INPUTS: ARRAY &OPTIONAL (STREAM T)

NAME: *VISUAL-CM*
DESCRIPTION: The conflict matrix for the Visual dimension
INITIAL-VALUE: A matrix of conflict and demand values'

NAME: *AUDITORY-CM*

Page C-30

DESCRIPTION:TheconflictmatrixfortheAuditorydimension.
INITIAL-VALUE:Amatrixofconflict and demand values

NAME: *COGNIT/VE-CM*
DESCRIPTION: The conflict matrix for the Cognitive dimension.
INI'nAI..-VALUE: A matrix of conflict and demand values

NAME: *MOTOR-CM*
DESCRIPTION: The conflict matrix for the Motor dimension.
INITIAL-VALUE: A matrix of conflict and demand values

NAME: *VISUAL-AUDITORY-CM*
DESCR/PT/ON: The conflict matrix for the Visual-Auditory dimension.
INITIAL-VALUE: A matrix of conflict and demand values

NAME: *VISUAL-COGNITIVE-CM*
DESCRIPTION: The conflict matrix for the Visual-Cognitive dimension.
INITIAL-VALUE: A matrix of conflict and demand values

NAME: *AUD/TOR Y-COGNITIVE -CM*
DESCRIPTION: The conflict matrix for the Auditory-Cognitive dimension.
INITIAL-VALUE: A matrix of conflict and demand values

NAME: *COGNITIVE-MOTOR-CM*
DESCRIPTION: The conflict matrix for the Cognitive-Motor dimension.
IN/TEAL-VALUE: A matrix of conflict and demand values

NAME: TASK-ELEMENTS (structure)
DESCRIPTION: Structure describing the elements of a task.
INITIAL-VALUE: '(visual auditory cognitive motor)

NAME: WITHIN-VISUAL-LOAD
DESCRIPTION: Calculate the visual load of a set of tasks.
INPUTS: ELEMENTS-OF-TASKS
FUNCTIONS CALLED: TASK-ELEMENTS-VISUAL WITHIN-SUM-OVER-ONE-

TASK WITHIN-SUM-OVER-TASKS-1 WITHIN-SUM-OVER-TASKS-2
CALLING FUNCTIONS: VISUAL-LOAD GENERATE-LOAD

NAME: WITHIN-AUDITORY-LOAD
DESCRIPTION: Calculate the auditory load of a set of tasks.
INPUTS: ELEMENTS-OF-TASKS
FUNCTIONS CALLED: TASK-ELEMENTS-AUDITORY WITHIN-SUM-OVER-
ONE-TASK WITHIN-SUM-OVER-TASKS-1 W/THIN-SUM-OVER-TASKS-2
CALLING FUNCTIONS: AUDITORY-LOAD GENERATE-LOAD

NAME: WITHIN-COGNITIVE-LOAD
DESCRIPTION: Calculate the cognitive load of a set of tasks.
INPUTS: ELEMENTS-OF-TASKS
FUNCTIONS CALLED: TASK-ELEMENTS-COGNITIVE WITHIN-SUM-OVER-
ONE-TASK WITHIN-SUM-OVER-TASKS-1 WITHIN-SUM-OVER-TASKS-2
CALLING FUNCTIONS: COGNITIVE-LOAD GENERATE-LOAD

NAME: wrrHIN-MOTOR-LOAD
DESCRIPTION: Calculate the motor load of a set of tasks.

Page C-31

INPUTS: ELEMENTS-OF-TASKS
FUNCTIONS CALLED: TASK-ELEMENTS-MOTOR wrrHIN-SUM-OVER-ONE-
TASK WrFHIN-SUM-OVER-TASKS-1 WITHIN-SUM-OVER-TASKS-2
CALLING FUNCTIONS: MOTOR-LOAD GENERATE-LOAD

NAME: WITHIN-SUM-OVER-ONE-TASK
DESCRIPTION: Sum the contributions to a load from one tasks: a[t,k,i]*a[tj,i]) +
(a[t,j,i]*a[t,j,k])
INPUTS: CONFLICT-MATRIX TASK-ELEMENTS-ACCESSOR ELEMENTS-OF-
TASKS I J K
CALLING FUNCTIONS: WITHIN-VISUAL-LOAD WITHIN-AUDITORY-LOAD

WITHIN-COGNITIVE-LOAD WITHIN-MOTOR-LOAD

NAME: WITHIN-SUM-OVER-TAS KS- 1
DESCRIPTION: Sum the column-wise contributions to a load from all tasks
(a[t,k,i]*a[t,j,i])
INPUTS: CONFLICT-MATRIX TASK-ELEMENTS-ACCESSOR ELEMENTS-OF-

TASKS I J K
CALLING FUNCTIONS: WITHIN-VISUAL-LOAD WITHIN-AUDITORY-LOAD

WITHIN-COGNITIVE-LOAD WITHIN-MOTOR-LOAD

NAME: WITHIN-SUM-OVER-TA SKS-2

DESCRIPTION: sum the row-wise contributions to a load from all tasks (a[t,,j, i]*a[t,,j,k])
INPUTS: CONFLICT-MATRIX TASK-ELEMENTS-ACCESSOR ELEMENTS-OF-

TASKS I J K
CALLING FUNCTIONS: WITHIN-VISUAL-LOAD WITHIN-AUDITORY-LOAD

WlTHIN-CCK3NITIVE-LOAD WITH/N-MOTOR-LOAD

NAME: VISUAL-AUDITORY-LOAD
DESCRIPTION: Calculate the visual-auditory load for a set of tasks.
INPUTS: ELEMENTS-OF-TASKS
FUNCTIONS CALLED: TASK-ELEMENTS-VISUAL TASK-ELEMENTS-

AUDITORY BETWEEN-SUM-OVER-TASKS- 1 BETWEEN-SUM-OVER-TASKS-2
CALLING FUNCTIONS: VISUAL-LOAD AUDITORY-LOAD GENERATE-LOAD

NAME: VISUAL-COGNITIVE-LOAD
DESCRIPTION: Calculate the visual-cognitive load for a set of tasks.
INPUTS: ELEMENTS-OF-TASKS
FUNCTIONS CALLED: TASK-ELEMENTS-COGNITIVE BETWEEN-SUM-OVER-

TASKS-I BETWEEN-SUM-OVER-TASKS-2
CALLING FUNCTIONS: COGNITIVE-LOAD GENERATE-LOAD

NAME: AUDITORY-COGNITIVE-LOAD

DESCRIPTION: Calculate the auditory-cognitive lcmd for a set of tasks.
INPUTS: ELEMENTS-OF-TASKS
FUNCTIONS CALLED: TASK-ELEMENTS-COGNITIVE BETWEEN-SUM-OVER-

TASKS- 1 BETWEEN-SUM-OVER-TASKS-2
CALLING FUNCTIONS: AUDITORY-LOAD COGNITIVE-LOAD GENERATE-LOAD

NAME: COGNITIVE-MOTOR-LOAD
DESCRIPTION: Calculate the cognitive-motor load for a set of tasks.
INPUTS: ELEMENTS-OF-TASKS
FUNCTIONS CALLED: TASK-ELEMENTS-COGNITIVE TASK-ELEMENTS-

MOTOR BETWEEN-SUM-OVER-TASKS-I BETWEEN-SUM-OVER-TASKS-2

Page C-32

CALLING FUNCTIONS: COGNITIVE-LOAD MOTOR-LOAD GENERATE-LOAD

NAME: BETWEEN-SUM-OVER-TASKS- 1
DESCRIFFION: Sum the row-wise contributions to a load from all the

tasks.a[t,k,i]*a[t,k,j]
INPUTS: CONFlICT-MATRIX ROW-TASK-ELEMENTS-ACCESSOR COL-TASK-

ELEMENTS-ACCESSOR ELEMENTS-OF-TASKS K I J
CALLING FUNCTIONS: VISUAL-AUDITORY-LOAD VISUAL-COGNrrIVE-LOAD

AUDITORY-COGNITIVE-LOAD COGNrrIVE-MOTOR-LOAD

NAME: BETWEEN-SUM-OVER-TASKS-2
DESCRIPTION: Sum the column-wise contributions to a load from all the
tasks.a[t,k,i]*a[t,m,i]
INPUTS: CONFLICT-MATRIX ROW-TASK-ELEMENTS-ACCESSOR ELEMENTS-
OF-TASKS I K M
CALLING FUNC'FIONS: VISUAL-AUDITORY-LOAD VISUAL-COGNrrIVE-LOAD
AUDITORY-COGNITIVE-LOAD COGNITIVE-MOTOR-LOAD

NAME: VISUAL-LOAD
DESCRIPTION: Calculate the average of the sums of the three possible sources of visual
loads.
INPUTS: ELEMENTS-OF-TASKS
FUNCTIONS CALLED: WITHIN-VISUAL-LOAD VISUAL-AUDITORY-LOAD
VISUAL-COGNITIVE-LOAD
CALLING FUNCTIONS: GENERATE-LOAD

NAME: AUDITORY-LOAD

DESCRIPTION: Calculate the average of the sums of the three possible sources ofloads.
INPUTS: ELEMENTS-OF-TASKS
FUNCTIONS CALLED: WITHIN-AUDITORY-LOAD VISUAL-AUDITORY-LOAD
AUDITORY-COGNITIVE-LOAD
CALLING FUNCTIONS: GENERATE-LOAD

NAME: COGNITIVE-LOAD
DESCRIPTION: Calculate the average of thesums of the four possible sources of
cognitive loads.
INPUTS: ELEMENTS-OF-TASKS
FUNCTIONS CALLED: W/THIN-COGNITIVE-LOAD AUDITORY-COGNITIVE-
LOAD VISUAL-COGNITIVE-LOAD COGNIqTVE-MOTOR-LOAD
CALLING FUNCTIONS: GENERATE-LOAD

NAME: MOTOR-LOAD
DESCRIPTION: Calculate the average of the sums of the two possible sources of motor
loads.
INPUTS: ELEMENTS-OF-TASKS
FUNCTIONS CALLED: WITHIN-MOTOR-LOAD COGNITIVE-MOTOR-LOAD
CALLING FUNCTIONS: GENERATE-LOAD

NAME: GENERATE-LOAD
DESCRIPTION: takes one or more task objects as its argument, and prints out the

respective individual and multiple task loads
INPUTS: TASKS
OUTPUTS: '(WITHIN-AUDITORY-LOAD WITHIN-COGNITIVE-LOAD WITHIN-

MOTOR-LOAD VISUAL-AUDITORY-LOAD AUDITORY-COGNITIVE-LOAD

Page C-33

VISUAL-COGNITIVE-LOAD COGNITIVE-MOTOR-LOAD VISUAL-LOAD

AUDITORY-LOAD C(X]N1TIVE-LOAD MOTOR-LOAD)
F,-UNCTIONS CALLED: (READ-INSTANCE-VARIABLE INDEX-V TASK INDEX-V)
(READ-INSTANCE-VARIABLE INDEX-A TASK INDEX-A) (READ-INSTANCE
VARIABLE INDEX-C TASK INDEX-C) (READ-INSTANCE-VARIABLE INDEX-M
TASK INDEX-M) WITHIN-VISUAL-LOAD SCALE-LOAD-VALUES WITHIN-
AuDrrORY-LOAD WITHIN-COGNITIVE-LOAD WITHIN-MOTOR-LOAD VISUAL-
AUDITORY-LOAD AUDITORY-COGNYHVE-LOAD VISUAL-COGNITIVE-LOAD
COGNITIVE-MOTOR-LOAD VISUAL-LOAD AUDITORY-LOAD C(X_N1TIVE-
LOAD MOTOR-LOAD
CALLING FUNCTIONS: SHOW-TASK-LOAD DISPLAY-SINGLE-TASK-LOADS
DISPLAY-COMBINED-TASK-LOADS MULTIPLE-TASK-LOAD SCHEDULER-
1,OAD-LIST

NAME: SCALE-LOAD-VALUES

DESCRIFYION: scales the loading values
INPUTS: LOAD-VALUE
OU_IPUTS: SCALED-VALUE
CALLING FUNCTIONS: GENERATE-LOAD

5.2.3 FG3: The display windows and menus functional group

FILE: SQUID:>stav>midas-tlm>task-load-interface-frame.lisp

DESCRIPTION: This file contains the flavors and methods required to create the windows
and panes that are used to display the task load dam
VARIABLES DEFINED: *HWI*
FLAVORS DEFINED: TASK-LOAD-WINDOW-F/LAME TIME-LINE-LABEL-PANE
TIME-LINE-PANE TASK-COMBINATION-LOAD-PANE SINGLE-TASK-LOAD-
PANE
TASK-LOAD-PANE-PARENT TASK-ELEMENT-LABEL-PANE ELEMENT-THTE-
PANE TASK-TITLE-PANE CREW-SELECTION-MENU-PANE TLM-TITLE-PANE
METHODS DEFINED:

(DI SPLA Y-MOTOR-ELEMENT-VALUES YA SK-LOAD-PANE-PARENT)
(D1 S PLAY-MOTOR-ELEMENT-LABELS TA S K-ELEMENT-LABEL-PANE)
(DISPLAY-COGN1TIVE-ELEMENT-VALU ES TASK-LOAD-PANE-PARENT)
(DIS PLA Y-COGNTFIVE-ELEMENT-LABELS TASK-ELEMENT-LABEL-PANE)
(DISPLAY-AUDITORY-ELEMENT-VALUES TASK-LOAD-PANE-PARENT)
(DISPLAY-AUDiTORY-ELEMENT-LABELS TASK-ELEMENT-LABEL-PANE)
(DISPLAY- VISUAL-ELEMENT-VALUES TASK-LOAD-PANE-PARENT)
(DISPLAY-VISUAL-ELEMENT-LABELS TA S K-ELEMENT-LABEL_PANE)
(DI SPLAY-VACM-LOAD-VALUES TASK-LOAD-PANE-PARENT)
(DISPLAY-VACM-LOAD-LABELS TASK-ELEMENT-LABEL-PANE)
(DRAW-TIME-LINE "lIME-LINE-PANE)
(DISPLAY-CREW-LABEL ELEMENT-TITLE-PANE)
(DISPLAY-TASKCOMBO-LABELS TASK-TITLE-PANE)
(DISPLAY-TASK-LABELS TASK-TITLEPANE)
(PRINT-THE-INITIAL-DISPLAY TASK-LOAD-WINDOW-FRAME)
(PRINT-TO-TA S KCOMBO-ELEMENT-AND-LOAD-PANE TASK-LOAD-WINDOW-
FRAME)
(PRINT-TO-TASK-ELEMENT-AND-LOAD-PANE TASK-LOAD-WINDOW-FRAME)
(Y-SCROLL-TO TASK-ELEMENT-LABEL_ PANE AFFER)
(X-SCROLL-TO SINGLE-TASK-LOAD-PANE AViT_R)

Page C-34

(X-SCROLL-TO TIME-LINE-PANE AFTER)
(ASSOCIATED-COMBINED-TITLE-PANE TIME-LINE-PANE)
(ASSOCIATED-COMBINED-LOAD-PANE TIME-LINE-PANE)
(ASSOCIATED-TITLE-PANE SINGLE-TASK-LOAD-PANE)
(ASSOCIATED-LOAD-PANE TASK-ELEMENT-LABEL-PANE)
(IN1T TASK-LOAD-WINDOW-FRAME AFTER)

NAME: *HWl*
DESCRIPTION: task-load-window-frame object initialized to nil
INrITAL-VALUE: NIL

NAME: TLM-TITLE-PANE
DESCRIPTION: Defines the top column pane containing the title "MIDAS Task Load
Modelling Environment"
COMPONENT FLAVORS: DYNAMIC-WINDOW-PANE

NAME: CREW-SELECTION-MENU-PANE
DESCRIPTION: Defines the second column pane containing the mouse sensitive crew
selection menu
COMPONENT FLAVORS: TOP-LABEL-MIXIN CENTERED-LABEL-MIXIN
COMMAND-MENU-PANE
:COLUMNS 3
:ITEM-LIST *CREW-MENU*

NAME: TASK-TITLE-PANE
DESCRIPTION: Defines the 2nd row pane of the third column panes containing the task
names
COMPONENT FLAVORS: DYNAMIC-WINDOW-PANE
INSTANCE VARIABLES: SINGLE-TASK-LOAD-PANE COMBINATION-LOAD-
PANE TIME-LINE-PANE
METHODS: DISPLAY-TASKCOMBO-LABELS DISPLAY-TASK-LABELS

NAME: ELEMENT-TITLE-PANE
DESCRIPTION: defines the 1st row pane of the third column panes containing the
selected crew's name
COMPONENT FLAVORS: DYNAMIC-WINDOW-PANE
METHODS: DISPLAY-CREW-LABEL

NAME: TASK-ELEMENT-LABEL-PANE

DESCRIPTION: defines the Ist row pane of the fourth column panes containing the tlm
element labels
COMPONENT FLAVORS: DYNAMIC-WINDOW-PANE
INSTANCE VARIABLES: SINGLE-TASK-LOAD-PANE TASK-COMBINATION-

LOAD-PANE
METHODS: DISPLAY-MOTOR-ELEMENT-LABELS DISPLAY-COGNITIVE-

ELEMENT-LABELS DISPLAY-AUDITORY-ELEMENT-LABELS DISPLAY-VISUAL-
ELEMENT-LABELS DISPLAY-VACM-LOAD-LABELS Y-SCROLL-TO
ASSOCIATED-LOAD-PANE

NAME: TASK-LOAD-PANE-PARENT
DESCRIPTION: Parent of SINGLE-TASK-LOAD-PANE and TASK-COMBINATION-

LOAD -PANE.
COMPONENT FLAVORS: DYNAMIC-WINDOW-PANE

Page C-35

DEPENDENTFLAVORS:TASK-COMBINATION-LOAD-PANESINGLE-TASK-
LOAD-PANE
INSTANCEVARIABLES:TICK-SCALE:initial-value5

TICK-SPACING :initial-value5
ROW-VSP :initial-value 5
START-TIME :initial-value 9999999999
DEFAULT-START-TIME :initial-value 0
END-TIME :initial-value -99999999
DEFAULT-END-TIME :initial-value 200

METHODS: DISPLAY-MOTOR-ELEMENT-VALUES DISPLAY-COGNITIVE-
ELEMENT-VALUES DISPLAY-AUDITORY-ELEMENT-VALUES DISPLAY-
VISUAL-ELEMENT-VALUES DISPLAY-VACM-LOAD-VALUES

NAME: SINGLE-TASK-LOAD-PANE

DESCRIPTION: displays the load and element selection values for single tasks
COMPONENT FLAVORS: TASK-LOAD-PANE-PARENT
INSTANCE VARIABLES: TASK-TITLE-PANE TASK-ELEMENT-LABEL-PANE
METHODS: X-SCROLL-TO ASSOCIATED-TITLE-PANE

NAME: TASK-COMBINATION-LOAD-PANE
DESCRIPTION: displays the load and element section values for combined tasks
COMPONENT FLAVORS: TASK-LOAD-PANE-PARENT
INSTANCE VARIABLES: TASK-TITLE-PANE TIME-LINE-PANE

NAME: TIME-LINE-PANE
DESCRIPTION: displays the ticks and times associated with each task
COMPONENT FLAVORS: DYNAMIC-WINDOW-PANE
INSTANCE VARIABLES: SINGLE-TASK-LOAD-PANE TASK-COMBINATION-
LOAD-PANE TASK-TITLE-PANE
METHODS: DRAW-TIME-LINE X-SCROLL-TO ASSOCIATE-COMBINED-TITLE-
PANE ASSOCIATED-COMBINED-LOAD-PANE

NAME: TIME-LINE-LABEL-PANE
DESCRIPTION: displays the label for the time-line-pane
COMPONENT FLAVORS: DYNAMIC-WINDOW-PANE

NAME: TASK-LOAD-WINDOW-FRAME

DESCRIPTION: defines the window frame that contains two configurations of all the
panes: one for single tasks and one configuration for combined tasks
COMPONENT FLAVORS: B ORDERED- CON STRAINT-FRAME-WI'H-I-SHARED-IO-

BUFFER
INSTANCE VARIABLES: TLM-TITLE-PANE CREW-SELECTION-MENU-PANE

TASK-TITLE-PANE ELEMENT-TITLE-PANE PILOT-SINGLE-TASK-LABEL-PANE
CPG-SINGLE-TASK-LABEL-PANE PILOT-COMBINED-TASK-LABEL-PANE CPG
COMBINED-TASK-LABEL-PANE TASK-ELEMENT-LABEL-PANE TASK-LOAD-
PANE-PARENT SINGLE-TASK-LOAD-PANE TASK-COMBINATION-LOAD-PANE
TIME-LINE-PANE TIME-LINE-LABEL-PANE PILOT-SINGLE-TASK-TITLE-PANE
PILOT-COMBINED-TASK-TITLE-PANE CPG-SINGLE-TASK-TITLE-PANE CPG-
COMBINED-TASK-TITLE-PANE PILOT-SINGLE-TASK-ELEMENT-LABEL-PANE
PILOT-COMB INED-TASK-ELEMENT-LABEL-PANE CPG-SINGLE-TASK-
ELEMENT-LABEL-PANE CPG-COMBINED-TA SK-ELEMENT-LABEL-PANE
PILOT-SINGLE-TASK-LOAD-PANE CPG-SINGLE-TASK-LOAD-PANE PILOT-
TASK-COMBINATION-LOAD-PANE CPG-TASK-COMBINATION-LOAD-PANE
PILOT-TIME-LINE-PANE CPG-TIME-LINE-PANE

Page C-36

INCREMENT-VALUE-COLUMN-PILOT:initial-value4
INCREMENT-VALUE-COLUMN-CPG:initial-value4
INCREMENT-LABEL-COLUMN-PILOT:initial-value3
INCREMENT-LABEL-COLUMN-CPG:initial-value3
STRING-XPOS-PILOT:initial-value4
LINE-XPOS-PILOT:initial-value32
STRING-XPOS-CPG :initial-value 4
LINE-XPOS-CPG :initial-value 32
TICK-HEIGHT :initial-value 53
ACTIVITIES-LIST :initial-value '0
METHODS: PRINT-THE-IN/TIAL-DISPLAY PRINT-TO-TASKCOMBO-ELEMENT-
AND-LOAD-PANE PRINT-TO-TASK-ELEMENT-AND-LOAD-PANE INIT
:CONFIGURATIONS '((config 1 config2 config3 config4))

NAME: (FLAVOR:METHOD IN1T TASK-LOAD-WINDOW-FRAME)
DESCRIPTION: assigns the names of the instance variable panes their associated
instances of the panes and lets instances of the panes of each instance variable know about
instances of panes associated with it
INPUTS: &REST IGNORE

NAME: (FLAVOR:METHOD ASSOCIATED-LOAD-PANE TASK-ELEMENT-LABEL-
PANE)
DESCRIPTION: getsthepanesassociatedwithscrollingtask-clement-label-paneforthe
appropriateconfiguration

NAME: (FLAVOR:METHOD ASSOCIATED-TITLE-PANE SINGLE-TASK-LOAD-
PANE)
DESCRIPTION: getsthepanesassociatedwithscrollingsingle-task-load-paneforthe
appropriateconfiguration

NAME: ('FLAVOR:METHOD ASSOCIATED-COMBINED-LOAD-PANE TIME-LINE-
PANE)
DESCRIPTION: getsthecombinedtaskloadpanesassociatedwithscrollingtime-line-
panefortheappropriateconfiguration

NAME: (FLAVOR:METHOD ASSOCIATED-COMBINED-TITLE-PANE TIME-LINE-
PANE)
DESCRIPTION: getsthecombinedtasktidepancsassociatedwithscrollingtime-line-pane
fortheappropriateconfiguration

NAME: (FLAVOR:METHOD X-SCROLL-TO TIME-LINE-PANE)
DESCRIPTION: scrolls pilot-task-combination-load-pane and pilot-combined-task-rifle-

pane if its contTg3 or cpg-task-combination-load-pane and cpg-combined-msk-tic/e-pane if
its config4 when time-line-pane is scrolled
INPUTS: &REST ARGS

NAME: (FLAVOR:METHOD X-SCROLL-TO SINGLE-TASK-LOAD-PANE)
DESCRIPTION: scrolls pilot-single-task-title-pane if its configl or cpg-single-task-title-
pane if its config2 when either pilot-single-task-load-pane or cpg-single-task-load-pane is
scrolled
INPUTS: &REST ARGS

NAME: (FLAVOR:METHOD Y-SCROLL-TO TASK-ELEMENT-LABEL-PANE)

Page C-37

DESCRIPTION:scrollspilot-single-task-load-pane ff its configl or cpg-single-task-load-
pane if its config2 or pLlot-task-combination-load-pane if its config3 or cpg-task-
combination-load-pane if its config4 when task-elemem-label-pane is scrolled
INPUTS: &REST ARGS

NAME: (H..AVOR:METHOD PRINT-TO-TASK-ELEMENT-AND-LOAD-PANE TASK-
LOAD-WINDOW-FRAME)
DESCRIPTION: displays task load data for single tasks (scheduler - SSCI - calls this)
INPUTS: TASK-OBJECTS TASK-NAMES LAST-LABEL-P

NAME: (FLAVOR:METHOD PRINT-TO-TASKCOMBO-ELEMENT-AND-LOAD-
PANE TASK-LOAD-WINDOW-FRAME)
DESCRIPTION: displays task load data for task combinations
INPUTS: TASK-OBJECTS CURRENT-TIME TASK-NAMES

NAME: (FLAVOR:METHOD PRINT-THE-INITIAL-DISPLAY TASK-LOAD-
WINDOW-FRAME)
DESCRIPTION: displays the initial frames and panes without load values displayed - used
for selecting the display

NAME: (FLAVOR:METHOD DISPLAY-TASK-LABELS TASK-TrrI.,E-PANE)
DESCRIPTION: displays the labels for each task in the task title pane
INPUTS: INCREMENT-COLUMN TASK-LABEL

NAME: (FLAVOR:METHOD DISPLAY-TASKCOMBO-LABELS TASK-TrFLE-PANE)
DESCRIPTION: displays the labels for each task combintion in the task tide pane
INPUTS: INCREMENT-COLUMN TASK-NAMES

NAME: (FLAVOR:METHOD DISPLAY-CREW-LABEL ELEMENT-'ITILE-PANE)
DESCRIPTION: displays the crew label in the task title pane
INPUTS: CREW-LABEL

NAME: (FLAVOR:METHOD DRAW-TIME-LINE TIME-LINE-PANE)
DESCRIPTION: this queries the task index files for changes in the f'tle upon which it reads

in the time and draws the time line in the time line pane and labels each tick with the current
time
INPUTS: STRING-XPOS LINE-XPOS CURRENT-TIME

NAME: (FLAVOR:METHOD DISPLAY-VACM-LOAD-LABELS TASK-ELEMENT-
LABEL-PANE)
DESCRIPTION: determines the cursor position and format for each vacm component load
label in the task-element-label-pane

NAME: (FLAVOR:METHOD DISPLAY-VACM-LOAD-VALUES TASK-LOAD-PANE-
PARENT)
DESCRLrrFION: determines the cursor position and format for each vacm component load

value in the task-element-label-pane
INPUTS: OBJECT INCREMENT-COLUMN

NAME: (FLAVOR:METHOD DISPLAY-VISUAL-ELEMENT-LABELS TASK-
ELEMENT-LABEL-PANE)
DESCRIPTION: determines the cursor posi:ion and format for each visual component load
label in the task-element-label-pane

Page C-38

NAME:(FLAVOR:METHOD DISPLAY-ViSUAL-ELEMENT-VALUES TASK-LOAD-
PANE-PARENT)
DESCRIPTION: determines the cursor position and format for each visual component load

value in the task-element-label-pane
NPUTS: OBJECT INCREMENT-COLUMN

NAME: (FLAVOR:METHOD DISPLAY.-AUDgI'ORY-ELEMENT-LABELS TASK-
ELEMENT-LABEL-PANE)
DESCRIPTION: determines the cursor positioo a_d format for each auditory component
load label in the task-element-label-pane

NAME: (FLAVOR:METHOD DISPLAY-AUDITORY-ELEMENT-VALUES TASK-
LOAD-PANE-PARENT)
DESCRIPTION: determines the cursor position and format for each auditory component
load value in the task-element-label-pane
INPUTS: OBJECT INCREMENT-COLUMN

NAME: (FLAVOR:METHOD DISPLAY-COGNITIVE-ELEMENT-LABELS TASK-
ELEMENT-LABEL-PANE)
DESCRIPTION: determines the cursor position and format for each cognitive component

load label in the task-element-label-pane

NAME: (FLAVOR:METHOD DISPLAY-COGNITIVE-ELEMENT-VALUES TASK-
LOAD-PANE-PARENT)
DESCRIPTION: determines the cursor position and format for each cognitive component

load value in the task-element-label-pane
INPUTS: OBJECT INCREMENT-COLUMN

NAME: (FLAVOR:METHOD DISPLAY-MOTOR-ELEMENT-LABELS TASK-
ELEMENT-LABEL-PANE)
DESCRIPTION: determines the cursor position and format for each motor component load
label in the task-element-label-pane

NAME: (FLAVOR:METHOD DISPLAY-MOTOR-ELEMENT-VALUES TASK-LOAD-
PANE-PARENT)
DESCRIPTION: determines the cursor position and format for each motor component load

value in the task-element-label-pane
INPUTS: OBJECT INCREMENT-COLUMN

FILE: SQUID:>stav>midas.tlm>select.task-display.lisp

DESCRIPTION: This file contains the parameters and functions that create the pop-up
windows and call the functions that evaluate and display the loads and task classifications
for single and combined tasks separately for the pilot and copilot-gunner
VARIABLES DEFINED: *CREW-MENU*
PARAMETERS DEFINED: SELECT-RESET-TLM-DISPLAYSELECT-CPG-DISPLAY-

TYPE-COMBINED SELECT-PILOT-DISPLAY-TYPE-COMBINED SELECT-CPG-
DISPLAY-TYPE-SINGLE SELECT-PILOT-DISPLAY-TYPE-SINGLE SELECT-CPG-
TASK-DISPLAY
FUNCTIONS DEFINED: START-CPG-PROCESS START-PILOT-PROCESS

REDISPLAY-CPG-TASK-COMBINATIONS CPG-TASK-COMBINATIONS
REDISPLAY-PILOT-TAS K-COMB INATIONS PILOT-TA SK-COMBINATIONS
REDISPLAY-CPG-SINGLE-TASKS DISPLAY-CPG-SINGLE-TASKS REDISPLAY-

Page C-39

PILOT-SINGLE-TASKS DISPLAY-PILOT-SINGLE-TASKS CHECK-FILE-FOR-
ACTIVE-CPG-TASKS CHECK-FILE-FOR-ACTIVE-PILOT-TASKS CPG-DISPLAY-
TYPE-COMBINED CPG-DISPLAY-TYPE-SINGLE CPG-TASK-DISPLAY PILOT-
DISPLAY-TYPE-COMBINED
PILOT-DISPLAY-TYPE-SINGLE PILOT-TASK-DISPLAY RESET-TLM-DISPLAY
CLEAR-PILOT-PANES CLEAR-CPG-PANES

NAME: *CREW-MENU*
DESCRIPTION: defines the menu for the crew-selection-menu-pane
INITIAL-VALUE: ((NO-SELECT NIL) ("CREW SELECTION MENU" :value erase

:documentation "")(NO-SELECT NIL)
(Pilot VALUE PILOT DOCUMENTATION Selects the Pilot's Tasks) (NO-

SELECT NIL)
(Copilot/Gunner VALUE COPILOT DOCUMENTATION Selects the Copilot's

Tasks))

NAME: SELECT-RESET-TLM-DISPLA Y
DESCRIPTION: creates the pop-up menu to Clear the displays and restart the MIDAS-

TLM process
INITIAL-VALUE: :MAKE-WINDOW 'MOMENTARY-MENU

'LABEL How about a nice game of chess
'BORDERS 3
'ITEM-LIST 'CRESET-TLM")

FUNCTIONS CALLED: RESET-TLM

NAME: SELECT-PILOT-TASK-DISPLAY
DESCRIPTION: creates the pop-up menu to select the pilot single or combined task

display pop-up-menu
INITIAL-VALUE: :MAKE-WINDOW 'MOMENTARY-MENU

'LABEL Select Display
'BORDERS 3
'ITEM-LIST '("Single Tasks Combined Tasks Clear Display")

FUNCTIONS CALLED: PILOT-DISPLAY-TYPE-SINGLE PILOT-DISPLAY-TYPE-
COMBINED CLEAR-PILOT-PANES

NAME: SELECT-CPG-TAS K-DISPLAY

DESCRIPTION: creates the pop-up menu to select the cpg single or combined task display
pop-up-menu
INITIAL-VALUE: :MAKE-WINDOW 'MOMENTARY-MENU

'LABEL Select Display
'BORDERS 3
'ITEM-LIST '("Single Tasks" "Combined Tasks" "Clear Display")

FUNCTIONS CALLED: CPG-DISPLAY-TYPE-SINGLE CPG-DISPLAY-TYPE-
COMBINED

NAME: SELECT-PILOT-DISPLAY-TYPE-SINGLE
DESCRIPTION: creates the pop-up menu to select the pilot single task display
INITIAL-VALUE: :MAKE-WINDOW 'MOMENTARY-MENU

'LABEL Select Display
'BORDERS 3
'ITEM-LIST '("Calculate Loads Redisplay Loads")

FUNCTIONS CALLED: DISPLAY-PILOT-SINGLE-TASKS REDISPLAY-PILOT-
SINGLE-TASKS

Page C-40

NAME:SELECT-CPG-DISPLAY-TYPE-SINGLE
DESCRIPTION: creates the pop-up menu to select the cpg single task display
INTFIAL-VALUE: :MAKE-WINDOW _V[OMENTARY-MENU

'LABEL Select Display
'BORDERS 3
'ITEM-LIST '("Calculate Loads" "Redisplay Loads")

FUNCTIONS CALLED: DISPLAY-CPG-SINGLE-TASKS REDISPLAY-CPG-
SINGLE-TASKS

NAME: SELECT-PILOT-DISPLAY-TYPE-COMBINED
DESCRIPTION: creates the pop-up menu to select the pilot combined task display
INITIAL-VALUE: :MAKE-WINDOW 'MOMENTARY-MENU

'LABEL Select Display
'BORDERS 3
'ITEM-LIST '("Calculate Loads" "Redisplay Loads")

FUNCTIONS CALLED: check-f'tle-for-active-pilot-tasks redisplay-pilot-task-
combinations

NAME: SELECT-CPG-DISPLAY-TYPE-COMBINED
DESCRIPTION: creates the pop-up menu to select the cpg combined task display
INIqTAL-VALUE: :MAKE-WINDOW 'MOMENTARY-MENU

'LABEL Select Display
'BORDERS 3
'ITEM-LIST '("Calculate Loads" "Redisplay Loads")

FUNCTIONS CALLED: CHECK-FILE-FOR-ACTIVE-CPG-TASKS REDISPLAY-
CPG-TASK-COMBINATIONS

NAME: RESET-TLM-DISPLAY
DESCRIPTION: sends a message to the defparameter select-reset-tim-display that calls
the pop-up menu that resets the *tim-process* to the initial state
CALLING FUNCTIONS: MIDAS-TLM-DISPLAY

NAME: PILOT-TASK-DISPLAY
DESCRIPTION: sends a message to the defparameter select-pilot-task-display calls the

pop-up menu that selects either the pilot's single or combined task display
CALLING FUNCTIONS: MIDAS-TLM-DISPLAY

NAME: PILOT-DISPLAY-TYPE-SINGLE
DESCRIPTION: sends a message to the defparameter select-pilot-display-type-single that

calls the pop-up menu that selects pilot single task display

NAME: PILOT-DISPLAY-TYPE-COMBINED

DESCRIPTION: sends a message to the defparameter select-pilot-display-type-combined
that calls the pop-up menu that selects pilot combined task display

NAME: CPG-TASK-DISPLAY
DESCRIPTION: sends a message to the defparameter select-cpg-task-display that calls the
pop-up menu that selects either the cpg's single or combined task display
CALLING FUNCTIONS: MIDAS-TLM-DISPLAY

NAME: CPG-DISPLAY-TYPE-SINGLE
DESCRIPTION: sends a message to the defparameter select-cpg-display-type-single that

calls the pop-up menu that selects cpg single task display

Page C-41

NAME:CPG-DISPLAY-TYPE-COMBIN D
DESCRIPTION: sends a message to the defparameter selexa-epg-display-typc-combined

that calls the pop-up menu that selects epg combined task display

NAME: CHECK-FILE-FOR-ACTIVE-PILOT-TA SKS
DESCRIPTION: initializes the active pilot task file and starts the process "Combined Pilot
Task Loads"
FUNCTIONS CALLED: SCL:PROCESS-RUN-FUNCTION

NAME: CHECK-FILE-FOR-ACTIVE-CPG-TAS KS
DESCRIPTION: initialize active epg task fde and starts the process "Combined CPG Task
Loads"
FUNCTIONS CALLED: SCL:PROCESS-RUN-FUNCTION

NAME: DISPLAY-PILOT-SINGLE-TASKS
DESCRIFFION: calls all the functions necessary to display the pilot's single task load

values and sets the configuration of *hwl* to 'config 1
FUNCTIONS CALLED: DISPLAY-PILOT-SINGLE-TASK-LOADS

NAME: REDISPLAY-PILOT-SINGLE-TASKS
DESCRIPTION: redisplays the pilot's single task load values and sets the configuration of
hwl to 'configl

NAME: DISPLAY-CPG-SINGLE-TASKS

DESCRIPTION: calls all the functions necessary to display the cpg's single task load
values and sets the configuration of *hwl* to 'config2
FUNCTIONS CALLED: DISPLAY-CPG-SINGLE-TASK-LOADS

NAME: REDISPLAY-CPG- SINGLE-TASKS

DESCRIPTION: redisplay's the cpg's single task load valuesand sets the configuration of
*hw 1" to 'config2

NAME: PILOT-TASK-COMBINATIONS
DESCRIPTION: calls all the functions necessary to display the pilot's combined task load

values and sets the configuration of *hwl* to 'config3
FUNCTIONS CALLED: GET-AND-DISPLAY-PILOT-COMBINED-TASK-LOADS
CALLING FUNCTIONS: START-PILOT-PROCESS

NAME: REDISPLAY-PILOT-TASK-COMB INATIONS
DESCRIPTION: redisplay's the pilot's combined task load values and sets the

configuration of *hw 1" to 'config3

NAME: CPG-TASK-COMBINATIONS

DESCRIPTION: calls all the functions necessary to display the cpg's combined task load
values and sets the configuration of *hwl* to 'config4
FUNCTIONS CALLED: GET-AND-DISPLAY-CPG-COMBINED-TASK-LOADS
CALLING FUNCTIONS: START-CPG-PROCESS

NAME: REDISPLAY-CPG-TASK-COMBINATIONS
DESCRIPTION: redisplay's the cpg's combined task load values and sets the

configuration of *hw 1" to 'config4

NAME: START-PILOT-PROCESS

Page C-42

DESCRIPTION: starts the process to get the list of pilot active tasks from the active task
list file
FUNCTIONS CALLED: PILOT-TASK-COMBINATIONS

NAME: START-CPG-PROCESS
DESCR//rI'ION: starts the process to get the list of epg active tasks from the active task lis_
file
FUNCTIONS CALLED: CPG-TASK-COMBINATIONS

NAME: CLEAR-PILOT-PANES
DESCRIPTION: this function sends a :clear-history message to clear the pilots task load
and classification data from window-panes in task-load-window-frame: 'configl and
'config3

NAME: CLEAR-CPG-PANES
DESCRIPTION: this function sends a :clear-history message to clear the cpgs task load
and classification data from window-panes in task-load-window-frame: 'config2 and
'config4

5.2.4 FG4: The task-load formatting functional group

FILE: SQUID:>stav>midas-tlm>tlm-load.lists.lisp

DESCRIPTION: This file contains the functions and flavors necessary to construct the
load index and element classification lists
FUNCTIONS DEFINED: GENERATE-MOTOR-ELEMENT-LIST GENERATE-
COGNITIVE-ELEMENT-LIST GENERATE-AUDITORY-ELEMENT-LIST
GENERATE-VISUAL-ELEMENT-LIST GENERATE-ELEMENT-LIST SUM-VALS-
ACROSS-LISTS SET-INST-VARS-FROM-INDICES ASSIGN-INST-VARS-
ELEMENTS-AND-LOADS SET-INST-VARS-FROM-LIST
MACROS DEFINED: PUSH-END
FLAVORS DEFINED: LOAD-VALS MOTOR-COMPONENT COGNITIVE-
COMPONENT AUDITORY-COMPONENT VISUAL-COMPONENT TASK

NAME OF THE MACRO: PUSH-END
DESCRIPTION: adds list to the end of another list
INPUTS: VALUE VALUE-LIST-PLACE

NAME: SET-INST-VARS-FROM-LIST

DESCRIPTION: Utility function for setting instance variables.
INPUTS: INSTANCE LIST-OF-VALS
CALLING FUNCTIONS: ASSIGN-INST-VARS-ELEMENTS-AND-LOADS

NAME: TASK
DESCRIPTION: defines a task as an instance of each component, each with two instance
variables that can be returned as two lists
INSTANCE VARIABLES: VISUAL VI INDEX-V NOTV1 AUDITORY A1
INDEX-A NOTA1 COGNITIVE C1 INDEX-C NOTC1 MOTOR MI INDEX-M
NOTM1
METHODS: UPDATE-MOTOR UPDATE-COGNITIVE UPDATE-AUDITORY
UPDATE-VISUAL DO-MTR-MAGIC DO-COG-MAGIC DO-AUD-MAGIC DO-V/S-
MAGIC

Page C-43

NAME:VISUAL-COMPONENT
DESCRIPTION: define the elements of the visual dimension and sets them to nil
INSTANCE VARIABLES: NEAR FAR SCAN FIXATE INTEGRAL SEPARABLE
OBJECTS FEATURES SALIENT MASKED STATIC DYNAMIC

NAME: AUDITORY-COMPONENT
DESCRIPTION: define the elements of the auditory dimension and sets them to nil
INSTANCE VARIABLES: ORIENT DISCRIMINATE SYGNAL SPEECH SALIENT
MASKED

NAME: COGNITIVE-COMPONENT
DESCRIPTION: define the elements of the cognitive dimension and sets them to nil
INSTANCE VARIABLES: DIRECT TRANSFORM SINGLE MULTIPLE VERBAL

SPATIAL PLANNED UNPLANNED

NAME: MOTOR-COMPONENT
DESCRIPTION: define the elements of the motor dimension and sets them to nil
INSTANCE VARIABLES: VERBAL SPATIAL NEAR FAR DISCRETE

CONTINUOUS GROSS FINE MOUTH HEAD EYE HAND FEET FINGER
RIGHT LEFT BOTH

NAME: LOAD-VALS
DESCRIPTION: defines the load valuesfor the within components and sets them to nil
INSTANCE VARIABLES: WITHIN-VISUAL WITHIN-AUDITORY WITHIN-

COGNITIVE WITHIN-MOTOR VISUAL-AUDITORY AUDITORY-COGNITIVE
VISUAL-COGNITIVE COGNITIVE-MOTOR VISUAL AUDITORY COGNrI'IVE
MOTOR

NAME: AS SIGN-INST-VARS-ELEMENTS-AND-LOADS

DESCRIPTION: this function takes element list values and assigns them to their respective
instance variables
INPUTS: ELEMENT-LIST LOAD-LIST
FUNCTIONS CALLED: SET-INST-VARS-FROM-LIST
CALLING FUNCTIONS: MAKE-TASK-LOAD-LIST SHOW-TASK-LOAD
DISPLAY-SINGLE-TASK-LOADS DISPLAY-COMBINED-TASK-LOADS

NAME: SET-INST-VARS-FROM-INDICES
DESCRIPTION: this assigns the indices to the instance variables that the function generate
load requires
INPUTS: TASK-INDEX-LIST
OUTPUTS: TASK-OBJECT
CALLING FUNCTIONS: SHOW-TASK-LOAD DISPLAY-SINGLE-TASK-LOADS
DISPLAY-COMBINED-TASK-LOADS MULTIPLE-TASK-LOAD SCHEDULER-
LOAD-LIST

NAME: SUM-VALS-ACROSS-LISTS
DESCRIPTION: sums across each element in each list for each task in a task combination

and returns a list of the number of times each element was selected
INPUTS: LIST-OF-ELEMENT-VALUES
OUTPUTS: LIST-OF-ELEMENT-VALUES
CALLING FUNCTIONS: SHOW-TASK-LOAD DISPLAY-COMBINED-TASK-
LOADS MULTIPLE-TASK-LOAD

NAME: GENERATE-ELEMENT-LIST

Page C..44

DESCRIV_ON: calls the functions for each task that generate lists of selected eleanents for
each component and returns a list of the component lists of selected elements
INPUTS: TASK
FUNCTIONS CALLED: (READ-INSTANCE-VARIABLE INDEX-V TASK INDEX-V)

GENERATE-VISUAL-ELEMENT-LIST (READ-INSTANCE-VARIABLE INDEX-A
TASK INDEX-A) GENERATE-AUDITORY-ELEMENT-LIST (READ-INSTANCE-
VARIABLE INDEX-C TASK INDEX-C) GENERATE-COGNIT/VE-ELEMENT-LIST
(READ-INSTANCE-VARIABLE INDEX-M TASK INDEX-M) GENERATE-MOTOR-
ELEMENT-LIST
CALLING FUNCTIONS: SHOW-TASK-LOAD DISPLAY-SINGLE-TASK-LOADS

DISPLAY-COMBINED-TASK-LOADS MULTIPLE-TASK-LOAD

NAME: GENERATE-VISUAL-ELEMENT-LIST
DESCRIPTION: generates a list of the elements for the visual component that were
selected for a task from the list of indices used to access the visual matrix
INPUTS: COMPONENT-INDICES
OUTPUTS: VISUAL-ELEMENTS
CALLING FUNCTIONS: GENERATE-ELEMENT-LIST

NAME: GENERATE-AUDITORY-ELEMENT-LIST

DESCRIPTION: generates a list of the elements for the auditory component that were
selected for a task from the Listof indices used to access the auditory matrix
INPUTS: COMPONENT-INDICES
OUTPUTS: AUDITORY-ELEMENTS
CALLING FUNCTIONS: GENERATE-ELEMENT-LIST

NAME: GENERATE-COGNITIVE-ELEMENT-LIST
DESCR/PTION: generates a list of the elements for the cognitive component that were
selected for a task from the list of indices used to access the cognitive matrix
INPUTS: COMPONENT-INDICES
OUTPUTS: COGNITIVE-ELEMENTS
CALLING FUNCTIONS: GENERATE-ELEMENT-LIST

NAME: GENERATE-MOTOR-ELEMENT-LIST

DESCRIFHON: generates a list of the elements for the motor component that were
selected for a task from the list of indices used to access the motor matrix
INPUTS: COMPONENT-INDICES
OUTPUTS: MOTOR-ELEMENTS
CALLING FUNCTIONS: GENERATE-ELEMENT-LIST

FILE: SQUID:>stav>midas.tlm>tlm.display.loads.lisp

DESCR/VHON: This file contains the functions that take lists of task element and load
values and displays them in the proper windowpanes
VARIABLES DEFINED: *TASK-NUMBERS*
FUNCTIONS DEFINED: MULTIPLE-TASK-LOAD DISPLAY-COMBINED-TASK-
LOADS GET-AND-DISPLAY-CPG-COMBINED-TASK-LOADS GET-AND-
DISPLAY-PILOT-COMBINED-TASK-LOADS DISPLAY-CPG-SINGLE-TASK-
LOADS DISPLAY-PILOT-SINGLE-TASK-LOADS DISPLAY-SINGLE-TASK-
LOADS SHOW-TASK-LOAD SCHEDULER-LOAD-LIST MAKE-TASK-LOAD-LIST

NAME: *TASK-NUMBERS*
INITIAL-VALUE: nil

Page C-45

DESCRIPTION:

NAME:MAKE-TASK-LOAD-LIST
DESCRIPTION:ThisFunction generates instances of tasks, puts them in a list and passes

them to the functions that generate the task classifications and either evaluates each task or
each task combination and then displays the load and element values
INPUTS: NUMBER-OF-TASKS &OPTIONAL LIST-OF-TASK-OBJECTS
OUTPUTS:
FUNCTIONS CALLED: MULTIPLE-TASK-LOAD ASSIGN-INST-VARS-

ELEMENTS-AND-LOADS (METHOD PRINT-TO-TASK-ELEMENT-AND-LOAD-
PANE TASK-LOAD-WINDOW-FRAME) (METHOD PRINT-TO-TASKCOMBO-
ELEMENT-AND-LOAD-PANE TASK-LOAD-WINDOW-FRAME)

NAME: SCHEDULER-LOAD-LIST
DESCRIPTION: Renuka uses this function to ger,,ct _,teher list of loading values for

combined tasks
INPUTS: LISTS-OF-TASK-INDICES
FUNCTIONS CALLED: SET-INST-VARS-FROM-INDICES GENERATE-LOAD

NAME: SHOW-TASK-LOAD

DESCRIPTION: this is for the operator scheduler mtxlel to use to calculate and display
single and combined task load data
INPUTS: LISTS-OF-TASK-INDICES
FUNCTIONS CALLED: SET-INST-VARS-FROM-INDICES GENERATE-

ELEMENT-LIST GENERATE-LOAD SUM-VALS-ACROSS-LISTS ASSIGN-INST-
VARS-ELEMENTS-AND-LOADS (METHOD PRINF-TO-TASK-ELEMENT-AND-
LOAD-PANE TASK-LOAD-WINDOW-FRAME)

NAME: DISPLAY-SINGLE-TASK-LOADS
DESCRIPTION: takes a list of index lists, cak:u,e.t___uieir load and element values and
displays the load and element values for eadi sinv;ie ia_.k
INPUTS: LIST-OF-TASK-NAME-LISTS LISTS-OF-TASK-INDICES
FUNCTIONS CALLED: SET-INST-VARS-FROMdNDICES GENERATE-
ELEMENT-LIST GENERATE-LOAD ASSIGN-INS F-VARS-ELEMENTS-AND-
LOADS
METHODS CALLED: (METHOD PRINq'-TO-TASK-ELEMENT-AND-LOAD-PANE
TASK-LOAD-WINDOW-FRAME)
CALLING FUNCTIONS: DISPLAY-PILOT- SIt./GI_E-TASK-LOADS DISPLAY-CPG-
SINGLE-TASK-LOADS

NAME: DISPLAY-PILOT-SINGLE-TASK LOAD. _,
DESCRIPTION: gets all the pilot single task indices from the task-load-data-hash-table
and calculates their load and element lists an0 then ot_q_t,ts them to the pilot single task load
pane
FUNCTIONS CALLED: GET-PILOT-TAi- K-1i', i)_ .i cS-FROM-TABLE DISPLAY-
SINGLE-TASK-LOADS
CALLING FUNCTIONS: DISPLAY-PII,Oi',.SI,,_Q_._E-TASKS

NAME: DISPLAY-CPG-SINGLE-TASK-LOADS

DESCRIPTION: gets all the cpg single task indiccs fro',n the task-load-data-hash-table and
calculates their load and element lists and then outputs them to the cpg single task load pane
FUNCTIONS CALLED: GET-CPG-TASI<-INDICt!S FROM-TABLE DISPLAY-
SINGLE-TASK-LOADS
CALLING FUNCTIONS: DISPLAY-CPG SIN(3I_L-fASKS

Page C-46

NAME:GET-AND-DISPLAY-PILOT-COMBINED-TASK-LOADS
DESCRIPTION:getsallthepilotsingletaskindicesfromthetask-load-data-hash-table
and calculates their combined load and element lists and then outputs the pilot combined
task values to the pilot task combination load pane
FUNCTIONS CALLED: UPDATE-SYM-TO-JILL GET-PILOT-ACTIVE-TASKS
DISPLAY-COMBINED-TASK-LOADS
CALLING FUNCTIONS: PILOT-TASK-COMBINATIONS

NAME: GET-AND-DISPLAY-CPG-COMBINEDoTASK-LOADS
DESCRIPTION: gets all the cpg single task indices from the task-load-data-hash-table and
calculates their combined load and element lists and then outputs the cpg combined task
values to the cpg task combination load pane
FUNCTIONS CALLED: UPDATE-SYM-TO-JILL GET-CPG-ACTIVE-TASKS

DISPLAY-COMBINED-TASK-LOADS
CALLING FUNCTIONS: CPG-TASK-COMBINATIONS

NAME: DISPLAY-COMBINED-TASK-LOADS
DESCRIPTION: takes a list of index lists, calculates their load and dement values and

displays the load and element values for each single task
INPUTS: CURRENT-TIME LISTS-OF-TASK-INDICES LIST-OF-TASK-NAME-
LISTS
FUNCTIONS CALLED: SET-INST-VARS-FROM-INDICES GENERATE-
ELEMENT-LIST SUM-VALS-ACROSS-LISTS GENERATE-LOAD ASSIGN-INST-
VARS -ELEMENTS-AND-LOADS
METHODS CALLED: (METHOD PRINT-TO-TASKCOMBO-ELEMENT-AND-LOAD-
PANE TASK-LOAD-WINDOW-FRAME)
CALLING FUNCTIONS: GET-AND-DISPLAY-PILOT-COMBINED-TASK-LOADS

GET-AND-DISPLAY-CPG-COMBINED-TASK-LOADS

NAME: MULTIPLE-TASK-LOAD
DESCRIPTION This Function generates instances of tasks, puts them in a list and passes
them to the functions that generate the task classifications and evaluate each task and task
combination and returns two lists: element and load values, that are used to initialize the
vacm component and load instance variables that get displayed
INPUTS: NUMBER-OF-TASKS &OPTIONAL LISTS-OF-TASK-INDICES
FUNCTIONS CALLED: CREATE-TASK TASK-COMPONENTS GENERATE-

ELEMENT-LISTGENERATE-LOAD SET-INST-VARS-FROM-INDICES SUM-
VALS-ACROSS-LISTS
CALLING FUNCTIONS: MAKE-TASK-LOAD-LIST

5.2.5 FG5: The midas-interface functional group

FILE: SQUID:>stav>midas-tlm>test-midas-tlm.lisp

DESCRIPTION: This file contains one function used solely for testing the tim and for
hard-coding the tasks used in the simulation
FUNCTIONS DEFINED: GENERATE-TASK-LIST

NAME: GENERATE-TASK-LIST

DESCRIPTION: this function is for testing the tlm and for demos. It creates a list of active
tasks that are evaluated and displayed.
OUTPUTS: TIME-AND-TASK-LIST

Page C-47

FILE:SQUID:>stav>midas-tlm>sym-to-jill.lisp

DESCRIPTION:Thisfilecontainstheparameterwhosevalue is the list of tasks that the
TLM processes
PARAMETERS DEFINED: *TASK-COMBINATION-LIST*

NAME: *TASK-COMBINATION-LIST*

DESCRIPTION: assigns a list of tasks to *task-combination-list* that acts as input to the
"I12Vl
INITIAL-VALUE: GENERATE-TASK-LIST

FILE: SQUID:>stav>midas-tlm>current-sym-to-jill.lisp

DESCRIPTION: This file is to be used to recieve the active task list update every ten ticks
from the mission decomposition module. However, it is not in use because it was never
linked to up and tested.

FILE: SQUID:>stav>midas.tlm>sym-interfaee.lisp

Interface Files are specified in "B:>Midas>globals>interface-globals.lisp"

AUTHOR: Jerry Murray
DESCRIPTION: This file contains the functions necessary to link the task loading model

and the task decomposition model so that the simulated tasks can be evaluated by the task
loading model. This file was created by Jerry Murray and modified by Jerry Murray.
VARIABLES DEFINED: *INTERFACE-FILES* *TASK-COMBINATION-LIST*
FUNCTIONS DEFINED: UPDATE-Z-TO-JILL UPDATE-JILL-TO-Z UPDATE-SYM-
TO-Z UPDATE-Z-TO-SYM UPDATE-SYM-TO-JILL UPDATE-JII.,L-TO.-SYM INIT-
Z-TO-.rILL INIT-JILL-TO-Z IN/T-SYM-TO-Z INIT-Z-TO-SYM INIT-SYM-TO-JII.J.,
INIT-JILL-TO-SYM

NAME: *INTERFACE-FILES*
DESCRIPTION: the value of this variable is set to the different files necessary to link the
tlm and mission decomp model
INITIAL-VALUE:
(JILL-TO-SYM B:>Midas>interface>files>Jill-to- sym.lisp
SYM-TO-JILL squid:>stav>midas-flm>sym-to-Jill.lisp
Z-TO-SYM B:>Midas>interface>files>Z-to-sym.lisp
SYM-TO-Z B:>Midas>interface>f'des>sym-to-Z.lisp
JILL-TO-Z B :>Midas>interface>ffles>Jill-to-Z.lisp
Z-TO-JILL B:>Midas>interface>files>Z-to-Jill.lisp)

NAME: INIT-SYM-TO-JILL
DESCRIPTION: This function stuffs the v_ue of *Interface-Files* :current-sym-to-Jill

into *Interface-Files* :sym-to-Jill
CALLING FUNCTIONS: MIDAS-TLM-DISPLAY

NAME: UPDATE-SYM-TO-JILL

DESCRIPTION: this function reads *Interface-Files* for the value of :current-sym-to-Jill
and checks :sym-to-Jill to see if its the current version, if not it then stuffs *Interface-
Files* :current-sym-to-Jill into *Interface-Files* :sym-to-JiU and returns *task-

Page C-48

combination-list*whichis thevalue of*Interface-Fries* :sym-to-Jill as a hard-coated value
in place of a dynamic simulation value
CALLING FUNCTIONS: GET-AND-DISPLAY-PILOT-COMBINED-TASK-LOADS

GET-AND-DISPLAY-CPG-COMBINED-TASK-LOADS

NAME: INIT-JILL-TO-SYM
DESCRIPTION: Not used by the task load model

NAME: INIT-Z-TO-SYM

DESCRIPTION: Not used by the task load model

NAME: INrr-SYM-TO-Z
DESCRIPTION: Not used by the task load model

NAME: INIT-JILL-TO-Z
DESCRIPTION: Not used by the task load model

NAME: INIT-Z-TO-JILL

DESCRIPTION: Not used by the task load model

NAME: UPDATE-JILL-TO-SYM
DESCRIPTION: Not used by the task load model

NAME: UPDATE-Z-TO-SYM
DESCRIPTION: Not used by the task load model

NAME: UPDATE-SYM-TO-Z
DESCRIPTION: Not used by the task load model

NAME: UPDA TE-JILL-TO-Z
DESCRIPTION: Not used by the task load model

NAME: UPDATE-Z-TO-JILL
DESCRIPTION: Not used by the task load model

5.2.6 FG6: The system-initialization functional group

FILE: SQUID:>stav>midas-tim>tlm-files-init.lisp

DESCRIPTION: This file initializes and opens the task load window frame object, creates
the hash-tables of the task name and index associations, creates the tim process and binds it
to the H key, resets the displays
VARIABLES DEFINED: *TLM-PROCESS* *HWI*
FUNCTIONS DEFINED: MIDAS-TLM-DISPLAY RESET-TLM

NAME: *HWI*
DESCRIPTION: This function sets the task-load-window-flame object - *hwl* - to an

arbitrary value
INITIAL-VALUE: tv:make-window 'task-load-window-frame

:save-bits nil

:expose-p nil

NAME: PILOT-TASK-LOAD-DATA-TABLE

DESCRIPTION: This function call creates the pilot-task-load-data-table hash table

Page C-49

NAME: CPG-TASK-LOAD-DATA-TABLE

DESCRIPTION: This function call creates the cpg-task-load-data-table hash table

NAME: CPG-SHORT-NAMES-TABLE
DESCRIPTION: This function call creates the lair-short-names-table hash table

NAME: PILOT-SHORT-NAMES-TABLE
DESCRIPTION: This function call creates the init-short-names-table hash table

NAME: MIDAS-TLM-DISPLAY

DESCR !PTION: This function opens the midas-tim window and starts the command menu
and read file processes
F-UNCTIONS CALLED: INIT-SYM-TO-JILL Pi L(.)F-TASK-DISPLAY PG-TASK-

DISPLAYRESET-TLM-DISPLAY

ME-I'HODS CALLED: (METHOD PRhN J- THE-IN I_JtAL-DISPLAY TASK-LOAD-
WINDOW-FRAME)

NAME: *TLM-PROCESS*

DESCRIPTION: This sets the variable *Ti.M PRO_ 't'SS * to the midas-tim process that
runs off of the "H" key when loaded
INITIAL-VALUE: (UNLESS (AND (VARIABi.E i_OUNDP*TLM-PROCESS*)

(TYPEP *TL1M Y-I_(3CE_]S _-'PROCESS)
(STRING-EQUAL (PROCESS-NAME *TLM-PROCESS*)

Task l_,oad Model))
(PROCESS-RUN-FUNCTION Task Load Model

'Mll.; ?t.S-]_,M-I)ISPLAY))

NAME: tv:add-select-key
ARGUMENTS: #XH 'task-load-window-i?amc "Task, _oad Window Frame"
INITIAL VALUE: nil

DESCRIPTION: This function calls the n]i,ia._:-_lrn as _ process that runs off of the "H"
key when loaded

NAME: RESET-TLM
DESCRIPTION: this function resets the w_riable *TI_M-PROCESS* to the midas-tim

process and the tlm interface to the initial cont]gmation; no loads or tasks are displayed
FUN('TIONS CALLED: CLEAR-PILOT-I'ANES CI EAR-CPG-PANES

5.2.7 FG7: The tim-system functio,ta! grout_

FILE: SQUID:>stav>midas-tlm>nti.Aa_ itm,ii:,p

DESCRIIrFION: This file creates the systex:, - !,qt);,_-_ FLM.

SYSTEM DEFINED: MIDAS-TLM

(defsystem MIDAS-TLM
(:pretty-name "MIDAS Task Loading MtxleF
:short-name "tim"

:default-pathname "midas-tim:midas-tim:)
(:serial

"task-toad-interface-frame"
"tim-load-lists"

(;parallel

Page C-50

"tim-editor"
"tim-calculator"
"tim-task-load-data"
"tim-display-loads"
"task-names"

"select-task-display"
"test-midas-tim"
"sym-interface"
"current- sym-to-jiU"
"sym-to-jill")
"tlm-files-init"))

6.0 USER'S GUIDE

This section describes the MIDAS Task Loading Model sufficiently to enable the designer
of aerospace cockpit flight equipment to boot the MIDAS-TLM system on a Symbolics
machine and provide the required input.

6.1 OVERVIEW OF PURPOSE AND FUNCTIONS

The design team members interact with the TLM via mouse sensitive items that display
momentary pop-up menus on the monitor of a symbolics 3640 machine. These menus
allow the user to select the task load data for each crew member, for single-tasks or
combined-tasks, and whether the task load data should be re-calculated or re-displayed.

The loading values of the tasks and task combinations are displayed along with the
taxonomic subset classifying the task (s), the name(s) of the task(s), and the time
corresponding to when the task performance was simulated. The designer can scroll the
display horizontally and vertically to display the complete timeline with the complete task
classification and loading profiles. Pointing at a scroll bar in the left margin scrolls
vertically through the task load and task classification data Pointing at a scroll bar in the
bottom margin displays the task load and classification data at each time or tick increment in
the simulation.

The designer has the option to stop the MIDAS-TLM process at any time, clear the displays
and restart the process.

The designer is currently restricted to evaluating tasks that have been manually classified
and coded as a hash table. This is a pre-simulation requirement. All the tasks generated by
the Symbolic Operator Model must be manually classified and coded before a simulation,
but once the task names and indexes are coded as hash tables, only the names of the tasks
need to be passed to the TLM for task evaluation.

6.2 INSTALLATION AND INITIALIZATION

To run the MIDAS-TLM on a Symbolics machine, the user boots the system by typing the
command Boot on the command line if the machine has not already been booted. The
MIDAS-TLM system is now ready to be loaded into the machine.

The MIDAS-TLM is installed as a system in the directory sys:site; on the file server host
Barracuda. The system's files reside in the directory stav;mldas-thn on the host
Squid. To install the system, the user logs on to squid and compiles the midas-tim system
from the dynamic Lisp listener window by typing the command

Page C-51

Compile System Midas-Tim.

This command compiles and loads the system. To select the MIDAS-TLM display, the
user types the keys Select-H.

The TLM currendy accesses hash tables that provide the task data to calculate the task
loads. These hash tables must be created before a simulation can occur. Currently, the
onlymeans tocreatethesetablesistoedittwo files,enterthenecessarydataintothetables
and thencompilethefiles.To editthefiles,typethecommand

Edit System Midas-Tim

This command loads all of the MIDAS-TLM system's fries into the edit buffer, from which
the appropriate files can be selected for editing.

6.3 STARTUP AND TERMINATION

The MIDAS-TLM systemoperatesintwo modes:pre-simulationandruntirnc.Duringpro-
simulation,theuserselectsthecrew-membertobeanalyzedby clickingon eitherthe

"Pilot" or "Copilot/Gunner". mouse-sensitive,,. label, on the display. This".brings"up a
momentary menu with the labels Single", "Combined" and "Clear Display". The
user clicks the mouse on the "Single" label which brings up a second momentary menu
with the labels "Calculate" and "Redisplay", Clicking on these labels calculates the
loads for the active, single tasks, or rcdisplays them if they have already been calculated.
The user can scroll through the task loading values and task classifications via scroll bars
on the bottom and left-hand sides of the display.

During runtime simulation, the list of active tasks are written to a file at each tick-increment
of the simulation. Once the TLM-process starts, the TLM accesses the file at each tick and
automatically calculates and displays the loads and classifications for the combined tasks in
the active task list.

The user starts the TLM-process by clicking the mouse on either the "Pilot" or
"Copilot/Gunner" mouse-sensitive label on the display. This brings up a momentary

" ,' 'l ,, l, t,menu with the labels Single , Combined and Clear Display . The user dicks the
mouse on the "Combined" label which brings up a second momentary menu with the
labels "Calculate" and "Redisplay". Clicking on these labels calculates the loads for
the active, combined tasks, or redisplays them if they have already been calculated. The
user can scroll through the task loading values and task classifications via scroll bars on the
bottom and left-hand sides of the display.

Once the TLM-process has begun, it continues until the simulation stops, providing a
complete history of the task loads and task classifications for the single and combined
tasks. These can be sequentially displayed and scrolled through for post-simulation
analyses.

The user can terminate the TLM-process at anytime by clicking the mouse on the "Crew
Selection Menu" label on the display. This stops the TLM-process and re-initializes the
TLM, at which point the user can begin again.

The user follows the same procedures to run the TLM during each simulation.

Page C-52

6.4 FUNCTIONS AND THEIR OPERATION

There are four files containing the functions that control the interface and contain the task
hash-tables. Squid:>stav>midas-tlm>select-task-display and
Squid:>stav>midas.tlm>tlm.files-init control the interface. These two files do not
need to be edited to run the TLM during simulations. Squid:>stav>midas-tlm>tlm-
task-load.data and Squid:>stav>mldas.tlm>task-names contain the task hash
tables. These two foes need to be edited to run the TLM during simulations.

Squid:>stav>midas.tlm>tlm-files.init contains two variables and two functions.
The values of the two variables are initialized to an instance of the task-load-window-frame
and the process "midas.tim". The two functions start the command menu and read file
processes, and call functions to clear or reset the displays.

Squid:>stav>midas-tlm>select.task.display contains six defparameters set to
instances of the pop-up menus, and eighteen functions that call the functions that evaluate
and display the loads and task classifications for single and combined tasks for both the
pilot and copilot-gunner. Two separate functions clear the task and load classification data
from the window-panes.

Squid:>stav>midas.tlm>tlm.task.load.data contains two variables set to instances
of the pilot and copilot/gunner task name and index hash tables. Six functions get the pilot
and copilot single and combined active task lists from the task decomposition model's
interface file Squid:>stav>midas-tim>sym-interface, and access' the task-name
tables, and the task-name-and-index tables. Two functions "pilot.task-load-data-
table" and "cpg-task-load-data-table" create the task-long-name-and-index tables for
the pilot and copilot respectively. These two functions must be edited before a simulation.
Using the syntax provide by the current tables, the user must enter the new task name and
classification data into these tables and compile the buffer.

Squid:>stav>midas-tlm>task-names creates the tables of task-long-names that are
used to access the index lists in the task-name-and-index tables, and access the task-short-
names in the task-short-name table that are used in the display (The long names are too long
for the display window). Two variables are set to the pilot and cpg long names with their
respective short names. Two defparameters are set to the pilot and cpg long names used to
access the short names stored in the two variables, and access the index lists in the task-
name-and-index tables. Two functions retrieve the short names stored in the two variables,
and two functions create the instances of the long-name/short-name hash table for the pilot
and cpg task names and store them in their respective variables. These last two functions,
"pilot-short-names-table" and "cpg-short-names-table" must be edited, replacing
the current names with the ones that will be used in the simulation. The two defparameters
must also be edited, replacing the current names with the ones that will be used in the
simulation. This buffer must also be compiled.

Once the two files have been edited, the file Squid:>stav>midas-tlm>tlm-files-init
must be recompiled to create instances of the new hash tables. The midas-tim process is
now ready for simulation.

6.5 ERROR AND WARNING MESSAGES

The possible error messages that may occur would probably be associated with either
output holds on the display window-panes, or associated with task names and
classifications that are referenced incorrecOy as a result of errors in the task hash tables or
that aren't in the hash tables.

Page (2-53

6.6 RECOVERY STEPS

Recovery from any error states is accomplished by clicking on the "RESET-TLM" menu
item in the pop-up display associated with the "Crew Selection Menu" display label.

7.0 ABBREVIATIONS AND ACRONYMS

ACbw

Acw
CAD

Cb
CCSC!

Ccw
CMbw
CPU
CSCI
CTA
Cw
FGI:
FG2:
FG3:
FG4:
FG5:
FG6:
FG7:
I/O

La
Lc
Lisp
Lm
LMFS

Lv

Mcw
MIDAS
SCI
SSCI
TACSCI
TDSCI
TECSCI
TLM
TLMSC
TLMSCI
UICSCI

VAbw
VACM
VACP
VCbw

Vcw

Auditory-Cognitive between matrix
Auditory within matrix
Computer Aided Design
Conflict Value for between matrices
CalculatorComponent Software Configuration Item

Cognitive within matrix

Cognitive-Motor between matrix
Central Processing Unit
Component Software Configuration Item
Cognitive Task Analysis
Conflict Value for within matrices
Functional Group 1: The task editor and data-input
Functional Group 2: task-load calculator
Functional Group 3: display windows and menus
Functional Group 4: task-load fommtting
Functional Group 5: midas-interface
Functional Group 6: system-initialization
Functional Group 7: tim-system
Input/Output

Auditory load value
Cognitive load value
List processor (lots of silly irritating pa_entheses)
Motor load value

Lisp Machine File System
Visual load value
Motor load value
Man-Machine Design and Analysis System
Software Configuration Item
Scheduler Software Configuration Item
Task Adjustor Component Software Configuration Item
Task Decomposition Software Configuration Item
Task Editor Component Software Configuration Item
Task Load Model

Task Load Model Software Component
Task Load Model Software Configuration Item
User Interface Component Software Configuration Item

Visual-Auditory between-matrix
Visual Auditory Cognitive Motor
Visual Auditory Cognitive PsychoMotor

Visual-Cognitive between-matrix
Visual within-matrix

Page C-54

8.0 GLOSSARY

Abstraction Hierarchy A hierarchical set of invariant qualities that are common to the
the human information processing systems capability to represent and manipulate
information symbolically.
Additional-Cost An unknown function or constant that accounts for the obtained
increases in the magnitude of workload predicted by an averaging model.
Attention A mental control mechanism that guides, focuses, or elaborates the acquisition
and processing of information.
Auditory A modality of perception involving aural stimuli.
Auditory.Cognitive The interaction of aural perceiving and central processing
mechanisms.
Auditory-Visual The interaction of aural perceiving and visual perceiving.
Averaging Model A model that predicts retrospective workload ratings by averaging the
difficulty of the events or stimuli that are experienced.
Behavioral State A description of the attributes and values that constitute a specific
pattern of human performance.
Best-Fitting Model A model that best describes the obtained patterns of human
performance or behavioral states.
Between-Matrix A two dimensional man-ix of values that represents the demands
incurred on the human information processing system from the interaction of information
processing mechanisms in different stages.
Bottom-Up Model A human performance model that is dictated by a detailed set of
primitive elements of human behavior.
Cognitive The central processing stage composed of at least the attentional,
transformational and memory mechanisms and processes that act on perceived
information, and which prepare the information processing system to generate a response
to stimuli if necessary.
Cognitive Task Analysis An analytic technique to explicate the interactions among the
current and desired states of the world and agent, and the representations available to the
agent that are necessary to model human-system interactions.
Cognitive.Motor The interaction of central processing mechanisms and motor response
mechanisms.
Component Software Configuration Item A component of a software architectural
unit/item used to implement a specific model or tool within MIDAS.
Conflict Matrix A two dimensional matrix of values that represents the demands and
conflicts among the structural and procedural psychological attributes that describe a task.
Conflict Value A specific value that represents the interaction between two structural or
procedural psychological attributes classifying a task.
Dimension A top level set of structural or procedural psychological attributes that
corresponds to a specific stage of information processing. This is the level that load values
are assigned to a task.
Element A bottom level structural or procedural psychological attribute that is used to
classify a task.
Event Based A simulation that progresses according to changes in state variables that
represent specific events that occur in the environment or behavior of the operator.
Genera 7.2 The symbolics Lisp operating system.
Human Information Processing The human mental activities and structures that
represent and manipulate information symbolically, and which enable humans to perceive
and respond to changes in external (environmental) or internal (mental) states.
Human Performance Model A quantitative (analytic or computer-based) representation
or description of all or parts of human operators or maintainers of complex, dynamic
systems.

Page C-55

Invariant Property A characteristic of the information processing system that does not
change as a function of the information extracted from the perceptual array.
Load Balancing Strategy A behavioral change in an operator as a function of the
imposed visual, auditory, cognitive and motor loads imposed by porforming a task. The
effect of the behavioral change is a regression to the mean workload (reduction of peak
loads) of the pertinent tasks with regard to alloted time.
Load Value A value that represents the amount of psychological resources required to
perform a task relative to performing another task or set of tasks.
Memory The psychological mechanisms that maintain information over time.
Mental Workload An evaluation about the difficulty of ongoing experiences and the
impact of those experiences on the physical and mental states of an otm'ator. The evaluation
is a function of the collection of attributes that may or may not be relevant in controlling the
evaluations or behavior that depend on the circumstances and design of a Oven task(s), and
the a priori bias of the operator.
Motor The effector mechanisms of the human body.
Multi-Task Model A comprehensive, quantitative model that represents the combined
effects of a variety of tasks on human performance.
Object.Oriented Programming Programming languages that represent data structures
as objects with attributes and values.
Output Model A model that focuses on the result of human performance.
Normative Model A model that predicts how an operator should perform by assuming
rational operator behavior.
Phase IV The period of research and development on MIDAS from the small offsite in
March 1989 to the end of demos in July 1990.
Phase V The period of research and development on MIDAS from the large offsite in
November 1990 to the end of demos sometime in late 1991 or early 1992.
Physical System The design of the system hardware and software.
Process A specific information processing mechanism that manipulates information
symbolically.
Resource The attentional, physical and memory capabilities of an operator.
Scheduling Model The software configuration item that sequences the order of the
simulated tasks.
Serial Constraints The imposed order of interactions betw_n the dimensions used in
the TLM.
Simulation Executive The software configuration item used to control the simulation
by comrolling the flow of execution of the rest of MIDAS' software configuration items.
Software Component A component of a software architectural unit/item used to
implement a specific model or tool within MIDAS.
Software Configuration Item An architectural unit of software used to implement a
specific model or tool within MIDAS.
Structure A specific information processing mechanism that represents information
symbolically.
Summing Model A model that predicts retrospective workload ratings by summing the
difficulty of the events or stimuli that are experienced.
Task Decomposition Model The software configuration item that decomposes high
level goals into the simulated tasks.
Task Loading Model The software configuration item that predicts the visual, auditory,
cognitive and motor loads that the simulated tasks impose on the operator of the system.
Tick Based A simulation that progresses according to changes in state variables that
represent specific events that occur in the environment or behavior of the operator.
User A good question and currently iU-defined, but usually meant to be an operator of the
MIDAS workstation.
Variant Property A characteristic of the information processing system that changes as a
function of the information extracted from the perceptual array.

Page C-56

Visual A modality of perception involving visual stimuli.
Visual-Cognitive The interaction of visual perceiving and central processing
mechanisms.
Within-Matrix A two dimensional matrix of values that represents the demands incurred
on the human information processing system from the interaction of information processing
mechanisms within the same stage.

9.0 NOTES

The softwarecontainedinthisdocumentationiscompletelynew. The TLM didnotexist
beforephaseIV,and was completedfourmonthspriortophaseIV demos. The software
of the TLM described in this document was developed in that four month period, and was
completedafew dayspriortothephaseIV demos. Thissoftwarewillprovidethecorefor
futureTLM softwaredevelopmentefforts.

9.1 LIMITATIONS

The limitationsoftheTLMSCI ateprimarilyrelatedtoitsnew inceptionasacomputational
model.The model isuntestedand sovalididycannotbe established.The computational
structureofthemodel may notbe themostoptimalasaresultofthelackofunderstanding
ofthemodelsstrengthsand weaknesses,aswellasthemodcrs structureand its
algorithms.Thislackofunderstandingleadstovaguenotionsofthemostappropriate
futurecomputationalefforts.Additionally,thcprogrammerwas inexperienced,and even
withsuperbtutoringand guidancefromaLispguru,theefficiencyand efficacyofthe
currentcomputationaleffortsmay be questioned,andmay leadtoproblemsinfuture
developmentefforts.

9.2 LESSONS LEARNED

The authorlearnedfaxtoomany lessonstostatethem all.Sufficeittosaythatasidefrom
learninghow toprogram,how tousetheSymbolicsmachine,learningLisp,and the
meaningofAI,theauthorlearnedfarmore thanhe intended.

9.3 FUTURE DIRECTIONS

The futuresoftwaredevelopmenteffortsfortheTLM willconsistoffullyimplementingthe
TaskAdjustorTLM component.Thiscomponentwilladd the"real"power totheTLM by
providigthemechanismstoadjustthetaskclassificationsinordertotailorthetaskstothe
thecurrentoperatingenvironment.Thiscapabilitywillallowthetaskstobe automatically
classifiedaftertheyhavebeengeneratedby theSymbolicOperatorModel. Thiscapability
willalsoprecludethenecessityfortheusertoeditany filestoprepareand initializethe
MIDAS-TLM systemforuseinsimulations.

The specific nature of the software development efforts has currently not been detailed.
However, theintialideassuggestthattheindividualelementsusedinthetask
classificationswillbecodedasagents,some independentandothersmutuallydependenton
eachother.Each agentwillcontainthenecessaryslots,rulesand functionsthatenablethe
agenttosearchrelevantdatapoolsthatexistelsewhereinthcsimulationenvironmentfor
theappropriatestatevariablcsvalues.Specificscarchalgorithms,statevariablesand data
poolscannotbe specifiedatthetimeofwritingthisdocument,becausethelevelofdetail
usedtorepresentthesimulationtaskshasnotbccndecided.The levelofdetailwill
dctcrminethestatevaluesavailablefortheTLM toclassifytasks.

Page C-57

10.0 APPENDIX A

Page C-58

APPENDIX A

CONFLICT MATRICES

Pag, C-59

:AUDITORY
DIMENSION

ORIENT 1
DISCRIMINATE 2
SIGNAL l
SPEECH i
SALIENT I
MASKED 2

OR DI Sl 'SP SA MA

3
2 2
3 3 999
2 1 1 1
3 2 3 3 5

FIGURE A-1 CONFLICT MATRIX FOR THE AUDITORY DIMENSION

(OR=orient, DI=discriminate, SI=signal. SP=spatial, SA--salient, MA---m_kcd).

Page C-60

COGNITIVE
DIMENSION

DI TR SC MC VE SP PL UN

DIRECT 1
TRANSFORMATION 2 3
SINGLE CHOICE 1 2 1
MULTIPLE CHOICE 1 3 2
VERBAL 2 3 2
SPATIAL 1 2 'I
PLANNED 1 3 1
UNPLANNED 2 4 2

3
3 4
2 2 3
2 2 1 1
3 4 3 2 3

FIGURE A-2 CONFLICT MATRIX FOR THE COGNITIVE DIMENSION

(DI=direct TR=transformation, SC=single choice, MC=multiple choice, _erbal,
SP=spatial, PL=planned)

Page C-61

MOTOR
DIMENSION

VE SP NEFA!DI COGRFI MCHE EY HAFE FI RI LE BO

VERBAL 99_
SPATIAL 2 3
NEAR 1 1 1
FAR 1 ,2 2 3
DISCRETE 2 1 2 1 3
CONTINUOUS3 _2 3 2 2 1
GROSS 1 1 1 2 1 2 1
FINE 1 2 2 3 3 4 2 3
MOUTH 1 1 1 1 1 2 1 1
HEAD 1 1 1 1 1 2 1 2
EYE 1 1 1 2 1 2' 2 1
HAND 1 2 1 2 1 2"' 1 2
FEET 1 2 1 1 1 2 1 2
FINGER 1 3 2 3 2 3 2 3
RIGHT 1 2 1 1 1 1 1 1
LEFT 1 2 1 1 1 1 1 1
BOTH 1 3 1 1 1 1 1 1

995
1 995
i 5 99c_
1 1 2
1 1 1
l 2 2
1 1 2
i 1 2
1 1 1

3
2 3
3 2
1 2
1 2
2 3

4
2 99_
2 3 99_
4 99_ 99_ 999

FIGURE A-3 CONFLICT MATRIX FOR TItE MOTOR DIMENSION

(VE=verbal, SP=spatial, NE=near, FA=far, DI=discrete, CO=continuous, GR=gross,
FI=fine, MO=mouth, HE=head, EY=eye, HA=hand, FE=feet, FI=finger, RI---right,

LE=left, BO=both).

Page C-62

AUDITORYOR DI SI SP SA MA

VISUAL

NEAR 1
FAR 2
SCAN 1
FIXATE 2
INTEGRAL 3
SEPARABLE 1
OBJECTS 1
FEATURES 2
SALIENT 1
MASKED 2
STATIC 1
DYNAMIC 3

2 2 2 1 2
3 2 2 1 2
2 2 2 1 2
3 3 3 2 3
,4 3 3 3 4
2 1 1 1 2
2 1 1 1 :2
3 2 2 2 3
2 1 1 1 2
3 2 2 2 3
2 1 1 1 2
4 2 2 2 3

FIGURE A-4 CONFLICT MATRIX FOR THE VISUAL-AUDITORY
DIMENSION

(OR=orient, DI=discriminate, SI=signal. SP=spatial, SA--salient, MA--masked).

Page C-63

COGNITIVE DI TR SC MC VE SP PL UN

VISUAL

NEAR 1 2 1 2 1 2 1 2
FAR 1 3 2 3 1 3 1 2
SCAN 1 2 2 4 3 4 2 3
FIXATE 1 3 1 3 1 2 1 2
INTEGRAL 1 3 3 4 3 4 3 4
SEPARABLE 1' " 2 1 2 2 3 1 2
OBJECTS 1 2 1 2 2 3 1 2
FEATURES 1 3 2 3 1 3 2 3
SALIENT 1 2 1 2 1 2 1 2

i MASKED 2 3 2 3 4 3 2 3

STATIC 1 2 1 2 2 1 1 2
' bYNAMIC 1 3 2 3 3 2 2 3

FIGURE A-5 CONFLICT MATRIX FOR THE VISUAL COGNITIVE
DIMENSION

(DI---direct TR=transforrnation, SC=single choice, MC=multiple choice, VE---verbal, SP=spatial,
PL=planned)

Page C-64

COGNrrlVE DI TR SC MC VE SP PL UN

AUDITORY

iORIENT I 2 I J2 I I I 2
,DISCRIMINATE, 2 3 2 3 3 2 2 3
ISIGNAL I 2 2 '3 I I I' 2
SPEECH 1 1 1 12 1 3 2 2

i

SALIENT 1 1 1 2 l 1 1 2
MASKED 2 2 2 3 3 2 2 3

FIGURE A-6 CONFLICT MATRIX FOR THE AUDITORY-COGNITIVE
DIMENSION

(DI=dir_t TR=transformation, SC=single choice, MC=multiple choice, VE-.-verbal, SP=spatial,
PL=planned).

Page C-65

COGNITIVEDI ITR SC MC VE SP PL UN

MOTOR

VERBAL 1
SPATIAL 2
NEAR 0
FAR 0
DISCRETE 1
CONTINUOUS 2
GROSS 1
FINE 2
MOUTH 1
HEAD 1
EYE 1
HAND 2
FEET 2
FINGER 3

RIGHT 1
LEFT 1
BOTH 2

2 1 2 1 4 1 2

0 0 0 0 0
0 0 0 0 0 _0 0
2 1 2 1 1 1 2
3 2 3 2 2 ;2 3
2 i 2 1 1 1 2
3 2 3 1 i 2 3
2 1 2 2 1 1 2
2 1 2 1 2 1 2
2 1 2 1 1 1 2
3 1 2 3 2 1 2

, • • ,,, ,

3 1 2 3 2 1 2
4 2 3 4 3 2 3
2 1 2 3 2 1 2
2 1 2 3 2 1 2
3 2 3 4 3 2 3

FIGURE A-7 CONFLICT MATRIX FOR THE MOTOR-COGNITIVE
DIMENSION

(DI=direct ,TR=transformation, SC=single choice, MC=multiple choice, VE=verbal, SP=spatial,
Pk=planned).

Page C-66

Annex D

Army-NASA Aircrew/Aircraft Integration Program: Phase IV

Man-Machine Integration Design and Analysis System (MIDAS)

Software Detailed Design Document

Symbolic Equipment Model

prepared by

David Bushnell

Table of Contents

1.0 INTRODUCTION ... 1
1.1 IDENTIFICATION OF DOCUMENT ... 1
1.2 PURPOSE OF DOCUMENT ... 1

2.0 RELATED DOCUMENTATION .. 1
2.1 APPLICABLE DOCUMENTS ... 1

3.0 CONCEPT .. 1
3.1 DEFINITION OF THE EQUIPMENT MODEL 1

3.1.1 Purpose and Scope .. 1
3.2 USER DEFINITION ... 1
3.3 CAPABILITIES AND CHARACTERISTICS 1
3.4 SAMPLE OPERATIONAL SCENARIOS 2

4.0 REQUIREMENTS .. 3
4.1 REQUIREMENTS SPECIFICATION ... 3
4.2 EXTERNAL INTERFACE REQUIREMENTS 3
4.3 IMPLEMENTATION CONSTRAINTS ... 4

5.0 DESIGN .. 4
5.1 ARCHITECTURAL DESIGN .. 4

5.1.1 Architectural Design Description 4
5.2 DETAILED DESIGN .. 4

5.2.1 The Equipment Model .. 4
5.2.1.1 Equipment Definition module. :..................... 4

5.2.1.1.1 Physical-Component Type 4
5.2.1.1.2 Physical-Component Instance Variables 5
5.2.1.1.3 Physical-Component Methods 5
5.2.1.1.4 Equipment-Component Type 5
5.2.1.1.5 Equipment-Component Instance Variables 5
5.2.1.1.6 Equipment-Component Methods 5

5.2.1.2 Equipment Database module 6
5.2.1.2.1 Equipment Database Type 6

5.2.1.2.1.1 Equipment Database Instance
Variables ... 6
5.2.1.2.1.2 Equipment Database Methods 6

5.2.1.2.2 Equipment Name Database Type 6
5.2.1.2.2.1 Equipment Name Database Instance
Variables ... 6
5.2.1.2.2.2 Equipment Name Database Methods 7

5.2.1.2.3 Equipment Model Database Type 7
5.2.1.2.3.1 Database Node Type 7

5.2.1.2.3.1.1 Database Node Instance
Variables ... 7
5.2.1.2.3.1.2 Database Node Methods 7

5.2.1.3 Longbow Equipment module 8
5.2.1.3.1 The Functional CPU Type 8

5.2.1.3.1.1 Functional CPU Instance Variables 8
5.2.1.3.1.2 Functional CPU Methods 10

5.2.1.3.3 The CCP Type .. 10
5.2.1.3.3.1 CCP Instance Variables 10
5.2.1.3.3.2 CCP Methods 10

5.2.1.3.4 The CCP VHF Receiver Control Type 11
5.2.1.3.4.1 CCP VHF Receiver Control Instance
Variables ... 11
5.2.1.3.4.2 CCP VHF Receiver Control Methods 11

5.2.1.3.5 The CCP UHF Receiver Control Type 11

Table of Contents

6.0 USER'S
6.1

6.2

5.2.1.3.5.1 CCP UHF Receiver Control Instance
Variables ... 11
5.2.1.3.5.2 CCP UHF Receiver Control Methods 11

5.2.1.3.6 The CCP FM2 Receiver Control Type 11
5.2.1.3.6. I CCP FM2 Receiver Control Instance
Variables ... 11
5.2.1.3.6.2 CCP FM2 Receiver Control Methods 12

5.2.1.3.7 The CCP FM2 Receiver Control Type 12
5.2.1.3.7.1 CCP FM2 Receiver Control Instance
Variables ... 12
5.2.1.3.7.2 CCP FM2 Receiver Control Methods 12

5.2.1.3.8 The Keyboard Type 12
5.2.1.3.8.1 Keyboard Instance Variables 12
5.2.1.3.8.2 Keyboard Methods 12

5.2.1.3.9 The Key Types .. 13
5.2.1.3.9.1 Key Instance Variables 13
5.2.1.3.9.2 Key Methods 13

5.2.1.3.10 The UFD Type 13
5.2.1.3.10.1 UFD Instance Variables 13
5.2.1.3.10.2 UFD Methods 13

5.2.1.3.11 The RTS Switch Type 13
5.2.1.3.11.1 RTS Switch Instance Variables 13
5.2.1.3.11.2 RTS Switch Methods 14

5.2.1.3.12 LAST Switch Type 14
5.2.1.3.12.1 LAST Switch Instance Variables 14
5.2.1.3.12.2 LAST Switch Methods 14

5.2.1.3.13 The MFD Type 14
5.2.1.3.13.1 MFD Instance Variables 14
5.2.1.3.13.2 MFD Methods 16

GUIDE ... 17
INSTALLATION AND INITIALIZATION 17

6.1.1 Installing the EQUIPMENT-MODEL System 17
6.1.2 Installing the LONGBOW-MODEL System 18
6.1.3 Initializing the EQUIPMENT-MODEL System 18
6.1.4 Initializing the LONGBOW-MODEL System 18

STARTUP AND TERMINATION .. 19

MAN-MACHINE INTEGRATION DESIGN & ANALYSIS SYSTEM
(MIDAS) SOFTWARE DETAILED DESIGN DOCUMENT

PtlASE IV:

SYMBOLIC EQUIPMENT MODEL

1.0 INTRODUCTION

1.1 IDENTIFICATION OF DOCUMENT

This document gives the requirements and design of the Equipment Model Software
Component for MIDAS Phase IV.

1.2 PURPOSE OF DOCUMENT

This document is for programmers and other technical specialists working on the
development of the Equipment Model Component for the prototype MIDAS computer-aided
engineering workstation. It describes the model's requirements and design. Familiarity with
object-oriented systems is assumed.

2.0 RELATED DOCUMENTATION

2.1 APPLICABLE DOCUMENTS

Symbolics Genera 7.2 Documentation, Symbolics Publication Number 999079, Symbolics,
Inc., Cambridge, Massachusetts, 1988.

3.0 CONCEPT

3.1 DEFINITION OF THE EQUIPMENT MODEL

3.1.1 Purpose and Scope

The Equipment Model lets its users define equipment components to be used in a MIDAS
simulation. It is designed to allow equipment models that reflect the functional and physical
properties of the equipment being simulated. It is also designed to make equipment
definition tractable by allowing the reuse of previously defined components in new
equipment, by separating physical and functional aspects of equipment so that each can be
specified independently, and by enforcing a separation between the Symbolic Operator
Model and the Equipment Model so that the applicability of the functional components to
particular tasks can be determined dynamically at runtime. Finally, the Equipment Model
includes the Longbow equipment required to support the Phase IV demonstrations.

3.2 USER DEFINITION

People directly use the Equipment Model only for defining equipment for a simulation.
Under normal operations the equipment is controlled by the various parts of the Symbolic
Operator Model. These parts of Symbolic Operator Model can request components that
perform some specified function, request components by name, perform specified
functions, or tell components to advance one time tick.

3.3 CAPABILITIES AND CHARACTERISTICS

Page D- 1

TheEquipmentModelusesthephysical and functional component types to separate the
physical and functional aspects of a component. Every component in a piece of equipment
is represented by both a physical component type and a functional component type. The
physical component type contains information about the object's physical characteristics.
For example, if a switch is being modeled then its physical model would specify whether it
was a toggle switch or a push button and, if it was a toggle switch, how much force would
be required to flip it from one state to another. The functional component type contains
information about the object's functionality. In the previous example, the switch's
functional model would specify that the switch was used for turning on and off a radio.

When executing a simulation, the user (which is normally the Symbolic Operator Model)
typically accesses only the functional components and accesses them not by name but by
function. More specifically, a user will typically issue a command to the Equipment Model
of the form: "Execute the functional component that performs the following function." The
functional component will determine what physical actions are required to execute the
function and tell the associated physical component to perform those actions.

3.4 SAMPLE OPERATIONAL SCENARIOS

Typical usage of the Equipment Model has two parts: definition and execution. In the
definition phase, a person describes a model of some equipment of interest. In the
Execution phase, the Symbolic Operator Model selects functions and tells the Equipment
Model to execute them.

A simple component definition in the Longbow Equipment component is

(1)

(2)
(3)
(4)

(5)
(5)
(5)

(def-equip-comp-type \ D,#TD 1Ps-T [Begin using 006 escapes]_(1 0 (NIL 0) (NIL
:BOLD NIL) "CPTFONTCB")rts-switch
(2 0 (NIL 0) (NIL NIL NIL) "CPTFONT")

0
(normally-off-momentary-switch)
:referenced-equipment (func-cpu)
:specializations
(:self-specializations

((switch-state-output (as-switch-state func-cpu))
(activate-switch (activate-as ufd))
(deactivate-switch (deactivate-as ufd)))))

(The numbered lines in this definition are described below.)

1) The name of the component. This component's name is RTS-SWITCH.

2) Internal state variables of the component. RTS-SWITCH has none of its own,
but may inherit some. See (3) below.

3) More general components on which this one is built. RTS-SWITCH depends on
the component NORMALLY-OFF-MOMENTARY-SWITCH.

4) The names of other components in the equipment model. These either supply
inputs to or accept outputs from this component. RTS-SWITCH refers to the
component named FUNC-CPU.

Page D-2

5)Whattheinputs,outputs,andsupportedfunctions(inthemoregeneral
componentsnamedin (3)above)reallyreferto. Inthiscase,thegeneric
NORMALLY-OFF-MOMENTARY-SWITCHcomponenthasanoutputcalled
SWITCH-STATE-OUTPUT.ForanRTS-SWITCH,thisreallyreferstothe
RTS-SWITCH-STATEoftheFUNC-CPUobject.Also, the functions "Activate
Switch" and "Deactivate Switch" supported by the genetic NORMALLY-OFF
MOMENTARY-SWITCH component become the more specific "Activate the
RTS Switch of the UFD" and "Deactivate the RTS Switch of the UFD" functions.

This definition creates the RTS-SWITCH component type. To actually create an
RTS-SWITCH component object, the user executes:

(make-instance 'RTS-SWlTCH
<initializations for RTS-SWlTCH instance variables>)

Note that the new RTS-SWITCH object automatically gets inserted into the equipment
model that is the value of the special variable *EQUIPMENT-MODEL*. It is stored both by
name, RTS-SWITCH, and by function, (ACTIVATE-RTS UFD) and (DEACTIVATE-RTS
UFD).

At runtime, the Symbolic Operator Model may find that it needs to activate the UFD's RTS
switch. It retrieves all components of the equipment model that support that function (there
is only one in this case), selects the one best suited to its needs, and executes it.

4.0 REQUIREMENTS

4.1 REQUIREMENTS SPECIFICATION

There are five major requirements levied on the Equipment Model:

1) to describe the functional and physical characteristics of the equipment used in the
MIDAS simulation with enough detail for the Symbolic Operator Model to be able
to interact with a simulation's equipment.

2) to allow a simulation's equipment to be built from libraries of existing generic
components, rather than having to be built from scratch each time they are
needed.

3) to allow the functional and physical characteristics of the equipment to be
specified independently, so that physical components can be replaced by other
physical components (with the same functionality) without requiring
modifications to the rest of a simulation.

4) to allow the Symbolic Operator Model to dynamically choose from the applicable
functional components of a simulation which should be executed.

5) to represent the Longbow equipment needed to support the Phase IV demo.

4.2 EXTERNAL INTERFACE REQUIREMENTS

The external interface to people is only required to support equipment component definition,
not execution. The users shall be able to define equipment components by typing the
appropriate definitions into text files and executing them.

Page D-3

TheexternalinterfacetotheSymbolicOperatorModelshallallow it to retrieve and execute
components by both name and functionality. The Symbolic Operator Model can do this by
calling the appropriate methods of the Equipment Database.

4.3 IMPLEMENTATION CONSTRAINTS

The Equipment Model requires a Symbolics computer with Genera 7.2 system software.

5.0 DESIGN

5.1 ARCHITECTURAL DESIGN

5.1.1 Architectural Design Description

The Equipment Model comes in three parts: one is a way of defining new equipment
components and specifying their physical and functional properties (the Equipment
Definition module); another part is a database indexing the components by both their names
and their functional properties (the Equipment Database module); the final part is the actual
Longbow equipment model (the Longbow Equipment module). The Equipment Definition
module allows for the definition of generic components that can be easily specialized into the
particular components needed in a simulation. The Equipment Database module is
implemented as an object with two components: the Equipment Name Database and the
Equipment Model Database. The Equipment Name Database stores the equipment
components indexed by their names, while the Equipment Model Database stores them
indexed by their function. These two components are described in more detail below. The
Longbow Equipment module contains the definitions of the Longbow helicopter's
equipment components.

5.2 DETAILED DESIGN

5.2.1 The Equipment Model

This section describes each of the components of the Equipment Model.

5.2.1.1 Equipment Definition module

The Equipment Definition module contains the fundamental object types which underlie all
equipment components in a model, as well as the functions and macros needed to define the
pieces of equipment in a given model. There are two object types that are used by all
equipment components: a physical component type (called Physical-Component) and a
functional component type (called Equipment-Component). Associated with these are two
macros used to define components: one macro for defining physical components (Def-Phys-
Comp-Type) and one for defining functional components (Def-Equip-Comp-Type).

5.2.1.1.1 Physical-Component Type

The Physical-Component type is a component flavor of all physical components in an
equipment model. As outlined in section 3.3 above, it interacts with the user mainly
through the functional model. Since the physical components are generic, there must be an
abstract interface between them and the functional components. This interface consists of
specified sets of inputs and outputs, the allowed values for them, and the methods for
mapping between the functional and physical states. In addition, the user needs to know
what physical actions (e.g. reaches) are required to achieve physical states. The Physical-
Component type therefore supports a mapping from physical states to physical actions.

Page D-4

5.2.1.1.2 Physical-Component Instance Variables

The Physical-Component type contains the following instance variables:

1) The associated functional component,

2) The set of physical inputs.

3) The set of physical outputs.

4) The mapping from functional inputs and outputs to physical inputs and outputs.

5.2.1.1.3 Physical-Component Methods

Physical-Component type supports the following major methods:

1) Map an abstract state to a physical state.

2) Map a physical state to an abstract state.

3) Map a physical state to a physical action.

4) Execute the current clock tick's actions.

5.2.1.1.4 Equipment-Component Type

The Equipment-Component type is a component flavor of all functional components. It
supplies the main execution interface between a user and an equipment model. As such its
principle interaction with a user is the execution of its individual functions.

5.2.1.1.5 Equipment-Component Instance Variables

The Equipment-Component type contains the following instance variables:

1) The component's name.

2) The associated physical component.

3) The functions that the component supports.

4) The set of functional inputs.

5) The set of functional outputs.

6) The mappings from functional inputs and outputs to abstract inputs and outputs.

5.2.1.1.6 Equipment-Component Methods

Equipment-Component type supports the following major methods:

1) Map a functional input to an abstract input.

2) Map an abstract output to a functional output.

Page D-5

3)Executeaspecifiedfunction.

4)Executethecurrentclocktick'sactions.

5.2.1.2 Equipment Database module

The Equipment Database module contains the object type that is used to build the equipment
databases for a simulation. It also contains the functions and methods needed to update,
query, and execute the contents of the databases.

5.2.1.2.1 Equipment Database Type

Each Equipment Database type is used to represent equipment models. It is possible to have
many equipment models in a single simulation, with each representing a single major piece
of equipment.

5.2.1.2.1.1 Equipment Database Instance Variables

The Equipment Database type contains the following instance variables:

1) The Equipment Name Database, which contains a database that indexes the
equipment components by their names.

2) The Equipment Model Database, which contains a database that indexes the
equipment components by their functions.

5.2.1.2.1.2 Equipment Database Methods

Equipment Database type supports the following major methods:

1) Graph the contents of the Equipment Database.

2) Retrieve all equipment components with a function that matches a pattern.

3) Retrieve the equipment component with a given name.

4) Create an equipment component of a given type and add it to the Equipment
Database.

5) Execute the function of the first equipment component that matches a given
pattern.

5.2.1.2.2 Equipment Name Database Type

The Equipment Name Database indexes the equipment components by their names. It is
used when the Symbolic Operator Model needs access to specific pieces of equipment. It is
implemented as a standard system hash table.

5.2.1.2.2.1 Equipment Name Database Instance Variables

The Equipment Name Database type contains no instance variables other than those of a
standard system hash table.

PageD-6

5.2.1.2.2.2 Equipment Name Database Methods

The Equipment Name Database type supports no methods other than those of the standard
system hash tables.

5.2.1.2.3 Equipment Model Database Type

The Equipment Model Database indexes the equipment components by their functionality. It
is used when the Symbolic Operator Model needs access to pieces of equipment that
perform specific functions. The Equipment Model Database is implemented as a
discrimination network, each of whose nodes is a Database Node object.

5.2.1.2.3.1 Database Node Type

A Database Node is a single node in the discrimination network that makes up the
Equipment Model Database. It contains key, data, and network information. The key stored
in a single Database Node object represents only the terminal element of the pattern that
accesses the data. The entire key for a node's data is represented by the list of keys of all
the nodes between the root node of the Equipment Model Database and the node in question.

5.2.1.2.3.1.1 Database Node Instance Variables

The Database Node type contains the following instance variables:

1) The terminal component of the key for the data stored at this node.

2) The data corresponding to the pattern formed by the list of all keys between this
node and the Equipment Model Database's root node.

3) The children of this node.

5.2.1.2.3.1.2 Database Node Methods

The Database Node type supports the following major methods:

1) Match a pattern with the key of a single database node.

2) Insert data corresponding to a pattern.

3) Insert data corresponding to a linearized pattern.

4) Push data onto a list of existing data corresponding to a pattern.

5) Push data onto a list of existing data corresponding to a linearized pattern.

6) Retrieve the data corresponding to a pattern.

7) Search a network of database nodes starting from a root to find the database node
corresponding to a pattern.

8) Apply a function to every node in a database.

9) Apply a function to every node in a database that satisfies a predicate and collect
the results of the function application.

Page D-7

10)Draw a graph of the database network.

5.2.1.3 Longbow Equipment module

The Longbow Equipment module contains the clef'tuitions of the Longbow helicopter
equipment simulated in the Phase IV demo. This equipment consists of the subset of
cockpit displays and controls that was required to run the Symbolic Operator Model:

1) The Central Processor

2) The Communication Control Panels

3) The Keyboards

4) The Up-Front Displays

5) The Multi-Function Displays

5.2.1.3.1 The Functional CPU Type

Much of the equipment in the Longbow cockpit is controlled by or supplies inputs to a
computer called the Central Processor. In the Longbow Equipment module this computer is
modeled by the Function CPU type. Most of the other equipment modeled in the Longbow
Equipment module makes some reference to the Functional CPU, some for input, some for
output.

5.2.1.3.1.1 Functional CPU Instance Variables

The Functional CPU type has the following instance variables:

1) The current state of the pilot's RTS switch

2) The previous state of the pilot's RTS switch

3) The current state of the pilot's LAST switch

4) The previous state of the pilot's LA ST switch

5) The currently pressed key on the pilot's keyboard

6) The previous state of the pilot's keyboard

7) The contents of the pilot's keyboard buffer

8) Whether the pilot's keyboard buffer is complete

9) The current state of the copilot-gunner's RTS switch

10) The previous state of the copilm-gunner's RTS switch

11) The current state of the copilot-gunner's LAST switch

12) The previous state of the copilot-gunner's LAST switch

Page D-8

13)Thecurrentlypressedkeyonthecopilot-gunner'skeyboard

14)The previous state of the copilot-gunner's keyboard

15) The contents of the copilot-gunner's keyboard buffer

16) Whether the copilot-gunner's keyboard buffer is complete

17) The current state of the copilot-gunner's mfd-button

18) The previous state of the copilot-gunner's mfd-button-last

19) The current page on the copilot-gunner's mfd

20) The current vhf frequency.

21) The previous vhf frequency.

22) The current uhf frequency.

23) The previous uhf frequency.

24) The current fml frequency.

25) The previous fml frequency.

26) The current fro2 frequency.

27) The previous fm2 frequency.

28) The current vhf call sign.

29) The previous vhf call sign.

30) The current uhf call sign.

3 I) The previous uhf call sign.

32) The current fml call sign.

33) The previous fml call sign.

34) The current fro2 call sign.

35) The prewous fm2 call sign.

36) The current transmitter selected by the pilot.

37) Whether the pilot has selected the vhfreceiver.

38) Whether the pilot has selected the uhf receiver.

39) Whether the pilot has selected the fml receiver.

PageD-9

40) Whether the pilot has selected the fm2 receiver.

41) The current transmitter selected by the copilot-gunner.

42) Whether the copilot-gunner has selected the vhf receiver.

43) Whether the copilot-gunner has selected the uhf receiver.

44) Whether the copilot-gunner has selected the fml receiver.

45) Whether the copilot-gunner has selected the fm2 receiver.

5.2.1.3.1.2 Functional CPU Methods

The Functional CPU type has the following methods:

1) Execute the current time step's activities. This consists of:

- Processing new inputs from the pilot's keyboard.

- Processing new inputs from the copilot-gunner's keyboard.

- Processing new inputs from the pilot's RTS button.

- Processing new inputs from the copilot-gunner's RTS button.

- Processing new inputs from the pilot's LAST button.

- Processing new inputs from the copilot-gunner's LAST button.

5.2.1.3.3 The CCP Type

The Communication Control Panel (CCP) in the Longbow cockpit controls what the crew
members hear from the helicopter's radios. There is one Communication Control Panel at
each crew station. The CCP type in the Longbow Equipment module only models the
selection of which radios the crew members listen to.

5.2.1.3.3.1 CCP Instance Variables

The CCP type has the following instance variables:

1) The VHF receiver control.

2) The UHF receiver control.

3) The FM1 receiver control.

4) The FM2 receiver control.

5.2.1.3.3.2 CCP Methods

The CCP type does not support any methods beyond those of the Equipment Component
type.

Page D- 10

5.2.1.3.4 The CCP VHF Receiver Control Type

The Communication Control Panel's VHF Receiver Control selects the VHF radio for
listening and controls its volume. Only the selection function is implemented in the
Longbow Equipment module.

5.2.1.3.4.1 CCP VHF Receiver Control Instance Variables

The CCP VHF Receiver Control type has the following instance variables:

1) The state of the control.

2) The Functional CPU object.

5.2.1.3.4.2 CCP VHF Receiver Control Methods

The CCP VHF Receiver Control type has the following methods:

1) Select the VHF radio for listening.

2) Unselect the VHF radio for listening.

5.2.1.3.5 The CCP UHF Receiver Control Type

The Communication Control Panel's UHF Receiver Control selects the UHF radio for
listening and controls its volume. Only the selection function is implemented in the
Longbow Equipment CSC.

5.2.1.3.5.1 CCP UHF Receiver Control Instance Variables

The CCP UHF Receiver Control type has the following instance variables:

1) The state of the control.

2) The Functional CPU object.

5.2.1.3.5.2 CCP UHF Receiver Control Methods

The CCP UHF Receiver Control type has the following methods:

1) Select the UHF radio for listening.

2) Unselect the UHF radio for listening.

5.2.1.3.6 The CCP FM2 Receiver Control Type

The Communication Control Panel's FM2 Receiver Control selects the FM2 radio for

listening and controls its volume. Only the selection function is implemented in the
Longbow Equipment module.

5.2.1.3.6.1 CCP FM2 Receiver Control Instance Variables

The CCP FM2 Receiver Control type has the following instance variables:

Page D- 11

1) Thestateofthecontrol.

2)TheFunctionalCPUobject.

5.2.1.3.6.2 CCP FM2 ReceiverControl Methods

TheCCPFM2ReceiverControltypehasthefollowingmethods:

1)SelecttheFM2radioforlistening

2)UnselecttheFM2radioforlistening.

5.2.1.3.7 The CCP FM2 ReceiverControl Type

TheCommunicationControlPanel'sFM2ReceiverCtmtrol selects the FM2 radio for

listening and controls its volume. Only the selection function is implemented in the
Longbow Equipment module.

5.2.1.3.7.1 CCP FM2 Receiver Conlrol lnqance Variables

The CCP FM2 Receiver Control type has the follo,_ m_, instance variables:

1) The state of the control.

2) The Functional CPU object.

5.2.1.3.7.2 CCP FM2 Receiver Conlrol Melhods

The CCP FM2 Receiver Control type has tb i,,li,,,,,,.J,_r methods:

1) Select the FM2 radio for listening

2) Unselect the FM2 radio for listem _:_

5.2.1.3.8 The Keyboard Type

Both crew stations have an alphanumeric ke? board m :_'e Longbow cockpit. This keyboard
has 50 keys, a 44 character buffer with a 22 _.h,t_c_, ;_: di_,play, and a display brightness
control. The keyboard model has 40 keys (_-7_ ti-9, period, ESC, CLR, and ENTER) and
no brightness control. The character buffer a_;_idi_:_!:_,,are modeled in the Central
Processor.

5.2.1.,_.8.1 Keyboard Instance Vali:_i_

The Keyboard type has the following instancc ,.a_::__i_

1) The keys on the keyboard (each i_ a separate io.stance variable).

5.2.1.3.8.2 Keyboard Methods

The Keybo_d type does not support any meti: _.. _.,,_ _ I those of the Equipment
Component type.

Page D-12

5.2.1.3.9 The Key Types

The various key types (one for each of the keys on a keyboard) support the entry
of alphanumeric data.

5.2,1.3.9.1 Key Instance Variables

Each Key type has the following instance variables:

1) An instance of the Central Processor object.

2) The state of the key (ON or Ol_).

5.2.1.3.9.2 Key Methods

Each Key type has the following methods:

1) Activate (i.e. press) the key.

2) Deactivate (i.e. release) the key.

5.2.1.3.10 The UFD Type

The Up-Front Display (UFD) in the Longbow cockpit shows important communications
status information and the current Caution/Warning/Advisory messages. There is one UFD
at each crew station. The UFD type in the Longbow Equipment module only displays the
statuses of the VHF, UHF, FM 1, and FM2 radios and allows these to be changed with the
RTS and LAST buttons.

5.2.1.3.10,1 UFD Instance Variables

The UFD type has the following instance variables:

1) The RTS switch, which selects the radio to be used as the crew
member's transmitter.

2) The LAST switch, which swaps the previous frequency with the current
frequency on the radio being used as a transmitter.

5.2.1.3.10,2 UFD Methods

The UFD type does not support any methods beyond those of the Equipment Component
type.

5.2.1.3.11 The RTS Switch Type

The RTS switch cycles through the radios (VHF, UHF, FM1, and FM2), selecting each in
turn as the crew member's transmitter. The RTS Switch type implements this behavior by
updating the crew member's currently selected transmitter in the Functional CPU

5.2.1.3.11.1 RTS Switch Instance Variables

The RTS Switch type has the following instance variables:

Page D-13

1)TheFunctionalCPU.

2)Theswitch'scurrentstate.

5.2.1.3.11.2 RTS Switch Methods

TheRTSSwitchtypehasthefollowingmethods:

1)Activate(i.e.push)theRTSswitch.

2)Deactivate(i.e.release)theRTSswitch.

5.2.1.3.12 LAST Switch Type

The LAST switch swaps the currently selected frequency and call sign on the crew
member's transmitter with the previously selected frequency and call sign. The LAST
Switch type implements this behavior by updating the appropriate instance variables in the
Functional CPU.

5.2.1.3.12.1 LAST Switch Instance Variables

The LAST Switch type has the following instance variables:

1) The Functional CPU.

2) The switch's current state.

5.2.1.3.12.2 LAST Switch Methods

The LAST Switch type has the following methods:

1) Activate (i.e. push) the LAST switch.

2) Deactivate (i.e. release) the LAST switch.

5.2.1.3.13 The MFD Type

The Multi-Function Display (MFD) in the Longbow Helicopter is a touch-sensitive CRT
display that shows the status of and controls nearly every other system in the helicopter.
There is one MFD at each crew station. The information and control functions are broken

down into "pages" and only one page can be displayed on an MFD at a time. The pages are
broken down into five groups: communications, navigation, weapons, aircraft, and fire
control radar.

The MFD type implements subsets of the communications and navigation pages. The MFD
type contains a finite state machine (FSM) to control the complex relations among the MFD
pages. This FSM makes it easier to specify the legal transitions between pages and the
effects of actions within a page.

5.2.1.3.13.1 MFD Instance Variables

The MFD type has the following instance variables:

1) The current state of the MFD's FSM.

Page D- 14

2)ThemethodusedbytheFSM's current state for processing its
tick-based activities.

3) The set of legal FSM states and their legal transitions to new
states.

4) The currently selected preset frequency.

5) The buffer for the manually keyed-in frequency.

6) The manually selected radio.

7) The currently pressed MFD soft button (or :OFF ff no button was
pressed during the last time step).

8) The previously pressed MFD soft button (or :OFF if no button is
pressed during the current time step).

9) Buffer for holding things typed for the MFD.

10) The MFD's preset frequencies.

11) The number of pixels horizontally and vertically in the MFD screen.

12) The proportion of the MFD screen that corresponds to the diameter of
the outer range arc on the navigation page.

13) The waypoint selected by the operator.

14) The transform between the MFD navigation page screen coords and real
world coords.

15) The translation from the MFD world coordinate system to the screen
coordinate system.

16) The inverse of the MFD Nay page map scale (only the part of the scale
between the MFD world coordinate system and the screen coordinate
system).

17) The distance to the outer arc on the MFD's navigation page. This is
computed whenever the MFD's range scale or internal scale is set.

18) The scale between the MFD's navigation page range scale and the MFD's
screen coordinate system.

19) The ownship's present position.

20) The ownship's present heading.

21) The list of all waypoints.

22) The list of waypoints currently visible in the MFD.

Page D- 15

23)Thelistof all waypointsontheownship'sroute.

24)Thelistofwaypointsontheownship'sroutethathavenotyetbeen
passed.

25)A waypointthathasbeenselectedtobeaddedtoordeletedfromthe
ownship'sroute.

26)Thenumberofpoundsoffuelpernauticalmilebeingusedatthe
presenttime.

27)Thenumberofminutesof fuelremainingatthecurrentburnrate.

5.2.1.3.13.2 MFD Methods

The MFD type has the following methods:

1) Execute the current time step's activities. This consists of
executing the FSM's current processing method.

2) The processing method for entering a waypoint's altitude.

3) The processing method for entering a waypoint's utm coordinates.

4) The processing method for entering a waypoint description.

5) The processing method for enterSng a waypoint's id number.

6) Find the next unused waypoint id number.

7) The processing method for pressi_ag the "add waypoint" soft button.

8) The processing method the wayp_,int subpage.

9) The processing method for the rotate subpage.

10) The processing method for the present position subpage.

11) The processing method for the navigation top page.

12) The processing method for whe_ one of the radio buttons (VHF, UHF,
on the manual communications subpage is selected.

13) The processing method for when the ENTER button on the manual
communications subpage is selected.

14) The processing method for when the CLEAR button on the manual
communications subpage is selectcd.

15) The processing method for when one of the digit buttons on the manual
communications subpage is selected.

16) The processing method for the m,tnual communications subpage.

Page D-16

17)Updatethemfd'sgraphicstransformfromitsrelevantinstance
variables.

18)TheprocessingmethodforwheneithertheTUNEFM1orTUNEFM2
button on the presets communication page is pressed.

19) The processing method for when the TUNE button on the presets
communication page is pressed.

20) The processing method for when the PRESET button on the
communications top page is pressed.

21) The processing method for the communications top page.

22) The initial processing method for the mfd.

23) Update the distance to the outer arc on the mfd's display.

24) Determine whether it is legal to make a given transition from the
current state.

25) Update the mfd's FSM state information for a new state.

26) Convert world coordinates to screen coordinates

27) Update the list waypoints on the current route that haven't been
passed yet.

28) Decide whether a waypoint is visible on the mfd.

29) Update the list of visible waypoints.

6.0 USER'S GUIDE

6.1 INSTALLATION AND INITIALIZATION

The Equipment Model is maintained as a set of "systems" on Symbolics computers. It can
therefore be compiled, loaded, and so on by using Symbolies standard system utilities.
There are two systems in the Equipment Model, one named EQUIPMENT-MODEL and one
named LONGBOW-MODEL. All files should be referenced with logical pathnames. The
logical hosts for these systems are EQM-MDL for the EQUIPMENT-MODEL system and
LONGBOW-MDL for the LONGBOW-MODEL system.

6.1.1 Installing the EQUIPMENT-MODEL System

The logical host for the EQUIPMENT-MODEL system is EQM-MDL. The host is defined
in the file EQUIPMENT-MODEL.SYSTEM, which must be loaded before this system can
be used. It is currently in the directory B:>MIDAS>BASIC>EQUIP>. This file also
contains the definition of the EQUIPMENT-MODEL system. The files for the
EQUIPMENT-MODEL system are stored under the directory tree "EQM-MDL:EQUIP;**;".

When installing the EQUIPMENT-MODEL System, the EQUIPMENT-MODEL.SYSTEM
file can be restored to any directory, but for consistency it is recommended that it be put in

PageD-17

thedirectory>MIDAS>BASIC>EQUIP>.Thefile should then be edited so that the
system's files are put in the desired directories.

6.1.2 Installing the LONGBOW-MODEL System

The logical host for the LONGBOW-MODEL system is LONGBOW-MDL. The host is
defined in the file LONGBOW-MODEL.SYSTEM, which must be loaded before this
system can be used. It is currently in the directory B:>MIDAS>EQUIP>LONGBOW>.
This file also contains the definition of the LONGBOW-MODEL system. The files for the
LONGBOW-MODEL L system are stored under the directory tree "LONGBOW-
MDL:LONGBOW;**;".

When installing the LONGBOW-MODEL System, the LONGBOW-MODEL.SYSTEM file
can be restored to any directory, but for consistency it is recommended that it be put in the
directory >MIDAS>EQUIP>LONGBOW>. The file should then be edited so that the
system's files are put in the desired directories.

6.1.3 Initializing the EQUIPMENT-MODEL System

The EQUIPMENT-MODEL System is compiled with the standard system compilation
commands. For example, suppose the system is loaded on Barracuda. At a "Command:"
prompt, load the file EQUIPMENT-MODEL.SYSTEM and then compile the EQUIPMENT-
MODEL system:

Command: Load File B:>MIDAS>BASIC>EQUIP>EQUIPMENT-
MODEL.SYSTEM

Command: Compile System EQUIPMENT MODEL

If the system is already compiled, then you can load it as in:

Command: Load File B:>MIDAS>BASIC>EQUIP>EQUIPMENT-
MODEL.SYSTEM

Command: Load System EQUIPMENT MODEL :Version Newest

The keyword argument ":Version Newest" is required

6.1.4 Initializing the LONGBOW-MODEL System

The LONGBOW-MODEL System is compiled with the standard system compilation
commands. For example, suppose the system is loaded on Barracuda. At a "Command:"
prompt, load the file LONGBOW-MODELSYSTEM and then compile the LONGBOW-
MODEL system:

Command: Load File B:>MIDAS>EQUIP>LONGBOW>LONGBOW-
MODEL.SYSTEM

Command: Compile System LONGBOW MODEL

If the system is already compiled, then you can load it as in:

Command: Load File B:>MIDAS>EQUIP>LONGBOW>LONGBOW-
MODEL.SYSTEM

Page D-18

Command:LoadSystemLONGBOWMODEL:VersionNewest

Thekeywordargument":VersionNewest"isrequired.

6.2 STARTUP AND TERMINATION

The Equipment Model does not require any startup or termination beyond that described in
section 6.1 above.

Page D-19

Annex E

Army-NASA Aircrew/Aircraft Integration Program: Phase IV

Man-Machine Integration Design and Analysis System (MIDAS)

Software Detailed Design Document

Visual Editor and Simulation Tool (VEST)

prepared by

Scott Chen

Table of Contents

1.0 INTRODUCTION .. 1
1.1 IDENTIFICATION OF DOCUMENT .. I
1.2 SCOPE OF DOCUMENT .. 1
1.3 PURPOSE AND OBJECTIVES OF DOCUMENT 1

2.0 RELATED DOCUMENTATION ... 1
2.1 APPLICABLE DOCUMENTS .. 1
2.2 INFORMATION DOCUMENTS ... 2

3.0 CONCEPT .. 2
3.1 DEFINITION OF SOFTWARE ... 2

3.1.1 Purpose and Scope ... 2
3.1.2 Goals and Objectives .. 2
3.1.3 Description .. 3

3.2 USER DEFINITION .. 3
3.3 CAPABILITIES AND CHARACTERISTICS 3
3.4 SAMPLE OPERATIONAL SCENARIOS 4

4.0 REQUIREMENTS ... 4
4.1 REQUIREMENTS APPROACH AND TRADEOFFS 4
4.2 EXTERNAL INTERFACE REQUIREMENTS 4
4.3 REQUIREMENTS SPECIFICATION ... 4

4.3.1 Process and Data Requirements .. 4
4.3.2 Performance and Quality Engineering Requirements 5
4.3.3 Implementation Constraints ... 5

5.0 DESIGN ... 6
5.1 ARCHITECTURAL DESIGN .. 6

5.1.1 Design Approach and Tradeoffs .. 6
5.1.2 Architectural Design Description 6
5.1.3 External Interface Design .. 6

5.2 DETAILED DESIGN ... 7
5.2.1 Detailed Design Approach and Tradeoffs 7
5.2.2 Detailed Design Description ... 7

5.2.2.1 Compilation Unit ... 7
5.2.3 Detailed Design of Compilation Units 8

5.2.3.1 MultiGen® User Interface Manager 8
5.2.3.2 MultiGen® Kernel .. 8
5.2.3.3 MultiGen® Data Base Logic 8
5.2.3.4 DMA ... 9
5.2.3.5 CDE .. 9

5.2.3.5.1 File cdefile.c 10
5.2.3.5.2 File cdelink.c 10
5.2.3.5.3 File cdedefault.e 11

5.2.3.6 VIEWS ... 11
5.2.3.6.1 File animate.c 12

5.2.3.7 MFD .. 14
5.2.3.7.1 File mfdani.c 14
5.2.3.7.2 File mfdbut.c 15
5.2.3.7.3 File mfdcont.c 15
5.2.3.7.4 File mfddefault.c 15
5.2.3.7.5 File mfddesk.c 16

5.2.3.7.6 File mfddisp.c 16
5.2.3.7.7 File mfdfield.c 16
5.2.3.7.8 File mfdio.c .. 16
5.2.3.7.9 File mfdmain.c 16
5.2.3.7.10 File mfdmod.c 17
5.2.3.7.11 File mfdpage.c 17

Table of Contents

5.2.3.7.12 File mfdsprintf.c 17
5.2.3.7.13 File mfdstruc.c 18
5.2.3.7.14 Other Files .. 18

5.2.3.8 Jack Interface .. 18
5.2.3.8.1 File a3i/a3ijcl.e 19
5.2.3.8.2 File JACK/jclreach.e 20
5.2.3.8.3 File JACK/jclinit.c 20
5.2.3.8.4 File JACK/stamp.c 20
5.2.3.8.5 File JACK/assign,c 21
5.2.3.8.6 File JACK/delete.c 21
5.2.3.8.7 File JACK/draw.c 21
5.2.3.8.8 File JACK/peaparse.y 21
5.2.3.8.9 File JACK/psurfparse.y 21
5.2.3.8.10 File JACK/msg.c 21

5.2.4 External Interface Detailed Design 21
5.2.4.1 File simdata.c ... 21

5.2,5 Coding and Implementation Notes 22
6.0 USER'S GUIDE ... 23

6.1 OVERVIEW OF PURPOSE AND FUNCTIONS 23
6.2 INSTALLATION AND INITIALIZATION 23
6.3 STARTUP AND TERMINATION ...23
6.4 FUNCTIONS AND THEIR OPERATION23

6.4.1PhaseIV Demo ...23
6.4.2CDE Menu ..24
6.4.3 MFD Menu ..25
6.4.4JACK Menu ..26

6.5 ERROR AND WARNING MESSAGES ...27
6.6RECOVERY STEPS ..27

7.0ABBREVIATION AND ACRONYMS ..27
8.0 GLOS SARY ..27
9.0 NOTES .. 27

9.1 MISCELLANEOUS .. 27
9.2 LIMITATIONS ... 27
9.3 LESSONS LEARNED ... 28
9.4 FUTURE DIRECTIONS .. 28

10.0 APPENDICES .. 28
APPENDIX A. -- VEST FILE FORMATS ... 29

TabJe of Contents

FIGURE 1. MODULES OF VEST .. 6
FIGURE 2. CDE DESIGN STRUCTURE ... 9
FIGURE 3. CDE ANIMATION STRUCTURE ... 9
FIGURE 4. VIEWS DESIGN STRUCTURE .. 11
FIGURE 5. MFD DESIGN STRUCTURE ... 14
FIGURE 6. MFD DISPLAY STRUCTURE ... 14
FIGURE 7. VEST-JACK INTERFACE .. 19
FIGURE 8. VEST SOURCE FILES .. 23

111

MAN-MACHINE INTEGRATION DESIGN & ANALYSIS SYSTEM
(MIDAS) SOFTWARE DETAILED DESIGN DOCUMENT

PHASE IV:

VISUAL EDITOR AND SIMULATION TOOL

1.0 INTRODUCTION

1.1 IDENTIFICATION OF DOCUMENT

This is the Software Product Specification for the VEST (Visual Editor and Simulation
Tool) module of the MIDAS Software System. Descriptions of the detailed processing
requirements, structure, I/O, and control are provided for each lower level Computer
Software Component (CSC), units, or functions contained within this module.

1.2 SCOPE OF DOCUMENT

This document describes the framework, functions and use of the VEST software

developed during Phase IV of the A3I program. This document assumes that the reader is
familiar with computer-graphics concepts, 3D geometrical modeling techniques, window
oriented user interface, C programming language, UNIX operating system, and Silicon
Graphics Inc.'s Graphics Library. It is also assumed that the reader has some experience
with MultiGen ® CAD.

1.3 PURPOSE AND OBJECTIVES OF DOCUMENT

VEST is developed on top of commercial CAD package MultiGen. The basic operations
and programming techniques of MultiGen are well documented in the Software Systems
MultiGen manuals. The purpose of this document is to show the results of VEST
accomplished during Phase IV of the A3I program. Its objectives are to present
module/component layout, animation interface, and internal structures as the need to
modify the source code may arise.

2.0 RELATED DOCUMENTATION

2.1 APPLICABLE DOCUMENTS

The following documents are referenced herein and are directly applicable to this volume:

Software Systems MultiGen ® - Modeler's Guide, Interface Manager, MultiGen Kernel,
Writing MultiGen DBL, Release 3.0, Software Systems, San Jose, September 1988.

Data Format Specification for Software Systems Flight Data Bases, Format Release 4, July
28, 1988.

Software Systems MultiGen ®, DMA Terrain Conversion Option User's Guide, July,
1988.

Page E- 1

A3I Phase III Views CSCI, June 1990.

A3! Phase !I! Cockpil Design Edilor CSCI, June 1990.

A3I Phase !II JACK CSCI, June 1990.

APACItE longbow documentation.

2.2 INFORMATION DOCUMENTS

The following documents amplify or clarify the infomaation presented in this volume:

Brian W. Kemighan and Dennis M. Ritchie, The (" Programming Language, Prentice-Hall,
Englewood Cliffs, N.J., 1978.

J. D. Foley and A. Van Dam, Fundamentals oflnteractive Computer Graphics, Addison-
Wesley, Reading, Massachusetts, 1982.

Silicon Graphics Inc., IRIS User's Guide. V_;h_ne _,and II, Version 3.0, Mountain View,
California, 1986

Silicon Graphics Inc., IRIS Programmer's Mar_lal, Volume IB, System Calls and
Subroutines, Version 2.1, Mountain View C;Hiforrai:_, 1986.

3.0 CONCEPT

3.1 DEFINITION OF SOFTWARE

3.1.1 Purpose and Scope

The purpose of VEST is to develop a set ot visual tc,_ls to support the A3I simulation
world. It provides an environment for flight simulation, instrument animation, and Jack

movement. To rapidly create 3D graphicai t,bjects for simulation, MultiGen ® modeling
system is adopted for its ease of use and V bS'l is implemented as a subsystem of it. The
software described here contains MultiGer;_}0 modules, DMA, VIEWS, CDE, MFD and

Jack. This document emphasizes Phase IV el t'olr _a VIEWS, MFD and Jack-Interface.
CDE extensions will also be discussed. I_' i._ i; v,_.!f "locumented in Phase III and is now

part of the MultiGen® package.

3.1.2 Goals and Objectives

The goals of VEST are:

(i) to create animation databases for i_,%ltiFtmc_ion Displays (MFD) and traditional
gauges. The values of their dynamt,, p;uat_ete, ,, can be assigned so that their
behaviors can be monitored during ,i,m,lati,,1,

(ii) to display the simulation in difle cnt viewh,g perspectives with the progression
of the Mission Simulation.

(iii) to provide an interface with Ja, s,,i twc, lt- _, animate aviator's reaches.

Pa;_e F-9

(iv) to provide a convenient ime_ face for integrating the graphics system with the
simulation network.

3.1.3 Description

VEST attempts to provide a user tools to create 3D graphical objects and to display them
based on data received from the simulation models. It runs on SGI IRIS workstations at a
cost well below those of visual simulation systems and incorporates interactive graphic
tools for constructing and displaying the Mission Simulation at an acceptable speed. In the
animation mode, it communicates, through the network, with the Executive which contains
a datapool available for all processes.

3.2 USER DEFINITION

VEST is developed for cockpit designers. However, any users with some experience with
SGI IRIS workstations can use VEST to create and edit 3D graphical objects. The use of
the DMA component needs knowledge of DMA tape, UNIX and MultiGen®. To
effectively use CDE and MFD modules, users need to know instrument characteristics,
network interface with the communication manager, and some data structure of the
datapool. Jack interface requires experience with Jack and MultiGen®. The use of
VIEWS is based on the organization of the MultiGen® database tree-structure and the
orientation of graphical objects.

3.3 CAPABILITIES AND CHARACTERISTICS

The following are VEST modules with their capabilities:

1. MultiGen® modeling system: a CAD package developed by Software Systems
to create and edit 3D geometrical objects.

2. DMA: a subsystem to generate terrain surfaces from any standard Level 1 DMA
DTED tape. It was completed in Phase III.

3. CDE: a subsystem to animate traditional instruments. Most of its components
were completed in Phase III. Extensions are made to display character strings, to
correct the z-buffer problem, and to link instruments to dynamic data pool.

4. MFD: a subsystem to create MFD pages and simulate them. Most components
are based on APACHE longbow configuration.

5. Jack Interface: a component to display and animate Jack images/objects in
MultiGen® window environment.

6. VIEWS: a module to change camera views and control data flow between
VEST and network simulation manager.

VEST operates within MultiGen® and thus uses MultiGen® windows for display and user
interface. To run ndy._n_g__animation, communication network must be established between
VEST and Simulation Executive. However, with some modification to the datapool
interface, it can be used to animate any graphic images. In that regard, VEST can also run
standalone animations.

Page E-3

3.4 SAMPLE OPERATIONAL SCENARIOS

VEST is a Mac-like software on top of MultiGen@ user interface and is thus user friendly
and mouse-driven. Using the menu bar and icons, the user specifies commands for
VEST. Through dialog boxes, the user is prompted for inputs. The user first creates
graphical objects in an organized tree structure with the ann'nation in mind. Then, the
designer uses CDE or MFD tools to link the graphical objects to datapool variables and
starts animation through VIEWS functions.

4.0 REQUIREMENTS

4.1 REQUIREMENTS APPROACH AND TRADEOFFS

VEST is developed to provide an intuitive look at the progression of the Mission
Simulation for cockpit designers and mission analysts. As a result, its requirements come
from the needs of displaying the A3I simulation at an acceptable speed. As a prototyping
tool, MuhiGen® is adopted as the underlying CAD software for rapidly creating 3D
graphical objects. The tradeoff is that a license fee is needed for use of MultiGen®
software. To model APACHE longbow MFDs which are not in production yet, updated
documention is needed from McDonnell Douglas Helicopter Company.

4.2 EXTERNAL INTERFACE REQUIREMENTS

VEST is developed to run on SGI IRIS graphics workstations and Mission Simulation to
run on Symbolics machines. To support the A3I integration world, VEST is required to
communicate with the Simulation Executive. This network interface is derived from the
message formats and commands defined by the Executive.

VEST needs to be linked to part of Jack software. An interface is required to resolve the
difference in orientation and scale. A solution to this is to keep Jack drawing routines from
MultiGen® and define an interface matrix. Before any Jack drawing or reach, the
MultiGen® world is modified by this interface matrix to let Jack perform it in its own
environment. Since MultiGen® has its own color setup, the attributes of Jack sites need to
be disabled.

For better performance, VEST is implemented on IRIS 4D/GT workstations.

4.3 REQUIREMENTS SPECIFICATION

4.3.1 Process and Data Requirements

VEST is required to be a process driven by the mouse and network communication. It runs
in a loop waiting for mouse events or network messages. When a mouse is pressed, VEST
operates within MuhiGen® and takes user's commands through the pull-down menu or
icons. It opens dialog boxes to prompt the user for more inputs when necessary. When a
network message arrives, it follows the Executive's protocol and performs necessary
actions. For each tick, VEST informs the Executive of Jack status.

Page E-4

MultiGen®providesasetof functions to a user to generate 3D graphical objects. As a
subsystem, VEST provides the following major functions, through the pull-down menu, to
meet Phase IV requirements:

CDE:
Gauge Library: to create 3D graphical objects of gauges from library tools.
Animation Linking: to define animation methods and link animation to the

datapool variables.
Color Table: to animate changes in color intensity of gauges.

VIEWS:

Communication: to open a network socket to the Executive.
Camera Views: to attach cameras to moving objects.
Setup Script: to set up camera views from a script f'de.

MUD:

JACK:

Editing: to open the library tools to build MFD pages.
Structure: to modify the MFD tree and pages.
Animation: to page through the MFD nee.

Interface : to interactively define VEST-Jack interface matrix.
Reach: to send a command to Jack to reach a MultiGen® polygon.

It is noted that DMA and most of CDE were completed in Phase IlL VIEWS was also
developed in Phase III but is restructured in Phase IV to support flexible and interactive
views including the attach of a camera to the aviator's eye.

4.3.2 Performance and Quality Engineering Requirements

VEST provides a designer an interactive and 3D visual environment. Its performance is
limited mainly by the graphics hardwares, MultiGen® Kernel and simulation network.
Because of the enormously large database in the A3I simulation world, the speed of IRIS
4D/GT is sometimes intolerable. The solution to this is to reduce the size and details. The
MultiGen® Kernel converts floating numbers into integral numbers. During the
conversion, some degree of accuracy is lost and it causes graphics problems in z-buffer and
shading. The version of MultiGen® being adopted was implemented on old IRIS
platforms and thus limits the quest for realistic graphical images. The animation of VEST
is also tied to the performance of the Simulation models.

VEST is written following MultiGen® conventions which are well documented in Software
Systems' manuals. It is portable on most SGI IRIS platforms.

4.3.3 Implementation Constraints

VEST is written in C and uses IRIS Graphics Library. It also opens a TCP/IP socket for
network communication. It is implemented under the UNIX V operating system integrated
with Berkeley (4.3 BSD) extensions and C compiler.

Page E-5

5.0 DESIGN

5.1 ARCHITECTURAL DESIGN

5.1.1 Design Approach and Tradeoffs

As mentioned before, the goal of VEST is to support A3I simulation. For rapid
development as a prototyping package, a set of library tools are built to simulate
MultiFunction Displays and traditional gauges. The result is that VEST is not as flexible as
it should be and its animation capabilities are limited.

VEST is developed in parallel to MultiGen® Kernel. Modules are designed to be
independent as much as possible. However, to avoid high cost of development, CDE
closely interacts with MultiGen® Kernel.

5.1.2 Architectural Design Description

VEST is designed on top of MultiGen® which is a window-oriented modelling system for
generating 3D graphical objects. The structure of MultiGen® is well documented in
Software Systems' manuals. The following figure illustrates the modules of VEST:

IRIS GL]

MultiGen User Interface Manager

I MultiGenKernel

I

E

MultiGen DB (Data Base Logic)

JACK
INTERFACE

I[JAcK IENVI_NT
PEABODY, PSURF

Figure 1. Modules of VEST

Under IRIS MEX window manager, the User Interface Manager accepts all the commands
from the user and passes them to the appropriate subsystem. MultiGen® stores graphical
objects in the Data Base Logic (DBL) format. CDE and MFD generate hierarchical
descriptive database for the designer to evaluate cockpit prototypes. The Jack-VEST
interface simplifies many Jack features and only supports FLAT-shaded images.

5.1.3 External Interface Design

When VEST is connected to the simulation network, it assumes no knowledge of the
history and actions of the Executive. It is completely passive and takes mouse commands
at the same time.

Page E-6

5.2 DETAILED DESIGN

5.2.1 Detailed Design Approach and Tradeoffs

VEST is designed top-down. Each module has its own mouse-driven event handler to
handle events passed by the MultiGen® Interface manager. Under the handler, a set of
tools are developed.

5.2.2 Detailed Design Description

5.2.2.1 Compilation Unit

The source files are organized in the home directory of VEST as follows:

MultiGen User Interface Manager (under Ira/):
imcont.c imde.c imlib.c immem.c
imtext.c imwind.c

immenu.c

MultiGen Kernel (under Mg/Ker):
mgcom.c mgcont.c mgdbvw.c mgdesk.c
mgfile.c mgicnstr.c mgiconst.c mgicre.c
mgidl.c mgiedit.c mgifun.c mgilib.c
mginfo.c mgipick.c mgistruc.c mgiutl.c
mgmain.c mgmath.c mgpage.c mgstd.e

MultiGen DBL (under Mg/Fh):
fitcolor.c fltdbl.c

DMA (under Mg/Dma):
terdma.c terfont7.c

mgdev2d.c
mgidisp.c
mgiman.e
mgixform.c
mgtab.c

fltid.e fltlink.e fltpage.c

terpolt.c terrain.c

CDE (under a3i/):
cdecolor.c cdedefault.c cdedisp.c cdefile.e
cdefunc.c cdegauge.c cdelink.c cdeneig.c

VIEWS (under a3i/):
a3istamp.c a3iutil.c animate.c aplselect.e

MFD (under MFD/):
mfdani.c mfdbut.c mfdcompass.c
mfddefault.c mfddesk.c mfddisp.e mfdfield.c
mfdhsd.c mfdio.c mfdlift.c mfdmain.c
mfdmod.c mfdpage.c mfdsprintf.c mfdstruc.c
mfdway.c

cdefmter.c
cdepage.e

sirndata.c

mfdcont.e
mfdflpath.c
mfdmisc.c
mfdtool.c

JACK Interface (under a3i/):
a3ijcl.c

JACK (under JACK/):
assign.c delete.c draw.c jclinit.c jclreach.c
msg.c peaparse.y psurfparse.y stamp.c
peabody/:

d6f.c error.c expr.c fune.c
globals.c joint.c keyword.c metric.c

Page E-7

psurf/:

vec/:

namc.c new.c reach.c reachsite.c
reachsites.c scale.c segment.c symtab.c
tree.c update.c value.c verify.c

bin.c edge.c get.c
normal.c read.c reference.c
util.c

globals.c
spec.c

chunk.c findfile.c lexi.c list.c
matrix.c mattorot.c metric.c pseud.c
quatemoin.c string.c tomatrix.x vector.c

VEST is implemented on IRIS workstations and linked to the Graphics Library.

5.2.3 Detailed Design of Compilation Units

5.2.3.1 MultiGen® User Interface Manager

This subsystem is a collection of procedures that support a mouse- and window-oriented
user interface. It provides the interface between the user and application program. For
details, refer to Software Systems' MuhiGen®, Programmer's Guide to the Interface
Manager, Release 3.0.

Four flags are added to the window structure in the file "imstrucs.h":

windowtype
rnfdcontrol
showmfd
show jack

a flag to indicate whether the window is created by VIEWS
a flag to indicate whether the window takes user's input
a flag to indicate whether the window should display MFD pages
a flag to indicate whether the window should display Jack figures

5.2.3.2 MultiGen® Kernel

This subsystem is the core of the MultiGen® CAD package and contains all the editing
functions for graphical objects. Detailed information can be found in Software Systems'
MultiGen®, MultiGen® Kernel, Release 3.0.

The display component in the file "mgidisp.c" is modified to provide an interface for
VEST. This unit controls the view of the window, CDE animation of graphical objects,
MFD displays and Jack drawing. This display unit first sets up the camera view. When a
window is marked by VIEWS, its camera view is calculated from the position and
orientation of the moving object. The drawing component then recursively scans all
graphical objects. If an object is marked by VIEWS, it is regarded as a world object. If an
object is marked by CDE, it is regarded as an instrument. After all graphical objects are
drawn, this display unit invokes the drawing routines of MFD and Jack.

The CDE module closely interacts with the MultiGen® Kernel. Refer to A3I Phase HI
Cockpit Design Editor CSCI for the changes.

5.2.3.3 MultiGen® Data Base Logic

This subsystem handles MultiGen® database. Detailed information can be found in
Software Systems' MultiGen®, Programmer's Guide to Writing MultiGen® DBL, Release
3.0.

Page E-8

5.2.3.4 DMA

This module is an option developed by A3I staff as an add-on to MultiGen® and later on

modified by Software Systems to make it more user friendly. Its design can be found in

A3I Phase In Views CSCI and also in Software Systems' MultiGen®, DMA Terrain Data
Conversion Option User's Guide.

5.2.3.5 CDE

The following figure shows the design structure of CDE-user interactions:

Menu Event

CDE EventHandler

Instrument

Parameter 3D Gauge Color Description
Linker Generator Handler

methods Objects Object Neighborhood Page/Field
Color Analyzer Editor

CDE DatabaseI

CDE Databa

Figure 2. CDE Design Structure

The CDE animation is called by the MultiGen® display component, as showing in the
following figure.

!

MultiGen 1Display

i MultiGenobject

l DataPool 1

CUE
Animation

Control

_mation

Parameter mathods
Linker

object position
or color

Mathematical I

Expression I

Parser J

Figure 3. CDE Animation Structure

If the CDE animation involves any movement, it first modifies the matrix stack of IRIS GL
to redefine the object position before drawing it and then restores the matrix stack after the

Page E-9

drawing is finished. If the animation involves a color change, it redefines the RGB color
of the object.

Most of CDE functions were completed in Phase III and documented in A3I phase III
Cockpit Design Editor CSCI. CDE module has an Animation Controller in "cdef'de.c" and
Parameter Linker in "cdelink.c". New animations can be easily added to these two
components by following the data flow and MultiGen/CDE convention. As required, CDE
is enhanced capable of displaying character strings. In Phase IV, CDE animation updates
graphical displays by taking values from the datapool. The file "cdedefault.c" contains the
addresses and types of datalx_ol variables. When requested, this unit returns the value
and/or type of a datapool variable.

Note that because of the enhancements made, the CDE cannot read old-version databases.
The following sections discuss the extenstions to the CDE.

5.2.3.5.1 File cdefile.c

This file handles the CDE animation. Changes are made to the following routines.

Cdemenu0: This routine handles the menu event. If the event is for VIEWS, it is passed
to the VIEWS event handler. If the event is due to ihe menu function Link Animate, it
modifies the values of datapool variables by ahemately opening three files and loading them
into the datapool. This standalone animation contintles until the mouse is pressed.

CDE transformation(): This function is called by the MultiGen® display unit. It
decides which animation method should be invoked. If the graphical object is for string
display, the following steps are taken to ensure the z buffer accuracy:

zwfitemask(0x0);
draw_polygonal_surface();/* within MultiGen */
CDE_show_str_disp0; /* draw the string */
zwritemask(0x ffffff);
writemask(0x0);
draw_polygonal_surface();/* draw the polygon again */
writemask(0xfff); /* depends on the MultiGen color map */

Exec select(): This function controls most of the CDE animation methods. For a string
displff'y, it performs the necessary format conversion and then calls the string display
function.

CDE search_up(): This function is used by Jack to determine if an object is animated by
CDE ('the control sticks can be animated by the CDE iools). When an object changes the
position and Jack's hand is on it, the new position must be obtained before Jack does the
reach.

5.2.3.5.2 File cdelink.c

This file controls the user interface for defining the linking parameters and animation
method. Extensions are listed as below:

Str_disp_setup0: This function opens the dialog box to take user's inputs for the
parameters needed to display a character string. It allows a user to change the font size
interactively.

Page E- 1(}

CDE_showstr disp(): This function displays a character string on the screen.

5.2.3.5.3 File cdedefault.c

This file defines datapool variables. There are three global variables available for all VEST
modules:

datapool
cdedefvals
comm_inmsg

a data structure same as the Simulation Executive.
a reference id array used by the user to access the datapool.
the address of the datapool to store the network message.

CDE open default db0: This function takes one argument as the filename. It opens
the fig and _ads its _ntent into the datapool. It then appends a file extension ".text" to the
filename. If the file exists, its content is copied to the Text Clipboard of the MultiGen. A
user can then open the Text Clipboard window to browse through the datapool variables.
The first field in the window is the reference id, the second the current value, and the third
the variable or instrument.

5.2.3.6 VIEWS

VIEWS was developed in Phase III and restructured in Phase IV to support dynamic
camera views and datapool structure. The following shows the flow chart of VIEWS:

network

message

JACK

status

menuevent

VIEWS EventHandler

/-

Network I
Connection

I
Network

Communication

script

file
v

Window

View Setup

Camera Simulation DataPool
View Executive

Draw Tick/Image I

MultiGen

world object -_

Kt sJAC tatus page

VIEWS animation control _ object position

Figure 4. VIEWS Design Structure

In addition to the view setups, the VIEWS module also positions the world objects such as
helicopters and tanks. The world object is referred to by an ID following the order defined
by the Executive for the datapool structure:

Page E- 11

1 lead helicopter
2 wing helicopter
3 tank
4 truck
5 jeep
6 launcher

In order to do the animation for the world objects, the graphical objects for a world object
should be organized to be under the same parent node in the MultiGen® tree.

VIEWS assumes that the nose of the MultiGen® helicopter object points to the positive-x
direction. It also assumes that the north of the terrain is in the posidve-y direction, which is
the case if the terrain is extracted by the DMA module. It is noted that the orientation of a
static world object must be specified through the menu function "Setup" so that VIEWS
knows how to rotate the object to the assumed heading direction.

5.2.3.6.1 File animate.c

VIEWS opens MultiGen windows but assigns a different set of functions for control
windows to interactively adjust camera views. The world objects and window parameters
can be modified in a setup window. For each tick, the moving camera view is re-calculated
from the current position and orientation of the attached world object. The animation
concept for world objects is same as that in CDE. In addition to animation, VIEWS
contains a constrain table for Jack to perform unfinished reaches when a new tick is sent
from the Executive.

Anamenu0: This function handles the menu event.

ANA_hide window0: This function toggles between activating and deactivating a
window. It can be used to deactivate a window when too many windows are opened on
the screen. Its main use is to hide the database window of the MultiGen when VIEWS
animation is in progress so that the drawing speed can be increased. Note that if the main
window is closed, MultiGen frees the memory space and other windows should not try to
refer to the database deal located.

ANA process0: This function processes the script file to set up VIEWS windows.

ANA transformation(): This function first modifies the stack matrix for the world
object, draws it, and then restores the stack matrix. The position and orientation of the
object are taken from the datapool. This function also takes account of the scale and offset
of the object as specified in the content of the setup window. Note that due to the assumed
heading direction, there is a 90-degree difference in the yawing angle from the Aero Model.

ANA_pilotview0: The function is called by the display unit of MultiGen® to set up the
perspective view of a window. From the world object to which the camera is attached,
VIEWS performs the following steps to determine the viewing matrix:

i) Determine the matrix so that after the world object is drawn, it remains at
the same position and orientation in the IRIS world. This is the inverse of
the function "ANA_transformation". The effect is that the rest of MultiGen
objects are drawn in the local coordinates of the moving world object. At
this step, the camera is fixed with the helicopter.

Page E- 12

ii) The matrix is modified so that the local coordinates of the camera agree
with the IRIS world.

iii) The above matrix is further modified so that the camera's view (local x
axis) points to the minus-z direction and the camera's top 0ocal z axis) to
the positive-y direction of the IRIS world. The purpose of this
transformation is to show the he/icopter upward on the screen.

ANA ethernet ready(): This function checks if the content in the setup window has
been p'rocessed _nd then tries to connect VEST to the Executive through a network socket.

ANA communicate(): This function is called by the function IWM_waitforevent0
inside-the event loop of the MultiGen Interface Manager. It always calls
SIM_read_network0. When a new-tick message arrives, it calls SIM tickdone0, invokes
a Jack routine to perform those reaches unfinished, redraws all the windows to reflect the
current values in the datapool, and displays the tick number on the top window.

ANA ibwindow0: This function follows the steps taken by the MultiGen function
DBV_V_ibwindow0 to create a new display window. However, the viewing portion of the
new window deals with moving camera views. The icons in the viewing portion can be
used to adjust the camera position. Note that the camera position and orientation are
defined in the local coordinate system of the moving helicopter. It means that to the
helicopter, it is static; but, to the world, it is moving. The first dial of the viewing icon
indicates the rotation in x, the second in y, and the third in z.

ANA. search up0: The function is used by Jack and MFD to determine if a graphical
object moves with the helicopter. If it does, its world position must be calculated before a
reach or drawing is performed.

ANA menu focus_view0: This function calculates the camera position to highlight
the selected MultiGen polygon in a blown-up view. It assumes that the window shows the
perspective view.

ANA draw route(): This function draws the dynamic route defined and updated in the
datap_ol. It_'aws a straight line between two waypoints.

ANA terrain_coord0: This function calculates the relative location of a MultiGen point
(external to the moving helicopter) in the local coordinate system of the flying helicopter.

ANA get_win_fig0: This function returns the Jack figure to whose eye the camera is
attached. It is used when the eye-view flag is set for a window.

Page E-13

5.2.3.7 MFD

The following figure shows the design of MFD:

MultiGen
menu
event

MFD Event Handler

IRIS
Mouse

Page/Field
Tools

I Longbow
Field configuration
Position

Animation Window

Soft Button].. IRIS Mouse

rPick

Soft ButtonFieach

Page Switch [=Network Message
Control i=

Figure 5. MFD Design Structure

The display of MFD is invoked by the MultiGen display component:

MultiGen

display call j"

+.)
database

display

page [Datapool

values

IVlFD

Display

graphics
primitives

Dynamic
Text
Parser

Figure 6. MFD Display Structure

5.2.3.7.1 File mfdani.c

This file contains functions to page through the MFD tree. It issues a Jack reach command
for a MFD button and performs the page switch when the reach is done.

Page E- 14

MFD proc bid map(): This function processes the content in the page-map window.
It assigns anqnitial display page to a MFD.

MFD animate(): This function pops up a dialog box for the standalone page-switch
animation. The reach for a soft button is achieved by clicking the mouse on it. The control
procedure for mouse input is "MFD_animate_func0".

MFD..set anipages(): After a reach is finished, this function is called by Jack module
to assign a page to a MFD.

MFD set treenode0: This function performs the search for a page in the MFD tree
when'a button is pressed. If the "jump" flag of the button is set, it returns the page as
specified. Otherwise, it searches the child pages of the current displaying page to find one
that matches the button id.

MFD net reach(): This function is called by the network-interface procedures when a
message is a reach for a MFD button. The steps it performs are similar to those taken by
the function "ANA_animate_func0" when a button is pressed.

5.2.3.7.2 File mfdbut.c

This file contains functions to create soft buttons (see Section 5,2.3.7.14) and to calculate
their 3-D locations for Jack reaches.

MFD reach sbutton0: This function first calculates the 3-D location of a button from
the 2-r) MFD-database and then issues a Jack reach command.

MFD reach field(): This function determines the 3-D location of a field in the
displa_ing _.

5.2.3.7.3 File mfdcont.c

This file contains functions to identify MFD screens from MultiGen objects.

MFD base(): This function pops up a dialog box to identify a MultiGen object as a MFD
(through the picking function) and its integral id.

MFD face matrix(): This function determines the relation between a 3-D MultiGen
surface and-_-D MFD page. Before the MFD page is drawn, this matrix is loaded so that
the page appears on the MFD screen.

MFD_refangle0: This function calculates the angles that can be used to rotate a vector
about x and y axes to align it with the z axis.

MFD_adjustx0: Given a surface and the results for its normal vector from the function
"MFD._refangle()", this function calculates the z-axis rotation angle to align the x axis.

MFD_mfdwindow0: to open a MuhiGen window as the working MFD for editing.

5.2.3.7.4 File mfddefault.c

This file contains several routines to access the datapool variables and return their values.

Page E- 15

MFD_mod_ctrl_by_pageO" This function is called by the page editor to change the
values of those variables controllable by VEST such as the scale and display format of
NAV pages. The values of these variables may be also changed by the simulation models.

5.2.3.7.5 File mfddesk.c

This file contains functions to open a desktop window which shows a set of library tools
and allows a user to select a MFD field (tool) to be added to a MFD page.

MFD build tool window(): This function specifies the number of tools in the
libra. Whe_ever"a new tool is added to the library, this number should be corrected
accordingly. The tool name should also be added to the file "mfd.msg".

5.2.3.7.6 File mfddisp.c

This file contains functions to invoke drawing routines of MFD fields.

MFD_draw_picture0: This function controls the display of a MFD page. To draw a
field, _t first checks its type and then invokes the corresponding drawing procedure for the
field. If an underlying page is specified, it draws it first by calling itself recursively.

MFD_pickfield0: The function is similar to the function "MFD_draw_picture0" except
that the graphics state is set in the picking mode. It is called to determine the field which
the mouse is pointed at.

5.2.3.7.7 File mfdfield.c

This file contains generic functions to add a field to a MFD page.

MFD field funcs0: This function provides a way to allow MFD tools to create their
dialog-boxes'and set up those control functions when "OK", "CANCEL", and "TRY"
buttons are pressed.

MFD edit field(): This function is called by MFD tools to allocate enough memory to
store the atffibutes of a field and insert it into the linking list of the editing page.

MFD field func0: This function controls the mouse event when a field is being
edited.- If the left mouse is pressed, it positions the field to the cursor point. If the middle
mouse is pressed, it puts the graphics state in the picking mode and the attributes of the
picked field are copied to those of the working field.

5.2.3.7.8 File mfdio.c

This file contains functions to save/open MFD database. From the "fdename" given by the
user, the I/O routines open two files "filename.button" and "filename.tree". The file
"filename.button" is a text file containing information about initial pages of MFDs. The file
"filename.tree" is a binary file storing the MFD page structure and its fields.

MFD_save_db0: This function saves the MFD database in memory into disk files.

MFD_open_db0: This function reads the MFD database files into the memory. The
reading procedure recursively calls itself to read in the MFD tree.

5.2.3.7.9 File mfdmain.c

Page E- 16

ThisfilecontainsfunctionstointeractwithMultiGen®Interface Manager and allocate/free
memory space for a MFD tree.

MFD inlt0: This function is called by MultiGen® to set up the menu functions of MFD.
It also-sets up a text window for page mappings.

MFD menu(): This function handles the menu events.

MFD_mkbutton0: This function allows other functions to initialize the values of radio
buttons in a MultiGen dialog box.

MFD mkcheckbox0: This function allows other functions to initialize the values of
check"boxes in a MultiGen® dialog box.

5.2.3.7.10 File mfdmod.c

This file contains functions to select a field in the editing page.

MFD_mod_fieid0: This function is called by the page editor. It sets up a dialog box
and puts the system in the picking mode. It controls the functions to delete a field, to
change the display priority (order), and to invoke the corresponding MFD tool to modify its
attributes.

5.2.3.7.11 File mfdpage.c

This file contains functions to create/edit MFD pages.

MFD_page..window0: This function sets up a dialog box and defines its control
functions for editing. The control function for creating fields checks the MFD tool selected
in the desktop window to invoke the right tool functions.

MFD_new_page0: This function creates a page structure, inserts it in the tree under the
parent node, defines the default attributes for the new page, and then calls the function
"MFD_page_window0".

MFD rood page(j: This function loads the attributes of the selected MFD page in the
editing buffe-r and then calls the function 'MFD_page_window0" to modify the content of
the page.

MFD_duplicate_page0: This function creates a page structure which copies the content
and attributes of the selected page, inserts it under the parent node, and then calls the
function "MFD page window0".

MFD_delete_page0: This function tries to remove a MFD page from the tree. If there
is any child page under it, it does nothing and reports an error.

MFD tool butlon0: When a mouse is pressed in the MFD desktop tool window, this
function is c'alled to determine which library tool is to be invoked.

5.2.3.7.12 File mfdsprintf.c

This file contains functions to parse user's inputs for dynamic strings.

Page E-17

MFD_sprintf0: This function parses a character string from user input. If there is any
dynamic portion of the input, it is converted into the string format. The dynamic field is a
datapool-variable id in the input string which is enclosed by '<' and '>'.

5.2.3.7.13 File mfdstruc.c

This file con:ains functions to draw the MFD tree and to modify its structure.

MFD redraw struc0: This function draws the MFD tree in a MultiGen window (tree
window). This-window is created with scroUable bars and its use is similar to the
MuhiGen "Structure" window. The drawing steps are also similar to the MultiGen
function "ISD_drawstruc0".

MFD_struc_pick0: This function is called when a mouse is pressed inside the MFD
"tree" window. To save memory, the picking method is different from MultiGen. It sets
the graphics state in the picking mode to load the selected page box into a picking buffer.
After the picking process is finished, it scans the MFD tree again to find the page loaded in
the picking buffer.

MFD find_treenode0: This function scans the MFD tree to find the page whose id
match_s the input string.

5.2.3.7.14 Other Files

Most of these files contain MFD library tools used to add fields to MFD pages. A new
tool can be easily added to the library by the following template:

MFD ToolName window(): This function is to open a dialog box to specify the
attrib_es of the fiei'd.

MFD_new_ToolName0: This function is to specify the default attributes for the field.

MFD set ToolName_params0: This function is to process user inputs for the
attributes.

MFD_select ToolName0: This function is to set the attributes when the field is
picked.

MFD mod ToolName0: This function is to set the attributes of the field when it is
selecte-d for modification.

MFD_dup_ToolName0: This function is o duplicate attributes of the field.

MFD draw ToolName0: This function is to draw the image of the field.

5.2.3.8 Jack Interface

Jack is a software package to observe how a human mannequin performs a task. The
usage and detailed design of Jack is described in UPENN's manuals, Jack User's Guide
(Version 4, 1989) and Programming with Jack (Dec. 21, 1988). In this document, only
the Jack-VEST interface is discussed.

Page Eo18

ThefigurebelowshowsthedesignstructureofVEST-Jackinterface:

_menu _ VIEWS
event message

Interface i _ .

_ . , I Interface

L;omrol I Matrix

JACK

Environment

MultiGen_ J JACK
Display'-_ Display

Matrix

Setup _ Realh K_, ' status

Switch

Figure 7. VEST-Jack Interface

VEST-Jack interface opens only a Jack environment file. Since MultiGen® does not
support lighting models, the attributes of Jack defined in the file are ignored. To resolve
the difference in the scale and orientation, an interface matrix must be defined before
attempting to draw the Jack figure. The display of Jack is called from the MultiGen display
function. Since VEST does not interact with Jack except the reach movement, it depends
on a flag to determine if the Jack display function should be invoked. Before this function
is called, VEST modifies the GL matrix stack by the interface matrix and then restores the
matrix stack after the drawing.

When VEST receives a reach command, it puts it in a constrain table. For each tick, VEST
follows Fitt's law and calculates the location that the movement can reach at. It then directs
Jack to reach the point. Before a reach can be performed, the MultiGen® coordinates must
be converted into Jack systems through the use of the interface matrix. When a reach is
issued at a MFD button, this information is also stored. When the reach is completed, it
invokes the page-switch function of MFD.

5.2.3.8.1 File a3i/a3ijcl.c

This file contains most of the procedures for VEST-Jack interface.

JCL drawpicture(): This function controls the drawing of Jack figures and eye
trace_'s. Before any drawing, the interface matrix is loaded. If the window is to show the
eye view of a Jack figure, it is not drawn. If the figure is drawn, the graphical objects for
the eyes may obscure the cockpit.

JCL Mg2point0: Given a MultiGen point, this function calculates the corresponding
locad-on in Jack coordinate systems.

JCL._setup0: This function is called by MultiGen® Interface Manager to pop up a dialog
box to interactively scale and move a Jack figure so that it looks correct in the MultiGen
window.

Page E-19

JCL_process paramlO: This function processes the content in the parameter window
to calculate the'VEST-Jack interface matrix. See the Appendix for the data format.

JCL_menu0: The function handles the menu events.

JCL_init0: This function is called by MultiGen to initialize the VEST-Jack interface.

JCL update eyeview0: This function is called by the VIEWS module when a
MuluGen window is set to the eye view of a Jack figure. This function assigns the middle
point of the Jack figure as the camera's position and the vector from this point to the focus
point as the camera's orientation.

JCL do ani move(): This function goes through the constrain table and performs all
unfinished rea'ches (for one-tick period). If a reach is marked as done but its target is
marked as attachable (such as control sticks), the reach is always issued to Jack in case that
the object changes its position and/or orientation as the simulation proceeds.

JCL_fishish_allmoveO: This function is called in the standalone animation to finish all
reaches in the constraint table.

JCL reset ani move(): Any reach request first calls this function. The request is put
in the-constTaint_able and overrides the old content which has the same reach id. If the

target is a MFD soft button, a flag is set so that at the end of the reach, the page-switch
function of MFD can be invoked.

JCL. MgReach0: This function controls static reaches for MultiGen surfaces by
popping up a dialog box.

JCL_new_eyetrace0: This function stores the positions of the eyes for a Jack figure
into a record. This record can be used to draw the eye tracers and to determine the viewing
direction of the Jack figure.

JCL_pilotstatus(): This function loads the status of both hands and viewing direction
into the datapool buffer so that the network procedures can send them to the simulation
models.

JCL..jpoint2MG0: Given a Jack point, this function calculates the corresponding
location in MultiGen coordinate systems.

5.2.3.8.2 File JACK/jclreach.c

This file controls Jack reach and head-turning movements. Using Fitt's law, it calculates
the point to be reached at for the tick. It then issues the reach command to Jack. The
functions are taken from Jack source files with modifications.

5.2.3.8.3 File JACK/jclinit.e

This file opens the environment file of Jack if the environment variables "PEALIB" and
"PSURFLIB" are defined. Since VEST does not load Jack environment, its purpose is to
avoid the segmentation-fault error caused by the peabody-parser when these two variables
are not defined.

5.2.3.8.4 File JACK/stamp.c

Page E-20

This file contains those dummy routines called by the peabody-parser and psurf-parser, but
useless in VEST.

5.2.3.8.5 File JACK/assign.c

This file is taken from Jack source file peabody/assign.c. It contains those dummy
functions for Jack attributes which are disabled in VEST.

5.2.3.8.6 File JACK/delete.c

This f'de is taken from Jack source file peabody/delete.c. A function is added to it to
remove an old environment when VEST opens a new Jack environment.

5.2.3.8.7 File JACK/draw.e

This file controls the drawing functions of Jack images. It disables all Jack attributes.
Most drawing routines are taken from Jack source file psurf/draw.c.

5.2.3.8.8 File JACK/peaparse.y

This file contains the peabody-parser. It is modified to ignore Jack attributes.

5.2.3.8.9 File JACK/psurfparse.y

This file contains the psurf-parser and is a copy of Jack source file psurf/rp.y.

5.2.3.8.10 File JACK/msg.c

This file contains the methods to disp!ay Jack messages. Since VEST has its own user
interface, all Jack messages are either ignored or redirected to the standard output.

5.2.4 External Interface Detailed Design

As mentioned before, VEST is driven by the Executive. During the simulation, the
"redraw" event of each window is mostly determined by the VIEWS module. The
decision is based on the network messages from the Executive.

5.2.4.1 File simdata.c

This file precesses network messages. When a message is received, it checks the message
type and performs data conversion. The messages can be a reach for a MuhiGen object, a
reach for a MFD soft button, or updated values for datapool variables.

SIM connect_to_host(): This function opens a TCP/IP network socket for read and
write.- VEST processes the user's setup and determines the location of the Executive.

SIM read network(): This function uses the UNIX system call "select()" to determine
if a rffessag'e has arrived. If no message is in the queue, it returns immediately so that
VEST can process any mouse event.

SIM handle msg0: This function checks the message type and determines what action
to perform. If the message is to update datapool variables, its body content is copied to the
datapool buffer.

Page E-21

SIM do reach(): The reach message has two fields: reach id and target site. The reach
id is an iffdex into the reach table specified by the user in the parameter file for Jack
interface. If the first character of the site name is 'L', the rest is the button name for the
left MFD. If the first character is 'R', it is for the right MFD. If the first character is 'E',
it is a MultiGen object outside the helicopter. Otherwise, it is a MultiGen object moving
with the helicopter.

SIM_tlckdoneO: This function sends the aviator's status if it is available and a
"tickdone" message to the Executive.

SIM_proc_script0: This function reads a script file and processes it to set up MultiGen
databases, window positions, VIEWS setups, CDE databases, MFD databases and Jack
databases. Each line in the script file has two fields. The f'wstfield is the command and the
second the value.

5.2.5 Coding and Implementation Notes

The executable file of VEST mated from one IRIS 4D/GT machine may not run well on
other 4D/GT series. In order to be portable, the shared libraries should be used in the
linkage. Internally, MultiGen® converts user input into integral numbers and may
overflow the graphics engine, especially on the personal IRIS machines. If the screen
shows weird images, try to change the resolution (COM_intemal_resol) in the file
mgcom.c to a lower number. However, to make the conversion process accurate, this
number should be as large as possible.

Page E-22

6.0 USER'S GUIDE

6.1 OVERVIEW OF PURPOSE AND FUNCTIONS

This section describes how to use VEST software and its installation procedures. Before
attempting to use it, the user should have a basic understanding of MultiGen@.
VEST/MultiGen is a program for creating and editing 3D graphical objects and providing
tools for viewing the simulation sequence. It is controlled by using the mouse and pointing
the cursor at icons and menus on the graphics workstation display.

6.2 INSTALLATION AND INITIALIZATION

The following procedure shows how to install the VEST software:

I. Put the source tape of VEST in the tape driver.
2. Change the directory to the destination that will be the home directory of the

package. Assume it is "/usr/VEST".
3. Type "tar xvo" and wait for downloading the files. A directory structure will be

created as follows:

{ /usr/VEST (assumed home directory)]

Figure 8. VEST Source files

4. To create a new executable VEST, type "make" at the home directory of VEST (
in this example, the home directory is/usr/VEST). It is noted that the
workstation is assumed to be IRIS 4D/GT. If it is an IRIS 2500T, get rid of the
"-DOPT_GT" from the CFLAGS in the Makefile.

6.3 STARTUP AND TERMINATION

To bring up VEST, change the directory to the home directory of VEST and type "mgvest".
After the desktop of MultiGen is set up, the user may choose the options under the "I/O"
pull-down menu to open an existing database, create a new database, or quit.

6.4 FUNCTIONS AND THEIR OPERATION

6.4.1 Phase IV Demo

The following is a summary of step-by-step procedures for running VEST standalone
demonstration through a script file.

1. Change the directory to the home directory of VEST.

Page E-23

2.Issuethecommand "mgvest -DEMO/demosim" and wait until the automatic setup is
done.
3. Close the top window which shows a moving camera view for integration demo.
4. Resize the instrument window to expose the covered dialog boxes. This window
demonstrate the CDE capabilities.
5. Click on the Comm Flag command of the CDE menu.
6. Click on the Link Animate command of the CDE menu to start the CDE animation.
7. Press the mouse three times to stop CDE animation.
8. Click on the Demo Window of the MFD menu to bring up MFD windows.
9. Click on the Link Animate command of the CDE menu to simulate MFD dynamic fields.
Press the mouse once to stop the animation.
10. Click on the Hide Window command of the MFD menu to bring up a MFD tree
window.
11. Click on the Animate command of the MFD menu to page through the MFD.
12. Bring the tree window and then MID window to the top.
13. Point the cursor at MFD soft buttons and press the mouse.
14. Close the MFD window and click on the DONE button of the dialog box (animation
window).
15. Quit from VEST.

6.4.2 CDE Menu

Open Coord. File opens an externai file and converts its data into MulfiGen format. The
format is contained in Appendix.

New Gauge pops up a menu that contains a list of predefined instruments. Select the
desired instrument and click on the "OK" button. A pop-up dialog box will appear for
input. Click on the "SHOW" button and then follow the instructions on a control window
to define the location of the instrument.

Process Link computes the 3D animation data for each instrument in the link list which is
created by the Load Link File and/or Link Parameters commands. Before any CDE
animation, this command should be issued.

Load Link File opens a binary link file and appends it to the CDE parameter link list.

Save Link File saves the current CDE parameter link list into a binary file.

Link Parameters pops up dialog boxes to define the animation method on MultiGen
objects and linking parameters for animation. The parameter ID is the variable ID in the
first field of the Text Clipboard window after the Datapool Default is loaded. For the
animation method, please refer to Phase HI CDE CSCI. The string display is an interactive
tool. It needs inputs for the starting point (a MultiGen vertex), local x vector (a MultiGen
edge), and local z vector (a MultiGen polygon).

Color Palette brings up the CDE color-palette window. The paired colors are designed
to animate the on/off switch of warning lights and numerical leds. When the writemask
flag of a CDE instrument is set TRUE in the Link Parameters, the unerasable colors can
cover-up the erasable colors. This property is to provide some "windowing"-effect
animation for instruments such as ADI and Drum Dial gauges.

Insert Color modifies the color of the selected MultiGen object.

Modify Color modifies the RGB of the selected color from the CDE color palette.

Page E-24

ModAttributesallows the user to browse through the CDE link list and opens the Link
Parameters window to modify the linking parameters of the selected instrument.

Data Format O/P allows a user to convert MultiGen database to other formats.

Link Animate opens some external files to update current values in the VEST datapool
and thus shows CDE standalone simulation. This command can also be issued for
standalone animation of MFD dynamic fields.

Unlink All removes the CDE link list.

Open Setup loads the named file into the setup window for VIEWS animation.

Save Setup saves the content of the setup window into a file.

Process Setup processes the content of the setup window and then opens MultiGen
windows for VIEWS animation.

Setup brings up a text window to define VIEWS setups. The format is contained in
Appendix.

Ethernet opens a network socket to the Simulation Executive. It also sets the Comm
Flag.

Reset suspends the communication process and also resets the Comm Flag.

Hide Window toggles between showing and hiding a MultiGen window.

Focus View shows a blown-up view of the selected MultiGen polygonal surface in
VIEWS animation.

Comm Flag sets the animation flag to tell the display module of MultiGen to call CDE or
VIEWS functions for animated objects.

DataPool Default loads the named file into the VEST datapool. The file "default" in the
directory "DEMO/DATA" is supplied. Once it is loaded, the user may refer to it for the
variable id through the Clipboard window of the MultiGen menu function "TEXT".

Simulation Script open a script file to set up MultiGen windows and animations for
CDE, VIEWS, MFD and JACK. This is designed for Phase IV demo.

Track Window toggles between showing and hiding the MultiGen track window.

Show/Hide Path toggles between showing and hiding the flight path.

6.4.3 MFD Menu

It is noted that most of the time, when a MFD dialog box pops up, it disables MultiGen
menu and dialog-box functions. The user must take action against the dialog box before
issues any other commands.

MFD Base pops up dialog boxes to define MulfiGen objects as MFDs. Each MFD
should have a unique ID between 1 and 10.

Page E-25

MFD ID defines the editing MFD for New Page and Mod Page. This allows a way to
switch MFDs with different physical sizes such as Longbow UFDs.

MFD Show/Hide toggles between showing and hiding MFD display in the top MultiGen
window.

New Page pops up library-tool windows to create a MFD page which is inserted as a
child of the parent page. However, if no working MFD is defined, this function does
nothing. A MFD can be defined by the command MFD Base or Open/New. If no
parent page is specified, the selected page, if it exists, is taken as the parent page.

Mod Page allows a user to modify the selected MFD page.

Dup Page duplicates a selected MFD page which is inserted as a child of the current
parent page. The command also invokes Mod Page for the duplicated page.

Delete Page removes the displaying page of the editing MFD from the tree.

Select Page searches the MFD tree and tries to find the page with the name matching the
user's input. The user may also opens the tree window and uses the mouse to pick the
page.

Attach moves the selected page to be a child of the current parent page.

Detach removes the selected MFD page from the tree.

Set Parent sets the selected page as the parent page.

Page Map opens a text window for user's input to set up MFD animation. The format is
contained in Appendix.

Structure opens a MultiGen window to show the MFD tree. A user can use the mouse to
select a MFD page.

Animate allows a user to page through the MFD tree. The dialog box allows the user to
enter the reach id for Jack and a reach for a waypoint.

Open/New opens the MFD database files created from the same MultiGen objects.

Save saves the MFD database into a file.

Close removes the MFD database from the memory.

Lift Page allows a user to draw the MFD pages above the MultiGen object in order to
solve the z-buffer problem.

Open/Old loads the MFD database created from another set of MultiGen objects. Before
this command is called, the MFD IDs should have been defined by MFD Base or
Open/New.

6.4.4 JACK Menu

Page E-26

New Env opens a Jack environment file which defines names of Jack figures and their
configurations. To locate Jack image files, the two environment variables, "PEALIB" and
"PSURFLIB", must be defined before VEST is run. If VEST is running, these two can be
defined in a script file through the command Simulation Script.

Param Window brings up a text window for defining parameters of the VEST/Jack
interface. The format is contained in Appendix.

Setup pops up a dialog box to interactively refine the position and scale of a Jack figure.

Reach Face performs Jack reaches at MultiGen polygonal surface. The user may do a
single reach or multiple (two) reaches.

Jack Show/Hide toggles between showing and hiding displays of Jack figures in the top
window.

Open Param loads a file into the parameter window.

Save Param saves the parameters of the VEST/Jack interface into a file.

Process computes the 3D relations between Jack and VEST from the content of the
parameter window.

Tracer Show/Hide toggles between showing and hiding eye tracers.

6.5 ERROR AND WARNING MESSAGES

MultiGen communicates with the user through dialog boxes. When an error occurs, the
bell rings once and the user may see the error message using the "Last Error Msg" option
under the "INFO" pull-down menu. Press the mouse once and the error -message window
goes away.

6.6 RECOVERY STEPS

A core-dump file is produced when VEST aborts abnormally.

7.0 ABBREVIATION AND ACRONYMS

A3I
DMA
CDE
MFD
UFD
VEST

Army-NASA Aircrew/Aircrafl Integration
Defense Mapping Agency
Cockpit Display Editor
Multi Function Display
Upper Front Display
Visual Editor and Simulation Tool

8.0 GLOSSARY

9.0 NOTES

9.1 MISCELLANEOUS

9.2 LIMITATIONS

Page E-27

ThelimitationsforusingVESTare:

1.All graphicalobjects have to be in a single MultiGen database file.

2. The network interface must follow the data structure of the Executive.
the instruments of the lead helicopter can be animated.

As a result, only

3. The library tools of MFD are not "soft" enough and are limited to the APACHE longbow
configuration.

4. All MFDs share the same database and global variables and cannot display their own
setups such scales on NAV pages.

5. VEST Jack can only perform the reach movement and head turning.

9.3 LESSONS LEARNED

VEST is a mouse-driven process. When an event arrives, it goes through almost the same
checking steps. Therefore, when a new tool is added, it is possible to duplicate previous
effort by adding new codes but performing similar functions. Before tools are added to
MuhiGen/VEST, one should try to figure out what functions are currently available. In
doing this, one should also try to make the tools as independent as possible. If not, the
code may become untraceable.

9.4 FUTURE DIRECTIONS

Future enhancements should consider the following aspects:

1. Performance

The performance of VEST is affected by MultiGen displaying module for extra checkings.
The animation component of VEST should be separated from MultiGen to by-pass all those
unnecessary checkings. Computations for data conversion from network messages into
CDE/MFD internal format should be reduced as much as possible.

2. Portability

The animation part of VEST is too closely fled to the data structure of the simulation
Executive. A set of internal data structures should be used and some external functions are
provided for data conversion.

3. Flexibility

The capabilities of VEST are limited by the set of built-in tools. It will be better if external
libraries are provided. A user can then edit the objects in the libraries or add new objects to
the libraries.

10.0 APPENDICES

Page E-28

APPENDIX A. -- VEST FILE FORMATS

Page E-29

/**************C'DE COORD FILE FORMAT ************/
Gemconvert (fpath)
FILE *f-path;
(
int i, j, k,1, n¢lustcr, nobject, nface, nvertex, color;,
float x, y, z;
char dummy[80];

fscanf (fpath, "%d', &ncluster);
for (1=:0; l<ncluster; 1++)
{

fscanf (fpath, "%d", &nobject);
for (i--0; i<nobject; i++)
{
fscanf (fpath, "%d %s", &nface, dummy);
for (j=0; j<rtface; j++)
{

fscanf (fpath, "%d %d %s", &nvertex, &color, dummy);
for (k=0; k<nvertex; k++)

fscanf (fpath, "%f%f%f', &x, &y, &z);
)

)

Page E-30

/****** VIEWS setup format ****************/

!OBJECT SECTION

1 LEAD 16.0 16.0 16.0 -12.3 0 0 x 0 y 0 z 180
2 WING 16.0 16.0 16.0 -12.3 0 0 x 0 y 0 z 180
3 TRUCK 2.0 2.0 2.0 0 0 0 x 0 y 0 z 0
#starfish 1039 1041
1 1 -14.5 5.5 15.0 x 0 y 6 z -45 7 1 pilot
2 1 -14.5 5.5 15.0 x 0 y 6 z -45 7 1 pilot

WORLD OBJECT SECTION
It starts with "!" and is followed by descriptions of the MultiGen objects. These objects

are animated by their locations and orientations as sent by the Executive. Note that the
rotation angles must be specified in such a way that the heading points to the positive x
direction and the top points to the positive z direction.

Filed 1 = Object ID as is defined by the Executive.
Filed 2 = MultiGen Name for the Object.
Filed 3 = X scale.
Filed 4 = Y scale.
Filed 5 = Z scale.
Filed 6 = X offset from the terrain origin.
Filed 7 = Y offset from the terrain origin.
Filed 8 = Z offset from the terrain origin.
Filed 9 = axis of rotation.
Filed 10 = degree of rotation.
Filed 11 = axis of rotation.
Filed 12 = degree of rotation.
Filed 13 = axis of rotation.
Filed 14 = degree of rotation.

WINDOW SECI'ION
It starts with "#" followed by the host-name of the Executive, socket port of the Executive

and own socket port. The section body has 14 fields:

Field 1 = Window ID.

Field 2 = Object ID to which the camera is attached.
Field 3 = X offset of the camera from the object origin.
Field 4 = Y offset of the camera from the object origin.
Field 5 = Z offset of the camera from the object origin.
Field 6 = rotation axis for the next field.
Field 7 = rotation degree of the camera.
Field 8 = rotation axis for the next field.

Field 9 = rotation degree of the camera.
Field 10 = rotation axis for the next field.
Field 11 = rotation degree of the camera.
Field 12 = an ORed flag for the window type.

JACK_FLAG (=1) displays JACK figures.
MFD_FLAG (=2) displays MFD pages.
TRACER_FLAG (=4) displays JACK eye tracers.
EYEVIEW_FLAG (=8) attaches the camera to a JACK figure.

Field 13 = flying speed for interactively adjusting camera positions
in a way similar to change of viewer-position in MultiGen.

Field 14 = name of JACK figure needed when EYEVIEW_FLAG is set.

Page E-31

/***** MFD Mapping format ******************/

{
1 COMMTOP
2 NAVTOP
3 UFD
4 CKYBD

INITIAL PAGE SECTION
It starts with 'T' and is followed by descriptions of

the page names.

Filed 1 = MFD ID.

Filed 2 = name of the Initial Displaying Page on the MFD.

/***** JACK Parameters format ******************/
!MOVE
1 pilot.left_fingers.distal pilot.waist 2
2 pilot.fight_fingers.distal pilot.waist 2
+ATFACH
ccoll
ccyclic
#pilot 1 1 2
C 133
F 0.076068
S 20.000000 20.000000 10.000000 50.000000
R z 1800x-900y0
P PCHAIR1
M -0.823516 -2.331641 -2.268802
I1MFD
1 2 ccoll

MOVE SECTION

This section starts with "!" and contains the lookup table for a reach ID sent by the
Symbolics models.

Field I = reach ID. Note that a reach 113between 20 and 29 is
reserved for head/eye turning. The symbolics models
uses this range for CPG. The VIEWS module which controls
the network communication takes of the difference.

Field 2 = end effect of the reach.
Field 3 = end joint of the reach.
Field 4 = a flag to determine whether to turn head as the reach is

performed. When the value is 0, there is no change in
eye focus. When the value is 1, the focus of the eyes
is set to the target. When the value is 2, the head is
also turned to the target.

Page E-32

ATTACHSECTION

This section starts with "+" and takes only one field. The field is the MultiGen object
which the end effect of a JACK reach is constrained and attached to after the reach is done.

INTERFACE SECTION
This section starts with "#" and defines the VEST/JACK interface and others. Following
"#", it takes 4 fields as follows:

FieldI = a stringtoidentifya JACK figureintheenvironmentfile.
Field2 = aflagtoidentifytheJACK figureasthepilotorCPG.

When theflagis0,no networkstaresissenttothe
Symbolicsforthisfigure.When thevalueisI,a CPG
statusissentout.When theflagis2,apilotstatus
issenttotheSymbolics.

Field3 = anyreachidassociatedwiththelefthand.
Field4 = any reachidassociatedwiththerighthand.

The rest of this section defines the interface, color, and initial positions:

'C' defines the color index for the figure.
'F defines the scale for the figure. For a one-to-one mapping,

this value is 1/12 since one interface unit is 12 JACK units.
T defines the initial position of the figure. Field 1 is the reach id

and Field 2 is the target (MultiGen object).
'M' defines the offset of the JACK figure from the seat. Note that one

interface unit is 12 JACK units.
'P' defines the seat for the JACK figure, which is a MultiGen object.
'R' defines the orientation of JACK. Its format is "axis degree axis

degree axis degree". Note that the degree is expressed in tenths.
'S' defines the incremental speeds in three axes for interactively

adjusting the JACK position when Setup Menu function is invoked.
Note that one interface unit is 12 JACK units.

Page E-33

Annex F

Army-NASA Aircrew/Aircraft Integration Program: Phase IV

Man-Machine Integration Design and Analysis System (MIDAS)
Software Detailed Design Document

Display Layout Analysis

prepared by

Carolyn Banda and Michael Prevost

Table of Contents

1.0 INTRODUCTION .. 1
1.1 IDENTIFICATION OF DOCUMENT ... 1
1.2 SCOPE OF DOCUMENT ... I
1.3 PURPOSE AND OBJECTIVES OF DOCUMENT 1

2.0 RELATED DOCUMENTATION .. !
2.1 APPLICABLE DOCUMENTS ... 1
2.2 INFORMATION DOCUMENTS ... 2

3.0 CONCEPT .. 3
3.1 DEFINITION OF DISPLAY LAYOUT ANALYSIS TOOL 3

3.1.1 Purpose and Scope .. 3
3.1.2 Goals and Objectives .. 4
3.1.3 Approach ... 4
3.1.4 Description of Component Architecture 5

3.2 USER DEFINITION ... 6
3.3 CAPABILITIES AND CHARACTERISTICS 7
3.4 SAMPLE OPERATIONAL SCENARIOS 8

4.0 REQUIREMENTS .. 8
4.1 REQUIREMENTS APPROACH AND TRADEOFFS 8
4.2 HARDWARE ENVIRONMENT ... 9
4.3 SOFTWARE ENVIRONMENT .. 9
4.4 EXTERNAL INTERFACE REQUIREMENTS 9
4.5 REQUIREMENTS SPECIFICATION ... 9

4.5.1 Process and Data Requirements 9
4.5.2 Performance and Quality Engineering Requirements 9
4.5.3 Implementation Constraints .. 9

5.0 DESIGN .. 10
5.1 ARCHITECTURAL DESIGN .. I0

5.1.1 Design Approach and Tradeoffs 10
5.1.2 Architectural Design Description 10
5.1.3 External Interface Design ... 11

5.2 DETAILED DESIGN .. 11
5.2.1 Detailed Design Approach and Tradeoffs 11
5.2.2 Detailed Design Description .. 12

5.2.2.1 Compilation Unit ... 12
5.2.2.2 Detailed Design of Compilation Units 12

5.2.3 External Interface Detailed Design 12
5.2.4 Coding and Implementation Notes 12

6.0 USERS GUIDE .. 14
6.1 OVERVIEW OF PURPOSE AND FUNCTION 14
6.2 INSTALLATION AND INITIALIZATION 14
6.3 STARTUP AND TERMINATION ... 14
6.4 FUNCTIONS AND THEIR OPERATION 15
6.5 RECOVERY STEPS ... 17

7.0 ABBREVIATIONS AND ACRONYMS ... 17
8.0 NOTES .. 17

8.1 ISSUES AND IDEAS .. 17
8.2 LIMITATIONS ... 17
8.3 FUTURE DIRECTIONS .. 18

9.0 APPENDIX .. 18
PILOT QUESTIONNAIRE ... 19

Table of Contents

Figure 1. Overview of DLA Tool Structure (Preliminary Design) 6
Figure 2. Building the database of information sources
Figure 3. Building the database of information sources iiiii_iiiiiiiiiii_iiiiiiiii;iiiiii_ii 174

ii

MAN.MACHINE INTEGRATION DESIGN & ANALYSIS SYSTEM
(MIDAS) SOFTWARE DETAILED DESIGN DOCUMENT

PHASE IV:

DISPLAY LAYOUT ANALYSIS

1.0 INTRODUCTION

1.1 IDENTIFICATION OF DOCUMENT

This is the Preliminary Design Document for the Display Layout Analysis module of the
MIDAS Software System for Phase IV. MIDAS stands for Man-machine Interface Design
and Analysis System.

1.2 SCOPE OF DOCUMENT

The Display Layout Analysis module was developed rapidly to demonstrate proof of
concept at the Phase IV A3I demonstrations. Accordingly, the emphasis in this document
is on the purposes and concepts of this tool, methods and approaches, and a preliminary
design. Broadly stated, the Display Layout Analysis module explores the idea of assisting
human-machine interface designers with a computer-based tool which incorporates human
factors design knowledge concerning spatial location of information to be displayed to
human operators of the machine. This document is directed toward three categories of
readers: 1) readers with an interest in this subject and issues involved in developing such a
tool, 2) readers who wish to learn what the Display Layout Analysis tool's current and
future capabilities are, and 3) those who wish to use the tool in its preliminary form and
explore its existing features. Familiarity with C and CLIPS, an expert system building tool
written in C at Johnson Space Center, is helpful but not necessary.

1.3 PURPOSE AND OBJECTIVES OF DOCUMENT

This document provides a description of the purpose and approach of the Display Layout
Analysis module for the reader interested in an overview as well as a description of the
module's preliminary design. Also included is a discussion of issues and questions that
have come up thus far. A user's guide is available to assist in use and exploration of the
tool.

2.0 RELATED DOCUMENTATION

2.1 APPLICABLE DOCUMENTS

CLIPS Reference Manual, Artificial Intelligence Section, Johnson Space Center, May
1989.

Giarrantano, Joseph C., CLIPS User's Guide, Artificial Intelligence Section, Johnson
Space Center, June 1989.

Hartley, Craig S. and Rice, John R., "A Desktop Expert System as a Human Factors Work
Aid", Proceedings of the Human Factors Society, 31st Annual Meeting, 1987.

Page F- 1

Haskell, Ian D., Wickens, Christopher D. and Sarno, Kenneth, "Quantifying Stimulus-
Response Compatibility for the Army/NASA A3I Display Layout Analysis Tool",
Proceedings of the 5th Mid.Central Human Factors�Ergonomics Conference, 1990.

Human Engineering Guidelines for Management Information Systems, DOD-HDBK-761,
1985.

Kitlik, Alex, notes from "Display Layout Analysis", presented at A3I Off site Planning
Conference, Asilomar, CA, May 1989.

Wickens, Christopher D., Section on Display Layout Analysis in "Use and Integration of
Models", in Human Performance Models for Computer-Aided Ensineering, ed. by Elkind,
Card, Hochberg, and Huey, National Academy Press, Washington, D.C., 1989.

Witken, Andrew, and Kass, Michael, "Spacetime Constraints", Computer Graphics,
22:159-168, 1988.

Woods, David D., and Eastman, Mary Claire, "Integrating Principles for Human-
Computer Interaction into the Design Process: Heterarchically Organized Principles", in
Proceedings for 19891EEE International Conference on Systems, Man, and Cybernetics,
November 14-17, 1989, Cambridge, Mass.

2.2 INFORMATION DOCUMENTS

The following references were not used directly in the Phase IV version of the Display
Layout Analysis tool but are related to this general problem area and may be useful in future
work on the tool.

Beshers, Clifford M., and Feiner, Steven, "Scope: Automated Generation of Graphical
Interfaces", Proceedings of the ACM SIGGRAPH Symposium on User Interface Software
and Technology, Williamsburg, Virginia, Nov. 13-15, 1989.

Hix, Deborah, "A Procedure for Evaluating Human-Computer Interface Development
Tools", Proceedings of the ACM SIGGRAPH Symposium on User Interface Software and
Technology, Williamsburg, Virginia, Nov. 13-15, 1989.

Joy, Kenneth, "A Model for Graphics Interface Tool Development", Proceedings of
Graphics Interface 1985.

Olsen Jr., Dan R., "An Editing Model for Generating Graphical User Interfaces",
Proceedings of Graphics Interface/Vision Interface 1986.

Palmiter, Susan L. and Elkerton, Jay, "Evaluation Metrics and a Tool for Control Panel
Design", Proceedings of the Human Factors Society, 31 st Annual Meeting, 1987.

Perlman, Gary, "An Axiomatic Model of Information Presentation", Proceedings of the
Human Factors Society, 31st Annual Meeting, 1987.

Singh, Gurminder and Green, Mark, "Automatic Generation of Graphical User Interfaces",
Proceedings of Graphics Interface�Vision Interface 1986.

Page F-2

Singh, Gurminder and Green, Mark, "Chisel: A System for Creating Highly Interactive
Screen layouts", Proceedings of the ACM SIGGRAPH Symposium on User Interface
Software and Technology, Williamsburg, Virginia, Nov. 13-15, 1989.

Tommelein, Iris D., Johnson Jr, M. Vaughan, Hayes-Roth, Barbara and Levitt, Raymond
E., "SIGHTPLAN: A blackboard expert system for construction site layout", in Expert
Systems in Computer-Aided Design, Gero, John S., ed., North-Holland, New York,
1987.

Tullis, Thomas S., "A system for evaluating screen formats", Proceedings of the Human
Factors Society, 30th Annual Meeting, 1986.

3.0 CONCEPT

3.1 DEFINITION OF DISPLAY LAYOUT ANALYSIS TOOL

3.1.1 Purpose and Scope

Design of the human-machine interface for use in complex, dynamic environments is a
formidable task. A good design will assist the human operator's performance and a poor
design will hinder it. A prototypical version of a Display Layout Analysis tool was
developed to explore the concept of using a computer-based tool with human factors design
knowledge to guide the process of designing the human-machine interface. Knowledge in
human-machine interface design can range from detailed, low-level guidelines such as
display luminance and font sizes to higher level issues such as placement of displays in the
overall design configuration. As its name suggests, the Display Layout Analysis tool is
focussed on assisting the designer in the placement of displays which provide information
to the operator from various information sources.

This tool currently addresses the domain of aircraft crewstation display panel design.
However, it is expected that the methodology and indeed many of the same design
guidelines and constraints could also be applied to human-machine interface design in other
domains, such as wind tunnel display and control panels.

In designing crewstation display panels, a number of issues arise:

1) What information does the pilot need for effective job performance? (e.g.,
altitude, airspeed)

2) What are the sources for this information? (e.g., barometric altimeter and radar
altimeter, airspeed indicator)

3) If we consider the crewstation display area to be the design space, what display
media (which may use different modalities) are available to be placed in this
space?

4) How can displays for information sources be grouped or used singly and
allocated to the various available display media?

5) How can these media, which provide different types of display surfaces, be
located in the design space?

The emphasis in the Phase IV demonstration tool is on assisting the designer with the
simplest case--that is, placing dedicated displays on the control panel. However, a
conceptual framework has been developed to address the more general cases, which use
advanced display media such as Video Display Units (VDUs), Multi-Function Displays
(MFDs), Heads-Up Displays (HUDs), Helmet Mounted Displays (HMDs), Audio
Displays (of type tone or message), Tactile Displays (e.g., switch), and others. Windows

Page F-3

for these advanced display types (media) appear on the screen for the DLA tool to indicate
they will be available in the future.

3.1.2 Goals and Objectives

Evidence supports the validity of the human factors design metrics described in the NRC
report (see the Section on Display Layout Analysis). Our goal was to test the feasibility of
using these human factors design metrics to guide the designer in the area of display layout.
A short development period of about 6 months led to rapid prototyping of a demonstration
tool to investigate the following questions:

1) Can we build a design-aiding tool which uses the proposed human factors
design metrics to guide the process of designing display layout?

2) Can data for these metrics be reliably gathered?
3) What type of graphical user interface to the tool would best assist the designers?
4) How could we structure the tool so that its architecture will support design

assistance in definition and placement of advanced display media, such as
MFDs, HUDs, HMDs, as well as traditional display layouts with dedicated
displays?

Another issue was to investigate using two approaches in combination, a pro-active analytic
design-aiding mode and an evaluative rule-based advisory mode.

For Phase IV, the emphasis has been on concept exploration. The Display Layout Analysis
tool is in the beginning stages of development; a prototype was developed quickly to test
out the general feasibility and utility of such a tool and to obtain feedback from attendees of
the A3I Phase IV demonstrations.

3.1.3 Approach

After Woods and Eastman (1989), we consider displays to be viewing windows for the
operator through which he/she obtains infomaation about machine and environment status.
The Display Layout Analysis tool assists the crewstation designer in laying out the displays
which provide the pilot with windows to the information sources which he/she needs to
successfully operate the aircraft. Display layout assistance is guided by a set of design
metrics incorporated into the tool, which can be operated both in an analytic, design-aiding
mode and in an evaluative mode. Just as the spatial locations of objects in the physical
world are completely determined by the forces acting upon them, the locations of the
information sources being placed by designer are determined by the human factors-related
forces acting on them. In the physical world, the forces are entities such as gravity and
table tops; in the Display Layout Analysis tool environment, the forces which influence the
spatial locations of displays are engineering psychology principles. Based on the
cumulative forces of the relevant relations, the displays can be relocated to optimize the
overall design with respect to human factors. Used in the evaluative mode, the tool
employs human engineering design guidelines to examine an existing design and issue
warnings for violations of the guidelines. A verbose warning mode is available in which a
rationale behind the warning is also displayed as well as applicable literature references.

The human factors guidelines currently available in the Display Layout Assistant were
obtained from the section on Display Layout Analysis by Christopher Wickens in Human
Performance Models for Computer-Aided Engineering (1989) by the National Research
Council. These guidelines are described below. Estimates for how strongly display pairs

Page F-4

arerelatedtoeachotherin various dimensions were obtained from pilots using
questionnaires as was other display-related information.

1) Displays for information sources which are highly related should be located close together;
"highly related" is measured by a "task proximity" metric which is a weighted combination
of the functional proximity, physical proximity, and correlational proximity for the
information sources. Definitions for these measures are:

• Functional proximity is based on an estimate of the extent to which two indicators
must be integrated or compared in performing a task. For example, all indicators
of system flight dynamics (airspeed, power setting, bank, pitch, etc.) will have
close functional proximity.

• Physical proximity is based on the similarity between the physical sources of the
two indicators of each pair of displayed sources. For example, two indicators of
rotor functioning are more similar than one of rotor functioning and one of
navigational functioning.

• Correlational proximity is the degree to which the values shown by two indicators
are correlated over time. For example, airspeed and power would be highly
correlated but bank and altitude might have low correlation of values; that is, the
aircraft might be just as likely to be level as banked, in low and high flight.

2) According to symmetrical location compatibility (one form of stimulus-response
compatibility), displays should generally be located on the same side as the hand
controlling the parameter being shown. That is, displays that provide information relevant
to left-handed controls should be positioned to the left of those providing information
relevant to right-handed controls and vice versa.

3) Displays which have high frequency of use are strongly attracted to the prime area on the
display panel, which is a "T" shaped area covering the top of the panel next to the
windscreen and the panel center.

With advisory assistance from Christopher Wickens and from Jerry Murray and Loran Haworth
(helicopter pilots), a questionnaire was designed to gather data from pilots for the human factors
metrics: functional, physical, and correlational proximities, location of control action, frequency
of use, and criticality. (Criticality information was not used in Phase IV, but will likely be used in
the future.) An unexpected finding was that, of the three proximity measures, physical proximity
appeared to be the most ambiguous, perhaps due to the interrelated nature of some aircraft
subsystems. Two pilots completed the questionnaire; of course, a larger sample size will be
required for future data gathering from pilots.

3.1.4 Description of Component Architecture

At an overview level of description, the Display Layout Analysis tool consists of:

• functions to provide a direct manipulation graphics interface and visualization methods for
assessing design merit; also, menus to provide access to the tool's capabilities (user
interface module)

• functions which allow the user to create icons and edit and optimize (manually and
automatically) the existing design (design module)

• functions for displaying human factors relationships (analysis module)
° an embedded rule-based advisor to check an existing configuration of displays for

constraint violations (advisor module)
• a module which contains data for the human factors design guidelines (human factors data

module)

Page F-5

• a module which contains geometric data and equipment models (models module)
• functions to save and recall designs in progress (housekeeping module)

All modules except the Advisor's rules are written in C; the advisor rules are written in CLIPS
format. (CLIPS itself is written in C.) Figure 1 shows the relationship of these components to
each other and to the user/designer.

User Interface

Mouse-driven l
I Data

Color Graphic I Visualization
Interface w/ I Techniques
Popup menus '

Design

Layout Editor

Housekeeping

Save and Restore

Designs In

Progress

Analysis

Network Tension
Paradigm;
Optimization
Vectors;
Attractors/Repellers

Advice

Rule-based
Design
Evaluation

Models HF Data

Geometric data Human Factors
and equipment Design
models Guidelines

Figure 1. Overview of DLA Tool Structure (Preliminary Design)

The Display Layout Analysis tool is currently a stand-alone module constructed to explore the
ideas of using human factors metrics expressed both in mathematical and heuristic forms to guide
the design process. Since it deals with crewstation displays, it is likely that it will be integrated
with the Crewstation Design Editor (CDE) in the future.

3.2 USER DEFINITION

Users of the Display Layout Analysis tool are expected to be designers of human-machine
interfaces who want to take into account human factors design guidelines 1) when grouping and

placing displays for information sources on the various types of display surfaces and 2) when
locating these display media in the design space (i.e., crewstation display areas). The designer
uses the Display Layout Analysis tool to directly manipulate the placement of displays through
which the pilot is to obtain information about environment and aircraft status.

Page F-6

3.3 CAPABILITIES AND CHARACTERISTICS

The Display Layout Analysis tool provides a color graphics interface with a variety of features to
assist in placement of displays, given their relationships to each other and to various areas of the
panel. The panel contains areas of at_action for frequently used displays and can also contain
areas of repulsion to indicate panel space which should be used sparingly or not at all. In
addition, an Advisor can be invoked to examine the current design configuration and issue
warnings for any violations of the human factors design guidelines.

A description of using the Display Layout Analysis tool follows. Using the Edit capability of the
tool, the designer builds a set of pages by selecting the primitive information sources from a
library of sources; a page can contain one or more information sources. Pages can be collected in
groups or used singly; a Multi-Function Display would use a set of pages. The set of pages is
mapped to a display surface (medium), such as dedicated display, Video Display Unit (VDU),
Multi-Function Display (MFD), Heads-Up Display (HUD), Helmet Mounted Display (HMD),
Audio Display (of type tone or message), Tactile Display (e.g., switch), and others. The
resulting display surface is then mapped to a physical coordinate system, which can be fixed, as
with a Heads-Up Display, or moving, as with a Helmet Mounted Display. This process is
diagrammed in Figure 2.

BUILDTHESETOF PAGE(S)

I' Select Placeonpage Formsetsofpages 'l
PrimitiveI

I

I

I

I

(Oneormore)

MEDIA

Dedicated. VDU MFD HUll _ Audio: Tactile Other

Figure 2. Building the database of information sources

Page F-7

The DLA tool has two modes: math-based design and analyze mode (continuous) and rule-based
evaluate mode (discrete). Typically the user would build and analyze a design, then evaluate it by
running the rule-based Advisor. These modes are described in more detail below.

Analytic Mode: The previously described human factors design guidelines are embedded in the
Display Layout Assistant. They form networks of relations between information sources with
other information sources, between information sources with controls, and between information
sources with regions of the display surfaces, such as attractor and repeller areas of the display
panel. (Hereafter, "source" in this paper refers to information source.) In the task proximity
network, for example, network nodes represent information sources and connecting arcs
represent the task proximity relation, with arc thickness indicating strength of the relation. After
Alex Kirlik (1989), the forces in the arcs act like springs. The designer can show relations for a
single information source, a set of sources or all sources.

Both manual and automatic optimization modes are available. The user can optimize the design
manually by showing the optimization vector for a display icon, which points in the direction that
reduces tension from other related sources, and moving the icons toward the location indicated by
the optimization vector. The user can also select a group optimization mode which automatically
moves displays to reduce network tension for the group. In both cases, the effects of moving the
display icons are seen graphically. A global network tension measure indicates overall layout
optimization according to the task proximity metric.

Rule-based Evaluation Mode: An Advisor can be invoked which issues wmalings for detected
violations of display layout guidelines. When operated in "verbose" mode, the Advisor lists a
rationale for each warning as well as any associated references in the human factors literature.

3.4 SAMPLE OPERATIONAL SCENARIOS

For the Phase IV prototype DLA tool, thirteen representative information sources were selected
from various areas of functionality, including flight, navigation, and communications functions.
These information sources appear as prepositioned dedicated display icons on the the crewstation
panel. This set of information sources represents less than one quarter of the total number of
sources which would be eventually necessary in typical rotorcraft.

In a typical use of the prototype DLA tool, the designer would perform the following activities:

• show the various relations available (source-source, source-panel, source-associated
control),

• observe and possibly move the attractor and repeller regions on the display panel,
• show optimization vectors for selected sources,
• interactively move display icons which represent information sources to new positions in

the display space, while observing optimization vectors and relation network,
• invoke automatic optimization for a selected set of sources, and
• invoke the Advisor to check the design and issue warnings (if applicable) for deviations

from the human factors design guidelines incorporated into the tool.

These actions are described in more detail in Section 6.0, Users Guide.

4.0 REQUIREMENTS

4.1 REQUIREMENTS APPROACH AND TRADEOFFS

Page F-8

With respect to requirements, the tool should:
• incorporate valid human factors design guideLines
• be easy to understand and easy to learn
• be responsive since it is being used to assist the design process
• automatically assist the designer where appropriate
• provide intuitive feedback on the goodness of the design and how to change it in a way

that will improve the design

4.2 HARDWARE ENVIRONMENT

The Display Layout Analysis tool runs in a stand-alone mode on the the SGI-4D family of
workstations. At this point, there are no special memory and disk space requirements. The DLA
tool fits within the minimum configuration; however, this will likely change in the future as the
tool is expanded.

4.3 SOFTWARE ENVIRONMENT

The analytic portion of the tool and the graphics interface are written in C and depend on the SGI
(Silicon Graphics Iris) GL library for graphics and window functions. The rule-based Advisor is
written in CLIPS, an expert system building tool written in C by the Artificial Intelligence Section
at Johnson Space Center. Government agencies and their contractors can obtain CLIPS free of
charge by calling the CLIPS Help Desk between the hours of 9:00 AM to 4:00 PM (CST)
Monday through Friday at (713) 280-2233. Others can obtain CLIPS for about $350 from
COSMIC; 382 E Broad St.; Athens, GA 30602; phone: (404) 542-3265.

4.4 EXTERNAL INTERFACE REQUIREMENTS

During Phase IV, the DLA tool was constructed as a stand-alone program and therefore has no
interface requirements with other programs. Eventually it is anticipated that it will be integrated
with the Cockpit Display Editor (CDE) and other equipment models.

The DLA tool was required to be easy to use; the purpose of the tool's interface is to give the
designer an iconic representation of the display/control panel and easy access to the tool's
capabilities. The tool should also be very responsive to the user since a slow response time
would greatly diminish the tool's usefulness.

4.5 REQUIREMENTS SPECIFICATION

4.5.1 Process and Data Requirements

In the future, equipment data may require large amounts of memory and disk space; in fact, the
DLA tool itself will require more CPU processing as new capabilities are added and the number of
information sources is expanded.

4.5.2 Performance and Quality Engineering Requirements

Since the DLA tool is to be used in the design process for manipulating icons in the design space,
it is required to be highly interactive. The designer needs almost instantaneous response time.

4.5.3 Implementation Constraints

Since MIDAS is intended to be distributed in whole, or in pans, to the user community at a low
cost, use of low cost or free-of-charge tools is encouraged to avoid large license fees. This
requirement had an impact on choice of the expert system building tool.

Page F-9

5.0 DESIGN

5.1 ARCHITECTURAL DESIGN

5.1.1 DesignApproachand Tradeoffs

To collect data for the human factors design metrics, a questionnaire (shown in Appendix A) was
designed. The data gathered from administering the questionnaire formed the relations between
displays with each other and with areas of the design space and with associated controls. For a
start, the questionnaire was given to two AH-64 pilots whose responses agreed fairly well in
some areas and differed widely in others. To be valid, a larger sample will be needed in future
work if data is to be gathered from pilots; however, the data gathered was sufficient to build a
prototype tool for demonstration purposes. Eventually some of the necessary data may be
obtained from MIDAS simulation results, Currently, each element in the task proximity matrix is
computed by weighted average of functional: physical: correlational relations data using a ratio of
2:1:1. This weighting is subject to future change.

Under implementation issues, it was decided that the DLA tool would run on the SGI machines to
take advantage of their color graphics capabilities and to be compatible with the Cockpit Display
Editor (CDE), with which the DLA tool will eventually integrated. Color is used to assist the
design and evaluation process; for example, borders of display icons for which warnings are
issued are colored red to indicate a warning message applies to them.

After consideration of several expert system building tools, CLIPS was chosen since it is written
in C and will run on the SG1 machines and because it met our need for a proof of concept
prototype. It was decided that the DLA tool should reside on a single machine to avoid heavy
network penalties during run time; this ruled out use of ART. Also, CLIPS source code is
available to government users at nominal cost and distribution costs are lower than with a
commercial expert system shell.

Good program design (ease of maintenance) dictated the need for a single copy of the human
factors design data; this copy is used by both the analytic and the rule-based portions of the tool.

5.1.2 Architectural Design Description

The data containing the human factors guidelines resides in matrices and vectors and is accessed
by both the analytic and rule-based portions of the tool. (CLIPS rules call C functions to access
the data.) Functional, physical, and correlational proximity relations between display pairs are
stored in matrices, while frequency and location of control action are located in vectors. For each
display pair, a weighted average of functional, physical, and correlational proximity relations was
computed to form the task proximity relation, which forms one of the networks used in design
analysis.

Four housekeeping functions include file operations which allow the user to save designs in
progress and recall them later. (These are currently inactive.)

The design functions, which are to be used in close conjunction with the analysis functions, allow
the user to move icons around in the design space; the icons represent information sources
required by the pilot. The analyze functions allow the user to view relations between displays
relative to the current design space; these relations appear as colored networks with color
indicating the type of relation. The user can also show optimization vectors for display icons
which indicate the direction and force with which an information source is pulled. There is an
"automatic optimization" feature, which repositions all selected display icons into their natural

Page F-10

"resting"place, given the attractor and repeller forces acting on them and tension from related
information sources.

5.1.3 External Interface Design

The user interface uses color graphics to show its components: the design space, display icons,
and windows for display media. This interface is highly mouse-driven in that the user accesses
the tool's options by mousing on popup menus and moves display elements around in the display
space by dragging them with the mouse.

5.2 DETAILED DESIGN

5.2.1 Detailed Design Approach and Tradeoffs

Since DLA was intended only as a prototype many of the design decisions were made
based on what was most expedient in both time and money and availability. The optimizer
for DLA is one area that needs to investigated further.

DLA uses an iterative solver for a damped oscillator to optimize the IS locations. This
solver is not guaranteed to converge on the best solution because it can get stuck in local
minima, This attribute does not appear to be a problem in practice because the theoretical
maximum may not be the best but only another good solution, due to the heuristic nature of
the metrics. The pseudo-code for this algorithm follows:

for all j do
n

relation_vector = tErelation[j.___l,i] * Distance[j ,i])

q
force_vector = T. force[i] * Frequency[j] *cofactor[i,j]

i=l

tension = force_vector + relation_vector
step_dir = compute_step dir (j, tension)
if unoccupied(j, step_dir) then move (j,step_dir)

end for all j

Here j is the index to the information source that is to be moved, n is the number of ISs, q
is the number of forces, and cofactor[i,j] is the percentage of force[i]'s attraction/repulsion
that is applied to this information source. Relation[j,i] then is the numerical strength of the
relation between IS[j] and IS[i]. Distance[j,i] is the distance between the centers of IS[j]
and IS[i]. Frequency [j] is the relative frequency with which IS[j] is accessed by the pilot
during task performance. Each IS can only move one step per iteration and only if there is
a vacant cell at that location.

The big advantage of this simple solver is that it works fast and provides solutions not
easily found by the designer. As the optimization is being performed, the intermediate
solutions are displayed, providing the designer with an animation that shows the general
trend of the solution.

The optimizer does not work well for multimode solutions spaces and will get trapped in
local maximums. For this reason it is suggested that a second, more cpu intensive,
algorithm is implemented that could be called when the first method is unsatisfactory.

Page F- 11

5.2.2 Detailed Design Description

5.2.2.1 Compilation Unit

The following source files comprise the DLA tool:

ece .h
memcs.h
main.c
windows.c
menus.c
hind win.c
main win.c
mfd_win.c
clips_win.c
draw_area.c
icon_win.c
create.c
metrics.c

task_prox.c
dla-fns.c
sclcct.c
optimize.c

5.2.2.2 Detailed Design of Compilation Units

Not done since cun'cnt version of DLA tool is a prototype.

5.2.3 External Interface Detailed Design

Not done since current version of DLA tool is a prototype.

5.2.4 Coding and Implementation Notes

The human factors design data describing information sources and their relations to each other is
stored in matrix and vector form:

• 3 2-D arrays for functional, physical, and correlational relationships
• 1 vector for frequency of use
• 1 vector for location of control action
• 1 vector for criticality (not used yet)

The contents of the DLA tool Makefilc appear below:

#
makefile cce
#

EXE = ¢c¢
#INCLUDEDIR =/usr2/prevost2/panel/include
#LIBDIR--/usr2/prevost2/panel/lib

#INCLUDES= -I${ INCLUDEDIR}
#HEADER= $ {INCLUDEDIR }/panel.h

Page F- 12

LIB= ../libclips.a../mfd/librnfd.a

OBJ= main.o windows.o menus.o hmd_win.o main_win.o told_win.o\
clips_win.o draw arca.o icon_win.o create.o mctrics.o task_prox.o\
dla-fns.o select.o optimize.o

SRC = $(OBJ:.o=.c) cc¢.h Makefile

#$(OBJ) : $(SRC)

cce : $(OBJ) Makeffle cce.h metrics.h
$(CC) -o $(EXE) $(LDFLAGS) $(CFLAGS) $(OBJ) S(LIB) -g -lgl_s -Ira

Page F- 13

6.0 USERS GUIDE

6.1 OVERVIEW OF PURPOSE AND FUNCTION

The DisplayLayoutAnalysisprogramisacomputer-aideddesigntoolwithbuilt-inhuman factors
knowledgewhich can bcinvokedtoguidethedesignprocessandevaluatedesignsinprogress
withrespecttolayoutofdisplays.The tooladdressesdesignofdisplaypanelsforman-machine

systems;thecurrentfocusison rotorcraftcrewstafiondisplaypaneldesign.The toolwas
constructedasademonstrationversionusingrapidprototypmginordertotestthefeasibilityof
thistypeofaidfordesigners.The toolisinthebeginningstageofdevelopment.Currently
includedarethreehuman factorsdesignguidelines(suggestedby ChristopherWickens inthe
NRC report,1989)whichpertaintodisplaylayout;more areenvisionedforthefuture.A number
ofcapabilitiesarealsoenvisioned,some ofwhichareindicatedinthemenu selectionsanddisplay
mediawindows. Currentlydedicateddisplaysareemphasized;inthefuture,more complex
displaymediaand surfaceswillbeincluded,suchasVDUs (VideoDisplayUnits),MFDs (Multi-
FunctionDisplays),HUDs (Heads-UpDisplays),and HMDs (HelmetMounted Displays).The
menu structureisnotinitsfinalform;however,enoughfeaturesexisttogivetheuserthelook
and feelofwhat ahuman factorsbaseddesign-aidingtoolmightprovide.The plannedDLA
designprocessisshown inFigure3.The userfirstselectsone ormore displaysandplacesthem
on asetofpages;dedicateddisplayshaveone page,whileMb-Ds havemultiplepages.The setof
pagesisthenmapped toadisplaymedium, suchaspanel(fordedicateddisplay),MFD, HUD, or
HMD; finallythismedium ismapped toaphysicalcoordinatesystem.Currentlydedicated
displaysarcemphasizedalthoughotherdisplaysurfacetypessuchasVDU, MFD, HUD, HMD,
and audioareshown. The current(demonstration)versionofthetoolhasthirteenpre-selected
informationsourceson thepanel.The usercan move theseinformationsourcesaround,show
relationshipsbetweenthemand thedesignspace,and show optimizationvectorsusingdesign-
aidingfeaturesoftheDLA tool.The usercan alsocallon therule-basedAdvisortoevaluatethe
designatany time.Thisprocessisdescribedinmore detailinFigure2 inSection3.3
(Capabilitiesand Characteristics).

The domain currently addressed is rotorcraft crewstation panel design; on the main screen of the
Display Layout Analysis tool is a panel outlined in red. Thirteen display icons representing
information sources are available for manipulation and testing; eventually many more information
sources will be available in a library.

For the three human factors design metrics currenOy in use, data includes functional, physical,
and correlational proximities (2-D matrices), frequency of use (vector), and location of control
action (vector). Definitions for these metrics are given in See. 3.1.3 (Approach). A description
of the tool's capabilities appears in Section 3.3 (Capabilities and Characteristics); instructions for
using these capabilities follow.

6.2 INSTALLATION AND INITIALIZATION

The required DLA program files are ece (for ergonomic crewstation editor), which is the
executable file for the DLA tool, and two data files, dla.clp (contains Advisor facts and rules in
CLIPS format) and dla.data.clp (contains Advisor facts in CLIPS format).

6.3 STARTUP AND TERMINATION

Once CLIPS and the program files for the DLA tool are installed, go into the ../clips/ece directory
and enter:

% ecc

Page F- 14

Thisloadsand initializestheDLA tool,bringingup acolorscreenwithacrewstationpanel
outlinedinredand prc-sclectedinformationsourceswhichappearasdisplayiconson thepanel.
A number ofdisplaymedia appearaswindows;theseindicatepossibledisplaysurfaceswhich
willbeavailableinafutureversionoftheDLA tool.Clicktheleftmouse buttononceon the

smallbox intheupperleftcomer to"park"thesewindows outoftheway;clicklefttwiceon a
window icontore-openit.Hint:ifdisplayiconsormedia flicker,multipleleftclickswillrefresh
thescreenand stoptheflicker.A textwindow appearsbelowtheDLA panelfordisplaying
messagesfromtheDLA tooland communicatingwiththeAdvisor.

To gain access to the DLA tool's features, press down on the fight mouse button to make the main
menu appear. Menu items with subsidiary menu items have a fight arrow next to them. When the
desired menu item is under the cursor, release the mouse button, and the menu item will be
activated. To exit from the DLA tool, select "Quit", a top-level menu item.

6.4 FUNCTIONS AND THEIR OPERATION

First, a word about strategy and the assumptions underlying the DLA tool. Information sources
are related to each other and to areas on the panel by a set of relations which are among the human
factors design metrics encoded in the DLA tool. These relationships form a network with nodes
representing the information sources and arcs representing the relationships. Arcs have varying
strengths, indicated graphically by line thickness. These strengths arc based on the strength of the
relationship, which can range from "not related" to "strongly related". The network can be
envisioned as a network of springs which has a tension or desire to contract by pulling related
nodes together. A global network tension is expressed on the screen by a number, which is based
on the total lengths and strengths of all the arcs in the network. The goal of the designer is to
lessen the network tension (and lower the tension number) by moving related displays together
and by moving frequently used displays toward attractor areas of the design space. The attractor
areas appear as green bars and can be placed wherever the designer feels is an optimum place for
the pilot/operator to view displays. Likewise there is a moveable repeller region which will repel
displays. This might be placed in the lower right comer if the pilot is expected to be wearing a
monocle over the fight eye, for example.

The current menu structure is preliminary and is meant to show the possibilities; it will
undoubtedly change in the future. Menu options are described below, including those which are
not yet active. Note that menu selections are made with the fight mouse button, while display
icons are manipulated with the left button. Certain menu options put you into a new mode; for
example, "edit move" (described below) allows you to move display icons; you leave the mode by
entering "escape". Many options function in a toggle mode; that is, the first invocation activates
some display option, while the second one deactivates that option. For example, selecting the
option "show all relations" displays the relevant networks and selecting this option again turns
this display off. (Again, sometimes you have to do a multiple left click anywhere on the screen to
have the action take effect.)

* File options: These include Load, Save, Relations, and Others. They are not yet active
but are included to show a method of saving and recalling designs in progress.

Edit options:
• Source: Source here means information source and its 3 sub-options are active:

• Move: Enter "move mode" to move display icons around the design space; enter
escape to leave move mode.

• Nail: Enter "nail mode" to fix the location of designated displays; enter escape to
leave nail mode. The center of the display icon turns red to indicate it is nailed
down.

• Revert: Returns all displays to their initial location.

Page F-15

• Region:Editregionisinactive.
• Relation: The edit relation items (functional, correlational, and physical) are inactive.

Create options:
• Add information source is inactive, but will be used to bring new information sources

into the design space.
• Source items are inactive, but show the categories of information sources which will

be available in a library (Communication, Navigation, Engine, Flight, Hydraulic,
Environmental Control System (ECS), Electrical, Auxiliary Power Unit (APU),
Lighting, Target, Other)

• Region: Add region is inactive.
• Relation: Add relation is inactive.

Show options are active:
• All relations: shows task proximity network and frequency network for all

information sources. Task proximity connections are shown in purple; attraction
forces of sources to selected spots on the attractor bars are shown in green. In both
cases, the strength of the connection is indicated by line thickness. Use Revert to turn
these networks off.

• Local relations: enter "show local" mode; clicking left on a display icon cause,s the
task proximity network for that information source to be shown in purple to indicate
graphically how the selected information source is related to other sources in the
design space. Enter "escape" to leave the "show local" mode.

• Optimization Vector: enter "show optimization vector" mode; to show a vector for any
information source, simply move the cursor over it and click left mouse button. Leave
this mode by entering escape.

Tools option is active and currently contains the Advisor and optimize options:
• Advisor capabilities include:

• Evaluate: run the Advisor on the current design configuration. The advisor looks
at the locations of all displays, checks for violations of the human factors design
metrics encoded in its rules, and issues applicable warnings in the text window.
When the Advisor is invoked, it asks "Print rationale and references for warnings?
(y/n)"; enter "y" to obtain verbose printout mode.

• Reset: reset the advisor. Note: the Evaluate option also resets CLIPS before
performing the evaluation. Having a separate Reset option allows the user to view
the agenda before evaluation and to step through the agenda, one rule at a time (see
Step).

• Show Facts: list all facts currently in the Advisor's fact base in the text window.
• Show Agenda: list contents of the agenda in the text window.
• Step: Fire one rule from the top of the agenda; used in debugging.
• Watch: turns on the "watch" mode for facts, activations, compilations (currently

not used), or all of these, which causes the relevant information to be printed to the
text window when the Advisor is invoked.

• Unwatch: turns off "watch" mode.
* Dribble On: start a dribble file for everything printed to the text window. Output

to the text window is also written to the dribble file, dla*clips-run.log.
• Dribble Off: turn off dribble file.
• Print Rule: display a sample rule; demo use only.

• Optimize: active; provides for automatic optimization of locations of selected
information sources.
• Local: enter the "optimize" mode; clicking left on a display icon while in this mode

will optimize locations of all icons in its group. Enter "escape" to leave this mode.
• Group: same as local.

Page F-16

* Global:inactive.

* Quit:exitfromtheDLAtool.

6.5 RECOVERY STEPS

If the DLA tool or CLIPS crashes, start over by entering "ece" into the text window.

7.0 ABBREVIATIONS AND ACRONYMS

APU
DLA
ECE
ECS
GL
HMD
HUD
MFD
MIDAS
SGI
VDU

- Auxiliary Power Unit
- Display Layout Analysis
- Ergonomic Crewstation Editor
- Environmental Control System
- Graphics Library
- Helmet Mounted Display
- Heads Up Display
- Multi-Function Display
- Man-machine Interface Design and Analysis System
- Silicon Graphics Inc.
- Video Display Unit

8.0 NOTES

8.1 ISSUES AND IDEAS

A number of interesting issues and questions have arisen in the course of developing this tool:

DLA uses both mathematical and heuristic forms to give feedback to the designer. Which
types of guidelines and constraints are best expressed with mathematical formulas (which
are mostly continuous in nature) and which are best incorporated as rules (which tend to
be discrete)? How can these two modes best work together? To what extent should they
be integrated (if at all)?

Currently we use 3 main guidelines; what happens when we add more? How will we
handle interacting, and possibly contradictory, constraints? Can we use rules for this and
mimic a human expert? Can math formulas be applied in some of these cases, or would
this be too difficult?

• Inter- and intra-media information transfers and relations need to be investigated.

What about broadening the usefulness of the tool by adding guidelines and constraints
from other areas of design consideration, such as maintainability, physical limitations
(e.g., varying available depth behind the panel at various locations).

Which human factors design metrics are domain dependent? Which are domain
independent? What must be done to adapt the DLA tool to another domain, such as design
of fixed wing crewstation panels or power plant display/control panels?

8.2 LIMITATIONS

The DLA tool is limited to 2-D.

Page F- 17

Currently we use only 13 displays which is less than one fourth of the displays used in the
Apache cockpit.

Domain information for the task proximity measures and other relations must be acquired and
placed in matrices and vectors. There are no metrics currently for menu spaces in multi-page
devices.

8.3 FUTURE DIRECTIONS

Future directions:

• Include a more comprehensive set of information sources in a library (currendy 13 are
used). Allow user to define new information sources.

• Incorporate a richer set of human factors principles for display layout; one such principle
is local stimulus-response compatibility.

• Further develop both analytic mode and evaluation mode to handle more display media.
Current focus is on dedicated displays and MFDs.

• Enable designer to take into account more contexts. The current context includes a mix of
flight and communication tasks.

• Gather data from more pilots. Current task proximity measures are computed using
estimates from two pilots.

• Expand capabilities for design aiding in the analytic mode.
• Investigate possibility of incorporating a prototype Hypertext capability in the evaluation

mode.
• Investigate virtual reality technology. Designers can work in a 3-D environment and, for

example, can place information sources in HMD (Helmet Mounted Display) coordinates
and visualize the effects.

• Add more visualization tools.
• Add more forces.
• Continue literature search to become more aware of related work.
• Cooperate with other researchers involved in complementary areas.
• Allow user to define relations and behaviors and change weightings for existing relations
• Allow user to change and add rules

9.0 APPENDIX

Page F- 18

PILOT QUESTIONNAIRE

Page F-19

Questionnaire on Crewstation Displays

We seek to build a tool to help the A/C designer lay out displays on the crewstafion panel. A good
layout will be determined by how the displays relate to each other and their relative position on the
panel. Aircraft displays can be related in several ways: they may be used together in performing a
task (functional proximity); their information can come from the same or similar physical
subsystems, e.g., the engine (physical proximity); or their values can change together over time as
the flight progresses (correlational proximity). Together these measures make up what we call "task
proximity". We seek information from experts such as yourself on how (and whether) various A/C
displays are related.

All together, there are four matrices, one for each of the three measures of task proximity and one
for location of control action (i.e., which hand do you use to control the subsystem whose values
are being displayed by a given instrument). This questionnaire uses only a subset of all the possible
displays.

Please fill out the following four forms as best you are able. We realize that these are subjective
values and will vary from pilot to pilot. We ask that you place one of the following letters: N =
None, L = Low, M = Medium, H = High, V = Very high, in each square in the top portion of
the man-ix that best describes how strong you feel the relationship holds for the particular proximity
measure. The proximity measure for each metric is explained at the bottom of each page. There is
also a sample matrix provided.

For the "location of control action" matrix, we ask that you answer: L -- Left hand, R = Right
hand, E = Either hand, or NA = Not Applicable. Please mark L or R ff that hand is primarily used
to perform the task related to the display in question; mark E if either hand could be used.

Please make use of the following additional information to guide your answers.

Context #1: You are flying contour in an AH-64 Apache (version ?) helicopter. You are VFR in
daylight and traveling at 80 knots???? You are also concerned with determining general navigation
information (little help ?)

Context #2: COMM

Context #3: Emergency procedure (?)

Page F-20

SAMPLE PROXIMITY MATRIX

L
orque otor air mitude radar 1err. _ceel- _tandb_ com- clock

speed ;peed Llti- ;peed ;ration_ompas_pass
Tlctcr

torque _.XXX H L L N N L N N N

rotor speed XXXX KXXX V L N L L N N N

airspeed KXXX<XXX :XXX M L M H N N N

attitude KXXX KXXX CXXX: :XXX H H L N N N

radar altimeter XXX: .'XXX] XXX> XXX)_ KXXX H M L N N

vertical KXXX _:XXX CXXXI [XXX: :XXX_ :XXX H L N L

airspeed

acceleration KXXX _XXX CXXXI (XXX_' _XXX: ,'XXX] IXXX N N N

standby KXXX (XXX CXXX: (XXX,' _XXX: :XXX_' IXXX) XXX H N
compass

compass

clock

KXXX (XXX, _XXX: (XXX_ [XXX: :XXX] XXX) XXX_ XXX L

KXXX KXXX _XXX XXXX KXXX KXXX KXXX KXXX KXXX KXXX

KXXX KXXX _:XXX XXXX KXXX KXXX KXXX KXXX KXXX (XXX XXX%

N = None L = Low

SAMPLE proximity

M = Medium H = High V = Very high

PageF-21

FUNCTIONAL PROXIMITY MATRIX

air Lttitud¢ radar cerL

pe _ti- _peed
meter

¢1- ;tandb tom-
;ration :ompas pass

clock

torque KXX_(

rotor speed KXXIg XXXX

airspeed

attitude

radarahimctcl

vertical

airspeed

KXXXKXXXKXXX

gXXX gXXX _(XXX _[XXX

XXX_ [XXX] IXXX) XXX)_ XXX_

gXXX KXXX gXXX _[XXX XXXX!KXX)

accelerationKXXX KXXX _[XXXXXXX XXXX KXXX KXXX

standby
compass

compass

clock

gXXX KXXX gXXX XXXX XXXX gXXX KXXX XXX)_

_[XXX KXXXXXXXXXXX!KXXX _:XXXXXX_ KXX_X KXXX

:XXX (XXXKXXX KXXX KXXX gXXXXXX KXXX KXXX KXXX

_[XXX XXXX _(XX_(KXXX _XXX _XXX XXXX KXXX KXXX _XXX _XX){

N = None L = Low M = Medium H = High V = Very high

Functional proximity is based on an estimate of the extent to which two indicators must be
integrated or compared in performing a task. That is, what set of display elements do you consult
jointly to perform tasks in the given context? For example, all indicators of system flight dynamics
(airspeed, power setting, bank, pitch, etc.) will probably have close (high or very high) functional
proximity because the pilot is consulting these displays continuously in order to fly the A/C.
Suggestion: Mark V (Very high) if 2 displays are always used together and M (Medium) or H
(High) if they are often but not always used together.

Page F-22

PHYSICALPROXIMITYMATRIX

:orque"otor
;peed

lalx _ttitude radar cert. teed-

speed dti- ;peed _ration
aaeter

;tandb)
:ompas

com-

pass

clock

torque _XXX

rotor speed CXXX XXXX

airspeed (XXX XXXX XXX_

attitude XXXXXXX_ >¢XX_ KXXX

radar altimeter XXX:CXXX):XXX_ XXX) XXX_

vertical tXXX XXXX KXXX _KXXX KXXX iXXX

airspeed

acceleration KXXXKXXlg KXXX KXXX KXXX CXXXXXXX

standby KXX_ KXXlg KXXX KXXX _XXXXXXXKXX_ KXX_
compass

compass KXXX KXXX KXXX KXXX IXXX KXX_ KXX_ KXX_ KXX_

clock KXXX KXXX KXXX KXXX XXXX XXXX KXX_ KXXX KXXX KXXX

_XXX KXXX KXXXXXXXXXXX)¢XXX _XXX KXXX _XXX _XXX _XX_

N = None L -- Low M = Medium H = High V ---Very high

Physical proximity is based on the similarity between the physical sources that generate the
information that each pair of displays presents to the pilot. Thus two indicators of rotor
functioning are more similar than one of rotor functioning and one of navigational functioning.

Page F-23

CORRELATIONALPROXIMITYMATRIX

Eorquerotor
_peed

!

air lttituderradar vert. _x_el- ;tandb)
;peed alti- _peed .'ration "ompas

meter

com-

pass

clock

torque KXX_

rotor speed KXXX KXXX

airspeed KXXX KXXX KXXX

attitude KXXX KXXX KXXX XXXX

radar altimete_ XXXl tXXX_ XXX} [XXX_ XXX_

vertical KXXX KXXX KXXXXXXX _(XXX KXXX

airspeed

acceleration KXXX KXXX XXXX XXXX KXXX KXXX _XXX

standby KXXX KXXXXXXXXXXX KXXX KXXXXXX_ XXXX
compass

compass

clock

_:XXX _XXXXXX)¢ XXXX KXXX KXXXXXX_ _:XX_ KXXX

:XXX (XXXXXXX, KXXX KXXX <XXXXXX KXXX KXXX KXXX

(XXX XXXX KXXX KXXX _:XXXXXXX XXXX KXXX KXXX _XXXXXX_

N = None L = Low M = Medium tl = High V = Very high

Correlational proximity is the degree to which the values shown by two indicators are
correlated over a four second time window. For example, airspeed and power would be highly
correlated but bank and altitude might have low correlation of values; that is, bank might be just as
likely to be level as banked, in low and high flight.

Page F-24

LOCATIONOFCONTROLACTION

torque

rotor speed

airspeed

attitude

radar altimeter

vertical
airspeed

acceleration

standby
compass

compass

clock

Location of control action associated with the display:

NA = Not Applicable L = Left hand R = Right hand E = Either hand

Left: control action is normally performed with the left hand
Right: control action is normally performed with the right hand
Either. control action can be perfomaed with either hand

Page F-25

Annex G

Army-NASA Aircrew/Aircraft Integration Program: Phase IV

Man.Machine Integration Design and Analysis System (MIDAS)
Software Detailed Design Document

Anthropometric Model (JACK)

prepared by

Christian Neukom

Table of Contents

1.0 INTRODUCTION ... 1
1.1 IDENTIFICATION OF DOCUMENT ... I
1.2 SCOPE OF DOCUMENT ... 1
1.3 PURPOSE AND OBJECTIVES OF DOCUMENT 1

2.0 RELATED DOCUMENTATION .. 1
2.1 APPLICABLE DOCUMENTS ... 1
2.2 INFORMATION DOCUMENTS ... 2

3.0 CONCEPT .. 2
3.1 USER DEFINITION ... 2

4.0 REQUIREMENTS .. 3
4.1 HARDWARE ENVIRONMENT ... 3
4.2 SOFTWARE ENVIRONMENT .. 4

5.0 DESIGN .. 4
5.1 ARCHITECTURAL DESIGN .. 4

6.0 USER'S GUIDE ... 5
6.1 DESCRIPTION OF JACK FILES CREATED IN PHASE IV 6

6.1.1 Psurf Files (.pss) .. 6
6.1.2 Environment Files (.env) ... 6
6.1.3 Jack Command Language Files (.jcl) 8
6.1.4 Action Files (.act) ... 9
6.1.5 Script Files (.scr) .. 9
6.1.6 Data Files ... 9

6.2 DOWNLOADING PSURF FILES FROM CDE 10
7.0 ABBREVIATIONS AND ACRONYMS ... 10
8.0 GLOSSARY .. I0
9.0 NOTES .. 10

9.1 LIMITATIONS ... 10
9.2 FUTURE DIRECTIONS .. 11

10.0 APPENDICES .. 11
APPENDIX A -- MENU ROAD MAP .. 12
APPENDIX B -- DESCRIPTION OF MENU SELECTABLE

COMMANDS ... 29
APPENDIX C -- JACK DIRECTORY STRUCTURE 45
APPENDIX D _ ANTHROPOMETRY DEMO 1990 49
APPENDIX E -- README FILE ... 55

Figure1.
Figure 2.

Table of Contents

Jack/A31WorkstationInteraction...3
A graph of a peabody environment showing the connectivity of objects 5

MAN.MACHINE INTEGRATION DESIGN & ANALYSIS SYSTEM
(MIDAS) SOFTWARE DETAILED DESIGN DOCUMENT

PHASE IV:

ANTHROPOMETRIC MODEL (JACK)

1.0 INTRODUCTION

1.1 IDENTIFICATION OF DOCUMENT

This is the software Product Specification for the Anthropometric Model (Jack) component
of the MIDAS Software System. Description of the detailed processing requirements,
structure, I/O, and control are provided for each lower level Computer Software
Component (CSC), unit, or function contained within this module.

1.2 SCOPE OF DOCUMENT

This document describes the function and use of the Jack software used in Phase IV of the
A3I simulation. Since Jack has its own set of detailed user's and programmer's manual
published by UPenn, this document will complement such data and describe the files
created by A3I for use in Jack. The reader of this document is expected to know basic
graphics programming and should be familiar with a high level computer language.

1.3 PURPOSE AND OBJECTIVES OF DOCUMENT

A fundamental requirement of MIDAS is a physical representation of the human figure.
For this purpose we have Jack, a dynamic anthropometric model, which has been
developed through a grant to Dr. Norm Badler at the University of Pennsylvania. Jack is
an interactive graphic package that allows the creation and manipulation of 3-D human
figures, in a 3-D object space. Different sized human figures or graphic mannequins can be
selected which include the 5th through 95th percentile male and female, based on NASA
astronaut demographics. Joint limits have been installed to eliminate unreasonable
movements. The figure representation is not limited to the statistical data -- data of
individuals can be entered in the Spreadsheet Anthropometry Scaling System (SASS) and a
corresponding figure can be displayed in Jack. Kinematic and inverse kinematic algorithms
are employed to generate realistic looking movements. These features allow a designer to
explore human figure interaction in a 3-D environment and make predictions about reach,
fit, and visibility.

2.0 RELATED DOCUMENTATION

2.1 APPLICABLE DOCUMENTS

The following documents are referenced herein and are directly applicable to this volume:

Carry B. Phillips, Jack User's Guide, Jack Version 4, Computer graphics Laboratory,
Department of Computer and Information Sciences, University of Pennsylvania,
Philadelphia, Pennsylvania 19104-6389, October 20, 1989.

Page G- I

Carry B. Phillips, Programming with Jack, Computer Graphics Laboratory, Department of
Computer and Information Sciences, University of Pennsylvania, Philadelphia,
Pennsylvania 19104-6389, December 21, 1988.

Norman I. Badler, Anthropometry for Computer Graphics Human Figures, Department of
Computer and Information Science, University of Pennsylvania, Philadelphia PA 19104-
6389.

Silicon Graphics .Inc., IRIS-4D Users Guide, Volume I and II, Version 1.1, Mountain
View, CA, 1987

2.2 INFORMATION DOCUMENTS

The following documents amplify or clarify the information presented in this volume:

Norman I. Badler, Simulating Personnel and Tasks in a 3-D environment, Progress Report
No. 33, Department of Computer and Information Science, University of Pennsylvania,
Philadelphia, PA 19104-6389, July 13, 1989.

Norman I. Badler, Computer Graphics Research Laboratory Quarterly Progress Report
No. 34, Department of Computer and Information Science, University of Pennsylvania,
Philadelphia, PA 19104-6389, February 9, 1990.

Nomlan I. Badler, Computer Graphics Research Laboratory Quarterly Progress Report
No. 35, Department of Computer and Information Science, University of Pennsylvania,
Philadelphia, PA 19104-6389, First Quarter, 1990, May 18, 1990.

3.0 CONCEPT

3.1 USER DEFINITION

The Jack module is used by A3I either interactively by a human operator or controlled
through an integrated simulation as demonstrated during our phase IV demo. In the
interactive mode Jack accepts commands via menu selection, keyboard entry and animation
script files. In the integrated mode, Jack receives instructions from the Symbolic Operator
Model via the Communication manager. Figure 1 displays the various interactions of the
Jack software with the A3I's computers, files, and system programs, as well as the human
operator.

Page G-2

Symbolics 3675

SymbolicModelling

/
Task I

I Mission, Sim.

Commands
_ to move

I Reach/ I
Ccclusion I

L ,
IRIS 4D

IR_sI
G.L I

_J
i

c-V-"
_ta
[es

Anita.

Scripts

t
Ethernet

l IRIS 3120

CDECSCI

Cockpit
env. _r

Figure 1. Jack/A31 Workslation Interaction.

4.0 REQUIREMENTS

4.1 HARDWARE ENVIRONMENT

The Jack software runs on various IRIS 4D workstations. However, some functions do
not work properly on the Personal IRIS and large environment files may not load at all.
For this reason, an IRIS 4D70GT or better is required to run all the available functions and
to obtain a satisfactory response time.

The machines available at A3I are the IRIS 4D120GTX and the 1RIS 4D220GTXB. The
technical specification for these machines are listed below.

W-4D 120GTX Power Series Workstation (Coral) consisting of:

• 32MB CPU memory
• 380MB Winchester disk drive

Page G-3

• SCSI 1/2" tape drive, built in
• image memory

48 1280 * 1024 image bit-planes (8 bits for each red, green, and
blue; double-buffered.
16 1280 * 1024 image bit-planes for double buffered alpha
24 bit Z-buffer (1280 * 1024)
4 1280 * 1024 overlay or underlay bit planes
4 window ID bit-planes (total 96 bits/pixel)

• Ethemet interface card
• 19" high resolution monitor
• keyboard & mouse

W-4D220GTXB Power Series Workstation (Starfish) consisting of:

• 32MB ECC CPU memory
• 380MB, and 780MB ESDI Winchester disk drives
• SCSI 1/2" tape drive, built in
• image memory

48 1280 * 1024 image bit-planes (8 bits for each red, green, and
blue; double-buffered.
16 1280 * 1024 image bit-planes for double buffered alpha
24 bit Z-buffer (1280 * 1024)
4 1280 * 1024 overlay or underlay bit planes
4 window ID bit-planes (total 96 bits/pixel)

• Ethernet interface card

• 19" high resolution monitor
• keyboard & mouse

4.2 SOFTWARE ENVIRONMENT

• Operating system: IRIX V system release 4D1-3.2
• Network File System Software
• C programming language
• C++ translator, release 1.0 source code
• IRIS graphics library
• 4 sight window manager

5.0 DESIGN

5.1 ARCHITECTURAL DESIGN

The foundation of the Jack software is Peabody, which is a graph-structured representation
for articulated geometric objects. It represents figures composed of segments connected by
joints, also under the influence of constraints. The peabody library provides routines for
accessing and manipulating the figures in a global environment. The geometry of each
segment in the environment is represented by a polyhedron surface (psurf), which is a
boundary representation using tables of nodes, edges, and faces.

Jack is a facility for displaying and manipulating objects represented by peabody. It
provides a standard user and prograrruner interface to routines which operate on the
environment. Jack by itself is primarily a user interface, and its principal function is
maintaining the windows and control input from the user in a consistent way.

Page G-4

z_ figure

rootsite _^ /joint

_Jg" . . sile Y

base coordinate frame
Y of segment

world
coordinate system

Figure 2. A graph of a peabody environment showing the connectivity of
objects.

Figure 2 above shows a graphic representation of a peabody environment. A figure is a
collection of segments which are connected to each other by means of joints through sites.
The location of an articulated figure is specified through a site designated as the root. The
root site roughly corresponds to the origin of the figure, and it provides a handle by which
the location of the figure can be specified. The geometry of the psuff is specified relative to
the coordinate frame of the segment not the world coordinate frame. That means that each
psurf is designed in its own coordinate system.

6.0 USER'S GUIDE

A complete user's guide to Jack is supplied by Upenn as referenced in section 2.1 of this
document. Information of the basic design and structure of Jack can be found in the
"Programming with Jack" manual also referenced in section 2.1. Instruction for running
the A3I demo files can be found in "Anthropometry Demo 1990" located in Appendix D.
Appendix A, labeled "Menu Road Map," shows all of the menu selectable commands
presently implemented in the A3I version of Jack. Appendix B, named "Description of
Menu Selectable Commands," is in addition to the description in the user's manual and can

Page G-5

beusedasaquickreference.AppendixCshowstheJackdirectorystructureasit appears
onthetape.Appendix E, the Readme File, gives instructions for installing Jack from tape.

6.1 DESCRIPTION OF JACK FILES CREATED IN PHASE IV

6.1.1 Psurf Files (.pss)

lb_fwd01 a.pss

lb_fwcil 3.pss

This collection of 22 files make up the copilot-

gunner
cockpit of a Longbow helicopter. Included in
these files
is part of the fuselage surrounding the cockpit.

lb aft01 .pss
..

lb_aft l'3.pss

These 21 files make up the cockpit of the pilot of a
Longbow helicopter. Included in these files is
part of
the fuselage surrounding the cockpit.

lb_ext01a.pss

lb_exti'0c.pss

These 21 files make up the exterior of a Longbow

helicopter.

ah64_hta,pss

ah64_htd.pss
ht_visor.pss

lfviewcone.pss
lviewcone.pss

rfviewcone.pss

rviewcone.pss
sfrviewcone.pss
slviewcone.pss
srviewcone.pss

ssphere.pss

These 5 files collectively make up an Apache
IHADDS
helmet includi: ._ ,,isor and monacle.

Static viewcone for vision analysis.

Field of view (FOV) view cones for vision
analysis.

This file is used in the vision demo.

6.1.2 Environment Files (.env)

05pilot.env

bio_pilot_helmet.env

Fifth percentile polybody figure in pilot posture.

Biostereometric figure with IHADDS helmet in
pilot posture.

Page G-6

bio_pilot_helmet_lb_afl.envBiostereometricfigurewithIHADDShelmetin
pilotpostureandin longbowpilotcockpit
environment.

bio_pilot_lb_aft.env

d3.env

Biostercometricfigureinpilotpostureandin
Longbowpilotcockpitenvironment.

Longbowcopilot-gunnercockpitwithpolybody
figureseatedincrew-position.Nofuselageand
backof seat.

d5.env

d6.env

Longbowhelicopterwithtwobiostereometric
figuresseatedincrewposition.

Twopolybodyfigures.Onecarryingbox(reach
constraintsbetweenhandsandbox).

demol.env

demo2.env

demo3.env

fwd bio_pilot.env

helmet80.env

lb aft_biopilot.env

lb..aftpilotl.env

lb ext lbio_pilot.env

lb ext 2biopilot.env

lb ext 2pilot.env

Line-upof maleandfemalepolybodyfigures(5th,
50th,95thpercentile)and95thpercentileby
heightbiostereomewicmalefigure.

BiostereometficfigurewearingIHADDShelmet.

Biostereometricfigurewearinghelmetseatedin
copilot-gunnercockpit.

Biostereometricfigureinpilotposture.

IHADDShelmet.Requiresah64_htx.pssand
ht_visor.pssfiles.

Longbowpilotcockpitwithbiostereometricfigure
seatedincrewposition.

Longbow pilot cockpit with polybody figure
seated in crew position.

Longbow helicopter with biostereometric figure
seated in copilot cockpit.

Longbow helicopter with two biostereometric
figures seated in crew position.

Longbow helicopter with two polybody figures
seated in crew position.

lb_fwd_bio_r ilot.env

lb_fwd_pilot.env

Longbow CPG cockpit with biostereometric
figure wearing IHADDS helmet.

Longbow CPG cockpit with 95 th percentile
polybody figure.

Page G-7

lb_fwd_pilotO5_helmet.env

p31.env

p32.env

p33a.env

pilot05_helmetlb fwd.env

pilot05_lb_fwd.env

pilot_helmet.env

pilot_Ibaft.env

pilot lb fwd.env

LongbowCPGcockpitwith5thpercentile
polybodyfigurewearinghelmet.

LongbowCPGcockpitwith

LongbowCPG cockpit with 95 th percentile
biostereometric figure and IHADDS helmet.

l_ngbow pilot cockpit with 95th percentile
polybody figure seated in crew position.

5th percenlile polybody figure wearing IHADDS
helmet in seating posture in copilot cockpit
ellVil+(>lllllf'II[.

95 th percentile polybody figure in seated posture
in copilot environment (Can be imported into
copilot cockpit).

5th percentile polybody figure in seating posture
in copilot cockpit environment.

95 th percentile polybody figure in seated posture
in longbow pilot environment (Can be imported
into longbow pilot cockpit).

95 th pe_ccmile polybody figure in seated posture
in copilot e_ivironment (Can be imported into
lo_gbt)w _opilot-gunner cockpit).

6.1.3 Jack Command

dl.jcl

d2.jcl

d3.jcl

d5.jcl

d6dcl

Language Files (.jcl)

Luads demol .env file and makes it shaded.

Loads demo2.env file. Turns projections off,
displays 4-panel screen, makes window shaded,
and m:_kes visor transparent.

Loads d3.env, and sets up animation. In the
animauon, the copilot-gunner seated in the cockpit
reaches for the left MFD with his fight hand. This
animation al;:o requires the files d3.scr and d3.act.

Loads d5.erw, turns on 6 lights, and makes scene
shaded.

Loads demo0 env, makes it shaded, and sets up
intcYacti_'e bakmce reach. Creates reach constraint
b(tween figure and box for constraint demo.
Requires box.env file.

Page G-8

6.1.4

6.1.5

6.1.6

p31.jcl

p32.jcl

p33a,jcl

vis.jcl

Action Files (.act)

d3.act

Script Files (.scr)

d3.scr

Data Files

QO_ild l.cons

QQil_ll_dl.dat
QO_i2_l l_d 1.cons
QO_i2_l l_d 1.dat
QO i3_1 l_d 1.cons
QQi3_lldl.dat
QO_i4_ll.5dl.cons
QO_i4_! 1.5all.rat
QO_i4_l 1d 1.cons
QQi4_I l d 1.dat
QQi4_12.54 dl.cons
QO_i4 12.54 dl .dat
QO_i4 12 dl .cons
QO_i4_12_d 1.dat

coneden.left
coneden.right

contour.left
contour.right

frviewcone
lviewcone

qo_i0_ll_dl.cons
qo_i 1_1l_d 1.cons
qo_i2_l l_d I .cons
qo_i3_l 1d l.cons
qoi4 11.5 dl.cons
qoi4 11dl.cons
qo_i4_12.54_d 1.cons

Setup for p31.env (shading, transparency, etc.).

Setup file for p32.jcl

Setup file for p33a.env

Setup file for vision demo.

This file is used by d3.jcl. It contains the action
script.

This file is used by d3.jcl.

Vision confusion data and their contour data for
large
font size.

Cone density data and contours.

Iso contour data.

Static viewcones.

Confusion d::_a and contours for small font size.

Page G-9

qo_i4 12 dl.cons

rfviewcone Field of view (FOV) viewcones

6.2 DOWNLOADING PSURF FILES FROM CDE

Once a CSE environment has been loaded into the CDE, it can then be downloaded to Jack.

Simply start the CDE with the environment that will be downloaded on Jack. Then go to
the CDE menu and choose "Data Format". A window will appear at the bottom that asks
for one of several types of file formats. Select the Psurf format and click on OK. This
window will go away and another window will appear in the center of the screen that will
ask for a scaling factor. A 1 and a return should be typed in, unless the graphic is to be
scaled to a different size.

This window will be replaced by another window asking for a fdename to be typed in.
This is the filename that the psuff will be saved in. This window will go away and another
will appear in the upper left comer that has the legend "Select Bead Then Hit OK or Done"
and three buttons...OK, Done, and Undo. Now, to choose a section of the environment
that you want to save, simply click on that section so that a white line appears around the
edge, then click on "OK". Each section wil! be saved i,_ the order it is selected. When all

the sections have been selected, clicking o_ D_mc" _il save all those section in a psurf
file.

The psurf thus produced contains color info_mmion which Jack is not able to read directly -
Jack keeps the color information in an envir_mmcnt file. To fix this problem, a short awk
program was written to extract the color inft,_ m ati,;n fl_m the psuff files and to write them
to an environment file with the same name ;_d the s_ffix .env. To run this program, use
the following cornmand:

av,,k -f pss.awk psui t i_ss :-_pstn f.env

7.0 ABBREVIATIONS AND ACRONYMS

A3I

CDE
CSC
CSCI
Psurf
UPenn
SASS

8.0 GLOSSARY

Army-NASA Aircrcv, ',\irc,'ait lr_tegration
Cockpit Design Edia_:
Computer Software ('.,_n_ponent
Computer Software _',,_figtzrati,_n Item
Polyhedron surface
University of Pennsylvania
Spreadsheet Anthrol,_;nctric Scaling System

9.0 NOTES

9.1 LIMITATIONS

Jack is limited by the graphics and computation power of the machine it runs on.
Environments containing the highly detailed 1 ,ongbow c<x:k-pits or biostereometric figures
slow down the graphics processing enormousiy, sometimes to a point, where the operator
looses the feeling of interactive control. We have v,orked around this problem by
simplifying the environments we work with to a bare minimum. However, to take full

Page G- 10

advantage of our detailed environments and all the capabilities of Jack, a high end model
Iris workstation, such as the IRIS-4D-220GTX, is required.

9.2 FUTURE DIRECTIONS

One important aspect of Jack is the anthropometry data that Jack uses to create and display
figures. At the present, statistical data for the 5th, 50th, and 95th percentile male and
female are employed and interpolated to produce the whole range of figures (1 st through
99th percentile). To get a more realistic representation of figure data, it will be necessary to
have a database of anthropometric measurements from a large group of individuals. This
data base can then be searched either on a statistical or individual basis and a corresponding
figure can be represented in Jack.

It will also be necessary to do some validation work along the line. In the present phase,
the mannequin is placed into the cockpit solely on the ground of visual inspection by the
operator. The placement of the figure affects the reach analysis and the view from the
mannequins eyes. There are many other factors and parameters affecting the results
obtained by the Jack model. It is therefore important to have some validation for the most
basic conditions and functions, such as the placement of the mannequin into the cockpit and

the reach analysis.

10.0 APPENDICES

Page G-11

APPENDIX A m MENU ROAD MAP

Page G-12

Menu Roadmap

Main Menu

main menu

view menu

create menu

write menu

edit menu --"--"--"--"--"--"_'_

info menu

option menu

animation menu

quit

View Menu

main menu

view menu _-->

view menu

change view

snap view to site

move camera

move reference

set field of view

attach view to site

reset view to camera

set horizontal view scale

set vertical view scale

set zoom view scale

Page G-13

Create Menu

main menu

create menu ----_ _-->

create menu

read file

read environment file

read figure file

read peabody string

create figure from psurf

create site

create constraint

create light

body menu

primitive menu

Body Menu

main menu

create menu _-->

create menu

body menu _->

body menu 3

create 50th %lie male

create 50th %lie female

create 5th %lie male

create 5th %ile female

create 95th %lie male

create 95th %lie female

create 50th %lie polybody male

create 50th %lie polybody female

create 5th %ile polybody male

create 5th %lie polybody female

create 95th %lie polybody male

create 95th %lie polybody female

create 95th %lie male contour body

Page G-14

Primitive Menu

main menu

create menu _-->

create menu

primitive menu _-> _--->

primitive menu

create cube

create small cube

create cylinder

create pyramid

create torus

create ground plane

create ground mesh

Write Menu

main menu

write menu _--->

write menu

write environment

write positions

write figure definition

write segment as psurf

write segment as global psurf

write figure psurfs

write JCL log

Edit Menu

main menu

edit menu _->

edit menu

move menu

object menu

reach menu

constraint menu

attribute menu ----_

light menu

C$G menu

Page G-15

Move Menu

main menu J

edit menu _-->

edit menu]

move menu _-->

move menu

move figure

adjust joint

move figure with wiew

reset joint

reset figure

move site

move node

move edge

move face

Object Menu

main menu [

/

edit menu

1

edit menu 1

object menu _-----'_t

_--->

object menu

delete environment

delete figure

delete constraint

reroot figure

scale figure

,set joint type

freeze joint

thaw joint

rename figure

rename segment

rename site

rename joint

1

Page G- 16

Reach Menu

main menu

reach menu _-->

reach menu

move menu _-->

reach menu

interactive reach

reach site

multiplereach

turn active on

turn active off

turn steps on

turn steps off

Constraint Menu

I

main menu

edit menu _--->

editmenu

constraintmenu _->

constraint menu

create reach constraint

delete reach constraint

delete all reach constraints

change reach constraint

set reach iteration time limit

Attribute Menu

main menu

edit menu _--->

edit menu

attribute menu _--_

Page G-17

_->

attribute menu

set attribute diffuse

set attribute ambient

set attribute specular

set attribute glossiness

make face smooth

make face flat

make make segment smooth

make segment flat

give face new attribute

give face old attribute

give segment new attribute

give segment old attribute

give csurf new attribute

give csurf old attribute

Light Menu

main menu

editmenu _-->

edit menu

lightmenu -->

light menu

set light color

set light ambient

make lights local

make lights infinite

make lights visible

make lights invisiNe

CSG Menu

main menu

edit menu _--->

edit menu

CGS menu =>

CGS menu

union segments

intersect segments

difference segments

Info Menu

main menu

info menu _--->

info menu

figure info

segment info

site info

joint info

node info

edge info

face info

pixel info

show menory usage

show Jack version

Page G-18

Option Menu

main menu

option menu _--->

optionmenu

window menu

background menu

displaymenu

color menu

parameter menu

simulation menu

retina display

retina editor

vision information

trace menu

command menu

Window meu

main menu

option menu

option menu

window menu

Page G-19

_---->

window menu

ortho window menu

make window shaded

make window wireframe

make window ordinary

create shaded window

create wireframe window

create ordinary window

delete window

freeze window

thaw window

turn camera on

turn camera off

set window location

make viewer local

make viewer infinite

set window ambient

set window attenuation

wrile window image

Ortho window menu

main menu

option menu --'_

option menu I

window menu

window menu

orlho window menu
I

ortho window menu

four panel screen

create x window

create y window

create z window

Background Menu

main menu

option menu

i

option menu

background menu

Page G-20

background menu

turn background off

turn background on

turn grid off

turn grid on

turn stars off

turn stars on

make background shaded

make background wireframe

set grid blocks

turn projections on

turn projections off

turn x projections on

turn x projections off

turn y projections on

turn y projections off

turn z projections on

turn z projections off

Display Menu

main menu

option menu =>

option menu

dismay menu =>

J

display menu

make everything shaded
ii

make everything wireframe

make figure shaded
i

make figure wireframe

make segment shaded
|

make,segment wireframe

make segment transparent

turn segment on

turn segment off

turn site on

turn site off
,i

turn segment sites on

turn segment sites off

turn nodes on

turn nodes off

turn edges on

turn edges off

face enumeration on

face enumeration off

turn segment projections on

turn segment projections off

turn figure projections on

turn figure projections off

PageG-21

Color Menu

main menu

option menu

option menu

color menu _-->

color menu

set major grid color

set minor grid color

set major highlight color

set minor highlight color

set site color

set node color

set wheel color

set spoke color

Parameter Menu

main menu

option menu

option menu

parameter menu _->

parameter menu

set scene scale

set scene aux scale

set line width

set distance units

set distance precision

set angle units

set angle precision

set mass units

set mass precission

set rotation type

set peabody path

set view glide

set move glide

! change directory

PageG-22

Simulation Menu

main menu

option menu

option menu

simulation menu

simulation menu

simulation off

set simulation level 1

met simulation level 2

single set simulation

read squash ,

generate scafin_l squash

bind ioint to port ,

Retina Display

main menu

option menu ----_

option menu
I

retina display _-->

retina display

create retina window

create fiels of view cones

fixate eyes on site

interactive fixation

monocular/binocular map

zoom in/out of retina window

show eye scan

PageG-23

Retina Editor

main menu

option menu _-->

option menu

retina editor _-->

retina editor

create retina editor

draw left retina object

draw right retina object

draw filled retina objects

retroject left retina

retroject right retina

retroject both retina

clear both retina

clear retina objects

save retinda obits

load retina objects

load (20 confusion data

Ioa d qo confusion data

load Iso Focus contour data

load cone density data

zoom In/Out of editor window

Vision Information

main menu

opt=on menu _-->

option menu

vision information _.=>

vision information

create adaption info window

create legend window

create Ailoff window

initialize state info

set state information

PageG-24

Trace Menu

main menu

option menu _--> =>

option menu

trace menu -----> _-.>

trace menu

trace site

untrace site

trace segment

untrace segment

set trace color

clear trace

delete trace

Command Menu

main menu

option menu _--->

loptionmenu

command menu

command menu

help for command

help by subject

keymode on

keymode off

disable WM quit

disable graphics

enable graphics

bind command to key

describe key bindings

create communication port

send to communication port

close communication port

Page G-25

Animation menu

main menu

animation menu

i

_-->

animation menu

help

describe script

group menu

action menu

playback menu

read/write record menu

initialize animation

create keyframe from current state

delete key frame

change keyframe to current state

change keyframe normal time

change frame rate normal lime

erase animation

Group Menu

main menu

animation menu _--->

animation menu

group menu _-> _-->

group menu

create figure groups

create figure joints group

create figure location group

create camera group

create joint group

create segment nodes group

create mixed group

change group name

describe group

delete group

PageG-26

Action Menu

main menu

animation menu _ i _->

animation menu J

play back menu

play back menu

choose current action

create action

change action length

change action start time

change action interpolation

change action name

describe action

delete action

Playback Menu

main menu

animation menu _-->

animation menu

play back menu _-->

i

play back menu

read script file

read action file

step throu interpolated frames

repeat playback

playback in rea time

special playback

Page G-27

Read/Write Record Menu

i

main menu

animation menu

animation menu

read/write record menu
=p _--->

read/write record menu

read script file

read action file

write script file

write action file

save complete environment file for rendering

save incremental environment files for rendering

record animation

Page G-28

APPENDIX B --- DESCRIPTION OF MENU SELECTABLE COMMANDS

Page G-29

Description of Menu

VIEW MENU

change view

snap view to site

move camera

move reference

set field of view

attach view to site

reset view to camera

set horizontal view scale

set vertical view scale

set zoom view scale

Selectable Commands

Interactively changes view angle, direction, and zoom. The left
mouse button controls the horizontal swing, the middle mouse
button the vertical swing, and the right mouse button the zoom.
With the control key pressed, change view executes the same
function but in the "panning" mode. ESC terminates the process
or alternatively, ^C terminates and resets the view to its original
position.

Changes the view reference point to a new location.

Changes view "non-interactively"

Changes the view reference point.

The default field of view is 40°. Angles of more than 70o give
distorted images.

Moves view to a specified site.

Resets view after it has been changed by some of the above
commands.

Changes the sensitivity of the left mouse button for viewing.

Changes the sensitivity of the middle mouse button for viewing.

Changes the sensitivity of the right mouse button for viewing.

CREATE MENU

read file

read environment file

read figure file

read peabody string

create figure from psurf

create site

create constraint

Files with the following extensions can be read with this
command: .env, .fig, .pss, .bps, .jcl.

Reads an environment file if the suffix is not .env.

Reads a figure file if the suffix is not .fig.

Reads a string of peabody syntax.

Reads a psurf file if suffix is not .pss.

Prompts for segment on which to create site.

Do not confuse this with the reach constraints.

Page G-30

createlight Createsa light source.

BODY MENU

(The following commands create the specified figures,)

create 50th percentile male

create 50th percentile female

create 5th percentile male

create 5th percentile female

create 95th percentile male

create 95th percentile female

create 50th pereendle polybody male

create 50th percentile polybody female

create 5th percentile polybody male

create 5th percentile polybody female

create 95th percentile polybody male

create 95th percentile polybody female

create 95th percentile by height
biostereometric male

PRIMITIVE MENU

create cube

create sphere

create cylinder

create pyramid

create torus

create ground plane

create ground mesh

(The following commands create the specified objects.)

WRITE MENU

Page G-31

write environment

write positions

write figure definition

write segment as psuff

write segment as global psurf

write figure psuffs

write JCL log

MOVE MENU

move figure

adjust joint

move figure with view

reset joint

reset figure

move site

move node

move edge

move face

OBJECT MENU

delete environment

delete window

delete constraint

Writes the entire environment to a file which should have the
suffix .env.

Writes

Writes

Writes

Writes

Writes

Writes

the positions of all the figures in the environment.

figure file of a specifies figure.

segment psurf to a file as is.

segment as global psuff.

figure as a global psurf.

script file of interactive session.

Move figure to new position.

Joint angles may be adjusted, one degree at a time.

Attaches the view to a figure and allows moving the view.
When done, it reattaches the view to the the previous site.

Resets joint to its default position.

Resets figure to its default position.

Move a site to a new location

Moves node. This command alters the coordinates of the psurf
node but it does not alter the file from which it was originally
read. To save the changed geometry, write the psurf back to
file.

Moves a pair of nodes. Same rules as for save node.

Moves all nodes in a selected face.

Deletes the environment in the current window.

Deletes a selected figure from an environment. If the figure has
a constraintattachedto it, it willbe deleted too.

Removes a constraint.

PageG-32

reroot figure

_al¢ figure

set joint type

freeze joint

Thaw joint

rename figure

rename segment

rename site

rename joint

REACH MENU

interactive reach

reach site

multiple reach

turn active reach on

turn active off

turn steps on

turn steps off

CONSTRAINT MENU

create reach constraint

delete reach constraint

delete all reach constraints

This command changes the root site of a figure. In the process,
the figure "location" is also changed since the location is the
global placement of its root site.

Each psuff is sealed in its own coordinate system.

Sets the degree of freedom in a joint.

A frozen joint may not be manipulated and will not be changed
by the inverse kinematics algorithm.

Unfreezes a joint.

Prompts for new figure name.

Prompts for new segment name.

Prompts for new site name.

Prompts for new joint name.

Allows you to interactively drag an end effector. Prompts for
goal type, end effector site, and a base joint.

Allows to specify single reach goal. Prompts for goal type, goal
site, end effeetor, and base joint.

Allows to specify several reach goals, Prompts for goal types,
goal sites, end effectors, base joints, and weight factor.

Adds more active segments to reach chain if goal cannot be
reached with the specified joint chain.

Default setting. Only specified joint chain is used for reaches.

Default setting. Intermediate position of the figure are displayed
as reach algorithm is executed.

Intermediate positions are not displayed as algorithm is
executed.

A restriction to the reach commands is created. Prompts for
goal type, goal site, end effector, base joint, and weight factor.

Removes constraint imposed by "create constraint".

Removes all constraints.

Page G-33

changereach constraint

set reach iteration time limit

ATI'RIBUTE MENU

set attribute diffuse

set attribute ambient

set attribute specular

set attribute glossiness

make face smooth

make face flat

make segment smooth

make segment fiat

give face new attribute

give face old attribute

give segment new attribute

give segment old attribute

give csurf new attribute

give csurf old attribute

Uses default parameters of the previous reach constraint.

Puts a time limit on each iteration step for the reach algorithm.

Sets surface attribute "diffuse" of art object. Describes the color
of an object when k is illuminated.

Sets surface attribute "ambient" of an object. Describes the color
of an object when it is not illuminated.

Sets surface attribute "specular" of an object. Describes the
color of the specular highlights of an object.

Sets surface attribute "glossiness" of an object. Describes the
specular scattering of the surface.

Applies Phong shading to specified face.

Default. The surface of an object is modeled as discrete
polyhedron.

Applies Phong shading to specified segment.

No Phong shading.

Creates a new attribute and associates it with the specified face.

Allows to select a previously defined attribute and associate with
specified face.

Creates a new attribute and associates it with the specified
segment.

Allows to select a previously defined attribute and associate with
specified segment.

Sets the attribute association for all faces which are connected to
a selected face.

Returns old attribute to csurf.

Page G-34

LIGHT MENU

Set Hght color

set light ambient

make lights local

make lights infinite

make lights visible

make lights invisible

By default, lights arc white, but their color may be changed by
this command.

Sets the ambient light parameters.

The light direction vector used in the light model is different for
each point in the scene.

The light direction vector used in the light model is the same for
all points in the scene.

"rums on the lights and and makes visible the figures associated
with the lights.

Makes the figures associated with the lights invisible. Does not
turn off the lights.

CSG MENMU

union segment

intersect segments

difference segments

(These commands don't work. They are supposed to perform
constructive solid geometry operations.)

INFO MENU

figure info

segment info

site info

joint info

node info

edge info

face info

pixel info

show memory usage

show Jack version

(The following commands give information about the specified
object).

Page G-35

WINIX)W MENU

make window shaded

make window wireframe

make window ordinary

create shaded window

create wireframe window

create ordinary window

delete window

freeze window

thaw window

turn camera on

turn camera off

set window location

make viewer local

make viewer infinite

set window ambient

set window attenuation

write window image

ORTHO WINDOW MENU

four panel screen

create x window

Once a window is made shaded, the attributes of individual
figures and segments cannot be displayed (i.e. make segment
wire frame).

Once a window is made wireframe, the attributes of individual
figures and segments cannot be displayed (i.e. make segment
shaded).

In an ordinary window, the attributes of individual figures and
segments can be displayed.

Creates a shaded window with a slightly different view.

C'reates a wireframe window with a slightly different view.

Creates an ordinary window with a lightly different view.

Deletes a window without quitting Jack.

A frozen window is not redrawn while executing the "change
view" command until ESC is pressed.

Unfreezes a frozen window.

Displays figure associated with camera.

Hides figure associated with camera.

Prompts user for window coordinates and redraws window in
specified location.

Controls the lighting properties.

Controls the lighting properties.

The default ambient lighting can be changed by this command.

Attenuates lighting values.

Dumps window as a .rle file for printing.

Creates four equal sized windows, one ordinary and three
orthogonal.

Creates a x orthogonal window.

Page G-36

create y window

create z window

BACKGROUND MENU

turn background off

turn background on

turn grid off

turn grid on

turn stars off

turn stars on

make background shaded

make background wireframe

set grid blocks

turn projections on

turn projections off

turn x projection on

turn x projection off

rum y projection on

turn y projection off

turn z projection on

turn z projection off

DISPLAY MENU

make everything shaded

make everything wireframe

make figure shaded

Creates a y orthogonal window.

Creates a z orthogonal window.

Removes the grid that represents the ground plane of the scene
and the stars in the sky.

Creates a grid which represents the ground plane of the scene
and stars in the sky.

Turns ground plane grid off but leaves stars.

Creates a grid which represents the ground plane of the scene.

Removes the stars from the sky.

Places stars in the sky.

Makes grid shaded.

Displays grid in wireframe.

This controls the size of the ground plane. Prompts user to
input major and minor grid size.

Turns all orthogonal projections on.

Turns all orthogonal projections off.

Turns on x orthogonal projections.

Turns off x orthogonal projections.

Turns on y orthogonal projections.

Turns off y orthogonal projections.

Turns on z orthogonal projections.

Turns off z orthogonaI projections.

Display window in shaded mode

Display window in wireframe mode

Displays specified figure in shaded mode.

Page G-37

make figure wireframe

make segment shaded

make segment wireframe

make segment transparent

turn segment on

turn segment off

turn site on

turn site off

turn segment sites on

turn segment sites off

turn nodes on

turn nodes off

turn edges on

turn edges off

face enumeration on

face enumeration off

turn segment projection on

turn segment projection off

turn figure projections on

turn figure projections off

COLOR MENU

set major gridcolor

set minor grid color

set major highlight color

set minor highlight color

set site color

Displays specified figure in wirefi'ame.

Displays specified segment shaded.

Displays specified segment wireframe.

Displaysspecifiedsegmentasu'ansparent.

A turned-offsegmentcanberedisplayedby this command.

A turnedoff-segmentisnotdisplayed.

Displayssiteasa readaxes,labeledwithx,y, and z.

Turnssitemarkerof specifiedsiteoff.

Displayallsitesasorosshairs.

Don'tdisplaysegment'ssites.

Displaysnodesascrosshair.

Cancelsdisplayofnodes.

Error:Thiscommand turnsedgesoff.

Error:Thiscommand isnotfunctioningcorrectly.

The indexofeachfacewillbe displayedinthecenter.

Turnsoffdisplayoffaceindices.

Turnson x,y,and zprojectionsofsegment.

Turnsoffx,y,and zprojectionsofsegment.

Turnson x,y,and zprojectionsoffigure(default).

Turnsoffx,y,and zprojectionsoffigure.

Setscolor ofmajorgridofgroundplane.

Setscolorofminorgridofgroundplane.

ChangescolorJackusestoindicatepickedfigures.

ChangescolorJackusestoindicatepickedfigures.

Setscolorofsitemarker.

Page G-38

setnodecolor

setwheelcolor

setspokecolor

PARAMETER MENU

setscenescale

set scene aux scale

set line width

set distance units

set distance precision

set angle units

set angle precision

set mass units

set mass precision

set rotation type

set peabody path

set view glide

set move glide

change directory

SIMULATION MENU

simulation off

set simulation level 1

set simulation level 2

single set simulation

Setscolorofnodemarkers.

Setscolorofrotationindicator.

Setscolorofrotationwheelspoke.

Default is 100, which means that a human figure fills most of the
screen. The scale can be changed by this command.

Changes the auxiliary scene scale which includes sites, nodes,
and rotation wheel. By default, the setting is 1/4 of the scene
scale.

Default is 1. May be increased.

Legal units are: mm, cm (default), m, in, ft,yd, mi.

By default, the precision is set to two decimal places.

Legal units are: deg (default) and radians.

Change value from default 2 decimal.

Legal units are: g, kg, and lb.

Change value from default 2 decimal.

Prints the rotation part of the homogeneous transformation either
in terms of xyz (default) or the quat operator.

Sets the path to the peabody library.

Select mouse sensitivity for view command.

Select mouse sensitivity for move command.

Lets you change directory from within Jack.

Simulation turned off completely.

Default. Jack evaluates the simulation function only during
object manipulation: moving figures, adjusting joints, etc.

Continuous evaluation of the simulation function.

Simulation stops when minimum of function is found.

Page G-39

readsquash

generatescalingsquash

bind joint to port

RETINA DISPLAY MENU

create retina window

create field of view cones

fixate eyes on site

interactive fixation

monocular/binocular map

zoom in/out of retina window

show eye scan

RETINA EDITOR MENU

create retina editor

draw left retina object

draw right retina object

draw filled retina object

retroject left retina

retroject fight retina

retroject both retina

clear retina objects

save retina objects

load retina objects

zoom In/Out of editor window

Define deformation matrix.

Lets you deform figures.

Waits for a specific connection on a specific port.

Creates a window displaying a retina, with the view projected
onto it in retinal coordinates.

Prompts for figure selection. Draws 60 ° field of view cones
from each eye of the selected figure.

Fixates the view to a specified site. Draws lines from each eye
to the site.

The fixation point can be moved interactively.

By default, the retina window shows the images perceived by
both eyes. To simplify, a monocular view can be displayed.

Zoom toggle.

Trace of eye scan.

Creates a retina window into which user may draw.

Accepts user input for fight retina.

Accepts user input for left retina.

Displays retina object in shaded mode.

Object of left retina is projected into 3-dimensinal space.

Object of right retina is projected into 3-dimensional space.

Objects of both retina is projected into 3-dimensional space.

Clears retina window

Writes coordinates of retina objects to file.

Reads objects into retina editor window from file.

Zoom toggle.

Page G-40

VISION INFORMATION MENU

createadaptation info window

create legend window

create Aitoff window

initialize state info

set state information

TRACE MENU

trace site

untrace site

trace segment

untrace segment

set trace color

clear trace

delete trace

Creates a window that gives information about: retinal map
orientation, field of view objects, and fixation distance.

Creates a legend window that gives information about color
codes etc.

Creates an Aitoff window with the view from a specified figure.

Initializes the vision parameters to default values.

Creates a meter window that allows to adjust clipping planes,
lumination and illumination parameters.

Creates a trace of the site if the segment, containing the site, is
moved.

Turns off tracing of site but leaves trace intact.

Creates a trace of the segment if the segment is moved.

Turns off tracing of the segment, but leaves trace intact.

The color of an existing trace can be changed.

Clears trace without disabling it.

Deletes trace and turns off tracing.

COMMAND MENU

help for command

help by subject

keymode on

keymode off

disable WM quit

disable graphics

enable graphics

bind command to key

We don't have on-line help.

We don't have on-line help.

When turned on, expects keyboard input.

Returns mode to default.

Prevents user from accidentally quitting jack.

Window will not be drawn until executing "enable graphics".

Redraws window after it has been disabled.

After a command is bound to a key, the command can be
executed by pressing the specified key.

Page G-41

describekeybindings

createcommunicationport

sendtocommunicationport

close communication port

ANIMATION MENU

help

describe script

initialize animation

create key frame from
current state

delete keyframe

change key frame to
current state.

change keyframe normal time

change frame rate

Displays a list of all the key bindings.

Waits for a connection by a client program to be established.

Lets user send message to communication port.

Closes a communication port.

Prints instructions for using the animation menu.

Prints script on screen

This command needs to be called once before the animation
process can be started. For simple animation, the default values
may be accepted.

A key frame is generated as part of the animation script. As a
keyframe normal time, choose 0 for first and 1 for last keyframe
and values such as 0.2,0.6 in between.

Removes a keyframe from the script.

Changes a keyframe from the script.

Lets you changes the normal time of a keyframe

The default is 30 frames per second.

GROUP MENU

create figure group

create figure joints group

create figure location group

create camera group

create joint group

create segment nodes group

create mixed group

change group name

describe group

Uses all joints of a figure plus its location (root).

Uses all joints of a figure.

Uses a figure's location (root).

Uses the camera's location.

Uses a single joint.

Uses nodes of a segment. (Used for deformation)

May use any number of members of the above type.

Replaces old group name.

Prints all group members on screen.

Page G-42

deletegroup A group may be deleted.

ACTION MENU

choose current action

create action

change action length

change action start time

change action interpolation

change action name

delete action

Current action is the most recently created action.

Create a new action.

The action time, which was set by "initialize animation, may be
changed by this command.

With multiple actions, the start times can be changed.

Choose between spline (default) and linear.

This does not create a f'de.

An action can be deleted.

PLAYBACK MENU

step through key frames

playback

step through interpolated
frames

repeatplayback

playbackinrealtime

specialplayback

Letsyou lookatthekey framesyou havecreated.

Singleplaybackofanimation.

Steps through the in-between frames the program has
generated.

Continuous playback of the animation.

Playback speed may not be consistent.

Use for squashed objects.

READ/WRITE RECORD MENU

read script file

read action file

write script file

write action file

save complete environment
files for rendering

save incremental environment

Reads a file with a .scr suffix.

Reads a file with a ACT

Generates environment, script, and action files,

Generates action file only.

Generates environment files of key frames.

Generates environment files of incremental frames.

Page G-43

filesfor rendering

record animation Recording animation on video.

Page G-44

APPENDIX C -- JACK DIRECTORY STRUCTURE

Page G-45

usr/peopic/p_vost/upenn

JACKDIRECTORY

4D

eye
bin

include

I

lib

4D lib

include,,

e_

longbow2

wave

bin

lib

rank

lest

PageG-46

l._ntLS

g12

_k

llb

g12

4.Sodg

lib

xlmd

Rlt

_!

_k

-_-'mds

Jm_Bu

de

v_

ipll

vp $_'C

-_k

_.mds

jm_lu

psurf

vOc

u_./people/prevost/upenn

eyeA.3

__..fix

bin

include

lib Gnu errors

_thropomcu'y _bodies

_data

buttress

help

images

pmbody

!

._ntm_alizc

_poster

_erbody

7hao

50h

50w

5w

95h

,,95w

evaman_._.._p

_50h
l_e_[-"---,_O w

maleS0

Page G-47

lib

neiat _

Im

_ee

,,nt

o_o

uI

_luclo

Page G-48

APPENDIX D m ANTHROPOMETRY DEMO 1990

Page G-49

ANTHROPOMETRY DEMO 1990

INTRODUCTION OF ANTHROPOMETRY ANALYSIS BY B. SMITH:

One of the most fundamental requirements for MIDAS is a physical
representation of the human operator to explore their interaction within the
geometry of a crew station or aircraft. To meet this need we have Jack, a
dynamic anthropometric model developed through a grant with Dr. Norm
Badler at the University of Pennsylvania. Jack is an interactive graphic
package that allows the creation and manipulation of 3-D human figures,
both statistical and individual, in a 3-D object space, allowing a designer to
explore reach, fit, and human motion. Christian Neukom will demonstrate
several of the features of this model and following him will be a discussion
by Dr. Norm Badler from UPenn, to describe a little bit about where he
intends to take Jack in the Future.

INITIAL SETUP:

open window; god1; stow

open window; god2; stow
open window; god3; stow
open window; godS; stow

START DEMO:

Page G-50

DEMOI (Displayot a selectionof polybody andbiostezeometri¢figures)

pop first window
Jack is capable of displaying and manipulating a range of either individually
defined or statistical body figures. Here I'm showing you a selection of

polybody figures including the 5th, 50 th, and 95 th percentile male and
female based on the NASA Aircrew Demographics for the Year 2000
contained in NASA std 3000. Also shown is a 95 th percentile by height
biostereometric male figure. Associated with these figures is a great deal of
anthropometry data regarding segment size, strength, center of mass, and
joint limits, which I will go into more detail on later. What I want to show
you now is a couple of the new features of Jack.

quit jack window
DEMO2 (Female polybodyfigureis set-upto do balancedreach

male polybodyfigurehas two handsconstrainedto a box)
pop window2
do balanced reach (ready to go, just move mouse)

One of the new features of Jack is balanced reach. I'm demonstrating it
with an interactive reach toward the floor. As you can see, the mannequin
uses the opposite leg to balance its body.

hit Esc to quit reach

move figure (box) (up�down and forward�backward only)
Another addition is the facility of the various reach constraints. The
mannequin's hands are constrained to the sides of the box. As I move the
box, the hands follow simulating handling of the box. This feature is useful
when the mannequin interacts with a maintenance environment for example.
I have turned on the site tracing on the mannequin's left hand. The trace,
shown as a yellow line, shows us the exact path and indicates if the hand
went through any objects since there is no built-in collision detection and
avoidance.

quit jack

Page G-51

DEM03

pop

hit E$c

quit

(Co-pilot Gunner crewstation with polybody figure doing a reach with
the fight hand to the left Multi Functional Display in an animation script.
A "figure Info" command has been inserted into the script to prtwent 1he
animation from executing - an Eec will start the animation)

Jack can be used to explore human figure interactions in a 3-D space
environment either interactively as I am doing now, through animation
script files, or controUed through our integrated simulation as you will see
later. What I'll do now is import one of our Longbow crewstation f'des
created by S Systems from Apache source data and execute a few
movements.

window3 (reach animation)
l've loaded the Co-pilot Gunner crewstation, with several extraneous
portions deleted to speed up graphics processing. With the new Longbow
cockpit changes, one of the questions a designer may want to answer is ff
the two Multi Functional Displays can comfortably be used with either
hand, since a great many cockpit functions are enabled by activating soft-

switches on the MFD touch screens. I've placed a 95 th percentile figure
into the seat and as you can see, a rather large Optical Relay Tube protrudes
significantly from the front panel in between the left and right MFDs.
tostartanimation

Iwillnow run an animation scriptthatIpreviouslysetup tosee ifthe Co-
pilotGunner can reach theleftMFD with hisrighthand. Ihave conswained

hislefthand tothecoUectiveand I'm allowing him tomove through his

waist--sohisseatbeltinertialreelisnot locked. Now generally,the left
MFD isoperatedwith thelefthand and therightMFD with the righthand

but theremay be situationswhen thisisnot possible-forexample ifone of

thehands isbusy with anothertaskorone of theMFDs isout of order.We

can conclude from watching thisanimationthatitisfairlycramped quarters
and theCo-PilotGunner has tocontorta bittoperform thistask.

jack

Page G-52

DEMO4

god4

move

quit

(BiostereometricfigurewearingIHADDS helmet, visor and monacle.
Figureis displayedin 3-D windowand in 3 orthogonalwindows)

Another one of the new features of Jack concerns body figure data. While
the polybody figures are quick to generate and manipulate, Dr. Badler has
incorporated some biosteriometric scanned body images from the Airforce
which provide a more pleasing graphical image together with more details in
certain segments of the body such as the torso and head. These figures, one
of which is shown here, contain over 6000 data points each and are based
on actual subjects from three different somatotypes in each sex. I am also
showing an Apache IHADDS helmet, visor, and monacle with this figure
since we've received a number of questions about wether the effects of
protective clothing or flight gear can be represented in Jack. The three
orthogonal windows are also a new feature, and are extremely handy to line
up objects such as this helmet for proper placement.
helmet

Jack also allows you to turn individual portions of figures into wireframes
or transparent as shown in the visor.

Jack

DEMOS (Apache Longbow helicopterwith two biostereometric figuresseated in
crew position)

pop window 3
Before I leave Jack, HI bring up a window showing you the complete
Apache Helicopter with two Biostereometric figures seated in the crew
positions. While impressive to look at, this figure has about 10'000
polygons, and it unfortunately slows down the graphic processing
enormously, especially in shaded mode. As these hardware platforms
evolve, perhaps we will be able to easily manipulate environments as
complex as this one.

Page G-53

DEMO6 (SpreadsheetAnthropometryScallngSystem, SASS)

go through poster first

god6
Displayed here on the screen is the anthropomeu'y slxeadsheet displaying the

segment dirncns/ons of the .4'0h percentile. Othe_ anthropomelric groups can easily
be selected to view or modify the data. Below is a summary of the data being
displayed to allow the user m have a "global" view of the figure he is working on.
Presently there are eleven labels clef'mad:population, gender, mass, stature, group

percentile, strength type, motion, speed, handedness, training, and fatigue level.
select Bottom Head and change y to 325'
select Group %ile and change to new %ile

Let's look at an example. Let's say we want to find out what percentile figure can
wear a certain sized helmet. We simpl_, input the dimension (3.25") in the
respective cell and read the conespondmg percentile. We can then change the
group percentile to display the other dimension of that group.

click on Query --• Database Query Screen
click on Input Data; from keybord enter: people_lb
click on Query Database and build query:
male, stature • 160 and stature < 170, done

Let us now turn our attention to the database query spreadsheet. Ftrst I'm going to
load the person database. Let's say we want to know, if there are any individuals
in this database who are male and have a height of 160 - 170 cm. The query is
conveniently built through menu selection. We come up with 3 individuals who
satisfy these requirements. The data of these individuals could now be displayed in
the anthropometry spreadsheet and their figures displayed in Jack.

Summary
This concludesthe anthropometry presentation. I had only time to show you

a small selection of the featuresof Jack and SASS. If you like to know any oth_ features
or more details about the ones I presented,pleasecome to me in the individual discussion

session after the formal demo.

Page G-54

APPENDIXE _ README FILE

Instructions for Installing Jack from rope.

Page G-55

INSTALLING THE JACK SOFTWARE

Create a directory where you want to copy your files to, i.e.

mkdir/usr/upenn (if you are super user)
or mkdirupenn (ifyou areinyourhome dir)

Remember thatyou need41 Mb ofdiskspace.

Read the tape into this directory, i.e.

tar xvo

When the software is extracted from the tape, it will create
the following directories:

4.5 contains source ftles

4D contains executable fries

gen contains figure and other data files

sass contains files used by the Spreadsheet
Anthropometric scaling system

Jackshell Source this shell to set up environmetal
variables used by Jack and sass.

Readme This file

Edit the Jackshell and change the UPENN environmental variable.
UPENN contains the absolute path from the root to the directory
into which you copy the files from the tape. Find the line
"setenv UPENN/usr/upenn" and change the path.

After making the changes source the JacksheU to set all the paths:

source Jackshell

To run Jack, change to the 4.5/longbow directory and run Jack:

cd 4.5flongbow
jack vis.jcl (vis.jcl is an environment example)

If Jack runs but cannot find the files it needs to load, check
the path set in UPENN. If it runs and the crashes, it might be
because of a different version of the operating system. In this
case, try to relink Jack by executing:

Page G-56

cdSUPENN/4.5/gen/src/jack
make

fftherearestillproblems,trytore.compilethecompleteprogramby
executingthefollowingcommands:

cd SUPENN/4.5/gen/src/lib
make

Thiscommand willexecuteamakefileineachofitssubdirectories.

Afterthemake completesrunthecommand

$UPENN/4.5/gen/src/jack/make.

If,afterundertakingallofthesesteps,you havestillproblems,
pleasecontactMike PrevostatE-mailaddress:

prevost@ cos.arc.nasa.gov

orChristianNeukom at:

neukom@ cos.arc.nasa.gov

To run sass,changetothesassdirectoryand typesass.
If it doesn't run, relink it by executing make in the sass
directory.

Page G-57

Annex H

Army-NASA Aircrew/Aircraft Integration Program: Phase IV

Man-Machine Integration Design and Analysis System (MIDAS)

Software Detailed Design Document

Vision Models

prepared by

Michael Prevost

Table of Contents

1.0 INTRODUCTION ... 1
1.1 IDENTIFICATION OF DOCUMENT ... 1
1.2 SCOPE OF DOCUMENT ...2
1.3 PURPOSE AND OBJECTIVES OF DOCUMENT 2

2.0 RELATED DOCUMENTATION .. 2
2.1 APPLICABLE DOCUMENTS ... 2
2.2 INFORMATION DOCUMENTS ... 3

3.0 CONCEPT .. 4
3.1 DEFINITION OF VISION MODELS .. 4

3.1.1 Purpose and Scope .. 4
3.1.2 Goals and Objectives .. 4

3.2 USER DEFINITION ... 5
3.3 CAPABILITIES AND CHARACTERISTICS 5
3.4 SAMPLE OPERATIONAL SCENARIOS 5

4.0 REQUIREMENTS .. 7
4.1 REQUIREMENTS APPROACH AND TRADEOFFS 7
4.2 HARDWARE ENVIRONMENT ... 8
4.3 SOFTWARE ENVIRONMENT .. 8
4.4 EXTERNAL INTERFACE REQUIREMENTS 9

5.0 DESIGN .. 9
5. I ARCHITECTURAL DESIGN .. 9

5.1.1 Design Approach and Tradeoffs 9
5.1.1.1 Legibility Model .. 9
5.1.1.2 View Cones ... 10
5.1.1.3 Color .. 11
5. I. 1.4 Mapping Inaccuracies I 1

5.1.2 Architectural Design Description 12
5.1.3 External Interface Design ... 13

5.2 DETAILED DESIGN .. 13
5.2.1 Detailed Design Approach and Tradeoffs 13

5.2. I. I Volume Perimetry Considerations 13
5.2.1.1.1 Three Dimensionality of Retinal Images 13
5.2.1.1.2 Concurrent Retinal Images 13
5.2.1.1.3 Retinal Projections 14
5.2.1.1.4 Volume Visual Field 14

5.2.1.2 Legibility Model Considerations 14
5.2.1.2.1 Basic strategy 15
5.2.1.2.2 Choice of performance measure 15
5.2.1.2.3 Incremental improvement 16

5.2.2 Detailed Design Description .. 17
5.2.2.1 Compilation Unit ... 17

5.2.2.1.1 Initialization and Support Functions 18
5.2.2.1.1.1 Time Base (not implemented) 18
5.2.2.1.1.2 Vector Functions 18
5.2.2.1.1.3 Initialize Vision Model 18
5.2.2.1.1.4 I/O Functions 19

5.2.2.1.2 Eye Model Editor 20
5.2.2.1.2.1 Retinal Model Editor 21

5.2.2.1.2.2 Perimeter Objects 21
5.2.2.1.2.3 Default Template 21
5.2.2.1.2.4 Pathological Objects 21
5.2.2.1.2.5 Static After Image 21

Table of Contents

5,2.2.1,2.6 Concentric Objects 21
5.2.2.1.2.7 Performance Objects 21
5.2.2,1.2.8 Optics Model Editor (Not
Implemented) ... 21
5.2.2.1.2.9 Temporal Model Editor (Not
Implemented) ... 21
5.2,2.1.2.10 Geometric Model Editor (Not
Implemented) ... 21
5.2.2.1.2.11 Environmental Factors Editor
(Not Implemented) 22

5.2.2.1.3 Display Manager 22
5.2.2.1.3.1 Retinal Model Display 22
5,2,2.1.3,2 Fixation Display 23
5.2.2.1.3.3 Volumes Display 23
5.2.2.1.3.4 Function Display (not
implemented) ... 23
5.2.2.1.3.5 Environmental Display 23

5.2.2.1.4 Models ... 26
5.2.2.1.4.1 Environment Model 26

5.2.2.1.4,1.1 Workspace Model (
Not Implemented see future directions
) .. 26
5.2.2.1.4.1.2 Illumination Model (
Not Implemented see future
directions) 26
5.2.2.1.4.1.3 Anthropometric
Model ... 26

5.2.2.1.4.2 Eye Model 27
5.2.2.1.4.2.1 Geometric Model 27
5.2.2.1.4.2.2 Retinal Model 28
5.2.2.1.4.2.3 Optical Model (not
implemented) 28
5.2.2.1.4.2.4 Temporal Model (not
implemented) 28

5.2.2.1.5 Directory structure 30
5.2.2.2 Detailed Design of Compilation Units 34

5.2.2.2.1 The Legibility Model 34
5.2.2.2.1.1 Input parameters and stimulus
format .. 34
5.2.2.2.1.2 Front end calculations 34
5.2.2.2.1.3 Fixation depth 34
5.2.2.2.1.4 Contrast reduction 35
5.2.2.2.1.5 Eccentricity scaling 35
5.2.2.2.1.6 Linear filtering 35

5.2.2.2.1.6.1 Pyramid
decomposition 35
5.2.2.2.1.6.2 Computing filter
gains .. 35
5.2.2.2.1.6.3 Steerable filtering 36
5.2.2.2.1,6.4 Energy calculation 36
5,2.2.2.1.6.5 Point non-linearity 36

5.2.2.2.2 Vision Enhanced Jack Interface
Functions ... 37

5.2,2.2.2.1 The VVF Display 37

Table of Contents

5.2.2.2.2.2 The Retina Display 38
5.2.2.2.2.3 Field of View Cones 38
5.2.2.2.2.4 Total Field of View Plots 38
5.2.2.2.2.5 Retrojections 38

5.2.3 External Interface Detailed Design 39
5.2.4 Coding and Implementation Notes 39

6.0 User's Guide ... 39
6.1 OVERVIEW OF PURPOSE AND FUNCTION 39
6.2 INSTALLATION AND INITIALIZATION 39
6.3 STARTUP AND TERMINATION ... 39
6.4 FUNCTIONS AND THEIR OPERATION 40

6.4.1 Sarnoff Legibility Model Functions 40
6.4.2 VEJI Options ... 42

6.4.2.1 Retina Display .. 42
6.4.2.1.1 Create Retina Window 42
6.4.2.1.2 Create Field of View Cones 42
6.4.2.1.3 Create Monocular Field of View Cones 42

6.4.2.1.4 Fixate eyes on site 42
6.4.2.1.5 Interactive fixation 43
6.4.2.1.6 Monocular/Binocular Map 43
6.4.2.1.7 Zoom in/out of retina window 43
6.4.2.1.8 Show eye scan 43

6.4.2.2 Retina Editor .. 44
6.4.2.2.1 Create Retina Editor Window 44
6.4.2.2.2 Draw left/right retina object 44
6.4.2.2.3 Draw filled retina objects 45
6.4.2.2.4 Retroject left/right/both retina 45
6.4.2.2.5 Clear retina objects 45
6.4.2.2.6 Save/Load retina objects 45
6.4.2.2.7 Load QO/qo confusion data 45
6.4.2.2.8 Load Iso Focus / Cone density contour
data .. 45
6.4.2.2.9 Zoom in/out of editor window 45

6.4.2.3 Vision Information ... 46
6.4.2.3.1 Create adaptation info window 46
6.4.2.3.2 Create legend window 46
6.4.2.3.3 Create Aitoff window 46
6.4.2.3.4 Initialize state information 46

6.5 ERROR AND WARNING MESSAGES .. 46
6.6 RECOVERY STEPS ... :... 47

7.0 ABBREVIATIONS AND ACRONYMS ... 47
8.0 GLOSSARY .. 47
9.0 NOTES .. 47

9.1 FUTURE DIRECTIONS .. 47
9.1.1 Illumination Model .. 47

10.0 APPENDICES .. 50
APPENDIX A w FIGURES ... 51
APPENDIX B -- SARNOFF LEGIBILITY MODEL 52
APPENDIX C -- LIGHTHOUSE VP SOURCE CODE
DOCUMENTATION .. 53
APPENDIX D -- EYE PHYSIOLOGY ... 54

111

Table of Contents

Figure 1. MIDAS Vision Model Overview .. I
Figure 2. MIDAS Vision MOdel Architecture ... 12
Figure 3. Legibility Model Overview .. 15
Figure 4. Binocular Vision Hierarchy Chart .. 17
Figure 5. Initialization and Support Functions .. 18
Figure 6, Eye Model Editor ... 20
Figure 7. Display Manager .. 22
Figure 8. Models ... 24
Figure 9. Environmental Model ... 25
Figure I0. Eye Model .. 27
Figure 1I, Jack Directory Structure .. 29
Figure 12, Legibility Model ... 33
Figure 13. Contrast Detection Thresholds ... 37
Figure 14. Retina Display Menu .. 41
Figure 15, Retina Editor Menu .. 44
Figure 16. Vision Information Menu ... 46

iv

1.0 INTRODUCTION

1.1 IDENTIFICATION OF DOCUMENT

This is the Software Product Specification for the Vision analysis modules of the Man-
machine Integration Design and Analysis System (MIDAS). Included is documentation for
theDavid SarnoffLegibilityModel (LM),theLighthouse'sVolume PerimctryModel (VP)
and theVisionEnhancedJackInterface(VEJI).Thesethreecomponentscombine toform
theMIDAS visionmodel.DocumentationforthestandardJacksoftwareisdocumentedin •
Annex G. The visionmodel (insidethecirclearea)isshown inthecontextoftheentire

MIDAS systeminFigureI.

MIDAS System Overview

Top
Scenario

(goal form)

Detailed

Scenario

: ,
! a 5, • World Objects

• Vehicle/

Equipment

Functional & - Operator

Phyeioal
Equipment

Componanta

Aerodynamics
& GUldan_ !

ii; _Moddi

Animated
"Vlewe" of:

Cockpit

• Operator(a}

History
• Task
Execution
Date

Cockplt l

Geometry

Display
_Layout _'_
'Assistan!
: Vision

Model
Figure 1. MIDAS Vision Model Overview

Page H-1

1.2 SCOPE OF DOCUMENT

The high rate of change of features and the exploratory nature of the vision model makes
documentation a difficult task. It should be emphasized that the software that this document
pertains to is still under development. What this document gives the reader is a snapshot of
the current state of a continuously evolving software package.

Because the software is under development there has been little effort made to bullet proof
the interface and no attempt to optimize the code. There are functions that are incomplete
and may not work well due to their early phase of development. There are ways to view
and plot data that may lead the user to erroneous conclusions. Most of the data presented by
the vision model has not been validated. There are known inaccuracies in the mapping
functions.There will be no attempt made to stay upwardly compatible, consistent with, or
many of the other conventions that the user may expect from a more mature commercial
software product. The ability for me to support, answer questions or help users may be
very limited.The next phase of development will involve substantial changes to the
software architecture of the model.

In short this is developmental software and not production software. The following
standard disclaimer applies: there are no warranties, either expressed or implied, regarding
the enclosed computer software package, its merchantability, or its fitness for any particular
purpose.

1.3 PURPOSE AND OBJECTIVES OF DOCUMENT

This document is intended to convey to the user the class of vision phenomena supported
by the model, and how he/she can vary the parameters of the vision model in order to
answer crewstation design related questions. The software requirements and rationale are
explained and the limitation and tradeoffs of the models enumerated.

2.0 RELATED DOCUMENTATION

2.1 APPLICABLE DOCUMENTS

The following documents are referenced herein and are directly applicable to this volume:

A. Arditi, The Volume Visual Field: A Basis for functional perimetry, Clinical Vision
Sciences, 3 (1988).

A.Arditi,. Alternate Representation of Visual Space, SPIE Vol. 1083 Three dimensional
Visualization and Display Technologies., 242-245,1989.
t!

C.A. Curcio, et al., Human Photoreceptor Topography, The Journal of Comparative
Neurology 292:497-523 1990.

C.R.Carlson and R.W. Cohen, A simple Psychophysical Model for Predicting the
Visibility of Displayed Information, Proceedings of the SID, 21,229-246 (1980).

J. Larimer, et al, A Computer-Aided Tool for Assessing the Visibility of Cockpit
Displays, Society For Information Display 90 Digest 133-135, 1990.

E Adelson, C. Carlson, A. Pica, Modelling the Human Visual System, RCA
Engineer 27-6 Nov./Dec. 1982.

Page H-2

E Adelson,et al, Pyramidal Methods in Image Processing, RCA Engineer 29-6
Nov./Dec. 1984.

C. Hall, E. Hall, A Nonlinear Model for the Spatial Characteristics of the Human
Visual System, IEEE Transactions on Systems, Man, and Cybernectics, Vol. SMC-7, No.
3, March 1977.

R. Hall, Illumination and Color in Computer Generated Imagery, Springer-Verlag, New
York, New York, 1989.

IES Lighting Handbook, 1984 Reference Volume

2.2 INFORMATION DOCUMENTS

The following documents amplify or clarify the information presented in this volume:

R.Blake and R. Fox, The psychophysical inquiry into binocular summation,
Perception and Psychophisics, 14, 161-185 (1973).

Bouma, H. Visual recognition of isolated lower-case letters. Vision Research 11,459-
474 (1971).

Coffin, S. Spatial frequency analysis of block letters does not predict experimental
confusions. Perception and Psychophysics 23(I), 69-74 (198 I).

Egeth, H.E., and Santee.J.L. Conceptual and perceptual components of interletter
inhibition. Journal of Experimental Psychology 7(3), 506-517 1981.

B. Esterman, Functional scoring of the binocular field, Opthalmology, 89, 1226-1234.

Gervia,M.J., Lewis O. Harvey, and Roberts, J.O. Idntification confusions
among letters of the alphabet. Journal of Experimental Psychology 10(5) 655-666 1984.

Geyer,L.H., and DeWald, C.G. Feature list and confusion matrices. Perception and
Psychophysics 14(3), 471-482 1973.

Geyer, L.H. and Gupta, S.M. Recognition/confusion of dot matrix vs. conventional
font capital letters. Perception and Psychophysics 29, 280-282, 1981

Gilmore,G.C.,Hersh,H.,Caramazza,A., and Griffin, J. Multidimensional letter
similarity derived from recognition errors. Perception and Psychopysics 25,425-431,
1979.

Heijden, A.H.C., Malhas, M.S., and Roovaart, B.P.. An empirical interletter
confusion matrix for continuous-line capitals. Perception and Psychophysics 35(1), 85-88,
1984.

Mewhort, D.J.K., and Dow,M.L.. Multidimensional letter similarity: A confound
with brightness? Perception and Phychophysics 26(4), 325-326, 1979.

Morrison, I.A LISP program to determine similarity relations in letter displays. Behavior
Reseach Methods and Instrumentation 15(1), 69-7 l, 1983.

Page H-3

Townsend, J.T., Theretical analysis of an alphabetic confusion matrix. Perception and
Phychophysics 9(1A), 40-50, 1971.

Watson, A.B., The ideal observer as a modelling tool. Frontiers of visual science:
Proceedings of the 1985 Symposium (pp. 32-37). Washington D.C.: National Academy
Press.

Watson, A.B., and Fitzhugh, A.E., A new look at letter recognition. Perception
15(1), A31, 1986.

Watson, A.B.,and Fitzhouh,A.E.,Modellingcharacterlegibility,Societyfor
InformationDisplayDigestoftechnicalPapers20,360-363,1989.

3.0 CONCEPT

3.1 DEFINITION OF VISION MODELS

3.1.1 PURPOSE AND SCOPE

In a crewstation (e.g. an aircraft cockpit) the ability of the operator (pilo0 to
unambiguously perceive rapidly changing information both internal and external to the
crewstation is critical. To assess the impact of crewstation design decisions on the pilot's
ability to perceive information, the designer needs a means of evaluating the trade-offs that
result from different designs. There exist many CAD tools for creating and manipulating
geometrical objects but few contain any vision capabilities. Of the ones that do have the
ability to address some visual aspects of design, only the geometrical questions eg. vision
plots, field of view, etc. are answered. Others (Watson, Bergen,Hall) have developed
tools to predict visual performance but they have never bean integrated with a CAD-like
tool. Because of the interactive nature of design it is necessary to provide feedback on
visual performance as a continuum of design parameters are varied. Without integration the
usefulness of vision models to the design community is greatly limited.

The process of crewstation design involves a large number of Iradeoffs. The purpose of the
vision model is to provide an easy to use interactive interface to vision relevant parameters
of crewstation design, and through data visualization techniques provide feedback to the
designer on the effects of varying these parameters to the appropriateness of the design.

3.1.2 GOALS AND OBJECTIVES

The primary goal of the vision model is simply to explore ways to better communicate
vision related design issues and provide information for design changes that would result in
a better overall design. It is beyond the capabilities of the current vision model and the
scope of our simulation, to predict when all of the necessary conditions are present for
proper perception to occur. The goal of the vision model is to show only when it is at least
possible to perceive the stimuli and in the case of MFD characters their probability of
correct discrimination. Some primary areas of focus will be on character legibility as
displayed on the Longbow MFD, field of view volumes and intersections, performance
data linking to the CAD representation of the design and a polar foveal centric
representation of objects in the design.

Page H-4

3.2 USER DEFINITION

The vision model assumes that the user is an experienced erewstation designer but not
necessarily adept at applying human factors principles to all aspect of the design. It is
expected that the designer is using this tool in an iterative fashion to alter the design to meet
requirements and still be consistent with human factors guidelines.

3.3 CAPABILITIES AND CHARACTERISTICS

The vision enhancements to the Jack software provide the designer, for the fwst time, an
integrated environment featuring CAD like capabilities, an anthropometric model and a
visual performance model. Inside this environment an entire spectrum of design trade offs
can easily be explored. Through a simple interactive interface, a designer can manipulate
design parameters such as cockpit layout geometry, environmental factors such as ambient
lighting, pilot parameters such as point of regard, and equipment parameters such as
display size and contrast of displayed symbology. These visibility options provide an end
to end analysis that answers questions such as "Is it possible for the pilot to read the
display?".

Visual performance data can be projected, in the form of 3D contours, into the crewstation
graphic model providing the designer with a footprint of the operator's visual
characteristics given the current parameter settings.

In Appendix A the figured labeled Binocular Vision Model provides a good overview of the
of the complete vision model.

3.4 SAMPLE OPERATIONAL SCENARIOS

The following is a sample scenario intended to demonstrate how one might typically use the
vision model. The scenario has three parts: First, an example of how to use the designer's
interface, second, the retinal window projections, and thirdly, the retinal editor, including
the use of discrimination data.

You must first follow the standard startup procedure for Jack. The exact commands used
will vary according to the particulars at your installation site but would look something like
the following:

1) Initial setup:
cd/usr2/neukom2/4.5
source sshell (cshell if on coral)
cd longbow2
djack vis.jcl

This should start up the proper version of Jack and bring up a subset of the pilot crew
station. It will put Jack where and how he belongs. The first example shows how to vary
the fixation point. This must be done in order for other options to make sense. An example
of view cones that are drawn down the newly changed visual axes is given for further
clarity.

2) Demonstrate the User interface:
select -> options menu:retinal display:
select ->jack
select -> site on left MFD

fixate eyes on site

Page H-5

click left mouse button again to show the visual axis
press esc key

select -> options menu:retinal display: field of view cones
select ->jack
enter -> fov for cone type (message window or mouse)
WARNING: These cones can not be deleted after you create them without
crashing the system.

select -> options menu:retinal display: interactive fixation
select ->jack
move fixation point via mouse
WARNING: eyes are joint limited. You will see the lines representing the visual
axes stop moving when you reach a joint limit. Also an out-of-limit message above
the fixation distance and angle information (lower left comer) will be displayed.
press esc key.

Next an example of how to use the retinal window is given.

3) Demonstration of retinal window:

select-> options menu:retinal display: create retinal window
select-> jack
open window in upper left comer.
WARNING: This window only redraws when information is changed in the
window. If you move the window it will not redraw until you make a menu
selection that changes what is displayed in it. I usually overlay it on top of the
retinal window to conserve screen space.

select->options menu:retinal display: Monocular/binocular
select->option:vision information: set pilot state open window
set near clipping to a small value ~10 by clicking fight mouse button near bottom of
the "near" slide bar.
set far clipping to -300 by clicking fight mouse button near top of the "far" slide
bar.
press esc key.

select->options menu:retinal display:
select -> Jack
move fixation point around via mouse
press esc key.

interactive fixation

The retinal editor is the primary means by which performance data is introduced in Jack.
Known data can be drawn directly on the editor and then saved to a file. The file can then
be loaded in at a later time when that data is desired. For case of demonstration, some menu
selections have been created so that the user can load a file directly, without having to type
the name of the file. In general, this is not the case. When the user desires to load a file that
he/she has created it will be necessary to type the name of the file before loading it into the
system.

4) Demonstration of retinal editor:

Drawing of an arbitrary object:

Page H-6

select->optionsmenus:retinaleditor: create retinal editor
open window in upper right part of screen

select->opdons:retinal editor: draw right retina
draw in retinal editor by moving the mouse and
pressing the left mouse button, end drawing by
pressing the middle button.
WARNING: nothing shows in the retina editor as you draw in it on any of the
GTX machines.
select->opdons:retinal editor: clear retinal objects Loading

and retrojecting published data:

select->options menus:retinal editor:
select->options menus:retinal editor:
select->options menus:retinal display:
select->Jack
move fixation point via mouse
select->options menus:retinal editor:

load cone density data
retroject both
interactive fixation

clear retinal objects

Sarnoff Confusion data:

select->opdons :retinal editor:
select->options menus:retinal editor:
select->options menus:retinal editor:

load OQ confusion data
zoom editor window
draw filled retinal objects

select->options menus:vision information: set pilot state open window
set ill to high value (> 4) by clicking near the top of the slide bar.
press esc key
select->options menus:retinal editor: clear retinal objects
select->options menus:retinal editor: load OQ confusion data

4.0 REQUIREMENTS

4.1 REQUIREMENTS APPROACH AND TRADEOFFS

Geometrical data such as the volume field of view, occlusions, facial geometry and helmet
margins needs to be projected into the cockpit with respect to the coordinates of the
aviator's eyes and fixation point. The intersections of the projections with objects in the
crewstation will delineate the area of coverage, masking, or occlusion associated with the
objects. This must be done at updates speed of at least 1HZ to make interaction with the
model acceptable.

Objects in the crewstation space shall be projected onto models of the operator's retinas.
These projections can be used to provide the designer with the retinal coordinates and the
visual angles subtended by objects in the crewstation space. Both the right and left eye
retinal projections shall be mapped. The retinal map shall be yoked to the fixation point and
change as the fixation point is interactively manipulated. Performance contours on the
retinas can also be indicated thus aiding the designer in understanding the limitations to
visibility imposed by retinotopic processing.

Page H-7

The performancecontours shall be generatedbasedon a discrimination model that takesas
input the aviator's adaptive state, environmental factorsand stimulusdescription and
generatesiso-discdrninationcontours.These performance data must be mapped back into
theenvironmem and linked to theirstimuli.

4.2 HARDWARE ENVIRONMENT

The three software components, Volume Perimetry (VP), Legibility Model (LM) and
Vision Enhanced Jack Interface (VEJI) can be run as an integrated program on the Silicon
Graphic 4D series of workstations. These workstations have double buffered, 24 bit color,
8 bits alpha and Z buffered frame buffers. The workstations have hardware support for
light models and viewing transformations. The 4D 220 GTX (MIDAS' fastest
workstation) has two RS2000 25MHZ CPUs for a total of 40 MIPS. The software makes
use of only one CPU at this time although this will change next phase. The recommended
memory is 32MB, but this is strongly dependent on the details (number and size of
polygons) of the environment. We have 32MB on the 220GTX. For medium size
environment (- 3000 polygons) this program is graphic bound, even though the 4D 220
GTX is capable of 100,000 (10 pixel, lighted, Gouraud shaded triangles) polygons/see.
The problem is exacerbated as more windows are opened because the entire scenemust be
drawn multiple times.

While these workstations provides the performance we require for the integrated VEJ/, VP,
JACK and LM can be run independently on less costly workstations. An earlier version of
VP ran on an Amiga. A newer version is under development for the SGI Personal Iris. A
version of LM runs on the Sun family of workstation and has no graphic requirements.

4.3 SOFTWARE ENVIRONMENT

The entire visibility software modules have about 100,000 lines of code and are completely
written in the C programming language. It is comprised of three major software
components.

The first, VP, which stands for Volume Perimetry, is the portion of the software that
represents the Volume Visual Field (VVF) and retinal images as distinct graphical
constructs in separate windows that are yoked to the fixation point. VP illustrates the
effects of changes in the fixation point with respect to the WF or object image projections
onto the observer's retina. This software is located in the directory of
$UPENN/gen/src/jack/vp_src and was supplied under a contract from NASA-Ames A3I
by Aries Arditi and Steve Azueta from the Lighthouse Inc. Research Labs.

The second software component, the Legibility Model (LM), computes the probability for
correct discrimination between two symbols based on stimulus characteristics,
environmental factors and observer state. This software was produced at SRllDavid
Sarnoff Research Center by Jeff Lubin under contract from NASA-Ames A3I. Due to the
intensive computational requirements of the model, and the desirability of building an
interactive visibility tool, legibility data is precomputed and stored in files. LM is a
completely stand-alone program and only the data files are access during the running of
VEJI. During operation of the VEJI, based on the current vision relevant parameters the
appropriate data files are read in and displayed. Currently the data files must be located in
the same directory that the executable called from. This restriction will be changed in a
future release.

Page H-8

Thethird software component is Jack, the anthropometric modeling tool. This software
provides the kinematically correct models of stereotypical male/female body types. The
software was produced at the University of Pennsylvania by Norman Badler and Cary

Phillips under a partial grant from NASA-Ames A3I.

4.4 EXTERNAL INTERFACE REQUIREMENTS

The standard Jack menu and mouse interface was extended to allow the user access to the
vision model and control of the vision model's parameters. The general interface to Jack is
described in the standard Jack documentation.

There are no network interfaces for the vision model. However, future plans may
incorporate a network connection. Jack has an existing network connection capability
(Badler 1989) that will allow controlling the movement of the manikin. This interface was
found inadequate for control in the A3I environment and a secondary network connection
function was created. See AnnexJ, the documentation of the A3I Communication module,
for further details.

5.0 DESIGN

5.1 ARCHITECTURAL DESIGN

5.1.1 Design Approach and Tradeoffs

The design of a vision model that could predict the sufficient conditions for the observer to
perceive the a stimulus is beyond the current capabilities of the MIDAS simulation. There
are many ways in which perception can be influenced by factors such as cognitive loading
and inattention to tasks that make it difficult to say when a human observer would perceive
a given stimulus with certainty. At this point the best that can be done is to say that it is
possible/impossible to perceive the stimulus within a given probability. The first design
tradeoff was to settle on a rather modest set of visual properties to model in order to
produce performance probability contours. Still, many design factors can be evaluated
using just what we know about these early vision properties.

A second tradeoff was to keep the system interactive. Design is such an iterative process
that non-interactive design tools can increase design time significantly.

5.1.1.1 Legibility Model

It has been shown [Ginsburg 84] that contrast sensitivity is a more accurate predictor of
visual performance than the standard Snellen type visual acuity test. For this reason the
legibility model is sensitive to changes in contrast and is similar to Watson cortex model
[Watson 85] with some notable extensions.

Due to the computational demands of the model, the time required to compute the results
(discrimination values sets) takes between 1 and 2 minutes on our fastest machine, a 4D
220 GTX. Since it was important to keep the system responsive to the user these data sets
needed to be precomputed. At run time the state parameters are constrained so they may
only be set to values that have a data set associated with them. The legibility model is still
under development and has not been optimized. An initial look at the legibility model
suggests that it could be optimized to compute a data set in under 20 seconds on a 4D 220
GTX.

PageH-9

The legibility data is projected with the same functions that are used to project retina objects
into Jack's environment. This was the simplest way to present the data but leads to a
problem. The data is only valid for the MFD at a fixed distance from the observer, using
MFD character descriptions and contrast information. It therefore makes no sense to place
these contours anywhere but on the surface of the MFD. Unfortunately, there is nothing to
stop the user from projecting the contours anywhere in the crewstation, perhaps
investigating the legibility of labels on the panel. This just isn't correct and further it not
even possible to predict how incorrect it maybe. The user should never try to use these
contours on anything besides the MFD! It is my contention that the tool should not allow
this data to be placed where it is not valid but at this time there are no restrictions.

5.1.1.2 View Cones

View cones were selected as a natural way to show volumes with a given angular size. The
first approach involved creating a psurf formatted viewcone for a specific environment that
was the desired size in both steradians and length. They were made with a specific color
according to which eye they would be projected from. They were also made semi-
transparent so that the user could see the intersections of the cones and the surface of the
object of interest. It was thought that a library of these cones could be made and the user
would just have to select the desired one.

There were two problems with this approach. The first was that the drawing routine for the
retina window had to "know" that the view cones were special psurf objects (they are on
the object link list) and not to draw them in the retina window. This required having a
special check every time it was to draw an object in the retina window. What was worse
was that every time a new cone was added, the draw routine had to be modified to look out
for that cone. The second problem was in the number of different cones that would be
needed in a real application. There are an infinite number of different size cones that might
be needed given the specifics of a task domain. Even with a large library of cones it was
likely that the user would not find the one he really wanted.

As a solution to the problem pseudo-objects were introduced in Jack. These are dynamic
objects that are not "seen" (they are not on the object link list) by the normal Jack window
draw routines. They are not psurf, but are vertices that are computed, in real time, when a
new object (cone in this case) is created or moved. Since the Jack draw routines don't
know about these objects it is not necessary to explicitly check for them in retina window
draw routines. Further, it now possible at run time to set the angular size of the cones. The
length of the cone is set to the fixation distance with the apex origin at the nodal point of
the eye. It is dynamically sized and positioned as the fixation point is varied. This is
consistent with the way in which the other vision features work and also allows for
arbitrary sized cones.

These cones could be projected from anywhere not just the figure's eyes. At this point the
that is the only choice implemented, but it maybe desired to project them from a define site
such as the design eye or sensor location. This would change the implementation of how
cones are done now because a fixation point associated with the cones could not be
assumed.

5.1.1.3 Color

Throughout the vision model the color red is associated with the right eye and the color
green with the left eye. Where they both mix (binocular) the color yellow is used. It is
important to maintain color consistency through the model but there have been some
undesirable effects caused by trying to maintain this approach. First, the technique of using

Page H- 10

alphablendingtoachieve transparency and color blending allows the model to support
these features in real-time. In general it produces good results, but the view angle can be
placed in such a way that the correct in_rsection of the left and right view cones is not
presented correctly. Specifically, alphe,blending occurs anytime two transparent polygons
are drawn that over each other on the screen but intersection real only occurs if the depth of
the polytopes overlap also. Since the distance between the cones is never very large relative
to their size the error is never very large. In addition it is only erroneous at certain viewing
angles and therefore is not a big issue at this time. However, the user should be aware of
this inaccuracy.

A second design issue that involves color occurs when retina objects are presented on the
retina window as solid polygons. If completely solid they would obscure the data
underneath them. For this reason alpha blending is used on this display to allow distinction
between data. If too many polygons, greater than 6, are overlaid you can no longer
distinguish all of the data. The blending of so many overlapping polygons saturates the
intensity values for the display. You can still go back to the line mode and see all of the data
contours.

5.1.1.4 Mapping Inaccuracies

The retina window and the Aitoff charts both plot the vertices of the data correctly but then
draw straight lines to connect these vertices. In Jack's environment this is correct but on
polar maps straight lines don't always map to straight lines. This results in an inaccuracy
that is proportional to the length and orientation of the line. The lines could be interpolated,
something like how circles are represented, but this would push response time for all but
the simplest environments out of the interactive range. It seems like a good tradeoff could
be made by running with the mapping function the way it is now but when accuracy is
important the more time consuming but accurate mapping function could be used. This
function has not been implemented at this time. The new 4D VGX machine can now do
texture mapping in real-time and would be the most accurate and fastest way do address
this problem.

Page H- 11

MIDAS VISION MODEL
ARCHITECTURE

iii

I VP

Retinal
Mappings
RetinalEditor
Performance
data Projections
(UghtHouse)

__ VE_,IJ ir JACK

Stimulus& Objects
Enviromental Somatotypes
Parameters Graphic

Manipulation Manipulation
j _ (UPENN)

Cone DensityData
Iso-Focus
Contours
User Drawn Data LegibilityData

Geometric
Objects
Somatotypes

Legibility
Model
(Sarnoff)

StimulusData,
Symbology

CAD
Modelling
System

5.1.2

Figure 2. MIDAS Vision Model Architecture

Architectural Design Description

Figure 2 shows a high level diagram of the vision model's architecture. First note that the
boxes with solid dark drop shadows represents data, boxes with light drop shadows
represent processes that generate or use the data. Starting with the Legibility model, note

Page H-12

that it takes as input, stimulus data and a pixel description of the MFD characters or
symbology and produces legibility data. There are no direct links with the rest of the vision
model. This is the most portable module of the vision model. The rest of the vision model
then makes use of the geometrical data produce by a CAD system, in this case MultiGcn ®,
to display an environment. VP is integrated to Jack via VEIL VP makes use of the data sets
by reading them into the retina editor. The data is displayed in the editor window and ff
desired then projected back out into environment.

5.1.3 External Interface Design

VEJI is an easy to use, mouse driven, multi-windowed program. The anthropometric
model in Jack was extended to include eye coordinates and fixation point The normal jack
interface (Badler 1989) was extended to include the ability to manipulate vision relevant
parameters. The vision options are included in the normal Jack menu space, and are
reached via the options portion of the menu. See section 6.1.4.2.1 of the user guide
documentation for a complete explanation of the extended menu space. Under the "options"
menu pullout, the vision relevant selections are: Retina Display, Retina Editor, and Vision
Information. The designer can interactively set the fixation point, via the mouse, anywhere
in 3D space as long as it is within the normal eye joint limits. The f'Lxationpoint can also be
set to predefined points (Jack sites). As the fixation point is varied the designer can watch
the vision retina plots and the field of view cones reflect those changes in real time. The
user can set model parameters, such as ambient light, font size, etc., via slider bars.

The user must be able to relate dynamic vision characteristics to the objects within the
design environment and make design decisions based on those relationships. Data
visualization techniques are employed to illuminate these relations and are discussed further
in the following sections.

$.2 DETAILED DESIGN

5.2.1 Detailed Design Approach and Tradeoffs

$.2.1.1 Volume Perimetry Considerations

Of primary concern to the designer is that portion of the environment that fails within the
aviator's visual field. Volume perimetry (a generalization of visual fields) can be viewed
as a way of studying specific geometric relationships between objects in the world and
objects on the retinas. Several key concepts enhance this goal.

5.2.1.1.1 Three Dimensionality of Retinal Images

While each of the retinal images is considered to be two-dimensional with, for example,
horizontal (x) and vertical (y) coordinates, the composite of the two retinal images is
viewed as three dimensional, with an additional coordinate denoting the horizontal
difference or retinal disparity between the image position of a world object point in the two
eyes, or equivalently, the amount of rotation of one or both eyes required to bring the
images of a world object point into registration. This, of course, is one way the visual
system extracts depth coordinates in biological vision.

$.2.1.1.2 Concurrent Retinal Images

Retinal information and information about the visual world that is imaged on the retinas
should be viewed concurrently. In this way, the impact of transformations in one domain

Page H-13

canbeappreciatedin theother.Motionof worldobjects,forexample, will result in retinal
image motion, but often in non-intuitive directions and speeds---viewing a yoked display of
visual space and retinal space side by side can be a powerful aid to the understanding of
such motion. Similarly, changes in global and local retinal sensitivity over time can
drastically alter the visibility of objects in space. The ability to view a rendition of visual
space that indicates visibility of objects would be of obvious value.

5.2.1.1.3 Retinal Projections

Retinal images are projections of visual world objects onto the retinas. A kind of converse
operation that we call here retrojection is the construction of the locus of possible points in
the visual world which may give rise, through projection, to a specified point on the
retina(s). Projection and retrojection are the operations which relate visual world geometry
to retinal geomelry.

5.2.1.1.4 Volume Visual Field

The volume visual field (VVF) is the locus of points in the visual world which fall on
sensitive retina. Since retinal sensitivity varies over space and time, and since the size and
shape of the VVF changes with eye position, it should be viewed as a dynamic construct.

5.2.1.2 Legibility Model Considerations

Sarnoffs task in the A3I project is to develop a quantitative, easily computable model of
instrument visibility within an aircraft cockpit environment. The purpose of the model is to
provide visibility data to display designers, who need quantitative information on the effect
that their design choices will have on crew performance over a broad range of mission
scenarios. Given this range, the visibility of alphanumeric and other information depends
not only on the spatial configuration of the display, but also importantly on lighting
parameters such as light level in the cockpit and the observer's state of adaptation. The
model must therefore accurately assess the effect of such parameters, and convey this
information to the display designer in an easily understandable form.

Page H- 14

Legibility Model Overview

Stimulus

2D Static
Achromatic

Symbols,
Contrast
CRT Lumens
Font Size

i

MIDAS

Visibility
model

Environment

i

Ambient

Light,
Objects,
Observer

Observer

i i

Point of

Regard,
Pupil Size

I Legibility

_ Probabilities

Figure 3. l,_;bility Model Overview

A conceptual diagram of the legibility model is shown in Figure 3. The inputs to the model
are a set of stimulus, environmental, and observer variables. The output of the model are a
parametric data set that spans the parameter ranges of interest. A more detail description
will be given in section 5.2.2.2 under detailed design of the Legibility model. For a more
complete description of the legibility model see appendix B.

5.2.1.2.1 Basic strategy

Sarnoffs approach to the NASA legibility modeling task has been to augment the one-
dimensional discrimination models of Carlson, Batten, and the basic psychophysics
community to include the two-dimensional spatial processing used in the Watson detection
model. In addition, because the NASA task requires performance prediction over a wide
range of lighting conditions and observer perceptual states, the Sarnoff model includes a
front end that pre-processes the input images to model the effects of changes in
illuminance, screen luminance, and observer fixation location in three-dimensional space.

5.2.1.2.2 Choice of performance measure

The performance measure chosen for the Samoff model is probability of a correct
discrimination between two input images; e.g., between two alpha-numeric characters.
Other performance measures are of course possible; one common measure from the
applied psychophysics community is image quality, expressed in units of just-noticeable
differences (JNDs) between the two images. In fact, the probability measure used in the
Sarnoff model is derived from a JND-like measure, as will be described below. Another
potentially useful measure is the reaction time required for correct discrimination.

Page H- 15

However, thismeasurehasreceivedlittleattentiontodateinpsychophysicsresearch,and
itsuseherewouldthusrequirealargeamountofadditionaldatacollectionand modeling.
Anotherimportant considerationintheformulationoftheSamoffmodel isthatthe
performancemeasurebeconservative.Thatis,displaydesignengineersneedameasure
thatwould allowthem toruleoutverybad designs,butwould letmarginaldesignspassfor
additionaltesting.Inotherwords,itisbettertoerron thesideofoverestimatingrather
thanunderestimatingtheprobabilityofsuccessfuldiscrimination.

5.2.1.2.3 Incremental improvement

Finally,themodel hasbeenconstructedinsuchaway astoallowincrementalimprovement
initsabilitytopredictperformanceamong complexstimuli.Forexample,themodel as
currently formulated can accurately predict performance only among static, monochromatic
images. However, by replacing the model's spatial filters with a set of spatio-temporal
filters, performance measurement among moving stimuli would be possible. The strategy
in model development is therefore to validate the simple model on simple stimuli, and then
incrementally build in model complexity to handle the more complex stimuli.

Page H-16

Binocular Vision

Hierarchy Chart

Binocular .

Visiolj
Model

I
'nit,and _liEyeMode,_lu O,,playhi i
support | I Edltor |i Manageril
Functions_

Figure 4. Binocular Vision Hierarchy Chart

5.2.2 Detailed Design Description

5.2.2.1 Compilation Unit

The software implementation of the vision model can be thought of as being comprised of
four main groups (see figure 4):

1. The initialization and support functions; which is the group of functions that perform
general house keeping activities.

2. The Eye model editor;, the group of functions that allow editing the def'mition of eye and
environmental parameters.

3. The Display Manager;, the group of functions that maintain the various window displays.

4. The Models; the group of functions that model stimuli, the environment, and the
observer.

Page H-17

lnitialization

and Support II

I Time

Base W

_I. I J

Vector

Functions
Initialize il

Vision B

Model

II0

Functions

1.4

Figure 5. Initialization and Support Functions

5.2.2.1.1 Initialization and Support Functions.

As shown in Figure 5, the initialization and support module is comprised of submodules
used to initialize the vision system and by modules to perform mundane activities such as
user input and vector arithmetic.

5.2.2.1.1.1 Time Base (not implemented)

This module provides a tick-based approach to time simulation. Many vision responses are
time variant and require the maintenances of a time function. These functions are not
implemented at this time.

5.2.2.1.1.2 Vector Functions

This module provides some basic vector arithmetic functions. There is a common need to
define vector and perform arithmetic on them. This module defines the data structure for a
vector and provides the functions such as dot and cross products, vector adds and subtract,
etc. These function can be found in the file vector.c

5.2.2.1.1.3 Initialize Vision Model

Page H-18

Thismoduleprovidesthebasicfunctionstoreadandinitializetheenvironmentaldatabase.
Also a configuration file must be read to set the environment to a user defined state. These
function can be found in the file setstate.c

$.2.2.1.1.4 I/O Functions

This module provides the functions necessary to input and output information to the vision
model. These functions can be found in the files in the jack directory for Jack 1/0 and in
the file retina_light for data files for the retina editor.

Page H-19

EYE Model i

Editor]l

[,e,,.., II I [_0:,',':']'
Editor __ r

Ioeom.tr,c i I ' . I,
[Editor | I I to:polo, i
12.3 _ E.itor II

I nvironmental i
Editor

Figure 6. Eye Model Editor

5.2.2.1.2 Eye Model Editor

The philosophy of the vision model design is to allow the user to modify any portion of
the vision model. It is the nature of design to consider "what if" type questions and the
vision model must be sufficiently flexible to allow a large variety of questions. Some of the
editing could b¢ performed by a designer. Other pans of the editing would be used by

Page H-20

humanfactor engineers to tune the model to their application. A set of 5 editors will be
provided to assist the user in entering data. See Figure 6 for an overview.

5.2.2.1.2.1 Retinal Model Editor

The retinal model is intended to provide the user with an easy method to describe spatial
relationships between the retinal map and areas typically found on the retina. These
function can be found in the file retinalight.c The software has not progress to the point
where the distinction between the objects effects how they are projected. All data is entered
pretty much the same, either manually drawn in the editor or read from a data file.

5.2.2.1.2.2 Perimeter Objects

This class of objects define the periphery for the left and right orbs.

5.2.2.1.2.3 Default Template

This object defines the default (generic) retinal objects. Objects such as fovea, macula are
predefined for the X percentile person.

5.2.2.1.2.4 Pathological Objects

This class of objects defines areas on the retina that are dysfunctional. The user will enter
coordinates via a mouse or data file that describes the geometry of these objects.

5.2.2.1.2.5 Static After Image

This class of objects defines a static area on the retina that will be associated with a intense
light source. A more robust model is defined in the temporal eye model.

5.2.2.1.2.6 Concentric Objects

This class of objects define the contours that share a common attribute. The user creates the
objects by the same method described for Pathological object.

5.2.2.1.2.7 Performance Objects

This class is the same as Concentric of object except that the geometry is not concentric.

5.2.2.1.2.8 Optics Model Editor (Not Implemented)

This editor has the facilities to store and modify optical attributes, such as myopia, of the
eye model.

$.2.2.1.2.9 Temporal Model Editor (Not Implemented)

This editor has the facilities to store and modify temporal attributes, such as photoreceptor
light sensitivity, of the eye model. This model would be necessary to track the adaptive
state of a pilot over the course of the simulation.

5.2.2.1.2.10 Geometric Model Editor (Not Implemented)

This editor has the facilities to store and modify geometric attributes, such as nodal points
location, of the eye model.

Page H-21

5.2.2.1.2.11 Environmental Factors Editor (Not Implemented)

This editor has the facilities to store and modify environmental factor that effect visual
performance, such as fog attenuation, of the eye model.

Display
Manager l

3.0_

Figure 7. Display Manager

5.2.2.1.3 Display Manager

The Display Manager coordinates the presentation of data with the in place windowing
system. System dependent windowing calls are used by this module to display the
requested data. See Figure 7 for an overview of t his module. If this software is ported to
other systems not running the same windowing system, this module will require special
attention. Most display functions can be found in retina.c and window_light.c

5.2.2.1.3.1 Retinal Model Display

The Retinal Model Display is a graphical representation of retinal features drawn in fovea
centric polar coordinates. The retinal map along with the retinal objects defined in the retinal
editor, are in a window of its own. These objects can then be projected out into the

Page H-22

environment. In addition, environmental objects can be projected onto the retinal map to
provide retinal position information to the user. In appendix A the illustration entitled Fovea
Centric Projection shows an example of this type of display.

5.2.2.1.3.2 Fixation Display

The fixation display overlays an environment display with two lines that represent the
visual axes. The intersection of the lines is the current fixation point. These functions can
be found in retina.c and vp._src/retina_light..

5.2.2.1.3.3 Volumes Display

The Volumes Displays can be an independent window or and overlay on an existing
environment window. Some visual performance data is best visualized as volume data. The
area coverage of the field of view is one such data set. In appendix A the figure titled Jack
Environment Window shows an example of FOV information overlaid on the environment.

5.2.2.1.3.4 Function Display (not implemented)

This display is used for visualizing the behavior of the functions used in the simulations
given a particular adaptive state. There are a large number of competing vision theories.
The vision model is being designed to facilitate the application of new functions
characterizing vision systems. It will be informative to plot the behavior of many parametric
situations without having to simulate them.

5.2.2.1.3.5 Environmental Display

The Environmental Display is used to display a graphical view into the environmental
database. One or more windows may be opened into the database. A six degree of freedom
viewing angle may be selected. Objects may be defined and repositioned in these windows.
These objects are one way to provide the stimuli to the vision model. The environmental
display is also where the visual performance data is projected. This allows registration
between performance data and the object that they were based on. In Appendix A the figure
titled Projection of Legibility Contours shows an example of an environmental display with
FOV (cone projecting from the eyes) information overlaid.

Page H-23

4_Models

Envlronmef

Model

4.1

Eye
Models

4.2

I rice
i Models II

Figure 8. Models

Figure 8 shows the further break down of the models group. The degree to which the
models are implemented varies widely. As the simulation requirements are def'med for the
next phase the priorities of particular models will become known and particular models can
be targeted for expansion.

Page H-24

IEnvlronmental i
Model

4.1

J
! Workspace / [Illuminot|on i l_o:o"r,'o'''"'/I Mode, i I M°dol i

4.1. t. t Objects 4. t .2. t Light 4. t.3. ? Human Figure
Orientation Direction Vector GeomeW

Material Description Energy Spectrum State
Geometry Intensity Age

etc. Diffuse, Specu(ar, Em/asive Fatigue
4.1.1.2 Environmental Attenuation Cognitive Loads
Factors Position 4.1.3.2 Kinematics

Precipitaon 4. t,2.2 Sun Joint Space and Limits
Clouds 4.1.2.3 Flares, Lasers Waypoints

Fog, Mist, Smog Direction Vector 4.1,3.3 Head

Darkness Energy Spectrum Orientation and Position

4.1.1.3 Texture Maps Position Scan History
Duration & Start Time Tracking Function

Intensity Curve.
4.1.2.4 Shadows

Umbras

Penumbras
Geometric Attenuation

Figure 9. Environmental Model

PageH-25

5.2.2.1.4 Models

5.2.2.1.4.1 Environment Model

The environment model encompasses both the graphical and non-graphical information
about the environment to supply the necessary data to the simulation functions
characterizing the vision model. Figure 9 shows some of the major subcategories that could
be addressed. Only the anthropometric model is generally complete.

5.2.2.1.4.1.1 Workspace Model (Not Implemented see future directions)

5.2.2.1.4.1.2 Illumination Model (Not Implemented see future directions)

5.2.2.1.4.1.3 Anthropometric Model

An anthropometric model is only needed for vision issues if self occlusion issues are of
interest. Otherwise a simpler eye coordinate model could be used. If an anthropomorphic
model is used then the user/simulation can manipulate this model and the data used as input
to the eye model.

Dr, Norman Badler from the University of Pennsylvania provides such capabilities in his
program called Jack. Some of the more important features axe:

Human Figure Geometry
Adaptive State of the Pilot (not implemented)
Head Specific Attributes
Orientation and Position
Scan History (not implemented)
Tracking Function
Kinematics
Joint Space and Limits
Paths
Inverse Kinematics
Etc.

See Jack User Guide for a detailed description.

Page H-26

I
Geometric

Model

-1
I

Retinal i

Model

I Eye i
Model |

4.2 J

Optlcal

Model |

Figure I0. Eye Model

5.2.2.1.4.2 Eye Model

The eye model has four submodels (see figure 10). The submodels are a natural way to
group the data structures that describe static features such as eye separation or photo
receptor mosaic, with the functions for computing the current value for time dependent
data such as pupil size based on those data structures.

5.2.2.1.4.2.1 Geometric Model

This model describes the eye in terms of its geometric properties and current position and
orientation. This information is currently spread out over the entire system. In a future
release it may be accessed in one place so that specification would be easier and more
explicit. Some examples of geometric data are as follows:

Geometric Attributes
Orientation and Position
Size, Focus, Major and Minor Axis
Interpupillary Distance
Pupil Diameter
Motion Limits
Perimetry Geometry
Limiting Facial Structures
Goggles, etc.

Page H-27

5.2.2.1.4.2.2 Retinal Model

The user is required to design a retinal model. He can choose for simplicity the default
model which issimplyaretinawithafoveaandbiologicalblindspot.Iftheuserwishesto
investigateauniqueretinalmodelhe canenterretinaspecificdatasuchasscotomasor
unusualdistributionfunctions.Some cxarnplesofthiskindofdatais:

Distribution Functions for Cones and Rods
Macular region
Receptive Fields
Spectral Sensitivity
ROd Sensitivity Function
Cone Sensitivity Function
Binocular/Monocular Map
Retinal Mapping Functions
Color Vision

5.2.2.1.4.2.3 Optical Model (not implemented)

Thismodel describestheopticalpropertiesoftheleftandrighteyes.The defaultdam is
suppliedby the"standardeye"(seeappendix),butagaintheusercan enterhisown. Most
valuesby defaultarcsetsoasnotbe evaluatedeg.notcontributetothecomputationifso
desired.MostlythisModel isnotcomplete.Herearcafew ofthefeaturesyou would
expecttofindinthismodel:

Accommodation
IndexofRefractions

OpticalAxis
FixationPoint

DiopterRange
ConvergenceAngle
RefractiveErrors
Aberrations

Attenuationsuchas:VitreousFluids,Cornea,Lens
Scatterand Glaredue toVitreousFluids,Cornea,Lens
VeilingGlareandDiscornfonGlare

5.2.2.1.4.2.4 Temporal Model (not implemented)

This model would include functions such as:

Sensitivity to light
Light Adaptation
Temporal Sensitivity
Spatial Sensitivity
Eye Movements

Page H-28

/us_/upenn

JACK DIRECTORY

4D fib

ten include

longbow

_in

lib

.bin

include

lib

I
•.help

w.abody

nsurf

..sass

..__.Readme

._...Jack_eU

._._.legibility ___C_m

_12

4.5orig

,,mck

lib

xmad

,.ipII

, .vp__c

grace

jack

_cmds

ime.,nu

,,,peabody

_psurf

vec

lasedx_y

50h

50w

5h

.Sw

.95h

95w

evaman--._P

male5O

Figure 11. Jack Directory Structure

Page H-29

5.2.2.1.5 Directory structure

Figure 11 shows the directory structure of Jack as distributed with the vision system. See
the Jack User documentation for further details.

The follovAng data files are distributed with the vision model. These files are generated by
fcons when run on the legibility model data fries. They are in a format that can be read by
the retina editor and should reside on the directory you start up VEJI from.

QO_il 11 dl.cons
QO_i2 11 dl.cons
QO_i3 11 dl.cons
QO_i4_l 1.5_d 1.cons
QO_i4_l l_d 1.cons

QO_i4_12.54_d 1.cons
QO_i4_12._d 1.cons
qo_i0 11_d 1.con s
qo_il_l l_d 1.cons

qo_i2 ll_dl.cons

qo_i3_l 1._d1.cons
qo_i4_l 1.5_d 1.cons
qo_i4_l l_dl .cons
qo i4_12.54_d 1.cons
qo_i4_12_d 1.cons

The following makefile is used to remake a new version of cortex the name of the legibility
model executable. Use the command make in the directory with the source code. This in
most cases will be in UPENN/legibility/src.

Makefile:
...

CFLAGS= -g -float
FFLAGS-- -g
LDFLAGS=
LIB= -lm
#SGI machines
LIB= -lm -Imalloc -lgl
DISPLIB=
INCLUDE= imgdec.h imgmacro.h

EXECUTABLES= cortex

IMGLIBSOURCES= imgio.c imgalloc.c imgconv.c arralloc.c misc.c f'magimg.c reflect.c
redexp.c fimgopmike.c filtsub.c dispimg.o kernel.c

IMGLIBOBJ= $(IMGLIB SOURCES:.c--.o)

all: $(EXECUTABLES) imglib.a

imglib.a: $(IMGLIBOBJ)
ar rv $@ $(IMGLIBOBJ)
ranlib $@

$(EXECUTABLES): $$@.o imglib.a
$(CC) -o $@ $@.o imglib.a $(CFLAGS) $(LIB)

Page H-30

The following is a listing of all the files that make up cortex (legibility model executable).
This in most cases they will be in UPENN/legibility/src.

arralloc.c fcons.c imgalloc.c kernel.c
btest.c fihsub.c imgconv.c malloc.c
corfish.c fimgimg.c imgdec.h misc.c
cortex.c fimgop.c imgio.c redexp.c
dispimg.c fimgopmike.c imgmacro.h reflect.c

The following makeffle is used to rebuild a new version of jack. The executable will be
named djack.

Makefile:

NAME = djack
VERSION = 4.6
FULLNAME = $(NAME)-$(VERSION)
BINDIR = ../../../4D/bin
EXE = $(FULLNAME)

OBJ = menu.o retina_menu.o retina.o options.o vision_info_menu.o\
editor__menu.o peawin.o ret_editor.o setstate.o viewcones.o body.o

SRC = $(OBJ:.o=.c) Makefile
LIBS = -L$(LIBDIR) -ljmenu -lgrace -ljcmds -ljack -lpea -lpsurf\
-lalt -lgio -lvec -lrle -leditor -lgl_s -lsun -lbsd -lmalloc -lm -lc_s

all: $(EXE)

$(EXE) : $(OBJ) Makefile
$(CC) -o $(EXE) $(LDFLAGS) $(CFLAGS) $(OBJ) $(LIBS)

$(OB J) : $(INCLUDEDIR)/jack.h

The following files are modified Jack files or new additions to Jack. They are the files used
in the above makefile to build the new executable. The new files are printed in bold letters.
If any Jack source file was modified the modification was delineated by comments with the
key words A3I in them. The modified files were removed from their normal Jack
directories and placed here.

body.c options.c retina mod.c
editor menu.c peawin.c setstaf'e.c
ret ed'hor.c viewcones.c info menu.c
ret_a.c vision info menu.c -

w

menu.c retina_menu.c

Page H-31

The following maket'de builds a new VP library that is used to link with Jack. Issue the
command make in the directory $UPENNl4.51gerdsrc/jack/vp_src and a new library will
be made.

Makef'lle:

SHELL=/bm/sh
LIB= ../../../../4D/lib/libeditor.a
ARFLAGS = rvs

OBJ -- \
vector.o \
mouse.o\
list_light.o\
draw.o\
retina_light.o\
init.o \
eye.o\
message.o\
view.o \
window_light.o

SRC = $(OBl:.o=.c) Makefile

all: $(Lm)

$(LIB): $(OBJ)
ar $(ARFLAGS) $(LIB) $?

ranlib: $(LIB)
arts $(LIB)

These files make up the VP library.
Makefde draw.c eye.c
eye.h init.c list_lighLe
memory.c message.c rnouse.c

retina_light.c test.obj vec.h
vector.c window_light.c

Page H-32

Legibility Model

--_ I Hypotenuse]

Contrast I

Blur

Scaling]

Pyramid Construction

I

!

i Pooling "'1

I Distance

Probability I

Figure 12. Legibility Model

Page H-33

5.2.2.2 Detailed Design of Compilation Units

5.2.2.2.1 The Legibility Model

A more detailed overview of the legibility that will facilitate understanding the following
discussion is provided above in Figure 12.

5.2.2.2.1.1 Input parameters and stimulus format

The model, as currently formulated, takes as input one or two image files, and a number of
optional lighting and observer state parameters. These parameters are listed here with the
default value and units in parentheses:

Screen luminance (10.0 foot-lamberts)
Illuminance (0.0 foot-candles)
Eccentricity of displayed stimulus (0 degrees)
Fixation depth (741.12 mm)
Stimulus depth (741.12 mm)

The image files start with two four-byte integers indicating the width and height of the
image in pixels, followed by rows of pixel values in floats. The images can be any size,
although should be at least 256x256 to allow filtering within a large enough range of
different frequency bands. The conversion factor from pixels to mm is currently
fixed in the software as 13.21 pix/mm. With only one image as input, the software
calculates the probability of detecting that stimulus; with two images, the standard
discrimination probability is calculated.

In the current version of the model, pixel values are required to range from -1.0 to 1.0,
with the maximum absolute value indicating the contrast of the stimulus. For example, a
sine grating stimulus with peaks at 0.5 would have a contrast of 0.5. To remove the
need for this convention, a model stage which computes contrast from arbitrarily scaled
input images is needed, but has not yet been implemented.

5.2.2.2.1.2 Front end calculations

Several initial transformations on the input images are performed prior to the linear filtering
stage of the model. These transformations model the effect of changes in fixation depth,
veiling luminance, and fixation eccen_city.

5.2.2.2.1.3 Fixation depth

In order to account for changes in effective image resolution with changes in the difference
between image depth and fixation depth, we used geometrical optics to calculate the size of
the blur circle, and then pre-filtered each input image with this disk-shaped convolution
kernel. This calculation requires knowledge of the distance from the exit pupil to the
imaging surface (i.e., the retina), which we took as 20.3 mm from Westheimer (1986). It
also requires an estimate of pupil size. For this, we wrote a simple interpolation routine to
estimate pupil diameter at any light level from a table published in Hood and Finkelstein
(1986).

Page H-34

5.2.2.2.1.4 Contrast reduction

Veiling luminance, caused by the reflection of ambient light by the display screen, reduces
the effective contrast of displayed information. We are modeling the screen face as a
._rfectly lambertian surface with a reflectivity of 10X%. This assumption implies that an
flluminance of 10 fed will result in a veiling luminance of 1 fL. We are defining contrast
as:

c = (lmax - lmin)/(lmax + lmin)

where lmax and Imin are the maximum and minimum displayed luminances. Given this
definition, the addition of a veiling luminance v to both lmax and lmin changes the contrast
by a factor 1/2v.

5.2.2.2.1.5 Eccentricity scaling

Abundant psychophysical evidence shows that contrast sensitivity remains roughly
constant across the visual field, if the grating patch is scaled up by a linear function of
eccentricity. This strongly suggests that processing is similar across the visual field, except
for a linear scaling up of sensor size towards the periphery. In order to model the effect of
this change in sensor size, we found it more convenient to scale down the size of the input
images as a function of eccentricity, rather than to scale up the size of the sensors. We
used the scale factor k of 0.4 quoted by Watson (1983), so that the scaling of input images
as a function of eccentricity e is

e = 1.0/(1.0 +ke).

5.2.2.2.1.6 Linear filtering

5.2.2.2.1.6.1 Pyramid decomposition

In order to filter within a range of different frequency channels, the input image is first
decomposed with a gaussian pyramid into channels separated from each other by one
octave, The frequencies we chose for these channels are identical to those used by Watson
(1983); i.e., 32 through 0.5 c/d, corresponding to seven octaves or equivalently, seven
pyramid levels.

5.2.2.2.1.6.2 Computing filter gains

The human visual system is not equally sensitive at all frequencies. A plot of contrast
detection threshold as a function of spatial frequency shows roughly an inverted-U shape,
with a peak at roughly 2 c/d, and complete loss of sensitivity by approximately 60 c/d.
Moreover, as shown by van Nes and Bouman (1967), the shape of this contrast sensitivity
function changes with retinal illuminance. To model these dependencies, the image
component in each frequency channel is weighted by a gain factor appropriate for the retinal
illuminance, before any oriented filtering is performed.

Retinal illuminance (in photopic trolands) is calculated as the amount of light incident on the
cornea (in ccgm 2) times the pupil area (in mm2), where the light incident on the cornea is
assumed to be the screen luminance plus the veiling luminance, appropriately converted
from fL to cd/m 2. The gain at each frequency is then calculated directly from the van Nes
and Bouman data with a simple log interpolation function to return sensitivities at retinal
illuminances other than those reported in the data. For example, if the threshold

Page H-35

modulationfora Ic/dgratingwere I% atI0tdsand5% atItds,thenwe interpolatethe
thresholdat3.16tds(halfthelogdistancefrom ItoI0)tobe 2.23% (halfthelogdistance
from I% to5%). Thisdirectcalculationispossibleonlyundertheassumptionofno
summationamong differentfrequencychannels;any assumedsummationwould requirea
more complicatedrelationshipbetweenthecontrastsensitivityfunctionand thegainofeach
channel.

5.2.2.2.1.6.3 Steerable filtering

Forconvenienceand speedoforientedfdteroperation,we usethesteerablefiltersof
Freeman and Adelson (1990), which allow separable calculation of linear filter responses at
any orientationand phase.The fdtcrsimplementedhere,asecondderivativeofa gaussian
and itsHilbcrttransform,havealogbandwidthathalfheightofapproximately0.7octaves.
Thisiswithintherangeofbandwidthsinferredpsychophysically(e.g.,Watson and
Robson,1981).Wc areusingfourorientations(0,45,90,and 135 degrees)and two
phases(sineand cosine),foratotalofeightorientedfilterresponsesperpyramidlevel.
The orientationbandwidthofthesefilters(i.e.,therangeofanglesoverwhich thefalter
outputisgreaterthanone halfthemaximum) isapproximately65degrees.Thisfigureis
slightlylargerthanthe40 degreetuningofmonkey simplecellsreportedby Dcvaloisetal
(1982),and the30 to60 degreerangereportedpsychophysicallybyPhillipsand Wilson
(1984).

5.2.2.2.1.6.4 Energy calculation

During the early stages of model testing, we found that the detectability of a simple edge
could change dramatically with small changes in edge position. To combat this problem, a
small amount of spatial summation was added by computing energy after the linear filtering
stage. That is, corresponding sine and cosine filter responses were combined as:

e(xi)- sin2(xi)+ cos2(xi)

where xi is a linear filter response, indexed over filter position, orientation, and frequency
band.

5.2.2.2.1.6.5 Point non-linearity

Nachmias and Sansbury (1974) showed that the results of a grating contrast discrimination
experiment, when plotted with threshold contrast increment as a function of the base
contrast from which the increment threshold is being measured, produce a dipper-shaped
curve. These authors argued that the results can be modeled by assuming a sigrnoid non-
linearity following a linear detection mechanism. The decision mechanism has available to
it only the output of this non-linearity, and reliably discriminates between inputs of two
different contrasts when the difference in outputs is greater than sornc threshold.

To quantitatively model the dipper-shaped contrast discrimination curve, we follow Legge
and Foley (1980) in using a non-linear transducer of the form:

T(Li) = rlLiln / (Li 2 + s 2)

where T is the non-linear transducer output, Li is the linear filter response (indexed as
above), r is an overall gain-setting parameter, n is a real number greater than 2 (2.4 here),
and s is a semi-saturation constant (0.0075).

Page H-36

Thecontrastdetection thresholds used in the legibility model, shown in Figure 13, are
from van Nes and Bouman, 1967.

.0009
Retinal .009
Iliuminance .09
(td) 0.9

9.0
90

9OO

Frequency (c/d)

32 16 8 4 2 1

999.0
41.69
14.81
3.23
1.33
0.551
0.450

999.0
999.0
75.86
28.96
8.91
2.63
1.40

999.0
33.66
6.44
1.52
0.579
0.284
0.255

46.21
12.34
3.57
0.973
0.352
0.225
0.216

19.88
6.76
2.24
0.692
0.350
0.318
0.318

14.11
5.31
1.69
0.763
0.629
0.629
0.629

0.5

12.49
4.88
1.54
1.29
1.29
1.29
1.29

Figure 13. Contrast Detection Thresholds

Pupil diameter in mm were attained via table lookup. The values used were for viewing a
white lambertian surface at illuminances:

3.426e-6 fed
3.426e-4 fed

3.426e4 fed

and the pupil diameter was set to one of the following values: 7.1, 6.6, 5.5, 4.0, 2.4, 2.0.
Since this model is only accurate for photopic vision the larger pupil diameters are never
used.

The depth of eye in ram, from exit pupil to retina was set at 20.3, an accepted distance.
The cortical scaling parameter was set according to (Yap, Levi, and Klein, 1987) at 0.77.
The retinal scaling factor was set according to (Watson, 1983) at 2.5.

5.2.2.2.2 Vision Enhanced Jack Interface Functions

5.2.2.2.2.1 The VVF Display

The VVF is a three-dimensional graphical construct. In the VVF display, three-
dimensional objects can be created by using the menu or by reading in a f'de of objects.
Newly created objects have a default position in the VVF, but can be moved to any location
in the VVF. They can also be connected to build compound objects out of simple objects.
Objects are defined as a type, and each has a dynamically allocated database that contains
information about the vertices, faces, and location of the object.

As the VVF is a three-dimensional construct, we need to specify projection and viewing
information. The VVF is displayed as a perspective projection, the parameters of which are
stored in the window's database. The view reference point and center of projection are also
stored in the window's database, and can be changed interactively to look at any point in
the VVF from any location.

Page H-37

Each time a new VVF window is created, the window is assigned default values for the
projection and view, but it inherits the objects that already exist in the VVF. Essentially,
opening a new VVF window gives the user the ability to view the VVF in a different way.

5.2.2.2.2.2 The Retina Display

The retina display iHusu-ates the dynamic relationships of three types of objects with respect
to the visual axis. By default, it shows the retinal images that are formed by objects in the
VVF. The orientation of these images varies with changes to the fixation point and with
orientation and position changes of the head. A subset of retinal images, that form the
second object type, are formed from objects that are fixed with respect to the head. Since
helmetmounted devices,nosebridge,glasses,ere,arestationarytotheheadcoordinate
system, this object type remains stationary in the retina display unless the fixation point is
changed. The retina display can also illustrate areas that are characteristic of the retina, and
are therefore fixed in location and orientation even when fixation and the head position is
varied. The fovea and the natural blind spot are examples of fixed data. (We'll refer to
fixed data as retinal objects to distinguish them from the variable retinal images discussed
above.) The proper dynamic relationships between the data types are maintained as the user
manipulates the fixation point.

The user can open additional retina windows as needed, and the retina displays can be
interactively customized to make it easier to see data of interest. For example, each retina
window can display either the right or left retina, or the two superimposed on each other.
Left retina data is displayed in shades of green, right retina data is displayed in shades of
red, and areas of overlap are shown in yellow.

The usercan buildup adatabaseofretinalobjectse.g.conedensitydata,iso-focus
contour,etc.Thisisthemeans by whichthelegibilitydataisbroughtintoVMT. Retina
objectscan alsobe interactivelydrawndirectlyontotheright,leftorbothretinas.

An important difference betweenretinal images and retinalobjects,is that the objects can be
retrojected (discussed below) into the VVF. There is no need to retroject retina images
because they have the object that generated the image there already.

5.2.2.2.2.3 Field of View Cones

The designer can set the solid angle for the field of view of interest Semi-wansparent view
cones are then projected along the current visual axis for the right and left eyes into the
crewstation. The convergence of the cones is at the fixation point. The intersection of these
cones and the crewstation delineates the area that falls within the current field of view
settings.

5.2.2.2.2.4 Total Field of View Plots

Of major importance in vehicle design is the area visible out the window. Total field of
view plots provide the designer with a 360 degree plot of external visibility. It is possible
to read information eg. over-the-nose visibility, directly from these plots. The results can
be seen immediately as the designer explores effects of various body types, widows
designs, etc.

Page H-38

5.2.2.2.2.5 Retrojections

Retinal objects can be selectively retrojected into the VVF. By retmjecting a retinal object,
the user can see where it intersects the VVF. On a computer that supports the rendering of
transparent surfaces, the retrojection is drawn as a semi-u-ansparent volume in the VVF.
On computers that don't support transparent surfaces, the retrojecfion volume is outlined
with a series of rays (lines) that are drawn from the eyeball(s) out into the VVF.

$.2.3 External Interface Detailed Design

The vision model has not been integrated with the rest of MIDAS simulation. In the next
phase it will follow the interfaced standards developed for MIDAS communications.

5.2.4 Coding and Implementation Notes

6.0 USER'S GUIDE

The VisionUserGuide hastwo main parts.The fastexplainshow tousetheDavid
SarnoffLegibilityModel (LM)softwaretoproducelegibilitydatafordisplayinJack The

secondpartexplainstheuseofthevisionspecificoptionsintheA31 versionofJack,
hereafterreferredtoastheVisionEnhancedJackInterface(VEJ I).The vision
enhancementwas aresultofarewriteofanearlierprogramcalledVP forVolume
PcrimetryfromtheLighthouseResearchLaboratory.The visionopdonsarenotstandard
and arcnotnormallyreleasedwithnew versionsofJack.They arealsonotmaintainedor
documentedby theUniversityofPennsylvania.FurtherreleasesofJackmay be
incompatiblewiththevisionoptions.

6.1 OVERVIEW OF PURPOSE AND FUNCTION

Geometrical data such as the volume field of view, occlusions, facial geomelzy and helmet
margins can also be projected into the cockpit with respect to the coordinates of the
aviator's eyes and fixation point. The intersections of the projections with objects in the
crewstation, delineate the area of coverage, masking, or occlusion associated with the
objects.

Objectsinthecrcwstationspacecanbe projectedontomodelsoftheoperator'sretinas.
Theseprojectionscan beusedtoprovidethedesignerwiththeretinalcoordinatesand the
visualanglessubtendedby objectsinthecrewstationspace.Boththerightand lefteye
retinalprojectionsaremapped. The retinalmap isyokedtothefixationpointand changes
asthefixationpointisintcractivelymanipulated.Performancecontourson theretinascan
alsobe indicatedthusaidingthedesignerinunderstandthelimitationstovisibilityimposed
byrctinotopicprocessing.

6.2 INSTALLATION AND INITIALIZATION

To install the vision enhanced version of Jack, follow the normal installation instructions
provided with Jack. There are some additional legibility data files that were created with
the Sarnoff model that should be copied to the same directory that you execute Jack from.
These files have names similar to QO il ll_dl.cons and contain the precomputed legibility
predictions contours.

PageH-39

6.3 STARTUP AND TERMINATION

For startup and termination instruction for the vision enhanced version of Jack see the Jack
documentation. The LM is called from the Unix prompt and is not dependent on any
environmental variables. To start LM type the filename (cortex) followed by the input
files (pixel descriptions of the symbols to discriminate between followed by any additional
options. It will run to completion without further intervention.

6.4 FUNCTIONS AND THEIR OPERATION

6.4.1 Sarnoff Legibility Model Functions

To run LM execute the file named cortex. This should be in the directory called
$UPENN/4.5/legibility/src. You call the program by typing:

cortex < inputl -I lum -i ilium -e ecc -d dfix -ds dstim input2

_v_tere-

inputl is the bitmap image file for the first image
lure is display luminance in foot-lamberts (fL)
ilium is ambient illuminance in foot-candles (fcd)
ecc is eccentricity of displayed stimulus, in degrees
dfix is the fixation distance in mm
dslim is stimulus distance in mm
input2 is the bitmap image of the second image to be desciminated from the second
image. If there isn't a second image than a second copy of the first is used.

In the absence of an explicit input parameter the following defaults are used.

ilium=0.0, ecc---0.0, lum=10.0, dfix = 741.12, dstim -- 741.12;

a typical call would look like this:

cortex < large_Q_file -! 10 -ilO0

The files pyrg.fir and steer.fir must be present in the same directory as cortex. These files
are used as date for the filters used in the model.

Here is what the output of cortex means: Without the -p 1 flag, the output is simply
eccentricity and probability correct discrimination. By running cortex for a range of
eccentricities for each combination of luminance, illuminanee, and fixation distance, It
generates the kind of data files you can see in the $UPENN/4.5/legibility/data/*.dat fries.

When you run cortex with the -p 1 flag, you get a lot of intermediate results that can be
used for debugging. On the first line:

veil shows the screen luminance plus the output of veiling illuminance reflected
off the screen.

ret shows the retinal illuminance in trolands, calculated as a function of pupil
diameter and veil (the veiling luminance).

fcon is the contrast reduction in the image, resulting from the veiling luminance.
fscale shows the inverse of the retinal and cortical magnification factors

needed to scale the frequency and size of the sensors in the periphery of

Page H-40

the visual field.

Each subsequent line of output shows the results of the probability
calculation for each different level of the pyramid.

Prob is the final probability result
dist is the the distance measure in detector output space, from which the probability

is calculated

lee is the pyramid level
ori, x, and y index the orientation and position of the detector which showed the

maximum sensitivity to the difference between the two input stimuli.
A -1 on any line indicates that no detector at that pyramid level was at all sensitive

to the stimuli.

The files containing the input characters are 256x256. The characters themselves are
composed of 5x5 blocks of pixels for each pixel in the longbow specs. So, for example,
the size a characters are 55 x 35 pixels. The size convention I have used in the model are
that the stimuli are 30" from the observer, and that at this distance, one degree of visual
angle corresponds to approximately 170 pixels.

The user can generate contour data (format for VEII) from these files directly, using a
piece of software called fcons. This program is in the same directory as cortex. You should
be able to compile it directly (with the -]m flag) and use it. You call it as
fcons n < in.dat > out.cons where n is the number of lines in the input data file, in.dat is
the input data file, and out.cons is the output file of contours.

You call it as

fcons n < in.dat > out.cons

where n is the number of lines in the input data file, in.dat is the input data file, and
out.cons is the output file of contours.

Retina Display

main menu

option menu _-->

option menu

retina display _-->

retina display

create retina window

create fiela of view cones

fixate eyes on site

interactive fixation

monocular/binocular map

zoom in/out of retina window

show eye scan

Figure 14. Retina Display Menu

Page H-41

6.4.2 VEJI Options

6.4.2.1 Retina Display

The user's interface is consistent with the rest of the Jack interface. The user accesses the
vision model's options by moving through the menus. The user must pull out the option
menu under the main popup menu in Jack. This will result in many special options being
displayed. The relevant ones to the vision models are: retina display, retina editor and
vision information. Referring to Figure 14, the first set of options (retina display)
addresses the user's need to manipulate the fixation point and visualize the area of coverage
of the visual field as the fixation point is swept around the environment.

6.4.2.1.1 Create Retina Window

To view the environment as seen from the aviator's eyes select the "create retina window"
option. The user must then select a figure with eyes. Currently only the polybody figures
have eyes. After selecting a figure with eyes, the user must then open a window anywhere
on the screen. Try and pick a location and size that will not occlude areas of interest. This
window will then maintain a view as seen from the selected figure. The red figures
correspond to the right eye and green figures to the left. The mapping of objects is done in
polar coordinates with the fovea at the center ie. (0,0). Each of the concentric rings are in
ten degree increments, with outer most being 90 degrees. This represents the limits of the
periphery. The magenta disk at the center represents the macular region
(- 5 degrees). The red/green disk represents the biological blind spot for the left or right
eye.

6.4.2.1.2 Create Field of View Cones

Viewcone projection is an area that is under revision. Therefore there are two approaches
under investigation at this time. The first options is "create field of view cones". This
option provides the user a mechanism for visualizing the intersection of predescribed psurf
formatted viewcones with the environment. The viewcones provided were created using a
compatible CAD package or Jack primitives and are psurfs just like other objects in Jack's
environment. The user can select from a sixty degree view cone with nose cut, or a long
and a short five degree view cone. These view cones are constrained to the the figure's eye
and will change as the fixation point for the figure is manipulated. They are semi-
transparent and are colored red for right eye, green for left eye, and yellow for the
intersection (binocular). This options is intended to provide access to a database of view
cone somatotypes.
To use this option, after selecting "create field of view cones", the user must select a figure
with eyes that the field of view will be projected from. Then the user must select the type of
cone desired. Once these cones are created they can not be deleted. You may project more
than one type of view cone if desired.

6.4.2.1.3 Create Monocular Field of View Cones.

Many times a user will want to investigate an arbitrary angle field of view. In this case there
may not be a predefined viewcone with the desired angle/size. The create monocular field
of view cones differs from the "create field of view cones" option by allowing the user to
project an arbitrary angled field of view cone. The angle is set by user in the vision
information section (explained later) and is turned on by selecting this option. The view
cone is projected out of only the left eye and is semi-transparent green.

Page H-42

6.4.2.1.4 Fixate eyes on site

This options will set the visual .axes of a figure to converge on a predefined site. Defining a
site is described in the Jack User s manual. Once a site is defined the user can command a
figure with eyes to fixate on that site by selecting this option, The user will be asked to
select the figure to do the fixation and the site to fixate on. Then by pressing the left mouse
button the figure will do the fixation. Fixations are consu'alned to the joint limits of the
figure's eyes and will only move as far as possible if the site is outside the limits.

6.4.2.1.5 Interactive fixation

This option allows the user to interactively sweep a figure's visual axes throughout the
environment, thereby intersecting view cones with objects of interest. Any time the fmation
point is changed the Retina Display window is updated. This options works much like the
fixation on site option, but instead of selecting a site to fixate on the user manipulates the
fixation site interactively. To move the fixation point along any single axis press one of the
mouse buttons, to move it in a plane select two mouse buttons. The fixation point is moved
just as any other object in Jack. See the Jack User Manual for more derails.

6.4.2.1.6 Monocular/Binocular Map

This option helps declutter the Retina Display window by toggling through right, left and
both eye projections. By selecting this option the first time the user projects in the retina
Display only the right eye's image. Selection this option again projects only the left eye's
image. Selecting the option again returns the users to projecting both eye images.

6.4.2.1.'] Zoom in/out of retina window

Selecting this option zooms the retina Display in so that only the center 30 degrees are
visible. This mode is helpful for seeing detail about object size and retina location.
Selecting this option again returns the user to display the full 90 degrees.

6.4.2.1.8 Show eye scan

This option is used to trace the eye's fixation point as it is moved around the environment.
As the MIDAS simulation progressed the fixation point would trace out a 3D curve in space
associated with the fixation point location. Since there is a bug in the Jack software for
tracing objects this function no longer works correctly. It will be fixed in a future release.

Page H-43

Retina Editor

main menu

option menu

option menu

retina editor ----_ _-->

retina editor

create retina editor

draw left retina object

draw right retina object

draw filled retina objects

retroject left retina

retroject right retina

retroject both retina

clear both retina

clear retina objects

save retinda obiects

load retina objects

load QO confusion data

load qo confusion data

load Iso Focus contour data

load cone density data

zoom In/Out of editor window

Figure 15. Retina Editor Menu

6.4.2.2 Retina Editor

See Figure 15 for an overview of the functions available under this option.

6.4.2.2.1 Create Retina Editor Window

The retina editor window provides a way to plot visual relevant performance data in a fovea
centric polar coordinates map, similar to the retina display. Whatever is drawn or read into
this window can also be projected into the environment. To create a retina editor window
select this option. The normal SGI window opening and position is then performed. The
user should try to position this window some place where it does not occlude useful
information. Remember the user can always resize the Jack screen to anything size that is
appropriate. The editor window is not an integrated Jack window and only gets updated
when an event occurs that would change what is displayed in the window.

6.4.2.2.2 Draw left/right retina object

The draw option is used to draw arbitrary contours onto the retina editor. After selecting
either left or right draw options move the mouse cursor over the point on the editor window
that you wish to enter as the first point, press the left mouse button. Now move to the next
point and press the left mouse button. Continue entering points until you have entered all

Page I-I-44

the data points and then press the right mouse button to close the contour. The contour will
be colored red for right, green for left retina object.

6.4.2.2.3 Draw filled retina objects

This option toggles back and forth between drawing the data as lines or polygons. The
polygons are semi transparent and interior contours can be distinguished from overlapping
polygons.

6.4.2.2.4 Retroject left/right/both retina

This option turns on the retrojection (projection into Jack's environment) of data loaded or
drawn onto the retina editor. The projection of this data is along the visual axis of the figure
and extends to the plane positioned at the fixation point and normal to the visual axis.

6.4.2.2.5 Clear retina objects

Selection of this option clears all data on the retina editor.

6.4.2.2.6 Save/Load retina objects

Selection of these options allows a user to save the data that has been drawn onto the editor
or load in new data.

6.4.2.2.7 Load QO/qo confusion data

These options are a special case of the above load option. They were put on the menu only
to make it easier to demonstrate the vision model. Instead of taking as input a filename,
this option builds the correct file name for the current conditions. The conditions that effect
the file that is load are: ambient illumination, stimulus lumens and character size. Light are
set in the vision state information settings. Character size is determined by your selection of
large (QO) or the small (qo) letters in the option name. If any of the light settings are
changed after the data is loaded you must clear the editor of the old data and reload the
confusion data again.

6.4.2.2.8 Load Iso Focus / Cone density contour data

This option is the same as the above options for the loading of confusion data, except that
the data does not depend on the ambient illumination and stimulus lumens and therefore
doesn't need to be cleared and reloaded when they change.

6.4.2.2.9 Zoom in/out of editor window

This option zooms in/out of the retina editor window. Some of the performance data can
cover only a small portion of the retina window when this occurs it is useful to zoom in.
Selecting this option again zooms out.

Page H-45

Vision Information

main menu

optionmenu ----->,=>

option menu

vision information _--> _->

vision information

create adaption info window

createlegendwindow

create Aitoff window

initialize state info

set state information

Figure 16. Vision Information Menu

6.4.2.3 Vision Information

See Figure 16 for an overview of the functions available under this opdon.

6.4.2.3.1 Create adaptation info window

This option reflects work in progress. The purpose for this window is to show the current
state of the observer. As factors such as ambient lighting changes the observer state is
assumed to be adapted instantaneously. The assumed current state is sometimes of interest
for the user. It may also be useful to investigate mis-adaptive states.

6.4.2.3.2 Create legend window

This window will be used to provide a legend for color used in the display of data.
Generally speaking green is associated with attributes of the left eye, red with the right eye
and yellow with both. The idea is to provide a standard way to communicate the meaning
of complex data in a consistent way. This window is not completed at this point.

6.4.2.3.3 Create Aitoff window

Aitoff charts are used widely by industry to standardize visual parameters based on the
coordinates of the design eye. To use this option the user must now the coordinate of the
design eye and define a site at that location. The user can then get an Aitoff graph relative
location. This options plots everything in the environment and therefore produce a very
cluttered plot.

6.4.2.3.4 Initialize state information

This option should always be done before attempting to use any of the vision options. It is
best to include this in the startup script for the Jack environment.

6.5 ERROR AND WARNING MESSAGES

Error and Warning messages are done in the same way Jack handles them. See Jack for
more information.

Page H-46

6.6 RECOVERY STEPS

Recovery Step are done in the same way Jack handles them. See Jack for more
information.

7.0 ABBREVIATIONS AND ACRONYMS

MFD
VVF
MIDAS
JACK
VEJI
VP
LM

Multi-Function Display
Volume Visual Field
Machine Integration Design Analysis System
Not an acronym (just looks like one)
Vision Enhanced Jack Interface

Volume Pedmetry
Legibility Model

8.0 GLOSSARY

9.0 NOTES

9.1 FUTURE DIRECTIONS

9.1.1 Illumination Model

Illumination modeling is undergoing rapid progress towards more realistic computational
models. There are many tradeoffs in the illumination algorithms between accuracy,
computation time and noticeable differences. Emphasis can be placed on reaching pleasing
or artistic results; thus providing an illusion of reality. The algorithms implicitly consider
the accuracy of the display median to limit the amount of cornputation to that which
differences are detectable on most graphic displays. Emphasis could be shifted to model
the laws of physics that rigidly govern the propagation of electro-magnetic radiation as
accurately as possible. Our vision model will require a high degree of fidelity to the
physical world to limit the errors in other dependent computations. Many of the techniques
to follow will not execute in anywhere near real-time. They will however, have
intermediate results that may be used for displaying approximate graphics.

The accurate presentation of data is confounded by the limited display capabilities of the
CRT. A CRT is capable of displaying only a subset of colors and intensities ranges. It is
also of finite resolution. What can be presented on a CRT is not the same stimuli that would
be experienced if one were actually there. For this reason the graphic image will only be
used for rough approximations where a large number of possible solutions are being
evaluated. After selection of a specific solution it can be reevaluated at higher fidelity.

The development of an accurate illumination model has a profound impact on the rest of the
simulation. The physical response to electromagnetic waves of the surface material of
every object in the simulation must be known. The orientation of all objects must be known
to calculate the visibility to illumination sources and the viewer. Attenuation factors of the
environment in which the viewer and illumination sources are embedded in must be
included in the model. Attributes of the illumination sources must also be modeled. This
implies that every object (even geometrically simple ones) will need a relatively large
amount of illumination data in addition to the normal geometric data.

The theoretical basis for the illumination model will be a hybrid of several complementary
techniques. Forming the basis for the modeling of diffuse illumination will be that of a

Page H-47

hemisphericalradiosity model. This model was first used to study heat transfer between
elements in furnaces or on a spacecrah. The radiosity model has been recently extended by
Gora] at Comell University to the area of computer graphics. Other researchers, Cohen,
Greenberg,and Hail, have refined the model to handle special cases such as high radiosity
gradientartifactsfoundinGorai'soriginalmodel.

The radiosity model provides a solution for diffuse and emissive radiant energy but does
not model specular reflectance and refraction. For this type of illumination a ray tracing
technique is more appropriate. This model simulates lights with rays and propagates them
throughout the environment. Surfaces reflect or transmit these rays depending on their
surface attributes. Proper attention is paid to angle of incidence and refraction. Ray u'acing
is CPU intensive and therefore will be used for fmai analysis rather than for interactive
evaluation of the design solution space.

Roy Hairs illumination model presented in his book, Illumination and Color in Computer
Generated Imagery, is the most complete illumination model to date. Glassner (An
introduction to Ray Tracing) codifies Hall's model and suggests how to extend it to
integrate diffuse transmission of light. (see appendix) This is the illumination model that
will be used to vary light parameters in our vision model. The error betw_n Hall's model
and the Silicon Graphic's light model (see appendix) will be explored. The size of this
difference will determine the appropriateness of this model for use in approximating
solutions.

Special procedures can be provided to model local phenomena that can be prec_mputed.
For example, the glare due to the sun could be precomputed for various angles and a set of
light masks could be overlaid on a CRT to model the expected glare.

The following provide the data structures necessary for the afore-mentioned algorithms to
be computed.

General Illuminators
This module contains the data structures and access functions for the illuminator data.
These data may be static but could also be set by the output of some other simulation
module. Default data for illuminators will be supplied from the IES Lighting Handbook.
Some examples are as follows:

Direction Vector
Energy Spectrum
Characteristics
Location
Geometry
Reflector type

SUll, Moon
The sun and moon are special case of illuminators and data will be attained from a TBD
source.

Flares, Lasers
Flares and lasers present some special problems in vision and need to be addressed
differently in the model. These data will be very time dependent in both the spatial and
amplitude domains. The effects of narrow frequency ranges, strong lighting contrast and
filters make these illumination sources difficult to model.

Page H-48

Light Loss Factors
This module contains the data structure and functions to model loss of light from some of
the major causes. Shadows will comprise a significant portion of the light loss cases. These
cases are addressed as part of Hall's illumination model. The others will be modeled from
data out of the IES Lighting Handbook.

Shadows types
The major types are shadows are: Umbras, Penumbras, Geometric Attenuation

Non Recoverable Factors
The non recoverablefactorsarcthosefeaturesofluminariesthatcausedeviationsfromthe

controlledlaboratorybutarcnotcorrectedby lightmaintenanceprocedures.The IES
LightingHandbook identifiesthesefactorsasimportantwhen computing lightcalculations
and statesthattheyarcmultiplicativc.The totallightlossistheproductofthesefactors.
TemperatureFactor,LineVoltageFactor,and SurfaceDepreciation.

Recoverable Factors
The recoverable factors are like non-recoverable factors with the exception that they can be
corrected by proper light maintenance. Some examples are: Lumen Depreciation Factor,
Dirt Depreciation Factor, Lamp bum out Factor.

Workspace Model
The Workspace model is comprised of the data description for the objects that exist in the
environment. In addition data about the current state of the environment is maintained.
Objects are a generic name for an entity in the simulation. An object can be used as a stimuli
to the vision model. An object has at least the following slots:

The orientation and positional data are maintained in world coordinates for each
object.

A material definition is provide for each polygon that comprises an object. This
material definition is needed for the radiosity model. Material properties include:
Emission color, Ambient reflectance, Diffuse reflectance, Specular reflectance,
Shininess (specular light scattering exponent) Alpha (transparence) and color.

A geometric description including information such as vertices coordinates is
maintained for all objects.

Many objects in the environment can exist in various states. For those objects that
posses this characteristic the associated state variables are maintained in the object
data slTuctur¢.

An important factor for target detection is Atmospheric Attenuation. The visibility of a
distance object is very much dependent on conditions in the atmosphere. The predominant
influencing factors are: Precipitation, fog, clouds, smoke, haze, etc. Attributes and
procedural descriptions will be stored here to describe these effects.

Texture Maps are required for added accuracy for many of the detection algorithms. An
example of where texture maps may be used would be target masking. Many targets use
some form of camouflage to make detection more difficult. It will be important to model
target masking to attain accurate results. The problem of detection is more general than
intentional masking. The detectability of any object depends to a large extent on the contrast
between itself and its background. Texture maps are necessary to generate realistic
backgrounds, eg. terrain or sky, from which an object's detectability will calculated.

Page H-49

10.0 APPENDICES

Page H-50

APPENDIXA m FIGURES

Page H-51

BINOCULAR VISION MODEL

Performance data

Samoff Vision
Model Input

55 x 35 pixel
characters

Character ,size

Arr_ient light

Stimulus luminance

Fixation point
anclaetta

Ilsa_mnw @lq)

Retinal editor

User Inter(ace

Visual attention
Fixer,on
Fielcl of view
Depth o; field

Data parameters

Performance
data projections

Object s_oacelo retinal
space project=on

Vision modal environment

COrltrroulorl

Or.JamesLarlmer
NASAAmesRe_oMchC_',nto¢

Mike PmvOsl
S_r_ So.ware

_r. Aries&rcNtl.Sieve Mueta
L_ht Houw N.Y.

Dr.James hl_en, Jill LuDin

Or.NormanBedler,Cary Phillips
Um_r_ly el PeNtSylver_l

Binocular foveal

centric projection

Page H-52

Other data

User input

Published
data

Data
projection

Object
space
projections

Projection of Legibility Contours

Page H-53

Retinal Editor Window

Cone Density Data

Page H-54

Fovea Centric Projection

Page I-I-55

APPENDIX B -- SARNOFF LEGIBILITY MODEL

Pa_ _-56

SarnoffCockpit DisplayVisbility

Modelling forNASA A31 Project

Jeffrey Lubin James R. Bergen

November 13, 1990

1 The Task

Sarnoff's_ task in the A_I project is to develop a quantitative, easily com-

putable model of instrument visibility within an aircraft cockpit environment.

The purpose of the model is to provide visibility data to display designers,

who need quantitative information on the effect that their design choices will

have on crew performance over a broad range of mission scenarios. Given

this range, the visibility of alphanumeric and other information depends not

only on the spatial configuration of the display, but also importantly on light-

ing parameters such as light level in the cockpit and the observer's state of

adaptation. The model must therefore accurately assess the effect of such

parameters, and convey this information to the display designer in an easily
understandable form.

2 Background

A number of visibility models have already been developed, by workers in

both the applied vision and basic psychophysics communities. Each

successfully predict human performance within a restricted range of stimulus

and task domains.

Pa_e H-57

2.1 Applied psychophysics

An earlysuccessin appliedvisionwas the YND Model of Carlson and hisas-

sociates(Carlson and Cohen, 1974; Carlson and Klopfenstein,1985).In this

model, an input image is decomposed via a one dimensional fourier trans-

form into a number of spatialfrequency bands. These filteredban_ are

then perturbed by variousnoise sources,squared, and spatiallyintegrated.

Changes in the output ofthisprocessfrom one member ofa pairofimages to

the other providea simpleperceptualmeasure ofthe visibilityof diITerences

between the two images. This model has successfullypredictedthe visibility

of changes in edge sharpnessand of various displayartifacts,among other

things. The disadvantagesof the model are that itisspatiallyone dimen-

sional,and is somewhat complicated to compute, since a noise parameter

must be adjusted foreach change in displayparameters such as luminance

and displaysize. A more recentvariantof thismodel, the Barren (1987)

SQRI Model, solvessome of the complexity problems by introducingpoly-

nomial approximations for the changes in human sensitivityto changes in

displayparameters.

2.2 Basic psychophysics

Similarmodels have been introduced intothe basicpsychophysicsliterature

by Wilson and his colleagues(e.g.,Wilson, McFarlane, and Phillips,1983;

Wilson and Regan, 1984),based on the thresholdmodel ofWilson and Bergen

(1979),and by Legge and Foley (Legge and Foley,1980; Foley and Le_e,

19SI). These models successfullypredicthuman performance in simple psy-

chophysicaltaskssuch as gratingcontrastdetectionand discrimination.In

allof these models, the input image isfirstdecomposed into independent

spatialfrequency channelsby a setoflineari_Iters.The output ofeach filter

isthen put through a sigmoid non-linearity,the shape ofwhich matches very

closelythat of the non-linearityimposed by the noise and squaring stepsof

the JND Model.

2.3 Two-dimensional models

All the models describedabove are spatiallyone-dimensionai;that is,they

predict sensitivityto spatialvariationin one dimension only. Watson and

Page H-58

his collea_es (Watson, 1983; Ahumada and Watson, 1985; Nielsen, Wat-

son, and Ahumada, 1985) have implemented a model which generalizes the

linear filtering stage of these models to two dimensions. Each filter il a

two-dimensional gabor function, with a number of different scales, orienta-

tions, and phases of filtering at each point in the two-dlmensional visual field,

and an increase in the overall scale of filtering as a function of eccentricity.
The model has been validated on some detection and discrimination data-

One limitation is that it is only accurate at stimulus levels near detection

threshold since, unlike the other models described above, there is no point

non-linearity after the linear filtering stage.

2.4 Combining information across channels

One problem all these models must face is how to combine information across

a large number of different filtering channels, so that a uni-dimensiona] value

for human performance on a discrimination task can be obtained. In other

words, from the large dimensional space represented by the channel outputs,

the models must derive something like a single value for the probability of

detecting a difference between a pair of stimuli.

One way to perform this reduction of dimensionality is to base the per-

formance measure only on the single channel which shows the maximum

change in output from one member of the stimulus pair to the other. This

"maximum-oi "_ decision rule is implicit in most of the basic psychophysics

modelling, and is motivated by the hope that the simple stimuli usually used

in that paradigm are suf_ciently localized in the space of channel outputs so

that only one channel governs performance, regardless of the degree to which

channel outputs are combined.

Other models, like the Watson model, use variants of an optimal Bayesian

classifier at the channel combination stage. Given the assumption that each

channel output is perturbed by zero mean, unit variance Gaussian noise,

the detectability of a pattern by an optimal observer is directly proportional

to the euclidean distance of the pattern's feature vector from the origin of

the channel output space. For an uncertain observer, detectability can be

modeled in the same way, but with an exponent higher than the euclidean 2.

Page H-59

3 Sarnoff Approach

3.1 Basic strategy

Sarnoff'sapproach tothe NASA legibilitymodeling taskhas been toaugment

the one-dimensional discrimination models of Carlson, Barten, and the basic

psychophysics community to include the two-dimensional spatial processing

used in the Watson detection model. In addition, because the NASA task

requires performance prediction over a wide range of lighting conditions and

observer perceptual states, the Sarnoff model includes a front end that pre-

processes the input images to model the effects of changes in ilhminance,

screen luminance, and observer fixation location in three-dimensional space.

3.2 Choice of performance measure

The performance measure chosen for the Sarnoffmodel isprobabilityof a

correctdiscriminationbetween two input images; e.g.,between two alpha-

numeric characters.Other performance measures are of coursepossible;one

common measure from the appliedpsychophysicscommunity isimage qual-

ity,expressedin unitsofjust-noticeabledifferences(JNDs) between the two

images. In fact,the probabilitymeasure used inthe Saxnoffmodel isderived

from a JND-like measure, as willbe describedbelow. Another potentially

usefulmeasure isthe reactiontime requiredforcorrectdiscrimination.How-

ever,thismeasure has receivedlittleattentionto date in psychophysicsre-

search, and its use here would thus require a large amount of additional data

collection and modelling.

Another important consideration in the formulation of the Sarnoff model

is that the performance measure be conservative. That is, display design

engineers need a measure that would allow them to rule out very bad designs,

but would let marginal designs pass for additional testing. In other words,

it is better to err on the side of overestimating rather than underestimating

the probability of successful discrimination.

3.3 Incremental improvement

Finally, the model has been constructed in such a way as to allow incremen-

tal improvement in its ability to predict performance among complex stimuli.

Page ii-60

For example, the model as currently formulated can accurately predict perfor-

mance only among static, monochromatic images. However, by _placmg the

model's spatial filters with a set of spatio-temporal Rlters, performance mea-

surement among moving stimuli would be possible. The strategy in model

development is therefore to validate the simple model on simple stimul],.and

then incrementally build in model complexity to handle the more complex
stimuli.

4 The Model

Figure i is a schematic diagrarn showing the different stages of the visibility

model. In this section, each stage of the model will be described in detail.

4.1 Input parameters and stimulus format

The model, as currentlyformulated,takes as input one or two image _es,

and a number of optional lightingand observer stateparameters. These

parameters are listedhere with the defaultvalue and units in parentheses:

Screen luminance (10.0foot-lamberts)

llluminance (0.0foot-candles)

Eccentricityof displayedstimulus (0 degrees)

Fixation depth (741.12ram)

Stimulus depth (741.12ram)

The image filesstartwith two four-byteintegersindicatingthe width

and height of the image in pixels, followed by rows of pixel values in floats.

The images can be any size,although should be at least256x256 to allow

_Iteringwithin a largeenough range of di_erentfrequency bands. "/'hecon-

versionfactorfrom pixelsto mm iscurrentlyfixedin the software as 13.21

pix/mm. With only one image as input,the softwarecalculatesthe probabil-

ityof detectingthat stimulus;with two images,the standard discrimination

probabilityiscalculated.

In the current versionof the model, pixelvaluesare required to range

from -1.0to 1.0,with the maximum absolutevalueindicatingthe contrastof

the stimulus.For example, a sinegratingstimuluswith peaks at -4-0.5would

have a contrastof0.5.To remove the need forthisconvention,a model stage

Page ,I-6i

Hypotenuse

Blur

Scaling

Pyramid Construction

Poollng

Distance

Probability

Figure 1: Visibility model flow diagram.

Page _-62

which computes contrast from arbitrarily scaled input _ is needed, but

has not yet been implemented.

4.2 Front end calculations

Several initial transformations on the input images are performed prior to the

linear filtering stage of the model. These transformations model the dect of

changes in fixation depth, veiling luminance, and fixation eccentricity.

4.2.1 Fixation depth

In order to a_count for changes in effective image resolution with changes in

the difference between image depth and fixation depth, we used geometrical

optics to calculate the size of the blur circle, and then pre-Kltered each input

image with this disk-shaped convolution kernel. This calculation requires

knowledge of the distance from the exit pupil to the imaging surface (i.e.,

the retin.a), which we took as 20.3 mm from Westheimer (1986). It also
requires an estimate of pupil size. For this, we wrote a simple interpolation

routine to estimate pupil diameter at any light level from a table published

in Hood and Finkelstein (1986).

4.2.2 Contrast reduction

Veiling luminance, caused by the reflection of ambient light by the display

screen, reduces the effective contrast of displayed information. We are mod-

elling the screen face as a perfectly lambertian surf_e with a reflectivity of

10%. This assumption implies that an illuminance of 10 fcd will result in a

veiling luminance of 1 fL. We are defining contrut as

c -- (lrnax - lmin)/(lmax + lmin)

where lmsx and lmin are the maxmimum and minimum displayed lumi-

nances. Given this definition, the addition of a veiling luminance v to both

lma.x and lmin changes the contrast by a factor 1/2v.

4.2.3 Eccentricity scaling

Abundant psychophysical evidence shows that contrast sensitivity remains

roughly constant acrossthe visualfield,ifthe gratingpatch isscaledup by

Page [{-63

a linear function of eccentricity. This strongly raggests that p_g is

similar across the visual field, except for a linear _ up of _

towards the periphery. In order to model the effect of this change in xnsor

size, we found it more convenient to scale down the size of the input ;mages

as a function of eccentricity, rather than to scale up the size of the l_ason.

We used the scale factor (k) of 0.4 quoted by Watson (1983), so that the

scaling of input images as a function of eccentricity (e) is

1.0/(1.0 + ke).

4.3 Linear filtering

4.3.1 Pyramid decomposition

In order to filter within a range of different frequency channels, the input

image is first decomposed with a gaussian pyramid into channels spearated

from ea_=h other by one octave, The frequencies we chose for these chan-

nels are identical to those used by Watson (1983); i.e., 32 through 0.5 c/d,

corresponding to seven octaves or equivalently, seven pyramid levels.

4.3.2 Computing filter gains

The human visual system is not equally sensitive at all frequencies. A plot of

contrast detection threshold as a function of spatial frequency shows roughly

an inverted-U shape, with a peak at roughly 2 c/d, and complete loss of

sensitivity by approximately 60 c/d. Moreover, as shown by van Nes and

Bouman (1967), the shape of this contrast sensitivity function changes with

retinal illuminance. To model these dependencies, the image component in

each frequency channel is weighted by a gain factor appropriate for the retinal

illuminance, before any oriented filtering is performed.

Retinal illuminance (in photopic trolands) is calculated as the amount of

light incident on the cornea (in cd/m=) times the pupil area (in mm=), where

the light incident on the cornea is assumed to be the screen luminance plus

the veiling luminance, appropriately converted from fL to cd/mL The gain

at each frequency is then calculated directly from the van Nes and Bouman

data with a simple log interpolation function to return sensitivities at retinal

illuminances other than those reported in the data. For example, if the

threshold modulation for a 1 c/d grating were 1% at 10 tds and 5% at 1

Page H-64

tds, then we interpolate the threshold at 3.16 tds (half,he log distance from

I to I0) to be 2.23% (half the log distance from I_ to 5_). This direct

calculation is possible only under the assumption of no summation among

different frequency channels; any assumed summation would require a more

complicated relationship between the contrast sensitivity function and the

gain of each channel.

4.3.3 Steerable filtering

For convenience and speed of oriented filter operation, we use the steerable

filters of Freeman and Adelson (1990), which allow separable calculation of

linear filter responses at any orientation and phase. The filters implemented

here, a second derivative of a gaussian and its Hilbert transform, have a log

bandwidth at half height of approximately 0.7 octaves. This is within the

range of bandwidths inferred psychophysically(e.g.,Watson and Robson,

1981). W.e are using four orientations(0,45, 90, and 135 degrees)and two

phases (si.neand cosine),four a totalof eightorientedfilterresponsesper

pyramid level.The orientationbandwidth of thesefilters(i.e.,the range of

anglesover which the filteroutput isgreaterthan one halfthe maximum) is

approximately 65 degrees. This figureisslightlylargerthan the 40 degree

tuning of monkey simple cellsreported by Devaloiset al (1982),and the 30

to 60 degreerange reportedpsychophysicallyby Phillipsand Wilson (1984).

4.3.4 Energy calculation

During the early stages of model testing, we found that the detectability of a

simple edge could change dramatically with small changes in edge position.

To combat this problem, a small amount of spatial summation was added by

computing energy after the linear filtering stage. That is, corresponding sine

and cosine filter responses were combined as

e(x,) = sin2Cx)+ cos (x,)

where zi isa linearfilterresponse,indexed over filterposition,orientation,

and frequency band.

Page H-b)

4.4 Point non-linearity

Nachrnias and Sansbury (1974) showed that the results of a grating contrast

discrimination experiment, when plotted with threshold contrast increment
as a function of the base contrast from which the increment threshold is

being measured, produce a dipper-shaped curve. These authors argued that

the results can be modelled by assuming a si_noid non-Unearity following a

linear detection mechanism. The decision mechanism has available to it only

the output of this non-linearity, and reliably discriminates between inputs of

two different contrasts when the difference in outputs is greater than some
threshold.

To quantitativelymodel the dipper-shaped contrastdiscriminationcurve,

we followLegge and Foley (1980)in usinga non-lineartransducerofthe form

rI ,[n
T(= [Ld2+

where T .isthe non-lineartransducer output, L; isthe linear_ter response

(indexed as above),r isan overallgain-settingparameter,n isa realnumber

greaterthan 2 (2.4here),and a isa semi-saturationconstant(0.0075).Given

that our energy calculationdescribedabove alreadysquares the linearfilter

resonses,the transduceroutput can be expressedas

re_ -2
T(e,) =

e+ + s 2

where el is short for eIx_) in the energy expression above.

4.5 Decision stage

4.5.1 Distance calculation

We are assuming no summation among transducer outputs, and a decision

mechanism in which discrimination is governed by the pathway whose trans-

ducer output shows the maxmimum change between the two stimulus presen-

tations. Although these assumptions are probably not correct in detail, they

dramatically simplify model theory and calculations, and thus are useful as

a first pass at the truth.

Page h-66

One way of expressing this maximum change assumption is that the dis-

criminability between two images is assumed to be proportional to a non-

Euclidean distance between the points representing the two images in the

space of transducer outputs. That is,

D(sn,s:2) = _[T(e_Csl))- TC_(sn))] 0
dml

where sl and s2 are the two images, and n is the number of different trans-

ducer channels. If Q = 2, this expression returns the Euclidean distance

between points in the transducer output space. As Q --* co, the distance

metric gets closer and closer to the maximum change mode] described above.

4.5.2 Distance to probability

This distance measure can be used in the following generaJization of the Nach-

mias and Sansbury model: Two images are reliably discrin_nated whenever

the result of the distance calculation for the two images is greater than some

threshold.

This simple generalizationissufBcientto model resultsin which discrim-

inationthresholdsare measured as a functionof a change in a stimulus pa-

rameter (e.g.contrast,as in the Nachmias and Sansbury results,or spatial

frequency,as in the edge transitionresultsto be discussedbelow.) For these

tasks,the thresholddistancecan be understood as the distancewhich gives

a 75% probabilityof discriminationamong the two stimuli. However, for

the cockpitdisplayvisibilitymodelling,the relevantperformance measure is

the probabilityof discriminationgiven two images, not the requiredchange

between two images given a fixedprobability.Therefore,a mapping between

distanceand probabilityisrequired,not forjust a singlevalue of distance

and probability,but along the entirerange of each.

We have generated thiscomplete mapping from distanceto probability

usingtwo setsofdata: Contrast detectionpsychometric functionsfrom Foley

and Legge (1981)and contrastdiscriminationfunctionsfrom Legge and Foley

(1980). In the former data set,probabilityof detectinga sine grating is

plottedagainst the contrastof that grating. Foley and Legge showed that

thesedata are wellfitby an expression

p(C) = 100 - 50exp(-aC b)

Page _-67

where C' is contrast, and a and b are parameters, fitted to one observer as
a - 52.60 and b - 3.0.

For the latter data set, a good fit is obtained using the transducer function

described above. This transducer expresses distance as L function of linear

fi/ter output, but can be expressed equally well as a function of grating con-

trast, since linear filter output is proportional to contrast. This means we

can express both distance (i.e., transducer output) and probabi/ity as a func-

tion of contrast, and have only to invert the transducer function to obtain an

expression for probability as a function of distance. We were not able to solve

this problem analytically, but instead generated an accurate computational

solution that was incorporated into the visibility model software as a lookup
table.

To test this mapping, we applied the model to predict psychometric func-

tions for contrast discrimination, also published in Legge and Foley (1981).

In these functions, probability for detecting a change in contrast of a sine

grating at threshold is plotted against that change in contrast. The model

predicted_hese functionsvery accurately.

4.6 Position uncertainty

One important taskforperformance measurement in a cockpitdisplayenvi-

ronment ischaracterdiscriminationas a functionof eccentricity.However,

predictionson O vs. Q discriminationfrom the model as describedso far

incorrectlyassertnear perfectdiscriminationout to as much as 16 degrees,

whereas in reality,probabilityof successfuldiscriminationamong these two

charactersfallsto chance by about 5 degrees.

Because of the lackof spatialpoolingin the model, the task of discrimi-

natingbetween O and Q becomes, forthe model, the taskofsimply detecting

the diagonal segment in the Q, a task which could in factbe performed re-

liablyout to 16 degrees. But for letterdiscrimination,itisnot sui_cient

to simply detect allthe component features;accurate spatialrelationships

among these featuresmust alsobe recovered.This led us to considerother

psychophysicaltasks for which accuratelocalizationisimportant, most no-

tably the three dot bisectiontask of Yap, Levi and Klein (1987;JOSA, 4,

8, pp. 1554-1561). Here, as in contrastdetection,a linearscalingof image

area with eccentricityleads to constant performance acrossthe visualfield.

However, the scalingfactorforthreedot bisectionislargerby about a factor

Page _i-68

of three than the scaling factor for contrast detection.

The fact that tasks requiring accurate localization scale by a larger fac-

tor than that of contrast sensitivity suggested to us the need for a stage of

eccentricity dependent spatial pooling of sensor responses following the _in-

ear filtering stage. If filter responses were pooled over a progressively larger

area towards the periphery, then the central visual system would become

increasingly uncertain of the spatial position of a _ven image feature. Fur-

thermore, if the gain of the pooling filters were scaled so that the magnitude

of the pooled response of a uniform input were unchanged with the size of

the input area, then the model would continue to accurately predict contrast

sensitivity in the periphery.

When we incorporated these changes into the model, it was able to quali-

tatively predict published results in letter discrimination, three-dot bisection,

and contrast sensitivity in the periphery. After making these changes, we

found further verification for our letter discrimination predictions in a recent

report by Farrel] and Desmarais (JOSA (1990) 7, l, pp. 152-159).

4.7 Output format

Model predictions are generated in files for which all parameters are fixed,

except for eccentricity (i.e., degrees of visual angle off"of the fixation point.)

The output files thus contain a simple two column table of eccentricity -

probability pairs, one such file for each combination of image pair, lighting,

and fixation depth parameters.

The initial set of model results included predictions for two different fonts

of Q and O (types a and b from the Apache Longbow Crew Systems Inter-

face Document). A screen depth of 30" was assumed, coupled with four

different fixation depths: 15", 30", 60", and oo. For each of the two fonts

and four fixation depths, we generated model predictions at the following

]uminance/i]luminance combinations:

P_e H-69

luminance illuminance

10,000 fcd 350.0 fL

10,000 fcd 100.0 fL

10,000 fcd 31.6 fL

10,000 fcd 10.0 fL

1,000 fcd 10.0 fL

100 fcd 10.0 i'L

10 fcd 10.0 fL

These illurninances range from bright sunlight (10,000 fcd) to late dusk

(10 fcd). The luminances range from the maximum available, as listed in the

Apache Longbow document (350 fL) to the minimum daylight mode setting

(m_).

Figures 2, 3, 4, and 5 show model results for the range of character sizes

and lighting parameters described above. In all thse figures, fixation depth

is equal to stimulus depth (30").

In order to generate complete discrimination contours from the model

output files, the package of model software also cont_ns a routine which

generates probability contours from 55% to 95%, and the 99% contour. This

routine performs a linear interpolation on the probability values Usted in

the model output file, to determine the eccentricity at which each contour's

probability value would occur. It then computes a set of x,y points (in degrees

of visual angle) for a complete circle at that eccentricity. Additional data

may, in the future, require refinement of this module to produce contours

which deviate from a purely circular shape.

5 Validation

5.1 Edge transition data

The discrimination model has been successfully tested against the Carlson

and Cohen (1973) edge transition data, with a fit better than that of Carlson

and Cohen's original (JND) model.

In the edge transition task, observers are asked to discriminate a change
in sharpnessof an intensityedge,as a functionof the base sharpnessof that

edge. More specifically,in the Carlson and Cohen data,the one-dimensional

Page t_--7()

I=
O

.p,,q

.=
"E
t_
O
In

0
0

0
0

0
0

0

100 [

90

80

7O

6O

\
\
\

\
\

T--'_\ I
\\

\

/ \\

/

\
\
\

I ' I _ I ' I ' I I

, \

%
m

\

\

Task: Q vs.

Luminance:

Illuminance:

10 fcd

.... 100 fcd

---- 1,000 fed

i0,000 fcd

I

0 (size a)

i0.00 fL

\
% \
,, b

% \

\
\

x 'D,--......_...

_ "B_ _..Q. _. "-I__..._..O.....,"

so 1
0 2 4 6 8 10 12 14 16

eccentricity (degrees)

Figure 2: Model predictions: Q vs. O, size a, luminance fixed at 10 fL, four
different illuminances.

Page h-71

O
°_..I

,s,,q

In

0

0
0

0

i00

9O

8o

7O

5O
0

\

\
\
\

\
\
\
\
\
\
\
\

\
\
\

Task: Q vs. O (size a)

nlum/nance: 10,000 fcd

Luminance:

-- 10.00 fL

.... 31.62 fL

--- i00.0 fL

-- 350.0 fL

2 4 6 8 I0 12 14
eccentricity (degrees)

16

Figure 3: Model predictions: Q vs. O, size a, illun-dnance f_xed at 10,000 fcd,
four different luminances.

Page i/-72

0

B
_nW

0
f_

0

0

a_
0

QJ

i00

9O

8O

7O

6O

5O

-I
\

\
\
\

, \

' I ' I ' I ' I

Task: Q vs. 0 (size b)

Luminance: 10.00 fL

Illuminance:

-- 10 fcd

.... 100 fcd

--- 1,000 fcd

-- 10,000 fcd

',\
k _ '_'_.

\ k. \,.

\,, ...-

.-'----- . - ZZ"-.--.J

2 4 6 8 i0 12 14 16

eccentricity (degrees)

Figure 4: Model predictions: Q vs. O, size b, luminance fixed at I0 fL, four

different illuminamce$.

Page 11-73

0

°_--g

(J
u]

0

0
0

(D
0

Q)

I00

90

80

70

60

I _ I ' I ; I ' I

Task: Q vs. 0 (size b)

Illuminance: I0,000 fed

Luminance:

i0.00 fL

31.62 fL

i00.0 fL

350.0 fL

\
\
\
\
\

2 4 6 8 i0 12 14

eccentricity (degrees)

i6

Figure 5: Model predictions: Q vs. O, size b, illuminance fixed at 10,000 fed,
four different luminances.

Page H-74

horizontalcross-section of a vertical edge is generated as an error function

(err), where

erf(z) = (2/,_/'_')_',e.x'pC-t2)d_

The sharpness of the edge is controlled in the following parameterization

for z in the above expression:

== fol

Here, d indexes the distance across the edge image in degrees, and ranges

from -w/2 to w/2 (where w is the width of the image in degree_), and

fc is the frequency at which the modulation transfer function for the edge

has fallen to one half of its maximum. This p_ra_eter fc thus governs the

sharpness of the edge, with higher values giving sharper edges.

Given _this parameterization, the psychophysical task can be expressed

as follows: From an edge with a fixed f_ value (call it fs), how much does

the fc have to increase (call the increase dfz) so that the change in edge

sharpness is just noticeable. The results were plotted by Carlson and Cohen

with log(f=)on the abscissa,and log(df_/(fz+ dfz))on the ordinate. In

general,theseresultsfollowa u shape,with the minimum near a frequency

of 1 cycle/degree.

Figure 6 shows the edge transition data from Carlson and Cohen, together

with their model fit and the fit of the discrirninability model described here.

The discriminability model was fit by finding the value of df_ at each fz

which gave 75% probability of discrimination between the two edges.

5.2 Character discriminability data

We have begun collecting additional data to test the model's predictions

in a character discrimination task. All experiments were performed on the

MacIIx. The stimuli, as in the model runs, were uppercase O and Q, axlapted

from the Mac Helvetica14 font to accurately replicate the size and bitmap

pattern of the Size A characters described in the Apache Longbow Crew Sys-

tems Interface Document. The screen luminance was vaa'iable from between

0 and 13.5 ftL. The subject's distance from the screen is 30 inches. Veiling

illuminance for the data collected so far was approximately 10 fcd.

Page H-75

• o

II

0

V I V 2

RETINAL, pRIrOUENOY
v

1.0 I0 I00

RETINAl. FREOUENCY V I (CYCLES/DEGREE)

Figure 6: Edge transition: data and model. Upper curve shows the predic-

tions of the visibility model described in this report; lower curve shows the

predictions of the 3ND model of Carlson and Cohen.

Page H-76

A small fixation mark (+) was continuously present at the center of the

screen. During exch trial a single character, 0 or Q, was flashed on for 167

msec, at an eccentricity e either to the right or to the left of the fixation point.

This direction, as well as the identity of the character, was randomly varied

from trial to trial. The eccentricity e remained constant within a session,

as did the luminance of the characters and background. The subject's task

was to identify, with a keypress, which of the two characters was presented.

A session ended when each of the four possible combinations of character

identity and position has been presented n times, where n is typically 50.

Preliminary data from this paradigm are shown in Figure 7.

In this figure, the three connected points marked by the heavier crosses

show the data for one subject, under lighting conditions of I0 fcd illuminance,

and 6 fL screen luminance. Also shown in the figure, marked by filled squares,

is the model run with lighting conditions most similar to those of the data

run; i.e., 10 fcd, 10 fL. As shown in the figure, the slope of the falloff in

perform_,_ce with eccentricity is in good agreement with model predictions.

Not surprisingly, though, there is a "de shift" between model and data; that

is, the eccentricities at which these reported probabilities occur are not in

good agreement with the model results.

One obvious possible reason for this discrepancy is that the short stimulus

duration used in the experiment (to prevent eye movements) reduces the

effectivecontrastof the stimuli,thereby significantlyaffectingperformance.

Since the model as itnow stands isblind to changes in stimulus duration,

it would not be expected to accuratelypredictperformance for arbitrarily
short duration stimuli.

To make sure that an increasein effectivecontrastdoes increasehuman

performance (i.e.,to ma_e sure that the human resultsreported above are

not already at a performance asymptote), we used a second screen lumi-

nance configuration,chosen to maximize the effectivecontrastavailableon

the Mac]Ix. In thiscondition,the charactersare dark on a 13.5 fL (max-

imum possibleluminance) background. Results are shown in the figureas

empty squares.Under theseconditions,the human data _re much improved,

shiftingthe performance curve outward by about two degrees.

Shown alsointhe figure,forcomparison purposes,isa model run in which

the effectivecontrastislow; i.e.,a 10,000 fcd,31.6i'Lcondition. Here, the

resultsaxe quitesimilarto the 10 fcd,6 fL data run. These resultssuggest

that some additionalmodel development is needed to accurately measure

PageH-77

o

eo

_m

E
I.

Q=.=

(g

I.
o

¢J
I.

n.

9O

80

?0

6O

50
0 2

Data: 10 fcd, 6 fL

4 6 8 i0
Eccentricity (deE)

Data: 10 fcd, 13.5 fL
reverse Video

Model: I0 fcd, 10

Model: 10' fcd, 31.6 fL

12

Figure T: Letter discrindnation: data and model.

Page H-78

the e_ective contrast of a sthnu/us, given its time cour_ and oth_ relevant

stimulus and observer parameters.

6 Future directions

In general, future plans for this project involve both extending the range

of model applicability and, through additions] dgtt collection tad model

refinements, improving confidence in model predictions. Spe_c plans are
outlined below.

6.1 Stimulus parameters

6.1.1 Change and motion

An important area for extending the range of the model is into temporal

stimulus' parameters; i.e., explicitly modeling visual re_on_ to stimuli which

are moving or otherwise changing in time. The importance of the latter was

made clear in the previous section, where it was described that the short time

course of the experimental stimuli may be changing their effective contrast.

Modeling response to motion would aho vastly increase the useful range

of stimuli: target detection could be modeled, as well as dynamic cockpit

display events such as flashing lights or rapidly deflecting meter needles.

6.1.2 Color

Extending the model into the chromatic domain is relatively straightforward,

a._d useful for the same reasons cited above for change and motion detection.

6.2 Tasks

6.2.1 Discrimination

The model as it now stands can generate predictions for discrimination tuks

other than character discrimination. Tasks such as target detection and

meter needle position discrimination can be investigated, even before the
model is extended into the motion or color domains.

Page I4-79

6.2.2 Localization

Another important task, especially for target detection, is stimulus localiza-

tion; i.e., the accuracy with which stimulus position can be reported. Because

of the areal summation currently built into the model, accurate localization

of stimuli will decrease as a function of stimulus eccentricity. Additional

research will be required to determine other relevant stimulus, task, and

observer parameters affecting performance in this task.

6.3 Performance measures

6.3.1 Probability and confusion matrices

Currently, the model generates an estimate of probability correct for discrim-

ination between a pair of stimuli. A useful and strai_orward generalization

would be the production of a full confusion matrix for members of s set of

allowabl_ responses. This performance measure would become especially im-

portant if the vision model were given the responsibility of providing to other
modules the identity of a percept, rather th_n just a measure of success in a

simple discrimination task.

6.3.2 Response time

Another possible performance measure is the time required to perform a

vision-based task. The usefulness of accurate modeling of this performance

measure depends on the level of temporal detail required by other MIDAS

modules. Since visual response times are almost always in the 100 to 500

millisecond range, accurate modelling would be irrelevant if other modules

were operating in, for example, the 5 to 10 second range. Moreover, modeling

response time would probably require significant additional effort to extend
the current model.

6.4 Observer state parameters

6.4.1 Adaptation

The dynamics of light adaptation is a complex research question, to which

entire careers have been devoted. However, much would be gained from ,_

Page H-80

simple model in which the decay parameter for recovery from a change in

lighting depends on the absolute light level and the size of the change. More-

over, modeling can also he simplified if the time scale over which recovery is

modeled is restricted to a specific range; e.g., 100 to 1000 msec. However, it

should be noted here that the addition of light adaptation to the vision model

puts additional responsibilities on other Mn)As modules as wen, since some

module would be required to provide the vision model with ongoing estimates

of lighting conditions, based for example, on sun position, cloud cover, and

vehicle position.

6.4.2 Resource loading

Resource loading is an ill-defined but important parameter a.qecting pilot

performance. One way to start investigating this parameter is to consider

performance in dual task situations, about which a moderate amount of re-

suits has:been reported (e.g., Pashler, Cognitive Psychology, 1989). The

general strategy here is to consider resource loading not in terms of a homo-

geneous capacity model, but in terms of specific interactions among specific
kinds of tasks.

6.5 Model refinement

6.5.1 Contrast gain control

Recent results (Lubin, ARVO, 1989-1990) suggest a model stage in which

outputs of different spatio-temporal frequency channels set the gain of neigh-

boring channels via a division-like operation. These data are relevant to the

visibility model because they provide evidence against the simple indepen-

dence of frequency channels in the current model. Inclusion of such a gain-

setting stage would improve model performance across most discrimination
tasks.

6.5.2 Detection vs. localization scaling

These two different stages of scaling were already discussed in the model de-

scription section above: The model contains an earlier stage at which sensor

size scales as a function of eccentricity, and a later stage at which sensor re-

sponses are pooled as a different function of eccentricity. For simplicity, this

Page H-81

second stLge of scaling is currently implemented as a scaling down of the dis-

tance in the transducer output space. However, this simplification does not

always accurately model the presumed scaling operation, since it decreasa

the output distance even between spatially distant pairs of stimuli, for which

no pooling would be expected. An implementation more isomorphic with the

presumed operation is thus required.

6.6 Data collection

6.6.1 Model verification

Data collection is ongoing. Current plans include extending the range of char-

acter discrimination data to other lighting conditions and character pairs.

Performance in other cockpit display tasks, such as detecting a change in

meter needle position, will also be measured. Moreover, as the mode/is

extende_i to other performance measures and stimulus and observer parame-

ters, additional data collection will become necessary. Tasks such as moving

target detection, with performance measures such as the response time to

accuratelyloc_lizethe t_rget,may be undertaken.

6.6.2 Normative data

Another usefulsetof data would be normative data;that is,data fora wide

range of individualswithinthe relevantsubjectpopulation,so thatvariance

estimates for differentperformance measures could be obtained. Such es-

timates would help establishmore Accuratelythe probabilityof successin

differentmissionscenarios.

Page H-82

APPENDIXC -- LIGHTHOUSE VP SOURCE CODE DOCUMENTATION

Page H-83

1 Organization Of The Source Code

1.1 The VP Executable Program

All of the somce code, w_ the exce_don of main,c, b used m genemz a nemb= of lameieL Wbea

main. c is compiled with these libraries, the VP executable wogram is godB:ed.

En_ronment Vattablts

There are several environment variables that need to be setin (mJerto iropedy compile lad nanVP. "l'aesc
v_Jables should be set by mnnmg the command _e . vpenv in the vP nxX directory. _ _rst sep,
though, is to edit . vpenv so that the environment variable vP is ping Io be m to the VP mot dim_.
For example, if the VP ¢lirecloo/hierarchy is rooted in /usr/foo, edit the line that begins "sel:env
vP" to read

se_env YP lusrlfoolvp

On_thisisdone. therestofthelxograrn'senvironmemvarinblescanbesetbyexccudng .vl_nvwith
_U]_X source comm_1_

1.2 The SourCe Code

With the exception of the main iXoEranl (v'p/src/main. c) al] of the source code is used tOmake ll_ VP

library files. Each subdkectory of vp/src contains the files dat are used to make one library of routines.
For example, thesourcefiles in vp/src/model are used to make the library vp/lib/libmodel .a.
All of the header filesarc kept in vp/lib.

The Moin Progr.m: vp/s rc/nut in. c

The funcdon of the main program vp/src/main.c is s_'aighfforwani Fu_ it calls Initialize
(which opens and iJddalizes all of the inidal windows) and then it calls menu...loop (which processes
intermediate events while waiting for a menu event).

The vpmain Library

The routines in the vpmain fibmry take care of much of the overhead in the program. Start-up
inh/a/ization, window maintenance, message and error handling, event handling md list operations are
implemented in llbvpmain.a. The C files described in this section make llbvpmain.a and are

found in vplsrclvpmain.

event, c -- Contains the function process_events, which waits for an event Io queue slid
processes it accordingly. It returns a structure of type Event.

grid. ¢ -- Contains the routine that draws the scale grid.

init. C -- Opens the sLan-upwindows and inida_zes the eyes.

list. c Foncdons for operations on _o-way opcn-cndedand circular finked lists and stacks.

menu. c -- The menus for the message window and envkonment windows are defined here. (Note
that all environment windows have the same menu.)

messaoe, c -- Functions for displaying tcxz hi the message window, maintaining the message
stuck and geumg input t_L

Page H-84

view. c -- Comains the mLuinos that chanp the view in _

window, c -- Functions that open and dose the meaace tad ea_ windov_ madfind dins
ia the wiadow li_

The model L_ka_

The model h]m,.-y (I vp l L_b l1._m_ode J.. a) provides the mmines for ¢:eating, nutinlaininI and drawing
_e model hierm_hy. This would also include _e editing routines, which allow the user m movemodels
new locadons and ddme _em from _e envin_mu_6 and the l_hdng mefiae_

c=eate, c -- Contains l_e roudnes that "create" models, which eme_daI1y means reading the
model file and adding _e model's data slrumme to the model

d_aw. c -- Contains the roulines that claw the model hieramhy and individual models.

edit. c -- Contains the roulines OuUmove and delete models.

lexer, c -- The lexical analy-_ used by the model file panter.

light, c -- The rou,nes that define and comml lighting.

p a rSe. C --The model file parser.

pick. c -- The routines used to =_ck" a model that is drawn on the

symbol, c -- Symbol table support for the par_.

tree. c -- Tree Iraversal routines that apply a fun_im (specified as an argument to the trav_
function) to each node in the free.

ucils, c -- Various general utilities.

The vector L,/b_u_
The vectorlibrary(vp/lib/libvector. a) con(a_ls rou_nesforvectorand matrix opemuons. (Some

vector operationsareperformed with macro substitution and are defined in vp/include/vecto_ ._)

matrix, c -- Routinesthatperformoperationson homogeneousmmsformafionnm_¢_.

vector, c -- ROutines that perform vector operaliol_

TAe eye/_rary
The eye library (vp/lib/libeye. a) contains the all of the routinesthatam associatedwiththeeyes

and vision, It is important to note that even though retina window routines are defined in libeye, a.
they must use the window support that is provided in Zibvpmain. a.

eye. c -- Contains initialization and fixation routines.

menu. c -- Defines the menu for the re_.a window. Note that some eye operations are executed
from the environment window menu.

retina, c -- Routines that cre-,e, draw and delete retinal objects.

window, c -- Rouunes for openingand drawingmlinawindows.

Page H-85

2 Lists, Stacks and Trees

]LL_ and _ I_ dafined in list. h and supportsd by funcdom _ llst. c. _ dam
IlxucmrrJ are dynamic_ly implemenm:l so that there arc no _ limits oll tbdr Ib_

2.1 Lime

A generic list node is defined in llst. h as

strict list node {
void *dat;

stc_ct list node *prev;

struct list node *next;
);

This structure is the basis of the progwam's open-ended Ibxs, circular lists sad melt& Tbe klds

prey and next point to the previous node and the next node, respectively. The use oftbe pt:ev
pointer allows for _o-way operaLion. The data field, dat, is a pointer to void. Having •
vold pointer as a data field is what gives the list node its generic quality. Any pointer elm be
converted to void through a cast and then converted back to its original type through a cast
without d_mage. For convenience, List is a type defined in list:, h as a pointer to st_-uot

Zlst_node.

The most basic list supportedby Ve is an open-ended linked lisL The prototypes for the linked
support functions ate shownbelow.

void

Boolean

void

list_append(List *list, void *data);
delete_lis_node(List *llst, void *data);

delete_list(List *list);

The argument list pointstothe head of the list. data points to the data that is to be added to
or dele(P_lfrom the llst The function list_append is used to append an i_m to the end of a

l_t,Ortocreama new li_twhen list isequalto NULL. delete_Xistnode Rmov_ the

node containing data from the list. It returns FALSE if the list was empty (equal to N%ILL)_ if

data wasn't found in the lisL delete_list deletes an entire linkod list

Circular lists are implemented in very much the sameway, except they don't have a beginning oran
end. The prototypes for the circular list support functions are shown below.

Boolean inserC..circlelistnode(List *list, void *data);

Boolean remove_circlelistnode(List *llst, void *data};

insert clrclelistnode isused to add data to the list. A pew listnode for data is

and it is inserted into the list imme, diat_ly after the node pointed to by list.

remove circlelistnode deletes the node containing data from the list. If the list was

¢mp_ 0¢ifdata wasn'tfound, remove circlelistnode retozn$FALSE.

2.2 Stacks

A sta_k is implemented as a specia] case of a linked list in which the end of the list is thetop of the
stack. Type Stack is defined in list. h to be exacdy the same as List -- a pointer to
St ruct list_node. The pmto_es of_c/unctionsthatareusedtopush and pop therock are

listed below.

Page H-86

void push(Stack *stackw vo£d *data);
void *pop(Stack *stack);

push c_ales a mack node for dataaBdpushes_cmo atacY. Whalacmallyhappmsislaz
push appends _e dm w _e _d of the lira and _s stack W l_im So _e md dshe li_ whlch is

thenewwpof_emck. To pop the stack popa_/gns_edmainthebaI_nodewamnpom7
vm_able_ deleles lh¢ last node _0m lhe IL_ ass/ps the new end ofthe I_ Io stack end _
the form_ _ of stack (wh/ch was _ved b a _ponu7 vadable).

Trees

A _neric tree ood_ is de_ned in vp/include/list .h as fo"ow_

tlrpede£ struct treenode *Tree;

struct tree node (
void *dat;

Tree *prev;
int numlinka;
Tree *link;

};

Page H-87

3 VP Windows

Each window Ires a numb= of pmmnmus _u mua be known by @e _ b _lef f_ k m tm

drawn pmpa/y, lnfommdon about the wojec_m and view mmsfmmmim_ for ammpl_ Tae

program must Mso know exactly whax is m be drawn in the wbdow. Thk motion drab wi, h ,bB

issues of window dam and the implemenuuJon of drawing the windows.

&l Window Oq3anlzatlon

Each window thai is op_ by the [xognun has s Window sallctlaz _ will it. "l_

Window slructUn_ (shown below) is de.filed ill vp. h.

strut* window [

long wid; /* Graphical window £d.

*/

Ant mmnuid; /. The wJ-ndowes l_nu ./

char *title; le Displayed Ln _itle
bar. -/

void (*draw wintype) (Window *w); /e DEaws the
window */

float bkgnd[4]; /* Background color, e/

Xfrm cop; /e Center of projection of
view. el

float vrp[3]; le Vlew reference point, el

Angle levy; /* Vertical field of view e/

float aspect; /* x:y aspect. ,/

Model evcam; /* Camera model at cop. */

Tree model*re,; /* Tree of 3D object models.

*/

List objects; /* Generic list. e/

strut, { /* Various flags, e/

unsigned Ant wintype : 2;

unsigned in, is main : i;

unsigned int is lit : I;

} status;

};

typedef strut* window Window;

Some of Window's memb_s apply to even/window, while other_ an_ only needed by ceatain

types of window. Below i_ a short de_dpdon of the stmctme's m_nbe_.

wid-- The smphicM window idcn_ier.

menuid -- Each window uses iu on menu, and this is the identifier of iuz mon- TI_

helps Io eliminate the n_d for a single m_iv¢ menu.

t it le -- The tide that is displayed in the window frame's title b_.

draw wintype -- Points m the funcuon that draws the type of window dmt is specified In

status .wintype. Each type of window is dawn by a specific function, At the time

that the window is being opened, the appropvia_ drawing function is assigned to

draw wintype.

Page H-88

cop -- A mmsfommion matrix th=t spegiim the window's omu_ of p_jectim sad
tbe view. Used rely by thn.dimm_ul windows.

vrp -- A vector spoc/fy/ng the vkw rereremce point of a ghze_d_mioeal window.

fovy -- Specifies the vertica/ field of view for perspective projection in a
dimensional window.

=spec= _ Specifies the field of vkw in the horizontal direct/re. It is eqm/to the x.7
aspect ratio of the window's dim_nsiop.s in stanza comdinmm.

vcam -- A camera icon that is drawn at the window's cop. This can only be seat from
other ¢nvimnmem windows, and acts as an aid in relating to the vkw.

modelt:=ee _ The tree of gnsphJcaiobjects that are part of • window's three-dimensional
enviromnenL

object s -- A list that can be used for any purpose, h hu no dedk_ed u.w.

status _ A sea of status flags, status .wintype denotes the "type* of window
TI'IREE D for an environment window, R/_T'rNA for a retina window, or MESSAGE for
the message window.

The Global Window List

With the exception of the message window, there is no predetermined limit on the number of
windows that can be opened in the program. The user can open as many environment and retina

windows as practicality (and the computer's memory) will allow, v_ keeps track of all of the
windows by keeping them all in a single list. If opened properly, each window win have •
Window SlZ_Ct_ m the global window list WlnL£st. WlnList, decLq:cd in vp.h as type
LAst, is a circular list that contains po/nters to each window's Window structure. Tha order of

the windows in the list is meaningless. The only requirement is that each ex/sting window appear
in WinLisC exaedy once. As windows are opened, they are added to the fist, Likewise, at they
are closed they are deleted from the list.

Opening a Generic Window

Each type of window in vP has • specific window-opening function.

open .env£::onment_wlndow opens an env/ronment window, and open..retLrts..w£ndow
opens a rct_a window, for example. What all of the specific window-open/ng functions have in
common, though, is that they each begin by calling open.wlndow. The purpose of

open_wlndow is W create a generic window that has no specific "type" or function _ it returns •
W£ndow pointer to a basic window that is ready to be customized. Its prototype is listed below.

M£ndow *open..window(char *title, _nC corners[4]);

The first parameter specifies the tide that is to be displayed in the title bar of the window. The

second parameter is an array that contains the coordinates of the window's borders on the screen.
The first two elements of the array are the screen x values of the window's comers, while the third

and forth elements are the saeen y values of the window's corners.

open_wlndow starts by allocating memory for a Window structure, and then adds it to the global
window IiSL Then it opens a window, configures the graphics _ the display mode is configured to
RGB double buffer mode M and queues window maintenance and mouse devices.

Page H-89

TodewaILuo_= due WLnLietb whichdm mlu of _ b mx a _ ms

dzaw other w_ndows as lhowu below.

dzaw_other wlndows (NULL, subset) I

This line of code would draw every "window in dw fir suba.t _ W/z_low mlmm_
is nox equal to NULL. Ofmm_,_a_shouldnev=l_a mn_mmTbawindowll_

&2 The Message Window

The message window is dedicated to d/splaying text -- primarily ip_ and mvof
(At this fimc, thc message window b limited to displaying a single line of l_t) _ one
window is opened and it canno_be dos_L

The message window is opened in initlali|| with I _ to ol_n..llmes|ge..vi_lov,
which is defined in vpmmin/ window, c. hl rRototypo is JL_l_dbe]ow.

Window *open_message_window(char *title, £nt coL'_e:s[4]);

The window is tall enough to accommoda_ a line of _xk and as wide as the display screen. "llz

drawing funcdon _at gets assigned to the dzaw_wtntype _dd _ the message window's
Window S_ructurcis d=aw_message_.Indow.

Tke MessaZe $1,,ck
The message window uses a stack w maintain wxt fl_u it needs to "remember'. The rock b
decl:Lred in vpmain/message, c aS follows:

static Stack msg stack;

draw. message_windowfimplydraws the lextlhat is Mthelopolrlhesl_ck. Newmxtb
displayed by pushingiton_ msg_stack. Similar_,poppins thc su=kwiU_pkce_enewmxt
wim me l_evious _xL The functions used for editing the message slack In defined M
vpmain/message.c; mebprotot),pesanelis_below.

void push message(char *ne_g);
char *pop message(void);

Born of me functions ca_ drawmessagewindow to d_pky b_e opd_.d _e_

pop_message re.ms a pointer m the popped teXL

3.3 The Environment Window

Environment windows display a two-dimensional hindering of _mee-d/menslmud object

Three-dimensional graphical objects are stored in conslructs called Models. I_ collectively they
compose the pmtp'am's graphical object environmenL The models are stared b a _ngle ue
structure that is shared by all of the environment windows. Thus. each existing envirmmu_
window will rcnder the same group of models. The only difference between diffract environment

windows is the view from which the models are boeing seen. The progrmn phtces no explicit limit
on thc number of environment windows _ can b_ open simultanem_sly.

Opening An Ent.ironmen_ Window
An environmcn[window is opened with a call to open._envi_onmenc_.window. The funcfio/_
;_de_ned in vy_ain/window, c; ice protype is listed below.

Page H-90

Open. window also _ some of the _b_z of h _ ff£ndlov _ h
i_n_ (_=n_l by vlnox_n) _ assigned m the v_d kl_ the title _ m b
llrllmnemt) is _ m the title field, lad the modeSt=e. Iml obJ.ct| _ _ let

=lind m NULL. open_wlndow _ by ramming • pointerm the new Window mmmm_
Dmwln z Window

Each type_ window hasa_g funcliondm drawslhattypeofwindow, As aaexamlde,

thetines

draw_reEins window (=etwin) ;

swapbuffors ();

would draw the retinawindow L_ociau_ with the Window mucem_ polnmd m by reewin,

•Often though,itisnecessarytoredrawallofthewindows withouteven knowing how many lhexe

areorwhat typetheyme. Th_ mn be done by c_dlingthefuncdon d=aw all_wlndows, hl

prototypeisshown below.

void cLraw_all windows (void) ;

draw_all_windows. Ixamd in vplsrclvpmainlwindow, c, dmws d of the windows in
the global window lisl. II sm_ by saving the identifi= of the cmTent ipmphics window in the local
vmiable originalwin. Then itImverses WlnList. drawingeach window with I/_ lines

WINDOW (WinList) ->draw wintyp, (WINDOW (WinLis_)) ;

swapbuffers ();

WINDOW isa macro definedin vp. h thatcastsa List node's dat fieldto a poin_r m

Window. So [oreach Window _cD2re intheglobalwindow _i_t draw ali wlndows _d_

the window drawing function specified in the slructur_'s drsw_win_ype field.Note th_ all of
the window drawing functions must have the sm'ne parameter -- a pointer to Window. Afar _e

cndrc list has been traversed, the current graphics window is reset to the identifi_ stored in
originalwin, and controlisr_uu'nedto the calfingfunction.

As there is no specific order in the global window fist, and the node to which WinLisC points
frequently changes, the order in which draw_all wlndows draws the windows isuncertain.

Sometimes though, it is desirable to consistently draw the same window first, as is the case when
interacdvely moving a model or setting the view in an environment window. It is also sometime_
desirable Io draw a subset of the global window list WinLis_. The function

draw_other windows servesbothpurposes. Its p_ototype is listed below.

void draw_other_windows(Window *win, List otho=s);

Thexe are two key differences between this function and draw_all, windows. First of all
instead of traversing the list pointed tO by WlnLis_, it traverses the list specified by othecs,
The second difference it that it draws nil of the windows in the o_hozs list, except for the
window specified by win. Consider the code listedbelow.

draw envlronment_window(envwin);
swapbuffers();

drsw_other, windows(envwin, viewlist);

In this example, the environment window specified by enwin would be drawn firsL Then

draw_other, windows would draw all of the windows in the circular list viewlisc, except
for the window specified by envwin.

Page H-91

Window*opan onv£ronmont w£ndow [char *title, corners [4]) ;

The t_mJoa opens the w/ndow with • call to ol_n..w_ndov sad thin mlha k hm m
mvinmmem window by muinl tlz view sad "csm_g" • model mvin:mmaz.

In Ol:4n_env£rona_nc_w£nctov, the window's maa/x mode is set m I_'ZZWZNG. (Ibis
separmes dz projecdm _ from the aura'ix _ _ is wed far _ md
nnsfom_ms.) En_ windows use z penpec_ve pmjec_oa

Seab_f The V_w
The inida

Drewinf The £n_rom_nt

Envirmmmt windows an drawn by the run.ion draw_.env:L:onnent_.wLnctov, which is
in vpn_£n/v£nctow, c. Its pax/pc is iis_ below.

vo£d cLcaw.@nv£ronment.wLndow(W£ndow *w);

The argummt w points to the Window s_ucture of the environment window th_/s to be drawn.

The funcdon sums by s_ing the curnmt graphics window to v->w:Ld sad clurin| tlz window
with the"color specified in w-->bkg_d. The z-buffer is _so _ The code tim ms the

projection and the view and draws the m_c of graphical models is smdghffarwa_

perspect£ve(w->fov2,, w->asp4ct, NEAR, FXR);
£nverthomonmt(v£ew.mac, w->cop.mat};
1oadmacrix(vLow.maC);

scale_gr_d();
draw_mode_...trle(w->modelt_eo);

perspecCJ.ve sets _ projection according to the window's verdcM and horizoalM fields of
view. The view is set by k_cfing lhe inverse uanspose of w->cop onto the mauix rock. Then the

reference grid /s drawn centes_ at the world origin with a call to scale..gr:Ld. Fum/ly,
draw_modeZ_t tee draws _/_ tree o/Sraphicai models.

3.4 The Retina Window

/** under rcconslzucfion**/

Page H-92

4 Models

A three-dimensional llraphicM obje_model In ripIsmrod ina dam smx:tmuott)l_ Nod.1.

Modeb me reflectively sm_d in a Ixee sncum_ that b oommon m each mvbmunem w_dow, qI'ne

model itself is ct_mposed of a tree of me or nmre ob)ect pdmidves cafled xlpmnu. A model
wgment is stored in a data stru_ure of type Segment, which _ lists of yet'rices that make

the polygonal faces of the segment. Models are _ and added to the mvin_meta through •
pnrser tlmt rinds model description filea that confrere to vx_'s modeJ dea=ipfion oammar.

The ModrI De$crlpt_onLanguage

The model descriptionlanguagethatVP employsisexpressedinBs:lms-NaurForm InFigure4.1
below.

start --, mod//at eof

mod//st _ ma_f mod//st
le

mdef_ model id' (' _'rm segI_ ')"

seglist -._ sdef se&list
le

sdef_ segment ld'{'zfrmprim se&Ibt')'

JTrrm--,on•/
Ix/W

IG

xlist-.,translate'('uum ','Bum '.'hum ')'

Irotate'('aura ','hum ','sum ')'

Iscale'('hum ',"hum ','hum ')'';'sd/st

le

treat-.,tm 'C "('hum ','num ","aura ';

BUIn ')' ',*
'(' uum ',' Bum ',' O_ ',' Dlml ')",'

'(' hum ',' uum ',' num ',' hum ')",'

'(' hum ',' hum ',' hum ',' hum ")')";'

prim -., Id '(' ")' ';'

id _ leaer(leuerkligiO*

num _ digit+
letter ..-) [•.zA.Z._]
digit --_ [0-9]

Fig. 4.1. The grammar for vP's model description language,

The gramm_ allows for one or more models to be defined in a single file. Each model definition

begins with the kcyword model, which is immediately followed by the name that is to be assigned
W the model. (See the _ production for indef.) Then Iransformations for the model's
location and orientation can be specified, and finally the segment tr_e is defined. The segment tree
is a group of one or more segment definitions. Each segment definition begins with the keyword

segment, which is followed by the segment's name, Then the segment may be given •
Iransformadon, and the primitive is specified. The primitive is essentially the name of a text file
that contains the vencx coordinates and face vertex lists. A primitive file must have the extension

• seg. but as seen in this example, the extension' is not used in the model description file. The
following code is a definition of a cube model.

Page H-93

model cube__odel
(

se_nt cube segment {
cube();

!
)

_ desc_don, a ol-m(m_l model mun_l cui_e_=odel is cmmd al the worklodlli=. II
is plac_ m llw workl oriliin Ix_.am_ tlm idt.nlky mmrix is -_rn_l to mod_ _ _ m_ _

.fa, when no mm._ommadon is qx=_P.<L The cube () _ P.Its tl_ _ m I_
v==x and +act imrmma_m from the _c cube. seg, wl_ch is shown below.

111

110
100
101

001
000

010
011
t

1234
3654

5678

1872

1458

2763
e

Each line before the tint asterisk specifics the x, y and z cooniinascs of a vmcx. Each line dr= t/_
astuisk lists the index of each vertex tha: makes up a singlc face. cube. seg describes s unit
cube.

Transformabo_s may be dm_ibed in one of two ways. One way is 1o use the nmlrh
translate, =orate and scale. The aJtcnmfivc is ID (li_y Sl:_ify _ comple_
aznsform_on mauix. The two methods are exclusive -- they cannnot be combined. (Sec tlz
Snmmar production for xf_'m.) The following example is will serve as an illusu'adon:

model eyes

(

t.m ((0.7071, O, -0.7071,

(0, I, O, 0),
(0.7071, O, 0.7071,

(0, 10, O, 1));

0),

0),

segment left eye
(

translate(3.2, O, 0);
scale(0.44, 0.44, 0.44);

sphere();

segment cornea
(

translate(O, O, 0.7);

scale(O.25, 0.25, 0.25);

Page H-94

sphere () ;

segment right eye
(

translate (-3.2, Or

scale (0.44r 0.44f
sphere () ;

0):
0.44) ;

segment cornea
(

translate (0,
scale (0.25.

sphere () ;
}

/* nodel eyes */

O, 0.7);
0.25, 0.25);

The eyes mode] de,scfil_5 two "eyd_zl[s" whose c_nlers axe6.4 an. apart. The _ tm 8t
the top of the model description indicates thaz the L_en mazrLxshouM be used n the model's

coo_na_ _fonnauon. The tm mauix above will place the model eyes 10 cnL above the
world origin, and the modcl win be roU._J 45 degrees about the y ax/s.

Each eyeball is co_n-uczex[with two instances of the sphere () primitive. Cut this exaxn_ the
_gmemt _c sphere.seg describes a _hcre thal b 5 an. m dJamet=.) The nlpllZem

lefteye _ locax_d _ (3_, O, _ wi_ _spect _ the origin of the model scale k used w
tl_orm _ sphere () primitive m the prop= _z_ No_ t_zx scale/z_ b.med_z_/oc_

_ope-- it u not carried t_ough the hierarchy as tranalm_n and _t_ion are. left. eye has

the nested segment cornea. Each nested segment io a descendent in

the hierarchy. Therefore, cornea will be transformed with respect

to lefteye. The cornea segment is a 8mallet sphere that
intersects the front of the larger sphere to produce a more Rote

reallistc eyeball, rlght_eye is exactly the same as left_eye, with

the exception that it is located at (-3.2, 0, 0) with respect to

the origin of the model.

VP's description language is similar to the OuickModel fozmat

developed by Alias Research. One major difference is that VP's

model description language does not yet support 8pllne curves and

surfaces. Another difference is that QuickModel does not suppo_

hierarchical model descriptions, while VP does. The model

description language is still under development - efforts are being

made to give it spline curve and surface support, and to make At

more compatible with the QuickModel format.

Tie Model Delm_on

The _rucn_e _at spec;_ a duee_imen_on_ Erap_c_ modd

vp/include/mode I.h.Itisdefin_ -__ Model aSshown b_ow.

b _d b

typedef struct model Model;
struct model (

char *name_ I* Unique model name. *I

Tree treenode: /* Tree node that contains model. */

Page H-95

};

Flags status;

Xfrm local;

Y_zm global;

Tree 8ag_roa;
*/

l* Various mtatus flags, t/

l* Coordinate tzansfomat£aa. */

/* Coordinate tzansfo_ation. */

/* Segments that compose the model.

The memb_ of struct model are br/dy described bake.

name--A uniquename used toid_ntify the model 1'he m'mi[In the n_me lleldba
conc_enadon of themedal's name (u specified in its du=ipt/on file) _ In_ lf_

/s a_ped in a caU to nares model.

treenode-- A pobtar Io the m_e node ;-which _s modal is stmu:L

status -- Vsr/ous _attts _p. At this I/me, the _lly flq 8Cl_aOy mad b

status.is_lit. Themodelbmnderedwi_uar_|/d_lhe status.is lit_qKb
Ime _etimethemodd_beingdrawn. Oth_wise,_bdrawnuwkefraa_-

local -- A hcmog_eo-t mu_fomafion num_ thatspecies the locm/oa and miamu/ca
of _e model wi_ _ m its immed]ataixede_m_ b _ modelm_

global -- A homogeneous mmsformafion matrix that specifies the model's location mid

ctienmrlon w/th respect Io world origin.

segt =ee _ The m_ of object prhuitives tha_ compose the model.

The vertices and faces of the model are actually stored b the me of segments spec/ned by

segc=ee field of the Model structure. A segmen(is stored in a data struc_ (3(type

Segment, which is defined in vp / £nc!ude/model. h. The strucl_ure is shown below.

typedef struct seg_uent Segment;

struct segment (

};

char *name;

Xfrm local;

Xfrm global;

float color(4];

*/
int nfaces;

segment */
Face *facetable;

float *vertextable;

/* Segment name */

/* Coordinate transformation */

/* Coo:dinate transformation *1

/* Used when drawing as wireframe

/* Number of polygons in the

/* Vertex lists for each face */

/* Vertex coordinates */

typedef struct face Face;

st_uct face (

|;

.int nver_ices;

*/

Ant *',,table;

indices */

float normal[3];

/* Number of vertices in the face

/* List of the face's vertex

/* The face's surface normal t/

Page H-96

The memberJof st_ct aegnwnt lee brk_y _ _.

loca1_Ahomogeneousmmsfom_i_mmmixthm_thelocl/JonmxloriemmlJ_
Oflhesegmentwi_mspectw_immedb__bthsm_memlme.

global -- Not yetimpkmmed, _ _ will be the _ u'amfomation
_g Ibelocation and orientation Oflhe se.,gmentwilh r_xct Io world o_fn.

co,to= (4] -- Specifiesthecolin"or'thesqpmem.(Only q_pUeswhen the _pman b bekg
drawnasa wirefi'ame.)

nfacea -- The ntlmbel"of facesin I_

facotablo -- k I,Ibl¢of Face El_lln'eL Each fl_ b IJ_ lielpmen_hasa _ I_
b poin_J to by an envy in facetable, race suucu_ _ the f_'s
normaland Ihe li_ of venices vhatmake up dw fl:e.

vertextable--Atibleofthe x, yl_d zcoordina_ofe_hvea_blhes_gmenl.

Page I4-97

APPENDIXD m EYE PHYSIOLOGY

Page H-98

EYE

Section throuBh _h¢ fiBht eye: _hemafic (a_er Spalteholz).

Page H-99

EYE

Glandul_ tars&les

lacrim_le

""5c let&

H. rectus inferior

Eye: conjunctiva,fascia,and muscles.

In the upper fillure the lateral angle has been cut and the eyelids drawn apart: the conjunctiva has been
incised and peeled away to expose xhe ocular muscles. In the Io_er fi_ure, the fascia is exposed by removal
of the ocularbulb (the optic nerve,cut). (From Warren : Handbookof Anatomy, Harvard UniversityPress.)

Page H-I00

Annex I

Army-NASA Aircrew/Aircraft Integration Program:
Phase IV

Man-Machine Integration Design and Analysis System (MIDAS)
Software Detailed Design Document

Aerodynamics / Guidance Module

prepared by

Alex Chiu

Table of Contents

1.0 INTRODUCTION ... 1
1.1 IDENTIFICATION OF DOCUMENT ... 1
1.2 SCOPE OF DOCUMENT ... 1
1.3 PURPOSE AND OBJECTIVES OF DOCUMENT 1

2.0 RELATED DOCUMENTATION .. 1
2.1 APPLICABLE DOCUMENTS ... I

3.0 CONCEPT ... 2
3.1 DEFINITION OF THE AGM MODULE .. 2

3.1.1 Purpose and Scope .. 2
3.1.2 Goals and Objectives .. 2
3.1.3 Description ... 2

3.2 USER DEFINITION ... 3
3.3 CAPABILITIES AND CHARACTERISTICS 3
3.4 SAMPLE OPERATIONAL SCENARIOS 3

4.0 REQUIREMENTS .. 4
4.1 REQUIREMENTS APPROACH AND TRADEOFFS 4
4.2 EXTERNAL INTERFACE REQUIREMENTS 4
4.3 REQUIREMENTS SPECIFICATION ... 4

4.3.1 Process and Data Requirements 4
4.3.2 Performance and Quality Engineering Requirements 4
4.3.3 Implementation Constraints .. 4

5.0 DESIGN .. 5
5.1 ARCHITECTURAL DESIGN .. 5

5.1.1 Design Approach and Tradeoffs 6
5.1.2 Architectural Design Description 6
5.1.3 External Interface Design ... 6

5.2 DETAILED DESIGN .. 7
5.2.1 Detailed Design Approach and Tradeoffs 7
5.2.2 Detailed Design Description .. 7

5.2.2.1 Compilation Unit Design and Traceability to
Architectural Design .. 7
5.2.2.2 Detailed Design of Compilation Units 8

5.2.2.2.1 Detailed Design of Initialization Unit 8
5.2.2.2.2 Detailed Design of Connection Unit 8
5.2.2.2.3 Detailed Design of Guidance and
Aerodynamics Units .. 9
5.2.2.2.4 Detailed Design of Data Passing Unit 9

5.2.3 External Interface Detailed Design 9
5.2.4 Coding and Implementation Notes 9

6.0 USER'S GUIDE ... 9
6.1 OVERVIEW OF PURPOSE AND FUNCTIONS 9
6.2 INSTALLATION AND INITIALIZATION 9
6.3 STARTUP AND TERMINATION ... 10
6.4 ERROR AND WARNING MESSAGES .. l0
6.5 RECOVERY STEPS ... 10
NOTES .. 10

7.1 LESSONS LEARNED ... 10
7.2 FUTURE DIRECTIONS .. 10

7.0

TRble el' Contents

Figure 1. Aerodynarnics/Guidanc_ Module Configuration 5

ii

MAN-MACHINE INTEGRATION DESIGN & ANALYSIS SYSTEM
(MIDAS) SOFTWARE DETAILED DESIGN DOCUMENT

PHASE IV:

AERODYNAMICS / GUIDANCE MODULE

1.0 INTRODUCTION

1.1 IDENTIFICATION OF DOCUMENT

This is the Software Product Specification for the aerodynamics/guidance module of the
MIDAS Software System.

1.2 SCOPE OF DOCUMENT

This document is primarily focused on the enhancement of the aerodynamics/guidance
module (AGM) developed in the Phase IV development stage. The body of AGM remains
the same as that of Phase HI. To understand the theory of AGM the user is urged to refer
to the Phase III AGM documentation. AGM was originally developed and implemented in
Fortran by Analytical Mechanics Associates (AMA). For detailed descriptions of the AMA
developed AGM, the reader is referred to the AMA Report 252-3 prepared by Phaetak and
Tran listed in Section 2.1. The reader is assumed to be familiar with the basic concepts of
aerodynamics and control theory, UNIX, Fortran, and C.

1.3 PURPOSE AND OBJECTIVES OF DOCUMENT

The purpose of this document is to serve as a technical reference focusing on the Phase VI
enhancement of AGM. This document contains high level information as well as
implementation detail useful to readers who need to understand the Phase IV AGM module.

2.0 RELATED DOCUMENTATION

2.1 APPLICABLE DOCUMENTS

The following documents are referenced herein and are directly applicable to this volume:

Army-NASA Aircrew/Aircraft Integration Program (ASl) Software Detailed Design
Document: Phase III, Contractor Report 177557, NASA Ames Research Center, Moffett
Field, California 94035-1000, June 1990.

A. Gessow, G. C. Myers, Jr., Aerodynamics of the Helicopter, Federick Ungar
Publishing Co., New York, December, 1952

M. S. Lewis, E. W. Aiken, Piloted Simulation of One-On-One Helicopter Air Combat at
NOE Flight Levels, USAAVSCOM Technical Report 85-A-2, NASA Ames Research
Center, Moffett Field, California, April, 1985

Page I- 1

Anti V. Phatak, Hien H Tran, A31 Autopilot/Guidance Program Homing/Path Guidance
with Turn-Straight-Turn Option (Version TGUIDAP2) AMA Report 252-3, Mountain
View, California, March, 1988

Silicon Graphics Inc., "IRIS-4D Series Fortran Programming language", Version 1.0,
Mountain View, California, 1988

3.0 CONCEPT

3.1 DEFINITION OF THE AGM MODULE

The Phase IV AGM module consisted of two portions. The guidance portion computes the
controls required to steer the aircraft to the desired location. The aerodynamics portion
computes the new position after having applied the controls computed by the guidance
portion for certain time interval, the size of a tick in Phase IV.

3.1.1 Purpose and Scope

The Phase IV AGM module served the purpose of providing a high fidelity aerodynamics
model with guidance capabilities in support of MIDAS in conducting research activities to
address human factors issues. The AMA-developed AGM is linear and partly deeoupled,
in the sense that the collective control has no effect on the yaw, pitch, or roll movement.
The wind effect on the helicopter behavior was not taken into consideration as well. The
model has been enhanced by AMA with the addition of a Turn-Straight-Turn guidance
scheme. The enhanced AGM was ported to the A3I's Silicon Graphics Workstations in
previous phases.

3.1.2 Goals and Objectives

The AMA-developed AGM represents a rather generic helicopter aerodynamics model with
guidance capability. The Phase IV goal of AGM was to improve the fidelity of the role it
plays in the MIDAS simulations by enhancing the AMA-developed AGM to possess the
terrain knowledge. The following objectives needed to be achieved. First, a new piece of
DMA terrain with the necessary features specified by the Symbolic Operator Model needed
to be rendered using the techniques developed by a former A3I graphics staff member in
previous phases. Then, the new piece of terrain needed to be integrated with AGM.
Finally, it needed to provide capabilities to calculate the terrain elevation at a given location
(x,y), to check line of sight for two given points, and to introduce intermediate waypoints
when necessary. It has to provide the Symbolic Operator Model with the controls
computed by the guidance portion, and drive the displays of the VEST Pilot, VEST
Copilot, and Views modules.

3.1.3 Description

For AGM to provide the Symbolic Operator Model with the computed controls, its
structure was modified from closed loop to open loop as described below. Each cycle
begins with the guidance portion computing the controls based on the current position and
the next waypoint, but does not pipe the computed controls directly into the aerodynamics
portion. Instead, the controls are first sent across the network to the Symbolic Pilot Model,
which accepts or rejects the controls based upon his available resources. The Symbolic
Pilot Model sends a message back to AGM indicating whether the computed controls will
actually be used. Based on this message, the aerodynamics portion computes the new
position and orientation, and the current cycle is completed.

Page 1-2

TointegratetheterrainwithAGM,theAGMmodulewasenhancedtobecapableof
readingtheterraindataandstoringtheminaproperplaceforfutureaccess.

The controls actually used and the aerodynamic parameters were sent across the network to
drive the graphics displayed by the VEST Pilot, VEST Copilot, and Views.

The network interfaces required for AGM to interact with other MIDAS modules were
provided by the Communication module.

3.2 USER DEFINITION

The AM.A-developed AGM may or may not be adequate, depending on the requirements of
your application. It was inadequate when used in MIDAS due to the lack of the capabilities
to avoid flying into terrain. Most of the aerodynamics models behave like the AMA-
developed AGM. Therefore, the enhancement of the AGM model to possess the terrain
knowledge accomplished with MIDAS might be useful to users who attempt to accomplish
similar task. The capabilities developed could also aid the vision model in performing the
line-of-sight checking.

3.3 CAPABILITIES AND CHARACTERISTICS

The enhanced AGM is capable of calculating the elevation for any given point of the terrain.
This capability is required to drive the altimeter. The capability of checking the line of sight
for any two points can be used in assisting the pilot in carrying out his mission. The
introduction of intermediate waypoints prevents the helicopter from flying underground.
The intermediate waypoints are introduced prior to the commencement of simulation based
on the input waypoints specified by the pilot model and the terrain data. When the
simulation begins the helicopter will traverse through the waypoints contained in the
expanded waypoint list.

3.4 SAMPLE OPERATIONAL SCENARIOS

The following sample operational scenario gives the reader a flavor of how to run the
enhanced AGM.

The input required by the AMA-developed AGM consists of a set of waypoints. Each
waypoint contains not only the coordinates (x,y,z) but the speed and heading of the
helicopter at that point as well. The input for the enhanced AGM requires a slightly
different form. The user needs to select a set of two dimensional waypoints (x,y) from the
terrain and specifies the desired altitude above terrain at each of these points. Also, the
desired speed and heading of the helicopter at each of the selected waypoints need to be
specified.

Now the user runs the AGM module. It first reads the user-specified input data. Then it
calculates the terrain elevation for each of the selected waypoints and adds to it the altitude
above terrain specified at this point to yield the absolute altitude. The line of sight checking
is then performed for each pair of consecutive waypoints. If the line of sight for a pair of
consecutive waypoints is not clear proper intermediate waypoints will be introduced.
Proper speeds and headings need to be specified at the introduced waypoints as well. The
waypoints contained in the new list will become the ones the helicopter has to traverse.

The initialization process always positions the helicopter at the very first waypoint. The
guidance portion suggests to the Symbolic Operator Model the controls it computed to steer

Page 1-3

thehelicopter to the next waypoint. The Symbolic Operator Model notifies AGM whether
the pilot has available resources to perform the suggested conwal movements. If the
resources are not available, controls used in the previous cycle will be used in the current
cycle. The aerodynamics portion then computes the new position and orientation based on
the controls actually used. Then the controls and aerodynamic parameters axe sent across
the network to drive the displays. This process continues until the simulation is over.

4.0 REQUIREMENTS

4.1 REQUIREMENTS APPROACH AND TRADEOFFS

The Phase IV AGM module needed to fulfill the following software requirements. First, it
needed to be able to read the data of any DMA terrain and store them in a proper place for
easy access. Secondly, efficient schemes needed to be devised (1) to interpolate terrain
elevation at a two dimensional point based on the known elevations at vertices, (2) to check
line of sight, and (3) to in_'oduce intermediate waypoints. Finally, capabilities for
exchanging information with other MIDAS modules needed be provided.

4.2 EXTERNAL INTERFACE REQUIREMENTS

The Phase IV MIDAS is a truly distributed system. Its modules are distributed over
different computer platforms. To allow the AGM module to exchange information during a
simulation, four interfaces need to be developed. These four interfaces allow it to
communicate with the VEST Pilot, VEST Copilot, Views, and the Symbolic Operator
Model. These interfaces are provided by the Communication module. Data structures are
designed to contain the controls and aerodynamic parameters. For more detailed
information, refer to Annex J, Communication Module.

4.3 REQUIREMENTS SPECIFICATION

4.3.1 Process and Data Requirements

The input waypoint list required by the Phase IV AGM module was described in section
3.4. The two dimensional coordinates x and y, altitude above terrain, speed, and heading
are all represented by floating point numbers. For data structures which hold the controls
and aerodynamic parameters refer to the header file dp.h, as described in Annex J,
Communication Module.

4.3.2 Performance and Quality Engineering Requirements

The AGM module is expected to exhibit reasonably good performance so that it can fit in
the MIDAS simulations. The computation of controls and the integration of the governing
equations over a tick size should not become the bottleneck when participating in the
simulation. Portability is a major consideration during the development stage. The
network communication between the AGM module and other MIDAS modules should be
bi-directional and reliable. Most importantly, it is necessary to keep the helicopter from
flying underground.

4.3.3 Implementation Constraints

The AGM module was developed on the government-furnished equipment, which includes
the Symbolics and Silicon Graphics IRIS workstations. Because the SGI workstations
provide better Fortran environment for scientific computing, the Fortran AGM module was
designated to run on the SGI workstations. The network interfaces available on the SGI

Page I-4

workstationsarewrittenentirelyinC. Therefore,interfacesarcneededfortheFortran
AGM moduletocommunicatewiththeC networkinterface.Fortunately,theSGI
workstationsdo provideidealtools--thedatablocksand intcrlanguagecallstoimplement
theC-FortranandFortran-Cinterfaces.

5.0 DESIGN

5.1 ARCHITECTURAL DESIGN

FigureIshows thetoplevelconfigurationofthePhaseIV AGM module alongwiththe
MIDAS modulesitdirectlyinteractswith,suchastheSymbolicsPilotModel,VEST Pilot,
VEST Copilot,and Views. Conceptually,theAGM module consistsoffourmajor
subcomponcnts:terrain,guidance,aerodynamics,and networkinterfaces.

Waypoint

Inputs
o,_Guidance J. _Aerodynamics)

,/I P _P/IP

I Symb°lic LTCP/IP] Communication-_I'o% j-

(,,.w.) oo,,,o,)(.., ,,,o,)
Fig. 1

Figure 1. Aerodynamics/Guidance Module Configuration

The network interfaces provided by the Communication module were implemented based
on the TCP/IP protocol. The C-Fortran and Fortran-C interfaces are used in facilitating the
communications between the guidance/aerodynamics and the network interfaces. As
mentioned in Annex J, Communication Module, the AGM module communicates with
other MIDAS modules through the communication manager. Data structures are defined to

Page I-5

holdthecontrolsandaerodynamicparametersand are passed around among the MIDAS
modules.

5.1.1 Design Approach and Tradeoffs

It was decided to develop the terrain-related capabilities from scratch, because it only needs
simple mathematics, knowledge of UNIX and C programming language, and C-Fortran
interfaces. During the development phase of these capabilities, modularity, portability, and
easy maintenance are the major considerations. The architecture should be flexible enough
to allow the user to replace the MIDAS terrain with his/her desired DMA terrain.

The replication of the terrain in the AGM module was a tradeoff between speed and
memory. In Phase IV and the previous phases, the terrain was part of the Views module.
The AGM module could have fetched the terrain data across the network from the Views
module at the expense of busier network traffic. However, as a result of the advances of
the memory technology, memory can be acquired at a fairly reasonable cost. It was
decided to enhance the AGM module to include the terrain for easy access. The integration
of terrain with AGM represents an effort toward improving the AGM module to aid in
conducting human factors research activities.

The acquisition of a parallel computer can change the entire structure of MIDAS. For
example, the replication of terrain can be eliminated. The global memory space available on
parallel computers is an ideal place to store intact data bases, such as terrain. And all
modules running on the parallel computer processors have access to the global memory
space without appeal to the Ethernet. Therefore, the network communications across the
Ethernet will be totally eliminated and the performance can be expected to improve
drastically. Of course, smart schemes for modules to store/fetch data into/from the global
memory space need to be developed.

5.1.2 Architectural Design Description

To meet the requirements stated earlier, the architecture of the AGM module is decomposed
into the following subcomponents. The f'u"st subcomponent performs the terrain-related
tasks. The tasks include reading the AGM input file and the terrain data, storing the
coordinates of vertices in an array of data stn_cture, and introducing proper intermediate
waypoints, if necessary. The expanded waypoint list is input to the second subcomponent,
the guidance subcomponent, which computes the controls based on the current helicopter
position and the next waypoint. The controls include the cyclic, collective, and pedal
movements. The third subcomponent is the network interface furnished by the
Communication module to facilitate the communications with the Symbolic Pilot Model,
VEST Pilot, VEST Copilot, and Views. The network interface sends the control values
across the network to the Symbolic Operator Model. The pilot makes a decision on the
control movements based on the resources available. The controls actually used are then
piped into the fourth subcomponent, aerodynamics, which integrates the equations of
motion to yield new position and orientation. The network interface sends the controls
actually used and the aerodynamic parameters across the network to drive the graphics
modules.

5.1.3 External Interface Design

The external interfaces required for the AGM module to communicate with the rest of
MIDAS system were provided by the Communication module. Refer to Annex J,
Communication Module, for details.

Page I-6

5.2 DETAILED DESIGN

The Phase IV AGM software was designed to have four code units. These four code units
map perfectly with the subcomponents described earlier. The code units are described in
detail in later sections.

5.2.1 Detailed Design Approach and Tradeoffs

The design of the AGM module must take into consideration that the MIDAS system allows
the user to change the simulation scenario. For example, the user might want to use a
particular piece of terrain, a different guidance model, or a different aerodynamics model
for his particular mission. The design of the AGM module provides the flexibility to allow
the user to make these changes easily.

The subcomponents of the AGM module were implemented in a truly modular fashion and
the interfaces among them are very friendly. Since most of the guidance and aerodynamics
models are written in Fortran, an interface was implemented for the guidance and
aerodynamics models to interact with other subcomponents written in C. The interface was
written based on the interlanguage calls and data blocks available on the SGI workstations.
Refer to "IRIS-4D Series Fortran Programming Language" listed in section 2. I.

Because the AGM module needs to communicate with the communication manager, the
network connection process was included in the AGM software.

5.2.2 Detailed Design Description

5.2.2.1 Compilation Unit Design and Traceability to Architectural Design

The vertices extracted from the DMA DTED tapes were grouped to form polygons.
Usually, a polygon has three vertices. A polygon may have four vertices if they are
coplanar. Because the terrain adopts polygonal representation, a data structure is defined
for a polygon in a header file which contains the number of vertices and the coordinates of
each vertex. An array of this data structure is declared in the main function that holds the
information of polygons that make up the entire terrain. The array is declared to be global
so that it is accessible to both the guidance and aerodynamics subcomponents.

The run-time AGM module consists of the following processes : initialization process,
connection process, guidance computation, aerodynamics computation, data passing. The
main C function was written which reflects the control flow of these processes. Prior to
executing the command to run the AGM module, the communication module should have
proceeded to the stage ready to accept requests for connection.

The initialization process does the following things. It opens the file that contains the
polygonal representation of terrain, reads the data, and stores the data in the global array of
data structure. It then reads the AGM input file (see AMA Report 252-3 for details) and
introduces appropriate intermediate waypoints, if necessary.

When the initialization process is completed, it proceeds to the network connection stage.
At this point, the communication manager should be waiting to accept connection requests.
The AGM module sends connection request to the communication manager. When the
AGM module has been successfully connected to the communication manager, it waits for
the first incoming message from the communication manager.

Page I-7

The AGM module thenstartstheguidance-aerodynamicscycle.A new importantcapability
thePhaseIV AGM modulehasistoallowthepilottochangethemute offlightduringthe
simulation.IftheAGM module receivesanew routeofflight,itintroducesanew setof
intermediatewaypoints.The new waypointlistwillreplacetheoldlistand thehelicopter
now hastotraversethenew setofwaypoints.At theend ofeachcycle,thecontrolsand
aerodynamicparametersaresentacrossthenetworktodrivethegraphicsmodules.

5.2.2.2 Detailed Design of Compilation Units

The following brief description gives the reader a flavor of the algorithms underlying the
terrain-related capabilities.

The elevation of a terrain point (x, y) was calculated as follows. First, identify the polygon
the point is on. Then, obtain the plane equation for the polygon from its vertices. Finally,
solve for z by substituting x and y into the plane equation.

To check the line of sight for two given points (xl, yl, zl) and (x2, y2, z2), In'st project
the 3d line segment connecting (xl, yl, zl) and (x2, y2, z2) onto the horizontal x-y plane,
i.e., form the 2d line segment (xl, yl) and (x2, y2). Identify the set of polygons covered
by the 2d line segment. The line of sight is not clear ff any polygon in the set lies above or
intersects the 3d line segment, and is clear if the polygons in the set all lie below the 3d line
segment. Here, a line segment is said to intersect a polygon if the intersection point is part
of the line segment and within the polygon.

The algorithm used in checking the line of sight is also used in the process of introducing
intermediate waypoints. Suppose we are given a line segment defined by the starting point
PI (xl, yl, zl) and the end point P2(x2, y2, z2). First, identify the set of polygons
covered by the projected 2d line segment (xl, yl) and (x2, y2). Cycling through the
polygons in the set, if a polygon intersects the 3d line segment (see above for its
definition), an intermediate waypoint needs to be introduced. The introduced waypoint will
be the intersection point elevated a certain height in the z direction. At this stage, purge
those polygons that have been processed off the polygon set. The newly introduced
waypoint and P2 define a new line segment The waypoint introduction process for the
given points P1 and P2 continues with the new line segment and the purged polygon set,
until the line of sight is clear.

5.2.2.2.1 Detailed Design of Initialization Unit

The following C functions and Fortran subroutines are involved in this unit:
read ter data(), openfiles_0, tdinput_0, init_dp0, and get_dp_types0.

The interlanguage call technique available on the SGI workstations is used in this unit for a
C function to call Fortran subroutines. Those procedures with names ending with
underscore are Fortran subroutines. Basically, read_ter_data0 reads the terrain polygons.
openfiles0 and tdinput_0 read the input data and invokes functions contained in chk_los.c
to introduce intermediate waypoints. Init_dp0 initializes the AGM-related data structures
defined in the data pool. Get_dp_types0 contains the message type and the source and
destination modules for all AGM-related messages.

5.2.2.2.2 Detailed Design of Connection Unit

Establish_network0 is the major function involved in this unit. This function follows the
standard TCP/IP network connection procedure. It involves creating sockets, binding port
numbers and/or network addresses to sockets, and sending connection request to the

Page I-8

communication manager. The socket number returned from successful connect call is used
for later subsequent data transmission.

5.2.2.2.3 Detailed Design of Guidance and Aerodynamics Units

These two units are described in detail in the AMA Report 252-3.

5.2.2.2.4 Detailed Design of Data Passing Unit

This unit contains functions, which can be found in the file network.c,
to perform the following tasks.

* Update the related data structures with the guidance-computed controls and
aerodynamic parameters.

* Send the updated data structures across the network to modules that need them.
* Detect incoming messages on the socket.
* Retrieve incoming messages and respond to them.

5.2.3 External Interface Detailed Design

The external interfaces are provided by the Communication module. Messages that contain
information of the route of flight, controls, and aerodynamic parameters are defined in the
data pool header file dp.h and get passed during the simulation. Described herein are these
messages.

Three control-related messages are defined. One is to hold the demanded collective, pedal,
and x- and y-cyclic controls, i.e., those computed by the guidance subcomponent. The
second one is to hold the decision made by the pilot model on the use of demanded
controls. The third one is to hold the controls actually used.

Messages are also defined to hold waypoint and route of flight information. Different
waypoint data structures are defined for use by different modules. Same holds for the
route of flight and the aerodynamic parameters. See dp.h for more detail.

5.2.4 Coding and Implementation Notes

The compiler options used included -G 8, -Olimit 1024, -lm, -lsun, -lbsd, and -lc_s.

6.0 USER'S GUIDE

6.1 OVERVIEW OF PURPOSE AND FUNCTIONS

The AGM module is a linear decoupled aero/guidance model. It has been tested and
accepted by the aerodynamics community. The ICAB Simulator at Ames used the model to
simulate the helicopter aerodynamics. However, it by no means satisfies missions that
require aggressive maneuvers. The lack of the nap-of-the-earth capability is considered a
major drawback. It also lacks the terrain-following capability.

The integration of the terrain into the AGM model and the development of the capabilities
described earlier represent a step toward improving the its fidelity. The line-of-sight
capability can be integrated with the vision and pilot models to aid them in performing their
tasks.

6.2 INSTALLATION AND INITIALIZATION

Page I-9

Thedefault setup designates the AGM module to run on Starfish (IRIS/4D 220). Prior to
executing the command to run the AGM module, the communication module should have
progressed to the point ready for accepting connection requests. When the message
indicating the communication module is ready appears on the screen of the workstation on
which it runs, issue the AGM command "run agm". And this is all you need to do! If the
user runs an a participating module prior to the point the communication module is ready,
the module will exit after a number of attempts to connect to the network server. The AGM
module will proceed in the way described earlier.

6.3 STARTUP AND TERMINATION

The required input data are clearly described in AMA Report 252-3. Once this file is
prepared, issuing the command "run agm" on the designated workstation is all you need to
do to run AGM. When the simulation has progressed to the end of the duration specified
by the user, the simulation executive notifies all modules of the termination.

No special procedures are provided when it encounters abnormal conditions. In such
cases, just re-run the simulation.

6.4 ERROR AND WARNING MESSAGES

Certain check points were included in the connection unit to ensure successful connection
between the AGM module and the communication module. Also, the waypoints are also
checked against the terrain boundaries. If any waypoint is out of range, a warning message
appears.

6.5 RECOVERY STEPS

It is suggested that the user follow the User's Guide section to restart the AGM module if
any abnormal situation occurs.

7.0 NOTES

7.1 LESSONS LEARNED

During the development stage of the Phase IV AGM module, the developer learned that the
integration of the terrain with the AGM model paved the way for future development of the
terrain-following capability. It needs to be determined whether the model currently used
can meet the mission requirements in future phases, as the pilot model developer has
complained of the inadequacy, relative to the mission complexity, of the current model for
two phases.

7.2 FUTURE DIRECTIONS

To improve the AGM module, the following things might be worth pursuing. It needs to
be determined whether to develop desired capabilities such as NOE and terrain-following
capabilities or locate existing models which already have these capabilities. The model with
NOE capability used by another task at Ames sounds attractive and is worth exploration.

Page I- 10

Annex J

Army-NASA Aircrew/Aircraft Integration Program: Phase IV

Man-Machine Integration Design and Analysis System (MIDAS)

Software Detailed Design Document

Communications Module

prepared by

Alex Chiu

Table of Contents

1.0 INTRODUCTION ... 1
1.1 IDENTIFICATION OF DOCUMENT ... 1
1.2 SCOPE OF DOCUMENT ... 1
1.3 PURPOSE AND OBJECTIVES OF DOCUMENT 1

2.0 RELATED DOCUMENTATION .. I
2.1 APPLICABLE DOCUMENTS ... 1
2.2 INFORMATION DOCUMENTS ... 1

3.0 CONCEPT .. 2
3.1 DEFINITION OF THE COMMUNICATION MODULE 2

3.1.1 Purpose and Scope .. 2
3.1.2 Goals and Objectives .. 2
3.1.3 Description ... 2

3.2 USER DEFINITION ... 3
3.3 CAPABILITIES AND CHARACTERISTICS 3
3.4 SAMPLE OPERATIONAL SCENARIOS 4

4.0 REQUIREMENTS .. 5
4.1 REQUIREMENTS APPROACH AND TRADEOFFS 5
4.2 EXTERNAL INTERFACE REQUIREMENTS 5
4.3 REQUIREMENTS SPECIFICATION ... 5

4.3.1 Process and Data Requirements 5
4.3.2 Performance and Quality Engineering Requirements 5
4.3.3 Implementation Constraints .. 5

5.0 DESIGN .. 6
5.1 ARCHITECTURAL DESIGN .. 6

5.1.1 Design Approach and Tradeoffs 8
5.1.2 Architectural Design Description 8
5.1.3 External Interface Design ... 8

5.2 DETAILED DESIGN .. 9
5.2.1 Detailed Design Approach and Tradeoffs 9
5.2.2 Detailed Design Description ... l'

5.2.2.1 Compilation Unit Design and Traceability to
Architectural Design .. 10
5.2.2.2 Detailed Design of Compilation Units 11

5.2.2.2.1 Detailed Design of Initialization Unit 11
5.2.2.2.2 Detailed Design of Connection Unit 11
5.2.2.2.3 Detailed Design of Data Passing Unit 11

5.2.3 External Interface Detailed Design 11
5.2.4 Coding and Implementation Notes 12

6.0 USER'S GUIDE ... 12
6.1 OVERVIEW OF PURPOSE AND FUNCTIONS 12
6.2 INSTALLATION AND INITIALIZATION 12
6.3 STARTUP AND TERMINATION ... 12
6.4 ERROR AND WARNING MESSAGES .. 13
6.5 RECOVERY STEPS ... 13

7.0 NOTES ... 13
7.1 LESSONS LEARNED ... 13
7.2 FUTURE DIRECTIONS ... 13

Table of Contents

Figure 1. Communication Module Overview 3
Figure 2. MIDAS Phase V Communication Architecture _iii_ 7
Figure 3. Control Flow of the Communication Module iiiiiiiiiiiiiiiiiiiiiiii 10

MAN-MACHINE INTEGRATION DESIGN & ANALYSIS SYSTEM
(MIDAS) SOFTWARE DETAILED DESIGN DOCUMENT

PHASE IV:

COMMUNICATIONS MODULE

1.0 INTRODUCTION

1.1 IDENTIFICATION OF DOCUMENT

This is the Software Product Specification for the communication module of the MIDAS
Software System.

1.2 SCOPE OF DOCUMENT

This document describes the requirements and detailed design of the phase IV MIDAS
communication module. The reader is assumed to be familiar with the Genera and UNIX
environments, Lisp and C programming languages, TCP/IP protocol, and basic concept of
Local Area Network. Familiarity with previous phases of development is definitely
helpful, but not required.

1.3 PURPOSE AND OBJECTIVES OF DOCUMENT

The purpose of this document is to serve as a technical reference focusing on the integration
of MIDAS modules achieved in phase IV. This document provides high level information
to any reader who only needs a top level understanding of the communication module. It
also contains implementation detail useful to users involved in modifying the
communication software to meet their needs.

2.0 RELATED DOCUMENTATION

2.1 APPLICABLE DOCUMENTS

The following documents are referenced herein and are directly applicable to this volume:

Silicon Graphics Inc., "IRIS-4D Series Communications", Version 1.0, Mountain View,
California, 1988

Symbolics Genera %* Manual, Vol. 5, "Streams, Files, and I/O"

Symbolics Genera 7.* Manual, Vol. 9, "Networks"

2.2 INFORMATION DOCUMENTS

Page J- 1

3.0 CONCEPT

3.1 DEFINITION OF THE COMMUNICATION MODULE

The phaseIV communicationmodule was definedtobe theone responsibleforproviding
reliablenetworkservicestofacilitatemessagepassingbetweentheMIDAS modules
distributedovervariouscomputers.

3.1.1 Purpose and Scope

The Phase IV development of MIDAS focused on the integration of modules so that
simulations could be carried out to show quantitative 0oading and timelines) and qualitative
(equipment design characteristics) differences between the Apache A and Apache Longbow
for a common set of mission tasks. The purpose the communication module served in
phase IV was to devise viable schemes to integrate various model-base, d MIDAS modules
and ensure successful simulation. The schemes devised are intended to be general and
adaptive so that they can be applied to achieve integration for similar type of problems with
minimum modification.

3.1.2 Goals and Objectives

The goal of the phase IV communication module was to develop a framework for large
scale distributed system integration so that MIDAS modules could be integrated and
simulations could be performed to address important human factors research problems.
The framework is intended to yield a modular environment that eases both the task of
integrating the model-based MIDAS modules and the job of maintaining and expanding the
MIDAS system.

The objective of the phase IV communication module was multifold. First, appropriate
methods needed to be devised to coordinate activities of MIDAS module distributed over
different workstations. Secondly, capabilities should be provided for MIDAS modules to
exchange information during a simulation.

3.1.3 Description

Conceptually, the communication module was designed, as shown in Figure 1, to network
all MIDAS modules together so that messages can be passed around between them.
Needless to say, it has to assure that the receiving side receives precisely what the sending
side sends.

Page J-2

IRIS

Module 1

IRIS

Module 2

IRIS

Module 3

Symbolics
Module 1

o Symbolic o

o Operator
o Model o

o

IRIS
Module N o

Fig. 1

Figure 1. Communication Module Overview

Because of the way the Symbolics modules were configured, as described in the
documentation for the Scheduler and the Task Loading Model, the Symbolic Operator
Model was the only Symbolics module that directly interacted with the Communication
module. The other Symbolics modules designed to interface only with the Symbolic
Operator Model. Therefore, the Communication module needed to provide sufficient links,
as shown in Figure 1, to allow any MIDAS module to interact with the rest of the MIDAS
system.

3.2 USER DEFINITION

The configuration and tools developed in this module are useful to designers who need to
perform large scale systemintegration of variousmodel-based modules distributed over
different platforms. Also, users who need to write communication applications software to
facilitate bi-direcdonal messagepassing between the workstationslike thoseused in the
MIDAS system need not reinvent the Wheel.

3.3 CAPABILITIES AND CHARACTERISTICS

The architecture, to be described in later sections, contrived for use in phase IV can benefit
the designer in many ways. It yields a very modularized environment which eases the job
of maintaining and expanding the system. It also serves as a convenient mechanism for the
designer to add/delete component modules to/from the existing design. Simulations can be
carried out so that the designer can compare the results for different designs.

Page J-3

The communication module is capable of bi-directional transmission of character strings
and numeric data between the IRIS workstations, between the Symbolics workstations,
and between an IRIS workstation and a Symbolics workstation. This module runs under
Genera 7.2 (in fact, it also runs under Genera 8.0) and UNIX System V with Berkeley
extension BSD 4.3. Modification may be required for the module to run under different
versions of Genera or UNIX/BSD. The module also provides the capability to allow the
user to select participating modules prior to the commencement of a simulation.

3.4 SAMPLE OPERATIONAL SCENARIOS

The following sample operational scenario gives the reader some flavor how a simulation
runs.

Prior to running a simulation, the user selects the participating modules and designates an
appropriate workstation for each of them to run on by editing a text file. Also specified in
the text file is the duration of the simulation in terms of ticks. Let us assume both the text
file and the communication module reside on the same workstation, IRIS 4D 220, say.
Suppose the Symbolic Operator Model and the Aero/Guidance model were selected to
participate in the simulation and were designated to run on the Symbolics 3675 and the
IRIS 4D 220, respectively.

The user now brings up the communication module. It first reads the text file to get the
duration of the simulation and the participating modules. Then, the connection process of
establishing necessary communication channels is initiated. In phase IV, only one stream
was used in each channel for message passing between the communication module and
each of the participating modules. The communication module progresses to a waiting
status ready for accepting requests for connection from the participating modules. While it
is waiting, the user brings up the participating modules on their designated workstations.
The In-st thing they do is issue request for connection to the communication module. The
connection process continues until all participating modules have been successfully
connected.

When the connection process is completed, the communication module broadcasts tick zero
to all participating modules. Now is the time for each participating module to execute its
initialization process, including sending out input data needed by other modules. In our
sample scenario, the Symbolic Operator Model sends the flight path specified in terms of
waypoints to the Aero/Guidance model; each waypoint contains a terrain point (x, y) and
the associated parameters at (x,y) : altitude above terrain, airspeed, and heading. When a
participating module is finished with initialization, it sends an initialization-done flag to the
communication module. When the communication module has collected all initialization-
done flags, it increments the tick by one and broadcasts the incremented tick to all
participating modules.

The simulation scenario gets updated from this point on. Each participating module
progresses for the duration of a tick size and updates the associated data structures at the
end of the tick. When next tick begins, the participating modules exchange the updated
data structures. The simulation continues in this way for as many ticks as the user
specified in the text file.

Page J-4

4.0 REQUIREMENTS

4.1 REQUIREMENTS APPROACH AND TRADEOFFS

The phase IV communication module needed to fulfill the following software requirements.
First, it needed to serve as the control center which ensured that all participating modules
were coordinated during a simulation. Secondly, it was expected to function as the
message routing center. Thirdly, capabilities for exchanging information between MIDAS
modules distributed over various workstations should be provided. Finally, it should yield
a pleasant environment for integrating existing MIDAS modules distributed over different
platforms.

4.2 EXTERNAL INTERFACE REQUIREMENTS

To allow the MIDAS modules to exchange information during a simulation, three interfaces
need to be developed, taking into consideration the configuration of the Symbolics modules
as described in section 3.1.3. The first interface is to allow an IRIS module to exchange
information with the rest of the IRIS world. The second interface is to allow a Symbolics
module to exchange information with the rest of the Symbolics world. The third interface
is to link the Symbolics world with the IRIS world so that every module can exchange
information with other MIDAS modules. A nice feature, not requirement, for the external
interfaces to possess is the capability to detect incoming messages.

4.3 REQUIREMENTS SPECIFICATION

4.3.1 Process and Data Requirements

The phase IV communication module adopted a very simple way for the user to specify the
input data necessary to run a MIDAS simulation. The required input data include the
duration of the simulation in terms of ticks, the participating modules, and the workstations
they run on. The specification was done by editing a text file prior to the commencement of
a simulation. When the command to run the simulation is executed the communication
module In'st reads content of the input file and then triggers the simulation process.

The input data do not have to be specified through a text file as described above.
Windows, menus, icons, and dialog boxes could be used to achieve the same purpose.

4.3.2 Performance and Quality Engineering Requirements

The communication module is required to provide reliable network for bi-directional
message passing between the MIDAS modules. The simulation speed is required to be
interactive, not necessarily real-time. Portability is also a major consideration during the
development stage.

4.3.3 Implementation Constraints

All MIDAS modules were developed on the government-furnished equipment, which
includes the Silicon Graphics IRIS workstations and the Symbolics workstations. Because
the communication module has to network these modules, it was implemented based on the
network-related functions available on these workstations.

Page J-5

5.0 DESIGN

5.1 ARCHITECTURAL DESIGN

As mentioned earlier, the phase IV MIDAS system can be thought of as composed of the
Symbolics world and the IRIS world. Figure 2 shows in detail the phase IV MIDAS
configuration and the decomposition of the communication module into subeomponents.
The Symbolics world consisted of the Operator Model, Equipment Model, Task Loading
Model, and Scheduler. The IRIS world displayed the VEST Pilot View, VEST Copilot
View, and World View. Because the IRIS workstations provide better Fortran
environment, the Aero/Guidance Model (AGM) is included in the IRIS world.

Conceptually, the communication module was designed to consist of five major
components : simulation executive, communication manager, data pool, and I-S and S-I
data transceivers. They constitute an ideal architecture for performing large scale
distributed system integration.

Page J-6

IRIS WORLD

REST Pilot
Jack

- CDE
- MFD

TC

Exec.
Comm.
Data Pool

Vlew_

TC

VEST Copilot Vle_
- Jack
- CDE
- MFD
- Terrain •

I-S S-I
nterfacq

AGM

J
I
I
I
I

I Loading

I
Chao,,

Operator
Model

CP/IP

TCP/IP

I Chaos Chaos

Equ

1
1

Fig. 2

Figure 2. MIDAS Phase V Communication Architecture

The Symbolics modules are distributed over the Genera-based Symbolics workstations,
and the IRIS modules are distributed over the UNIX-based IRIS workstations. The
MIDAS workstations include the Symbolics 3675, 3640, and 3620, and the IRIS/4D 220,
IRIS/4D 120, and Personal IRIS. All these workstations are networked over the Ethernet.
TCP/IP-based/inks are provided to network the communication module with the rest of the
IRIS modules. Similarly, Chaos-based links are provided to network the Symbolic
Operator Model with the rest of Symbolics modules. The Symbolics and IRIS worlds are
networked by the TCP/IP-based I-S and S-I data transceivers.

Page .1"-7

The following sequence of processes comprises the run-time simulation : initialization
process, connection process, and data passing. The scenario given in section 3.4
represents the standard procedure a simulation goes through.

5.1.1 Design Approach and Tradeoffs

The communication module adopted the tick-based simulation approach, which provides a
simple coordination method for distributed systems.The shortcoming of this approach is
that it bottlenecks the entire system to the slowest process. Another candidate is the event-
driven approach, which could result in potential speed up of the simulation at the cost of
requiring more complex coordination method.

During a simulation, the MIDAS modules, distributed over different computer
workstations, have to exchange information frequently. Some strategies were adopted to
yield better performance, not necessarily real-time but at least interactive. First,
information to be exchanged was represented by data structures that got passed around
between the IRIS workstations. This is much faster than sending each field byte by byte.
However, because of the byte swapping problem it was not possible to send a data
structure as a whole between a Symbolics workstation and an IRIS workstation. Fast
ways of sending messages between heterogeneous workstations need to be developed in
future phases.

5.1.2 Architectural Design Description

The simulation executive serves as the simulation control center. The communication
manager serves as the message routing center and the data pool is a cache of the
communication manager. The communication manager was designed to possess the
knowledge of destination modules for all messages. All messages have to go through the
communication manager before they reach destination modules. Direct message passing
between the IRIS modules is not allowed. Therefore, if a module needs to send a message
to other modules, all it needs to do is to send the message to the communication manager,
which then routes the message to the destination modules. This design makes the
communication manager very modularized, easy to maintain and expand. To incorporate a
new module into MIDAS, it only needs to build the link between the new module and the
communication manager.

The inclusion of the data pool as part of the phase IV communication module architecture
was because of the potential application of the parallel processing techniques to MIDAS in
future phases. The data pool was intended to emulate the global memory space available on
most parallel computers for storing intact data as well as the state variables. In phase IV,
the data pool was used merely to store the state variables. In fact, it was the only place in
MIDAS that holds the most current values of all state variables at any instant. The data
pool, residing in the IRIS world, can be accessed by the rest of the MIDAS system through
the network. There are cases in a simulation that some module needs values of certain state

variables for a small portion of the simulation. For these cases, the module queries the data
pool for the values of state variables through the communication manager.

5.1.3 External Interface Design

The messages passed around could include any combination of text strings and numeric
data in any form. The external interfaces should be designed to be able to perform this job.
A unified definition of messages was contrived and used across the MIDAS modules. A
message always has an id, but may or may not have a body, depending upon the purpose it
serves. Messages that merely serve "flag" purpose do not have a body. For example, the

Page J-8

messagewhichsignals the completion of the simulation falls within this category. Other
messages have a specific data structure associated with their body. The message id is
represented by an integer. Therefore, whenever an incoming message is detected, the
external interfaces retrieve the four-byte integer message id, followed by the message body,
depending on the message id.

5.2 DETAILED DESIGN

As mentioned earlier, the phase IV simulation adopted the tick-based approach, with the
tick size set to one hundred milliseconds. The simulation executive is responsible for
incrementing and propagating the tick through MIDAS to trigger individual processes.
Every module progresses for the duration of a tick, exchanges information, and notifies the
simulation executive of the completion for the current tick.

There were approximately two hundred and fifty state variables shared among the MIDAS
modules. These state variables were logically grouped and represented by approximately
thirty-five C data structures in the IRIS world. Equivalent representations were defined in
the Symbolics world. There were approximately fifty messages defined in the phase IV
MIDAS.

The task of providing capabilities for hi-directional message passing between the MIDAS
modules was divided into three subtasks. These subtasks were to provide capabilities to
allow message passing (1) between the modules within the Symbolics world, (2) between
the modules within the IRIS world, and (3) between a Symbolics module and an IRIS
module.

Subtask (1) was implemented based on Chaos protocol. Subtask (2) was implemented
based on TCP/IP protocol. The I-S and S-I data transceivers together perform subtask (3).
The I-S data transceiver is resident in the IRIS world and is responsible for
transmitting/receiving messages to/from the Symbolics world. The S-I data transceiver is
resident in the Symbolics world and is responsible for transmitting/receiving messages
to/from the IRIS world. They also ensure correct byte order when numeric data are passed
between these two worlds.

5.2.1 Detailed Design Approach and Tradeoffs

Byte orders are preserved when numeric data are passed between the modules within the
same world. However, bytes get re-ordered when numeric data are passed between a
Symbolics module and an IRIS module. In phase IV, the S-I data transceiver assumed the
responsibility of performing proper byte operations on the numeric data transmitted to or
received from an IRIS module. Before transmitting numeric data across the Ethernet, the
S-I data transceiver re-positions them so that the I-S data transceiver just collects the bytes
in the order received and forms numeric data. After receiving numeric data from the
Ethernet, the S-I data transceiver re-positions the bytes in appropriate order and forms
correct numeric data. The S-I data transceiver is by no means superior to the I-S data
transceiver in performing byte operations. The I-S data transceiver can do the job as well.

Another strategy was adopted to reduce network traffic based on the configuration that the
communication manager is the message routing center. Most MIDAS modules did not
query the data pool for the data they needed. At any stage during a simulation, if a data
structure gets updated by a module, the module immediately sends the updated data
structure to the communication manager. The communication manager then updates the
corresponding data structure in the data pool and forwards it to destination modules.

Page J-9

5.2.2 Detailed Design Description

5.2.2.1 Compilation Unit Design and Traceability to Architectural Design

Figure3 shows thecontrolflowofthecommunicationmodule.Italsorepresentshow a
simulationproceeds.Inparticular,itmaps wcU tothesequenceoftherun-timesimulation
processes:initializationprocess,connectionprocess,and datapassing.

Initializati°n_Read Input Data_-_{Establlsh Network]
Tick = 0]

Tick++,

Ntickdones = 0,
Broadcast Tick

No < Total Numb_

Participating Modules'

Yes

Incoming messa No

Yes

Identify Source Module,

Retrieve Message,

Update Data Pool,
Forward to Destination

Ntickdones++

I

Modules,

Fig. 3

Figure 3. Control Flow of the Communication Module

Page J-I0

5.2.2.2 Detailed Design of Compilation Units

As mentioned earlier, prior to running a simulation the user needs to specify the duration of
the simulation in terms of ticks, the participating modules, and the workstations they run
on, by editing a text f'de. If the file did not exist and the command to run simulation was
executed, the communication module would stop and alert the user that file was not found.

Each message was identified by an appropriate symbol. A set of C data structures was
defined; these data structures represent the groups of state variables mentioned earlier. The
message ids and the set of data structures were included in the header file dp.h, which was
used not only by the communication module but by other modules, such as VEST Pilot,
VEST Copilot, and View. Listed below are the the software units that actually perform the
run-time simulation as described in the architectural design section.

5.2.2.2.1 Detailed Design of Initialization Unit

Five C functions are involved in this unit: main(), init_proc_structs0, iniLdp0,
get procs0, and get_dp_types0; they are all contained in the file comm_mgrl.c.

A data structure was defined and contained in the header file port.h to hold important
network information, such as the port and socket numbers, for all participating modules.
An array of this data structures was declared to store the network information of all
participating modules. The main function fast calls iniLproc_strucs0 to initialize this array
of data structures. Init_dp0 initializes the data structures defined in dp.h. Get procs0
reads the input file that contains the user-selected participating modules and the
workstations these modules run on. Get_dp_types0 contains the source and destination
modules for each data structure.

5.2.2.2.2 Detailed Design of Connection Unit

Establish_network0 is the major function involved in this unit. This function follows the
standard procedure to bring the communication manager to the state ready for accepting
connection requests from other modules. It involves creating sockets, binding port
numbers and/or network addresses to sockets, and listening for and accepting connection
requests. This process continues until all participating modules have been connected to the
communication manager. The socket numbers returned from successful accept calls are
stored for use in subsequent data transmission.

5.2.2.2.3 Detailed Design of Data Passing Unit

Update_dp.c and send_dpdata_to__dests.c are the major files involved in this unit.
Update_dp.c contains the C functions for the communication manager to detect the sockets
that have incoming messages. The communication manager processes them one at a time.
First, it retrieves the message id, and possibly the message body, depending on the
message id. Then it updates the corresponding data structure in the data pool.
Send._dpdata_to_dests.c contains the C functions to forward the updated data structures to
destination modules. This process continues for as many ticks as the user desires.

5.2.3 External Interface Detailed Design

The message id is represented by an integer, and the message body by a data structure.
Therefore, whenever an incoming message is detected, the external interfaces retrieve the
four-byte integer message id, followed by the message body, depending on the message id.

Page J- I 1

5.2.4 Coding and Implementation Notes

The compiler options used included -lsun, -lbsd, and -lc_s.

6.0 USERIS GUIDE

6.1 OVERVIEW OF PURPOSE AND FUNCTIONS

The whole point of the phase 1V communication module was to develop a suite to integrate
the MIDAS modules, which are written in Lisp, C, and Fortran and distributed over the
IRIS and Symbolics workstations. The communication software was written in C and Lisp
and provided reliable bi-directional data transmission.

6.2 INSTALLATION AND INITIALIZATION

When the user runs the MIDAS simulation, he should always fu'st bring up the
communication module and let it progress tO the point where a message appears on the
screen indicating it is ready to accept connection requests. At this moment the user brings
up the participating modules. Otherwise, the participating module would exit after a
number of attempts to connect to the server simply because the communication module was
not available.

By default, VEST Pilot is designated to run on Coral (IRIS/4D 120), VEST Copilot on
Starfish (IRIS/4D 220), Views on Urchin (Personal IRIS), Aero/Guidance on Starfish, and
the Symbolic Pilot Model on Barracuda (3675).

To bring up VEST Pilot, the user types "mgflt.coral -DATA/lbcoralsim" on Coral. VEST
Pilot will perform the necessary setup automatically. When the setup is done, mouse click
the CDE item from the MultiGen menu bar, drag the mouse down to Ethemet, and release
the mouse. The VEST Pilot will try to connect to the communication module. If the
connection is successful, a message indicating so will appear on the workstation on which
the communication module runs. To bring up VEST Copilot, type "mgflt.starf -
DATA/lbstarfsim". To bring up Views, type "../urchin/mgflt -DATA/ahurchinsim". VEST
Copilot and Views follow the same procedure to connect to the communication module. To
connect the Symbolic Pilot Model to the communication module, simply type (conn-to-
which-4ds? 'starfish 'coral) on Barracuda.

When all participating modules have been successfully connected to the communication
module, the simulation progresses and continues for as many ticks as the user specified.

6.3 STARTUP AND TERMINATION

Prior to running a simulation, the user has to have an input file which contains the duration
of the simulation in terms of tick, the participating modules, and the workstations these
modules run. Once this file is ready, follow the steps described in the User's Guide
section to start the simulation. The simulation will terminate when it has gone through the
duration specified in the input file.

No special procedures are provided when MIDAS encounters abnormal conditions. In
such cases, it is suggested that the user bring down the communication module posterior to
the participating modules.

Page J- 12

6.4 ERROR AND WARNING MESSAGES

Certain check points were included in the connection unit to make sure all participating
modules had been connected successfully to the communication module. Similarly, check
points were also inserted to make sure the communication module reads enough bytes from
the sockets.

6.5 RECOVERY STEPS

It is suggested that the user follow the User's Guide section to restart the simulation if any
abnormalsituationoccfas.

7.0 NOTES

7.1 LESSONS LEARNED

During the development stage of the phase IV communication module, the developer
learned that the task of integration is a horrendous and challenging job. It requires
seamless collaboration among the module developers. And the individual modules ought to
be well developed before the attempt of integration. Hope that this will be improved in
future phases if integration remains as a focal point of MIDAS.

The overall performance in phase IV required about a second clock time to process a tick.
Seven integrated modules, networks, graphics, and computation contributed to this
performance. Networks and graphics were probably the main contributors.

7.2 FUTURE DIRECTIONS

To improve the MIDAS performance, the following things might be worth pursuing.
Explore alternatives to transmit numeric data between a Symbolics workstation and an IRIS
workstation. In particular, it would be nice if data structures could be passed around as a
whole between a Symbolics module and an IRIS module. It is worthwhile exploring other
communication protocols with less overhead. A parallel computer could even totally
eliminate the network bottleneck. Reduce the graphics overhead embedded in MultiGen by
developing a package for MIDAS purpose.

Page J-13

Form Approved

REPORT DOCUMENTATION PAGE OMa_o o7_o,_

Public repotting burden lOTthis collection of Information Is earl,mated to averNle 1 hour per _nse, IncludlnQ the time for revtewin0 Irmtrucflone. |catching existing data sources,
gathering and maintaining the dale needed, and completing and reviswlr_ the collection of Information. Send oommento regm'ding 11111borden esUmate or any other aspect of this
coheclion el intormalion,/ncluding suggestions for radioing this bu,den, to Was,hi=hiltonHeadquarters Services, Dlrectorale lot 1_4otmatlonOperations and Reports, 1215 Jatlerson
Davis Highway, Suilo 1204. Arlington. VA 22202-4302. endt0 the Office o! Management and Budget, Paperwork Reduction Project (0704-01118), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1991 Contractor Re _on
4. TITLE ANDSU=TITLE S. FUNDING NUMBERS

Army-NASA Aircrew/Aircraft Integration Program: Phase IV A3I

Man-Machine Integration Design and Analysis System (MIDAS)

Software Detailed Design Document
6. AUTHOR(S)

Carolyn Banda, David Bushnell, Scott Chert, Alex Chiu,

Betsy Constantine, Jerry Murray, Christian Neukom, Michael Prevost,

Renuka Sha nkar, and Lowell Staveland
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) '

Sterling Federal Systems, Inc.
1121 San Antonio Road

Palo Alto, CA 94303-4380

9. SPONSORtNGIMONITORING AGENCY NAME(S) AND ADDRESS(ES)

Ames Research Center

Moffett Field, CA 94035-1000

NAS2-13210

8. PERFORMING ORGANIZATION

REPORT NUMBER

A-92049

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR- 177593

11. SUPPLEMENTARYNOTES

Point of Contact: Robert A. Carlson, Ames Research Center, MS 233-15, Moffett Field, CA 94035-1000,
(415) 604-6036 or FTS 464-6036

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified -- Unlimited

Subject Category 54

12b. DISTRIBUTION CODE

13. ABSTRACT (Max/mum 200 words)

This report details the capabilities and design approach of the MIDAS (Man-machine Integration Design and

Analysis System) computer-aided engineering (CAE) workstation under development by the Army-NASA

Aircrcw/Aircraft Integration (A3I) Program. This workstation uses graphic, symbolic, and numeric prototyping

tools and human performance models as part of an integrated design/analysis environment for crewstation human

engineering. Developed incrementally, the requirements and design for Phase IV (July 89-Oct 90) are described.

Software tools/models developed or significantly modified during this phase included: symbolic operator model;

scheduler (Z) model; task loading model; symbolic equipment models; visual editor and simulation tool (VEST);

display layout analysis; anthropometric model "JACK"; vision models; aerodynamics/guidance and terrain

module; and simulation exec., communications module. These components were successfully used during

Phase IV to demonstrate the complex interactions and human engineering findings involved with the proposed

Apache Longbow multifunction displays,

14. sUSJECTTERMS

Computer-aided engineering, Human performance modeling, Crewstation design,

Man-machine interface, Human factors engineering

17'i' SECURITY CLASSIFICATION 111. SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE

Unclassified Unclassified

NSN 7540-O1-280-55OO

GPO 687-288/79152

15. NUMBER OF PAGES

528
16, PRICE CODE

A23
19, SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prlscribocf by ANSI Sld Z3(]-I 8

2118 - 1 02

