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SUMMARY

This paper presents an overview of some of the recent (1984-1991) developments in computational/analytical
methods in the mechanics of fracture: (i) analytical solutions for elliptical or circular cracks embedded in

isotropic or transversely isotropic solids (the crack-plane being at an arbitrary angle to the axis of transverse
isotropy), with crack-faces being subjected to arbitrary tractions; (ii) finite-element or boundary-element
alternating methods for two- and three-dimensional crack problems; (iii) a "direct-stiffness" method for

stiffened panels with flexible fasteners and with multiple cracks, using the alternating method; (iv) multiple-
site-damage near a row of fastener holes; (v) analysis of cracks with bonded repair patches; (vi) methods
for generation of weight-functions for 2- and 3-D crack problems, and (vii) domain-integral methods for

elastic-plastic or inelastic crack mechanics.

INTRODUCTION

The starting point for this overview is the monograph on "Computational Methods in the Mechanics of
Fracture" [1], with contributions by several noted researchers. The various articles in that monograph were
prepared by individual authors in the 1984-85 time frame, with the material being current mostly as of
1984. In the present paper, some recent advances in computational fracture mechanics in the intervening

years arc summarized. The coverage of topics is limited to those listed in the "Summary" above; and
furthermore the scopc of the article is limited by tile authors' own intcrests.

In each of the topics listed in the "Summary", a reasonably self-contained account of the generic issues,
and the progress made in addressing them, is provided below.

Elastic and elastic-plastic fracture mechanics methodologies, that are easy to apply, are mandatory in

a strategy for assessing the integrity of cracked structures. Straight-forward finite element/boundary-
clement analyses of such problems, with detailed numerical modeling of crack-tip singularities, would bc
prohibitively expensive, even in the linear elastic regime. Furthermore, such straight-forward _umcrical
analyses are useful for a single configuration of crack(s) and loads; and whenever the crack-configuration
or the load-configuration changes, the entire analysis must be repeated. Thus, alternate strategies for

efficicnt analyses of structural integrity in the prcsence of multiple-site-damage are needed. This paper
reviews some such possible strategies.

1 ANALYTICAL SOLUTIONS FOR ELLIPTICAL OR CIRCULAR CRACKS IN ISOTROPIC OR

TRANSVERSELY ISOTROPIC SOLIDS, WITH ARBITRARY CRACK-FACE TRACTIONS

In practice, the actual flaws in three-dimensional structural components are often approximated by elliptical
cracks. For this reason, the problem of an embedded elliptical crack in an infinite solid has bccn the focus
of a considerable number of studics.

The authors in [2] have presented a general solution procedure for an embedded elliptical crack in an
isotropic infinite solid, subject to arbitrary crack-face tractions. Later,the authors in [3] have refined
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and completed this solution, deriving (i) alternative non-singular forms for linear algebraic equations
relating crack-face tractions and potential functions, (ii) a general procedure for the evaluation of the

required elliptic integrals, and (iii) a systematic procedure for the evaluation of the partial derivatives of
the potential functions. These derivations made it possible to extract the analytical close-form solution for
any polynomial order of crack-face tractions. For later convenience, we cite this general solution altogether
[2] and [3] as VNA solution. The VNA solution represents a generalization, of the potential representation
of [4] and [5].

In the following, we present a brief summary of the VNA solution. Further details of the VNA solution
can be found in the cited original papers.

1.1 THE VNA SOLUTION (AN ELLIPTICAL CRACK IN AN ISOTROPIC SOLID)

Suppose that Xl and x2 are Cartesian coordinates in the plane of the elliptical crack and x3 is normal to
the crack-plane such that:

+ ( 2/a2)2= :, > a2 (1)

describes the border of the elliptical crack of aspect ratio (al/a2). The necessary ellipsoidal coordinates _
(a = 1, 2, 3) are defined as the roots of the cubic equation

w(s) =1- \ax2+S - \a2 2+s]/- =0 (2)

where

so that the interior of the ellipse is given by _3 = 0 and its boundary by (2 = _3 = O.

Let the tractions along the crack-surface be expressed in tile form

1 1 M rn

or(O) --(i,j) 2m-2n+i_2nTj. (a 1, 2, 3)
i=0 j=0 rn=0 n=0

(3)

so that the values of (i,j) specify the symmetries of the load with respect to the axes of the ellipse. M

is an arbitrary integer which is related to the order of the polynomial. The solution corresponding to the
load expressed by Eq. (3) can be assumed in terms of the potential functions

where

and Q(s) = s(s + a2)(s + a_). The components of displacement ui and stress aij in terms of f_ (a = 1, 2, 3)
are given by

1 : M k

f_=_EE_r'(i'J) v . (a=1,2,3) (4) it"o,k-e,er 2k-2_+i,2e+j,

i=0 j=O k=O t=O __

i

t92k+i+j f(i _ ds lF2k-2e+i,2e+j = 9k-2e+i_ 2e+j [a)(s)12k+i+J+l v/- _ (5) iox_ ox 2 i

]

Ul = (1 -- 2b')(fl,3 -4-f3,1) -- (3 -- 4v')fl,3 -t- x3(V" f),l

u2 = (1 -- 2r')(f2,3 + f3,2) - (3 - 4u)f2,3 + x3(V" )')2 i
i

u3 = --(1 -- 2v)(fl,1 + f2,2) -- 2(1 -- v)f3,3 q- x3(_ 7" .f),3 (6)
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and

and

G,, = 2#[f3,,, + 2_'I3,22- 2f,,31- 2uf2,a2+ za(v. f),,1]

o.22 = 2#[f3,22 -4-2vf3,11 - 2f2,32 - 2v f,,3, 4- x3(V" ?),22]

a12 = 2/_[(1 - 2u)f3,12 - (1 - u)0',,23 + f2,13) + z3(V- 3),,2]

G33 = 2#[--f3,33 -4- Xa(V" ?),33]

O'31 = 2#[--(1 -- V)fl,33 "4- V(fl,ll 4- f2,21) 4- X3(V" f),,3]

e32 = 2#[-(1 - u)f2,23 + u(fl,,2 + f222) + z3(V" J_),231

v. ? = f,,, + 12,2+ 13,a

where # and u are the shear modulus and Poisson's ratio.

By successive differentiation, it can be shown from (5) that, since w((3) = 0,

Fke = 3 Ox_Ox e [Q(s)] '/2 = [Q(s)] 1/2

wherein (2k - 2t + i) and (2t 4- j) in Eq. (24) are replaced by k and t in the above equation and

(7)

(8)

(9)

kl=k, tl=g, ml=0

In (9) we have used the additional notation that 0j implies the jth partial derivative with respect to x_.
Similarly, the first-order partial derivatives of Fke with respect to xp (fl = 1, 2, 3) can be expressed by

Fke,_ = f_¢ 0_' 0e_0_'co k+_+' ds
3 [Q(s)] 1/2

where

kl = k + 61p, gl = g+ 62_,

and 6,Z, etc., are the well-known Kronecker deltas.

m, = _3_

In the case of the second- and third-order partial derivatives, we derive:

(I0)

where

in which a3 --= 0, and

F_,_[ r--[_ O_lO_lO_'O)k'_'_l d8
43 ' [O(s)]'/2 + F_oz_

kl _1 Ir'/l 1

Xl X2 x3 f.flz _'t .ml

F_:Ofl-/= (]_ 4- e 4- 1)[ (_3 :_3= %¢2) tV'l v'2 P'3 [Q(s)]'/2}s=f,3

k1=k+61Z+61-/, ii=t+g2Z+_2._, ml=63p+63-1

02w

pa - o=2 - -2/(a2a + s), (_ = 1,2,3)

(11)

(12)

(13)

(14)

Fke,_-_6 = fk°¢Okl'Oe'O_'w k+t+l ds OF_°_-/ GO3 [Q(s)] 1/2 4- Ox_ 4- (15)
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where

G O = (k + i +.... 1)![Q(s)]I/2 Plk'Pe2'v3=m'_k'_'x'_ '._I"_2

x [ k°(k° - 1) go(go - 1) mo(mo - 1)]

k 0 = k --{-61,0 + 613; gO = g + 52,0 + 627; m0 = 53,0 + 533,

kl = k0 + 616; gl = go + 525; m 1 = m 0 + 535 (16)

A systematic procedure for the evaluation of the partial derivatives of F°O_ in (15) is given in [3]. It is

noted that these derivatives are needed (i) in satisfying the boundary conditions on the crack-face and (ii)

in evaluating the far-field stresses in the solid containing the elliptical crack which is subject to arbitrary
tractions.

It is now seen from (9)-(15) that, one needs to evaluate a generic integral of the type:

oo _k' _e' 0_ *wk+e+a ds (17)3 _'1 _'2 [Q(s)]l/2

2 and carry out the indicated differentiations term byTo accomplish this, wc cxpand wk+e+] in terms of x_
term. Thus, one obtains:

k+g+l p q (_1) p
O_1060_,Wk+e+, ds =(k+g+l)[ _ _(k+t+l p)![Q(s)]1/2

p=O q=O r=O

(2p - 2q)! (2p - 2r)! (2r)[ "12P-2q-k*

(p-q)[ (q-r)! (r)! (2p-2q-kl)[
x2q--2r--gt _2r--rn]

2 _3 Yp-q,q-v,r(_3) (18)
x (2q- 2r - gl)[ (2r- ml)!

where

oc dsJp-q,q-r,r(_3) = 3 (s + a2)p-q(s + a2)q-r(s "4-a])r[Q(s)] 1/2
(19)

In general, the integral indicated in Eq. (19), for a given set of parameters p, q, r, can be evaluated
in terms of incomplete elliptic integrals of the first and second kinds, and Jacobian elliptic functions.
The derivation of the closed-form expressions involves exorbitant work even for relatively lower-order

components of Jp-q,q-r,r (see [6]). Therefore, the derivation of a systematic generic procedure for the
evaluation of the elliptic integrals Jp-q,q-r,r wan important in the development as well an in the numerical
implementation of the VNA solution. A procedure for this has been developed in [3] and is summarized
as follows.

Eq. (19) can be rewritten in terms of Jacobian elliptic functions, an:

2

Jp-q,q-r,r -- a21P+l fOul (sn2p_t)(nd2q-2ru)(nc2r u) du

2
---- 2p+l Lp,q-r,r (20)

a 1

where
sn2ul = a_/(a_ + _3)
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The following identities for Jacobian elliptic functions are used:

sn2ul -4- cn2u = 1;

dn2u - k2cn2u _- k_2;

tnu = snu/cnu;

ndu = 1/dnu;

k2sn2u -f- dn2u -- 1

k12sn2u .4- cn2u = dn2u

dcu = dnu/cnu; cdu = cnu/dnu

ncu = 1/cnu; sdu = snu/dnu (21)

where

= _ a2)/al;

By using integration by parts in (20), one sees that:

k t2 = 1 - k 2 (22)

Lp,q-r,r i ,2{(sn2p+lu)(nc2__lu)(nd2q_2__lu)l_,
(2r - 1)k

-[-[2(--p -[- r -- 1) -[- 2(p -- q -- r -b 2)]g2lLp,q-r,r-1

+k2(-2p + 2q - 3)Lp,q-_,_-2} (23)

Thus, one needs the starting values of Lp,q-r,r-1 and Lp,q-r,r-2 to evaluate Lp,q-r,r. The lowest-order
starting values are:

Lp,q,-1 -= sn2pund2qunc-2u du

foou'Lp,q,- 2 = sn2pund2qunc-4u du (24)

The above integrals can be reduced to the forms:

Lp,q,_ 1
1 p 1 (_l)j+_+lk,2(1-_)p[ T

j=07=O ....

1 p 2 (_l)J+7+2k,2(2_7)p[2i
ip,q,-2 -- ]g2p+4 _ _ -_-:_'_--_').I'_.I 2(q-J--7) (25)

j=0_=0 ....

where

I2m = ndmu du

2m(2 - k2)I2m + (1 - 2m)I2m-2 - k2snulcnulnd2m+lul
12m+2 --_

(2m + 1)k 12

For 2(p - j - 7) < 0 in (44), we find I_2m = G2m, where

(26)

(27)

k2dn2m-lulsnulcnui + (1 - 2m)k'2G2m_2 + 2m(2 - k2)G2m

G2m+2 = (2m + 1)
(28)

Thus, finally we see that one needs the following starting values for evaluating the general terms of I2m+2

and G2m+2:

Io = Go= F(ul) = ul

I2 = (1/k'2)[E(ul)- k2snulcd l]
G2 = E(Ul) (29)

where F(ul) and E(ul) are incomplete elliptic integrals of the first and second kinds, respectively.
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= cr3a) can be expressed in terms of the potentialNow, tile boundary conditions on the crack-face (a3_ 0
functions, as follows:

_0) = --2/_f3,33

a(o) (30)= -2t,[(1 - - + f2,2o)] = 1,2

in which the boundary condition for f3 is uncoupled from fl and f2. However, if Eqs. (30) are used directly

as in [2], finite parts of the singular terms in the equations relating the coefficients C of (4) to coefficients
A of Eq. (3) have to be considered. Alternative non-singular forms for the boundary conditions may also
be used. Since fo (or = 1, 2, 3) are harmonic functions, it is seen that:

fa,33 -------fa,,, -- fa,22 (O_= I,2, 3) (31)

Then, (30a, b) can be rewritten as follows:

a(0) = 2/t(f3,,I +/3,22)33

a(o)3a = 2g[(1 - v)(fo,,, + fa,22) + v(fl,'a + f2,2a)] (32)

Substituting (3) and (4) into (32a, b), we obtain the following linear algebraic equations, upon comparing
coefficients of like powers in the polynomial series. The relation between the parameters A and parameters
C can be summarized in a matrix form:

{A} = [B] {C} (33)
Nxl NxN Nxl

where N is the total number of coefficients A or C. For a complete polynomial expressed by (3), the

maximum degree of the polynomial Mc and the number of coefficients N can be expressed, respectively,
as Mc = 2M + 1 and N = (M + 1)(2M + 3) x 3. For an incomplete polynomial, the maximum degree of

polynomial and the number of coefficients depend not only on the parameter M but also on the parameters
i and j in (3). Detailed expressions of the components of matrix [B] are given in [3] for Mode I and mixed
modes of II and III. A more convenient form for the mixed modes of II and III also can be found in [7].

Once the coefficients C are determined by solving (33) for given loadings on the crack surface, the stress-

intensity factors corresponding to these loads are computed from the following equation [2].

For the Mode I problem,

KI = / ),'&', 1/2 1 1 M k8# A'/" _ __, _ __,(-2)2k+i+J(2k + i+ j + 1)!
i=0 j=0 k=O _=0

1 (cos0"_2k-2'+' (sin0'_2e+Jr,(,,j)
X -- V3,k_t, t

a,a2 \ al / \ a2 /
(34)

where 0 is the elliptic angle and
A = a21sin 2 0 + a 2cos 2 0

For the mixed-mode problem of Modes II and III

,/2 A_l/41[H,a 2 cosO + H2al sinO]
a, a2

,/2 A -U4 (1 - v) [H2a2 cos 0 - Hla, sin 0]
ala2

(35)

(36)

(37)
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in which

H1 -----

1 1 M k

_ _ _-](-2)2k+i+J(2k + i + j + 11!
i=O j=O k=O g=O

(cos 0_ 2k-2t+i (sin0_ 2e+J_(i,j)
X -- Vl,k-t,e

\ al / \ a2 ]
(38)

H2 --

1 1 M k

_ _ _(-2)2k+2-1-J(2k +3- i- j)!
i=0 j=0 k=0 _=0

x (cost?_2k-2'+l-i (sinO_2e+l-J(l_i,l_j)

\ al ] \ a2 / V2'k-t't
(39)

The VNA solution has been implemented by [8, 3] in a new finite-element alternating method for the
solution of problems of embedded or surface flaws in complex structural geometries.

1.2 AN ELLIPTICAL CRACK IN A TRANSVERSELY ISOTROPIC SOLID

Recently, the authors in [9] have extended the VNA solution procedure to a transversely isotropic case,
with arbitrary tractions on the face of an elliptical crack in a transversely isotropic solid, with the crack

plane being at an arbitrary angle to the axis of elastic symmetry.

A material is said to be transversely isotropic when it possesses an axis of elastic symmetry such that the
material is isotropic in the planes normal to this axis. Let 2 be the direction of elastic symmetry. Then

the stress-strain relations in the (2, _3,_') system could be written as,

_ Oue C Ou_ _ Ou_
tY_ = C11 --_'- -I- 12"-_- -I- C13 _-

C Ou_ Ou_ _ Oue+ cll--__ + c_3
12--_- oy

(ou,
C13 _ Gq:_ -I- (9y ] "_- C33_

C44 \ O_ + O_ ]

(ou, ou, 
C44 \ Oe + 02 }

1 (Ou_ Oug"_ (40)
rr,o = -_(C_ - C12) k O0 + 02 /

(a_, a#, a_, T_, Te_, T_) and (u_, u#, ue) are stresses and displacement components in the (_, if, 5) system

and Cij are elastic constants, as discussed in [10].

The displacement field ue, u_, and ue is represented in terms of potential functions Cj (j = 1, 2, 3), such
that it satisfies the equilibrium equations expressed in terms of displacements, identically, as follows:

0¢3_ = (¢_ + ¢2) - 0--_-

0¢3u_ = (¢_+ ¢2) + 0--_-

U2 = _-0-_2(m1¢ 1 q- m2¢2) (41)
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Cllnj - 644 (613 4- 644)nj
- j=1,2

mj - C13 + C44 C33 - C44nj '

The quantities nl and n2 are the roots of the quadratic equation in n

C1,644n 2 + [C,3(613 + 26"44) - C11633]n + C33644 = 0

(42)

(43)

and n3 is defined as:
2644

n3 -- (611 - C,2)

Introduction of the following modified coordinate systems (Xj, yj, zj) (j = 1, 2, 3)

(44)

xj = "2.

yj = _cos0j +--sin0j

2
zj = -ysinOj +--cosOj (45)

yields the expressions of the elliptical crack in each modified coordinate system

2 uy
xj + =0 in 0 (j=l,2,3nosum)
aj bj

(46)

where

aj = a

bj = b cos 0 cos Oj "-I- (47)

and

tan0j- 1 tan0 (48)

Here, 0 is the angle between the physical crack axis (z) and the material axis (5).

Now, each of the potentials Cj (j = 1, 2, 3) can be expressed by the harmonic equations in a set of coordinate

(xj, yj,zj) (j = 1,2,3), as:

+ Oy---_j+ Cj = 0 (j = 1, 2, 3 no sum on j) (49)

Thus, to solve the problem on hand, appropriate potential functions Cj (j = 1, 2, 3) each in a different set

of coordinates (xj,yj,zj) (j = 1,2,3) will now be assumed. The necessary ellipsoidal coordinates ({, (_, (_

(j = 1, 2, 3) for a point in the x j, yj, zj (j = 1, 2, 3) coordinate system are given by the roots of the cubic
equation

wj(_ j) = 0 (j = 1,2,3 nosumonj) (50)

where

and

2 2

xj yj zj (51)
wj (_J) = 1 a2 + _J b_ + _J _i

2 <-a _ _ (52)
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Appropriate expressions of the potentials Cj for the present case of transverse isotropy as discussed above,
are assumed as:

M

Cj = __, __, nJ F j (53)Jt't-k,k t-k,k
_=0 k=0

J
where, Be_k, k are unknown coefficients to be determined, M is the highest order polynomial terms consid-

ered and F[Jk, k is defined as:

FEe ok+_ foo (s)] k+t+l ds- k e [_J (54)
axjOv_ _ V_(S)

As can be easily noticed, the above equation is basically the same as Eq. (5) or Eq. (10) in the VNA
solution procedure for real nl and n2 Eq. (44). Therefore, the VNA solution procedure can be used to
obtain the complete general solution for an transversely isotropic material. However, for complex nl and
n2 analytic continuation from the real axis to the complex plane has to be carried out. This solution is

given in [9] in more detail.

1.3 A CIRCULAR CRACK IN AN ISOTROPIC SOLID

The analytical general solution for a circular crack in an infinite isotropic elastic solid, subject to arbitrary
crack-face tractions, is briefly summarized here. The solution was revisited in [11], based on the Fourier-
Hankel transform technique developed in [12], which was later generalized in [13]. Although the authors in

[13] have derived the general solution for this type of problem, certain portions of the mixed-mode solution
were lacking in their final results. Thus, the complete form of the general solution has been recently

rederived [11] as follows:

For a penny-shaped crack embedded in an infinite 3-D elastic body, we need to solve the following mixed

boundary value problems.

Mode I

_z(r, 0,0) = aoz(r,O,O) = 0 r >_ 0; 0 < 0 < 27r

azz(r,O,O)=pl(r,O) O_<r<a; 0_<0_<27r (55)

uz(r,O,O) = 0 r > a; 0 < 0 < 2_r

(a is the crack radius)

Modes II and III

o.(_, o,o) = o
arz(r, O,O)= p2(r,O)
aOz(r,O,O)= p3(r,O)
_(r, O,,0) = _off, o,o) = o

rkO O<O<2r

O_r<a O<O<2r

O_r<a O<O<2n

r>a O<O<2r

(56)

where p_(r, 0) (a = 1, 2, 3) are given functions describing the distribution of the loads applied to the crack
surface.

An appropriate solution for this boundary-value problem can be obtained by expressing the displacement
components in terms of three harmonic functions ¢_ (a = 1, 2, 3), as

. 0¢1 02¢1 2 0¢2 ,0¢3 02¢3

u_ = (1-2u)_+z-z---a--_ +---+2(I-ar araz r -_ v)_ + Z--OrO0

.1 0¢1 z 02¢1 20¢2 1 _03 z 02¢3uo = (1 - 2u)7-- _- + -rO-_z _ + 2(1 - .)---r + -r O--_z

,0¢1 02¢1 -- (1 -- 2V) 0¢3 02¢3 (57)
u z = - 2(l - v)-_z + Z-_z2 --_-z + z --_z2
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The correspondingstresscomponentsin terms of the potentiMfunctionscanbe easilyobtainedby the
aboveequationsthroughtheuseof thestrain-displacementandthe stress-strainrelations.Fromthe above
equations,it is seenthat ¢1 is relatedwith modeI, and ¢2and¢3arerelatedwith the mixedmodeof II
andIII.

In orderto expressgeneralloadings,the appliedloadsp_(r, 0) are expressed by Fourier series as follows:

cosnO'Aan(r) (a= 1,2,3) (58)
p_(r, 0) = _ sinn0 Ban(r)

n=0

In order to
transform:

_ cosn0 f0 c¢ Can(S) 1jn(rs)e_SZds (c_=1,2,3)¢_(r,0, z)
-- sinn0 Don(S) s
n=0

The substitution of Eqs. (58) and (59) into Eqs. (55), (56) and (57) yields the following relations:

solve the proposed problem, the potential functions are represented by the Fourier-Hankel

= __!4f -_'fa at t rn+lAln(r) dr

# V 27r Jo Jn+l/2(st)_ fo0 (t 2 -- r-_-)1/_

= __!,/-_- fa dt _0 t Bin(r ) drV2. Jo Jn+l/2(st)_ (t2 _ r2)i/2

Mode I

Gin(S)

Din(s)

(59)

(60)

Mode H and HI

l_2_oa dt foot r2A3o(r)C2o(s) = -3 J3/2(st) t-_ (/_-_-_v)_/2 dr

1 l--s- fa dt t r2A2o(r)
C30(s) - t t V 2. Jo J3/2(st) t-_ fO (t 2 - r2) 1/2 dr

(61)

where,

C2.(_) =

C3_(s) =

D2. (s) =

D3n(s) =

¢_(t) =

¢_(t) =

¢2(*) =

f0 cl
[(/,' -- 1)¢_(t)Jn_l/2(st ) -t- ¢_(t)Jn+3/2(st) ] dr, n >_ 1

/iv'7 [¢l(t)Jn_l/2(st) + _2(t)J.+a/2(st)]dt n >_ 1

/o°,_ [(1 - v)_i(t)J._i/2(st) - _2(t)Jn+V2(st)] at, n >__1

/o°v_ [_*(t)Jn_l/2(st) + ¢_(t)Jn+a/2(st)l dt n >_ 1

_t-n+3�2 t

(2 -- _)#V/2-_ f0 rn[A2n(r)(-_r'2)1I--2--B3n(r)] dr

_t-n+3�2 [t rn[A3n(r) + B2n(r)] dr
(2 --/)),V/_ Jo (t 2 -- r2) 1/2

2 t-n-i/2{(i+2n)Vfotel(t) + 2#V_ 2 -- v rn[A2n(r) --B3n(r)]

fot rn+2[A2n(r)+B3n(r)]}x (t 2 - r2)l/2dr + (t 2 _ r2)1/2 dr

(62)

416
=



{ (1+ )+

L tr"+2[B2"(r)-A3n(r)] }x (t 2 - r2) 1/2 dr + (-_--r_-_] _ dr

Without going into details, the stress intensity factors for all the modes are given by

2 oo 9/0 rn+l

cosn0 1 a Aln(r)

KI = _v_n__o sinn0 an+l� 2 Bin(r) (a2-r2) 1�2dr

2 _0 a ?'2A20 (r) 2_V_ oogll -- Vr-_3/2 (a 2 _ r2)1/2 dr -t- a E[¢l(a) - _2(a)] cosn8
n=l

KIII

oo

2ttV_ E[(1 -- u)_(a) + _(a)l sinnt_
a n=l

oo

2#V_ E[(1 _ u)(I)l (a) + ffP2(a)]sinnO
a n--1

2 ]'a r2A3°(r) dr + [_(a) - a2_(allcosnO
v_a 312 Jo (a 2 - r2) 1/2 n=l

(63)

(64)

2 FINITE-ELEMENT AND BOUNDARY-ELEMENT ALTERNATING METHODS FOR 2D AND 3D

CRACK PROBLEMS

Consider a 2 or 3 dimensional homogeneous solid containing multiple cracks, as shown in Fig. 1, and
assume that the crack-faces arc traction-free. In the alternating technique [14], and [15], the stresses

in the uncracked body are first analyzed, by using a numerical/analytical method such as the finite ele-

ment/boundary element method, for the given system of external loading. In order to assess the effect of
the crack, the tractions at the locations of the cracks in the otherwise uncracked body must be erased.

Assume for simplicity, for now, that there is a single crack. Thus, one has to deal with the problem of

a finite body with a crack, the faces of which are subject to arbitrary tractions, and the outer boundaries
are traction free. Denoting by Sc the crack-face, and by S_ the external boundary of the finite-body V,

this problem may be posed as:

Solve: L(u)= 0 in V; B(u)= t at sc; B(u)= 0 at Sa (65)

where u are the displacements, and L and B are the appropriate differential operators. To solve problem

(65) by using the alternating method, the finite body is replaced by an infinite body, with stresses going to
zero at infinity. The problem of an infinite homogeneous body containing a crack, the faces of which are
subject to tractions t as in (65), does have an analytical solution often times, and hence need not be solved
numerically. The far-field stresses from this infinite body solution do not satisfy the condition B(u) = 0
at S_. Thus, the residual tractions at the boundaries of the finite-body are erased, by first solving an

uneracked body with these residual boundary tractions, and then erasing the tractions at the location of
the crack in the uncracked body. This last problem of erasing crack-face tractions is similar to problem

(65) above. This iterative loop is continued until the analytical solution for the infinite body satisfies also
the zero-traction condition, B(u) = 0 at S_, of the finite body. Thus, in the alternating method, problem

(65) is recast as:

L(u)=O in V_; B(u)=_(1) at Sc; and B(u)-=t-(: ) at Sa (66)

where i denotes the ith iteration, and Vo¢ is the infinite domain. The iteration continues until t(_) = 0. Let

_(0 be the converged value at So, corresponding to which the stress-intensity factors are determined from
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the analytical infinite-body solution [15,1]. For multiple cracks, the alternating method is analogous; and

is represented schematically in Figs. 1 and 2. In a variety of practical cases, this alternating method has
bccn established to be a very simple and cost-effective tool of analysis [16].

Alternating Technique for Multiple 2D or 3D

Embedded/Surface Cracks

Solve for Stresses

t t _, i at the Uncracked

Location. Infinite Domain.

if"" t

i
"

Reverse Stresses

at Crack Locations.

Are Residual

Tractions Zero ?

I Yes

Stop

Infinite Domain.

|

z

Fig. 1

Henceforth we assume, for convenience, that a finite-element method is used. The steps involved in the

finite-element alternating method for an embedded crack in a finite body are described below: i

1. Solve the uncracked finite body under the prescribed external loads by using the finite element method.

The uncracked body has the same geometry as the given problem except for the crack.

2. Using tile finite element solution, compute the stresses at the location of the crack.

3. Compare the residual stresses calculated in step 2 with a permissible stress magnitude.

4. To create traction-free crack faces as in the given problem, reverse the residual stress at the location of i

the crack as computed in Step 2 and "least-squares fit" them to polynomials.

5. Obtain the analytical solution to the infinite body with the crack subject to the polynomial loading as

in Step 4.
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6. Calculate the stress intensity factors for the current iteration, using the above analytical solution.

7. Calculate the residual stresses o11 external surfaces at the body duc to the applied loads on crack-faces,

as in step 4. To satisfy the given traction boundary conditions, at the cxtcrllal boundaries, reverse the
residual stresses on the external surfaces of the body, and calculate the equivalent nodal forces.

8. Consider the nodal forces in step 7 as externally applied loads acting on the uncracked body.

Repeat all steps in the iteration process until the residual stress on tile crack surface becomes negligible.
To obtain the final solution, add the stress intensity factors for all iterations.

Since the alternating method is itcrativc in nature, the finite-clement equations may, in general, have
to be solved repeatedly for different applied loads, while keeping the stiffness matrix the same. To save
computational time, special computational techniques were implemented in [3]. These arc explained below.

Flow Chart for Finite Element

Alternating TechniqUe

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

I Solve the Uncracked Body Under External Loadsby Using the Finite Element Method

]

Using FEM Solutions Compute Stresses 1

at the Crack Locations I

I Add the Stresses in Step 2 to those in Step 8J

Are the Stresses in Step 3 Negligible? }

Yes

No

Determine Coefficients A in the Applied Stressesby Fitting Crack Face Stresses in Step 3

i
STEP 61Determine Coefficients C in the Potential Functions J

t

STEP7 [CalculatetheKractoroforEachCrackIfor the Current Iteration

I For each Crack, Calculate Residual Stresses (i) on ]

External Surfaces and (ii) at All of the Other Crack]

STEP 8 Locations. Reverse Stresses (i) and Calculate

Equivalent Nodal Loads. Add the Contributions to

Both (i) and (ii) from Each Crack.

i
STEP 9 Consider the Nodal Forces in Step 8 as External I

I

Applied Loads Acting on the Uncracked Body ]
J

!

Add the K-Factor Solutions of All Iterations I

Fig. 2

As seen from above, for the finite-clement alternating method, we need to solve the following type of

finite-element equations:
[K][q0,ql,...,q-] = [Q0 Ol,...,O,] (67)
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and

0 i = Oqq -l); i = 1, 2,..., n (68)

in which the superscript denotes the cycle of iteration, [K] is the global (assembled) stiffness matrix of
the uncracked body, and remains the same during the iteration process, and qi is the nodal displacement
vector for ith iteration. Qi is the nodal force vector for the ith iteration and depends on the solution for

the previous iteration qi-1 as expressed by Eq. (68).

An efficient equation solver OPTBLOK developed in [17] may be used to save computational time in

solving Eq. (67). The solution algorithm is divided into three parts, i.e. (i) reduction of stiffness matrix,
(ii) reduction of load vector, and (iii) back substitution. In OPTBLOK the reduction of stiffness matrix
is done only once, although the reduction of load vector and back substitution may be repeated for any
nmnber of load cases. Thus, denoting the CPU time for each part by T1, 7'2, and 7"3, respectively, the total

CPU time T in solving Eq. (67) using OPTBLOK can be expressed as

T = T1 + (n+ 1)(T2 +7"3) = (T1 +7"2 +T3) +n(T2 +T3) (69)

where n is the total number of iterations. Since T1 is much larger than (T2 + T3), a substantial reduction

in computational time, compared with the case in which Eq. (67) is solved for each iteration [i.e. T* =

(n+ 1)(T1 +7"2 +T3)], may be expected. To illustrate this situation, we consider the example of a set of linear
equations with the number of equations of 1960, and half bandwidth of 200, wherein the CPU time for
reduction of load vector and back substitution was about 5.6% of the total CPU time (T2 + 7"3 _- 0.056T).

Since, for a typical problem, the present alternating method needs three iterations (n = 3), the additional
cost in this case is only about 16.8%, which is considerably smaller than the 300% in the case when Eq.

(67) is solved for each iteration.

An efficient procedure was also devised for the calculation of the nodal forces required in step 7 (see also

Eq. (68)). In general, the stress field in a general solution can be expressed by

a = PC (70)

where P is the basis function matrix for stresses, and C is the vector of unknown coefficients in the general
solution which will be determined in step 5. Then, the equivalent nodal forces in step 7 can be computed
through:

Om = -G,,,C (71)

and

G,n = _ NtnPdS (72)
m

where m denotes the number for a finite element, Qm are nodal forces, N is the matrix of the element shape
fimctions, n is the matrix of the normal direction cosines. Although the matrix P has the singularity of -

order l/v/7 at the crack-front, the functions in P decay very rapidly with the distance from the crack-front.
Thus, the matrices G,, are calculated only at the external boundary-surface elements which satisfy the
condition rmin < 5al, where rmi n is the distance of the closest nodal point of each external boundary-surface z
element from the center of the ellipse and al is the semi-major axis of the ellipse.

To save computation time, the Gm matrix can be calculated only once prior to the start of the iteration =
process. Thus, the equivalent nodal forces Qi in each iteration can be evaluated without integration.

2.2 3D ALTERNATING TECHNIQUES FOR PART-ELLIPTCAL SURFACE CRACKS

The VNA solution given in 2.1 serves as Solution 1 required in the alternating technique.

Now, some comments concerning the solution of surface flaw problems in finite bodies, through the present

procedure, arc in order. Since the analytical solution for an elliptical crack in an infinite solid is implemented

as solution (1), it is necessary to define the residual stresses over the entire crack plane including the
fictitious portion of the crack which lies outside of the finite body. Moreover, it is well known that the
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accuracyof the "least-squares"functioninterpolationinsidethe interpolatedregioncanbe increasedwith
the numberof polynomialterms; however,the interpolatingcurvemay changedrasticallyoutsidethe
regionof interpolation.For thesereasons,in [3]numericalexperimentationwascarriedout to arriveat an
optimumpressuredistributionon thecracksurfaceextendedinto thefictitiousregion.Forasemi-elliptical
crackwhich lies in the regionof -al < xl < al and 0 _< x2 < a2, it was concluded that the fictitious
pressure, which, for the region of -a2 _< x2 < 0, remains constant in the x2 direction but varies in the xl

direction, gives the best result among the several numerical experiments performed in [3], even though the
results for other types of assumed pressure in the fictitious region differed only slightly (:i:2%).

This procedure of fictitious pressure distribution for a semi-elliptical surface crack was successfully used on
the analyses of surface cracks, in finite-thickness plates subject to remote tension as well as remote bending

[3], and in pressure vessels [18].

Based on the studies in [19], the following "fictitious" stress distribution is recommended for quarter-
elliptical surface cracks. For tile first quadrant (Xl, x2 > 0) (namely, the actual surface crack), the residual
stress can be calculated by the finite element method and is a function of the coordinates xl and x2. For
the other quadrants, the fictitious residual stress is defined as

aR(0, x2) for the second quadrant (xl < 0, x2 > 0)
a_ = aft3(0 , 0) for the third quadrant (xl < 0, x2 < 0) (73)

aff3(x1,0) for the fourth quadrant (xl > 0, x2 _< 0)

The above alternating method has been successfully applied to the problem of semi-elliptical surface flaws

in plates subjected to tension and bending [8, 3], semi-elliptical surface flaws in the meridonal direction at
the outer and inner surfaces of pressurized thick and thin cylindrical vessels [18], quarter-elliptical surface

flaws emanating from pin-holes in attachment lugs [19], multiple coplanar embedded elliptical flaws in an
infinite solid subject to arbitrary crack-face tractions [20], and multiple semi-elliptical surface flaws in the
meridonal as well as circumferential directions in cylindrical pressure vessels [14, 21].

The nature of singularity at tile point where the crack-front interests the free-surface is still not yet
completely understood. The consensus emerging fi'om the literature of a weaker singuarity (than 1/v/_)
at a normal crack/surface interaction has been corraborated recently, in [22]. These authors present two

independent numerical analysis techniques for the investigation of some global crack/surface interaction
problems. They summarize their findings, thus: "the decays in the energy release rates found as the
free surface is approached in the various problems treated are probably not significant fi'om a fracture

toughness testing point of view and not of major consequence in cyclic life calculations, although there
are some indications that this may not be the case if near-surface residual stress fields are present; and
that these variations in energy release rate can be compensated for by relatively minor perturbations in

crack-front profiles".

Thus tile results obtained by the above finite element alternating method based on the VNA solution
may be thought of as being of adequate accuracy for most engineering applications. Recently, [23] a
more efficient alternating method for the analysis of a group of interacting multiple elliptical cracks was

developed, by taking account of geometrical symmetries of crack shapes and location in conjunction with
the symmetry of the VNA solution.

Intensive studies of the performance of the finite-element alternating method have been made in [24] for
small surface and corner cracks, and in [25] for a part-elliptical surface crack in a cylinder. From the

performance studies of the finite-clement alternating method, [25] summarized the attractive features of
the alternating technique as follows:

(i) The method models only the untracked solid with finite elements: hence, no special modeling of the
crack fi'ont is required. In addition, the finite element mesh at the location of the crack, in the uncracked

solid, can be completely arbitrary in geometry.

(ii) The method uses the closed-form solution for a crack in an infinite solid which can accommadate
arbitrary tractions on the crack surfaces and, therefore, can handle complex loading conditions.
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(iii) The stress-intensity factors, including the individual modes, are obtained as part of the solution, in
an analytical form, and, hence, post-processing of the output data, as is usually done in the finite-element
method, is not needed.

(iv) Several crack configurations could be analysed with a single arbitrary mesh idealization of the uncracked
solid, whereas the conventional finite-element method requires a different mesh idealization of the cracked
structure for each crack configuration. Thus, this method can efficiently generate very accurate stress-
intensity factor weight functions or influence functions, for a variety of crack aspect ratios, in a single

computer run.

The above applications of the alternating technique were limited to mode I cases. Recently, a mixed-mode
alternating finite-clement technique in conjunction with the VNA solution (with further improvements

in algebraic details), has been developed in [7]. They evaluated the polynomial influence functions for an
infinite solid with an elliptical crack subject to shear loading, and for a cantilever beam with a semi-elliptical
surface crack subject to end load.

Applications of the finite-element alternating method have been made in [26, 27, 28], for fracture mechanics
analyses of various offshore structural components, such as stiffened plate and shells, tethers, or risers. A
recent literature survey [29] pointed out that the alternating method is most efficient for stress intensity
factor analyses of planar surface or embedded flaws in complex geometries such as intersecting tubular
structures, etc.

2.3 2 D ALTERNATING TECHNIQUES FOR LINE CRACKS

As mentioned earlier, the general solution for a crack subject to arbitrary crack-face tractions i.e. Solution
1 is required. The general solution for an infinite 2D anisotropic body, developed along the lines of [30], is

given below. Following the solution procedure in [31], the stress and displacement field can be expressed
in terms of two potential ¢ and ¢ as follows:

2 t= 2 Re[s ¢'(zl) + s2¢ (z2)]
= 2Re[¢'(Zl) + ¢'(z2)]
= -2 Re[sl¢'(zl) + 82¢'(z2)1
= 2rte[pl¢( l) +p2¢(z2)]

v = 2Re[ql¢(zl) + q2¢(z2)] (74)

where

sl = #1 = al + ifll, s2 = #2 = a2 + if12

Zl = x + sly z2 = x + s2y sl 7t s2 (75)

where aj t3j (j = 1, 2) are real constants. /tj (j = 1, 2,... 4) are the roots of the characteristic equation

all#_ -- 2a16# 3 q- (2a12 q- a66)# 2 -- 2a26#j q- a22 = 0 (76)

where aij (i, j = 1, 2,..-, 6) are the material constants of generalized Hooke's law |

Cx = allT"xx + a127"yy + a16Txy

ey = al2Trx -k- a22Tyy + a26Txy

")'a:y = a16Txx -k- a26"ryu + a66"rru (77)

The other constants in Eq. (91) are defined ,as:

Pl = a11s21 q- a12 -- al6Sl

a12821 + a22 -- a2681
ql =

81

P2 "= all 82 q- a12 -- a16s2

al2 82 q- a22 -- a2682
q2 =

82
(78)

|

!
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Suppose a line crack on y = 0 Ix] < a in an infinite plane is inflated by equal and opposite tractions, over
the faces of the crack, given by

ryy -- iTxy = --_(t) "P is(t)], ltl _ a (79)

with zero tractions at infinity. Then the potential functions can be written as below:

where

where

and

¢'(zl) = ¢'_(zl)+ ¢_(z_)
l¢'(z2) = ¢_(z2)+ ¢2(z2) (80)

(s2 _281) _(Zl) -

(81 s_-s2) ¢_(z2) =

X(zl ) /__l p(t)dt2_i a [X(t)-]-_-- z_)

Y(z2) F p(t)dt2_i ° [Y(t)-]-_- _2)
(81)

X(zl) = (Zl-t-a)-1/2(z1 -a) -1/2

Y(z2) = (z2+a)-l/2(z2-a) -1/2 (82)

X(zl) F s(t)dt2_i o [x(t)-_t- zl)

Y(z2) _ s(t)dt2_ri . [Y(t)]+(t - z2)

We approximate the applied crack-face tractions in the form [30]

N

p(t) + is(t) = - _ bnUn-l(t) ]t I <_ a
n=l

where Un-l(t) is the Chebyshev polynomials of the second kind and is defined as

U. = sin[(n + 1)01/sin 0 t = a cos 0

It could be easily shown that:

N

)_ e.G._l(z,)
82 n=l

N

81 ) E dnan-l(Z2)
n----1

where

N

( s2 ) (_1 12¢'(Zl) = s2=Sl ECnGn-l(Zl)+ -
n=l

( -Sl E CnGn-l(Z2) q- -
2¢'(z2) = 81 82 .=1 82

cn = real (bn)

dn = i(imag (bn))

(83)

(84)

(85)

(86)
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82 R.(zl) 81 -¢( ) = -- Cn-- "4- --'
2--'Zl" 82 -- 81 n 82 r_

n=l n=l

( Sl ) _ Rn(Z2) (82 )n=_l2¢(z2) = Sl 72 cn--+ 1 dnRn(z2)
n=l n -- Sl n

(87)

and
an_l(Za) ---- --(Z 2 -- a2)-l/2Rn(Za) (Or----1,2) (88)

Rn(z,) = a{za/a- (z_/a 2 -- 1)1/2} n (O_= 1, 2) (89)

The stress intensity factors Kj (j = I, II) are defined in a manner consistent with those for isotropic
materials.

KI = 2x/r_ (82 82- Sl) zlima(Zl. _a)l/2¢ll(Zl )

gll = 2v_(s2 - 81) llima(zl -- a)l/2¢t2(Zl) (9O)

It is easy to show that

N

KI - iKII = -v/-_-a E bn for

n----1

N

KI--iKH = v/-_-a _(-1)_b, for
n=l

x-_a

x=-a (91) -

3 THE CURRENT STATE-OF-THE-ART: "THE DISPLACEMENT COMPATIBILITY APPROACH"

FOR CRACKED, STIFFENED FUSELAGE PANELS

The methods that are currently used for the fracture analysis of stiffened panels are based on the so-

called "displacement-compatibility approach" as developed in [32, 33], and others see, for instance, [34].
The "displacement-compatibility" approach is schematically illustrated in Fig. 3. This method can be
classified as a general "flexibility matrix" approach in structural mechanics. In this approach, the effects of
tile fasteners on the sheet are represented by a series of concentrated forces on the sheet, which may contain i

multiple cracks, and the sheet is subjected, in addition, to the far-field hoop stress [labelled henceforth as ]
problem A]. i
The stringers, in turn, are acted upon by a series of concentrated forces, equal in magnitude and opposite
in direction to those in problem A. The dislacement compatibility between the sheet and the stiffener, at ieach fastener location, is enforced, by taking into account the fastener flexibility, as:

Vshee t = vstif fene r -1- Vfastener (92)

(at each fastener location)

Problem A above is again broken-up, by the supcrposition principle, into 3 problems, labelled here as
problems B,C and D, respectively. Problem B is that of a sheet, subjected to hoop membrane stress, and "

containing multiple cracks. Problem C is that of the uncracked sheet subjected to a series of concentrated
forces as in Problem A, at the fastener locations. Problem D is that of a sheet containing multiple cracks,

each of which is subjected to tractions that are equal in magnitude, but opposite in direction, to the -
residual tractions existing at the locations of the cracks in an otherwise uncracked sheet, as in Problem C.
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or

(at each fastener location)

Vb + VC + VD ---- Vstiffener + V fastener

(at each fastener location)

(94)

J "s i

-- -- • •

• ., ,,,

4_

F

Problem B Problem C

__complete

panel

Problem A

Problem D

DISPLACEMENT COMPATIBILITY METtIOD

Fig. 3

In the methods used in [32, 33] and [34], one needs: (i) analytical solutions for displacements in tile stringer
at a given fastener location due to concentrated forces at any other fastener location; (ii) analytical solutions
for displacements in the sheet, at a given fastener location, for the Problem B; (iii) analytical solution for

displacements, in Problem C, at anygiven fastener location, due to a set of concentrated forces at any other
fastener location; and (iv) analytical solutions for displacements in the sheet, at a given fastener location, for
Problem D. It should be noted that not all of these analytical solutions are readily available in the litera-

ture; and, when available, they are not suitable for tile multiple crack case. When the displacement solutions

(i) through (iv) above are used in Equation (94), one obtains the linear system of equations:

C. F -- A (95)
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where C is the "flexibility matrix" as assembled from solutions (i) through (iv) above, F is the vector of

fastener forces (at all fastener locations) acting on the sheet, and A_is the given vector that accounts for
fastener flexibility, etc. In equation (95) the vector F is the unknown.

Once Eq. (95) is solved for the vector _F, the problem of the fracture of the sheet alone, i.e., Problem A

above, is well-posed [i.e., the far-field hoop stress, as well as the fastener reaction forces, are known]. This
Problem A is broken up into Problems B, C, and D as above. The stress singualrities at the crack-tips
arise only in Problems B and D. Thus, the stress-intensity factor at a crack-tip can be written as:

K = KB + KD ( at each crack - tip ) (96)

It should be recognized that the key element in the approach described above, is the assembly of the matrix
C in Eq. (95) from the various analytical solutions as described under (i) through (iv) earlier. Thus, the
approach is by no means a trivial one for adaptation on a modern personal digital computer. Further, in

writing Eq. (96), Problems B and D are assumed to correspond to infinite domainsin [33] and [34]. Thus,
finite-dimension correction factors are ignored, which is not necessarily a conservative approximation.

3.1 A SIMPLE FINITE ELEMENT ALTERNATING METHOD FOR STIFFENED PANELS WITH
MULTIPLE CRACKS

A straight-forward finite clement modeling (including the crack-tip singularities) of a cracked, stiffened,

fuselage panel, especially when used for a parametric study during the service/design phase of the aircraft,
is prohibitively expensive [32]. In order to circumvent this, displacement compatibility methods wherein
the panel is assumed to be infinite, have been developed in [32, 33] and [34], among others.

In the following, a very simple alternative to the current state-of-the-art displacement compatibility ap-
proach, is presented. The proposed method essentially involves two steps: (i) evaluation of the fastener
reaction forces on the sheet through a very course finite element model, wherein the details of the crack-tip
singularities are not modeled; and (ii) the application of the finite-clement-alternating method, employing
the same finite clement mesh as in stage (i) for the unstiffened, uncrackedpanel, with the applied membrane

hoop stress, and the fastener reaction forces as solved in stage (i), to determine the fracture parameters. The
present method may bc cl,_sificd as the now-standard finite element stiffness (or displacement) method.

Stage (i) Solution

The skin is discretizedusing a very coarse finite element mesh, such that the fastener locations are taken
to be the nodes of the finite element mesh. The axial deformation of the stiffener is modeled by using
the conventional "truss-type" elements. Since the fastener shear forces are usually offset from the stiffener

neutral axis, an out-of-plane bending is also induced in the stiffeners. The out-of-plane bending deformation
of the stiffener, between two fasteners, is given by the elementary beam theory:

5b= c(M_sLtI ) =abF (97)

where:

C = distance from the neutral axis of the stiffener to the point of action of the fastener shear force
I = stiffener cross-sectional inertia

L -- distance between two fasteners, or the length of the stiffener "truss" element

E -- Young's modulus of stiffener material

M = F • C ; where F is the force in the truss element

Note that 5b is in the same direction, as the stiffener axial force, F. From (97), it is seen that:

ab= \_StI]

The axial stretch of the stringer is given by:
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F 1
5a -- --- (as)F ; as='-- (99)

EstA EstA

We use the total axial deformations at the ends of the stringer, at the points where the stringer is attached
to the skin, as the generalized degrees of freedom for the stringer. For these degrees of freedom, the stiffness

matrix of the stringer element is given by:

1 -1
T.Pe (lOO)
-s, - + (ab+

-1 1

(ab+ as) (ab + as)

The flexibility of the fasteners has been found [33] to be an important factor that influences the stress-
intensity factors for a crack in the stiffened skin. If Q is the shear force acting on the fastener, the shear
deformation of the fastener can be represented by the empirical relation [33].

where

ESh = modulus of sheet material
D = rivet diameter

£)]EshD + F =--arQ (1011

Bl and B2 = thicknesses of joined sheets
A = 5.0 for A1 rivets and 1.66 for steel fasteners
C = 0.8 for A1 rivets and 0.86 for steel fasteners

The "stiffness" of the rivet in shear is thus given by:

EshD
(102)

consider, for simplicity (but without any loss of generality), that the skin is discretized into finite elements,
with nodes being only at the locations of the fasteners; and likewise, the stringers are discretized into
finite elements with nodes being only at the fastener locations. Let the number of fastcners be N. Let

the number of stringer elements be Nst; and the number of sheet elements be Nsk. Let the generalized
displacements of the skin at the nodes of the finite element mesh be denoted as qsk; and those of the

stringers at the nodes be denoted by qst. Then the total strain energy of the stiffened fuselage skin, with
flexible fasteners, is given by:

1 t, K e e 1 t, -e e
W = __. _qsk skqs"k + __, 5qstKstqst (103/

ele=Nst Nst

1 K
+ _ _ F(qSk --qst) 2

N

where eqSk is the vector of nodal displacements of a skin element; and q_t is the vector of nodal displacements
of a stringer (stiffener) element.

Let qsk be the master vector of nodal displacements of the skin; Ksk the assembled nodal stiffness matrix
of the skin; qst be the master vector of nodal displacements of the stringers; and Kst the assembled nodal

427



stiffness matrix of the stringers. Let KF be the "assembled" (diagonal) stiffness matrix of the fasteners;
ieo,

KF= KF 0 0 0...0

0 KFO 0...0

0 0

:

0 0 ...... KF

(lO4)

NxN

Then, W of Eq. (103) can be written as:

It 1 t t
W .= -_qsk(Ksk + KF)qSk + -_qst(Kst + Kg)qst - qskKFqst (105)

If the fastener flexibility is ignored, then qsk - qst ; and equation (105) reduces to:

1 t
W = _qsk(Ksk + Kst)qsk (106)

The potential of the external forces (the hoop stress in the fuselage) may be represented, in general, as:

U t t= (qskQs_, + qstQst) (107)

Let _r = W - U. The finite element equations that arise from the vanishing of the variation of 5r (ie.,
57r = 0) are given by:

(Ksk + KF)qSk -- KFqst ----Qsk (108a)

and

(i08b)(Kst + Kr)qst - Krqsk = Qst

for the case of flexible fasteners. Eqs. (108) may be rearranged as:

(Ksk + KF) (--KF) qsk Qsk (109)

-(Kr) Kst + KF qst Qst

After the imposition of appropriate boundary conditions, qsk and qst can be solved for, from Eq. (109).
Once qsk and qst are solved for, the reactions of the stiffeners on the skin, at the locations of the fan mers,
can be easily calculated as:

Fstiffener = KF(qSt -- qsk) = Qst - Kstqst (110)

with care being exercised to determine the direction of these reactive forces.
Once the effects of the stringer (with flexible rivets) on the skin are determined, one can consider the free-
body diagram of the cracked skin alone [See Fig: 4]; the skin being subject to the far-field hoop stresses,
and the stringer reaction forces. The stress-intcnsity factors for the multiple cracks in the skin, subjected

to these forces, may now be determined in the stage (ii) alternating solution.
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Fig. 4

Stage (ii) solution

In the finite element alternating method to determine the k-factors for multiple cracks in the skin [after
the effects of the stiffeners and fasteners are isolated as in stage (i) above], one may employ the same finite

element mesh as in stage (i), to model the uncracked, unstiffened free-body of the skin alone. In stage (ii),
as explained in Section 2 of this paper, one needs to know: (a) the tractions to be erased at the locations of
the cracks in an otherwise uncracked skin; and (b) the analytical solution for a crack subjected to arbitrary
tractions in an infinite body.

3.2 AN EXAMPLE PROBLEM ANALYZED BY THE ALTERNATING METHOD

To illustrate the application of the proposed "direct-stiffness" finite element alternating methodology, for
analyzing cracked stiffened fuselage panels, the example problem a.s shown in Fig. 5 has been analyzed.
The problem involves a stiffened panel, with a central crack and a broken stiffener, with the crack being
symmetrically located with respect to the broken stiffener. For the purpose of illustration of the types of

finitc element meshes that may be sufficient in the present methodology, the fastener flcxibilty is ignored in
the analysis. A typical finite element mesh that is used is shown in the inset of Fig. 5. The stress-intensity
magnification factors for various crack lengths are shown in Fig. 6, which also shows thc convergence of
the results with mesh refincment. It is seen that the results are insensitive to the finite element mesh

size, with acceptable results being obtained for a (16 x 3) mesh. It is also scen that the stress-intensity

magnification factor decre,'u_es ,as the crack-tip approaches the stiffener.
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4 MSD NEAR A ROW OF FASTENER HOLES

A typical nmltiple site damage near a row of fastener holes is illustrated schematically in Figs. 7 and 8. In
example 4.2, the crack was supposed to be much larger in size as compared to the rivet diameter; and thus,
the detailed distribution of stresses, on tile hole-surface in tile skin, due to fastener reaction forces, was
not a factor in determining the fracture parameters near the crack-tip. In fact, in Section 3, these reaction

forces were simply treated as concentrated forces. However, in a typical MSD situation as depicted in Figs.
7 and 8, the fastener interaction stresses on the hole-surface in the skin are likely to play a significant role
in tile fracture parameters for the cracks emanating from fastener holes in the skin.

The fastener reaction forces can still be determined for the lap-splice joint configuration of Figs. 7 and
8, through tile direct-stiffness finite element method presented above in Section 4. Once these reaction

forces, treated as concentrated forces in Section 3, are determined, one may use the known elasticity
solution, to approximate the detailed stress-field on the hole-surface in the skin, that is equivalent to these
concentrated forces. Under the action of these fastener interaction stress-fields, the stress-intensity factors
for MSD near fastener holes can be determined using the alternating method described earlier. Such
methods are currently being developed at Georgia Tech.
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5 ANALYSIS OF CRACKS WITH BONDED REPAIR PATCHES

Repair of cracked structures with bonded composite laminate patchcs appears to be a cost-effective and
reliable way of enhancing the fatigue life of fuselage panels [35]. Tile load-transfer to the composite patch

is the primary cause for lessening the stress- intensity near the crack-tip in the main panel, and thus
improves its fatigue life. This reduction in the stress-intensity for a crack in the main panel depends on
the laminate properties, its thickness, the properties of thc adhesive material, and the thickness of the
adhesive layer. Analytical solutions have been obtained for: (i) the case of an infinite isotropic material
pancl with a crack, bonded to an infinite orthotropic panel, and (ii) the case of an infinite isotropic panel
with a crack emanating from a hole, bonded to an infinite orthotropic panel. These analytical solutions

have been repeated for orthotropic patches of infinite width and finite height (perpendicular to the crack-
line in the isotropic panel), with the edges of the patch being parallel to the crack-axes. These analytical

solutions, when impiemcxited in the finite-clement alternating method, would provide useful design tools
for designing composite patches of arbitrary shape to arrest further growth of a crack emanating from
strcss-concentrations in tlic main panel. Such a design tool, for implementation on a personal comput.er,
is being developed at Georgia Tcch.

6 WEIGHT-FUNCTIONS FOR 2 AND 3-D ELASTIC CRACK PROBLEMS

The concept of weight functions for elastic crack problems dates back to the work in [36] and [37] scc also
[38]. The "weight f|mction" may generally bc viewed as the appropriately normalized rate of changc of
displacements (at the surface where tractions are applied, or in the domain where body forces arc applied)
due to a unit change in the crack length for a reference state of loading. The practical importance of
the concept of the weight functions lies in the fact that, when the weight functions arc evaluated from
a (perhaps simple) reference state of loading, then the stress-intensity factors for any arbitrary state of

loading can bc computed by using an integral of the worklike product between the applied tractions at a
point on the surface in the arbitrary state of loading and the weight function for the reference state at thc
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same point.

The energy-release due to a unit crack-extension in a cracked elastic body, subject to a system of surface

tractions, (We assume, for simplicity, that the surface S_ where non-zero displacements are prescribed, is
zero. One can easily generalize the ensuing discussion to the situation when Su is nonzero.), and body
forces, is given by:

/d., i.-'"di.= ti-d--_adS+ fi-d-_adV - "_a WdV (111)
t

where ti are tractions applied at the surface St; fi are body forces in the domain V; ui are displacements,
and W is the strain-energy density (internal energy in mechanical work). Eq. (111) may be written as:

• d

or

_da+/s dtiuidS+/vdfiuidV=-dTr (112b)
t

Let the reference load state be characterized by a parameter A. Thus,

da + dAq(A) = -dr (113)

where

q(1) = [_ {iuidS + [. ]iu, dV (114)
Jb f JV

where, dti = d_{i; dfi = dXfi; and, in general, in a nonlinear elastic problem, the generalized displacement

q is a nonlinear function of A. Equation (113) implies that:

(_-_),, = (_)X (115)

Consider a linear-elastic homogeneous solid, that is in general anisotropic, and consider the case when the
crack is at an arbitrary angle to the material directions, and under a general mixed mode loading. The
energy release rate, G, for a mixed-mode crack in a monoclinic anisotropic solid may be written as:

0 = AK 2 + BK_I + CKIKII (116)

where

7r

A = -_a221m(#l+#2_

71"

B = _allIm(#l +#2)

= _ + allhn(#l#2) (117)

where aij are material constants in the relation ci = aijaj (i,j = 6) and #j are the complex roots of the

characteristic equation, all#_ - 2a16#_ + (2a12 + a66)/t 2 - 2a26ttj + a22 = 0. See [31] for further details. In
the case of isotropy, (118) reduces to

1 1

A=_; B=H, C=0

H = E/(1 - u 2) plancstrain; H = E plane stress (118)
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We now consider the simultaneous action of 2 load-systems on the cracked body. The load system is:

()_li_ + )_2_) at St; and ()_1# + A2f2) in V (119)

When (119) is used in (113) one obtains:

da + dARCRn)_ n = -dr; R, n -- 1, 2 (120)

or

and

0F dCRn A" (121)
0-_-- da

(122)

The K-factors under the combined mode loading are

gl = k?;"; g. = (123)

[sum on m = 1,2] and

= + BR_PY]tAmA n + (124)

[sum m, n = 1, 2]. Using (124) in (121), and observing that the resulting equation is valid for arbitrary A_
and A2 one obtains:

(2A + C)/(RR? + (2B + C)R_R_I - dC,,R (125)
da

_ ,_ ti",_df_R [.. "n dafdS + tv dV

R, n = load cases (126)

Let R be a known reference load-state, for which the solution, i.e., K/R, k R, and (d,_R/da) are known, and ,

n is an arbitrary load-state for which the mixed mode factors K}' and K'}I are to be computed. Eq. (126)

is thus a single equation governing the two unknowns K} _ and K_I. By writing Eq. (126) for two known !
and linearly independent reference states, two equations for two unknowns K7 and K_I can be obtained, i
The solution of these equations can be seen to be: ,--"

I(IR21Arn dCmR1 [(IRII_ m dCmR2 j

K1 = KR(2 A + C) da - KR(2A + C) da

(no sum on m) (127) "

/_m A._ dCmn2 /4R2 Am dCmm

Kit -- KR(2 B + C) da KR(2B + C) da

(no sum on rn) (128) _

and

g R _,-R1 fz-R'2 /_R2/_/_1 (129)

where (dCmm/da) etc. are defined from (122) by replacing R by R1 etc. It is seen that for K R to be

nonzero, the reference states should not be both of either Mode I or Mode II. Furthermore, in a general
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anisotropic body with an arbitrarily oriented crack, the reference states R1 and R2 can be taken to either
loads on external surfaces, or tractions on the crack-faces themselves.

Thus, to evaluate the mixed-mode load factors for any reference state m, one only needs the appropriately
normalized weight-functions, (du_ 1/da) and (duR2/da). Ill the following we discuss some recent work on

computational methods for these weight functions, for anisotropic or isotropic materials.

6.1 WEIGHT FUNCTIONS, USING FINITE ELEMENT/BOUNDARY ELEMENT MODELS OF ONLY
UNCRACKED STRUCTURES

Recently [15, 39] and [40, 41] simple methods for computing Weight functions were developed using finite
element or boundary element models of only the uncracked structure.

It is worth noting that, due to the complications of the fundamental solutions (for a point load) for a general

anisotropic medium, the boundary element method is not convenient for application to the anisotropic
soilds. However, it is well known that the Galerkin finite element method does not have this restriction.

The authors in [15, 39] use the finite-element alternating method (for general anisotropic solids) and the
authors in [40, 41] use the boundary-element alternating method (for isotropic solids) in computing the
weight functions.

While the load-systems are, in general, considered to be at St and in V, it is convenient to consider only
the complementary problem of tractions on the crack-face alone, and consider the case, for simplicity, when
the body forces are zero. Thus, hence forth we treat St to be the crack-face alone. It is seen that the

weight-functions (du_/da) on the crack-face will be singular (of the r -1/2 type, where r is the distance

from the crack-tip). Thus, special quadrature rules are needed to integrate the quantity t'_ [du_/da] on
the crack-face [15, 39].

The following solution procedure is adopted to compute the weight-functions for an embedded or edge
crack in a general anisotropic, finite-dimensional structure, when the crack is oriented arbitrarily with
respect to the material axes of anisotropy.

(A) Consider two different reference states: One a normal pressure (say constant) on the crack-face and
the second a shear traction (say constant) the crack-face. These two load-states are labelled R1 and R2

respectively. Henceforth it is understood that the following steps are carried out for states R1 and R2
respectively.

(B) The start with, treat the problem as one of an infinite domain. As discussed in Section 2.3 of this
paper, expand the applied tractions on the crack face in the form [30]:

N

- = -[p(t) + = Itl _< a (130)
n=l

where Un-1 (t) is the Chebyshev polynomial of the second kind, defined as:

Un = sin[(n + 1)t]/sin 0; t = a cos O (131)

and bn are the parameters determined by curve-fitting. For this applied loading on the crack-face in an
infinite anisotropic body, the solution for the K-factors, far-field stresses, and crack-face displacements,
can be derived [30], as:

N

KI - iKII = _v_ E bn x = :l:a (132)
n=1

= 2ae[pl¢(Z,) +p2¢(z2)]
u v = 2Re[ql¢(zl) + q2¢(z2)] (133)

=
= 2 Re[¢'(z,) + ¢'(z2)]

Txy = -2Re[sl¢'(zl) + s2¢'(z2)] (134)
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s2 ae(b.) + iIm(b.) R.(z,)
2¢(zl) = s2- s, .=1 - s2) .=, --T--

.(z N Im(b.)R"(z2)( ) N Re(bn)R 1 _is_, E 2) + n2¢(z,) = s, s2 .=,
(135)

For further details of the definitions of various parameters in (134), see [30] (note the coordinate system:
x along the crack, x - -t-a for the crack-tips, and y normal to the crack).

(C) Compute thc K-factors for step (B) using (132).

(D) Compute the crack-face displacements for step (B) using (133). Note that, once the coefficients bn of
(130) are known, the crack-face displacements ux and uv from (135) and (133) arc known in an analytical
form, with their dependence on the crack length being explicitly known (see [30] for details).

(E) Compute the tractions at the boundaries of the given finite-dimensional structure, using (134). Call ;
these residual boundary-traction system as T (recall that steps (B) onwards are repeated for reference
systems R1 and R2 of step (A)).

(F) From the analytical expressions for ui at the crack-face as determined in step (D), determine the
analytical expression for (dui/da) by differentiating u_ w.r.t.a. Note that (du{/da) will be infinite at the

crack-tip x = =t=a.

It is important to remember that the present step (F) is still based on an analytical solution. No finite
element or boundary-element models, and no virtual-crack extensions, and no finite-difference methods are
used in computing (duiR/da).

(G) Now consider the finite element model of the uncracked structure of the given geometry, and anisotropic
material [In the case of isotropic material, a boundary-element model (with only the boundary being
dcscritized) of the uncracked structure is far more efficient [40, 41]. Apply the reverse of the traction
system T as determined in step (E) above, on the boundaries of the uncracked structural model. From

the finite-element (or boundary element) solution, find the tractions at the location of the crack in the
uncracked structure, and label this traction system as Re.

(H) Rcversc the system Rc on the crack faces. Go back to step (B), and repeat steps (B), (C), (D), (E), and
(F), for this system Re on the crack facc in an infinite domain. Repeat steps (B) to (H) until convergence
is obtained, i.e., the traction system T in step (E) is negligible.

(J) The weight-functions for a finite-dimensional structure of the ._iven geometry, and given crack-oriented, i
are obtaincd by summing up all the values of (du/m/da) [and duR2/da] obtained in step (F) for all iterations i

|

until convergence is established. __,

A number of problems h_ bcen solved in [15, 39] and [40, 41] to demonstrate the ease and accuracy of the |
above procedures.

|
It is important to note, the crack is not numerically modelled at all. The dependence of crack plane |
displacements on crack length as evaluated in steps (D) and (F), for infinite domains, is explicitly known; |
and thus the weight-functions are evaluated in the above alternating method, in an analytical sense without

using numerical differentiations. Furthermore, the above mentioned procedures have been documented in L

the work of [15, 39] to work very well for anisotropic materials with arbitrarily oriented cracks.

For a two-dimensional anisotropic problem, it is possible to develop a boundary element method for mixed-

mode crack analysis, wherein a straight crack is explicitly included in the formulation and not modeled by -
boundary elements, by using the fimdamental solutions for an infinite cracked anisotropic plate. This was "
developed by [42]. This boundary integral equation is:

CijUj = fo_ [u_itj - t_iuj] dA (136) --
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It should be noted that the crack surface, S¢, is not a part of 0f] in (136), as the crack is explicitly accounted
for in the fundamental solution. By diffcrcntiating (136) w.r.t, a, one obtains the integral equations for

(duj/da):

r , dtj , duj du_i . dt*i
Cij(duj/da) = ]on[Uji--_a - tji--_a + --_-a t3 - -_ uj] dA (137)

By taking the limit on the left-hand-side to 0f_, one can solve the boundary integral equation for the

unknown values of (duj/da) and (dtj/da) at cOf_. Once these data at Of] is known, Eq. (137) simply
becomes an integral relation for tile interior values of (duj/da). Since the crack surface is interior to 0f] in
the formulation, the crack-surface weight functions can be determined from (137). Such procedures have
been reported, along with some examples, in [43]. An advantage of this procedure is its ability to decouplc
the vector components of crack tip behavior easily.

6.2 WEIGHT-FUNCTIONS BY USING DIRECT FINITE ELEMENT/BOUNDARY ELEMENT MOD-
ELING OF THE CRACKED STRUCTURE

The earlier class of modeling used only F.E.M. or B.E.M. models of the uncracked structure, while the
crack was accounted for in some analytical fashion. If the material is nonhomogeneous, or if the crack
exists in a complicated structural construction such as a bi-material plate or a stiffened plate, etc., the

direct numerical modeling of the crack itself is unavoidable, to determine the weight functions. We discuss
here some advances made recently in this direction. The discussion is limited to the case of isotropy.

Consider the analytic relation

fs dui Iv dui d /v= ti-d--_adS + fi-d--aadV - _a WdV (138)
t

(wherein the existence of Su with nonzero values of prescribed ui is ignored, for simplicity). In the context
of a finite clement method, wherein the cracked structure is modeled directly by finite elements, Eq. (138)
may be written as:

__ ____qa 1 dK 1 dK (139)G = Q - qK - -_q--_a q = --_q--_a q

where Q is the generalized nodal force vector (duc to applied loading at arbitrary St and in V); q is the

nodal displacement vector, and K the stiffness matrix. Eq. (139) follows from (138), since, at equilibrium,
Kq-Q.

When a finite element mesh is used near the crack tip, a small change in crack length, by da, affects only
the elements in a core immediately surrounding the crack tip. This is the basic idea behind the stiffncss

derivative method [44 and 45]. Let the small domain near the crack tip be Ve. Thus;

1 dKe (140)
= -_qe-_aqs

where ( )e indicates the quantity ( ) in the region V_. In (140), (dKe/da) is determined by the finite
difference relation:

Ke(a + Aa) - Ke(a)

Aa

Eq. (140) can be applied to the reference state, to determine the K-factors for the reference state. However,
if the reference state is of mixed mode loading, for isotropic materials, _ = (K_ + K]z)/H, and a mode

separation is necessary. Thus within the core-region Ve [which is certainly much smaller than the cracked

structure], one may decompose q_ into mode I and mode II parts; by using the relations:

{}{}{ } { }_I IS/ IS/I 1 IS1 nt- U_ -I- (141)
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where 1 and 2 are directions along and normal to the crack axis, respectively, and where ( ) denotes a

quantity at a point p in the upper portion of the cracked plate, and (. )t is the respective quantity at a
point pl which is the mirror image in the crack axis of p. Thus q_ = q_ + qIl.

Thus

and

(K_) 2 1 _dK_ I
-_--- = -sq_'-_-a q¢

(142)

(KR) 2 1 _tl dKe qrt (143)
H -- 2 % da E

where qet is the vector of appropriate nodal displacements u//, etc. Now we consider the problem of
determining the weight functions for the reference state of mixed mode loading. To this end consider the

finite element equilibrium equation for the entire cracked structure loaded under mixed mode reference
load:

Kq = f (144)

For a fixed-loading, the weight-functions everywhere in the structure can be derived, from (154), as:

dq dKe dK_____£
K_aa = da q- da qE

(145)

From a solution of (145), rd-_ a is determined for the reference state (which can, in general, be a mixed-mode_da;

loading), at all nodes at St, and in V (including the crack-face). The above method, for a pure mode I
problem was presented by [46].

Now, we present a simple extension of the "stiffness-derivative" weight-function evaluation method for
mixed-mode problems, in as much as the stiffness matrix (K) and its derivative (dK/da) are evaluated
once and for all for the structure, Eq. (144) can be solved for two reference states, at least one of them
mixed-mode, R1 and R2; Eqs. (142) and (143) can be solved for mixed-mode K-factors for the two reference

• R1 R1 R2 R2states, 1.c., Kt , Kti , K I , and K_? . Likewise, Eq. (145) can be solved for the two different reference

states, to determine (dui_l/da) and (duR2/da) everywhere in the structure (i.e. at St, in V, and on the
crack-face) as desired. For any other arbitrary state of mixed-mode loading, Eqs. (127) and (128) may be
used for determining the mixed-mode K-factors• Note that this simple procedure leads to weight-functions
everywhere in the structure (external surfaces, crack faces, and within the body) as may be desired.

On the other hand, the authors in [47], instead of using the procedure as discussed in the above para-

graph for mixed-mode problems, proceed to consider only pure-mode I and pure-mode II weight functions,

(duti/da) and (dutit /da), by decomposing the displacement everywhere in the cracked structure (not only
in V_) using Eq. (141). If the weight-functions are sought at the external boundary, pairing the points on
the external boundary, and their mirror images is geometrically impossible, for arbitrary-shaped structures,
with arbitrarily oriented cracks. They [47] consider the following equations:

K dqt dKc qr (146)
d-S-=

and

K dqH = dK_qH (147)
da da

I (u_l) at each node in the structure,Note that qr (qH) is simply a vector of appropriate displacements u i
which may not always be geometrically feasible.

Another method for weight-functions which obviates the need for a finite difference evaluation of (dKdda)
is based on the equivalent domain-integral method for evaluating the energy-release rate. This method
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hasrecentlybeendevelopedin [48]and [15,39]. As discussedin [49,501,the energy-releaserate in a 2-D

elastic problem can be written (as the equivalent domain integral representation of the J-integral), as:

1 fvo[WdS Oui Os]= -T l -  'jo21 dV (148)

where Vs is any arbitrary region near the crack-tip [V_ is much smaller than the total region V]; s is any
arbitrary but continuous function which is equal to 1 at the crack-tip, and goes to zero at the boundary of
Vs; F = 1 in two dimensional crack problems; W is the stress-work density, and ui are displacements.

Suppose that the region Vs in (148) is taken to be the same as the region V_ considered in Eq. (140) [Even
otherwise, if V¢ is smaller than Vs; since (dK/da) may be taken to be zero in the region Vs - V_; one may
rewrite (140) as _ = -lqs(dKs/da)qs, without loss of generality]. Suppose that one introduces a finite
element interpolation:

ui = Nkuk i K = 1,.-.N nodes

= Nq i = 1,2 (149)

Then,

1 1 _,k k
W = -_aijcij = -_aijlvju i

Also, we introduce the finite element interpolations,

(150)

S = Nks k (151)

Using (149-151) in (148), one has:

w

B

1

fv, ,1 CrijukaL] dw

1Tkuk
2 ' a k = 1,-..,N nodes i = 1,2

1 -.t
5(4_ q_

(152)

(153)

where the definition of Q* is apparent. Thus, when Vs -= V_; comparing (153) with (140), one has:

dK_
de q¢ = o_ (154)

Note that Q* is computed from a simple integral over V_ as in (152a) and (153). Eq. (154) shows that a
finite-difference evaluation of (dK_/da) as in Eq. (140) can be avoided if the identity in (154) is used, and
the energy-release-rate can be computed using (153).

For a fixed reference loading (which can in general be of the mixed-mode type), the weight functions ev-
erywhere in the structure (including at the external boundary, St, the crack-face, or in V), can now be
obtained, using (145):

dK_
Kdq = da qc = Q; (155)

where Q_ is computed from the domain-integral over VE as apparent from (153).

Equation (155) is solved for two arbitrary reference states [which are both not either of Mode I or of Mode

II type, with loading being either on the external boundary, or on the crack-face] to find (duiR1/da) and
(duin'2/da) that are required in Eqs. (123) and (124) in order to compute, the mixed-mode K-factors for

any other given arbitrary load-state. Note that in (155), K is computed only once; and Q_ is computed
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separately for each reference state. However, examining (152a) and (153) it is seen that the only quantity
that is different in integral for Q_ in the two reference states is 0.ij in Ve.

In order to use (127) and (128) to compute the mixed-mode K-factors for any given arbitrary load-state is
the only additional informations needed are the mixed-mode K-factors (K_R1, gp), and 1, 2) for
the two reference states. For isotropic materials, the mode-decomposition of the energy-release rate of Eq.

(152a) can be accomplished by decomposing the displacement, strain, and stress fields in the core region
Ve near the crack tip [V_ is nmch smaller than V, the total domain]. The displacement decomposition is

already given in (151), while the stress decomposition can be written as:

}{ }0"11 0"(1 all 1 gll + 0._1 1 gll -- a_l
II

°22 = 0.12 + =- 0. 2+ oh +
II

0"12 0"_2 0.12 0"12 -- 0"_2 0.12 + 0._2

(156)

where, ( ) and ( )' are quantitites at a point p in the "upper side" of the crack, and at a point p' which

is a mirror image of p in thc crack-plane. Thus, for a reference state, the individual nodal intensities are

computed from:

and

where

H -- F Ox----[- Oxl Oxj" dV (157)

(K/R/) 2 l f1[Wll Os 0.liJOulil Os ]H - F Ox---_- -Ox, _xj dV (158)

WI 10.Z ui... WI_ 1 II H (159)
= = -_0.ij Uij2 ,3 ,:'

This completes the algorithm for determining the mixed mode K-factors for an arbitrary given loading,

using the weight functions for reference states, derived from the equivalent domain integral method, which
avoids the need for a finite-difference evaluation of tile stiffness derivative (dK/da) as in the approaches

for Mode I problem given in [46].

Special variational technique for determining directly the weight functions that are singular in the vicinity
of the crack-tip (crack front) (and hence have unbounded strain-energy) has been presented in [51]. This
variational technique handles both traction and mixed boundary conditions. A finite element implemen-
tation of the variational principle has also been given in [51] and this leads to a unified approach in the
direct finite element computation of weight functions for all three fracture modes. The authors in [52] have

prcsented weight functions for a semi-infinite crack in a full space of arbitrary anisotropy; in particular, l
the results for monoclinic solids are presented in closed form. Using such a solution, they [52] applied the l

variational technique in [51] to determining weight functions for homogeneous and piecewise homogeneous i
anisotropic (where crack tips do not terminate at the material interface) bodies. Employing the weight I
functions obtained, they also evaluated the stress intensity factors of a matrix crack in an idealized model

of a fiber-reinforced composite laminate under curing conditions. The authors in [53] have recently in- !

troduccd antiplane strain weight functions for an interface notch in an isotropic bi-crystal and in [52] the
same variational technique to determine these notch-interface weight functions was used. Generalizing the

weight function concepts [36], the authors in [54] have developcd higher order weighi functions for calculat-
ing power expansion coefficients of an elastic field in a two-dimensional body in the absence of body forces.
Integration formulas for the expansion coefficient, in analogy to those for stress intensity factors, are given
for interior points and crack tips. Some of these expansion coefficients at an interior point can be related -_
to the image force of a discrete dislocation and those for the crack tip correspond to important fracture

E--
parameters as discussed in [54].

6.3 WEIGHT FUNCTIONS AND INFLUENCE FUNCTIONS FOR 3-D CRACK PROBLEMS =

As aptly noted in [55], "since fracture and fatigue are demonstrably three-dimensional, the technology base 2
needed to describe these processes must be of the same dimensionality if only to describe these events, let
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alone predict them". Thus, simple numerical methods of engineering interest are in need of development
for 3-dimensional problems. Along with the domain integral methods, the weight function approaches to
3-D problems present interesting possibilities in this regard.

Here, we consider, for simplicity, only mode I crack problems in 3-D isotropic elastic solids. For isotropic

solids, containing cracks of arbitrary shape, under mode I loading, the author in [37] has derived the
counterpart of Eqs. (127) and (128) [for mode I], as follows:

(Fc 2 R =-ff [Zl g} (1G0)

where Fc is the crack-front; KI is the stress-intensity factor (which varies along Fc) for any arbitrary
loading ti at St and fi in V; KIR is the stress-intensity factor (which varies along Fc) for the reference

loading t/R at St and fR in V; St is the loaded-surface (which may be taken to be the crack-face, without
loss of generality); 52 is a smooth function along dF denoting the infinitesmal advance of the crack in a

direction locally normal to F; 5eu R will denote the first-order variation in u_ to a change in the crack-front
i.e., 5tu R is a function of the location in St and V, and H is a material constant.

The author in [56] has presented results for the first order variation of an elastic displacement field associated

with the arbitrary incremental planar advance of the location of the front of a half-plane crack in a loaded
elastic full space, and also discussed the relation of such results to a 3-D weight function theory, and derived
an expression for the distribution of the mode-I K-factor for a slightly curved crack-front. Later this work
was extended [57] to the mixed mode case.

Recently analytical results for 3-D weight functions were presented [58], for a penny-shaped and a half-plane
crack in an elastic full-space, under mixed-mode conditions. Employing these results, and tile variational
technique in [51], the authors in [54] have determined the Mode I weight functions for both penny-shaped
and elliptical cracks in finite bodies.

Here, our objective is to discuss crack-surface weight functions for embedded or surface cracks of the

elliptical geometry, i.e., we treat St to be the crack-face in (160) and ignore the body forces. For surface
or corner flaws of semi- or quarter-elliptical geometry respectively, engineering theories of fatigue crack-
growth are often based on the consideration of the K-factors at the major and minor axis locations (x - a,
and y = b), respectively. Thus, one often thinks of a "two-parameter" characterization of the K-factor

variation along the crack-front, for the given arbitrary loading. There are two alternative approaches for
the above "two-parameter" characterization. One is directly in terms of the "local" values (or values at
major and minor axis points on the ellipse) K_ and K_; and the other is in terms of "local weighted

average" values along specified portions of the crack front, K_ and K_*, defined as:

1

(R_)2= _ fro K_SgdP

(k**)2 - 1
5742fr_ K_SgP (161)

where K_r and 5g are as in Eq. (160), and 5A1 and 5A2 are changes in crack area due to a virtual change

in the length of the major and minor axes, respectively. The weight functions for these weighted average
values,/('] and/(]* have been defined in [59], and used for residual life estimations of complex structures

in [59] and [60]. In the following we sketch a procedure for determining the weight functions directly for
K] and K]*.

Suppose for the reference load state, the K-factor variation, KR(F) is determined from the finite element

alternating technique as discussed in Section 3 of this paper. Thus, an analytical expression for K/R as
a function of the crack-front coordinate ¢, is known, wherein the appropriate coefficients are determined

from the finite element alternating method. Wc consider the case of the given loading, and introduce a

trial solution for KI for this loading, in terms of its values, KI at x = a (denoted as K]) and K1 at y = b,
denoted as K_'*.
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In as much as 5i in Eq. (160) is arbitrary, we introduce two such trial variations: (i) one wherein the major
axis is extended by (da) such that the equation of the ellipse is (x/(a + da)) 2 + (y/b) 2 =- 1; and (ii) the
other wherein the ellipse is (x/a) 2 + (y/(b + db)) 2 = 1. Thus, 5g is given in terms of (da) or (db) and the

elliptical angle. Also, as discussed in Section 3, the crack surface displacements for the reference load state
are known in the form of analytical expressions wherein the coefficients are determined from the finite

element alternating method. Thus, for 5g as in case (i) and (ii), the first-order variations in u/_ at St can
bc determined from analytical expressions where coefficients are numerically determined in the alternating

r (n)
method. Thus, when the known expressions for 5g(r); and O_ui are used, and the two-parameter
trial function for/(I (for the given state) are used in Eq. (160), one obtains 2 algebraic equations, (one for
each of the two cases of 5g listed above) governing the two unknowns K_ and K_*_. Thus, one obtains a

weight-fimction representation for the stress-intensity factors at the major and minor axes of the elliptical

(or part-elliptical) flaw under the given state of mode I loading.

Using the VNA analytical solution for an embedded elliptical crack in an infinite body ,as detailed in
Section 2 of this paper, an analytical expression was derived [61] for the first order variation of the crack-

face displacement field due to a geometrical perturbation in the major and minor axes of an elliptical crack.
Using this, the above described weight-function representation was developed [61] for the K-factors at the
major and minor axes of the (part)-elliptical (:rack, in the forcmcntioned 2 parameter characterization.

If K/ variation under the action of an arbitrary crack-face traction is needed all along the crack-front, the
influence function concept is more usefnl. For a given surface flaw in given structural geometry, one can

generate a stress-intensity factor variation all along the crack-front, for a given polynomial loading on the
crack-face, using the alternating method described in Section 3. If the given arbitrary crack-face pressure
is then decomposed into individual polynomial variations multiplied by an appropriate constant, then the
K-factor Variation for the given load can easily be determined by a (weighted) linear superposition of the
various influence functions. This has been done for several problems [18, 21].

In general, the advantage of the weight function concept over that of the influence flmctions is that the
former can be used for localized crack-face forces, including point forces, while the latter is more suited for

more distributed crack-face tractions of the polynomial type.

7 DOMAIN INTEGRAL METHODS FOR COMPUTING FRACTURE PARAMETERS IN

3-DIMENSIONAL CRACK PROBLEMS, UNDER ARBITRARY HISTORIES OF LOADING

It is well-known that energetic methods, such as based on the J-integral and other crack-tip integral

parameters, play an important role in elastic-plastic and inelastic fracture mechanics, under arbitrary
histories of loading (see, for instance, [1]). For el_tic crack problems, in three-dimensions, the evaluation of

the J-integral (in Mode I problems), the stiffness derivative method [44, 62] and the virtual crack extension i
method [45] proved to be quite nsefnl. Various extensions to, and a certain variety of improvements of, i

these methods were recently presented in [63]; [64]; [65]; [66]; [49, 50, 67]. These later methods are currently ]

labeled as the "Domain Integral Methods" for the computation of crack-tip integral parameters in non- [
elastic fi'acture under arbitrary load histories. In the following, a brief description of these domain-integral "
methods, as applicable to the analysis of mixed-mode behaviour of arbitrary shaped cracks (surfaces of !

discontinuity) in 3-D structures, with elastic-pla._tic or inelastic material behaviour, and under arbitrary

loading, is given.

For elastic problems, the energy release rate per unit crack-extension (in a self-similar fashion) is given by:

fs dUi d fv dui,ti-_a d
[

JI=G= S+ fi_adV--_aavWdV (162)

(assuming that S,, where non-zero u_ are prescribed, is zero). Eq. (162) is valid for mixed-mode loadings,
and in 3-D problems, it is understood that (dui/da) represents a first-order change in ui due to a local

perturbation in the crack-fi'ont, and Jl is the local energy-release rate. In a finite element model, Eq. (162)

may be written as:

dq d 1
-_a (_qgq) (163)J1 = Qda
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1 dK

2 q --_-_aq (164)

1 dKo
2 qo--_-a qo (165)

Eq. (164) follows from (163) since Q = qK at equilibrium and Eq. (165) follows from (164) since a change
in crack length can be seen to affect the stiffness matrix of only a small-core of material, in the domain
Vo, near the crack front. The evaluation of dKo/da is usually accomplished through a finite difference
method [44, 45]. The definitions of J2 and 3"3, which involve the more mathematical concepts of translation

of the crack, in x2 and x3 directions [1], are not, in general, amenable to calculation through the above
stiffness-derivative methods.

The basic advantages of the domain-integral method can be seen from the following, to be: (i) they allow
simple computation of all the 3 components Jk of the vector J integral; and (ii) in the case of 3"1, the need
for a finite difference evaluation of (dKo/da) is obviated.

In a general 3-D problem, for arbitrary material behaviour and loading, one may define the J-integral
vector components as:

Jk = lin_ Wnk- dF (166)c0 .  u nij
where W is the density of stress-work in arbitrary loading and arbitrary material behaviour; aij arc stresses,
ul are displacements, and nk are components of tile unit normal vector to the surface of the tube at points
on contour F_. In principle it is possible to define Jk in any coordinate system, but for the purposes of
prediction of crack behaviour, it is more convenient to have a local crack-front coordinate system xl, x2, x3:

xl is normal to the crack front and lies in the plane of the crack surface, x2 is orthogonal to xl and'the
crack surface, and x3 is tangential to the crack-front and in the crack-plane. We introduce the equivalent
defiuition of the near-tip J-integral along the surface of the tube, as:

fA [ Oui lJkA = lira Wnk -aiJ_xknJ] dA, k = 12 (167)e/'x-o _
A---,0

where A_ is the surface of a cylinder, with the centerline along the crack-front, its radius being _, and the
length of the generator being A along the crack-front. This definition is more convenient for numerical

applications. Likewise, one may define the energy-release components for symmetric and anti-symmetric
deformation modes, as:

£ ( od,GIA ---- ,,_-01im Wlnl- aIj_xlnJ) dA (168)
A-,0

/A( a1.! '''_i n.I
GIIA = _/,_lim-o WIInl - u c9xl 3 ] dA (169)

A_0

and

/A( -- Cr3j -g-'-'OU3"_GHIA = lim WHInl dA (170)

A--+O

where the deformation fie]disdecomposed, locallynear each differentialsegment of the crack-front,into

symmetrical and skew-symmetric parts about the crack-planelocally,as follows:

{u} = {U I} + {_,II} + {_III}

= ,,2- ul + + 4 + 0
+ 4 2 0 ,,3-

(171)
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1
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2

{o.i}+ {o..} + {o./.}
O.tl + Oil

O.22 4- CrY2

o.33+ o._a 1
o.12- o._= + :
023 -- o'13

°'31 -- o.31

o.ll -- o.il

0"22 -- Cry2

0

o12 "4-o._2
0

0

1
+-

2

0

0

O'33 -- o':3

0

o.23 -{'- 0": 3

o'31 + o'_1

(172)

<(xl, x2,xa) = ui(xl, -_2, _3)
!

_ij(zl, x2, za) = ,_ij(zl, -z2, xa)

(173)

(174)

7.1 TRANSFORMATION OF DISPLACEMENTS, STRAINS AND STRESSES TO THE CRACK FRONT
COORDINATE SYSTEM

We can simplify many developments if this transformation is performed prior to the calculation of or- and
G components. Let X1, X2, X3 be a global Cartesian coordinate system; and Xl, x2, x3 be the crack front
coordinate system for a particular point along the crack front. For the definition of a crack front coordinate

system at any point, it is sufficient to have the direction cosines for a unit vector along Xl

Sp = {Xpl,Xp2, Xp3 } (175)

and for a ::nit vector along a:3

Zp = {Zpl,Zp2,Zp3}

Then it is easy to define tile orientation of x2 as

(176)

Yp = ZpXXp (177)

Ypl = &2xv3 - &aXp2
gp2 _- Zp3Xpl - &lXp3

gp3 -_ XplXp2 - &2Xpl (178)

We define the coefficients of a transformation matrix aij as:

all= Xpl a12 = X;o2 a13--= Xp3

a21 = Ypl a22 = Yp2 a23-= Yp3

a31 = Zpl a32 ---- Zp2 a33 = Zp3 (179)

The transformationof coordinates,displacements,strains,and stressescan be done as follows:

Xi = aijXj (180)

Ui = aiju ] (181)

gij = aipajqegq (182)

o.ij = aipajq(;rgq (183)

Here the superscript g stands for the values in global coordinate system.

7.2 EDI-TECHNIQUE FOR J:, J2 and G CALCULATION

After a point by point coordinate transformation (180), the crack front is straight. Let us consider the
segment of crack front and the volume around this segment inside a larger cylindrical domain V. V is the

volume of the larger cylinder, Vs is the volume of small cylinder of radius e around the crack front segment,
A is the cylindrical surface of V; As is the cylindrical surface of V_ and A1, A2 are side surfaces of V. Note
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that at anydifferentialsegmentalongthe crack-front,the considereddomainV is still much smaller than
the overall dimensions of the structure.

Then, in general, we can redefine the near-tip parameters Jk and GII1 as:

Jkf -- /A_A, (Wnk - Oui "_= aij-_xknj) sdA
(184)

GIIlf /A_A, (wIllnl Ou3 "_=- - sdA (185)

Here, s ----S(Xl,X2, X3) is an arbitrary but continuous function which is equal to zero on A; and nonzero

(equal to 1) on Ac; and f is the area under the s-function curve along the segment of the crack-front under
consideration.

Using the divergence theorem, we have the following representation of Jk:

£( o,,,,,+ Wnk -aij-_xknJ) sdA k= 1,2 (186)
l+A2

This expression represents a further variant of the virtual crack extension method, but the elimination of
the actual process of virtual crack extension during the development of (186) allows us to use any s-function
for the calculation of Jk. Thus, wc have a new and computationally more appealing interpretation of the

VCE approach.

In the case of the presence of nonelastic (thermal and plastic) deformations we can define W as

f
W

= ] aij d_ij
(187)

= + + (188)
e P t

where eij , Vii , and eij
elastic potential, i.e.,

are elastic, plastic, and thermal parts of strains. Assuming that the stresses have an

OWe (189)
aij- Oe_j

the second term of (186) can have the form

(Jkf)a fv-v, (_xk- Oeij'_

= - Iv-v, \ Oxk ij_jsdV
(19o)

Here we used equilibrium equations (in the absence of body forces), and introduced the definitions:

W p = f aijde_ (191)

pt t (192)gij = EPj + Eij

It is evident that in the absence of nonelastic strains the second term of (186) is equal to zero. If the s

function is equal to zero on faces A1 and A2, then the third term of (186) will be equal to zero as well.
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Considering GIII for the linear elastic case (in the absence of body forces), we can have from equation
(185),

Gill f

wIll nl Ou3 "_+/A, +A2 -- Sa3j-_xlnJ) dA (193)

The third terms of (186) and (193) can be simplified if the faces A1 and A2 are orthogonal to the crack
front (hi = n2 = 0 on A1 and A2).

Again, in Eq. (193), the second term is equal to zero if e_j = 0 and the third term is absent if s = 0 on
A1 and A2. We note that the domain integral algorithms analogous to those in (186) can be developed
directly for the energy-release-rate quantities GI and GII also.

It is now easy to see the advantage of the domain-integral method over the "stiffness derivative" method

for the computation of the first component of J, i.e., J1, for elasto-static problems. If in Eq. (186), the
function s is taken to bc zero at (A1 + A2); and if body-forces are zero, in eIasto-static problems the second
and third terms on the r.h.s, in (186) vanish identically, and dl can be written as:

J,= f [w -
e OJv__4 [ Oxl

Oui Os

OriJ OX 10Xj
dV (194)

We compare Eq. (165) of the stiffness derivative method to the above Eq. (194). Without loss of generality,

we assume that the domain Vo of Eq. (165) to be the same as the domain (Y - V_) of (194). In (165), it
is clear that the integral is quadratic in qo, say of the form qo " Ao • qo. Thus the domain integral method
gives directly the matrix Ao [which is equivalent to dKo/da] without using the finite difference method to
evMuate (dKo/da) as in (165) of the virtual crack extension or the stiffness derivative method.

7.3 CHOICE OF s-FUNCTION

It is natural to use a parametric representation of function s inside any element as:

s = N1s I (I = 1...20) (195)

where N I = NI(_, r/, _) -- quadratic shape functions, I is the node number. We suppose summation over
repeated indices. Then the s-function should be defined in terms of (195) by using 1 or 2 elements in x3

direction for the crack fi'ont disk. Usually it is not useful to have a s-function more complicated than a
linear function in the radial direction. Several simple functions s are discussed below:

(a) The disk has two elements in Xl and in x3 directions respectively. The function s can be defined on
the small tube of radius c, for both the elements along x3 (with _ being the natural coordinate along the
crack front segment), as:

1
El. 1 : s----_(l+_)

1

El. 2 : s= _(1-_)

The area under the s-function curve along the meridian of the surface of the small tube or on the crack-front
(_ = 0) is equal to

1
f = =(A 1 -J- A2)
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(b)

El. 1

El. 2

I

: s=_(<=+<)

: s=1(<5-<)
1

= 5 -b (AI+ A2)

(c)

s = (1 - <2)

]= z-zx
3

(d)

s = 1

f = a

Assuming a s-function that is linear in the r-direction we have its value for a particular point:

r -- r e
8=s o-

r/ -- r_

where so - the value of s function at the point r = r_, r is the distance of the point in question from

the surface of small tube, r_ is the radius of the small tube, ry - the outer radius of crack front disk. In
practice it is often useful to have one element in the r-direction for the disk and to employ degenerate
quarter-point singular elements around the crack tip.

7.4 FIRST TERM OF Jk

Using the parametric representation of displacements

Ui = NJu_ (196)

where i is the direction of crack front coordinate system and the superscript J is the node number, it is

possible to have such an expression for the calculation of the first term of J-integral of Eq. (186):

fl f, fl (wONLs L ouM ONLu_sL ) det(j)d_d,Td<(Jkf)l = -- J-I J-i J-1 t _ -- (Tij Oxk Oxj
(197)

where det(j) is the determinant of Jacobi matrix. An effective procedure of computing Jk with several

types of s-functions consists of a separate 2 x 2 x 2 integration of the expression

R_, __ _/l/1/1 (W ONL ONMONLuM) det(j)d(dTld<
J-1J-1J-1 t _ aij OX k OXj

(198)

and defining a scalar product:
(Jkf)l = R LsL (199)
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7.5 THE SECOND TERM OF Jk

The main difficulty in integrating (190) arises from the fact that we know precise enough values of strain
energy density, and strain, only at the 2 × 2 x 2 Gauss Integration points. A possible way of integrating
the derivative of such functions is to obtain the derivative at the center of the element and to perform a
one-point integration.

Consider a 20-node element in local coordinate system (i

Let's assume that we know that values of the function F only at the integration points as F (I). Using a
paramctric representation, it is possible to write

F (J) = L I(J) F I (200)

where F I are unknown valucs of F at corner nodcs 1... 8, L I are linear shape functions for corner nodes,

L [(J) are values of shape functions at integration points (J).

The inversion of (200) gives

F I = (LI(J))-IF (g) (201)

The coefficients of the extrapolation matrix (LI(J)) -1 are:

(LI(J)) -1 =

A

sym.

B C

A B

A

B B C D C

C C B C D

B D C B C

A C D C B

A B C B

A B C

A B

A

(202)

5+3v v +1 5-3 
A- B .... C- D-

4 4 4 4

Now, from (202) we can calculate the derivative at the center of the element:

(203)

OF OL I
_ (LI(J))-IF (g)

Oxk Oxk
(204)

where, the derivatives OLI/Oxk should be calculated for ( = T/= ( = 0.

7.6 THIRD TERM OF Yk OF EQ. (196)

For simplicity consider the disk with A1 and A2 being orthogonal to the crack front segment. Then

nl =n2 =0, n3= 1 onA1

nl = n2 = O, n3=-I onA2

If A1 = A2

(Jkf)3 = - _I,+A2 OUiai3_xkn3s dA

ou, 

(205)

(206)
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where ZX(F)= (F)A, -- (F)A2.

Assuming that every function is linear in the x3 direction and using the values of functions at integration
points ( = +(1/v_), it is possible to define AF as

AF=v_ F (=_ -F (= 1

Then

l_/l__ [ OUi "_ (T)

where AF (T) = F(( = _3 ) - F(( =-_3 ).

s det(J) d( dr/ (207)

Examples of three-dimensional J1 computations using the domain-integral methods may be found in [50,
66]. Application of the "domain-integral" type evaluation of the crack-tip integral parameters in viscoplastic
dynamic crack propagation at fast speeds, has been discussed in [68].
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