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An Approximate Solution for Interlaminar

Stresses in Laminated Composites

ABSTRACT

An approximate solution for imeflaminar stresses in finite width, laminated compositcs sub-
jected to uniform extensional and bending loads is presentcd. The solution is based upon the
principle of minimum complementary energy and an assumecd, statically admissible strcss state,
decrived by considering local material mismatch effects and global equilibrium requirements. The
stresses in each layer are approximated by polynomial functions of the thickness coordinate, mul-
tiplied by combinations of exponential functions of the in-plane coordinate, expressed in terms of
fourteen unknown dccay parameters. Imposing the stationary condition of the laminate comple-
mentary energy with respect to the unknown variables yields a system of fourteen non-lincar
algebraic equations for the parameters. Newton’s method is implemented to solve this systcm.
Once the parameters are known, the stresses can be easily determined at any point in the lam-

inate.

Results are presented for through-thickness and interlaminar stress distributions for angle-ply,
cross-ply (symmetric and unsymmetric laminates), and quasi-isotropic laminates subjccted to uni-
form extension and bending. It is shown that the solution compares well with existing finitc ele-
ment solutions and represents an improved approximate solution for interlaminar stresses, pri-
marily at interfaces where global equilibrium is satisfied by the in-plane stresses, but large local
mismatch in propcrties requires the presence of interlaminar stresses. Further, the contributions
of both global cquilibrium and local material mismatch effects to the stress ficld are clearly del-

ineated. The results indicate that the significance of local mismatch cffects is dependent on lam-






inate stacking sequence. The demonstrated accuracy and efficiency of the solution make it

ideally suited for paramctric studics.
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CHAPTER 1

INTRODUCTION

1.1 Introductory Remarks

The high strength-to-weight, and stiffness-to-weight ratios of composite materials and their
tailorability to meet strength and stiffness requirements has led to the incrcased usc of
composites for structural designs, particularly in acrospace applications. With this increased use
has come significant intcrest in the failure mechanisms of composite materials. Because
composite materials are heterogeneous and anisotropic, failure modes occur that are quite
different from those seen in more conventional isotropic materials. Laminated composites
exhibit two basic failure modes: 1) in-plane fracture, and 2) out of plane delamination 1 failure,
matrix failure, fiber/matrix debonding or fiber splitting 2!

Experimental studies have shown that the mode of failure and ultimate failure load of
laminates are dependent upon the laminate stacking sequence and the layer thicknesses.[28]
This phenomenon cannot be explained by classical laminated plate theory (which predicts a
planar stress state) combined with in-plane fracture theories, but is attributed to the presence of

interlaminar stresses near the free edges of composite laminates.

Interlaminar stresses arc caused by the mismatch, or difference, in the material propertics
between the individual laminae and the laminate and the mismatch in propertics between
adjacent laminae in the presence of a free edge. Individual layers of a laminate will deform
differently, when subjected to the same axial strain, because of differences in their material

propertics. In a laminate, however, the layers are bonded together, and displacement continuity



at the layer interfaces requires development of interlaminar stresses to cqualize the differential
deformations and to maintain equilibrium. A detailed discussion of the mechanics of frce edge

stresses is provided in reference [9].

The interlaminar stresses G33, 033, and G;3, shown in Figure 1.1, act upon planes parallcl to
the interfacial planes between laminae. They exist only within a very local region near the free
edges of a laminate and are therefore known as a boundary layer effect or free edge effect. For
fiber reinforced composites the interlaminar stresses are transferred between plies through the
matrix material that bonds them together. This interfacial region is relatively weak and if the
interlaminar stresses are high enough the laminated structure will fail, due to delamination, at

loads much lower than those predicted by in-plane failure theories.

A necessary tool to aid in understanding and ultimately preventing delémination type failurcs
is an efficient analytical method which provides reasonably accurate stress predictions in the
boundary layer region. The need for such a method is particularly acute in design stages to
avoid delamination prone laminates when a large number of possible structural configurations
have to be evaluated quickly and economically. Numerous investigators have proposed a varicty
of methods for calculating interlaminar stresses. The majority of these solutions are numerical in
nature and are plagued by computational limitations, particularly with regard to memory
requirements. Consequently they become intractable when the number of layers in a laminate
becomes even moderately large or when calculations have to be performed repetitively as in an

optimization process.

In practical applications composite panels may consist of many layers (100 layers in aircraft
structures is not uncommon) of different orientations, thicknesses and material properties. Thus,

design of even the simplest composite structural component may involve a large number of



Figure 1.1. Laminate Configuration



design variables in addition to a large number of design constraints. These factors make

composite panel design an ideal candidate for numerical optimization.

Several papers, a few of which are listed in the references,[1918] have been published on the
use of numerical optimization for designing composite structures. To the author’s knowledge,
however, none of the published work on composite design using mathcmatical optimization
techniques considers interlaminar stresses in the problem formulation. This gap in the litcrature
apparently exists because of the complexity and computational inefficiency of the majority of the

methods currently available for predicting interlaminar stresses.
1.2 Objective and Scope

The above discussion suggests the need for more efficient approaches for calculating the
three dimensional stress ficld near free edges in laminated composites. An analytical approach is
preferred so that the method can be incorporated into a design process which uses numerical
optimization techniques. The objective of this research is to provide an approximate analytical
model for laminate stress analysis and demonstrate its usefulness. The approximate model is
developed for a finite width symmetrically or unsymmetrically laminated coupon with straight
free edges subject to uniform extensional or bending loads as shown in Figure 1.1. These loads
are considered because they are common in practice. Combined loads can then be analyzed by
superposition. The straight, free edge coupon was chosen because it is the simplest
configuration to analyze and there are numerous results available in the literature that can be
used to verify the model developed. Laminates with many plics as well as hybrid laminates can
be analyzed. Also, although the formulation that follows is presented with reference to the
simple plate shown in Figure 1.1, more complicated structural configurations can be analyzed

using the methodology dcveloped provided the in-plane stress field in the interior can be



obtained from an analytical solution or from some general analysis technique. The methodology
can then be employed in a global-local analysis to obtain refined stress solutions in regions of
high stress gradients with a coarser global solution used to define the response outside of these

regions.

The remainder of this thesis is divided into several sections. Chapter 2 includes a literature
revicw of various methods for predicting interlaminar stresses and a brief discussion of the
present method. In Chapter 3 the analytical model is developed. The approach is an extension
of previous work by Kassapoglou and Lagace [1.19-21] anq is based upon an assumed stress state
and the principle of minimum complementary energy. The methodology reduces the stress field
determination for a general laminate to the simultaneous solution of 14 non-linear equations.
Newton’s method is implemented to solve this system. In Chapter 4 the solution is verified and
its advantages and limitations are identified by comparison with existing finite element and
analytical model results. Comparisons are made for angle-ply, cross-ply and more general
laminate configurations. In Chapter 5 additional results are presented demonstrating the utility
of the technique and the effect of load conditions and stacking sequence on interlaminar stresses.
Finally, Chapter 6 closes with a summary and conclusions of the study. Recommendations for

future work are also provided.






CHAPTER 2

LITERATURE REVIEW

Interlaminar stresses have been studied for over twenty years, in hundreds of articles. Only a
few are discussed here. For a more complete coverage see the review article by Salamon.!??! The
majority of the work has concentrated on the analysis of symmetric laminates with straight free
edges subjected to uniform axial extension. A brief review of the more significant contributions
to the understanding of interlaminar stresses in these laminates is presented first. This is
followed by a review of the literature penainirig to interlaminar stress calculations for laminates
in uniform bending. The chapter closes with a summary and discussion of the present solution

methodology.
2.1 Laminates in Uniform Axial Extension

The earliest investigations of interlaminar stresses were performed by Hayashi,[?! Hayashi
and Sando!®* and Puppo and Evensen.>”! All of these researchers modeled the laminate as a set
of anisotropic layers separated by isotropic shear layers. Their analyses neglected the
interlaminar normal stress component G353 and predicted a sharp rise in the interlaminar shear

stress O3 at the intersection of an interface and the free edge.

In the same year, Pipes and Pagano performed the first numerical study of edge stresses in
composite laminates.!?8! They studied the elastic response of a [+45/—45], laminate subjected to
a uniform axial extension (Figure 1.1). Noting St. Venant’s principle, they assumed the stresses
to be independent of the axial coordinate X; in regions away from the areas of load

introduction. Under this assumption the gencral form of the displacement field is



u (X, X3, X3) =X €11 + U(Xz, X3) 2.1
v (X}, X3, X3) = V(X3 X3) (2.2)
w(X), X2, X3) = W(X3,X3) (2.3)

where u, v, and w are displacements in the X, X5, and X5 coordinate directions respectively,
and €, is the applied axial strain. The reduced elasticity equations goveming the laminate

behavior were then formulated and solved using the finite difference method.

Their results showed a planar stress field over most of the laminate in agrcement with
classical lamination theory (CLT). In regions near the laminate free-edge, the lamination theory
results were perturbed by the presence of the interlaminar stress components, G;3, G23, and O33.
The interlaminar stresses were shown to decay rapidly with distance from the free edge and were
zero outside of a region of width approximately equal to the laminate thickness. Therefore they

concluded that interlaminar stresses are a boundary layer or an edge effect.

Three of the predicted stress components, G,3, O3 and O33 were very small while the
interlaminar shear stress 613 was quite large. In addition they noted that the magnitude of 0,3 at
the intersection of the interface and the free edge increased with increasing grid refinement.
Based upon these results and those of Bogy?”! and Hess!?82%] for bonded quarter planes of
dissimilar materials, they concluded that 6,3 is singular at this point. The results of this model
along with some simplified models for predicting selected interlaminar stress components were
used to explain the relationship between interlaminar stresses and the differences in

experimentally observed strengths of similar laminates.[4-6-30]

Finite clement solutions soon followed. The first finite element solution was provided by
Isakson and Levy.®!! They used a displacement based formulation and like Puppo and Evensen

modeled the laminate as a combination of anisotropic layers separated by isotropic shear layers,



thus neglecting the interlaminar normal stress. They analyzed a [+45/—45], laminate and their
predictions for the interlaminar shear stress 613 agreed well with those of Pipes and Pagano.
Rybicki'*?! used a three-dimensional finite element analysis to obtain approximate solutions for a
symmetric laminate subjected to in-plane loading. He used a complementary energy formulation
with assumed stress states derived from the three-dimensional Maxwell stress functions. His
formulations provided predictions for all three interlaminar stresses and the results showed good

agreement with those of Pipes and Pagano.

Later, to improve solution efficiency, several investigators adopted the Pipes-Pagano
approach and solved the tensile coupon problem using quasi-three dimensional formulations.
The first two-dimensional finite element analysis for the quasi-three dimensional problem was
conducted by Herakovich et. al to study mechanical and thermal edge effects in cross-ply and
angle-ply laminates.33-34) Application of this type of formulation to additional laminate
configurations soon followed.[35-391 Wang and Crossman'® analyzed 5 laminate configurations;
two cross-ply laminates, an angle-ply laminate, and two quasi-isotropic laminates. By invoking
a skyline storage scheme, they were able to use a much finer mesh than had been used in
previous analyses and obtained a more accurate description of the stress field in the vicinity of
ply interfaces and the free edge. They noted that the interlaminar normal stress ©33 is also

singular at these points.

The finite element method provided a means for obtaining solutions for a varicty of laminate
configurations and geometrics. Numerous solutions were obtained. These solutions greatly
increased the understanding of the free edge problem and the mechanisms contributing to
interlaminar stress development. The limitations of numerical procedures for laminate stress
analysis, however, also bccame cvident. First, it was quickly realized that the numecrical

solutions arc not cconomical. Because of the singular nature of the problem, extremely fine



meshes or fine finite difference grids are required in cdge regions in order to obtain rcasonably
accurate predictions of the field variables. Wang and Crossman,®¥ for instance, used 192
elements (16 through the thickness) to model each ply in a four ply laminate. Mcshing
requirements like these and the resulting computer memory and time requirements made
analysis of practical laminates prohibitive. Second, it was found that results very near the free
edge obtained using different formulations were not consistent. Different researchers not only
predicted different magnitudes for interlaminar stress components in this region but also, in
some cases, predicted different signs. Some attributed this anomaly to improper satisfaction of
the free edge boundary conditions.”! Others suggested that lack of symmetry in the stress tensor

at the singularity!*” may be the cause of the inconsistencies.[*8!

In an effort to resolve these inconsistencies and develop more efficient reliable methods for
laminate stress analysis, several analytical solution methods were proposed. One of the first
fairly sophisticated approaches which was capable of predicting both interlaminar shear stress
components as well as the interlaminar normal stress component was provided by Tang[‘”] and
Tang and Levy.[*?) They extended the boundary layer theory of plane stress of isotropic elasticity
developed by Reiss and Locke!*! to the analysis of laminated composites. Using a zeroth order
approximation to the boundary layer problem, the solution in the boundary layer region was
scparated into a torsion problem and a plane strain problem. The solution exactly satisfied the
equilibrium equations and compatibility equations but some of the boundary conditions were not
satisfied or were satisfied in an average sense. A similar approach was used by Hsu and
Herakovich!*¥ in the study of angle-ply laminates. Using a perturbation method, they matched
an interior solution, wherc classical lamination plate theory is assumed to be valid, to a boundary
layer solution. Their results suggested that both interlaminar shear stress components 63 and

0,3 are singular in the boundary layer region. Another approach was presented by Wang and
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Dickson.!*3! They expressed displacements and the interlaminar stresses in each layer in a serics
of Legendre polynomials, and used Galerkin’s method to obtain a systcm of equations for the
unknown constants. Out of plane warping was neglected in the displacement assumptions so
their model was only applicable to cross-ply laminates. They stated that the method is capable
of handling laminates with a large number of plies but didn’t provide any results to support this
claim. Also because of convergence difficulties (for larger b/t ratios) in stresses at an interface

and the free edge, the solution is limited to very thin laminates.

A similar approach was proposed by Bar-Yoseph and Pian.[*®! In their solution, the edge
layer stress ficld is constructed using Legendre Polynomials that exactly satisfy the equilibrium
conditions, traction continuity conditions, and the stress free edge conditions. Later they
incorporated their assumed stress states into a mixed hybrid finite element formulation.!”! This

method was extended by Bar-Yoseph and Siton to include nonlinear material behavior.!8!

Another variational approach was provided by Pagano.['w' He proposced an approximate
solution based upon the extension of Reissner’s theorem® (o a laminated body. Requircments
for an acceptable laminate field theory were established; all stress components are non-zero,
displacement and traction continuity are satisfied at all interfaces, and each layer or sublayer
(more than one sublayer pér ply is permitted) is in equilibrium. In establishing layer
equilibrium, free edge conditions are imposed on force and moment resultants rather than on
point-wise tractions. A model which is based upon assumed stress fields in each layer is
developed which satisfies these criteria. Explicit functions are assumed for the through thickness
variations of stresses. Minimization of Reissner’s functional over the entire laminate results in a
system of 13N diffcrential cquations, where N is the number of sublayers in the laminate, for the

in-plane variations of the ficld variablcs.
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Pagano %! also delincated the theory for the analysis of an axial coupon. The field equations
in this case are constant coefficient, linear differential equations, in the width coordinate y. The
homogeneous solution for each independent variable is then a sum of exponential terms of the
form

f=Fe™ 2.4)
The method provides accurate stress distributions in regions near free edges but very large
magnitudes of A, obtained for large N, limited solutions to laminates with N < 6 because of
computer overflow/underflow violations. Also, although the solution does not include a
singularity, the 6,3 and 033 stress components increased as the number of sublayers used per
layer increased. This behavior is similar to that observed with increased mesh refinement when

using the finite element method.

Pagano and Soni'®? later took this model and, using a global-local variational formulation,
developed a ply/sub-laminate analysis. In regions where a detailed response is required (local
region) each ply is represented by the model described above. The remaining areas, e.g. sub-
laminates or global regions, are represented by effective elastic properties.’?! The method shows
promise but appears to be somewhat sensitive in its predictions to the choice of the global and
local domains. Also, if stresses are desired at each interface of an N layered laminate, the
global/local analysis must be exercised several times with the local domain containing the
interface of interest. Rehfield et. all3453] employed a similar approach using their refined
theories for the behavior of anisotropic plates for the ply/sublaminate models.5657] Their

method results in a set of 8N-3 cquations, where again N is the number of sublayers.

Most of the solutions described above suggest the presence of a singularity at the intersection
of an interface and the frec cdge. To incorporate the singularity in the formulation, the nature of

the singularity must be known before hand. Up to this point Bogy's!?”} work on the singularities
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on isotropic quarter plancs had not been extended to anisotropic materials. Consequently, to
better understand the boundary-layer effect in composite laminates, some investigators set out to
determine the exactly the singularity at the intersection of the interface of two laminae and the
free edge. One such study was presented by Wang and Choi.[%89] Their formulation is based
on the theory of elasticity and Lekhnitskii’s!®) complex stress potentials and leads to a pair of
coupled goveming partial differential equations. The homogeneous solution to the equations is
obtained using an eigenfunction expansion. The homogeneous solution showed the existence of
a singularity of the form y“5 at the intersection of an interface and the free edge. They found
that the order of the singularity & is in general very weak and is dependent only on the material
constants and fiber orientations of plies adjacent to the interface of interest. Similar studics by
Zwiers, Ting and Spilker,!®!) and Dempsey and Sinclair6%%3] showed that singularities of the
form In(y), (In(y)) 2 (In(y)) 3, etc. are also present for some combinations of adjacent layers, in
addition to the y"5 singularity. These results, along with numerical studies on the
singularities,”*” are significant because they showed that although mathematical singularities
exist, they are generally very weak and act over such small distances that approximate solutions

that do not incorporate the singularity are accurate except in regions very near the free edge.
2.2 Laminates in Uniform Bending

Few studies have been conducted on laminates in bending. Salamon!®*! presented a solution
for finite width laminates uniformly bent by end moments applicd about the X;-axis (sec Figure
1.1). Using an approach similar to that of Pipes and Pagano[26] the clasticity cquations are
formulated and solved using the finite difference method. He finds that the interlaminar shear
and normal stress distributions arc similar for a laminate in uniform bending to those of a

laminate in uniform extension.
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Finite element studies were conducted by Murthy and Chamis!%! for a variety of load
conditions including in-plane and out-of-plane bending, and by Chan and Ochoal®-67] for
laminates under torsion and bending loads. Kassapoglou[(’s] extended his analysis for extension

loading[m] to combined loading cases and bending.
2.3 Summary and Discussion

The above discussion gives an indication of the variety of solutions proposed for obtaining
free edge stresses in laminated composites. These solutions have increased the understanding of
the mechanics of interlaminar strcss development and their effects on the performance of
laminated composite structurcs. Most of these solutions, however, are constrained
computationally by the size of laminate system they can handle and therefore have limited
practical application. Apparently some tradeoff needs to be made between solution accuracy of
the complicated solutions described above and solution efficiency offered by simplified

approximate models.

Recently Kassapoglou and Lagace[m

proposed a simplified, approximate technique for
determining the stress field in the vicinity of straight free edges of a laminated coupon. A very
similar approach was presented by Engrand.!%®! Kassapoglou and Lagaces’ analysis is based on
the principle of minimum complementary energy and an assumed stress state obtained by
considering global equilibrium requirements. Generic forms of stress distributions that exactly
satisfy the equations of equilibrium, the traction continuity conditions and the free edge stress
boundary conditions are assumed within each layer. Explicit polynomial expressions are used
for the through-thickness variations of the stresses, while the in-plane variations are taken to be

combinations of two decaying exponential functions expressed in terms of two unknown decay

parameters. The unknown decay parameters are functions of ply material propertics, orientation
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and thickness, and laminate stacking sequence, and are determined by minimizing the laminate
complementary energy. Once these parameters are determined the stresses can be evaluated at

any point in the laminate.

A distinguishing feature of Kassapoglou and Lagaces’ model is that run times and computer
memory requirements are a linear function of the number of layers in the laminate. This makes
for an extremely efficient design tool that can be used to analyze laminates with many layers.
The model, however, has trouble predicting interlaminar normal stresses and in some cases

interlaminar shear stresses.

Kassapoglou and Lagaces’ (KL) method serves as a basis for the approximate solution
developed in this investigation. In their stress assumptions only the mismatch between laminae
and laminate material properties is considered. The improved solution includes additional terms
in the stress assumptions which account for the effect of mismatch in engineering properties
between adjacent layers of a laminate. Specifically, the mismatches in coefficient of mutual

influence and Poisson’s ratio are considered.
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CHAPTER 3

SOLUTION FORMULATION

The problem considered is the uniform axial extension or bending of a multi-layercd
laminated plate. Interest focuses on calculating the stress field in the vicinity of the free edge,
i.e. in the boundary layer region. In this chapter, the mathematical boundary value problem for
determining the free edge stresses is formulated from the linear theory of elasticity. Because of
the analytical complexities of the three dimensional elasticity equations that must be solved
within each layer, coupled with the requirement of continuous displacements and stresses at
interfaces between layers, an exact elasticity solution for stress analysis in practical laminates is
not feasible.539 Hence, an approximate solution is proposed. The approximate solution is
based upon the principle of minimum complementary potential energy and stress assumptions
constructed in such a manner as to simplify the equations to be solved, while retaining the
necessary three dimensional characteristics of the stress field. The stress assumptions exactly
satisfy all of the equilibrium requirements. The compatibility equations and displacement
continuity conditions are satisfied in an average sense through minimization of the laminate

complementary energy.

A singularity is not included in the stress assumptions. As previously mentioned, previous
investigators[58'61'62] have shown that a very weak stress singularity is present near the
intersection of interfaces and the free edge of composite laminates. However, as Pagano has
noted,!*?) these singularitics arc artifacts of the effective modulus approach and do not exist in

real materials. Also, the singularity is so weak and acts over such a small portion of the laminate
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near the free edge that the assumption of material homogeneity on which the analysis is based
breaks down. Further, Pagano suggested that when interpreting stress predictions using an
effective modulus approach, average stresses, rather than point stresses, in regions of stecp
gradients may lead to more realistic conclusions regarding physical behavior."® These
comments suggest that the stress singularities may be of only academic concem, and a solution
that does not include a singularity is equally as valid as one that does, particularly in design
applications where a qualitative comparison of the interlaminar stress severity in candidate

laminates is the primary interest.

The remainder of the chapter is devoted to development of the approximate solution. In
Section 3.1, the elasticity problem is formulated. Section 3.2 summarizes classical lamination
theory and the stresses of classical lamination theory are derived in terms of the mismatches in
laminate and laminae material properties. These stresses and local mismatch considerations are

then used to formulate the refined approximate model as discussed in Section 3.3.
3.1 Problem Statement

The geometry of a long, symmetrically or unsymmetrically laminated plate of finite width is
shown in Figure 1.1. The laminate is built up of several layers reinforced by a system of parallel
fibers oriented at an angle © with respect to the laminate longitudinal axis. Perfect bonding
between adjacent layers is assumed. The laminate is assumed to be long enough so that away
from the ends, where the loads are applied, the stresses and strains are independent of the axial
coordinate. Another assumption made is that away from the edges the laminate is in a state of
plane stress with the response defined by the classical lamination plate theory model. This
assumption places a limitation on the geometry of laminates that can be accurately analyzed

using the approximate solution and will be discussed further in Section 3.3.5. Also,
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unsymmetric laminates will deflect out-of-planc when subjected to in-plane loads because of the
membrane-flexural deformation coupling behavior they exhibit. These out of plane deflections

are assumed small, so that geometric coupling effects can be ignored.

An cxploded view of the laminate, showing the in-plane and out-of-planc stress components
is provided in Figure 3.1. The origin of the global coordinate system (X;,X;,X3) is located at
the center of the laminate, with the X, X5, and X3 axes taken in the axial, transverse, and
thickness directions respectively. Local coordinates x®, y®, and z® are established in each
layer, where y® = b - x§ is measured from the free edge and z® is measured from the bottom
of the kth ply. Beginning at the top surface of the laminate, the layers are numbered
consecutively from 1 to N. The layers may have different thicknesses and may be different
materials. Each layer is represented by a macroscopically homogeneous, linearly elastic,
orthotropic material. Since the fiber axes of the individual layers are rotated through an angle 6
with respect to the laminate axis, the material behavior of each laminae appears monoclinic in

the global coordinate system. The constitutive equations for each layer then have the form

( 8“, =Y §1z §13 0 0 S ( 011‘
£ Sy S;30 0 Sy O
€1 §33 0 0 Sy Ca3
1 o3 > = SYM 5, 5. 0 1 0_23> 3.1
Y3 §ss 0 C13
T2 §66 C12
L) L i L )

where [§ij] is the transformed compliance matrix.
3.2 Classical Lamination Theory
3.2.1 Assumptions and Constitutive Relations

According to classical lamination theory, the plate in Figure 1.1 acts as a single integral unit
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with smeared elastic properties, and deforms under load in accordance with the Kirchoff
deformation assumptions for thin plates. The elastic non-homogeneity of the laminate is taken
into account by calculating the stresses in the individual layers using the laminate strains
determined with these assumptions. A state of plane stress is assumed in each ply. The plane

stress assumption implies
oy =0 =0f=0 (3.2)

and the stresses in the k™ layer are given by

x
« |5 7.8 x
&1 Qn Qiz Que

_ €n
6t = |Qiz Qn Qx| { &= 3.3)

5 5. 6. ol |7
G2 Qis Q2 Qe 2
where (_),(Jk) are the reduced stiffnesses in the laminate coordinate system. These relations are

used in conjunction with the Kirchoff deformation assumptions to define integrated laminate

properties. From the Kirchoff assumptions for thin plates, the laminate strains are
(e)x = (e%)x +Xalx)x (34)

where {€°}x are the laminate middle surface strains and {x}x are the laminate middle surface
curvatures. Substituting the through-thickness strain variations (3.4) into the layer constitutive
relations (3.3), yields expressions for the stresses in the k' layer in terms of the laminate middle

surface strains and curvatures:

x
. — _ _
&, Qi1 Q2 Qi €9, X1,
- 5 & A 0
Gt = |Qiz Qn Qx enp + X3y %22 3.5

G 5 A A K12
O12 Qis Q2 Qss Yiz

The laminate constitutive rclations are then obtained by integrating equation (3.5) through the

laminate thickness. This yiclds
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B 2

+H
[A,B,D] = [ [QI[1,X3,X3] dX; 3.7
-H

where the laminate stiffnesses are

and the force and moment resultants acting on the laminate are

+H

(N} = [ (8} dX, (3.8a)
-H
+H

(M) = | {8)* X3dX, (3.8b)
-H

3.2.2 CLT Stresses from Global Mismatch Considerations

Stresses develop in the classical lamination theory because of the mismatch in material
properties between the laminate and the individual layers comprising the laminate. This type of
mismatch will be referred to as the global mismatch in material properties. To show the
relationship between global mismatch and the classical lamination theory stress components
consider a symmetric laminate subjected to in-plane uniaxial extension e?,. For this loading and
geometry all terms in the [B] matrix are zero, and the extensional response uncouples from the

bending response. The laminate constitutive relations are then
(N} = [A)(e%)x (3.9)

and the stresses in the kth ply are

k
e = = =
& (311 Q12 g16 £,

Snft = |Qiz Qu Qu| {% (3.10
e Qis Qs Qs 12
where €9), €%, and y?, arc the laminate strains and arc constant throughout the laminate

thickness. The laminate strains €3, and y§; can be related to the applied strain el by the
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laminate Poisson’s ratio, Vy;, and the laminate cocfficient of mutual influence, 7;2,,

respectively

€% = Ve (3.11)

= 0
7[1)2—1112.1511

where

AppAg — AjgAgg
ApAg — Al

V2 =

(3.12a)

A12A26 - A16AZZ
ApAg — A%

Mzt = (3.12h)

Now, if the laminate strain €9, is applied to the individual layers, each layer will deform in

accordance with its characteristic elastic properties

eff =ef)
e = v¥ed, (3.13)
799 = 715?,18(1)1

where

SO=E) =)&)
vl = Q12Q¢ — Q16 Q2

. QpQ-QYy

(3.14a)

T QRN T

The stresses 62(2) and 6(1];) develop because the strains in equation (3.13) are required to match
the strains in equation (3.11). Expressions for the stresses are developed by writing the strain in
cach layer as a combination of the individual ply strains e®, and 8¢ terms, where the 8¢

terms are required to force the total strains in cach ply to match the laminate strains

e =€l (3.15a)
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e, =ef) + 5 (3.15b)
Yo =" + &% (3.15¢)

Substituting into equation (3.10) gives
&1 =ERe + Q0% +Qre 5vY (3.16a)
&% = Q06 + Qe v (3.16b)
515 = Qe 0e + Qoo 571 (3.16¢)

From equations (3.11) and (3.13),

5 = (e - ) =€) (-Vi+vi§ ) (3.17a)
Y = (12 -7 ) =€) (M21-n% ) (3.17b)

Combining equations (3.16) and (3.17) then gives the laminae stresses in terms of the laminae
stiffnesses, the applied axial strain, and the mismatch in Poisson’s ratio and coefficient of mutual

influence of the laminae and the laminate:

&1 = [E + 6??(#2—%) + 6(112(7_112.1 -nf3:)led,

8% = [Q2 V9 ~¥12) + Qg (izs ~ B )EN (3.18)

31 = Qs vV - V1) + Qe (i — 1)1eD,
From these equations it is seen that when the material constants vy, and 12,1 of the individual
plies are identical to those of the laminate, the in-plane stresses 6;1(2) and 69;) are zero. On the
other hand, when there is a difference in the material constants, the in-plane stresses will in
general be non-zero. As shown subsequently in Section 3.3, the magnitudes and signs of the in-

plane stresses, and the laminate stacking sequence, have a direct influence on the magnitudes of

the interlaminar stress components.
3.2.3 Classical Lamination Theory Summary

The classical lamination thcory solution is approximate and in gencral only satisfics the

cquilibrium equations and cdge boundary conditions in a through-thickness average sense. On a
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point by point basis, however, the differential equations of equilibrium are not satisfied by the
classical lamination plate theory solution in edge regions where there is a transverse gradient in
the in-plane stress field, because the out-of-plane stresses are assumed to be zero. Further the
surface tractions arc not zero as required by the exact elasticity equations. Thus, the stress field
needs to be refined in regions near the boundaries. The next section details the formulation of

the refined solution developed in the present investigation.
3.3 Boundary Layer Stress Solution
3.3.1 Problem Formulation

The solution is developed by recalling that the applied loading and hence the stresscs and
strains are independent of the the axial coordinate. The analysis may then be restricted to any
y-z cross section. To take into account warping of the cross section, induced by the presence of
off-axis layers, the generalized plane deformation assumption, with orthogonal displacement
components u,v, and w is employed.[sol As shown in Figure 3.1, the free edge is defined by y =
0. We assume that the classical lamination theory solution has been obtained and concentrate on
calculating stresses in the boundary layer region. The classical lamination theory solution is
valid in the interior but predicts non-zero stresses 6(1‘(2) and 52(2) at the free edge. This defect in
the satisfaction of the free edge boundary conditions is corrected by a refined approximate
solution that assumes the total stresses in each layer to be a combination of the classical
lamination theory stresses plus an additional contribution to the stress field which is negligible
outside the boundary layer region. The in-plane components of the boundary layer terms

evaluated at y=0 are taken as the negative of the classical lamination theory values so that the

free edge conditions are satisfied. Thus we assume



24

.. (k) (k)
of(y,2) = &5 (v.2) + & (¥,2) (3.19)
where:

cg‘) (y.,z) isthe total stress in the kth ply
63( ) (y.z) isthe clt stress solution in the kth ply

630 (y,z) is the local solution for the kth ply

Because of the difficultics and inefficiencies encountered with solutions for the free edge
stress field based on displacement formulations, a stress formulation is presented. Under the
generalized plane deformation assumption, and in the absence of body forces, the equilibrium

equations that must be satisfied in each layer have the form

0 oo
_dof? 38 _, (3.20a)
dy oz
d d
98 | o (3.20b)
ay oz
d d
9B %8 (3.20c)
dy oz
and the associated compatibility equations are,
Feu g 321
Py = .21a)
Peu 3216
oyoz (3.21b)
Peu _ 321
2, (3.21¢)

2 2 2
0 €xn d €33 20 €23 _

2, + 7y + oz - (3.21d)
o3 O]
_837[__6;3 + a: =0 (3.21¢)
9 | 93 8&,2\_
5 [_ay +—azJ =0 (3210

The equilibrium equations (3.20) can be satisficd identically by cxpressing the stress components
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in each layer in terms of the stress functions %! ¢ and v, such that

9? 9? 0%
Oy = —824; O = B—yg; O3 = ﬁ (3.22a)

=%y -9y 22b

Oi2= 3" On 3y (3.22b)

The sixth stress component Oy; is determined from the compatibility equations (3.21a-c) and the
strain-stress relations as subsequently described in Section 3.3.5. The stress functions and

constitutive relations can then be used in the remaining compatibility equations to yield the

following pair of coupled govering partial differential equations for the stress functions.

S
Ly¢ + Lyy=-2B, - S—16B2 (3.23a)
11
Ly +Lyy=0 (3.23b)

where, Ly, L3, and L4, are linear differential operators defined as:

a2 9?2

=R 2 4R (3.23¢0)
9 2 a>
Li=Rys—5 +Ryg—— + —_— 3.23d
3= Ras o5 *Ru s Rys 3y ( )
d* a* a a*
Li=Ry— +2Ry3——— + Ry3— 3.2
TR R dy20z2 R oy* +R448y2822 (3.23¢)
and

55
L (3.24)

Su

B, and B; are determined from the end conditions.

In addition to satisfying equations (3.23) for ecach layer, the solution must satisfy conditions
on the external surfaces of the plate as well as satisfy the conditions of continuous tractions and
displacements along interfaces between adjacent layers of the laminate. The traction free

conditions at the edges y=0 imply
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PN 3 I
off =6), +012 =0
o =60 +55 =0 (fory=0) (3.25)
o =6% -0

The traction free conditions on the top and bottom surfaces require

O3 = 0
Oy =0 (for X5 =1H) (3.26)
G133 =0

For perfect bonding between layers, the continuity of displacements and tractions at the layer

interfaces impose the six additional conditions on the solution in each layer

oV (y. %) =¥ (y,0) (3.27a)
o%™ (D) = 68 (y,0) (3.27b)
ofs 1) = 6% (y.0) : (3.27¢)
ul(y, &) = u®(y,0) (3.27d)
V() = Wy, 0) (3.27¢)
wt y,lD) = wh(y,0) (3.276)

where the superscripts k and k+1 designate the ply above and below the interface, respectively.
We have also assumed that classical lamination theory stresses are recovered in the interior.

This assumption implies the additional conditions

limd;(y.2)® =0 (3.28)
Finally at the ends of the laminate, the kinematic conditions w =g€yX; or w=(KyX3)X; are
imposed, where & and K, arc applicd axial strain and curvature, respectively.
3.3.2 Stress Assumptions

An approximate solution to cquations (3.23) subject to the boundary conditions specificd in

equations (3.25-3.28) is obtained by choosing a stress ficld that cxactly satisfies the diffcrential
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equilibrium equations (3.20a-3.20c), and the stress boundary conditions (3.25-3.28). For clarity,
explicit expressions for stresses rather than stress functions are presented. Results from previous
investigations are used to guide the selection of appropriate stress forms. The previous analyses
show large through-thickness gradients as well as large in-plane gradients in the stress ficld in
regions near the frce edge and in interfacial regions. In the present investigation, these
perturbations in the classical lamination theory stress predictions are approximated by assuming
two physical effects contribute to the stress field. The first effect is that represented by the
Kassapoglou and Lagace (KL) solution. In this solution, the in-plane stresses predicted by
classical lamination theory are used to formulate expressions for the out-of-plane stresses. As
previously shown in Section 3.1 the classical lamination theory stresses develop because of the
mismatch in engineering properties between the laminate and the individual laminae. The stress
ficld obtained by adding the KL refinement and the classical lamination theory solution exactly
satisfies the differential equations of equilibrium, the stress free boundary conditions, and the
traction continuity conditions. Thus this contribution is referred to as the global mismatch or
global equilibrium effect. The solution obtained from global mismatch considerations, however,
assumes the laminate behavior to be qualitatively the same throughout the thickness of the
layers, and consequently does not capture the large through thickness gradients in the layer stress
fields near the interfacial surfaces. Further, the KL method predicts zero stresses at some
interfaces where other analysis methods predict stresses of considerable magnitude. The second
effect included in the present formulation is intended to relax some of the constraints imposed by
the KL technique and provide an improved approximate theory. This effect is more local in
nature than the KL contribution to the stress field, and relates the stresses developing near
interfacial planes to the relative displacements of adjacent layers, arising because of the

mismatch in engincering propertics between these layers. Two material property mismatches are
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considered; a coefficient of mutual influence mismatch, and a Poisson’s ratio mismatch.
Herakovich!® has shown that these properties are the most important to consider, with regard to
interlaminar stress development, for the mechanical loading problem. Poisson’s ratio is defincd

as

£ S
Vp=-—2=-22 (3.29)
& Sn

and the coefficient of mutual influence is defined as

5
Mgy =22 (3.30)

€ S“

where §ij are the previously defined compljance coefficients in laminate coordinates. The
coefficient of mutual influence mismatch is primarily responsible for the development of 63 and
G2, while the Poisson’s ratio mismatch is primarily responsible for development of G5,, G533,
and 633. Since global equilibrium and the free edge boundary conditions are satisfied by the KL
solution, self equilibrating forms are assumed for the local mismatch contributions to the stress

field.

The stress components for each layer are chosen as product functions of the thickness
variable z, and the in-plane variable y. This leads to the following functional form for each of
the effects in the k™ ply:

a) global mismatch
oo (1,2 = PWEP@ i=123, j=2,3 (3.31)
b) mismatch in coefficient of mutual influence
Sim (1D =hPWMIM@) i=1, j=2.3 (3.32)

¢) mismatch in Poisson’s ratio
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G 1D =mP P (@) + mPypP@) =23, j=2.3 (3.33)
The stress field 6(y, z) in the kth ply is then the sum of (a), (b) and (c)
Gg)(y,Z) =P @ +hPNIP @) +mPynPE) + mPypP @) i=1,2,3, j=23 (3.34)

Substituting cquation (3.31) into the differential equations of equilibrium yields the following

system of ordinary differential equations:

df?y(’) = £19(y) 335)
%y(” = 1) %y(” =) (3.36)
g = dggi(z) (3.37)
9@ = dgdgi(z) g8 = dgi(z) (3.38)

Similar equations are obtained relating the functions in equations (3.32) and (3.34) If equations
(3.32) and (3.33) are substituted into the differential equilibrium equations, relationships like
equations (3.35) and (3.36) are obtained for the h;js, and mys, and expressions similar to
equations (3.37) and (3.38) are obtained relating the 1;s, nys, and pijs- Note that equation (3.35)
uncouples from equation (3.36) and equation (3.37) uncouples from equation (3.38). This
decoupling was indicated previously in equations (3.22). Thus only four functions have to be
assumed for each contribution; two in-plane variations and two through-thickness variations.

The remaining functions are determined from the conditions (3.35-3.38).
3.3.3 Global Mismatch (KL Solution)

Following the KL solution, the first refinement to the stress field is made by assuming
approximate expressions for the out-of-plane stresses, based upon the in-plane stresses. The in-

plane stresses are taken to have the form
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S1am (1,2 = ()2 @) (3.39)
52 (1,2) = 1B (1)eH @) (3.39b)

where £$(y) and f§9(y) are unknown functions of y and gff(z) and g%9(z) are unknown
functions of z. The form of the functions gg? (z) and g?‘;} (z) is determined by imposing the free
edge conditions (3.25)aty =0

A (k)

Ol25(y=0,2) =~ 6'12 (2) (3.40a)
62,,, (y=02)=- 022 () (3.40b)

~ . (k) . . . N
where ogkz)(z) and &, (z) are the in-plane stress components predicted by classical lamination
theory. For a general symmetric or unsymmetric laminate subject to a uniform extension or

bending load, classical lamination theory predicts stresses that vary at most linearly through the

thickness of each ply. Therefore, we have

g (@ =BPz+BY (3.41)
g¥(2)=BPz+BY (3.42)
where
o_(ll) o_(k)
BY = —i——n"— (3.432)
BY =41, (3.43b)
(k) o_(11)
BY = —zﬁ (3.43¢)
BY = &% (3.43d)

and the t and b subscripts denote the top and bottom of the kth ply, respectively, and t® is the
thickness of the k" ply. These expressions are then substituted into the equilibrium equations
(3.37) and (3.38) and integrated with respect to z to obtain expressions for the through-thickness
variations of the interlaminar shear components 6(11;)(& (y,z) and Ggg)(y,z). After imposing the

stress free conditions at the top and bottom surfaces of the laminate, the interlaminar shears may

be written as
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S, (1,2) = [ (NBP222 + BP7 + BY] (3.44)
S, (1,2 = (R NBP222 + Bz + BY) (3.45)

In a similar manner, the interlaminar normal stress 6§y is obtained from equations (3.38) and

(3.45)
853, (1,2) = (R ()BF /6 + B 222 + BPz + BY] (3.46)

Constants B, B®, and ,B{¥ are determined from the interfacial traction continuity conditions.

Starting at the bottom free surface and working up, they have the form

N
B = ¥ [Bg)(t(»)z,z + Bg)@] k=1N-1 (3.47)
Fk+l
i+l

N :
BP=% [BQ’(x0>)3/6+BQ>(L®)2/2+[ 9’(l0))(2>/2+32>10>] 5 z<m>} k=1N-1 (3.49)
Fk+1 m.k+1

and Bgm, BgN) and Bf,m are all equal to zero.

The stress field 63:;@,2) is now expressed in terms of the 2N unknown functions fﬁ‘?(y) and
f‘;“z)(y), where N is the number of layers in the laminate. If Iﬁ?(y) and fg‘z)(y) are expressed in
terms of quantities at the interfaces, so that interfacial continuity of tractions is guaranteed, a
general solution for these functions may be obtained by invoking the principle of minimum
complementary energy. According to this principle, out of all possible stress fields o{(y,z),
that satisfy both equilibrium and the stress boundary conditions, the one that represents the
actual equilibrium state, is the one that minimizes the laminate complementary energy.’!! The
complementary encrgy is defined as the strain energy of the laminate minus the cxtemal work

done on the portion of the laminate where the displacements are prescribed

M. = ZH“" zH [ (0)7(S)(o} 1¥aV, - | J{T]T{u]dA (3.50)

k=1 ®



32

Using the assumed forms for the stresses in equation (3.50) an expression for the complementary
cnergy in terms of the arbitrary functions f{(y) is obtained. Since we have assumed stresses to
be independent of the axial coordinate X, and have assumed explicit functions for the through-
thickness variations of the stresses, the z and x integrations can be carried out, reducing the
volume integral in equation (3.50) to a line integral in y. Taking the first variation of the
simplified integral and equating it to zero yields a system of 2N, constant coefficient, ordinary
differential equations for the functions f{(y) and f§(y). These equations and the homogeneous
boundary conditions along the free edge define an eigenvalue problem whose solutions are
exponential functions of y. The complete solution for any of the functions f?? and % is then
obtained as a combination of a particular solution and a linear combination of the eigenfunctions

for the homogeneous solution.

A general eigenfunction expansion solution of this type is favorable for a few reasons. First,
since separate functions are assumed for each ply, the stresses in individual plies can decay at
different rates. Second, as Pagano (51] has shown, the accuracy of the stress field predictions will
improve significantly when the number of sublayers used to model a layer increases, just as
results improve with finite element models when the mesh is refined. For the same through-
thickness discretization, a model of this type will provide more accurate results than finite
element models, since continuous functions are used to describe the y variation in the stress field
rather than discretized functions as are used in the finite element models. These advantages,
however, come at the high cost of solution inefficiency, which is precisely what we are trying to
avoid. Run times arc a function of the number of layers in the laminate and can become
prohibitive for laminates with a large number of plies. Also, as noted earlier, numerical
constraints have been shown to limit the number of plies in a laminate that can analyzed by this

approach.m]
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Considering the efficiency problems associated with the generalized eigenfunction
expansion technique outlined above, KL took a slightly different approach and made some
assumptions at the outset on the form of the functions ff(y) and f%(y). These assumptions
simplified the cnergy expression and subsequently reduced the system of equations that had to be
solved. First, based upon the fact that the integrals of the in-plane stresses 6{9 and 6% through
the laminate thickness are zero at any y location, they assumed that £{9(y) and f%9(y) be the

same in all layers
A () k .
Oiz (y,2) = a(z) fia(y), i=1,2 (3.51)

By taking in-plane stresses of this form, the analysis greatly simplifies since the number of
unknown functions is reduced from 2N to two. The limitation imposed by this technique,
however, is that the stresses in all plies are forced to decay at the same rate. KL also went one
step further, and assumed explicit sums of exponentials, expressed in terms of unknown decay
parameters, for the in-plane variations fﬁ")(y) and fg‘z)(y). The interlaminar functions wecre
derived from the in-plane functions and the diffcrential equations of equilibrium. Minimization
of the laminate complementary encrgy then resulted in a system of two non-linear algebraic

equations for determining the unknown parameters.

KL used exponential functions to describe the in-plane variation in the stresses because they
provide for the necessarily rapid decay of the boundary layer stress components with distance
from the free edge. Explicit sums of exponential functions are used in this study as well because
the KL predictions generally show good trends, and as mentioned above, the Euler Lagrange

equations obtained from the more general approach are solved by a series of exponential terms.

KL determined the necessary forms of the in-plane functions by enforcing the requircments

of the Force-Balance Method.!"®) The Force-Balance method will also be used in deducing the
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required forms of the in-plane variations associated with local mismatch cffects. The Force-
Balance Method is basically a statement of overall force and moment equilibrium, applied to a
section of the laminate large enough to satisfy the assumptions of material homogeneity. If a
rectangular volume element is taken with its X, faces at the laminate center plane and stress free
edge, and with the X3+ face corresponding to the top free surface, as shown in Figure 3.1, six

equations are derived from the force and moment equilibrium conditions.[2%]

Force Equilibrium:

Fx,: f o3dy + Jr Oy,dz=0 (3.52a)
)
TFy: [ondz+] ondy=0 (3.52b)
e
SFx,:  Jondy=0 (3.52¢)
i
Moment Equilibrium:
SMy:  [onzdz+ [oyydy=0 (3.52d)
2 z
YMy,:  [odydz+ [o1,2dz=0 (3.52¢)
1* ra
IMy;:  [opdydz+ [oi3(b-y)y=0 (3.520
1* z

The subscript on the integral indicates the face over which the integrations are taken.

Equation (3.52c) implies that o%(y,z) is a couple. Therefore, 0% (y,z) must cross the y axis
at least once, and at least two exponential terms are required to represent this component of
stress. KL assumed that one crossing of the y axis represents the lowest energy solution so they
used a sum of two exponential functions 10 represent the transverse variations fﬁk)(y), tﬁ‘? (y), and

£%(y). Similar considerations were used to determine ff9(y) and f§9(y).
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Considering the above requirements on the form of f;(y) and the free edge boundary

conditions, KL obtained the following final expressions for the stresses in the kth ply:

o = [—{{—l[e"” - -;Te"""’]] [BS“’Z + BS“’] (3.53a)

B3, = 03 ):”l : [xle‘*“” - e“”] [ BP2/6 + BR222 + BPz + BS“)] (3.53b)
S, = 0 }:‘l 1 [e*’" - c‘*"‘”] [ B2 + BPz + B?"] (3.53¢)

8o = -e”’"[Bi“z ¥ BS‘)] (3.53d)

Sl =016 [ BP22/2 + BPz + ng)] (3.53¢)

where ¢;, ¢, and A; are unknown decay constants determined by minimizing the
complementary energy. KL assumed ¢; = ¢, so only two unknown paramecters ¢; and A, are

used in their solution.

These stress distributions superposed on the classical lamination theory solution satisfy
pointwise and global equilibrium, stress free boundary conditions, and interfacial traction
continuity conditions. Also cquations (3.53) show that for large y all of the &ljs are zcro, SO
outside the boundary layer region the classical lamination theory solution is recovered. Further,
these equations show that the interlaminar stresses predicted by the KL solution at an interface
are proportional to B¥, B¥, and B{. The B’s contain stacking sequence information and are
basically force ( B§), B¥) and moment (BY) resultants of the classical lamination theory
stresses obtained by carrying out the through-thickness integrations in equations (3.52).
Therefore, if the resultant force at an interface, or at any through-thickness location, z, is zero,
the KL solution predicts identically zcro interlaminar stresses at all points along the interfacial
planc having this z-location. This form of assumption, however, is too restrictive. The overall
equilibrium equations (3.52) only rcquire that the integral of the interlaminar stresses be zero at

any z-location where the through-thickness integration is zero, and not that the stresses
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themselves be identically zero at all points along the interfacial plane. In fact, as previously
mentioned, results from earlier investigations indicate large interlaminar stresses in interfacial
regions where local mismatch of properties is present but interlaminar stresses are not required
to satisfy global equilibrium. The next sections outline extension of the KL solution to include

additional terms associated with this local property mismatch in the assumed stress field.
3.3.4 Local Material Property Mismatch

Stress assumptions to include local mismatch considerations are developed by defining the
interlaminar shear stresses and the interlaminar normal stress at each interface and deriving the
remaining stress components from these definitions using the differential equations of
equilibrium. This approach has the advantage that the traction continuity conditions are satisficd
by the form of the assumptions. The most general form of a definition of this type would have
different functions at each interface, as mentioned in the previous section, allowing the stresses
in individual plies to decay at different rates. This is a considerable relaxation of the constraint
imposed by the KL solution that stresses in all plies decay at the same rate and should lead to
increased accuracy in the stress predictions. The drawback of course, is a large reduction in
solution efficiency since the number of unknowns is dependent on the number of plies in the
laminate. The present formulation is a compromise between the general formulation and that of
KL. The same functions are used at all interfaces to define the local mismatch contribution to
the stress field. As in the KL solution, using the same function for all interfaces requires the
decay of the local mismatch contributions to the stress field to be the same in all plics. However,
the decay of the total stress, i.e., equilibrium contribution plus mismatch contribution, may differ

in individual plies, if there is a local mismatch contribution in one ply but not in another.

The interlaminar shear stresses arising at an interfacc are assumed to be proportional to the
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mismatch in coefficient of mutual influence or mismatch in Poisson’s ratio between the ply
above and below the interface of interest. The interlaminar normal stress is assumed to be
proportional to the mismatch in Poisson’s ratio. The mismatch in coefficient of mutual influence
is assumed to affect only the 0?‘2 and c?? components of stress while the Poisson’s ratio
mismatch is assumed to affect only the ¢%, %), and o) components of stress. This
assumption is exact for cross-ply laminates, where only 69, 6%, and 6%9 are present, but is
approximate for more general laminates. In angle-ply laminates, for example, the classical
lamination theory stresses S;kz) are all zero and there is no Poisson’s ratio mismatch between
adjacent plies, but interlaminar stress components o% and 6%, and transverse in-plane stress
c% have been shown to develop.[9'26'35'59] These stresses, therefore must result from the
coupling between the {9, and 6 components of stress and the 6§9, 6%, and oy stress
components. This coupling is apparent from the compatibility equations (3.23). For cross-ply
laminates, the compatibility equations uncouple and o9 and 0?‘3) are identically zero. The
previous predictions, however, have shown 6%, 6%, and 6§ to be an order of magnitude
smaller than 0?‘3) and 0?‘2 in angle-ply laminates so neglecting this coupling is a felt to be a

reasonable assumption.

The in-plane functions, h{*(y), m{(y), are, as in the KL solution, assumed to be an explicit
combination of exponential functions which are chosen such that the interlaminar stress
components arising from local mismatch integrate to zero over y. For the m¥(y) functions, the
additional restriction that mg? (y) has a zero moment about the longitudinal axis is imposecd.
Thus, the mismatch effect permits non-zero stress contributions, but these stress contributions do
not alter the global force and moment equilibrium established through the tﬂ‘)(y) and gg‘)(z)
functions of the KL solution. The through thickness variations 1{°(z), n{(z), and p{¥(z) are

polynomial functions chosen so that the stresses resulting from mismatch decay with distance
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from an interface. In order to keep the number of unknowns in the solution to a manageable
number, the through-thickness decay lengths of the mismatch effects are established a priori and
sct equal to the thickness t*) of the individual layers in the laminate. A more general
formulation would allow the decay lengths to be variable and left as unknowns to be determined
by minimizing the laminate complementary energy, but once again at the expense of increased
computational cost. The effect of variable through-thickness decay lengths, obtained by

dividing a layer into sublayers, is briefly addressed in Section 4.1.1,

Mismatch in Coefficient of Mutual Influence. The interlaminar shear stress ofy at an
interface, associated with the mismatch in coefficient of mutual influence, is assumed to be
proportional to the mismatch in m;;; of the two plies adjacent to that interface. The
proportionality constant is a product of an unknown constant A;, determined by minimizing the
laminate complementary energy, and the applied axial strain €;;. The same constant is used for

all interfaces.

The mismatch in coefficient of mutual influence at the two interfaces bounding the k™ layer

are defined

Onyz,1(k, 1) =1y, (k—1) = Ny2,(k) (3.54)

My2,1(k,2) =M1 (k) — Nyay (k+1)

with 6ny2,;(1,1) = 8ny2,;(N,2) = 0. The layers above and below the kth layer are designated k-1

and k+1, respectively, as indicated below.

The stresses in a generic layer are influenced by mismatch effects from the two adjoining



39

interfaces. Two quadratic functions are used to describe the through-thickness variation in shear
stress within a layer. One function has the value of the mismatch at the top interface of the kth
layer, and a value of zero at the bottom interface, while the other function has the value of the
mismatch at the bottom interface of the kth layer, and a value of zero at the top interface.

Therefore, the through-thickness function 1§ is assumed to have the form
1@ = [sz.](k, DeMz2/a®)? + 51]12.1(](,2)53‘)(1—7/10‘))2] A (3.55)

Equilibrium then requires that the function 1 have the form

difg

B =

2 2
(@) ={[l(k—)zlz'[5ﬂ12.1(k'1)€£k) + 57112,1(1(,2)58‘)] Cl 5ﬂ12.1(k,2)€§k)}A1 (3.56)

where e and e} are the strains at the top and bottom of the kth layer, respectively, and 1% is

the thickness of the kth layer.

The associated in-plane variation h;(y) is chosen to be the same for all interfaces with the
self-equilibrating shape shown in Figure 3.2. As previously mentioned, the same function is
used for all interfaces to keep the number of unknowns to a minimum. To obtain the shape

shown in Figure 3.2, a combination of two exponential functions is assumed

hl3(y) = Dl e-"y + Dze—h"y (3.57)
Integrating with respect to y and setting the result to zero, provides a relationship between D,
and D;,.

D D2 _
o Ay

0 (3.58)

Setting Dy = -1, hf¥(y) has the self-equilibrating form
his(y) = MC_MM - (3.59)

It follows from cquilibrium that hy,(y) must have the form



40

Figure 3.2. Required form for hy;(y)

o) = [ha) dy = o [ + &)+ (3.60)

where the constant of integration, Dg, must be zero to satisfy the condition that the classical

lamination theory solution is recovered in the interior.

Mismatch in Poisson’s Ratio. Assumptions for stresses arising from a mismatch in
Poisson’s ratio are derived in a similar manner to those developed for the coefficient of mutual
influence mismatch. The mismatch in Poisson’s ratio at an interface results directly in an
interlaminar shear stress, 659, and an interlaminar normal stress, o%). Thus, there are two
contributions to the assumcd stress state arising from mismatch in Poisson’s ratio considerations.
The first contribution is in the form of a direct assumption on the interlaminar shear stress at an
interface, as was done with the cocfficient of mutual influence mismatch. Interlaminar normal
stress, G 2 and transverse in-plane stress, 09‘2, are then derived from the differcntial equations of

cquilibrium. The sccond contribution is in the form of an assumption on o), with 6% and oy
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derived from equilibrium considerations. For both contributions, the stress assumed at an
interface, cither 6% or 05"3), is assumed to be proportional to the mismatch in Poisson’s ratio,
V2, of the plics adjacent to that interface. As with the coefficient of mutual influence mismatch,
the proportionality constants are unknown and are determined by minimizing the laminate

complementary energy. The same constants are used for all interfaces.

The definition of the mismatch in Poisson’s ratio is similar to the definition for the
cocfficient of mutual influence mismatch

Via(k, 1) = via(k—1) - v, (k) (3.61a)

vi2(k,2) = vi3(k) = via(k+1) (3.61b)
with 8v1(1,1) = 8v;,(N,2) = 0.

Expressions for the through-thickness variations in the stresses in the k™ ply are developed
by considering a two ply, unsymﬁctric laminate. Figure 3.3 shows a section of the laminate
with the shear stress G3(y,z) acting over a face parallel to the free edge and the interlaminar
normal stress, G33(y,z), acting on the interfacial plane between layer (1) and layer (2). For layer
equilibrium the integral

1k)

J 810y 2)dz (3.62)
0

evaluated at y = yo must equal the integral
Yo
[8320.2)dy (3.63)
0

over the interface between the two layers. For laminate equilibrium the integral of Gp;(y,z)
through the laminate thickness must be zero. (The latter restriction was not imposed when

developing the through thickness assumptions for 6,3(y,z) in the previous section because cqual
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Figure 3.3. Laminate and Sublaminate Equilibrium

and opposite shear stresses act on the ends of the laminate). Possible through-thickness
functions for the stress component Go3(y,z) that satisfy these equilibrium requirements are

shown in Figure 3.4.

We begin by formulating the through-thickness functions n{(z) associated with the
assumption on the interlaminar shear stress at an interface. In general there will be a non-zero
strain €;; at the (1)-(2) intcrface, and consequently a non-zero shear stress G3 there, since we
are assuming Gj3(y,z) o be proportional to the axial strain and mismatch in Poisson’s ratio at
the interface. In order to have a non-zero shear stress at the interface and still satisfy the
requircment of overall laminate cquilibrium, the through thickness variation of G3(y,z) must
have the form shown in Case A of Figure 3.4. That is, n%(z) must integrate to zero over each
layer thickness. If 0,3(y,2) integrates to zero through the thickness of a layer at any location y,

then G313 (y,z) will be zero at all points y along all interfaces.
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Figure 3.4. Through-thickness distributions of &3 (y,z)

Two quadratic functions are employed to describe the through-thickness variation in shear
stress within a layer as was used for the variation in the shear stress 6?(3)(y,z) in the previous
section. An expression for the function associated with the mismatch at the bottom of a ply can
be obtained by considering the first ply in Figure 3.4. We assume

n%?@2)=Az2 +Bz+C (3.64)

Imposing the condition that n%? is proportional to the mismatch 8v,,(k,2) at the bottom

interface of the k' layer, and has a value of zero at the top interface gives

Sx(y, 2= 0) = 8v,,(1,2)ef (3.65a)

Gy (y, 2 =) =0 (3.65b)

. . . ~ &), . .
and imposing the requircment that G4 is zero at all interfaces as outlined above



G33(y.z =1M)=0 (3.65¢)
G33(y, 2" =0)=0 (3.65d)

yields
n%? = v,k 2)e [ 32(1™)? — 4z4® + 1] A, (3.66)

Similarly, considering ply 2 provides an expression for the function associated with the

mismatch at the top of the k™ ply

n¥%P = vk, 1)e® [312/(10‘))2 - 2z/x“"] A, 3.67)

The through-thickness variation n$§(z) in each layer is then the sum of equations (3.66) and
3.67).

¥ @)= [8v,2(k, 1e® [ 322/(1®)? - 22/1(“)] +8v,(k,2)el [ 32192 — 4211 + 1]] A, (3.68)

where A, is an unknown constant to be determined by minimizing the laminate complementary

energy. Equilibrium then requires that the functions n{9(z) and n§9(z) have the form

n®)(z) = [5v,2(k, 1)e® [ 62/1®)? - 2/&’] + vk, 2)e® [61/({“")2 - 4/1“’]] A, (3.69)
@) = [8\:,2(1(, Ne® [13/(:0‘))2 - zz/tm] + 8vip(k,2)e® ( 22/0%)? - 2224® + z]] A, (3.70)

The corresponding in-plane function my3(y) is chosen to be self-equilibrating with the shape
shown in Figure 3.5 To obtain a shape of this form, a combination of thrce exponcntial

functions is required
mza(y) - Dl e"ly + ch—“k’y + D3c~"k‘y (3'7])

It follows from equilibrium that

D D D
my(y) = ImZS()')dy - _K:_e—hy_:m_;;_e-%k)y _ ¢4}: e"’qh)’_'_D‘ (3.72)
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Figure 3.5. Required form for mys(y)

dmy;3(y)

my;(y) = =-¢,D;e™ - ‘1’4)~3Dz¢_¢'lgy - ¢47\4D3°_°')‘y

dy

45

(3.73)

where the integration constant Dy must be zero so that my;(y) is zero for large y. We can now

sct D; to one, without loss of gencrality, and solve for D; and D3 by imposing the free edge

conditions. The free edge condition on my3(y) gives
m23(y=0) =14+ D2 + D3 =0

and the free edge condition on my, gives

(y=0) =1/ ~ 2 = 23
m = -—
2ty 0k Gahs
D, and D5 are then found to be
AM(1-2A) (A -1)
Dy= — Dy= M7/
2T M) T -y

(3.74)

(3.75)

(3.76)

The through-width functions associated with the Poisson’s ratio mismatch and the dircct
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assumption on the interlaminar shear stress then have the form

= | ey, M)y, B D eay
"2 [" MV S M Ve W G717
A3(1-2y) (A — 1)
— | a0y 3 47 Ay —duAey
= [° MRS S AV W ] G.79)

7
=) e — ) .79

Mys = _¢4|ic—¢¢y + M -%) ey M - 1) e—omy}

Note these forms satisfy the self-equilibrating requirements outlined in the introduction to this
section, provided classical lamination theory stresses are recovered in the interior region, i.c.
provided the laminate is wide enough for the exponential terms to be zero in regions removed
from the edge. Under these conditions, the self equilibrating requirements are identically met as

a result of satisfying the boundary conditions.

y=b

| mas(y)dy = m(b) - mp(0) =0 (3.80)
y=0

y=b

[ my(y)dy =mu(b) - my(0) =0 (3.81)
y=0
y=b

| my3(y)dy = ma(b) - mp(0) = 0 (3.82)
y=0

To develop expressions for the direct assumption on interlaminar normmal stress we again
consider a two layer unsymmetric laminate. We assumec 633(y,z) varies cubically through a
layer thickness so the interlaminar shear stress G;3(y,z) will again vary quadratically. Recall
that for laminate equilibrium and layer equilibrium to be satisfied, G,3(y,z) must be distributed
through the laminate thickness with a form like that shown in either Figure 3.4a or 3.4b. Since it

is desired to have a non-zero interlaminar normal stress at the interfaces and since we have
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already explicitly assumed G,3(y,z) at the interfaces, G3(y,z) associated with the normal stress
assumption will have the form shown in Figurc 3.4b. Using this requirement, and procceding as
was done for the nga) function, the following through thickness variation p&‘? for the interlaminar

normal stress in the k'™ layer is obtained
pR@) = [avn“(k,l)e?) [—2z3/([(*>)3 + 312/(lm)7] + 8v,2°(k,2)£§,“)[2z3/(t°‘))3 - 322/(t%)? + 1]] A, (3.83)
Equilibrium then requires the functions p§§(z) and p¥)(z) have the form

pR(2) = [5\/1%(1(, 1)e® [—622/(1“‘))3 + 61/([00)2] + 8y, (k.2 [622/(10‘))3 — 62/%)? + 1]] Ay (3.84)

P (z) = [5\/171 (k,1)e® [—122/([0‘))3 + 6/([“‘))2] + 8v12°(k,2)£8‘)[ 12z/(t®)3 - 6/(1“‘))2]] A; (3.85)

The 8v,,, in equations (3.83-3.85) are the eqﬁal to the dv,, in equations (3.68-3.70) for layers
above the midplane and equal to their negative for layers below the midplane, since the
interlaminar normal stresses are symmetric with respect to the midplane for the case of uniform
axial extension of a symmetric laminate, and are antisymmetric for the case of uniform bending.
The through-width assumptions associated with equations (3.83-3.85) are of the same form as

equations (3.77-3.79) but divided by ¢ to give dimensionally consistent stress expressions.
3.3.5 Total Stress Assumptions

The final form of the stress assumptions in cach layer of the laminate can now be obtained by
combining the classical lamination theory solution and the stress field refinements obtained from
global and local material mismatch considerations in accordance with equation (3.34). The final

forms of the stress assumptions including all contributions arc then
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o = [1-e*"J [Bi“’z+B§"’] (3.86)

A1 [ Aty _ 4 w)_ 2 ®
- E[e Y- < y] [ &)]2 [8‘1121(1('1)8 + 8“12,10(»2)8}) ] - le) 8‘112.1(](,2)%

off =, ™ [ B{z%/2 + B&"’z+B§“)] (3.87)

A [ R -] [amz.,(k. DE®Z2/(ADY + 8112, (ke (1 — /(W) )]

= L oy _ 1 Aoy ) )
o@-[l—ll_l[e e [BS“Z+BS‘] (3.88)

Aol ey, (7R ey, Ba=D) iy © [ 62/ — 2/ ®
- [e + —_— (7~4 }\3) + - 7\@)6 [Sv 2(k, g} [6//([ Y =-2n ]

4 Sviyk2)e® [ 62/(1%)? — 4/@]]

A;

ot —As) ooty (*s-1) oty
03

(k)33 ()2
+ 0\6 7»5) o . 7\5) }[SV 5 (k. e [ 12z/(t*™)” +6/(t )]

+8vyy (k,2)el) [ 12z/(1®)3 — 6/(t°‘>)2]]

o) =¢, 7»1— [ R e‘**‘*’] [BS“)ZZIZ +BPz+ Bg‘)] (3.89)

A—1
+A, [ e-@o' + 13 (k‘ );:)) —¢4My 14 El: )vs; c-ﬁh)’} I:avn(k' l)El(k) [ 312/00:))2 _ 2Z/l(k)]

+8via(k,2)el) [ 322/t — 4z™ + 1]]

_A_3 sy — ) —wm (-1 —os%y ®) 2 77, (k)\3 &)\2
-2 [e rag ) 16 et e [8v12“(k,1)s‘ [—6z WY + 62/t )]

+8vi3, 0,268 620V - 6

o = o35 [ M %] [ BPr6 + B2 + BPz + Y] (3.90)
-
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- Azd,

ey 2 (1-24) _Q‘),,,y 2()\.3 1) —Q,l..y 32 20
M vy 1) ° +4 ) [5" 2(k, el* [ () —2°Nh ]

+ via (k.26 2109 - 22219 + )|

_ ~bsy 2 (1 -4s) —osl—;y 20\'5 1) —¢sky ®) | _5,34K)\3 42 k)
A3!: +As—— (}% &) +Ag (7%, )»s) [Svn“(k,l)e‘ ( 227 /(1) + 324/t ]

+ SVIZ‘(k,2)E§,k)[223/(l“‘))3 - 322/(z<*>)2+1]]

The assumption that stresses are not dependent on the longitudinal coordinate X, caused o
to drop out of the equilibrium equations. The strain compatibility equations and strain-stress
cquations are uscd to determine of¥), as suggested in Reference [68). It follows from equations

(3.21a-c) that eﬁkl) is a linear function of y and z:
e = A®y 4+ BWz + C® ' (3.91)
Now &{§ can be expressed in terms of the stress field using the constitutive equations (3.1):
e =S o® + 5508 + 5501 + Siecl = Ay + B¥z + CO (3.92)
For large y, the left hand side of equation (3.92) is independent of y because the classical

lamination theory solution is recovered away from the free edge. This implies A® =0, Solving

for cﬁ) then gives:

off =K{z+ K§ - oy S0 + S + ST5ofd (399

1

The constants K and K{ are obtained by matching the solution at large y with the solution

given by classical lamination theory.

limo{® =BPz+BfY =KFz+ K - 53 [si?(Bg‘)uBs*’)+316(Bi">7+59"] (3.94)
y—oe

11

We therefore obtain
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§® §© s S
of) = | B® + S;(f,ggn + Bz + [ BY+ —ﬂagﬂ o BS“’ (3.95)

11 11

;ﬂy‘{SIZOg + 51309? + 5160519}

or more simply

1 & & <) & ) . &) ok
off = ?E)'Hsncn +85126n +816012} - {512092 +5550% + SlsGWH (3.96a)

1t

where
5% = B2+ BY (3.96b)
&% = BPz + BY (3.96¢)
5% =Bz +BY (3.96d)

The stresses are now expressed in terms of the unknown decay parameters ¢; and A; and the
proportionality constants Ay, through equations (3.86-3.90) and equation 3.96. The condition of

minimum complementary energy is used to determine these constants.

3.3.6 Complementary Energy Minimization

The complementary energy can be expressed as a summation over the individual plies as

I, = ZH"" ZH [ L{o)78){(c) 1™avV, - ”(T}T[u]dA (3.97)

=1 &)

where V is the volume of the k™ ply, S, is the portion of the boundary over which
displacements arc prescribed, {u} are the prescribed displacements, {T}T are the associated
tractions on the displacement boundary S, and (S1% is the compliance matrix of the k™ layer

with respect to the laminate coordinate system.

In order to evaluate the energy expression in cquation (3.97) the prescribed displacement {u}
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must be determined. Since the displacement uy; in the laminate does not vary with y over the
ends where the displacements are prescribed, uy; may be obtained by integrating the strain £, at

the center of the laminate. That is
uy = '[Elldxl = J'[§116§k1) + 51269 + 516813 1dX, (3.98)
By symmetry, uj; =0, at X; =0, so at X; = L, the prescribed displacement uy; is given by
uy = (§115§k1) + §12<~31(’k2) + §166(1k2))L (3.99)

The volume integration with respect to X; will yield a factor of 2L multiplying that term, since
the stresses and compliances are not dependent on the longitudinal coordinate X; and, therefore,
it is only necessary to compute the complementary energy per unit length of the laminate.
Additionally, for thin laminates!’? only half of the laminate, (0<X,<b), nceds to be considered.
Further, since explicit piecewise continuous functions have been assumed for the through-
thickness variations, the z integration is performed by summing the individual integrals in z®.
Making these simplifications and substituting for [S], {u}, and cﬁkl) we obtain the following

expanded expression for the complementary energy in the laminate

I, =§IU [Rzz 05;2 +Rj3 o? +Rg G? + Ry 052? + Rgs c? (3.100)

+Rpoffof) + Risof§of + Ryso ol + Ryoffold

1 = = 5 <& T ok = K
+ —_‘[51259‘2 +5160§?J[Sn°n + 81,62, +Sl6012] dVg,
1

where the R;; are as previously defined in equation (3.24), and terms that are not functions of the
unknown paramctcrs have been omitted. Once the integrations have been performed, the

complementary energy I'l, may be written as
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T, = C,(¢:.M) + A1Ca(0i,A) + A2C3(9:,4) + AsCa(di,A) + Ay ACs (9,0:) (3.101)
+ AgA3Ce (05, 0) + Ay A Ca(d,h5) + ATCs(:,A,) + A3Co(di,A) + A3C0(di. )

where the C,, (m = 1,10) are polynomial functions of ¢; and A; multiplied by constants d,, and
are expanded in Appendix A. The polynomials represent the result of the integration in the
transverse direction y, and the d, represent the integration through the thickness of the z
variations of the stresses. Note, that the expressions for the transverse integrations presented in
Appendix A, are not exact expressions for the definite integrals in equation (3.100), but are

based on the assumption that
e =e?P =0 (3.102)

This assumption implies that ¢;b is very large, that is the laminate is wide relative to its
thickness. This places a restriction on the geometry of laminates that can be analyzed using the
present formulation, but the severity of this restriction cannot be ascertained until the parameters

¢; and A; have been determined.

The variation of I, with respect to the unknown parameters ¢;, A;, and A, can now be taken
and set equal to zero. This results in a system of fourteen coupled, non-linear algcbraic

equations for the unknowns written symbolically as

oI, ]

%, =0 (i=1,5) (3.103a)
oMl =0 (=1,6) (3.103b)
a, , :

orl,

™ =0 k=1,3) (3.103¢c)

The form of these equations is shown in Appendix A.
3.3.7 Solution of System of Equations

The problem has now been reduced to solution of the systems of equations (3.103). Since

these equations arc non-lincar, root finding proceeds by itcration. Basically, two numecrical
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approaches can be employed for finding the roots. Since the equations represent the gradient of
the complementary energy, one approach is to find the minimum of the energy function
(objective function) using a general numerical unconstraincd optimization technique. Another
approach that can be taken is to solve the simultancous system using Newton's Mecthod.
Theoretically, the minimization technique should be more efficient, since the search for a
minimum can basically be reduced to a one dimensional problem, that is, 2 minimum can be
found by moving "downhill” on a single surface.l”>! There is not an analogous procedure for
finding a multi-dimensional root. However, both mecthods were tricd in the present

investigation, and greater success was experienced using Newton’s method.

Both Newton’s method and numerical optimization techniques are started by providing the
iterative algorithm with an initial approximate guess to the solution. One difficulty with
Newton’s method is that the solution may not converge from a given initial guess. Convergence
is only guaranteed if the initial approximate solution is in the neighborhood of the solution.
Another problem associated with the solution of non-linear equations is the possibility of
multiple solutions, in our case corresponding to local minima of the energy function, requiring
the iterative procedure to be initiated from several different starting values of the independent
variables to ensure that the "best” solution is obtained. The "best" solution is the one
corresponding to the lowest energy. In the present study, the initial approximate solutions were
generated based upon the results of the KL solution. The KL solution can be solved very
quickly and gives an indication of the magnitudes of the decay parameters ¢; and A;. Secveral
starting points were gencrated by bracketing the KL solution and then incrementing the
independent variables, ¢; and A; within the "brackets”. Initial approximations for the
proportionality constants A, were obtained by simultancously solving the three equations

(3.103c), at the starting values of ¢; and A;. With the decay parameters known, the constants
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Cpm, (m=1,10) can be evaluated, and equations (3.103c) are linear in the unknowns Ay. Negative
values of ¢; and A; were discarded because they physically correspond to growing stresses with
distance from the free edge, and complex roots were discarded because they in general lead to

complex energy.
3.3.8 Solution Implementation

The equations presented in the previous section are incorporated in a FORTRAN program
AAIS. The laminate configuration, i.e stacking sequence, and ply thicknesses, ply orientations,
ply material properties, and loading conditions are required input. With this information, the

classical lamination theory solution is obtained.

Once the classical lamination theory solution has becn obtained, the energy expressions may
be formulated and solved for the unknown constants. As mentioned in the previous section, two
approaches were used to obtain thé constants. IMSL!” routines were called to implement both
approaches. For the optimization, IMSL routine DBCODH was used. DBCODH minimizes a
function of N variables with simple bounds using a modified Newton method and a finite
difference approximation to the Hessian. To solve equations (3.103) as a non-linear system,
IMSL routine DNEQNF was used. DNEQNF uses a variation of Newton’s method and the
finite-difference method to estimate the Jacobian. There are also IMSL routines available that
require the user to provide an exact Jacobian. These methods were not used because of the

length of calculations necessary to obtain the Jacobian matrix.

The program output includes the classical lamination theory stresses, values for the unknown
constants, the laminate strain energy, complementary energy and compliance constants. This
information is then input to a postprocessor that can be used to calculate through thickness and

interlaminar stress distributions at any desired location. Contributions from all effects are



delincated in the output files.
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CHAPTER 4

COMPARISON WITH PREVIOUS RESULTS

In this chapter and in Chapter 5, the approximate theory presented in the previous sections is
applied to the stress analysis of several finite width, straight frce edge laminates subjected to
uniform extension and bending. Because of the general nature of the formulation and its
simplicity in terms of the number of unknown parameters, the applications are straight forward.
Recall from the previous discussion, that for general laminates, the stresses in individual layers
are expressed in terms of fourteen unspecified parameters, ¢; (i=1,5), A; (j=1,6), and Ay (k=1,3)
that are determined by minimizing the laminate complementary energy. For cross-ply and
angle-ply laminates, in which some of the stress components are zero, or are assumed to be zero,
fewer parameters must be determined. For cross-ply laminates the number of parameters
reduces to ten, since )3 and o3 are identically zero, and in symmetric angle-ply laminates
subjected to uniform extension the number reduces to three. The reduced number of unknown
parameters for the angle-ply laminates is a reflection of the assumption made in the present
formulation that o3 is the only non-zero interlaminar stress. In unsymmetric angle-ply
laminates and angle-ply laminates subjected to bending load, the number reduces to six. For a
particular type of laminate, however, the number of unknown parameters is independent of the
number of layers in the laminate, their material propertics, and oricntations. Obtaining classical
lamination theory stresses in the plate interior is the only laminate dependent calculation which
must be performed prior to determination of the interlaminar stresses. Conscquently,

computation times are lincarly proportional to the number of layers in the laminate, and the
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analysis can be applied to laminates with a large number of layers.

As indicated in the previous chapter several simplying assumptions were made in
formulating the present approximate theory in order to obtain a methodology with the efficiency
characteristics outlined above. These assumptions will, to some extent, result in a decrease in
accuracy of the response predicted by the present theory as related to that given by more
complicated models. Therefore, to gain some confidence in the model, this chapter presents
comparisons between predictions of the present theory and well known solutions available in the
literature. First comparisons are presented for laminates subjected to extension loading. These

comparisons are followed by results for laminates in uniform bending.

4.1 Laminates in Uniform Extension

In this section we compare the response predicted by the present method of analysis with that
given by other investigators[35'59'74] for finite width symmetric laminates subjected to uniform
axial strain, £;; = 0.1%. Specifically, four laminates are examined; [9050/0spls, [050/90s0];,
[£4550]s, and [4550/—4550/050/90s0]s. In all laminates, the layers have equal thickness h = 0.25
in., and the thickness to width ratio of the laminate is taken to be one to four. Thus for the
cross-ply and angle-ply laminates we have H =2h and b =8h, where a quasi-isotropic laminate
has H=4h, b= 16h. The clastic properties of cach graphite-epoxy laminae are taken to be equal

[26]

to those given in the early studies of interlaminar stresses'“”’ and are provided in Table 4.1.
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TABLE 4.1. Lamina Material Properties for Typical Graphite-Epoxy

Typical Graphite-Epoxy Material Properties

E, E; G2 Gy vi2 V23
(msi) | (msi) | (msi) | (msi)

20.0 2.1 0.85 0.85 0.21 0.21

4.1.1 Angle-Ply Laminates

The [1#4550]; laminate has been studied by numecrous investigators. In this section
predictions given by the present theory for various stress components are compared with
solutions obtained by Wang and Choi, D) using an eigenfunction expansion solution, and by

Wang and Crossman,3!

using a finite element analysis based upon constant strain, triangular
elements. In all analyses the quasi-three dimensional assumption is made, that is, stresses and
strains are assumed independent of the axial coordinate X;. Before presenting results the issue
of variable through-thickness decay of the local mismatch effects discussed in Section 3.3.4 is

briefly addressed. The terminology and notations introduced in the following discussion will be

used throughout the remainder of this text.

Recall from Section 3.3.4, that in order to keep the number of unknowns in the present
solution to a manageable number, the through-thickness decay lengths of the local mismatch
effects were established a priori and set equal to the thicknesses h® and h®*D of the layers
adjacent to an interface where there is a mismatch in material properties. This specification of

decay length is evident upon examination of equations (3.86-3.90). The extent in the thickness
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direction of the local mismatch contributions can, however, be varied by representing each
physical layer in the body as an assemblage of sublayers. For (0,/0,], or [8,/0;], laminates in
which there is only one interfacial plane where there is a discontinuity in material propertics,
two sublayers in cach layer with thicknesses t; and tz, as shown in Figure 4.1, are all that is
required to assess the influence of the through-thickness decay length of local mismatch effects
on the stress field predictions. For more general laminate configurations, where the stresses in a
generic layer are influenced by mismatch effects from two adjoining interfaces, at most three
sublayers are required. The results presented throughout this thesis were generated by either
modeling each layer as one unit, i.e., no sublayers, or by dividing each layer into two sublayers
with thicknesses t; and t;, as shown in Figure 4.1. Predictions obtained by representing each
physical layer in the body as one unit are denc;ted by N=1, and results obtained by representing

each layer as two sublayers are denoted N=2.

.
iy

t2
T

Figure 4.1. Through Thickness Discretization

The influence of the through-thickness discretization on the stress field predictions and
laminate complementary encrgy has been studied for the [+45], laminate. As shown in Figure
4.1, the decay length of the local mismatch effects will be equal to t; when two sublayers are
used to model a layer. The "optimum" values for t; and (; can be determined, for a particular
laminate, by allowing them to vary in several applications of the AAIS program, and then

sclecting the set that corresponds to the minimum complementary encrgy. For the [145],



laminate considered here, the values t; = 0.11 in., and t, = 0.14 in. were obtained. The
magnitude of o3 at the interscction of the 145 interface and the free edge has also been
dctermined. Values are provided in Table 4.2 which shows the increase in the maximum
magnitude o3, with dccreasing decay length, down to the length corresponding to the minimum

complementary energy.

The through-thickness decay length not only affects the stress magnitudes, but also the
distribution of stress. In order to illustrate this effect, two curves arc presented in the subsequent
figures (Figures 4.2 and 4.4) for the present theory predictions. The curves N = 1, as previously
mentioned, correspond to modeling each layer as one unit, and the curves N = 2 were generated

using the "optimum" thicknesses given above.

The width distribution of the interlaminar shear stress 6,5 at the +45 interface predicted by
the present technique and the analytical solution in [59] are shown in Figure 4.2. As can be seen,
the present solution predictions for both N = 1 and N = 2 agree well with the previous solution.
There is a small difference in the predictions at the intersection of the interface and the free edge.
The elasticity solution of Wang and Choil*! predicts a stress singularity at this point. Similar
behavior is displayed by displacement based finite element formulations, which predict
increasing stresses in elements adjacent to the singular point, as the size of the elements near this
location decreases. The present solution does not include a singularity in the formulation, but as
previously discussed, the magnitude of 6,3 at the interscction of the interface and the free edge

is a function of the through-thickness decay length of the local mismatch effect.

Interlaminar stress distributions along the 45/-45 interface for 653 and 643 are provided in
Figure 4.3. For an angle-ply laminate, Poisson’s ratio mismatch between adjacent plics is zero,

and the in-plane stress G, is zcro, so the present theory predicts identically zero stresses Gy3 and
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TABLE 4.2. Increase in 63 with Decrease in Decay Length

tz (in) 013 (ksi)
0.25 1.43
0.20 1.52
0.15 1.64
0.14 1.67
0.13 1.70
0.12 1.74
0.11 1.78

033 (see equations 3.89,3.90). The most pertinent observation to be made from this figure is that
although the other solutions predict non-zero stresses 6,3 and G33 they are small compared with
oy3. The normal stress is less than 20% of ©)3 and the shear stress O3 is less than 5%. Note
also that the 0,4 distribution predicted by Wang and Crossman{®3] does not satisfy the traction
free edge condition. Wang and Choil>%), on the other hand, predict oy3 to be zero at the free
edge, but their distribution for 6,3 does not satisfy the transverse integral force equilibrium
equation (3.52b), since 0,3 obviously does not integrate to zero over X;. Diffcrences are also
noted in the interlaminar normal stress predictions. Wang and Crossman’s finite elcment
solution predicts tensile stress at the free edge, but Wang and Choi’s elasticity solution predicts

compressive Stresses.

Comparisons of through-thickness distributions of the interlaminar shear stress 6,3 arc also
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Figure 4.2. Comparison With Previous Results [59] for o3 at 45/-45 Interface in
[+4550/—455p); Laminate (€;; =0.1%)

made. In Figure 4.4, distributions at X3/b = 1, and X,/b = 0.89 calculated by the present
approach and Wang and Choi’s eigenfunction expansion solution, are shown. The present
solution for N=2 agrees fairly well with the elasticity solution at X,;/b = 1. The major
discrepancy in the results occurs at the intersection of the interface and the free cdge, where the
present analysis predicts finite maximum stress and the eigenfunction expansion solution
becomes unbounded as X; —» b, and X3 —» h. Away from the free edge, at X;/b = 0.89,
generally good agrecement between the two solutions is observed throughout the laminate

thickness for both N=1 and N=2 of the present theory.
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Figure 4.3. Comparison With Previous Results [35],[59] for 6,3 and o33 at 45/-45 Interface in
[+4550/—455p), Laminate (€;; =0.1%)
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4.1.2 Cross-Ply Laminates

Interlaminar stress comparisons between results predicted by the present theory and finite
element analysis of Herakovich et al.,[’®! for [0s0/90s]s and [9050/0so], laminates are presented
in this section. For these laminates, the in-plane shear stresses ©), and interlaminar shear

stresses O3 are zero. The present solution results were obtained using N=1.

Figure 4.5 shows the width dependence of the interlaminar shear stress 0,3 and normal stress
O13, at the 0/90 interface of the two laminates. The present predictions compare fairly well with
the finite element results, again differing mainly right at the intersection of the interface and the
free edge. Note, the present theory satisfies the traction-free boundary condition exactly, and
classical lamination theory stresses are recovered in the interior. The finite element results
satisfy the traction-free boundary condition only approximately. There ére also differences in
the prediéﬁons of G43 at the free edge with the most noteworthy being that the finite e]cme-nt
method predicts tensile 633 in the [904/04], laminate where the present solution predicts a small
compressive stress. The gradient of the 033 distribution is very sieep near the free edge and the

two solutions predict similar slopes.

4.1.3 Quasi-Isotropic Laminates

Quasi-isotropic laminates have been studied by a number of investigators using the finite
element method. Here we consider specifically the laminate stacking sequence
[4559/—4550/050/9050]s. Illustrative results for this laminate predicted by the present theory are
compared with Wang and Crossman’st*3! finite element predictions. Each layer was represented

as one unit (N=1) in obtaining the present results.

Distributions of interlaminar normal stress 033 along the laminate midplane and the 45/-45



66

0.3 + + 4 } + + + } . N . } - }
q
— [904/ 04 ],, Presant
..... [ Oso 7 904 ], Pressnt
0.2 ¢ v [ 905/ 0y ]., FE [75]
o [0 /90y ],, FE[75]
O33 /€14
(ms|) 0.1 ¢
A
0.0 o 2 Y
0.1 L~ + + ¢ ¢ b—s =
0.0 0.2 0.4 0.6 0.8 1.0
X5/b
{a} o33 Comparison
03 —— i } } }
0.2 1 [ %0s /0 ],, Presemt t
----- [ 0so / 904 1o, Present
v [90s /04 ],, FE [75]
0.1 o [0g /90y ], FE [75]
023 /€11
(msi) 0.0 00—l
0.1 4
-0.2 4
03 '— ' — o }
0.0 0.2 0.4 0.6 0.8 1.0

Xz/b

(b) o3 Comparison
Figure 4.5. Comparison With Previous Results [75] for 6,3 and 033 at 90/0 Interface in
[904/04]; and [04/904]), Laminates (€11 =0.1%)



67

25 1 —___ Present, X, = 3h
o Wang&Crossman[35 ] X, =0
o Wang & Crossman [ 35 ), X, =3h

3.0 S G T S S SIS
..e¥.... Present, X, = 0 i
i

2.0 ¢

15 +
0’33/8x

(ms|) 1.0

Figure 4.6. Comparison With Previous Results [35] for o33 at Various Interfaces in
[4550/—4550/050/9050], Laminate (¢, =0.1%)



68

1.6 34
14 1 Present
o Wang & Crossman [35]
1.2 1
10 ¢
-0’13/8)( an
y 081 +25°
(msi) -
LA I
06 ¢ 90° h "
k——b—f T /o
0.4 1 (o
[
20
0.2 o °
<71 o
o o ° °
0.0 =—=m e
0.0 05 1.0
Xo/b

Figure 4.7. Comparison With Previous Results [35] for C;3 at 45/-45 Interface in
[4550/-455p/050/90s0]; Laminate (g;; =0.1%)

interface are shown in Figure 4.6. Clearly, both methods agree quite well at the midplane.
Similar results were obtained at the interfaces X5 = h, and X3 = 2h. The predictions of the two
methods at the 45/-45 interface (X3 = 3h), however, differ significantly. The present analysis
only shows the normal stress crossing the X; axis once, while the analysis in [35] predicts two
crossings, with the stress reversing sign and becoming compressive near the free cdge. Possible

causes for this differcnce are discussed in the next chapter.

Figures 4.7 and 4.8 show comparisons of the interlaminar shear stress predictions, at the
45/-45 (o13) and 0/90 (o,3) interfaces, respectively. Again, for both cases, the present theory

agrees quite well with the finite element results.
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4.2 Laminates in Bending

As previously discussed, interlaminar stress calculations for laminates in bending have
received relatively little attention in the literature. However, bending loads are common in
practical applications. Salamon!®! has presented results based upon a finite difference solution
similar to that presented by Pipes and Pagano.m] for a [055/9050]s laminate with the material
propertics given in Table 4.1 and subjected to end moments about the transverse (X;) axis.
Chan and Ochoa (%! have prescented results for several [0,/6;], laminates under the same

moment loading. Comparison is made here with the solution in [64].

Comparison of the interlaminar normal stress along the 0/90 interface is shown in Figure 4.9.

The laminate is loaded such that the maximum bending strain €7 =-0.1% is dcveloped at the
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top surface. Stresses arc normalized, as in [64], by the elementary bending stress (G;; ) that
would develop in a undirectional laminate (8=0) at the X3 location corresponding to the 0/90
interface (Gy; = 10 ksi). As the figure shows, the agreement between solutions is not as good as
in the axial extension case, but the trends are similar. The major discrepancy occurs at the frce
edge, where the finite difference solution predicts tensile stress about 1-1/2 times larger than the

present solution.



71

0.012 + t t t t
0.010 ¢ 1
s c
0.008 < 1
90° _L Present
— 0° h o Salamon [64] of
Oa3 / G11 0.006 + " =% it
0.004 <
0.002 ¢
0.000 QM—WMMW
-0.002 + } ' ; } ' ; .
0.0 0.2 0.4 0.6 0.8 1.0
X,/b

Figure 4.9. Comparison With Previous Results [64] for o33 at 90/0 Interface in [904/04],
Laminate in Bending



72

CHAPTER 5

APPLICATIONS AND DISCUSSION

The comparisons presented in the previous chapter showed that the predictions of the present
solution are, generally, in good agreement with predictions obtained from a variety of other
solution methods for extension and bending loads in a variety of laminates. In this chapter, the
analysis is applied to additional laminates to demonstrate the utility of the method as a design
tool and to provide a brief study of the influence of laminate configuration and loading on the
interlaminar stress state. Also, as was discusséd in Chapter 3, the total stresses in the laminate
arise from two physical mechanisms - local and global mismatch in material properties. In the
subsequent discussion the relative significance of these contributions to the stress field is

examined.

Results in the form of through-thickness and interfacial stress distributions are presented for
symmetric and unsymmetric cross-ply laminates and for symmetric angle-ply and quasi-
isotropic laminates subjected to bending and extension loads. Through-width distributions are
presented only at ply interfaces. Distributions for other locations, however, can be obtained
easily. Comparisons are presented for results obtained using the present formulation, the KL
solution, and finitc element solutions, where available. As subsequently shown, the current
solution predicts interlaminar stresses which are generally in close agreement with finite elcment
results, and improves the KL solution primarily at interfaces where global equilibrium is
satisfied by the lamination theory stresses, but local mismatch in material properties induccs

large interlaminar stresses. When studying the figures, recall that the magnitudes of stresses
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predicted by the finite clement models at the intersection of layer interfaces and the free edge
(singular point) are a function of the fineness of the mesh near this point. Thus emphasis should
be placed on comparison of entire stress distributions away from these points where finite

element results are more accurate.

Unless otherwise noted, the finite element results for extension of cross-ply laminates were
generated using a program previously developed by Norwood!’®! and the finite element results
for the angle-ply and quasi-isotropic laminates were generated using the program CLFE2D.I"
Norwood’s program is based upon a full three-dimensional formulation, while CLFE2D makes
the quasi-three dimensional assumption. Quarter symmetry models (i.e. one quarter of cross

section modeled) were used in all analyses.

For the symmetric laminates the axial strain loading was & = 0.1%, ahd the axial curvature
loading Qas x, = 0.1. For the unsymmetric laminates, it was more convenient to apply end
loads rather than end strains and curvatures to obtain the classical lamination theory results. For
these cases axial extension load N, and uniform bending load M, were applied. The matcrial
properties of a T300-5208 graphite epoxy used in the analyses are provided in Table 5.1. All

plies were taken to have thickness t = 0.005 in.
5.1 Cross-ply Laminates

Cross-ply laminates are the simplest of the laminate configurations because there are no off
axis plies. Consequently, the coefficicnt of mutual influence is zcro in all plies and the
interlaminar shear stress, G;3, is identically zero throughout the laminate. These laminates are
therefore studicd to isolate the influence of Poisson’s ratio mismatch on the development of

interlaminar shear stress 6,3 and interlaminar normal stress O3;.
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TABLE 5.1. T300-5208 Graphite-Epoxy Material Propertics

T300-5208 Graphite-Epoxy Material Properties

E, E; G2 Gy V2 V3
(msi) (msi) (msi) (msi)

19.2 1.56 0.82 0.52 0.24 0.49

Results are presented for three laminates: [04/904]s, [904/04]5, and [04/904],, subjected to
bending and extension loads. Classical lamination theory stresses for the symmetric and
unsymmetric laminates for these two load cases are provided in Appendix C (Tables C.1 and
C.2). With the lamination theory stresses given, the unknown parameterﬁ in the assumed stress
expressioﬁs have been determined by minimizing the laminate complementary energy. The
values obtained for the present theory, along with the parameters ¢, and A, required in the KL
solution are given in Tables 5.2 (symmetric laminates) and 5.3 (unsymmetric laminates). The
KL solution parameters are shown within parenthesis. Note, ¢,, ¢3, A, and A; do not appear in
the tables since 0); and o3 are zero for these laminates. All results presented for the current
method were obtained by representing each layer as one unit (N=1). The layers were all of equal
thickness, h = 0.020 in. Analyses made with N=2, where each layer was divided into two
sublayers of equal thickness, resulted in higher encrgies. The through-thickness decay length for
N=1 then corresponds to the number of plies in the individual layers of the laminate. The decay

lengths, denoted by h, are also presented in Tables 5.2 and 5.3.

The symmetric and unsymmetric laminates respond very differently to applied loads. In

symmetric laminates the membrane-flexural coupling terms, Bj; are all zero, so that when these



TABLE 5.2. Solution Parameters for Symmetric Cross-Ply Laminates

Solution Parameters For Symmetric Cross Ply Laminates
Extension Bending
Constant [(04/904]s | [904/04)s || [04/904]s | [904/04]s
¢, (1/in) 47.32 52.59 39.10 71.73
(71.66) (58.63) (39.49) (115.7)
¢4 (1/in) 28.30 37.36 33.13 45.15
o5 (1/in) 33.42 36.39 42.92 45.73
A - 0.972 0.952 1.979 1.758
(0.655) (3.952) (1.000) (1.000)
A3 3.817 1.754 8.025 4.422
Aq 11.49 9.406 4.564 4.307
As 2.175 3.341 3.326 3.291
A 1.905 1.817 1.543 1.313
A;X1075 4.151 -1.311 -4.705 -4.381
(psi)
A;3X1075 -2.919 3.988 -6.104 3.870
(psi)
h (in) 020 020 020 020
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TABLE 5.3. Solution Parameters for Unsymmetric Cross-Ply Laminates

Solution Parameters For Unsymmetric Cross Ply Laminate

Constant Extension Bending
¢z (1/in) 68.72 70.33
(201.4) 108.2
&4 (1/in) 52.79 54.73
¢s (1/in) 89.25 60.69
M 0.915 2.660
(1.000) (1.000)
A3 3.448 2.831
Ay 3.632 3.712
As 1.312 5.911
Ae 0.862 0.726
A;X1075 -7.158 -7.493
(psi)
A3X107° 5.074 -3.685
(psi)
h (in) 020 020
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laminates are subjected to extensional loads they remain plane. The unsymmetric laminate, on
the other hand, has non-zero B;; and By and will deflect out of plane when extended.
Comparison of stress distributions in symmetric and unsymmectric laminates then provides an
indication of the effect of out-of-plane deflections on the interlaminar stresses. Norwood!"®! has
shown that when the out of plane deflections are large - on the order of the laminate thickness - a
nonlinear analysis which accounts for geometric coupling effects is required to accurately
characterize the interlaminar stress response. In the present analysis, all out of plane deflections

are assumed small so that a linear analysis is valid.

5.1.1 Symmetric Laminates - Extensional Load

Stress distributions for [04/904], and [904/04], laminates are provided in Figures 5.1-5.8.
Stresses determined by the finite element analysis, the KL solution, and the present solution,
equations (3.88-3.90), are shown. Through-thickness distributions are provided for the top half
of the laminate, with stresses plotted as a function of the normalized distance i3 = X3/h from the
laminate midplane, where h denotes one layer thickness. Interlaminar shear stress is anti-
symmetric about the midplane and interlaminar normal stress is symmetric. Interfacial
distributions are also shown, with stresses plotted as a function of the nommalized distance X;/b
from the laminate center, where b is the laminate half width. In all plots, stresses are normalized
by the average far field stress Ny;/2H where Ny, is the far field load obtained from lamination

theory, and H is the laminate half thickness. The normalized stresscs are denoted 633 and Gz;3.

Figure 5.1 shows comparison of finite element results, the KL predictions and the present
solution for the through-thickness distributions of the interlaminar normal stress 33 at
X3 = 0.999b for the two laminates. Evident from these figures is the significant improvement of

the present theory over the KL solution, with the present solution predicting trends similar to
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those displayed by the finite element results. In particular, note the asymmetry in response of
the 0/90 and 90/0 laminates predicted by both the finite element analysis and the current model,
while the KL solution, which is based entirely upon global equilibrium predicts close to
symmetric response of these two laminates. That is the KL solution predicts the stress response
in the two laminates to be basically mirror images of each other. Also significant from a design
point of view, is failure of the KL solution to predict tensile interlaminar normal stress, at any
location in the [904/04]; laminate, since tensile interlaminar normal stresses are more
detrimental to the integrity of laminated composite structures than compressive interlaminar

normal stresses.

The difference in the stress response of the two laminates and the predictions of the three
methods is further illustrated in Figure 5.2 which presents o33 distributions along the 0/90
interface. Clearly, the present theory agrees quitc well with the finite element results for both
laminates, but the KL solution diverges near the free edge in the case of the [904/04], laminate.
Consistent results from all three solutions are obtained for this laminate only at sufficiently large

distance from the free edge (e.g. X; = 0.95b).

Similar comparative through-thickness and interfacial distributions for the interlaminar shear
stress O3 are shown in Figures 5.3 and 5.4. Again, the results of the present solution compare
more favorably with the finite element results than do the KL results. The most noticeable
discrepancies arc observed in the through-thickness distributions. The relative difference in the
maximum value of the shear stress obtained by finite elements and the present solution is 10%,
for the 90/0 laminate, while the relative difference between finite clements and the KL solution
is approximately 38%. Also note that the stress gradients in the thickness and width directions
predicted by the present theory and finite clement method are more severe than estimated by the

KL solution.



79

2.0 t + 4 t } t t
o FE
Pressnt /o
oKL [o |\
]
&
o LN
o *
Xa/h
1.0 2
90°

0.0 —t———————+—+—+ et t—t—+
003 -0.02 -0.01 0.0 0.01 0.02 0.03 0.04 0.05

"Oa3

a) [04/904]s Laminate

2.0 et ——+

Xa/h
1.0
lm"
0.0 ‘iﬁ.v..,...}.,v;{':v.:,,é,,.,f
-0.04 -0.03 -0.02 -0.01 0.0 0.01 0.02

"Oa3

(b) [904/04]s Laminate

Figure 5.1. Comparisons for o33 at X3/b=0.999 in [04/904];, and [904/04]; Laminates -
Extension



80

0.025 — |
o FE

0.020 + Present c.{’
... KL

0.015
033

0.010

0.005

0.000

0006 L . .

0.8 0.9 1.0
Xo/b

(a) [04/904])s Laminate

0.015 {
o FE
Present
...o-- KL 9
0.005 A 4
_ e
— \.\
G33 "
-0.005 + Y bt
i b
-0.015 |
mo :'
a2
oo ' H
-0.025 ———————— e
0.8 0.9 1.0

(b) [90,/0,]s Laminate

Figure 5.2. Comparisons for o33 at 0/90 Interface in {04/90,], and [904/04] Laminates -
Extension



81

20 ——

Xa/h

1.0

0.0 L
-0.02

(a) [04/904]s Laminate

2.0
Xa/h
1.0 499
OO
00 L—
-0.01 0.0 0.01 0.02

023
(b) [90,4/0,4]s Laminate

Figure 5.3. Comparisons for 0,3 at X3/ =0.993 in [04/904], and [904/04], Laminates -
Extension



82
0.01

o FE
Presant
e g... KL

0.0 oo o waewoo

623

-0.01 ¢

002 "4 —ub v+
0.8 0.9 1.0

(a) [04/904]s Laminate

002 ——— v+ p v+ +

0.01 ¢

023

0.0 1

-0.01

4

0.8""V'Y"0.9 10
Xa/b
(b) [904/0,]s Laminate

Figure 5.4. Comparisons for 03 at 0/90 Interface in [04/904], and [90,/04]), Laminates -
Extcnsion



83

The inability of the KL solution to predict the difference in behavior of the 0/90 and 900
laminates described above suggests that this solution does not include enough degrees of
freedom in the assumed stresses to accurately define the stress response, in some cases, and that
"local effects” might be the cause of the asymmetry in stresses obscrved in these laminates. The
relative influence of the local and global effects is illustrated in Figures 5.5 and 5.6, which
delineate all of the contributions to the stress field incorporated in the present theory. The
equilibrium contribution represents the first term in equations (3.89,3.90), the shear mismatch is
the second term (multiplying A,) and the normal mismatch is the third term (multiplying Aj).
Note that although the KL solution and the equilibrium solution are identical in form, the KL
solution curves in Figures 5.1 and 5.2 are not coincident with the equilibrium contribution plots
in Figures 5.5 and 5.6 since different ¢’s and A’s were employed to obtain the two distributions

(see Table 5.2).

Figure 5.5 provides through-thickness distributions for the interlaminar normal stress O3
near the free edge. Equilibrium and mismatch effects contribute throughout both laminate
thicknesses, except at the midplane, where the stresses result solely from the equilibrium
contribution. There is no local mismatch in material properties at the midplane. As discussed
earlier, the through-thickness extent of the mismatch contribution is controlled by the level of
discretization used to model each layer and would decrease if the 0° and 90° layers were divided
into sublayers. The most significant observation made from this figure is that the normal
mismatch contribution is the component primarily responsible for the differences in the stress
predictions provided by the present solution for the two laminates. The equilibrium and shear
mismatch contributions have similar influences on the total distribution in both laminates, but

the normal mismatch contribution has opposite effects.
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X2/b=0.999 in [04/904], and [904/04), Laminates -
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The influence of the normal mismatch effect on the total interlaminar normal stress is more
vividly illustrated in Figure 5.6 which presents individual contributions to the O33 Stress
component along the 0/90 interface of the [904/04], laminate. The mismatch effects are not as
significant for the [04/90,], laminate and are not discussed here. Distributions for this laminate
are provided in Appendix C (Figure C.1) for completeness. Recall, the shear mismatch
contribution to the normal stress is zero at a/l interfaces and therefore is not shown in the figure,
Near the free edge, the normal mismatch component has magnitude approximately equal to the
equilibrium contribution but of opposite sign; the mismatch contribution totally changes the
character of the interfacial stress distribution and Causes a reversal in stress near the free edge,
tending toward positive stress as the free edge is approached. This type of behavior cannot be
predicted by the KL solution, because of the constraint imposed by the their solution that
stresses in all layers decay at the same rate. At the midplane, the mismatch terms are zero, and
the stresses result solely from equilibrium. The current theory, the finite element method and the
KL solution all predict the nommal stress to be distributed over the interfacial plane X5 =0
(midplane) as shown in Figure 5.7. The KL solution requires the through width stresses at the

0/90 interface to have the same form, as displayed in Figure 5.2b.

Similar distributions for the interlaminar shear Stress Oy3 are provided in Appendix C
(Figures C.2-C.3). As was the case for the interlaminar normal stress the normal mismatch
contribution is responsible for the asymmetry in the through-thickness distributions 023 observed
in Figure 5.3. The influence of the mismatch contribution on the shear stresses is directly
evident from Figure 5.4, resulting in an intensification of the stress in both magnitude and

gradient.

Another issuc briefly addressed is that of solution accuracy as related to the number of

eigenfunctions employed in the stress expressions. Several solutions have been developed

(-2



87

0.01 —— e ——}—+
0.00
_  -0.01 1 —o— X 1
033
Xy
002 1 1
90° e
0° h)*z
003 + k—b—of T
004 L e
0.8 0.9 1.0

Figure 5.7. o33 Stress at the 0/90 Interface and Midplanc for [904/04], Laminate - Extension



88

20 t t t {
o FE
n=10
9o N=6
*..Nn=2
o..- KL
Xa/h
1.0+ %
90°
0.0 —t $ + bt ——t A

T N T M T T T 1 Al T T
-0.05 -0.04 -0.03 -0.02 0.01 0.0 001 0.02 0.03 0.04 0.05
"Ca33
a) [04/904]s Laminate

2.0 } + 1
X3/h
10+ 2
90°
0.0 —

t Pt { t ] + t % t % T T
-0.05 -0.04 -0.03 -0.02 -001 00 0.01 0.02 0.03 0.04 0.05
033
b) [90,/0,]; Laminate

Figure 5.8. 033 Stress at X3/b=0.999 in [04/904], and [90,/004), Laminates for n=2,6,10 -
Extension



89

TABLE 5.4. Complementary Energy for Different Orders of Approximation

Complementary Energy for Different
Orders of Approximation
[04/904], [904/04]4

N o, X10* (Ib—in.) N ¢;, X10° (Ib—in.)
n=2 (KL) 4.9696 n=2 (KL) 44233

2 4.8185 2 4.3325

6 4.5743 6 4.0304

10 4.429022 10 3.711539

throughout the course of this investigation, with each modification increasing the number of
terms incorporated in the assumed stress states. Recall that the latest modification includes
fourteen parameters in the stress expressions for the most general laminate configurations. As
previously indicated, this number reduces to ten for cross-ply laminates. Figure 5.8 illustrates
the variation of the interlaminar normal stress 33 with )_(3 as computed by solutions employing
two parameters (2 term solution, n=2), six parameters (n=6), and the full ten term solution
(n=10). The KL solution and finite element solutions arc also presented for reference. Stress
expressions for the two term solution are provided in Appendix B. The stress expressions for the
six term solution arc identical to those given in cquations (3.89-3.90) without the last terms
(terms multiplying A3). As the figure shows, the predictions of the two term solution are ncarly

coincident with the KL solution. The six term solution provides improved results, relative to the
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finite element predictions, but still hasn't captured the differences in response of the 0/90 and

90/0 laminates. The ten term solution, as previously mentioned, captures this asymmetry.

Laminate complementary encrgy values have also been evaluated for the various degrees of
approximation. These values are provided in Table 5.4. As the table shows, the n=10 solution
gives the lowest energy of the solutions considered. No statement can be made at this point

regarding solution convergence.
5.1.2 Symmetric Laminates - Bending Load

In this section distributions obtained from the present methodology and the KL solution for
[04/904], and [904/04] laminates subjected to uniform bending loads are presented. Through-
thickness and interlaminar stress distributions are provided. As was done in the previous
section, through-thickness plots are presented only for the top half of the laminate, but the stress
symmetry conditions about the laminate midplane are diffcrent for bending than they were for
extension. In the case of uniform bending, interlaminar normal stress is antisymmetric about the
midplane, and interlaminar shear stress is symmetric. Interfacial distributions are again plotted
as a function of the normalized distance X,/b from the laminate center, where b is the laminate
half width. Unless otherwise noted, all stress components are normalized by M;; H/2I, where
M, is the far field moment, given from classical lamination theory, H is the laminate half
thickness, and I is the moment of inertia of a unit width section of the laminate. The normalized

stresses are denoted by Gs3 and Ga3.

Figures 5.9 and 5.10 show comparisons between the present solution and KL predictions for
through-thickness distributions of the interlaminar normal and shear stresses at two locations
near the laminate free edge. The most significant obscrvation to be made from these figures is

that both solutions predict more severe interlaminar normal and shear stresses in the [904/0,4],
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laminate than in the [04/904], laminate for the same loading, with the maximum stresses in the
90/0 configuration being nearly twice as large as those in the 0/90 layup. Physically this is
cxpected and is fortunate, since the 0/90 laminate is much stiffer in bending and therefore
preferred for such applications. The forms of the through-thickness distributions obtained by the
two approaches are however different. The most noticeable differences are in the interlaminar
normal stress predictions for the [904/04], laminate at X,/b = 0.999, as shown in Figure 5.9b.
The present solution predicts much larger through thickness gradients than the KL solution, but
the KL results show interlaminar normal stress twice as large as the present theory at the 950/0
interface. Much smaller differences are observed in the predictions of the two methods for the
interlaminar normal stress in the 0/90 laminate at the same X, location (Figure 5.9a). In both
laminates, the solutions are in much closer agreement slightly away from the edge at
X,/ =0.995. The interlaminar shear stress predictions of the two methods, on the other hand,

still have different forms at X,/b = 0.990, as displayed in Figure 5.10.

The distributions presented in Figures 5.9 and 5.10 suggest that the mismatch effects have a
stronger influence on the stress distributions in the [904/04]; laminate than in the [04/904],
laminate. This is more clearly illustrated in Figures 5.11 and 5.12 which show width
distributions of both interlaminar stresses at the 0/90 interface. Figure 5.11 shows the interfacial
distribution of 033 for both laminates. The two methods predict essentially the same results in
the [04/90,4], laminate. However, the results are quite different for the [904/04], laminate. The
KL solution predicts a much steeper stress gradient, 2 maximum stress approximately three
times larger than the present theory, and a larger stress reversal away from the free edge. The
mismatch component reduces the stress at the frec edge and flattens the distribution as the
distance from the free edge becomes larger. Differences are also exhibited in the shear stress 64

(Figure 5.12). For the [904/04], laminate the current solution predicts maximum stress twice as
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large as KL.

The above discussion in conjunction with results obtained for the extension case suggest that
the additional mismatch terms included in the present theory, over those included in the KL
formulation, are required for accurate analysis in some cross-ply laminates subjected to bending
loads. Additional analyses and comparison with other solutions and experimental results, as

thcy become available, are necessary to support or refute this claim.

The contributions of the various physical effects for this problem are similar to the extension
case and are not discussed. Total through-thickness and interfacial distributions of stresses along
with the individual contributions of global and local mismatch components are provided in

Appendix C (Figures C.4 - C.7)

It is also of intcrest to compare the stresses developed in laminates when subjected to
extension load with those that develop when the laminate is subjected to uniform bending. Here,
a comparison is made between the stresses at the 0/90 interface in the [04/904], laminate. In
order to do so, a slightly different normalization scheme is used for the bending stresses than was
used in the previous figures. In the following figures the bending stresses at the 0/90 interface
are normalized by the average of the longitudinal stress G, in the 0° and 90° plies obtained from
classical lamination theory at that interface. A similar normalization was used for the axial
extension load case and provides an indication of the severity of the interlaminar stresses relative

to the in-plane far field stress 6y;.

Figure 5.13 shows comparisons of the 0/90 interface interlaminar normal and shear stresses
for the two load cases. The shear stress distribution is very similar for both load conditions, but
the character of the normal stress distribution is somewhat changed. In the bending analysis, a

larger maximum normal stress is noted, and a larger stress gradient shifted toward the free cdge
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is observed. Further, the normal stress does not experience as large of a reversal away from the
free edge in the extension case as in the bending case. The boundary layer width is
approximately the same for the two load conditions. The maximum magnitude of both the

interlaminar shear stress and the interlaminar normal stress occurs for the bending case.

5.1.3 Unsymmetric Laminates - Extensional Load

This section discusses results predicted by the present theory for extensional loading (Ny;) of
an unsymmetric [04/90,4], laminate. Through-thickness distributions of normalized classical
lamination theory in-plane stress G,,, for extensional and bending loads (to be discussed in the
next section) are provided in Figure 5.14. The stresses for extensional loading are normalized by
N11/2H, and the stresses for bending loads are normalized by M H/21. The linear variation of
the in-plane stresses through the thickness for the extension loading results from a positive K11
curvature which develops in the plate because of the laminate-membrane flexural coupling. For

the bending load, the laminate develops both curvatures x;; and K2

Through-thickness distributions (for the entire laminate thickness) of the normalized stresses
O33 and Gy3 near the free edge are shown in Figure 5.15. The bottom surface of the laminate is
denoted by X3/h=~1 and the top surface corresponds to X3/h=1. As the figure shows, shear
stresses are nearly symmetric about the 90/ interface and the normal stress is close to
antisymmetric. Changing the stacking sequence from [04/904], to [904/04], simply results in a
change in sign of the shear stress distribution. The maximum tensile normal stress occurs at

X3p =0.35, and the maximum shear stress develops at the 90/0 interface.

Figure 5.16 illustrates the character of the interfacial distributions of normal and shear stress
along the 0/90 interface. Note that a solution bascd entirely upon overall cquilibrium, predicts

zero interlaminar normal stress at this interface. Recall that the interfacial normal stress, or the
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normal stress at any z-location predicted by the equilibrium solution, is proportional to the
moment of the in-planc transverse stresses G,, about an axis parallel to the longitudinal axis X,,
lying in the X, ~Xj; plane of interest. This moment is represented by the term B (k) in equation
(3.90). As can be seen from Figure 5.14, moment equilibrium is satisfied by the lamination
theory stresses at the 0/90 interface; that is B;(k) is zero there. Interlaminar nommal stresses are
therefore not required at this interface for sublaminate equilibrium, but arise solely from local
mismatch effects. As it turns out, the mismatch contribution is not critical for the load case
considered, but it may be significant for compression loading, or in a combined loading
situation. For the interlaminar shear stress (Figure 5.16b), mismatch and equilibrium effects
both contribute at the 0/90 interface. The mismatch contribution shifts the peak total shear stress
toward the free edge and results in larger maximum stress and steeper gradient than predicted by
a solution based on equilibrium considerations alone. As a result, shear stresses predicted by the
present theory are distributed over a smaller portion of the 0/90 interface than an equilibrium

solution would indicate.

S.1.4 Unsymmetric Laminates - Bending Load

In order to illustrate the influence of load conditions on the interlaminar stress state, an
analysis has also been conducted for uniform bending of the unsymmetric [04/90,), laminate.
Comparison of through-thickness distributions for the extensional (Figure 5.15) and bending
(Figure 5.17) load cases indicates larger through-thickness gradients and larger normalized
interlaminar stresses for extensional loading. However, for the bending load case, the maximum
normalized interlaminar normal stress occurs near the 0/90 interface, and is larger at the 0/90
interface than in the extension case. This stress is tensile if the stacking sequence is reversed, or

equivalently, if the dircction of the applicd moment is changed. Conscquently, bending may
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represent the more severe loading case, in terms of delamination, for this laminate configuration.

Interfacial distributions for the contributions of the various physical cffects are clearly
delineated in Figure 5.18. In contrast to the extensional loading case, mismatch and equilibrium
effects contribute to the normal stress at the 0/90 interface, but the equilibrium contribution to
the shear stress is zero. The interlaminar shear stress at this interface results from mismatch
considerations alone, and is distributed over the laminate width with the self-equilibrating form
shown in Figure 5.18b. The mismatch contribution to the normal stress tends to flatten the total
distribution and reduces the maximum stress at the free edge from that predicted by the

equilibrium contribution.

5.1.5 Unsymmetric Laminates - Combined Load

The results of the previous two sections can be superposed to obtain results for a variety of
combined load conditions, and examination of the figures together provides some insight into the
types and combinations of loading that will magnify the interlaminar stresses or make them less
severe. One loading condition of interest is that which produces constant strain €;; and zero
curvature xj; in the laminate, since this type of condition allows for direct comparison with
symmetric laminates subjected to uniform end extension. Under such a loading, the laminate
will assume a pure cylindrical shape, with curvature Ky;. As Norwood!”®! has discussed, the
upper half of a [0/90], laminate is equivalent to an unsymmetric [0/90], laminate constrained
from deflecting out of plane by the restraint u3(X,; X;,0) = 0 applied to its lower surface when
uniformly extended. Comparison of the interlaminar stress distributions for these two laminates
then gives an indication, within the limits of linear theory, of the influence of the out-of-plane

deflections on the severity of the interlaminar stresses.
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Stress distributions along the 0/90 interface of [0,/904], and [04/90,4), laminates are provided
in Figure 5.19. The maximum interlaminar normal stress at the free edge is tensile in both
laminates (Figure 5.19a). The distribution for the unsymmetric laminate is, however, flatter
away from the free edge than in the symmetric laminate, and attains a lower peak value. The
maximum ¢33 predicted by the present theory in the unsymmetric laminate is 24% smaller than
that obtained for the symmetric laminate. Similar observations are made for the interlaminar
shear stress o,3 (Figure 5.19b). In both laminates the shear stress rises sharply as the free edge is
approached and then decreases rapidly to satisfy the traction free boundary condition. The stress
gradient in the unsymmetric laminate is seen to be slightly larger than in the symmetric
laminate, but as was the case for the normal stress, the maximum shear stress is smaller in the
unsymmetric laminate. The largest Gy3 predi-cted by the present theory is approximately 12%
percent smaller in the unsymme;ric laminate than in the symmetric laminate. The predicted
trends are in agreement with those predicted by Norwood,!”®! using a finite element analysis, and
with his conclusion that interlaminar normal stress and shear stress "in the unsymmetric

[04/904]; laminate are relieved by out of plane deflections""6).

5.2 Angle-Ply Laminates

In contrast to cross-ply laminates, angle-ply laminates, with individual laminae oriented at
angles +0 and —0 to the global axis isolate the influence of local mismatch in coefficient of
mutual influence on the interlaminar stresses, since Poisson’s ratios are identical for the +8 and
-0 layers. Results are presented only for the extension of symmetric angle-ply laminates
because of difficultics encountered when analyzing some angle-ply laminates subjected to
bending load, and unsymmetric angle-ply laminates subjected to extension loads. Bcefore

presenting the results for the symmetric laminates a brief discussion of the nature of this problem
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is provided.

In laminates where there is large local mismatch in coefficient of mutual influence between
adjacent layers, in combination with a curvature x;, the numerical solution of the non-linear
system of equations became unstable, and jumped back and forth between two widely spaced
solutions. One of the solutions made sense physically, but the other led to extremely small
decay rates. This was found to be the case for both symmetric laminates subjected to bending
loads and unsymmetric laminates under uniform extension. Incidentally, this problem was not
restricted to angle-ply laminates. The solution for a [0/30], laminate subjected to uniform
bending, for instance would not converge, while no problems were encountered with a [0/75],
laminate. The difference in these laminates is the magnitude of the local mismatch in coefficient

of mutual influence and the curvature k.

Unfortunately, the source of the problem is still unknown, but a few possible explanations
are proposed. First, it is possible that some inconsistencies may have been introduced into the
analysis by the manner in which the end conditions are being applied. Currently, displacements
in the axial direction (u;) are prescribed and the other displacements are taken to be zero,
simulating the conditions that would be present in an end gripped specimen. This is in effect
introducing an axial dependence on the stresses that might be more severe for cases where k3 is
large. Another approximation made, that may loose validity when large curvatures are present,
is the assumption that only half of the laminate width nceds to be modeled. However, thc KL
solution runs for all of these laminates. This suggests that if the above mentioned
approximations are the source of the problem, the errors introduced by making them are
magnified by the additional terms associated with coefficient of mutual influence mismatch that
are incorporated in the current solution. Or there may be an error in the computer program

associated with terms involving the product of the coefficient of mutual influence mismatch and



109

lincarly varying stresses due to Kjp. Finally, there is the possibility that the problem is purely

numerical.

5.2.1 Symmetric Laminates - Uniform Extension

For the uniform extension of symmetric angle-ply laminates, the transverse in-plane stresses
G,y from classical lamination theory are zero. Thus, interlaminar normal stress 033 and shear
stress G,3 are not required for equilibrium, and have been shown to be small compared with ©y3.
The present theory and KL solution predict identically zero 63 and 033, so the discussion that
follows will focus on the effects of fiber orientation and stacking sequence on interlaminar shear
stress G13. Results are presented for two different stacking sequences - clustered [+0,/—0,], and
alternating [(10);], - of angle-ply laminates with 8 =10°. To achieve the same level of local
mismatch contribution for all laminates, a through-thickness decay length of one ply thickness (
h=0.005) was used. For the clustered laminate this decay length corresponds to representing
each layer as two sublayers of equal thickness. The decay lengths and remaining constants in the
assumed stress states are provided in Table 5.5. For the angle-ply laminates, the only constants
of interest are ¢, ¢3, A, and A;, and the results of the study indicate ¢, = ¢3. As previously
discussed, this reduced number of constants is a reflection of the fact that the approximate
solution predicts ©;3 to be the only non-zero interlaminar stress component for angle-ply
laminates subjected to extensional load. Classical lamination theory stresses for the two

laminates are provided in Table C.3.

Through-thickness distributions of the interlaminar shear stress 6,3 at X;/b=0.999 for the
two different stacking sequences are provided in Figure 5.20. In this figure, and subsequent
figures, stresses are normalized by the average applied far field stress, Ny;/2H. Normalized

stresses are denoted with an overbar. The results in Figure 5.20a for a ((+10);/(-10);1, show
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TABLE 5.5. Solution Parameters for Angle-Ply Laminates

Solution Parameters For Angle-Ply Laminates
Constant ((£10).], [10,/-10, 1,
¢, (1/in) 120.7 109.3
Ay 4.135 3.727
A X107 2.145 2.060
h (in) 0.020 0.020

reasonably good correlation between all three methods. Similar results were obtained for other
"clustered” angle-ply laminates with stacking sequence of the type [(+0)2/(—0),],. Recall that
the interfacial shear stress 6,3 predicted by the KL solution is proportional to the through-
thickness integral of the in-plane shear stresses G, above or below the interface of interest. This
integral is represented by the force sum B in equation (3.87). For the clustered family of
laminates this force sum is non-zero at all locations X3, and sub-laminate equilibrium requires

the interlaminar shear stresses be non-zero throughout the laminate thickness.

On the other hand, in "altemating” angle-ply laminates (Figure 5.20b) equilibrium is satisfied
at the second interface by the lamination theory stresses, that is B is zcro there. Consequently,
interlaminar stresses arc not required for equilibrium and the KL solution predicts identically
zero shear stress ©y3 at this interface, while the modified solution of the present study and finite
element model predict shear stress of considerable magnitude. These large local interlaminar

shear stresses can be attributed to the large mismatch in n,, , at the —6/0 interface. Also note
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that oy3 is large at the 10/-10 interface, having a magnitude of 0.25 times the average applied
stress. The stress is large because the the mismatch in 1,y ,is large. As shown subsequently, the

shear stresses decrease for larger fiber angles as the mismatch in 0,y , decreases.

The relative contributions of the two physical effects for this problem are depicted in Figure
5.21 where the total through-thickness distributions of 63 are presented along with distributions
of the global and local mismatch contributions to the stress field. It is clear from Figure 5.21
that for the layer discretization used to obtain these results, i.e. representing each layer as two
sublayers with thicknesses equal to one ply thickness, there is no local mismatch contribution in
the top and bottom halves of the first and second layers, respectively, whereas global mismatch
or equilibrium contributes throughout. As discussed previously, the through-thickness extent of
the local mismatch contribution to the stress field is govemed by the thickness of the sublayers
adjacent to interfaces where a mismatch in material properties is present. In contrast to the
clustered configuration, both equilibrium and mismatch contribute throughout all layers of the
[(£10),], laminate (Figure 5.21b). Again, the extent of the mismatch contribution would be

changed if different "sublayer” thicknesses were used.

Interlaminar distributions of &3 along interfaces in the [(£10),], laminate are presented in
Figures 5.22 and 5.23. Figure 5.22 shows the predictions of the present solution, the KL
solution and finite element analysis along the first and second interfaces of the laminate. The
three methods compare quite well at the first interface (Figure 5.22a), but only the present
solution and finite element results agree along the second interface. As discussed above, the KL
solution predicts zero shear stress o3 along the entire second interface, and the total stress
results solely from local mismatch effects. In Figure 5.23 the distributions of the total shear
stress and the individual mismatch contributions along the first interface are delincated. The

local mismatch distribution is self-equilibrating, integrating to zero over X,, while the
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cquilibrium contribution is ecquivalent to a non-zero interfacial force. The results indicate a
larger contribution from local mismatch at the intersection of the interfacc and free edge than
from global mismatch (equilibrium). However, the boundary layer width is approximately the

same for both effects.

The influence of fiber orientation on the stress field characteristics is illustrated in Figures
5.24-5.26 for both "clustered" and "alternating" stacking sequences. Figure 5.24 shows the
variation in coefficient of mutual influence and Poisson’s ratio as a function of 8 for a T300-
5208 graphite epoxy with the material properties given in Table 5.1. As can be scen, N2
attains a maximum value at @ = 15°, Thus, the interlaminar shear stresses are expected to be
maximum in angle ply laminates with adjacent +15/-15 layers. Figure 5.25, which shows the
variation in the maximum intensity of 6;; with 8, for both stacking sequences, demonstrates that
this is in fact the case. The parameters in the assumed stress expressions are also functions of 0.
The variation of ¢; with 0 for the two stacking configurations is depicted in Figure 5.26a where
it is evident that ¢, attains a minimum at 8 = 30° for both stacking sequences. The constant A;
on the other hand reaches a maximum at @ = 25° (Figure 5.26b). The constant A, is independent
of 0,but does depend on stacking sequence. As indicated in Table 5.5 A, =4.135 for the

alternating sequence and A, = 3.727 for the clustered scquence.

5.3 Quasi-Isotropic Laminates

Quasi-isotropic laminates are currently used extensively in practice because of their isotropic
in-plane elastic propertics. Symmetric quasi-isotropic laminates made with equal percentages of
0, 90, +45, and 45 degrec laminae orientations are ¢xamined here. There are twelve unique
configurations of this type, as shown in Table 5.6, if it is assumed that the +45 and -45 layers can

be interchanged. In the table, the laminates are divided into two groups; those with adjacent 145
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layers and those with interspersed 145 layers. This terminology will be used throughout the

subsequent discussion.

In quasi-isotropic laminates, in contrast to the special cases of angle-ply laminates and
cross-ply laminates discussed in the previous sections, both a mismatch in vy, and n;,; may
exist between adjacent layers. Consequently, all stresses are in general non-zero, and the total
fourteen parameters ¢; (i=1,5), }., (G=1,6), and A, (k=1,2,3), in the assumed stress

expressions must be determined in order to evaluate the stresses in the individual plies.

5.3.1 Extensional Load

Analyses have been conducted for the uniform extension of all twelve laminates listed in
Table 5.6, but because of the large number of plots necessary to characterize the stress field near
the free edge in each laminate, results in the form of through-thickness and interfacial stress
distributions are provided for only three of these: [90/45/0/-45]),, [45/90/0/—45], and
{0/45/-45/90],. These laminates were chosen to illustrate the influence of adjacent +45 layers
and interspersed 45 layers on the interlaminar stress state and to study the relative magnitudes

of the mismatch and equilibrium contributions to the stress field for different stacking sequences.

Stress distributions for the interspersed [90/45/0/—45], and [45/90/0/—45], laminates and the
(0/45/-45/90], laminate with adjacent +45 layers are provided in Figures 5.27-5.31. Stresses
determined by finite element analysis, the KL solution, and the present theory (equations (3.86-
3.89)) are shown. The finite element results for the [90/45/0/—45], and [0/45/—45/90], laminatcs
were generated previously by Herakovich®] using the program CLFE2D, and the finitc element
results for the [45/90/0/-45], werc obtained by the author using Norwood's!”! program. The
present theory results were gencrated using a through-thickness decay length of onc layer

thickness. All layers were of equal thickness, t*) = h =0.005 in. The parameters ¢; , A;, and A,
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TABLE 5.6. Quasi-Isotropic Laminates

Interspersed 145 Laminates | Adjacent 45 Laminates (ksi)
[90/45/0/—45], [90/0/145],
[0/—45/90/45], [90/145/0],
[45/90/0/—45], [0/90/445],
[45/90/—45/0], [0/145/90],
[45/0/90/-45];, {£45/90/01,
[45/0/—45/90], [£45/0/90],

for the laminates considered in this section are provided in Table 5.7. Solution parameters for
the remaining quasi-isotropic laminates listed in Table 5.6 are provided in Appendix D (Tables
D.2-D.5). In all figures, stresses are normalized by the average far field stress Gy = Nj;/2H
where Ny is the far field load, and 2H is the laminate thickness. Classical lamination theory

stresses for the three laminates subjected to uniform extension are provided in Table D.1.

Figures 5.27-5.29 display through-thickness distributions of the interlaminar stress
components for the two interspersed stacking sequences. The results in Figure 5.27 and 5.28 for
the interlaminar stresses in the [45/90/0/—45], laminate show similar trends in the predictions of
all three methods. The results of the present theory for the interlaminar shear stress 6,3, shown
in Figure 5.27a, and the interlaminar shear stress 633, presented in Figure 5.28, however, show
better correlation with the finite element solution than cxhibited by the KL solution. The present
solution more accurately predicts stress magnitudes, and more closely approximates the

through-thickness variations in the stresses than does the KL solution.



TABLE 5.7. Solution Parameters for Quasi-Isotropic Laminates

Solution Parameters For Quasi-Isotropic Laminates
€1 =0.1%
Constant || [45/90/0/—45), || [90/45/0/—45], || [0/£45/90],
&, (1/in) 54.85 50.02 61.75
7 (1/in) 59.82 61.75 58.81
3 (1/in) 47.06 99.81 97.46
04 (1/in) 70.08 56.23 56.04
s (1/in) 95.28 174.5 62.39
M 6.725 1.386 3530
A, 7.801 3.189 4302
A3 12.31 3.661 8.821
A4 11.90 21.11 19.86
As 1.490 5.047 5.189
s 1.572 0.352 5.082
A1X107° 6.203 3.703 1.565
(psi)
A;X107° -10.57 -3.801 -1.505
(psi)
A3;X1073 -38.81 -1.002 -1.068
(psi)
h (in) 020 .020 .020
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Similar observations are made with regard to the nomal stress predictions, depicted in
Figure 5.27b. All methods correlate fairly well, except at rlhe laminate midplane. At the
midplane, the present solution and KL solution predict larger compressive interlaminar normal
stress than finite elements. A possible cause for the difference between the finite element

predictions and the present solution is discussed later in this section.

The similarities in the predictions of the three methods for stresses in the [45/90/0/—45],
laminate discussed above suggests that, for this laminate, mismatch effects do not have much of
an effect on the overall distribution of stress in the laminate; that is, global equilibrium

dominates the development of the interlaminar stresses.

In the remaining interspersed laminates, where the 90 degree laminae is positioned at the top
or bottom of the stack, [90/45/0/—45), and [45/0/—45/90],, mismatch effécts have a significant
influence on the total stress distributions. This is clearly illustrated for the [90/45/0/—45],
laminate in Figures 5.29 and 5.30. These figures show comparisons of the three methods for
through-thickness distributions of o3 (Figure 5.29a) and interlaminar normal stress (Figure
5.29b), and for interfacial distributions of 0,3 (Figure 5.30). Evident from Figures 5.29a and
5.29b is the significant improvement of the present theory over the KL solution, with the present
theory predicting trends more similar to those displayed by the finite element results. The
modified solution of the present study and the finite element model predict more severe
through-thickness gradients for the interlaminar normal stress, and generally larger shear stresses
0,3 than the KL solution. At the first interface (90/45), for instance, the present theory and finite
elements predict intcrlaminar shear stress o3 (Figure 5.29b) 1o be approximately 6% of the
average far ficld stress, where the KL solution predicts identically zero stress. At this interface,
equilibrium is satisfied by the KL solution, due to the in-plane shear stress G, being zero in the

90 degree layer. The non-zero stress G55 at this interface then results solely from the mismatch
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in Ny, between the 90 degree and 45 degree layers.

There are also differences in the predictions of the three methods for the interlaminar shear
stress Gp3. Through-thickness finite element data is not available for 6,3, but interfacial results
(first and second interfaces), presented in Figure 5.30, indicate that the present solution compares
more favorably with finite element results than do the KL results. Recall, that the KL solution
requires the stress distributions at these interfaces to be of the same form, since stresses are
constrained to decay at the same rate in all plies. The present theory and the finite element
method, on the other hand, exhibit variations in the character of the interfacial distributions for
these two interfaces. The most significant difference in the interfacial predictions for O3
observed is at the second interface where the local mismatch contribution causes a reversal in
stress near the free edge (Figure 5.30b). These differences and the differences discussed above
in the 0,3 and o33 predictions could be significant when evaluating the structural response Aof
candidate laminates to an applied load, and are clear evidence of the influence of local mismatch

effects on the total stresses and the necessity for including these effects in the stress analysis.

Similar conclusions can be drawn for the quasi-isotropic laminates with adjacent 45 layers;
that is, in these laminates local mismatch effects are significant and a design or analysis based
upon stress predictions obtained from global equilibrium considerations alone can be
misleading. This observation is illustrated in Figure 5.31, which shows predictions for
interlaminar shear stress 6,3 and 633 in a [0/45/—45/90], laminate which are typical of results
obtained for laminates having adjacent +45 degree layers. Note from Figure 5.31a that the
maximum shear stress develops at the 45/-45 interface, where the mismatch in M2, is the
largest. The present theory predicts o3 at the 45/-45 interface 5% smaller than predicted by
finite elements, while KL underpredicts the finite element stresses by 38%. Similar trends were

observed in the predictions of the three methods for the other quasi-isotropic laminates with
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adjacent 145 layers. In the other laminates, the shear stress predicted at the +45/-45 interface by
the present solution and the finite element method was as much as 50% to 100% larger than

predicted by the KL solution.

Results are also provided in Figure 5.31b for the interlaminar normal stress in the
[0/+45/-45/90], laminate. Again, these results are typical of those obtained for the group of
adjacent quasi-isotropic laminates. Note that the finite element solution predicts larger through-
thickness gradients in the normal stress than predicted by cither the KL solution or the present
solution. The present theory appears to be starting to pick up the trends displayed by the finite

clement results, but does not predict the large compressive stress at the 45/-45 interface.

One possible cause for the differences in normal stress predictions of the present theory and
finite element methods at the 45/-45 interface of the laminate shown in Figure 5.31b is &c
assumed lack of coupling, in the present analysis, between the coefficient of mutual influence
mismatch and the interlaminar stresses 0,3 and G35, and between Poisson’s ratio mismatch and
interlaminar shear stress ©,3. This lack of coupling is also thought to be the reason for the poor
correlation in the normal stress predictions of the present solution and the finite element results
at the midplane of the [45/90/0/—45], laminate discussed at the beginning of this section, and for
the differences in the normal stress predictions of the present theory and finite elements at the

first interface of the [45/—45/0/90], discussed in Section 4.1.3 (Figure 4.6).

Recall from the development in Chapter 3, that the coefficient of mutual influence mismatch
was assumed to affect only the ;2 and o3 components of stress while the Poisson’s ratio
mismatch was assumed to affect only the 6,2, 023 and o35 stress components. This assumption
could be made for the problem studied since the assumption that stresses are independent of the

longitudinal coordinate X led to a reduced system of equilibrium equations, where the stresses
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o2 and o3 uncoupled from G5, G023 and G33. However, as briefly discussed in Chapter 3, the
stresses are coupled by the compatibility equations, and would be in the equilibrium equations
for more general problems where the longitudinal independence could not be assumed.
Therefore, an improved stress field assumption would include the same eigenfunctions in the
expressions for all of the stresses, and would relate interlaminar stresses 0,3, G,3, and Ga3 to the
mismatch in coefficient of mutual influence and interlaminar shear stress G,3 to Poisson’s ratio

mismatch.

To summarize the results of this section, the above discussion indicates that stacking
sequence has a significant influence on the relative magnitudes of the mismatch and equilibrium
contributions to the stress field. In the laminates with interspersed 45 layers, the factor having
the largest effect on the magnitude of the different contributions is the location of the 90 degree
laminae in the stacking sequence. This is explained by considering Poisson’s ratio mismatéh.
The variation in Poisson’s ratio with fiber orientation 6 for a T300-5208 graphite-epoxy, is
shown in Figure 5.24. As can be seen from the figure, the mismatch in Poisson’s ratio between a
+45 degree or -45 degree layer and a 0 degree layer is much larger than the mismatch between a
45 degree layer and a 90 degree layer. In the interspersed laminates with the 90 degree laminae
as a middle layer, there is only one occurrence of adjacent O degree and 45 degree layers. In the
interspersed laminates with the 90 degree laminae placed at the top or bottom of the stack, on the
other hand, there are two occurrences of adjacent 45 degree and O degree layers, and the
mismatch contribution to the total stress state is more significant. In the laminates with 145
layers, the coefficient of mutual influence mismatch is large, and the local mismatch effects
again contribute significantly to the total stress. These observations are made clear by
examining Figures 5.28, 5.29 and 5.31 together and comparing the relatives differences in the

predictions of the present method and KL solution for the different stacking sequences.
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5.3.2 Bending Load

In order to illustrate the influence of load condition on the interlaminar stress, quasi-isotropic
laminates subjected to bending load (negative curvature x;;) have also been analyzed. In this
section, comparisons of the through-thickness distributions of the interlaminar normal stress and
shear stresses for a [45/—45/90/0], laminate subjected to bending (-x;;) and extension loads are
presented (Figures 5.32-5.34). As usual, distributions are presented for the top half of the
laminate. In the case of bending, interlaminar normal stress is antisymmetric about the
midplane, and interlaminar shear stress is symmetric. For the extensional load case, interlaminar
shear stress is antisymmetric about the midplane and interlaminar normal stress is symmetric.
As has been done in the previous sections, bending stresses are normalized by My, H/2I, and
extensional stresses are normalized with respect to Ny /2H where M;;, and Ny, are the applied
far field loads. All results were generated using a through thickness decay length of one layer

thickness (h = 0.005 in.), and the solution parameters ¢;, Aj and A, given in Table 5.8.

Comparison of the through-thickness stress plots in Figures 5.32-5.34 shows similar
distributions for all interlaminar stress components for bending and extension load. In both
cases, the maximum interlaminar normal stress is tensile and develops at X3/h=16. The
maximum shear stresses also occur at the same through-thickness location in both load cases.
The maximum interlaminar shear stress 6,3 develops at the first interface (X3/h=3), and the
interlaminar shear stress Gp3 attains a maximum at the second interface. The combined load
case would then represent a more severe condition in terms of delamination potential, with

bending and extension stresses combining above the laminate midplane.



TABLE 5.8. Solution Parameters for [45/—45/90/0], Laminate

Solution Parameters For [45/—45/90/0], Laminate

Constant Extension Bending
¢ (1/in) 57.07 72.03
2 (1/in) 63.25 58.37
¢3 (1/in) 99.07 69.22
o4 (1/in) 66.82 46.96
¢s (1/in) 95.58 48.99
A 1.966 4.744
A 4,034 5.372
A3 5.070 10.71
Aq 18.02 11.80
As 1.565 4.816
Ae 6.062 1.777
A2X1073 1.773 1.388
(psi)
A, X1073 -3.741 22.372
(psi)
A3X1075 -1.892 -2.857
(psi)
h (in) .020 020
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary of Method

The purpose of this study was to develop an efficient approximate solution for interlaminar
stresses near free edges of finite width, laminated composites subjected to bending and extension
loads and to demonstrate the utility of the methodology. The analysis developed is an extension
of a method recently presented by Kassapaglou and Lagace,m] and is based upon the principle
of minimum complementary energy and an aséumed stress state, derived by considering material
mismatch considerations and global equilibrium requirements. In the KL solution only the
mismatch between laminae and‘laminatc material properties was considered. The present
solution extended their technique by including additional terms in the stress assumptions, which
account for the local material property mismatch in coefficient of mutual influence and Poisson’s
ratio between adjacent layers in the laminate. The differential equations of equilibrium, the
interfacial traction continuity and boundary conditions of stress were identically satisfied by the
assumed stresses. The strain compatibility equations and interfacial displacement continuity
conditions were satisfied approximately by imposing the stationary condition of laminate

complementary energy.

The developed methodology is general, and in theory, can be extended for the analysis of
other load cases, such as in-plane bending and torsion, or to more general structural
configurations, provided a plane stress state is recovered in the member’s interior region, and the

stress components do not vary with the longitudinal coordinate. The plane stress solution can be
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obtained from an analytical solution, if available, or from a numerical technique, such as the
finite element method. The methodology could then be employed in a global-local analysis to
obtain stress solutions in regions of high stress gradients with a coarser solution used to define

the response outside of these regions.

As the previous paragraph indicates, a major advantage of the method presented is the fact
that in-plane stresses, obtained from classical lamination theory, are the only required input to
the solution. Other advantages, as compared with numerical solutions, or some of the
complicated analytical models that have appeared in the literature, include the relative simplicity
of the theory, in terms of the number of parameters that must be determined in order to obtain
stress distributions, solution efficiency, output readability, and the ease of application for the
simple geometry considered. For the most general laminate, only fourteen parameters must be
determined prior to calculating stresses. This number reduces to ten for cross-ply laminates and
to three for symmetric angle-ply laminates subjected to extensional load. For bending of angle-
ply laminates, or extension of unsymmetric angle-ply laminates, the number reduces to six. In
any case, the number of parameters is independent of the number of layers in the laminate, their
material properties, and orientations. Consequently, the analysis can be applied to laminates
with a large number of plies. Finally, a major assct of the solution is the insight it provides into
the fundamental physical mechanisms, global equilibrium and local mismatch effects, that
contribute to interlaminar stress development. Contributions from each of these effects are
clearly delineated in the solution output. This type of information cannot be obtained from a

finite element analysis.
6.2 Conclusions

The development of the solution methodology has been accompanied by application of the
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stress analysis to several finite width laminates subjected to uniform extension and bending load.
Symmetric and unsymmetric cross-ply laminates, symmetric angle-ply laminatcs, and symmetric
quasi-isotropic laminates have been studied. Comparisons in stress predictions were presented
for results obtained using the present solution, the KL solution, and finite element solutions,

where available. Several conclusions can be drawn based upon the results of these studics:

(1) The present method compares well with finite element methods and provides
significantly improved stress predictions as compared with the KL solution which is bascd
entirely upon global equilibrium considerations. In particular, the present solution more
accurately predicts stress magnitudes and interlaminar stress gradients near interfaces where
there is a large material property mismatch between adjacent layers. Further, the present method
accurately characterizes the through-thickness gradients in the layer stress fields near the
interfacial surfaces, while the KL solution predicts the laminate behavior to be qualitatively the

same throughout the thickness of the layers.

(2) The relative importance of local mismatch and equilibrium considerations was found to
be a function of stacking sequence. This was the case for all of the laminate families analyzed.

Specifically, the following observations were made:

(a) In angle-ply laminates subjected to axial loading large mismatches in the
coefficient of mutual influence induced large interlaminar shear stress ©j3. In
alternating stacking sequences, [(+6/—0),],, local mismatch resulted in stresses of
considerable magnitude at interfaces wherc the KL solution predicted zero stresses.

These results were in agreement with finite element results.

(b) In symmetric cross-ply laminates, subjected to both bending and extension

loads, local mismatch effects had a more pronounced cffect on the stress predictions in
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[90/0], laminates than in [0/90], laminates, and were the cause of the asymmetry in
stresses observed in these laminates. More specifically, the mismatch contribution
associated with Poisson’s ratio mismatch and the direct assumption on intcrlaminar
normal stress (referred to as normal mismatch contribution) was found to be the
component primarily responsible for differences in the stress predictions provided by the

present solution for the two laminates.

(c) In the quasi-isotropic laminates considcred (laminates with equal percentages of
0, 45, -45, and 90 degree layers) the degree of local mismatch contribution was also
found to be dependent on stacking sequence. Specifically, in intersperscd
configurations, with the 90 degree layer separating the 45 and -45 degree layers, the
mismatch contribution to all interlaminar stress components was small compared with
the equilibrium contribution. For these laminates it was concluded that the magnitude of
the stresses was primarily dependent on the force and moment developed at any
through-thickness location by the intralaminar stresses ©,;. This was physically
explained by the fact that the Poisson’s ratio mismatch and mismatch in coefficient of
mutual influence between adjacent layers in this laminate are smaller than in
interspersed laminates with the 45 and -45 degree layers separated by zero degree layers
and in laminates with adjacent +45 and 45 degree layers. These results clearly
indicated the influence of local mismatch effects on the stresses and the necessity for

including mismatch considerations in laminate design.

(3) For the laminates considered, bending and extension loads resulted in similar

interlaminar stress distributions in terms of magnitude and boundary layers widths.

(4) Comparison of results for an unsymmetric cross-ply (0/90]; and a symmetric cross ply
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[0/90], subjected to extension load showed that the out of plane deflections of the unsymmetric

laminate relieved both interlaminar shear stress and interlaminar normal stress.

(5) Difficulties were encountered in the analysis of laminates having large local mismatch in
cocfficient of mutual influence in combination with curvature x);. This was true for both
symmetric laminates subjected to bending loads and unsymmetric laminates under uniform
extension. Thus, at the present time, there is a limitation on the general applicability of the
developed solution. The source of the problem has not been identified but may be attributed to
some possible inconsistencies introduced by the manner in which end conditions are currently
applied, or possibly with the assumption that only half of the laminate width needs to be
analyzed. The assumption of modeling half of the laminate width is recognized to be an
approximation for laminates with off-axis plies. This approximation may loose validity when
large curvatures K, are developed. It is also possible that the problem is purely numerical oris
the result of a coding error. This topic was discussed in more detail in Section 5.2 and is an area

requiring additional study.
6.3 Recommendations for Future Work

The solution method developed has been shown to gencrally produce accurate predictions for
interlaminar stresses near straight free edges of laminated plates. Although the model was
developed for specific load conditions, and was based upon some assumptions that limit its
application, it can be extended to more general analyses. Some recommendations for extension
of the method and additional possible applications are presented in this section. First, however,
some suggestions are provided for solution modifications that might lead to increased accuracy

in the stress predictions. Recommendations related to solution efficiency are also provided.

The results of the previous chapter showed that the least accurate results were obtained for
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the interlaminar normal stress. It was suggested that improvements in the stress predictions
might be achieved by incorporating additional exponential terms in the assumed stress
expressions which account for the coupling between coefficient of mutual influence mismatch
and interlaminar stresses o,3 and 033, and the coupling between Poisson’s ratio and interlaminar
shear stress 6;3. This could be accomplished by including an additional term in Equation (3.87)
for the interlaminar shear stress 0,3 with the same form as that multiplying A; but proportional
to the mismatch in Poisson’s ratio. Similarly, additional terms in the expressions for 6,3 and
033 with the same forms as the mismatch terms incorporated presently, but proportional to
mismatch in coefficient of mutual influence could be included. The remaining stress

components would then by determined from the differential equations of equilibrium.

Another possible improvement to the stress assumptions would allow for a priori unspecified
through-thickness decay rates for the local mismatch effects. One way in which this could be
incorporated into the present theory would be to assume exponential functions for the through-
thickness variations of the local mismatch, expressed in terms of unknown through-thickness
decay parameters as was done for the width variations in the present solution. The 6,3 variation
would require one exponential function, while 6,3 and 633 would require a combination of two

functions.

The above recommended modifications should lead to improved accuracy, however, the
additional level of complexity introduced, may not be worth the effort. Further, solution
efficiency will decline as the number of terms is increased. In this connection, the issue of
computational efficiency of the current solution is addressed. The current solution gencrally
exccutes in less than 15 CPU seconds on an IBM RS6000, for twenty different initial
approximations to the solution. This run time, is of course dependent on the convergence

tolerance used when solving the non-lincar system and how good the initial guess is. In
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gencerating the results presented in this thesis, as many as 500 initial guesses were employed for
the most genceral laminates. This large number of starting points was felt nccessary because of
the difficulty with the present method of determining a good initial guess. Additional work is

necessary to improve this aspect of the solution.

Other areas of possible future work include extension to additional load cases such as in-
plane bending and torsion, and to problems where stresses arc a function of the longitudinal
coordinate X,. The method could also be extended to analyze more gencral structural
configurations. One configuration of particular interest, is a stiffecned panel. Extension of the
method to analyze skin-stiffener interface stresses, or stresses in the tip of a stiffener blade is an

area recommended for future work.

Coupling of the stress analysis with an experimental program and some type of failurc
analysis or delamination initiation predictions is also recommended. Analytical failure
predictions or delamination initiation predictions, based upon the stress analysis of the present

work, could then be correlated with experimentally observed behavior.

Finally, the methodology should be linked with a numerical optimization program to develop
a design capability for laminated composites in which interlaminar stresses are considered. This
capability will provide engineers with an efficient methodology for designing delamination

resistant structures.
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Appendix A: Energy Expression Expansion
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In this appendix the energy expression presented in Chapter 3 is expanded. To facilitate the
expansion contracted notation rather than tensor notation is used for the stresses. The assumed
stresses are written in the form

Om = FniGmi + Fn2Gm2 + FnaGma + FnaGma + FrusGnms

where F,,; are functions of the decay parameters and y, and G; are functions of z. The

functions G,,; can be taken directly from the stress expressions in equations (3.86)-(3.90) and are

not repeated.
Fm =0 m=2,3,4
Fs; = asie ™

Fe1 = (1 +ag€el)

Fpp=(1+ az_%tza-%y +aye %)

Frn = (3mae " +ame %) m=3,4
Fa3 =0 m=2,3,4
Font = (ama€ ™™ + ase ) m=5,6
Frt = (am6€ ™7 +am7c 2% + apge %) m=2,3,4
Fpq =0 m=5,6
Frus = (amo€ ™7 + amioe % + a6 %) m=2,3,4
Fns =0 m=S5,6

where the a;;'s are determined from inspection of equations (3.86)-(3.90).

The energy expression can be written as given below

M. =C; + A;Cy + AC3 + A3C4 + A1 A3Cs
AsA;Ce + AjA3Cr + ATCs + A3Cy + A3Cyp

where the terms C; are defined below
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Cy = 172(th 83, + Thagh + (haghs + 15185 + f3,831)
+ 152832822832 + fo1 132861832 + fa2fs1 842851 + fs1122861 822

+ (ax/07 + a3/( G227 ) )g22 + (a61/91 )ger

C, =fs51f53251853 + fo1f63861863 + f63122863822 + f63f32863832 + f53f42853842

+ [ a64/03 + a6s/( X203 ) 1863

C3 =104822824 + 32134832834 + f42144842844 + (22034822834
+ f24f32824832 + f61124861824 + 61134861834 + f51144851 844

+ [ax6/04 + a37/(A304) + 228/ (Ag®s) 1 824

Cy =f20f55822825 + 32035832835 + f42f45842845 + 22135822835
+ f25f32825832 + f61f25861825 + f61f35861835 + f51fa5851 845

+ [ ay9/0s + a210/(As0s) + a211/(A69s) 1 225
Cs =fe3f24863824 + f63134863834 + f53144853844
Cs = f24f35824835 + (34125834825 + f24f25824825 + f34f35834 835 + faafas 8aa 8as
C7 =fe3f25863825 + f63f35863835 + fs3fas@s38as
Cs =172( thed + gk ]
Co = 1/2[ 34834 + tagda + 3485 1 + 024 f34 824834

Cio = 12135835 + 13583 + fisgis 1+ fasfas8asg3s

The integrals required to evaluate the enecrgy expression are cxpanded below. In these

expressions lower case fi,; and gm; are used to denote the integrated product of the Fy; and Gy,
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functions.

form =n=2,3,5:

[[RonnOmGdlydz = [fﬁ,zgﬁz + 2Af2fimaBmaEmt + 2A3 2 insEm2 Bms +2A2A3fmg Fns
+ A0, + A%f,’nsg?,.s} Rina/2

for m=2, n=3:

[[RnOmOadydz = [ 122132820832 + A2(f22f34822834 + f24132824832)
+ Az(f2af1s5822835 + fasf32825832) + Az As( faa 35824835 + f2sf34 825834 )
+ Ad(f2a 34824 834) + Ad(f2sT3s g25835)] Rn

form =n=5,6:
[[RmnOmOndydz = [frznlgzml +2A1 (fm1fm38m1 8m3) + A%(flzn3gﬁl3i Rmn/2
for(m=6,n=2,3),(m=5n=4):

Iijncmondde = [ fml fn2gm1 Eny + Al (fm3 fnznggnz) + AZ(fml fn4gml gn4)
+ A3(fn1 fas 8m1 8ns) + A1 A2(fn3fag + Bm3Bne) + A1 As(fms fnsgmsgns)] Rimn

where

2 2 2
£33 = 2a31/¢7 + 2ax /(A1 §2) + 252622 + 2ap 823633 + 373633

form=n=34),(m=2,n=3)

fm2fn, = am2(@n,€22 + an3€32) + a3(an,€2,3 + 3n3€33)

f22f24 = 26/04 + 227/(R394) + 228/(Agds) + a22(a26€26 + a27€2 6 + 223¢2 3)
+an(axses s +a27€37 + 38€3,3)



153

form=n=34),(m=2,n=3)

fm2fns = am2(an,C2,6 + @n7€2,6 + 2ng€2,8) + am3(@n,€2,6 +247€3,7 + ng€3 g)

fa2fas = a9/0s + az10/(Asds) + az11/(Aeds) + azz(azoez,0 + a210€2,10 + @211€2,11)
+ a3(az9€3,9 + a210€3,10 + 3210€3,10)

form=n=34),(m=2,n=3)

fm2fas = am2(8n9€2,9 + 2n10€2,10 + @n11€2,11) + Am3(an9€2,9 +2n10€3,10 + 2n11€3,11)

form=n=23,4),(m=2n=3)

fmafhs = ame(@n9€6,9 + n10€6,10 + An11€6,11) + Am7(ano€7,9 + 2410€6,10 + an11€7,11)
+ amg(an0€38,9 + 2410€8,10 + an11€8,11)

fmsfas = ans(@mo€s,9 + am10€6,10 + am11€6,11) + An7(8m9€7,9 + am10€6,10 + Am11€7,11)
+ 2,8(2m9€8.9 + 3m10€8,10 + am11€8,11)

for(m=n=2,34)

fmafos = ams(ame€s,6 + Am7€6.7 + Amg€6,8) + Am7(am6€6,7 + am7€7,7 + Ams€7,3)
+ ang(am6Ce,8 + am7€7,8 + Ams€s )

for(m=n=2,34)

fmsfas = 8m9(ameCe 9 + am10€9,10 + 3m9€9,11) + 3m10(am9C9,10 + 3m10€10,10 + Am11€10,11)
+ 311 (am9C9,11 + 3m10€10,11 + Am11€11,11)
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2 2
fgl =2'§161/¢l +ag1¢,1
f5; = a5 ¢

fo1fe3 = a6a/03 + ass/M203 + a6 (asa€1,4 + 26s€1,5)
fs1f3 = asy (ass€y, 4 +as55€1,5)

for(m = 5,6)

2 _ .2 2
fm3 = ama€a.4 T 28m48ms5€a 5 + AsCs,s

fo1f22 = an/O2 + a3/(A1§2) + 361 /91 + a6 (a22€1,2 +az3€13)
feaf2z = asa/O3 + a6s/(Aa03) + a64(az2€2,4 + a23€3 4) + 85(a22€2,5 + 823C3 5)
fo1f24 = a26/04 + 227/(A304) + a28/(Aads) + 261 (a26€1,6 + 327€1,7 + 228€1,8)

fo1f25 = a29/9s + a210/(Asds) + 2211 /(Aeds) + ag1 (az9€1 9 + 3210€1,10 + 2211€1,11)

form=6,n=3),(m=5n=4)

fn1fm2 = am1(an,€1,2 + 2n3€4,3)

fm3fn, = ame(an,€2,4 + ay3€3,4)

fm1fne = ame(ang€1,6 + n7€1,7 + 25€1,8)
fm1fas = ame(ang€i,9 + aq10€1,10 + 2n11€1,11)

for(m=6,n=2,3),(m=5n=4)
fm3fns = ama(an a6 + 3n7€47 + 8ngCag) + Ams(AngCs.6 +An7Cs 7 + Ages g)

where the ¢; ;s are given by
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_ 1
g +qj

%

and

Q=01 Q@=02 G=%hL

Q=03 as=¢3dy Qs=0s

Q7 =A30s Qg =A4ds Q9 =0s
Qo =Ashs  qu1 =Aeds
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The through-thickness integration terms are given by:

g% =Ry, [ B3 +3B3B4t> +3B5t]/3.

g32 = Rs3/1260 [53%{7 +35B;B4t® + 84B; Bgt® + 63B3t°
+ (105B;By + 315B4Bg ) t* +420 ( B4B; + BZ ) 3 + 1260 ( BgB71* + B%t) ]

gé1 = Res/3 [B%t:’ +3B,Byt* + 3B%t]

822832 = R23/30 [B%é +5B3By4t* + (10B3Bg + 5B% ) t> + 15 ( B3B; + B4Bg ) t?
+ 30B4B7[]

222861 = R26/6[2B1B3t3 +3(B;By+B;B; )% + 6B2B4tj|

812861 = R36/120 [4313315 + (15B;B4 +5B;B; ) t*
+ (40B; B¢ + 20B,B4 ) +60 (B;B7;+B;Bg ) 2 + 120B, Bt )]

gs1842 = Rys/120 [6B,B3t5 +15 (B B4 + B3B3 ) t* +20 (B Bg + B3Bs + 2B;B4 ) t°
+60 ( ByBg + B4Bs ) 2 + 12OBSB(,t]

gh= R44/60[ 3B3t° + 15B;B,t? +20 ( B3Bg + B2 ) 3 + 60B4Bgt? + 608?,{]
g% =Rssp0 [3B%t5 +15B,B,t* + 20 ( B;Bs + BZ ) t* + 60 (B,Bst? + Bht )]

22 = S12/S1; ( 6B4CSIG1 t+ 3CSIG2 t? +2CSIG3 1 ) /6
861 = S16/S1; ( 6B,CSIG1 t + 3CSIG4 12 +2CSIGS 1 ) /6

822824 = Ryp [ B3tdv(1)e, + B4 (DIFNU) ]



83 =Ra| 4/t (QUANU) |

812834 = Ra3 /2520[213;9 ( DIENU3) +21B,4t* DIFNU2 + 42B4t® DIFNU4
+210B4t? (DIFNU)]

g3s =R3313 /210 (QUANU2)

861863 = Res /3 [ Bit (DIFMI2) + 3B, ( DIFMI1 ) ]

g} = 4R /3t (QUAMII )

261834 = —Ry3 / 60 [ B33 ( DIFNU4) + SB4t? ( DIENU) |

£24832 =Rn /60[ B33 (SUMNU3) + 5B4t2 (SUMNU4 )
+ 60Bgtdv(1)g, + 60B; ( DIFNU ) }

224834 = —Rnt/ 15 (QUANU3)
222863 = Rag / 3 [ Bst (DIFMI2 ) + 3B4 ( DIFMI1 ) ]
822861 = Ras [ B1tdv(1)g, + B, (DIFNU) ]

224863 = 2Rys / t [ v(1)3n(1)e? + Sv(2)In(2)ed )

157

232863 = Ryg / 60 [8313 ( DIFMI4 ) + 5B4t? ( DIFMI3) +20Bgt ( DIFMI2 ) + 60B; ( DIFMI1 )]

834861 = —Rag / 60 [ B> ( DIFNU4 ) + 5B,t> (DIFNU) ]

834863 = —Rast /30 [ dni(1)e, (DIFNU4) —3n(2)g, (DIFNUS) |
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242853 = Rys /60 [ B3t® (SUMMI3 ) +5B412 (SUMMI2 ) +20Bst (SUMMI1 ) |
844851 = Rus /60 [ Byt® ( DIFNU4 ) + 5B,t? (DIFNU) |

244853 = Ry4s / 30 [ dn(1)g, (DIFNU4 ) — n(2)e, ( DIFNUS) ]
842844 = Raa / 60 [ Bst® ( DIFNU4) + 5B4t? (DIFNU) ]

g% =Ruqt/ 15 (QUANU3)

g51253 =Rss /60 [ Byt (SUMMI3) + 5Byt (SUMMI2 ) +20Bst (SUMMI1 ) ]
gl =Rsst/ 15 (QUAMIR )

g24 = S12 /Su1 [ SW(Deit (BsSy; + B3Siz +B,Si6 ) + (DIFNU) (CSIG1) ]
gs3=S16/ (3S1;) [t(DIFMI2) (BgS;; + B3S); + B1Si6) + 3 (DIFMIL) (CSIG1) ]
£22825 = S22 [ —B3DIFNUB ]

824825 =S22 [ —6/1* ( DIFNUB SUMNU) ]

g3s =S [ 12/ (DIFNU)? ]

832835 = S33h / 840 [513B3$UMNU5 +28B,412 (SUMNUG6 ) +42B4t (SUMNU7)
+420B; (SUMNU ) ]

234835 = — 1183312 /210 [ ( DIFNU) (SUMNU) ]

g2s = S35t /35 [ QUANU ]



where

22835 = S23t /20 [ B3t (SUMNU7) + 10B4 (SUMNU ) ]
812825 = — S23 /20 ( DIFNU ) ( 3B3t% + 10B4t + 20Bg )

224835 = 11S23 / 10 (DIFNU ) (SUMNU)

232825 = S23 / 10 (DIFNU ) (SUMNU)

Z25835 = —6Sy3/ (5t) (DIFNU)?

261825 = — S26B1 (DIFNU)

261825 — 2526 /12 ( DIFNU ) ( SUMMIL )

261835 = S3st /20 [ B;t (SUMNU7) + 10B, (SUMNU) ]

863835 = — S36 /10 [ £,6n(2) (SUMNUS ) - £,8n(1) (SUMNU7) 1]
851845 = Sas /20 [ (DIFNU ) (3b1h2 + 10B,t +20Bs ) ]

853845 = 3545 /10 [ (DIFNU) (SUMMI1) ]

42845 = Sa4 /20 [ ( DIFNU) (3B3t?> + 10B4t +20Bg ) ]

845844 = —S44 /10 [ (DIFNU) (SUMNU) ]

g3s =684/ (5t) [ (DIFNU)? ]

SUMNU = [ v(1)g, + Sv(2)ep ]
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SUMNUB = [ 8v(1),& + SV(2)a€s |
SUMNU2 = [ dv(1)g, + 20v(2)ey ]
SUMNUS3 = [ 78v(1)g, + 25v(2)gy |
SUMNU4 = [ 56v(1)g, + dv(2)gy, ]
SUMNUS = [ 68v(1),€, + Sv(2)n€p ]
SUMNUG6 = [ 46v(1),& + V()& ]
SUMNUT7 = [ 76v(1),& + 30v(2),¢& ]
SUMNUS = [ 36v(1)p€ + 70V(2),8y |
DIFNU = [ dv(1)g, — dv(2)gy, ]
DIFNUB = [ dv(1),& — 6v(2)n&s ]
DIFNU2 = [ 28v(1)g, — Sv(2)ey
DIFNU3 = [ 58v(1)g, —28v(2)s, ]
DIFNU4 = [ 38v(1)g, —36v(2)g, ]
DIFNUS = [ 28v(1)g, — 38v(2)ey ]
QUANU = [ 8v3(1)e2 + dv(1)v(2)ept, + V2 (el |

QUANU2 = [ 28v3(1)e2 - 38v(1)Sv(2)ep, + 28v*(2)ed )
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QUANU3 = [ 28v23(1)e2 — Sv(1)dV(2)epE, + 28V (2)ed |
QUANUA4 = [ 138V2(1),€2 + 96v(1), SV(2)nEn€; + 130V ()€ |
DIFMII = [ 6n(1)g, — dn(2)e ]

DIFMI2 = [ 28n(1)g, — dn(2)g; |

DIFMI3 = [ 38n(1)g, — dn(2)g; ]

DIFMI4 = [ 45n(1)e, — N(2)gs

SUMMII = [ dn(1)e, + 3n(2)ey ]

SUMMI2 = [ 36n(1)g, + dn(2)ey )

SUMMI3 = [ 65n(1)g, + N2)ey ]

QUAMII = [ 8n’(1)e? — ep&SN(1)3N(2) + €38n*(2) ]

QUAMI2= [ 38n%(1)e? + dn(1)8n(2)epe, + 35N> (2)ed 1
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Appendix B: Two-term Solution



163

The expressions for the two term solution are presented below. In these expressions G is the

shear modulus of the resin layer and is taken to be 0.25 msi.

oy = [1—&!][}3?"“39‘)} B.1)
- e )[ B Ge De + B (20l - %ann,,&.z)es“]
o =¢e¥ [ B®22/2 + Bg‘)z+B§k)] (B.2)

+ G2 — ) [ 5112, 0 DR N + S0z (.1 - 2P

- _L —¢y__1_—My
Gg_ll 1—1[ A

[BS“)Z + BS"] (B.3)

-Gé

1 ey 1 oy _ 1 o ®© N2 _ 00
1 = e~ Moy e - o 1 [Bvia(i, 1e® (62 - 21 ]
+ 8k, 2)el® [61/(1"")2 - 4/100]]
o = ¢% [e'“y - e'“v] [}35%2/2 +BPz+ BS‘)] (B.4)
+ G[e"’ + %(1 - Aye™¥ - c"“”] [5v12(k, De® {3#/(6‘0)2 - 22/t°‘)]
+8vyp(k,2)e® [312/(10‘))2 —4z® &+ 1]]
o = q)Z% [)x‘”’ - e"”] [BS"’Z’/6 +BPz?2 +BPz+ B‘,“’] (B.5)
- G[—tbe“” + 212 - ygen) + we-*"] [Bviati, Def (212 - 2249

+8vya(k,2)el) [z’/(t“’)2 - 2221 + z]]



Appendix C: Cross-Ply and Angle-Ply Laminates
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TABLE C.1. CLT Stresses for Symmetric Cross-Ply Laminates

Uniform Extension

€41 = 0.1%
[04/904], [904/04]4
Ply I Cxn O12 Ply o1 G2 o2
(ksi) (ksi) (ksi) (ksi) (ksi) (ksi)
0° 192.8 3.196 0.000 o0° 192.8 3.196 0.000
90° 15.54 -3.196 0.000 0° 15.54 -3.196 0.000
Uniform Bending
Ki1 = 0.1
[0400413 [904/04]s
Ply o1 %) Ci2 Ply o 75) o2
(ksi) (ksi) (ksi) (ksi) (ksi) (ksi)
0° -57.76 | -0.661 0.000 90° -4.677 0.146 0.000
90° -1.530 1.542 0.000 0° -19.28 -0.3416 0.000




TABLE C.2. CLT Stresses for Unsymmetric Cross-Ply Laminates

Uniform Extension
Nll = 1000 1b/in
Ply i1 G2 O12
(ksi) (ksi) (ksi)
0° 36.62 0.418 0.000
90° 13.38 0.419 0.000
Uniform Bending
M;; =11b-in/in
Ply o1 O o12
(ksi) (ksi) (ksi)
0° -1.135 0.000 0.000
90° 1.135 0.000 0.000
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TABLE C.J3. CLT Stresses for Angle-Ply Laminates

[(£10);], and [+10,/-10,], Laminates

€1 =0.1 %
Ply on G2 O12
(ksi) (ksi) (ksi)
10° 17.80 0.000 2.779
-10° 17.80 0.000 2.779
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Appendix D: Quasi-Isotropic Laminates



TABLE D.1. CLT Stresses for Quasi-Isotropic Laminates

All quasi-isotropic
€11 =0.1%

Ply o 1675) o12

(ksi) (ksi) (ksi)
0° 19.18 -0.096 0.000
90° 1.455 -5.368 0.000
45° 4.858 2.730 -3.111
-45° 4.858 2.730 -3.111
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TABLE D.2. Solution Parameters for Quasi-Isotropic Laminates - Group 1

Solution Parameters For Quasi-Isotropic Laminates
€11 =0.1%
Constant || [0/—45/90/—45], | [90/45/0/—45], || [45/90/0/—45],
7 (1/in) 66.93 50.02 54.86
o (1/in) 81.68 61.75 59.83
3 (1/in) 57.73 99.81 47.06
4 (1/in) 128.4 56.23 70.08
s (1/in) 59.99 174.5 95.28
M 5.698 1.386 6.725
M 4223 3.189 7.801
A3 3.394 3.661 12.32
A4 8.207 21.11 11.90
As 6.748 5.047 1.490
s 18.68 0.352 1.572
A X107 1.242 3.703 6.204
(psi)
A X1073 4318 -3.801 -1.057
(psi)
A3X1073 -0.009 -1.002 -0.386
(psi)
h (in) 020 .020 .020
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TABLE D.3. Solution Parameters for Quasi-Isotropic Laminates - Group 2

Solution Parameters For Quasi-Isotropic Laminates
€11 =0.1%
Constant | [45/90/—45/0), | [45/0/90/—45), | [45/0/—45/90],
&, (1/in) 66.66 53.10 52.32
7 (1/in) 82.13 61.39 4725
3 (1/in) 57.31 41.75 67.31
04 (1/in) 130.4 77.69 43.01
s (1/in) 72.33 128.1 41.81
A 5.048 3.609 3.227
A 4.178 7.492 4.040
A3 3.320 14.18 25.14
A4 7.882 7.074 6.388
As 7.223 1.856 8.910
s 12.59 3.578 5.618
AX1075 1.234 0.504 1.564
(psi)
A;X1075 -4.843 -1.834 -1.935
(psi)
A3X1073 0.178 0.978 -0.025
(psi)
h (in) .020 020 020
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TABLE D.4. Solution Parameters for Quasi-Isotropic Laminates - Group 3

Solution Parameters For Quasi-Isotropic Laminates
€11 =0.1%
Constant || [90/+45/0], || [90/0/+45), || [0/90/+45];
®; (1/in) Kk54.75 - 56.90
o, (1/in) 69.58 - 64.27
3 (1/in) 158.6 - 154.6
04 (1/in) 65.94 - 68.45
s (1/in) 81.06 - 71.07
M 1.473 - 2.134
A 2.469 - 2.191
A3 5.048 - 3.545
A 11.73 - 17.73
As 3.293 - 4382
As 5.739 - 6.984
A X103 5.838 - 6.984
(psi)
A,X1073 -2.084 - -4.332
(psi)
A;X1073 4.212 . 0.432
(psi)
h (in) .020 .020 020
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TABLE D.S. Solution Parameters for Quasi-Isotropic Laminates - Group 4

Solution Parameters For Quasi-Isotropic Laminates
€1 =0.1%
Constant || [£45/0/90], || [£45/90/0], | [0/+45/90],

¢ (1/in) - 56.94 61.75

2 (1/in) - 61.75 58.81

3 (1/in) - 99.81 97.46

b4 (1/in) - 56.23 56.04

s (1/in) - 90.95 62.39

A - 1.996 3.530

A, - 4.203 4.302

A3 - 5.488 8.821

Ay - 15.96 19.86

As - 1.722 5.189

As - 6.155 5.082

A1 X107 - 1.682 1.565
(psi)

A X1073 . -3.639 -1.505
(psi)

A3X1075 . -1.352 -1.068
(psi)

h (in) 020 .020 .020










