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An Approximate Solution for Interlaminar

Stresses in Laminated Composites

ABSTRACT

An approximate solution for interlaminar stresses in finite width, laminated composites sub-

jected to uniform extensional and bending loads is presented. The solution is based upon the

principle of minimum complementary energy and an assumed, statically admissible stress state,

derived by considering local material mismatch effects and global equilibrium requirements. The

stresses in each layer are approximated by polynomial functions of the thickness coordinate, mul-

tiplied by combinations of exponential functions of the in-plane coordinate, expressed in terms of

fourteen unknown decay parameters. Imposing the stationary condition of the laminate comple-

mentary energy with respect to the unknown variables yields a system of fourteen non-linear

algebraic equations for the parameters. Newton's method is implemented to solve this system.

Once the parameters are known, the stresses can be easily determined at any point in the lam-

inate.

Results are presented for through-thickness and interlaminar stress distributions for angle-ply,

cross-ply (symmetric and unsymmetric laminates), and quasi-isotropic laminates subjected to uni-

form extension and bending. It is shown that the solution compares well with existing finite ele-

ment solutions and represents an improved approximate solution for interlaminar stresses, pri-

marily at interfaces where global equilibrium is satisfied by the in-plane stresses, but large local

mismatch in properties requires the presence of interlaminar stresses. Further, the contributions

of both global cquilibrium and local material mismatch effects to the stress field are clearly del-

ineated. The results indicate that the significance of local mismatch effects is dependent on lam-





inatestackingsequence.The demonstratedaccuracyand efficiencyof the solutionmakeit

ideallysuitedforparametricstudies.
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CHAPTER 1

INTRODUCTION

1.1 Introductory Remarks

The high strength-to-weight, and stiffness-to-weight ratios of composite materials and their

tailorability to meet strength and stiffness requirements has led to the increased use of

composites for structural designs, particularly in aerospace applications. With this increased use

has come significant interest in the failure mechanisms of composite materials. Because

composite materials are heterogeneous and anisotropic, failure modes occur that are quite

different from those seen in more conventional isotropic materials. Laminated composites

exhibit two basic failure modes: 1) in-plane fracture, and 2) out of plane delamination [11failure,

matrix failure, fiber/matrix debonding or fiber splitting f21

Experimental studies have shown that the mode of failure and ultimate failure load of

laminates are dependent upon the laminate stacking sequence and the layer thicknesses. [2-8]

This phenomenon cannot be explained by classical laminated plate theory (which predicts a

planar stress state) combined with in-plane fracture theories, but is attributed to the presence of

interlaminar stresses near the free edges of composite laminates.

Interlaminar stresses are caused by the mismatch, or difference, in the material properties

between the individual laminae and the laminate and the mismatch in properties between

adjacent laminae in the presence of a free edge. Individual layers of a laminate will deform

differently, when subjected to the same axial strain, because of differences in their material

properties. In a laminate, however, the layers are bonded together, and displacement continuity



atthe layerinterfacesrequiresdevelopment of interlaminar stresses to equalize the differential

deformations and to maintain equilibrium. A detailed discussion of the mechanics of free edge

stresses is provided in reference [9].

The interlaminar stresses o33,023, and 013, shown in Figure 1.1, act upon planes parallel to

the interfacial planes between laminae. They exist only within a very local region near the free

edges of a laminate and are therefore known as a boundary layer effect or free edge effect. For

fiber reinforced composites the interlaminar stresses are transferred between plies through the

matrix material that bonds them together. This interfacial region is relatively weak and if the

interlaminar stresses are high enough the laminated structure will fail, due to delamination, at

loads much lower than those predicted by in-plane failure theories.

A necessary tool to aid in understanding and ultimately preventing delamination type failures

is an efficient analytical method Which provides reasonably accurate stress predictions in the

boundary layer region. The need for such a method is particularly acute in design stages to

avoid delamination prone laminates when a large number of possible structural configurations

have to be evaluated quickly and economically. Numerous investigators have proposed a variety

of methods for calculating interlaminar stresses. The majority of these solutions are numerical in

nature and are plagued by computational limitations, particularly with regard to memory

requirements. Consequently they become intractable when the number of layers in a laminate

becomes even moderately large or when calculations have to be performed repetitively as in an

optimization process.

In practical applications composite panels may consist of many layers (100 layers in aircraft

structures is not uncommon) of different orientations, thicknesses and material properties. Thus,

design of even the simplest composite structural component may involve a large number of



EjI

Figure 1.1. Laminate Configuration



design variables in addition to a large number of design constraints. These factors make

composite panel design an ideal candidate for numerical optimization.

Several papers, a few of which are listed in the references, [10-lS1 have been published on the

use of numerical optimization for designing composite structures. To the author's knowledge,

however, none of the published work on composite design using mathematical optimization

techniques considers interlaminar stresses in the problem formulation. This gap in the literature

apparently exists because of the complexity and computational inefficiency of the majority of the

methods currently available for predicting interlaminar stresses.

1.2 Objective and Scope

The above discussion suggests the need for more efficient approaches for calculating the

three dimensional stress field near free edges in laminated composites. An analytical approach is

preferred so that the method can be incorporated into a design process which uses numerical

optimization techniques. The objective of this research is to provide an approximate analytical

model for laminate stress analysis and demonstrate its usefulness. The approximate model is

developed for a finite width symmetrically or unsymmetrically laminated coupon with straight

free edges subject to uniform extensional or bending loads as shown in Figure 1.1. These loads

are considered because they are common in practice. Combined loads can then be analyzed by

superposition. The straight, free edge coupon was chosen because it is the simplest

configuration to analyze and there are numerous results available in the literature that can be

used to verify the model developed. Laminates with many plies as well as hybrid laminates can

be analyzed. Also, although the formulation that follows is presented with reference to the

simple plate shown in Figure 1.1, more complicated structural configurations can be analyzed

using the methodology developed provided the in-plane stress field in the interior can be
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obtainedfromananalyticalsolutionor fromsomegeneralanalysistechnique.Themethodology

canthenbeemployedin a global-localanalysisto obtainrefinedstresssolutionsin regionsof

highstressgradientswithacoarserglobalsolutionusedto definetheresponseoutsideof these

regions.

Theremainderof this thesisisdividedintoseveralsections.Chapter2 includesa literature

reviewof variousmethodsfor predictinginterlaminarstressesanda brief discussionof the

presentmethod.In Chapter3 theanalyticalmodelis developed.Theapproachis anextension

of previousworkby KassapoglouandLagace[1,19-211 and is based upon an assumed stress state

and the principle of minimum complementary energy. The methodology reduces the stress field

determination for a general laminate to the simultaneous solution of 14 non-linear equations.

Newton's method is implemented to solve this system. In Chapter 4 the solution is verified and

its advantages and limitations are identified by comparison with existing finite element and

analytical model results. Comparisons are made for angle-ply, cross-ply and more general

laminate configurations. In Chapter 5 additional results are presented demonstrating the utility

of the technique and the effect of load conditions and stacking sequence on interlaminar stresses.

Finally, Chapter 6 closes with a summary and conclusions of the study. Recommendations for

future work are also provided.
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CHAPTER 2

LITERATURE REVIEW

Interlaminar stresses have been studied for over twenty years, in hundreds of articles. Only a

few are discussed here. For a more complete coverage see the review article by Salamon. t2zl The

majority of the work has concentrated on the analysis of symmetric laminates with straight free

edges subjected to uniform axial extension. A brief review of the more significant contributions

to the understanding of interlaminar stresses in these laminates is presented first. This is

followed by a review of the literature pertaining to interlaminar stress calculations for laminates

in uniform bending. The chapter closes with a summary and discussion of the present solution

methodology.

2.1 Laminates in Uniform Axial Extension

The earliest investigations of interlaminar stresses were performed by Hayashi, [z31Hayashi

and Sando 1241and Puppo and Evensen. Izsl All of these researchers modeled the laminate as a set

of anisotropic layers separated by isotropic shear layers. Their analyses neglected the

interlaminar normal stress component ¢333 and predicted a sharp rise in the interlaminar shear

stress (313 at the intersection of an interface and the free edge.

In the same year, Pipes and Pagano performed the first numerical study of edge stresses in

composite laminates. Iz61They studied the elastic response of a [445/-45], laminate subjected to

a uniform axial extension (Figure 1.1). Noting St. Venant's principle, they assumed the stresses

to be independent of the axial coordinate X1 in regions away from the areas of load

introduction. Under this assumption the general form of the displacement field is



U (Xl X2X3)-- XIEll + U(X2, X3)

v (XI,X2X3) = V(X2,X3)

W(Xl X2,X3)_- W(X2 X3)

(2.1)

(2.2)

(2.3)

where u, v, and w are displacements in the Xl, X2, and X3 coordinate directions respectively,

and Etl is the applied axial strain. The reduced elasticity equations governing the laminate

behavior were then formulated and solved using the fmite difference method.

Their results showed a planar stress field over most of the laminate in agreement with

classical lamination theory (CLT). In regions near the laminate free-edge, the lamination theory

results were perturbed by the presence of the interlaminar stress components, 013, o23, and G33.

The interlaminar stresses were shown to decay-rapidly with distance from the free edge and were

zero outside of a region of width approximately equal to the laminate thickness. Therefore they

concluded that interlaminar stresses are a boundary layer or an edge effect.

Three of the predicted stress components, o23, 022 and 033 were very small while the

interlaminar shear stress a_3 was quite large. In addition they noted that the magnitude of 013 at

the intersection of the interface and the free edge increased with increasing grid refinement.

Based upon these results and those of Bogy 1271and Hess [28'291 for bonded quarter planes of

dissimilar materials, they concluded that 0_3 is singular at this point. The results of this model

along with some simplified models for predicting selected interlaminar stress components were

used to explain the relationship between interlaminar stresses and the differences in

experimentally observed strengths of similar laminates. [4-6'3°1

Finite element solutions soon followed. The first finite element solution was provided by

lsakson and Levy. 1311They used a displacement based formulation and like Puppo and Evensen

modeled the laminate as a combination of anisotropic layers separated by isotropic shear layers,



thusneglectingtheinterlaminarnormalstress.Theyanalyzeda [+45/-45],laminateandtheir

predictionsfor the interlaminarshearstressa13agreedwell with thoseof PipesandPagano.

Rybicki1321usedathree-dimensionalfiniteelementanalysistoobtainapproximatesolutionsfor a

symmetriclaminatesubjectedtoin-planeloading.Heusedacomplementaryenergyformulation

withassumedstressstatesderivedfrom thethree-dimensionalMaxwellstressfunctions.His

formulationsprovidedpredictionsfor all threeinterlaminarstressesandtheresultsshowedgood

agreementwiththoseof PipesandPagano.

Later, to improvesolutionefficiency,severalinvestigatorsadoptedthe Pipes-Pagano

approachandsolvedthe tensilecouponproblemusingquasi-threedimensionalformulations.

Thefirst two-dimensionalfiniteelementanalysisfor thequasi-threedimensionalproblemwas

conductedby Herakovichet. al to studymechanicalandthermaledgeeffectsin cross-plyand

angle-plylaminates.[33'341Applicationof this type of formulationto additionallaminate

configurationssoonfollowed.[35-391WangandCrossman[351analyzed 5 laminate configurations;

two cross-ply laminates, an angle-ply laminate, and two quasi-isotropic laminates. By invoking

a skyline storage scheme, they were able to use a much finer mesh than had been used in

previous analyses and obtained a more accurate description of the stress field in the vicinity of

ply interfaces and the free edge. They noted that the interlaminar normal stress t_33 is also

singular at these points.

The finite element method provided a means for obtaining solutions for a variety of laminate

configurations and geometries. Numerous solutions were obtained. These solutions greatly

increased the understanding of the free edge problem and the mechanisms contributing to

intcrlaminar stress development. The limitations of numerical procedures for laminate stress

analysis, however, also bccame evident. First, it was quickly realized that the numerical

solutions are not economical. Because of the singular nature of the problem, extremely fine



meshesor finefinitedifferencegridsarerequiredin edgeregionsin orderto obtainreasonably

accuratepredictionsof the field variables.WangandCrossman,1351for instance,used 192

elements(16 throughthe thickness)to modeleachply in a four ply laminate.Meshing

requirementslike theseand the resultingcomputermemoryand time requirementsmade

analysisof practical laminates prohibitive. Second, it was found that results very near the free

edge obtained using different formulations were not consistent. Different researchers not only

predicted different magnitudes for interlaminar stress components in this region but also, in

some cases, predicted different signs. Some attributed this anomaly to improper satisfaction of

the free edge boundary conditions. I371Others suggested that lack of symmetry in the stress tensor

at the singularity 14°1may be the cause of the inconsistencies. I3sl

In an effort to resolve these inconsistencies and develop more efficient reliable methods for

laminate stress analysis, several analytical solution methods were proposed. One of the first

fairly sophisticated approaches which was capable of predicting both interlaminar shear stress

components as well as the interlaminar normal stress component was provided by Tang [411and

Tang and Levy. I421They extended the boundary layer theory of plane stress of isotropic elasticity

developed by Reiss and Locke I431to the analysis of laminated composites. Using a zeroth order

approximation to the boundary layer problem, the solution in the boundary layer region was

separated into a torsion problem and a plane strain problem. The solution exactly satisfied the

equilibrium equations and compatibility equations but some of the boundary conditions were not

satisfied or were satisfied in an average sense. A similar approach was used by Hsu and

Herakovich 144]in the study of angle-ply laminates. Using a perturbation method, they matched

an interior solution, where classical lamination plate theory is assumed to be valid, to a boundary

layer solution. Their results suggested that both interlaminar shear stress components t_13 and

_23 are singular in the boundary layer region. Another approach was presented by Wang and
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Dickson.1451Theyexpresseddisplacementsandtheinterlaminarstressesin eachlayerin aseries

of Legendrepolynomials,andusedGalerkin'smethodto obtaina systemof equationsfor the

unknownconstants.Outof planewarpingwasneglectedin thedisplacementassumptionsso

theirmodelwasonly applicableto cross-plylaminates.Theystatedthatthemethodis capable

of handlinglaminateswitha largenumberof pliesbutdidn't provideanyresultsto supportthis

claim. Alsobecauseof convergencedifficulties(for largerb/t ratios)in stressesat aninterface

andthefreeedge,thesolutionis limitedtoverythinlaminates.

A similarapproachwasproposedby Bar-YosephandPian.I461In their solution,theedge

layer stressfieldis constructedusingLegendrePolynomialsthatexactlysatisfytheequilibrium

conditions,tractioncontinuityconditions,and the stressfree edgeconditions.Later they

incorporatedtheirassumedstressstatesintoamixedhybridfiniteelementformulation.1471This

methodwasextendedbyBar-YosephandSitontoincludenonlinearmaterialbehavior.1481

Anothervariationalapproachwasprovidedby Pagano.t491 He proposed an approximate

solution based upon the extension of Reissner's theorem I5°1to a laminated body. Requirements

for an acceptable laminate field theory were established; all stress components are non-zero,

displacement and traction continuity are satisfied at all interfaces, and each layer or sublayer

(more than one sublayer per ply is permitted) is in equilibrium. In establishing layer

equilibrium, free edge conditions are imposed on force and moment resultants rather than on

point-wise tractions. A model which is based upon assumed stress fields in each layer is

developed which satisfies these criteria. Explicit functions are assumed for the through thickness

variations of stresses. Minimization of Reissner's functional over the entire laminate results in a

system of 13N differential equations, where N is the number of sublayers in the laminate, for the

in-plane variations of the field variables.
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Pagano1511alsodelineated the theory for the analysis of an axial coupon. The field equations

in this case are constant coefficient, linear differential equations, in the width coordinate y. The

homogeneous solution for each independent variable is then a sum of exponential terms of the

form

f = Fe _y (2.4)

The method provides accurate stress distributions in regions near free edges but very large

magnitudes of _., obtained for large N, limited solutions to laminates with N < 6 because of

computer overflow/underflow violations. Also, although the solution does not include a

singularity, the a_3 and t_33 stress components increased as the number of sublayers used per

layer increased. This behavior is similar to that observed with increased mesh refinement when

using the finite element method.

Pagano and Soni 1521later took this model and, using a global-local variational formulation,

developed a ply/sub-laminate analysis. In regions where a detailed response is required (local

region) each ply is represented by the model described above. The remaining areas, e.g. sub-

laminates or global regions, are represented by effective elastic properties. I531The method shows

promise but appears to be somewhat sensitive in its predictions to the choice of the global and

local domains. Also, if stresses are desired at each interface of an N layered laminate, the

global/local analysis must be exercised several times with the local domain containing the

interface of interest. Rehfield et. al[54,55] employed a similar approach using their refined

theories for the behavior of anisotropic plates for the ply/sublaminate models. [56'571 Their

method results in a set of 8N-3 equations, where again N is the number of sublayers.

Most of the solutions described above suggest the presence of a singularity at the intersection

of an interface and the free edge. To incorporate the singularity in the formulation, the nature of

the singularity must be known before hand. Up to this point Bogy's I271work on the singularities
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on isotropicquarterplaneshadnot beenextendedto anisotropicmaterials.Consequently,to

betterunderstandtheboundary-layereffectin compositelaminates,someinvestigatorssetout to

determinetheexactlythesingularityatthe intersectionof theinterfaceof twolaminaeandthe

freeedge.Onesuchstudywaspresentedby WangandChoi.[58'59]Their formulationis based

on thetheoryof elasticityandLekhnitskii'sI6°1complexstresspotentialsandleadsto apairof

coupledgovemingpartialdifferentialequations.Thehomogeneoussolutionto theequationsis

obtainedusinganeigenfunctionexpansion.Thehomogeneoussolutionshowedtheexistenceof

asingularityof theformy-4iat theintersectionof aninterfaceandthefreeedge.Theyfound

thattheorderof thesingularity_5is in generalveryweakandisdependentonly onthematerial

constantsandfiberorientationsof pliesadjacentto the interfaceof interest.Similarstudiesby

Zwiers,Ting andSpilker,t611andDempseyandSinclair[62'631showedthat singularitiesof the

formIn(y),(In(y))2,(In(y))3,etc.arealsopresentfor somecombinationsof adjacentlayers,in

addition to the y_ singularity. These results,along with numerical studieson the

singularities,I391aresignificantbecausetheyshowedthat althoughmathematicalsingularities

exist,theyaregenerallyveryweakandactoversuchsmalldistancesthatapproximatesolutions

thatdonotincorporatethesingularityareaccurateexceptin regionsverynearthefreeedge.

2.2 Laminates in Uniform Bending

Few studies have been conducted on laminates in bending. Salamon 1641presented a solution

for finite width laminates uniformly bent by end moments applied about the X2-axis (see Figure

1.1). Using an approach similar to that of Pipes and Pagano [261 the elasticity equations are

formulated and solved using the finite difference method. He finds that the interlaminar shear

and normal stress distributions are similar for a laminate in uniform bending to those of a

laminate in uniform extension.
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Finiteelementstudieswereconductedby Murthyand ChamisI651for a variety of load

conditions including in-plane and out-of-plane bending, and by Chan and Ochoa [66'671 for

laminates under torsion and bending loads. Kassapoglou [681extended his analysis for extension

loading I201 to combined loading cases and bending.

2.3 Summary and Discussion

The above discussion gives an indication of the variety of solutions proposed for obtaining

free edge stresses in laminated composites. These solutions have increased the understanding of

the mechanics of interlaminar stress development and their effects on the performance of

laminated composite structures. Most of these solutions, however, are constrained

computationally by the size of laminate system they can handle and therefore have limited

practical application. Apparently some tradeoff needs to be made between solution accuracy of

the complicated solutions described above and solution efficiency offered by simplified

approximate models.

Recently Kassapoglou and Lagace [211 proposed a simplified, approximate technique for

determining the stress field in the vicinity of straight free edges of a laminated coupon. A very

similar approach was presented by Engrand. 1691Kassapoglou and Lagaces' analysis is based on

the principle of minimum complementary energy and an assumed stress state obtained by

considering global equilibrium requirements. Generic forms of stress distributions that exactly

satisfy the equations of equilibrium, the traction continuity conditions and the free edge stress

boundary conditions are assumed within each layer. Explicit polynomial expressions are used

for the through-thickness variations of the stresses, while the in-plane variations are taken to be

combinations of two decaying exponential functions expressed in terms of two unknown decay

parameters. The unknown decay parameters are functions of ply material properties, orientation
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and thickness, and laminate stacking sequence, and are determined by minimizing the laminate

complementary energy. Once these parameters are determined the stresses can be evaluated at

any point in the laminate.

A distinguishing feature of Kassapoglou and Lagaces' model is that run times and computer

memory requirements are a linear function of the number of layers in the laminate. This makes

for an extremely efficient design tool that can be used to analyze laminates with many layers.

The model, however, has trouble predicting interlaminar normal stresses and in some cases

interlaminar shear stresses.

Kassapoglou and Lagaces' (KL) method serves as a basis for the approximate solution

developed in this investigation. In their stress assumptions only the mismatch between laminae

and laminate material properties is considered. The improved solution includes additional terms

in the stress assumptions which account for the effect of mismatch in engineering properties

between adjacent layers of a laminate. Specifically, the mismatches in coefficient of mutual

influence and Poisson's ratio are considered.
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CHAPTER 3

SOLUTION FORMULATION

The problem considered is the uniform axial extension or bending of a multi-layered

laminated plate. Interest focuses on calculating the stress field in the vicinity of the free edge,

i.e. in the boundary layer region. In this chapter, the mathematical boundary value problem for

determining the free edge stresses is formulated from the linear theory of elasticity. Because of

the analytical complexities of the three dimensional elasticity equations that must be solved

within each layer, coupled with the requirement of continuous displacements and stresses at

interfaces between layers, an exact elasticity solution for stress analysis in practical laminates is

not feasible. [58,591 Hence, an approximate solution is proposed. The approximate solution is

based upon the principle of minimum complementary potential energy and stress assumptions

constructed in such a manner as to simplify the equations to be solved, while retaining the

necessary three dimensional characteristics of the stress field. The stress assumptions exactly

satisfy all of the equilibrium requirements. The compatibility equations and displacement

continuity conditions are satisfied in an average sense through minimization of the laminate

complementary energy.

A singularity is not included in the stress assumptions. As previously mentioned, previous

investigators [58'61'621 have shown that a very weak stress singularity is present near the

intersection of interfaces and the free edge of composite laminates. However, as Pagano has

noted, I491 these singularities are artifacts of the effective modulus approach and do not exist in

real materials. Also, the singularity is so weak and acts over such a small portion of the laminate
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nearthefreeedgethattheassumptionof material homogeneity on which the analysis is based

breaks down. Further, Pagano suggested that when interpreting stress predictions using an

effective modulus approach, average stresses, rather than point stresses, in regions of steep

gradients may lead to more realistic conclusions regarding physical behavior. I7°l These

comments suggest that the stress singularities may be of only academic concern, and a solution

that does not include a singularity is equally as valid as one that does, particularly in design

applications where a qualitative comparison of the interlaminar stress severity in candidate

laminates is the primary interest.

The remainder of the chapter is devoted to development of the approximate solution. In

Section 3.1, the elasticity problem is formulated. Section 3.2 summarizes classical lamination

theory and the stresses of classical lamination theory are derived in terms of the mismatches in

laminate and laminae material properties. These stresses and local mismatch considerations are

then used to formulate the refined approximate model as discussed in Section 3.3.

3.1 Problem Statement

The geometry of a long, symmetrically or unsymmetrically laminated plate of finite width is

shown in Figure 1.1. The laminate is built up of several layers reinforced by a system of parallel

fibers oriented at an angle 0 with respect to the laminate longitudinal axis. Perfect bonding

between adjacent layers is assumed. The laminate is assumed to be long enough so that away

from the ends, where the loads are applied, the stresses and strains are independent of the axial

coordinate. Another assumption made is that away from the edges the laminate is in a state of

plane stress with the response defined by the classical lamination plate theory model. This

assumption places a limitation on the geometry of laminates that can be accurately analyzed

using the approximate solution and will be discussed further in Section 3.3.5. Also,
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unsymmetriclaminateswill deflectout-of-planewhensubjectedto in-planeloadsbecauseof the

membrane-flexuraldeformationcouplingbehaviortheyexhibit. Theseoutof planedeflections

areassumedsmall,sothatgeometriccouplingeffectscanbeignored.

Anexplodedviewof thelaminate,showingthein-planeandout-of-planestresscomponents

is providedin Figure3.1. Theoriginof theglobalcoordinatesystem(X1,X2,X3)is locatedat

thecenterof the laminate,with theX1, X2, andX3 axestakenin theaxial,transverse,and

thicknessdirectionsrespectively.Localcoordinatesx00,y(k),andz(k)areestablishedin each

layer,wherey0,)= b - x_k)is measuredfromthefreeedgeandz(k)is measuredfromthebottom

of the kth ply. Beginningat the top surfaceof the laminate,the layers are numbered

consecutivelyfrom 1 to N. Thelayersmayhavedifferentthicknessesandmaybedifferent

materials.Each layer is representedby a macroscopicallyhomogeneous,linearly elastic,

orthotropicmaterial.Sincethefiberaxesof theindividuallayersarerotatedthroughanangle0

with respectto thelaminateaxis,thematerialbehaviorof eachlaminaeappearsmonoclinicin

theglobalcoordinatesystem.Theconstitutiveequationsfor eachlayerthenhavetheform
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where [Sij] is the transformed compliance matrix.

3.2 Classical Lamination Theory

3.2.1 Assumptions and Constitutive Relations

(Ill

O22

G33
,q

O23

GI3

GI2

(3.1)

According to classical lamination theory, the plate in Figure 1.1 acts as a single integral unit
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Figure 3.1. Laminate Coordinate System
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with smeared elastic properties, and deforms under load in accordance with the Kirchoff

deformation assumptions for thin plates. The elastic non-homogeneity of the laminate is taken

into account by calculating the stresses in the individual layers using the laminate strains

determined with these assumptions. A state of plane stress is assumed in each ply. The plane

stress assumption implies

and the stresses in the k th layer are given by

--(k)
where Qij

(3.2)

k

(3.3)

are the reduced stiffnesses in the laminate coordinate system. These relations are

used in conjunction with the Kirchoff deformation assumptions to define integrated laminate

properties. From the Kirchoff assumptions for thin plates, the laminate strains are

{e}x = {e°}x + Xa{mC}x (3.4)

where {e°}x are the laminate middle surface strains and {_¢}x are the laminate middle surface

curvatures. Substituting the through-thickness strain variations (3.4) into the layer constitutive

relations (3.3), yields expressions for the stresses in the k th layer in terms of the laminate middle

surface strains and curvatures:

o,2rr o,7
_=i" = IQ1__
'_'_J LQ,,Q_ Q,,,JLLe'_J

r ,,ll
L

(3.5)

The laminate constitutive relations are then obtained by integrating equation (3.5) through the

laminate thickness. This yields
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where the laminate stiffnesses are

{:}:[::](:} (3.6)

+H

[A,B,D]= I [Q]k[I'X3'X]] dX3 (3.7)
-H

and the force and moment resultants acting on the laminate are

+H

{N} = _ {O} k dX 3 (3.8a)
-It

+H

{M} = I {8}kX3dX 3 (3.8b)
-H

3.2.2 CLT Stressesfrom Global Mismatch Considerations

Stressesdevelop in the classicallaminationtheorybecause of the mismatch in material

propertiesbetween thelaminateand theindividuallayerscomprisingthelaminate.Thistypeof

mismatch willbe referredto as the globalmismatch in materialproperties.To show the

relationshipbetween globalmismatch and the classicallaminationtheorystresscomponents

considerasyrnmctriclaminatesubjectedtoin-planeuniaxialextensione°1.For thisloadingand

geometry allterms inthe [B]matrixarezero,and theextensionalresponseuncouplesfrom the

bendingresponse.The laminateconstitutiverelationsarethen

{N} = [Al{e°}x (3.9)

and the stresses in the kth ply are

where E°l, e°2, and _2 are the laminate strains and are constant throughout the laminate

thickness. The laminate strains _0 and 7°2 can be related to the applied strain e_°l by the
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laminate Poisson's ratio, vl2, and the laminate coefficient of mutual influence, Vlt2,1,

respectively

where

+o =

_12 = -- 0Tlt2,t£tt

(3.11)

At2A66 - At6A26

Vie = A22A66- A26 (3.12a)

At2A26 -- AI6A22

rh2,t = A22A66- A 2 (3.12b)

Now, if the laminate strain e°i is applied to the individual layers, each layer will deform in

accordance with its characteristic elastic properties

e+ = -vp_e°t (3.13)

where

t2 (_66 - Q16 _26
V_ = _0t)_0,) r_0012

"_22 %_66 --L'L'_26 J

(3.14a)

(k)=0t) _0t)--00
t2t226 - t226 t_22

rl_'_,1 = _f,)_,0o r_0,)_2 (3.14b)
",_22 _'_66 --L_'_26 J

_(k) 01(12) develop because the strains in equation (3.13) are required to matchThe stresses o22 and

the strains in equation (3.11). Expressions for the stresses are developed by writing the strain in

each layer as a combination of the individual ply strains e_ ), and _) terms, where the _)

terms are required to force the total strains in each ply to match the laminate strains

e°t = e_ ) (3.15a)
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s° = 8_ + r_ (3.1_)

_2 = _ + 8,y_? (3.15c)

Substituting into equation (3. I0) gives

_0,) Q_2)8c_ + Q_Sy_'_ (3.16a)(:In= E_)8°1 +

~(k)
oz2 = Q_88_ + Q_)8"_'_ (3.16b)

G12 =

From equations (3.1 I) and (3.13),

&::_ = ( _°22- 8_. ) = s°t (--_,2+v_k_) (3.17a)

&Y_kxy)= ( _12 - 'Y_2) ) = S°, (Y]t2A-T! _k:_,,) (3.171:))

Combining equations (3.16) and (3.17) then gives the laminae stresses in terms of the laminae

stiffnesses, the applied axial strain, and the mismatch in Poisson's ratio and coefficient of mutual

influence of the laminae and the laminate:

~(k)
= QI6 (1112.1- 11_:_.1)18°1

-a) - (3.18)(_22 =

--iX) _
O_ ) = [Q_ (v_ - v,2) + Q_ (Th2., - _1?].,)] 8°,

From these equations it is seen that when the material constants vl2 and 1112,1 of the individual

_ 0,) O_ ) are On theplies are identical to those of the laminate, the in-plane stresses _22 and zero.

other hand, when there is a difference in the material constants, the in-plane stresses will in

general be non-zero. As shown subsequently in Section 3.3, the magnitudes and signs of the in-

plane stresses, and the laminate stacking sequence, have a direct influence on the magnitudes of

the interlaminar stress components.

3.2.3 Classical Lamination Theory Summary

The classical lamination theory solution is approximate and in general only satisfies the

equilibrium equations and edge boundary conditions in a through-thickness average sense. On a
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point by point basis, however, the differential equations of equilibrium are not satisfied by the

classical lamination plate theory solution in edge regions where there is a transverse gradient in

the in-plane stress field, because the out-of-plane stresses are assumed to be zero. Further the

surface tractions are not zero as required by the exact elasticity equations. Thus, the stress field

needs to be refined in regions near the boundaries. The next section details the formulation of

the refined solution developed in the present investigation.

3.3 Boundary Layer Stress Solution

3.3.1 Problem Formulation

The solution is developed by recalling that the applied loading and hence the stresses and

strains are independent of the the axial coordinate. The analysis may then be restricted to any

y-z cross section. To take into account warping of the cross section, induced by the presence of

off-axis layers, the generalized plane deformation assumption, with orthogonal displacement

components u,v, and w is employed. [60] As shown in Figure 3.1, the free edge is defined by y =

O. We assume that the classical lamination theory solution has been obtained and concentrate on

calculating stresses in the boundary layer region. The classical lamination theory solution is

_ (k) ~ (k)
valid in the interior but predicts non-zero stresses (_12 and o22 at the free edge. This defect in

the satisfaction of the free edge boundary conditions is corrected by a refined approximate

solution that assumes the total stresses in each layer to be a combination of the classical

lamination theory stresses plus an additional contribution to the stress field which is negligible

outside the boundary layer region. The in-plane components of the boundary layer terms

evaluated at y=0 are taken as the negative of the classical lamination theory values so that the

free edge conditions are satisfied. Thus we assume
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) _fl) A(k)
O_ (y,z)=Oii(y,z)+ oij (y,z) (3.19)

where:

o 9) (y,z)

~(k)
oij (y,z)

^ (k)
Oij (y,z)

is the total stress in the kth ply

is the clt stress solution in the kth ply

is the local solution for the kth ply

Because of the difficulties and inefficiencies encountered with solutions for the free edge

stress field based on displacement formulations, a stress formulation is presented. Under the

generalized plane deformation assumption, and in the absence of body forces, the equilibrium

equations that must be satisfied in each layer have the form

+ = 0 (3.20a)
by bz

+ = 0 (3.20b)
/}y bz

+ = 0 (3.20c)
by bz

and the associated compatibility equations are,

b2822

02z

_2_ii
- 0 (3.21a)

O2y

_2811
- 0 (3.21b)

bybz

028H
-- = 0 (3.2 lc)

02z

02833 2£)2823
+ -- + _ = 0 (3.21d)

bZy OyOz

O____[ _1_,, Oe,2] = 0 (3.21c)

3 [bet3 be,2] = 0 (3.21 f)
+ bzJ

The equilibrium equations (3.20) can be satisfied identically by expressing the stress components
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ineachlayerin termsof thestressfunctions16o1_ and V, such that

- _ 02_- (3.22a)
0.22---- 02 Z 0"23- 0y0z 0"33- 02y

/he O_t (3.22b)
0"12= 0z 0"13= 0y

The sixth stress component all is determined from the compatibility equations (3.21a-c) and the

strain-stress relations as subsequently described in Section 3.3.5. The stress functions and

constitutive relations can then be used in the remaining compatibility equations to yield the

following pair of coupled governing partial differential equations for the stress functions.

L30 + L2V = -2B 1 - sS_16B2
11

(3.23a)

L4d:+ L3_ = 0 (3.23b)

where, L2, L3, and L4, are linear differential operators defined as:

02 _2
- -- + R66 (3.23c)

L 2 - R55 0y2 0z 2

03 03 03

L3 = R260z--'-]- + R36_ + R450y2oqZ
(3.23d)

_4

+ 2R2a _ + R33 _-_--_ + R44 t.:)y20z---'--"_'- (3.23e)

and

Rij = Sij Sil Sjl
Sxx (3.24)

B1 and B 2 are determined from the end conditions.

In addition to satisfying equations (3.23) for each layer, the solution must satisfy conditions

on the external surfaces of the plate as well as satisfy the conditions of continuous tractions and

displacements along interfaces between adjacent layers of the laminate. The traction free

conditions at the edges y=0 imply
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G_ ^ (t) _ t'R)= O"12 + G'12 = 0

^(_) ~(t)
a_ = 0"22+ 0"22-- 0 (for y = 0) (3.25)

o 't --0

The traction free conditions on the top and bottom surfaces require

Oi3 =0

G23= 0 (for X3 = +H) (3.26)

0"33 = O

For perfect bonding between layers, the continuity of displacements and tractions at the layer

interfaces impose the six additional conditions on the solution in each layer

a_3+1)(y, t0_+l))= fffk}(y,0) (3.27a)

o_3+l)(y,t 0_+1))= o_(y,0) (3.27b)

o_3+l)(y,t e'+l)) = o_'_(y,0) (3.27c)

uC'+D(y,t0_+D)= ut_)(y,0) (3.27d)

v0'+D(y,tc'+D)= vt_)(y,0) (3.27e)

w0'+D(y,t0'+t))= w0')(y,0) (3.270

where the superscripts k and k+l designate the ply above and below the interface, respectively.

We have also assumed that classical lamination theory stresses are recovered in the interior.

This assumption implies the additional conditions

limt_ij(y,z) 0')= 0 (3.28)
y...,-

Finally at the ends of the laminate, the kinematic conditions w = coX1 or w = (r,oX3)Xt are

imposed, where eo and r.o are applied axial strain and curvature, respectively.

3.3.2 Stress Assumptions

An approximate solution to equations (3.23) subject to the boundary conditions specified in

equations (3.25-3.28) is obtained by choosing a stress field that exactly satisfies the differential
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equilibriumequations(3.20a-3.20c),andthestressboundary conditions (3.25-3.28). For clarity,

explicit expressions for stresses rather than stress functions are presented. Results from previous

investigations are used to guide the selection of appropriate stress forms. The previous analyses

show large through-thickness gradients as well as large in-plane gradients in the stress field in

regions near the free edge and in interfacial regions. In the present investigation, these

perturbations in the classical lamination theory stress predictions are approximated by assuming

two physical effects contribute to the stress field. The first effect is that represented by the

Kassapoglou and Lagace (KL) solution. In this solution, the in-plane stresses predicted by

classical lamination theory are used to formulate expressions for the out-of-plane stresses. As

previously shown in Section 3.1 the classical lamination theory stresses develop because of the

mismatch in engineering properties between the laminate and the individual laminae. The stress

field obtained by adding the KL refinement and the classical lamination theory solution exactly

satisfies the differential equations of equilibrium, the stress free boundary conditions, and the

traction continuity conditions. Thus this contribution is referred to as the global mismatch or

global equilibrium effect. The solution obtained from global mismatch considerations, however,

assumes the laminate behavior to be qualitatively the same throughout the thickness of the

layers, and consequently does not capture the large through thickness gradients in the layer stress

fields near the interfacial surfaces. Further, the KL method predicts zero stresses at some

interfaces where other analysis methods predict stresses of considerable magnitude. The second

effect included in the present formulation is intended to relax some of the constraints imposed by

the KL technique and provide an improved approximate theory. This effect is more local in

nature than the KL contribution to the stress field, and relates the stresses developing near

interracial planes to the relative displacements of adjacent layers, arising because of the

mismatch in engineering properties between these layers. Two material property mismatches are



28

considered;a coefficientof mutualinfluencemismatch,and a Poisson'sratio mismatch.

HerakovichtSIhasshownthatthesepropertiesarethemostimportantto consider,with regardto

interlaminarstressdevelopment,for themechanicalloadingproblem.Poisson'sratioisdefined

as

_22 S12

v12 ...... (3.29)
CII Sll

and the coefficient of mutual influence is defined as

where Sii

'_12 516

_h2a - - _ (3.30)
cit Sll

are the previously defined compliance coefficients in laminate coordinates. The

coefficient of mutual influence mismatch is primarily responsible for the development of o13 and

ol2, while the Poisson's ratio mismatch is primarily responsible for development of o22, o23,

and o33. Since global equilibrium and the free edge boundary conditions are satisfied by the KL

solution, self equilibrating forms are assumed for the local mismatch contributions to the stress

field.

The stress components for each layer are chosen as product functions of the thickness

variable z, and the in-plane variable y. This leads to the following functional form for each of

the effects in the kth ply:

a) global mismatch

^ 0t)
oii_(y,z) = _f_j)(y)g_)(z) i= 1,2,3, j = 2,3 (3.31)

b) mismatch in coefficient of mutual influence

- ,j (Y) ij () i=l, j=2,3 (3.32)Gij_(y,z ) -- h _) 1_) Z

c) mismatch in Poisson's ratio
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^(_)
oiJ_6,(y'z) = m_')rv_n_')tz_u,-,, u ,, + m_)(Y)Pi_)(z) i = 2,3, j = 2,3 (3.33)

The stress field _(y, z) in the kth ply is then the sum of (a), (b) and (c)

^fk)
O'ij (y,z) ---- f_)(y)g_)(z) + h_)t,,_lC')rz_ -,-m_)¢v_n00t_,xu ,.,,u ,,- u ,JJ u ,_J +m_)(y)p_)(z) i=1,2,3, j=2,3 (3.34)

Substituting equation (3.31) into the differential equations of equilibrium yields the following

system of ordinary differential equations:

df_ (y) = f_ (Y)
dy

(3.35)

df_(y) = f_(y) df_3)(Y) - _(y) (3.36)
dy dy

dg_'_(z)
g_'_(z) - dz (3.37)

dg_(z) dg_'3)(z)
g_(z) = _ g_(z) = _ (3.38)

Similar equations are obtained relating the functions in equations (3.32) and (3.34) If equations

(3.32) and (3.33) are substituted into the differential equilibrium equations, relationships like

equations (3.35) and (3.36) are obtained for the hijs, and mijs, and expressions similar to

equations (3.37) and (3.38) are obtained relating the lijs, nijs, and PijS. Note that equation (3.35)

uncouples from equation (3.36) and equation (3.37) uncouples from equation (3.38). This

decoupling was indicated previously in equations (3.22). Thus only four functions have to be

assumed for each contribution; two in-plane variations and two through-thickness variations.

The remaining functions are determined from the conditions (3.35-3.38).

3.3.3 Global Mismatch (KL Solution)

Following the KL solution, the first refinement to the stress field is made by assuming

approximate expressions for the out-of-plane stresses, based upon the in-plane stresses. The in-

plane stresses are taken to have the form
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A00
o l_) (y, z) = f_ (y)g _'_(z) (3.39a)
A00
o:_(y,z) = _(y)g_)(z) (3.39b)

where f_(y) and f_:)(y) are unknown functions of y and g_'_(z) and g_':)(z) are unknown

functions of z. The form of the functions g_ (z) and g_ (z) is determined by imposing the free

edge conditions (3.25) at y = 0

^ c,) - _'_ (z)o'12_(y = O,z)= (3.40a)

_'_ (y = O,z)= - _ (z) (3.40b)

where ¢3_2)(z) and _)(z) are the in-plane stress components predicted by classical lamination

theory. For a general symmetric or unsymmetric laminate subject to a uniform extension or

bending load, classical lamination theory predicts stresses that vary at most linearly through the

thickness of each ply. Therefore, we have

g_'_(z)= B_)z + B_ ) (3.41)

g,_(z) = B_')z + B_') (3.42)

where

~00 ~_)

B _)_.,,= al2, - a]_,
to,) (3.43a)

~(It)
B_') = ate, (3.43b)

B_)_,,= oz_ - _
to,) (3.43c)

~(k)
B_') = ¢_, (3.43d)

and the t and b subscripts denote the top and bottom of the kth ply, respectively, and to`) is the

thickness of the k th ply. These expressions are then substituted into the equilibrium equations

(3.37) and (3.38) and integrated with respect to z to obtain expressions for the through-thickness

^ O`) ^ O`)
variations of the interlaminar shear components cz3c_(y,z) and oz3_(y,z). After imposing the

stress free conditions at the top and bottom surfaces of the laminate, the interlaminar shears may

be written as
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^(k)

_t3e_(y,z) = f_(y)[B_)z2/2 + B_')z + B_ )]
^ (k)

G23o_,(y,z) = f:_(y)[B_)z2/2 + B_)z + B_k)]

(3.44)

(3.45)

In a similar manner, the interlaminar normal stress c_k3) is obtained from equations (3.38) and

(3.45)

^(k)

_3_,(y,z)= f_(y)[B_)z3/6+ B_k)z2/2+ B_')z+ B_')] (3.46)

Constants B_k),B_k),and ,B_ )are determined from the interracialtractioncontinuityconditions.

Starting at the bottom free surface and working up, they have the form

B_ ) = _ )(t(J))2/2 + B_)t 0 k = 1,N-I (3.47)
_-k÷l

B_ >= 2 )(tO)) 2/2 + B_ )t(j k = 1,N-1 (3.48)
_÷1

.i-I
B_ )= 2 _)(t(J))3/6+B_)(t(J))2/2+ B_)(t(i))(2)/2+B_)t(J _ t(m k=l,N-1 (3.49)

._k+l m=k+l .]

and B_ '_,B_ _)and B_ 0 areallequal tozero.

^(k)
The stressfield<_ij<_(y,z)isnow expressed interms of the 2N unknown functions f_(y) and

_(y), where N isthe number of layers in the laminate. Iff_k_(y)and f_:_(y)are expressed in

terms of quantifies at the interfaces, so that interfacial continuity of tractions is guaranteed, a

general solution for these functions may be obtained by invoking the principle of minimum

complementary energy. According to this principle, out of all possible stress fields a_)(y,z),

that satisfy both equilibrium and the stress boundary conditions, the one that represents the

actual equilibrium state, is the one that minimizes the laminate complementary energy. [711 The

complementary energy is defined as the strain energy of the laminate minus the external work

done on the portion of the laminate where the displacements are prescribed

N N



32

Using the assumed forms for the stresses in equation (3.50) an expression for the complementary

energy in terms of the arbitrary functions _f_i)(y) is obtained. Since we have assumed stresses to

be independent of the axial coordinate Xl, and have assumed explicit functions for the through-

thickness variations of the stresses, the z and x integrations can be carried out, reducing the

volume integral in equation (3.50) to a line integral in y. Taking the first variation of the

simplified integral and equating it to zero yields a system of 2N, constant coefficient, ordinary

differential equations for the functions f_}(y) and f_(y). These equations and the homogeneous

boundary conditions along the free edge define an eigenvalue problem whose solutions are

exponential functions of y. The complete solution for any of the functions f_ and f_ is then

obtained as a combination of a particular solution and a linear combination of the eigenfunctions

for the homogeneous solution.

A general eigenfunction expansion solution of this type is favorable for a few reasons. First,

since separate functions are assumed for each ply, the stresses in individual plies can decay at

different rates. Second, as Pagano [511 has shown, the accuracy of the stress field predictions will

improve significantly when the number of sublayers used to model a layer increases, just as

results improve with finite element models when the mesh is refined. For the same through-

thickness discretization, a model of this type will provide more accurate results than finite

element models, since continuous functions are used to describe the y variation in the stress field

rather than discretized functions as are used in the finite element models. These advantages,

however, come at the high cost of solution inefficiency, which is precisely what we are trying to

avoid. Run times are a function of the number of layers in the laminate and can become

prohibitive for laminates with a large number of plies. Also, as noted earlier, numerical

constraints have been shown to limit the number of plies in a laminate that can analyzed by this

approach. [511
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Consideringthe efficiency problemsassociatedwith the generalizedeigenfunction

expansiontechniqueoutlinedabove,KL took a slightlydifferentapproachandmadesome

assumptionsat theoutseton theformof thefunctionsf_}(y) andf_(y). Theseassumptions

simplifiedtheenergyexpressionandsubsequentlyreducedthesystemof equationsthathadto be

solved.First,baseduponthefactthattheintegralsof the in-planestressesa_k2_andt_ through

the laminate thickness are zero at any y location, they assumed that f_(y) and f_2)(y) be the

same in all layers

^(k)
t_i2 (y,z)= a(z)kfi2(y), i=1,2 (3.51)

By taking in-plane stresses of this form, the analysis greatly simplifies since the number of

unknown functions is reduced from 2N to two. The limitation imposed by this technique,

however, is that the stresses in all plies are forced to decay at the same rate. KL also went one

step further, and assumed explicit sums of exponentials, expressed in terms of unknown decay

parameters, for the in-plane variations f_2_(y) and f_(y). The interlaminar functions were

derived from the in-plane functions and the differential equations of equilibrium. Minimization

of the laminate complementary energy then resulted in a system of two non-linear algebraic

equations for determining the unknown parameters.

KL used exponential functions to describe the in-plane variation in the stresses because they

provide for the necessarily rapid decay of the boundary layer stress components with distance

from the free edge. Explicit sums of exponential functions are used in this study as well because

the KL predictions generally show good trends, and as mentioned above, the Euler Lagrange

equations obtained from the more general approach are solved by a series of exponential terms.

KL determined the necessary forms of the in-plane functions by enforcing the requirements

of the Force-Balance Method. it9] The Force-Balance method will also be used in deducing the
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requiredformsof the in-planevariationsassociatedwith localmismatcheffects.TheFort.e-

BalanceMethodis basically a statement of overall force and moment equilibrium, applied to a

section of the laminate large enough to satisfy the assumptions of material homogeneity. If a

rectangular volume element is taken with its X2 faces at the laminate center plane and stress free

edge, and with the X3. face corresponding to the top free surface, as shown in Figure 3.1, six

equations are derived from the force and moment equilibrium conditions. [2°1

Force Equilibrium:

_'Fxi : f ol3dy + IT ol2dz = 0 (3.52a)
3-

,_,Fx_: _ o22dz + I3- omdy = 0 (3.52b)

_-'x_ : I o33dy = 0 (3.52c)
3-

Moment Equilibrium:

_Mx, : Icr22zdz + I o33ydy = 0 (3.52d)
2- Z"

_EMx2: fo_3dydz+ Iol2zdz=0 (3.52e)
1÷ 2-

_Mx, : I012dydz + Io13Co-y)dy = 0 (3.520
1* Z-

The subscript on the integral indicates the face over which the integrations are taken.

Equation (3.52c) implies that o_k3)(y,z) is a couple. Therefore, o_k3)(y,z) must cross the y axis

at least once, and at least two exponential terms are required to represent this component of

stress. KL assumed that onc crossing of the y axis represents the lowest cncrgy solution so they

used a sum of two cxponential functions to represent thc transvcrsc variations f_(y), f_3)(y), and

f_(y). Similar considerations were used to dctermine f_(y) and f_(y).
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Consideringthe aboverequirementson the form of fij(Y) and the free edge boundary

conditions, KL obtained the following final expressions for the stresses in the kth ply:

O'22_)^0t) = -- _'_-_--1 e-_y Z.1e-X"° B_')z + B_' (3.53a)

ts3_3'_,= '22X1---_I[ kle-X"Y- e-_Y] [ B_'z3/6 + B_)z2/2 + B_)z+ B_' t (3.53b)

O'12C_ =

_3)_, = (_,e_'Y [ B_')z2/2 + B_)z+ B_k_ (3.53e)

where %, _2, and kl are unknown decay constants determined by minimizing the

complementary energy. KL assumed _1 = 02 so only two unknown parameters % and X.I are

used in their solution.

These stress distributions superposed on the classical lamination theory solution satisfy

pointwise and global equilibrium, stress free boundary conditions, and interfacial traction

continuity conditions. Also equations (3.53) show that for large y all of the (_ijs are zero, so

outside the boundary layer region the classical lamination theory solution is recovered. Further,

these equations show that the interlaminar stresses predicted by the KL solution at an interface

are proportional to B_k), B_k), and B_k). The B's contain stacking sequence information and are

basically force ( B_k), B_k)) and moment (B_k)) resultants of the classical lamination theory

stresses obtained by carrying out the through-thickness integrations in equations (3.52).

Therefore, if the resultant force at an interface, or at any through-thickness location, z, is zero,

the KL solution predicts identically zero interlaminar stresses at all points along the interfacial

plane having this z-location. This form of assumption, however, is too restrictive. The overall

equilibrium equations (3.52) only require that the integral of the interlaminar stresses be zero at

any z-location where the through-thickness integration is zero, and not that the stresses
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themselves be identically zero at all points along the interfacial plane. In fact, as previously

mentioned, results from earlier investigations indicate large interlaminar stresses in interracial

regions where local mismatch of properties is present but interlaminar stresses are not required

to satisfy global equilibrium. The next sections outline extension of the KL solution to include

additional terms associated with this local property mismatch in the assumed stress field.

3.3.4 Local Material Property Mismatch

Stress assumptions to include local mismatch considerations are developed by defining the

interlaminar shear stresses and the interlaminar normal stress at each interface and deriving the

remaining stress components from these definitions using the differential equations of

equilibrium. This approach has the advantage that the traction continuity conditions are satisfied

by the form of the assumptions. The most general form of a definition of this type would have

different functions at each interface, as mentioned in the previous section, allowing the stresses

in individual plies to decay at different rates. This is a considerable relaxation of the constraint

imposed by the KL solution that stresses in all plies decay at the same rate and should lead to

increased accuracy in the stress predictions. The drawback of course, is a large reduction in

solution efficiency since the number of unknowns is dependent on the number of plies in the

laminate. The present formulation is a compromise between the general formulation and that of

KL. The same functions are used at all interfaces to define the local mismatch contribution to

the stress field. As in the KL solution, using the same function for all interfaces requires the

decay of the local mismatch contributions to the stress field to be the same in all plies. However,

the decay of the total stress, i.e., equilibrium contribution plus mismatch contribution, may differ

in individual plies, if there is a local mismatch contribution in one ply but not in another.

The interlaminar shear stresses arising at an interface are assumed to be proportional to the
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mismatchin coefficientof mutualinfluenceor mismatchin Poisson'sratiobetweentheply

aboveandbelowthe interfaceof interest.The interlaminarnormalstressis assumedto be

proportionaltothemismatchin Poisson'sratio.Themismatchincoefficientof mutualinfluence

is assumedto affectonly thea_ and a_ components of stress while the Poisson's ratio

mismatch is assumed to affect only the a_, c_3), and a_3) components of stress. This

assumption is exact for cross-ply laminates, where only a_'_, a_, and a_3_ are present, but is

approximate for more general laminates. In angle-ply laminates, for example, the classical

~00
lamination theory stresses o22 are all zero and there is no Poisson's ratio mismatch between

adjacent plies, but interlaminar stress components a_ and a_}, and transverse in-plane stress

a_ have been shown to develop. [9'26'35'591 These stresses, therefore must result from the

coupling between the a_, and a_ components of stress and the a_, c_3), and a_ stress

components. This coupling is apparent from the compatibility equations (3.23). For cross-ply

laminates, the compatibility equations uncouple and _'_ and a_3) are identically zero. The

previous predictions, however, have shown a_., a_:_, and a_3) to be an order of magnitude

smaller than a_3 ) and a_ in angle-ply laminates so neglecting this coupling is a felt to be a

reasonable assumption.

The in-plane functions, h_(y), m_(y), are, as in the KL solution, assumed to be an explicit

combination of exponential functions which are chosen such that the interlaminar stress

components arising from local mismatch integrate to zero over y. For the m_(y) functions, the

additional restriction that m_3) (y) has a zero moment about the longitudinal axis is imposed.

Thus, the mismatch effect permits non-zero stress contributions, but these stress contributions do

not alter the global force and moment equilibrium established through the _(y) and g_(z)

functions of the KL solution. The through thickness variations l_(z), n_(z), and p_(z) are

polynomial functions chosen so that the stresses resulting from mismatch decay with distance
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fromaninterface.In orderto keepthenumberof unknownsin thesolutionto amanageable

number,thethrough-thicknessdecaylengthsof themismatcheffectsareestablishedaprioriand

set equal to the thicknessto`)of the individuallayersin the laminate.A more general

formulationwouldallowthedecaylengthstobevariableandleft asunknownstobedetermined

byminimizingthelaminatecomplementaryenergy,butonceagainat theexpenseof increased

computationalcost. The effect of variablethrough-thicknessdecaylengths,obtainedby

dividingalayerintosublayers,isbrieflyaddressedinSection4.1.1.

Mismatch in Coefficientof Mutual Influence. Theinterlaminarshearstressa_k3) at an

interface,associatedwith the mismatchin coefficientof mutualinfluence,is assumedto be

proportionalto the mismatchin _12,1of the two plies adjacentto that interface.The

proportionalityconstantis aproductof anunknownconstantAt, determinedbyminimizingthe

laminatecomplementaryenergy,andtheappliedaxialstrainEll. Thesameconstantis usedfor

all interfaces.

Themismatchin coefficientof mutualinfluenceatthetwo interfacesboundingthekthlayer

aredefined

8rh2.1(k,I)= rh2.t(k-l)-rh2.1(k) (3.54)

_ilh2.1(k,2)= rh2.1(k)- _,2.1(k+l)

with?_rh2,1(I,1)= _ql2,1(N,2)= 0. The layersabove and below thekthlayeraredesignatedk-1

and k+1, respectively,asindicatedbelow.

The stresses in a generic layer are influenced by mismatch effects from the two adjoining
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interfaces.Twoquadraticfunctionsareusedto describethe through-thickness variation in shear

stress within a layer. One function has the value of the mismatch at the top interface of the kth

layer, and a value of zero at the bottom interface, while the other function has the value of the

mismatch at the bottom interface of the kth layer, and a value of zero at the top interface.

Therefore, the through-thickness function 1_3) is assumed to have the form

l_(z) = [_lll2,1(k,1)Et00z2/(t(k))2 + _'ql2,1(k,2)8_l(l-z_/t(x))21 AI (3.55)

Equilibrium then requires that the function 1_2)have the form

dl_';.z, r 2z r +8_,2.,(k,2)8_'] _ } A! (3.56)

where et0`) and eb_) are the strains at the top and bouom of the kth layer, respectively, and t o`) is

the thickness of the kth layer.

The associated in-plane variation his(Y) is chosen to be the same for all interfaces with the

self-equilibrating shape shown in Figure 3.2. As previously mentioned, the same function is

used for all interfaces to keep the number of unknowns to a minimum. To obtain the shape

shown in Figure 3.2, a combination of two exponential functions is assumed

h13(y) = Die -¢'y + Dze -xac_r (3.57)

Integrating with respect to y and setting the result to zero, provides a relationship between DI

and D 2.

Di D2

--¢3 + _ = 0 (3.58)

Setting Dl = -1, h_k3)(y)has the self-equilibrating form

hl3(Y) = Lze -x_*_y- e"¢_y 0.59)

It follows from equilibrium that hl2(y ) must have the form
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h
13

Figure 3.2. Required form for h13(y)

1 [---e-M_Y+ e'-_Y] +D6 (3.60)hlz(y ) = [hj3(y ) dy=

where the constant of integration, D6, must be zero to satisfy the condition that the classical

lamination theory solution is recovered in the interior.

Mismatch in Poisson's Ratio. Assumptions for stresses arising from a mismatch in

Poisson's ratio are derived in a similar manner to those developed for the coefficient of mutual

influence mismatch. The mismatch in Poisson's ratio at an interface results directly in an

interlaminar shear stress, c_'_, and an interlaminar normal stress, a_'3). Thus, there are two

contributions to the assumed stress state arising from mismatch in Poisson's ratio considerations.

The first contribution is in the form of a direct assumption on the interlaminar shear stress at an

interface, as was done with the coefficient of mutual influence mismatch. Interlaminar normal

stress, a_'3) and transverse in-plane stress, C_k:_,are then derived from the differential equations of

equilibrium. The second contribution is in the form of an assumption on a_'3), with a_ and a_
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derived from equilibrium considerations. For both contributions, the stress assumed at an

interface, either c_ or o_k3),is assumed to be proportional to the mismatch in Poisson's ratio,

v12, of the plies adjacent to that interface. As with the coefficient of mutual influence mismatch,

the proportionality constants are unknown and are determined by minimizing the laminate

complementary energy. The same constants are used for all interfaces.

The definition of the mismatch in Poisson's ratio is similar to the definition for the

coefficient of mutual influence mismatch

8vt2(k, 1) = Vl2(k-1) - vlz(k) (3.61a)

_V12(k,2) = v12(k) - v12(k+l) (3.61b)

with _Vl2(1 , 1) = _ViE(N,2) = 0.

Expressions for the through-thickness variations in the stresses in the k th ply are developed

by considering a two ply, unsymmetric laminate. Figure 3.3 shows a section of the laminate

with the shear stress a23(Y,Z) acting over a face parallel to the free edge and the interlaminar

normal stress, ts33(y,z), acting on the interracial plane between layer (1) and layer (2). For layer

equilibrium the integral

tot)

I t_za(y,z)dz (3.62)
0

evaluated at y = Yo must equal the integral

YO

j'_a3(Y,z)dy
o

(3.63)

over the interface between the two layers. For laminate equilibrium the integral of t_23(Y,Z )

through the laminate thickness must be zero. (The latter restriction was not imposed when

developing the through thickness assumptions for t_13(y,z ) in the previous section because equal
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(1)

(2)

a23

tttt

(_33

Figure 3.3. Laminate and Sublaminate Equilibrium

and opposite shear stresses act on the ends of the laminate). Possible through-thickness

functions for the stress component t_23(Y,Z) that satisfy these equilibrium requirements are

shown in Figure 3.4.

We begin by formulating the through-thickness functions n_)(z) associated with the

assumption on the interlaminar shear stress at an interface. In general there will be a non-zero

strain eH at the (1)-(2) interface, and consequently a non-zero shear stress _23 there, since we

are assuming _23(Y,Z) to be proportional to the axial strain and mismatch in Poisson's ratio at

the interface. In order to have a non-zero shear stress at the interface and still satisfy the

requirement of overall laminate equilibrium, the through thickness variation of _23(Y,Z) must

have the form shown in Case A of Figure 3.4. That is, n_k#(z) must integrate to zero over each

layer thickness. If (_23(Y,Z) integrates to zero through the thickness of a layer at any location y,

then t_33(Y,Z ) will be zero at all points y along all interfaces.
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)
.)

(1)

(2)

CASE A

A=B

(1)

(2)

CASE B

Figure 3.4. Through-thickness distributions of (_23 (Y, z)

Two quadratic functions are employed to describe the through-thickness variation in shear

stress within a layer as was used for the variation in the shear stress (_)(y,z) in the previous

section. An expression for the function associated with the mismatch at the bottom of a ply can

be obtained by considering the first ply in Figure 3.4. We assume

n_3'2)(z) = Az 2 + Bz + C (3.64)

Imposing the condition that n_ ,2) is proportional to the mismatch _v12(k,2 ) at the bottom

interface of the kth layer, and has a value of zero at the top interface gives

(3.65a)

(3.65b)

(_23(Y,Z (1)= 0) = _Vl2(1,2)E(b 1)

(_23(Y,Z(I) = t(l)) = 0

^(k)
and imposing thc requirement that (733 is zero at all interfaces as outlined above
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y_elds

O'33(Y,Z (I) = t0)) = 0 (3.65c)

o'33(Y,Z (1) = 0) = 0 (3.65d)

n_.2) = _v12(k,2)c_)[ 3z2/(t(k))2- 4z/t 00 + 1] A 2 (3.66)

Similarly, considering ply 2 provides an expression for the function associated with the

mismatch at the top of the k th ply

n_. a, = 5v12(k,1)et (k) [ 3z2/(t(k)) 2- 2z/t 0')] A 2 (3.67)

The through-thickness variation n_k3)(z) in each layer is then the sum of equations (3.66) and

(3.67).

where A 2 is an unknown constant to be determined by minimizing the laminate complementary

energy. Equilibrium then requires that the functions n_(z) and n_k3)(z) have the form

n_ (z)= [ _Vl2(k. 1)Et(k)[ 6z/(t(k))2- 2/t(k)] + _V12(k,2)Eb(k)[ 6Z[(t(k))2- 4_)] ] A2 (3.69)

n_'_(z) = [_v,2(k,l)_'[z3/(t0")2- z2/t c''] +_v,2(k,2)e_)[z31(tO")2-2z21t_' +zl] A2 (3.70)

The corresponding in-plane function m23(Y ) is chosen to be self-equilibrating with the shape

shown in Figure 3.5

functions is required

To obtain a shape of this form, a combination of three exponential

It follows from equilibrium that

m23(y) = Dle "*4y + D2 e-*'x_y + D3e "*'_y

tm . .J __Dle..t,y - I)2 e..,4My
m22(Y) = j 231.y)oy - qb4 $4k3 - --

(3.71)

D3 .et'_Y+D4 (3.72)
_4x_
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A=B

M23

Figure 3.5. Required form for m23(y)

m33(y ) = dm23(Y)i = -_4Dle _`y - _4_,3D2 e_4x_y - _4)_,4D3e -'¢'x_y (3.73)
dy

where the integration constant D 4 must be zero so that m22(Y ) is zero for large y. We can now

set Dl to one, without loss of generality, and solve for D 2 and D 3 by imposing the free edge

conditions. The free edge condition on m23 (y) gives

m23(y=0) = 1 + D 2 + D 3 = 0 (3.74)

and the free edge condition on m22 gives

D2 D3

m22(y=O) = -1/_4 (1)4_3 (_4_,4 (3.75)

D2 and D 3 are then found to be

X3(l - L) _(X3 - l)

D2 - (_-4- _,3) D3 - (7k4- )_3) (3.76)

The through-width functions associated with the Poisson's ratio mismatch and the direct
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assumption on the interlaminar shear stress then have the form

- (_3 - 1) e._,,x,y]
-1 (1 X_) e..,,x,y +

mzz = _ e--*'Y+ (_-4 - k3) (_-4- L3)
(3.77)

Z.4(_ - 1) e_,,x,y ]
_'3( 1 - k4) e_,X_y + (3.78)

m23 = e-_'Y + (_k4 - _.3) (_k4 - _.3) J

m33 = --04
i

_,32(1 - _.,1) e--t,_qy + _-2(_3 - 1) e__,,x,y
e-*'Y + (X_ - X_) (X_ - X3) (3.79)

Note these forms satisfy the self-equilibrating requirements outlined in the introduction to this

section, provided classical lamination theory stresses are recovered in the interior region, i.e.

provided the laminate is wide enough for the exponential terms to be zero in regions removed

from the edge. Under these conditions, the serf equilibrating requirements are identically met as

a result of satisfying the boundary conditions.

r--b

j" m23(y)dy = m_,(b) - m22(0) 0
r--o

(3.80)

m33(y)dy = mza(b) - mz3(O) 0

r--o

(3.80

r--b

[ m33(y)dy = mmCo) - m22(0) = 0

y---o
(3.82)

To develop expressions for the direct assumption on interlaminar normal stress we again

consider a two layer unsymmetric laminate. We assume (_33(Y,Z) varies cubically through a

layer thickness so the interlaminar shear stress o23(y,z) will again vary quadratically. Recall

that for laminate equilibrium and layer equilibrium to be satisfied, cz3(y,z) must be distributed

through the laminate thickness with a form like that shown in either Figure 3.4a or 3.4b. Since it

is desired to have a non-zero interlaminar normal stress at the interfaces and since we have
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alreadyexplicitlyassumed623(Y,Z ) at the interfaces, 623(y,z) associated with the normal stress

assumption will have the form shown in Figure 3.4b. Using this requirement, and proceeding as

was done for the n_k3) function, the following through thickness variation p_) for the interlaminar

normal stress in the k th layer is obtained

t . 1jl
Equilibrium then requires the functions p_k3)(z)and p_k2)(z)have the form

The _5v12, in equations (3.83-3.85) are the equal to the _vl2 in equations (3.68-3.70) for layers

above the midplane and equal to their negative for layers below the midplane, since the

interlaminar normal stresses are symmetric with respect to the midplane for the case of uniform

axial extension of a symmetric laminate, and are antisymmetric for the case of uniform bending.

The through-width assumptions associated with equations (3.83-3.85) are of the same form as

equations (3.77-3.79) but divided by ¢ to give dimensionally consistent stress expressions.

3.3.5 Total Stress Assumptions

The final form of the stress assumptions in each layer of the laminate can now be obtained by

combining the classical lamination theory solution and the stress field refinements obtained from

global and local material mismatch considerations in accordance with equation (3.34). The final

forms of the stress assumptions including all contributions are then
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(3.86)

(3.87)

(1 - _) e_,X_y + e_,X _ _v12( k, l)et¢) 67j(too) 2 _ 2/to,)
+ (x, - _,_) _-fj,-_

(3.88)

_'I [ e-_y _ e-_.,,y] [ B_)z2/2 + B_)z + B_)],,_ =_ _-___

[ (l-X4) e-_'x_'" (_3 - l) e-_,x_y] 2z/t00]

A_[ (,-x,) . (x,- ,) -.,,,,]ro a. l,ee)[_6z:2/(ta))3+6z/(t00)2 ]e-_'r + _ e_'x_y + _ (__---_e J Lo_,_.,.,,,

(3.89)

(3.90)
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The assumption that stresses are not dependent on the longitudinal coordinate XI caused c_ )

to drop out of the equilibrium equations. The strain compatibility equations and strain-stress

equations are used to determine ct k), as suggested in Reference [68]. It follows from equations

(3.21a-c) that e_) is a linear function of y and z:

_) = A°')y + B°')z + Cc') (3.91)

Now e_ ) can be expressed in terms of the stress field using the constitutive equations (3.1):

e_ ) = S_)o_ ) + S_)_ + S_)a_ + S_o_ = A00y + B00z + COo (3.92)

For large y, the left hand side of equation (3.92) is independent of y because the classical

lamination theory solution is recovered away from the free edge. This implies A 0') = 0. Solving

for _) then gives:

Sn L J

The constants Kt k) and K_k) are obtained by matching the solution at large y with the solution

given by classical lamination theory.

y--m- _II L.

We therefore obtain
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ormoresimply

where

-(It) -5) [

sl,_J
_) B_" Sll J + _t(tt)Br + _) Bh"] (3.95)

(3.96a)

_c,) B_,)z + B_,_ (3.96b)O"11 =

._k) B_,)z + B_k) (3.96c)0"22 =

-_) B_')z+ B_") (3.96d)(_12 =

The stresses are now expressed in terms of the unknown decay parameters _i and _ and the

proportionality constants Ak, through equations (3.86-3.90) and equation 3.96. The condition of

minimum complementary energy is used to determine these constants.

3.3.6 Complementary Energy Minimization

The complementary energy can be expressed as a summation over the individual plies as

N N

FI¢= _FI_) = _I_ j" [ {0.}T[_]{0.} ]0,)dVk_If{T}r{_}dA
k=-I k=l V_) S_

(3.97)

tractions on the displacement boundary Sa and [_],'k) is the compliance matrix of the k th layer

with respect to the laminate coordinate system.

In order to evaluate the energy expression in equation (3.97) the prescribed displacement {6}

where Vk is the volume of the k th ply, Su is the portion of the boundary over which

displacements are prescribed, {fi} are the prescribed displacements, {T} T are the associated
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mustbedetermined.Sincethedisplacementull in thelaminatedoesnotvarywithy overthe

endswherethedisplacementsareprescribed,ull maybeobtainedbyintegratingthestrainell at

the center of the laminate. That is

Ull : SEI 1 dXl = f[_l 1(_1(11)-4. 5120"22-(k)4- Sl6(_)]dXl (3.98)

By symmetry, Ull = 0, at XI = 0, so at X1 = L, the prescribed displacement flit is given by

Ull (Sllt_l(ll) -- ~(k)+ _16_1(12))L= + S12aE2 (3.99)

The volume integration with respect to X 1 will yield a factor of 2L multiplying that term, since

the stresses and compliances are not dependent on the longitudinal coordinate XI and, therefore,

it is only necessary to compute the complementary energy per unit length of the laminate.

Additionally, for thin laminates [721only half of the laminate, (0<X2<b), needs to be considered.

Further, since explicit piecewise continuous functions have been assumed for the through-

thickness variations, the z integration is performed by summing the individual integrals in z_k).

Making these simplifications and substituting for [5] , {fi}, and o_ ) we obtain the following

expanded expression for the complementary energy in the laminate

H_ _ J) (3.100)[ R22--_ + R33--_ + R_-'-'_ + R44----_ + R55 2

+ R2aG?_G_ + R45i:i?TG_3) + R26ti,_G_t_ + R36t_?_G??

+__' - :SllO'll 4- S120"22 4- _160"12 dV(k)
--"JLSti t

where the Rij are as previously defined in equation (3.24), and terms that are not functions of the

unknown parameters have been omitted. Once the integrations have been performed, the

complementary energy FIc may be written as
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rIc = cl((_i,_)+ AiC2((_i,Xi)+ A2Cs(t_i,ki)+ AsC4(t_i,ki)+ Al A2Cs(t_i,_i) (3.101)

+ A2A3C6(dPi,_) + AmA3C7(d#i,_')+ A2Cs(_i,_i) + A_C9(t_i ,Xi)+ A2Clo((_i,)'-i)

where the Cm, (m = 1,10)arepolynomialfunctionsofOi and _ multipliedby constantsdk,and

are expanded in Appendix A. The polynomials represent the result of the integration in the

transverse direction y, and the dk represent the integration through the thickness of the z

variations of the stresses. Note, that the expressions for the transverse integrations presented in

Appendix A, are not exact expressions for the definite integrals in equation (3.100), but are

based on the assumption that

e -_b = e -¢'hb = 0 (3.102)

This assumption implies that _ib is very large, that is the laminate is wide relative to its

thickness. This places a restriction on the geometry of laminates that can be analyzed using the

present formulation, but the severity of this restriction cannot be ascertained until the parameters

q_iand _ have been determined.

The variation of I-Ic with respect to the unknown parameters _i, _j, and A k can now be taken

and set equal to zero. This results in a system of fourteen coupled, non-linear algebraic

equations for the unknowns written symbolically as

_Flc
-- = 0 (i=1,5) (3.103a)

3I-Ic
-- = 0 (j=l,6) (3.103b)

3Fie
= 0 (k=l,3) (3.103c)

3Ak

The form of these equations is shown in Appendix A.

3.3.7 Solution of System of Equations

The problem has now been reduced to solution of the systems of equations (3.103). Since

these equations are non-linear, root finding proceeds by iteration. Basically, two numerical
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approachescanbeemployedfor findingtheroots.Sincetheequationsrepresentthegradientof

the complementaryenergy,one approachis to find the minimumof the energyfunction

(objectivefunction)usinga generalnumericalunconstrainedoptimizationtechnique.Another

approachthat can be takenis to solvethe simultaneoussystemusing Newton's Method.

Theoretically, the minimization technique should be more efficient, since the search for a

minimum can basically be reduced to a one dimensional problem, that is, a minimum can be

found by moving "downhill" on a single surface. 1731There is not an analogous procedure for

finding a multi-dimensional root. However, both methods were tried in the present

investigation, and greater success was experienced using Newton's method.

Both Newton's method and numerical optimization techniques are started by providing the

iterative algorithm with an initial approximate guess to the solution. One difficulty with

Newton's method is that the solution may not converge from a given initial guess. Convergence

is only guaranteed if the initial approximate solution is in the neighborhood of the solution.

Another problem associated with the solution of non-linear equations is the possibility of

multiple solutions, in our case corresponding to local minima of the energy function, requiring

the iterative procedure to be initiated from several different starting values of the independent

variables to ensure that the "best" solution is obtained. The "best" solution is the one

corresponding to the lowest energy. In the present study, the initial approximate solutions were

generated based upon the results of the KL solution. The KL solution can be solved very

quickly and gives an indication of the magnitudes of the decay parameters (_i and ki. Several

starting points were generated by bracketing the KL solution and then incrementing the

independent variables, _i and ki within the "brackets". Initial approximations for the

proportionality constants Ak were obtained by simultaneously solving the three equations

(3.103c), at the starling values of ¢i and _j. With the decay parameters known, the constants
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Cm,(m=l, 10)canbeevaluated,andequations(3.103c)arelinearin the unknowns Ak. Negative

values of #i and _ were discarded because they physically correspond to growing stresses with

distance from the free edge, and complex roots were discarded because they in general lead to

complex energy.

3.3.8 Solution Implementation

The equations presented in the previous section are incorporated in a FORTRAN program

AAIS. The laminate configuration, i.e stacking sequence, and ply thicknesses, ply orientations,

ply material properties, and loading conditions are required input. With this information, the

classical lamination theory solution is obtained.

Once the classical lamination theory solution has been obtained, the energy expressions may

be formulated and solved for the unknown constants. As mentioned in the previous section, two

approaches were used to obtain the constants. IMSL [741routines were called to implement both

approaches. For the optimization, IMSL routine DBCODH was used. DBCODH minimizes a

function of N variables with simple bounds using a modified Newton method and a finite

difference approximation to the Hessian. To solve equations (3.103) as a non-linear system,

IMSL routine DNEQNF was used. DNEQNF uses a variation of Newton's method and the

finite-difference method to estimate the Jacobian. There are also IMSL routines available that

require the user to provide an exact Jacobian. These methods were not used because of the

length of calculations necessary to obtain the Jacobian matrix.

The program output includes the classical lamination theory stresses, values for the unknown

constants, the laminate strain energy, complementary energy and compliance constants. This

information is then input to a postprocessor that can be used to calculate through thickness and

interlaminar stress distributions at any desired location. Contributions from all effects are
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delineatedin theoutputfiles.
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CHAPTER 4

COMPARISON WITH PREVIOUS RESULTS

In this chapter and in Chapter 5, the approximate theory presented in the previous sections is

applied to the stress analysis of several finite width, straight free edge laminates subjected to

uniform extension and bending. Because of the general nature of the formulation and its

simplicity in terms of the number of unknown parameters, the applications are straight forward.

Recall from the previous discussion, that for general laminates, the stresses in individual layers

are expressed in terms of fourteen unspecified parameters, _i (i=1,5), kj (j=l,6), and Ak (k=l,3)

that are determined by minimizing the laminate complementary energy. For cross-ply and

angle-ply laminates, in which some of the stress components are zero, or are assumed to be zero,

fewer parameters must be determined. For cross-ply laminates the number of parameters

reduces to ten, since t_12 and t_13 are identically zero, and in symmetric angle-ply laminates

subjected to uniform extension the number reduces to three. The reduced number of unknown

parameters for the angle-ply laminates is a reflection of the assumption made in the present

formulation that t_13 is the only non-zero interlaminar stress. In unsymmetric angle-ply

laminates and angle-ply laminates subjected to bending load, the number reduces to six. For a

particular type of laminate, however, the number of unknown parameters is independent of the

number of layers in the laminate, their material properties, and orientations. Obtaining classical

lamination theory stresses in the plate interior is the only laminate dependent calculation which

must be performed prior to determination of the interlaminar stresses. Consequently,

computation times are linearly proportional to the number of layers in the laminate, and the
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analysiscanbeappliedtolaminateswitha largenumberof layers.

As indicatedin the previouschapterseveralsimplying assumptionswere made in

formulatingthepresentapproximatetheoryin orderto obtainamethodologywiththeefficiency

characteristicsoutlinedabove.Theseassumptionswill, to someextent,resultin a decreasein

accuracyof the responsepredictedby the presenttheoryas relatedto that givenby more

complicatedmodels.Therefore,to gainsomeconfidencein themodel,this chapterpresents

comparisonsbetweenpredictionsof thepresenttheoryandwellknownsolutionsavailablein the

literature.Firstcomparisonsarepresentedfor laminatessubjectedto extensionloading.These

comparisonsarefollowedbyresultsfor laminatesinuniformbending.

4.1 Laminates in Uniform Extension

In this section we compare the response predicted by the present method of analysis with that

given by other investigators [35"59'741 for finite width symmetric laminates subjected to uniform

axial strain, en = 0.1%. Specifically, four laminates are examined; [9050/050],, [05o/905o],,

[+4550],, and [455o/-455o/05o/905o]s. In all laminates, the layers have equal thickness h = 0.25

in., and the thickness to width ratio of the laminate is taken to be one to four. Thus for the

cross-ply and angle-ply laminates we have H = 2h and b = 8h, where a quasi-isotropic laminate

has H = 4h, b = 16h. The elastic properties of each graphite-epoxy laminae are taken to be equal

to those given in the early studies of interlaminar stresses I261 and are provided in Table 4.1.
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TABLE 4.1. Lamina Material Properties for Typical Graphite-Epoxy

Typical Graphite-Epoxy Material Properties

El E2 Gl2 G23 v12 v23
(msi) (msi) (msi) (msi)

20.0 2.1 0.85 0.85 0.21 0.21

4.1.1 Angle-Ply Laminates

The [+4550]s laminate has been studied by numerous investigators. In this section

predictions given by the presen t theory for various stress components are compared with

solutions obtained by Wang and Choi, I59] using an eigenfunction expansion solution, and by

Wang and Crossman, I351using a finite element analysis based upon constant strain, triangular

elements. In all analyses the quasi-three dimensional assumption is made, that is, stresses and

strains are assumed independent of the axial coordinate Xl. Before presenting results the issue

of variable through-thickness decay of the local mismatch effects discussed in Section 3.3.4 is

briefly addressed. The terminology and notations introduced in the following discussion will be

used throughout the remainder of this text.

Recall from Section 3.3.4, that in order to keep the number of unknowns in the present

solution to a manageable number, the through-thickness decay lengths of the local mismatch

effects were established a priori and set equal to the thicknesses h (k) and h fk+l) of the layers

adjacent to an interface where there is a mismatch in material properties. This specification of

decay length is evident upon examination of equations (3.86-3.90). The extent in the thickness
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directionof the local mismatch contributions can, however, be varied by representing each

physical layer in the body as an assemblage of sublayers. For [0t/02], or [01/02]t laminates in

which there is only one interfacial plane where there is a discontinuity in material properties,

two sublayers in each layer with thicknesses tl and t2, as shown in Figure 4.1, are all that is

required to assess the influence of the through-thickness decay length of local mismatch effects

on the stress field predictions. For more general laminate configurations, where the stresses in a

generic layer are influenced by mismatch effects from two adjoining interfaces, at most three

sublayers are required. The results presented throughout this thesis were generated by either

modeling each layer as one unit, i.e., no sublayers, or by dividing each layer into two sublayers

with thicknesses tl and t2, as shown in Figure 4.1. Predictions obtained by representing each

physical layer in the body as one unit are denoted by N=I, and results obtained by representing

each layer as two sublayers are denoted N=2.

__i._
tl
t2

T

Figure 4.1. Through Thickness Discretization

The influence of the through-thickness discretization on the stress field predictions and

laminate complementary energy has been studied for the [+45], laminate. As shown in Figure

4.1, the decay length of the local mismatch effects will be equal to tl when two sublayers are

used to model a layer. The "optimum" values for tl and t2 can be determined, for a particular

laminate, by allowing them to vary in several applications of the AAIS program, and then

selecting the set that corresponds to the minimum complementary energy. For the [+45],
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laminate considered here, the values tl = 0.11 in., and t2 = 0.14 in. were obtained. The

magnitude of a13 at the intersection of the +45 interface and the free edge has also been

determined. Values are provided in Table 4.2 which shows the increase in the maximum

magnitude c13, with decreasing decay length, down to the length corresponding to the minimum

complementary energy.

The through-thickness decay length not only affects the stress magnitudes, but also the

distribution of stress. In order to illustrate this effect, two curves are presented in the subsequent

figures (Figures 4.2 and 4.4) for the present theory predictions. The curves N = 1, as previously

mentioned, correspond to modeling each layer as one unit, and the curves N = 2 were generated

using the "optimum" thicknesses given above.

The width distribution of the interlaminar shear stress c13 at the +45 interface predicted by

the present technique and the analytical solution in [59] are shown in Figure 4.2. As can be seen,

the present solution predictions for both N = 1 and N = 2 agree well with the previous solution.

There is a small difference in the predictions at the intersection of the interface and the free edge.

The elasticity solution of Wang and Choi [59] predicts a stress singularity at this point. Similar

behavior is displayed by displacement based finite element formulations, which predict

increasing stresses in elements adjacent to the singular point, as the size of the elements near this

location decreases. The present solution does not include a singularity in the formulation, but as

previously discussed, the magnitude of al3 at the intersection of the interface and the free edge

is a function of the through-thickness decay length of the local mismatch effect.

Interlaminar stress distributions along the 45/-45 interface for a23 and a33 are provided in

Figure 4.3. For an angle-ply laminate, Poisson's ratio mismatch between adjacent plies is zero,

and the in-plane stress t_22 is zero, so the present theory predicts identically zero stresses t_23 and
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TABLE 4.2. Increase in or3 with Decrease in Decay Length

t2 (in)

0.25

0.20

0.15

0.14

0.13

0.12

0.11

--c13 (ksi)

1.43

1.52

1.64

1.67

1.70

1.74

1.78

033 (see equations 3.89,3.90). The most pertinent observation to be made from this figure is that

although the other solutions predict non-zero stresses c23 and 033 they are small compared with

at3. The normal stress is less than 20% of ol3 and the shear stress o23 is less than 5%. Note

also that the o23 distribution predicted by Wang and Crossman |351 does not satisfy the traction

free edge condition. Wang and Choi [59], on the other hand, predict o23 to be zero at the free

edge, but their distribution for o23 does not satisfy the transverse integral force equilibrium

equation (3.52b), since o23 obviously does not integrate to zero over X2. Differences are also

noted in the interlaminar normal stress predictions. Wang and Crossman's finite element

solution predicts tensile stress at the free edge, but Wang and Choi's elasticity solution predicts

compressive stresses.

Comparisons of through-thickness distributions of the interlaminar shear stress ol3 are also
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Figure4.2. Comparison With Previous Results [59] for t_13 at 45/-45 Interface in

[+455o/-455o]s Laminate (el n = 0.1%)

made. In Figure 4.4, distributions at X2fo = 1, and X2/b = 0.89 calculated by the present

approach and Wang and Choi's eigcnfunction expansion solution, are shown. The prescnt

solution for N=2 agrees fairly well with the elasticity solution at XEfO = 1. The major

discrepancy in the results occurs at the intersection of the interface and the free edge, where the

present analysis predicts finite maximum stress and the eigenfunction expansion solution

becomes unbounded as X 2 --)b, and X3--) h. Away from the free edge, at X2fo = 0.89,

generally good agrccmcnt between the two solutions is observed throughout the laminate

thickness for both N= l and N=2 of the present theory.
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4.1.2 Cross-Ply Laminates

Interlaminar stress comparisons between results predicted by the present theory and finite

element analysis of Herakovich et al.,1751 for [050/9050] s and [9050/050], laminates are presented

in this section. For these laminates, the in-plane shear stresses 012 and interlaminar shear

stresses a13 are zero. The present solution results were obtained using N=I.

Figure 4.5 shows the width dependence of the interlaminar shear stress c23 and normal stress

a33, at the 0/90 interface of the two laminates. The present predictions compare fairly well with

the finite element results, again differing mainly right at the intersection of the interface and the

free edge. Note, the present theory satisfies the traction-free boundary condition exactly, and

classical lamination theory stresses are recovered in the interior. The finite element results

satisfy the traction-free boundary condition only approximately. There are also differences in

the predictions of (I33 at the free edge with the most noteworthy being that the finite element

method predicts tensile (133 in the [904/04]s laminate where the present solution predicts a small

compressive stress. The gradient of the (133 distribution is very steep near the free edge and the

two solutions predict similar slopes.

4.1.3 Quasi-lsotropic Laminates

Quasi-isotropic laminates have been studied by a number of investigators using the finite

element method. Here we consider specifically the laminate stacking sequence

[455o/-455o/050/905o]s. Illustrative results for this laminate predicted by the present theory are

compared with Wang and Crossman's [351 finite element predictions. Each layer was represented

as one unit (N=I) in obtaining the present results.

Distributions of interlaminar normal stress (133 along the laminate midplane and the 45/-45
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interface are shown in Figure 4.6. Clearly, both methods agree quite well at the midplane.

Similar results were obtained at the interfaces X3 = h, and X3 = 2h. The predictions of the two

methods at the 45/-45 interface (X3 = 3h), however, differ significantly. The present analysis

only shows the normal stress crossing the X2 axis once, while the analysis in [35] predicts two

crossings, with the stress reversing sign and becoming compressive near the free edge. Possible

causes for this difference are discussed in the next chapter.

Figures 4.7 and 4.8 show comparisons of the interlaminar shear stress predictions, at the

45/-45 (o13) and 0/90 (c23) interfaces, respectively. Again, for both cases, the present theory

agrees quite well with the finite element results.
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4.2 Laminates in Bending

As previously discussed, interlaminar stress calculations for laminates in bending have

received relatively little attention in the literature. However, bending loads are common in

practical applications. Salamon [641 has presented results based upon a finite difference solution

similar to that presented by Pipes and Pagano, [261 for a [05o/9050], laminate with the material

properties given in Table 4.1 and subjected to end moments about the transverse (X2) axis.

Chan and Ochoa 1661 have presented results for several [02/02]s laminates under the same

moment loading. Comparison is made here with the solution in [64].

Comparison of the interlaminar normal stress along the 0/90 interface is shown in Figure 4.9.

The laminate is loaded such that the maximum bending strain eli =-0.1% is developed at the
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top surface. Stresses are normalized, as in [64], by the elementary bending stress (_11) that

would develop in a undirectional laminate (0=0) at the X3 location corresponding to the 0/90

interface (_11 = 10 ksi). As the figure shows, the agreement between solutions is not as good as

in the axial extension case, but the trends are similar. The major discrepancy occurs at the free

edge, where the finite difference solution predicts tensile stress about 1-1/2 times larger than the

present solution.
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CHAPTER 5

APPLICATIONS AND DISCUSSION

The comparisons presented in the previous chapter showed that the predictions of the present

solution are, generally, in good agreement with predictions obtained from a variety of other

solution methods for extension and bending loads in a variety of laminates. In this chapter, the

analysis is applied to additional laminates to demonstrate the utility of the method as a design

tool and to provide a brief study of the influence of laminate configuration and loading on the

interlaminar stress state. Also, as was discussed in Chapter 3, the total stresses in the laminate

arise from two physical mechanisms - local and global mismatch in material properties. In the

subsequent discussion the relative significance of these contributions to the stress field is

examined.

Results in the form of through-thickness and interfacial stress distributions are presented for

symmetric and unsymmetric cross-ply laminates and for symmetric angle-ply and quasi-

isotropic laminates subjected to bending and extension loads. Through-width distributions are

presented only at ply interfaces. Distributions for other locations, however, can be obtained

easily. Comparisons are presented for results obtained using the present formulation, the KL

solution, and finite element solutions, where available. As subsequently shown, the current

solution predicts intedaminar stresses which are generally in close agreement with finite element

results, and improves the KL solution primarily at interfaces where global equilibrium is

satisfied by the lamination theory stresses, but local mismatch in material properties induces

large interlaminar stresses. When studying the figures, recall that the magnitudes of stresses
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predictedby thefiniteelementmodelsat the intersectionof layer interfaces and the free edge

(singular point) are a function of the fineness of the mesh near this point. Thus emphasis should

be placed on comparison of entire stress distributions away from these points where finite

element results are more accurate.

Unless otherwise noted, the finite element results for extension of cross-ply laminates were

generated using a program previously developed by Norwood t761and the finite element results

for the angle-ply and quasi-isotropic laminates were generated using the program CLFE2D. 1771

Norwood's program is based upon a full three-dimensional formulation, while CLFE2D makes

the quasi-three dimensional assumption. Quarter symmetry models (i.e. one quarter of cross

section modeled) were used in all analyses.

For the symmetric laminates the axial strain loading was _ = 0.1%, and the axial curvature

loading was _:_ = 0.1. For the unsymmetric laminates, it was more convenient to apply end

loads rather than end strains and curvatures to obtain the classical lamination theory results. For

these cases axial extension load N_ and uniform bending load Mx were applied. The material

properties of a T300-5208 graphite epoxy used in the analyses are provided in Table 5.1. All

plies were taken to have thickness t = 0.005 in.

5.1 Cross-ply Laminates

Cross-ply laminates are the simplest of the laminate configurations because there are no off

axis plies. Consequently, the coefficient of mutual influence is zero in all plies and the

interlaminar shear stress, ols, is identically zero throughout the laminate. These laminates are

therefore studied to isolate the influence of Poisson's ratio mismatch on the development of

interlaminar shear stress 023 and interlaminar normal stress 033.
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TABLE 5.1. T300-5208 Graphite-Epoxy Material Properties

T300-5208 Graphite-Epoxy Material Properties

El E2
(msi) (msi)

19.2 1.56

Gi2

(msi)

0.82

G23 v 12 v23

(msi)

0.52 0.24 0.49

Results are presented for three laminates: [04/9041s, [904/04]s, and [04]904]t, subjected to

bending and extension loads. Classical lamination theory stresses for the symmetric and

unsymmetric laminates for these two load cases are provided in Appendix C (Tables C. 1 and

C.2). With the lamination theory stresses given, the unknown parameters in the assumed stress

expressions have been determined by minimizing the laminate complementary energy. The

values obtained for the present theory, along with the parameters _ and _,! required in the KL

solution are given in Tables 5.2 (symmetric laminates) and 5.3 (unsymmetric laminates). The

KL solution parameters are shown within parenthesis. Note, t_l, t_3, L2 and A1 do not appear in

the tables since o_2 and o13 are zero for these laminates. All results presented for the current

method were obtained by representing each layer as one unit (N=l). The layers were all of equal

thickness, h = 0.020 in. Analyses made with N=2, where each layer was divided into two

sublayers of equal thickness, resulted in higher energies. The through-thickness decay length for

N= 1 then corresponds to the number of plies in the individual layers of the laminate. The decay

lengths, denoted by h, are also presented in Tables 5.2 and 5.3.

The symmetric and unsymmetric laminates respond very differently to applied loads. In

symmetric laminates the membrane-flexural coupling terms, Bij are all zero, so that when these
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TABLE 5.2. Solution Parameters for Symmetric Cross-Ply Laminates

Solution Parameters For Symmetric Cross Ply Laminates

Constant

02 (1/in)

04 (1/in)

_5 (l/in)

_3

A2X10 -5

(psi)

A3X10 -5

(psi)

h (in)

Extension

[04_04],

47.32

(71.66)

28.30

33.42

0.972

(0.655)

3.817

11.49

2.175

1.905

-4.151

-2.919

.020

[904/04 ],

52.59

(58.63)

37.36

36.39

0.952

(3.952)

1.754

9.406

3.341

1.817

-1.311

3.988

.020

Bending

[04/904],

39.10

(39.49)

33.13

42.92

1.979

(1.000)

8.025

4.564

3.326

1.543

-4.705

-6.104

.020

[904/04 Is

71.73

(115.7)

45.15

45.73

1.758

(1.000)

4.422

4.307

3.291

1.313

-4.381

3.870

.020
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TABLE 5.3. SolutionParametersfor UnsymmetricCross-PlyLaminates

SolutionParameters For Unsymmetric Cross Ply Laminate

Constant

_2 (1/in)

Extension

68.72

(201.4)

Bending

70.33
108.2

_4 (l/in)

_5 (1/in)

A2X10 -5

(psi)

A3X10 -5

(psi)

h (in)

52.79

89.25

0.915

(1.000)

3.448

3.632

1.312

0.862

-7.158

5.074

.020

54.73

60.69

2.660

(1.000)

2.831

3.712

5.911

0.726

.020

-3.685

-7.493
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laminates are subjected to extensional loads they remain plane. The unsymmetric laminate, on

the other hand, has non-zero Bi! and B22 and will deflect out of plane when extended.

Comparison of stress distributions in symmetric and unsymmetric laminates then provides an

indication of the effect of out-of-plane deflections on the intedaminar stresses. Norwood 1761 has

shown that when the out of plane deflections are large - on the order of the laminate thickness - a

nonlinear analysis which accounts for geometric coupling effects is required to accurately

characterize the interlaminar stress response. In the present analysis, all out of plane deflections

are assumed small so that a linear analysis is valid.

5.1.1 Symmetric Laminates - Extensional Load

Stress distributions for [04D04]s and [904/04]s laminates are provided in Figures 5.1-5.8.

Stresses determined by the finite element analysis, the KL solution, and the present solution,

equations (3.88-3.90), are shown. Through-thickness distributions are provided for the top half

of the laminate, with stresses plotted as a function of the normalized distance X3 = X3/h from the

laminate midplane, where h denotes one layer thickness. Inteflaminar shear stress is anti-

symmetric about the midplane and interlaminar normal stress is symmetric. Inteffacial

distributions are also shown, with stresses plotted as a function of the normalized distance X2/b

from the laminate center, where b is the laminate half width. In all plots, stresses are normalized

by the average far field stress Nll/2H where Nll is the far field load obtained from lamination

theory, and H is the laminate half thickness. The normalized stresses are denoted _33 and _23.

Figure 5.1 shows comparison of finite element results, the KL predictions and the present

solution for the through-thickness distributions of the interlaminar normal stress c33 at

X2 = 0.999b for the two laminates. Evident from these figures is the significant improvement of

the present theory over the KL solution, with the present solution predicting trends similar to
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thosedisplayedby thefiniteelementresults.In particular,notetheasymmetryin responseof

the 0/90 and 90/0 laminates predicted by both the finite element analysis and the current model,

while the KL solution, which is based entirely upon global equilibrium predicts close to

symmetric response of these two laminates. That is the KL solution predicts the stress response

in the two laminates to be basically mirror images of each other. Also significant from a design

point of view, is failure of the KL solution to predict tensile interlaminar normal stress, at any

location in the [904/04]s laminate, since tensile interlaminar normal stresses are more

detrimental to the integrity of laminated composite structures than compressive interlaminar

normal stresses.

The difference in the stress response of the two laminates and the predictions of the three

methods is further illustrated in Figure 5.2 which presents t_33 distributions along the 0/90

interface. Clearly, the present theory agrees quite well with the finite element results for both

laminates, but the KL solution diverges near the free edge in the case of the [904/04]_ laminate.

Consistent results from all three solutions are obtained for this laminate only at sufficiently large

distance from the free edge (e.g. X2 = 0.95b).

Similar comparative through-thickness and interfacial distributions for the interlaminar shear

stress c23 are shown in Figures 5.3 and 5.4. Again, the results of the present solution compare

more favorably with the finite element results than do the KL results. The most noticeable

discrepancies are observed in the through-thickness distributions. The relative difference in the

maximum value of the shear stress obtained by finite elements and the present solution is 10%,

for the 90/0 laminate, while the relative difference between finite elements and the KL solution

is approximately 38%. Also note that the stress gradients in the thickness and width directions

predicted by the present theory and finite element method are more severe than estimated by the

KL solution.
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The inability of the KL solution to predict the difference in behavior of the 0/90 and 90/0

laminates described above suggests that this solution does not include enough degrees of

freedom in the assumed stresses to accurately define the stress response, in some cases, and that

"local effects" might be the cause of the asymmetry in stresses observed in these laminates. The

relative influence of the local and global effects is illustrated in Figures 5.5 and 5.6, which

delineate all of the contributions to the stress field incorporated in the present theory. The

equilibrium contribution represents the first term in equations (3.89,3.90), the shear mismatch is

the second term (multiplying A2) and the normal mismatch is the third term (multiplying A3).

Note that although the KL solution and the equilibrium solution are identical in form, the KL

solution curves in Figures 5.1 and 5.2 are not coincidcnt with the equilibrium contribution plots

in Figures 5.5 and 5.6 since different t_'s and _,'s were employed to obtain the two distributions

(see Table 5.2).

Figure 5.5 provides through-thickness distributions for the intedaminar normal stress t_33

near the free edge. Equilibrium and mismatch effects contribute throughout both laminate

thicknesses, except at the midplane, where the stresses result solely from the equilibrium

contribution. There is no local mismatch in material properties at the midplane. As discussed

earlier, the through-thickness extent of the mismatch contribution is controlled by the level of

discretization used to model each layer and would decrease if the 0 ° and 90 ° layers were divided

into sublayers. The most significant observation made from this figure is that the normal

mismatch contribution is the component primarily responsible for the differences in the stress

predictions provided by the present solution for the two laminates. The equilibrium and shear

mismatch contributions have similar influences on the total distribution in both laminates, but

the normal mismatch contribution has opposite effects.
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The influence of the normal mismatch effect on the total inteflaminar normal stress is more

vividly illustrated in Figure 5.6 which presents individual contributions to the a33 stress

component along the 0/90 interface of the [904/04], laminate. The mismatch effects are not as

significant for the [04/904], laminate and are not discussed here. Distributions for this laminate

are provided in Appendix C (Figure C.1) for completeness. Recall, the shear mismatch

contribution to the normal stress is zero at a// interfaces and therefore is not shown in the figure.

Near the free edge, the normal mismatch component has magnitude approximately equal to the

equilibrium contribution but of opposite sign; the mismatch contribution totally changes the

character of the interfacial stress distribution and causes a reversal in stress near the free edge,

tending toward positive stress as the free edge is approached. This type of behavior cannot be

predicted by the KL solution, because of the constraint imposed by the their solution that

stresses in all layers decay at the same rate. At the midplane, the mismatch terms are zero, and

the stresses result solely from equilibrium. The current theory, the finite element method and the

KL solution all predict the normal stress to be distributed over the interfacial plane X3 = 0

(midplane) as shown in Figure 5.7. The KL solution requires the through width stresses at the

0/90 interface to have the same form, as displayed in Figure 5.2b.

Similar distributions for the interlaminar shear stress G23 are provided in Appendix C

(Figures C.2-C.3). As was the case for the interlaminar normal stress the normal mismatch

contribution is responsible for the asymmetry in the through-thickness distributions c23 observed

in Figure 5.3. The influence of the mismatch contribution on the shear stresses is directly

evident from Figure 5.4, resulting in an intensification of the stress in both magnitude and

gradient.

Another issue briefly addressed is that of solution accuracy as related to the number of

eigenfunctions employed in the stress expressions. Several solutions have been developed
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TABLE 5.4. Complementary Energy for Different Orders of Approximation

Complementary Energy for Different

Orders of Approximation

[04ff)04 ]s [904]04 ].

N t_i X103 (lb--in.) N t_i X103 (lb-in.)

n=2 (KL) 4.9696 n=2 (KL) 4.4233

2 4.8185 2 4.3325

6 4.5743 6 4.0304

10 4.429022 10 3.711539

throughout the course of this investigation, with each modification increasing the number of

terms incorporated in the assumed stress states. Recall that the latest modification includes

fourteen parameters in the stress expressions for the most general laminate configurations. As

previously indicated, this number reduces to ten for cross-ply laminates. Figure 5.8 illustrates

the variation of the interlaminar normal stress _33 with X3 as computed by solutions employing

two parameters (2 term solution, n=2), six parameters (n=6), and the full ten term solution

(n=10). The KL solution and finite element solutions are also presented for reference. Stress

expressions for the two term solution are provided in Appendix B. The stress expressions for the

six term solution are identical to those given in equations (3.89-3.90) without the last terms

(terms multiplying A3). As the figure shows, the predictions of the two term solution are nearly

coincident with the KL solution. The six term solution provides improved results, relative to the
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finite element predictions, but still hasn't captured the differences in response of the 0/90 and

90/0 laminates. The ten term solution, as previously mentioned, captures this asymmetry.

Laminate complementary energy values have also been evaluated for the various degrees of

approximation. These values are provided in Table 5.4. As the table shows, the n=10 solution

gives the lowest energy of the solutions considered. No statement can be made at this point

regarding solution convergence.

5.1.2 Symmetric Laminates - Bending Load

In this section distributions obtained from the present methodology and the KL solution for

[04/90a], and [904/04]_ laminates subjected to uniform bending loads are presented. Through-

thickness and interlaminar stress distributions are provided. As was done in the previous

section, through-thickness plots are presented only for the top half of the laminate, but the stress

symmetry conditions about the laminate midplane are different for bending than they were for

extension. In the case of uniform bending, interlaminar normal stress is antisymmetric about the

midplane, and interlaminar shear stress is symmetric. Interfacial distributions are again plotted

as a function of the normalized distance X2/b from the laminate center, where b is the laminate

half width. Unless otherwise noted, all stress components are normalized by MI1H/2I, where

Mlz is the far field moment, given from classical lamination theory, H is the laminate half

thickness, and I is the moment of inertia of a unit width section of the laminate. The normalized

stresses are denoted by 033 and 0E3.

Figures 5.9 and 5.10 show comparisons between the present solution and KL predictions for

through-thickness distributions of the interlaminar normal and shear stresses at two locations

near the laminate free edge. The most significant observation to be made from these figures is

that both solutions predict more severe interlaminar normal and shear stresses in the [904/04] _
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laminate than in the [04/904]s laminate for the same loading, with the maximum stresses in the

90/0 configuration being nearly twice as large as those in the 0/90 layup. Physically this is

expected and is fortunate, since the 0/90 laminate is much stiffer in bending and therefore

preferred for such applications. The forms of the through-thickness distributions obtained by the

two approaches are however different. The most noticeable differences are in the interlaminar

normal stress predictions for the [904/04], laminate at X2fo = 0.999, as shown in Figure 5.9b.

The present solution predicts much larger through thickness gradients than the KL solution, but

the KL results show interlaminar normal stress twice as large as the present theory at the 90/0

interface. Much smaller differences are observed in the predictions of the two methods for the

interlaminar normal stress in the 0/90 laminate at the same X2 location (Figure 5.9a). In both

laminates, the solutions are in much closer agreement slightly away from the edge at

X2/b = 0.995. The interlaminar shear stress predictions of the two methods, on the other hand,

still have different forms at X2fo = 0.990, as displayed in Figure 5.10.

The distributions presented in Figures 5.9 and 5.10 suggest that the mismatch effects have a

stronger influence on the stress distributions in the [904/04]s laminate than in the [04/904],

laminate. This is more clearly illustrated in Figures 5.11 and 5.12 which show width

distributions of both interlaminar stresses at the 0/90 interface. Figure 5.11 shows the inteffacial

distribution of t_33 for both laminates. The two methods predict essentially the same results in

the [04/904]s laminate. However, the results are quite different for the [904/04], laminate. The

KL solution predicts a much steeper stress gradient, a maximum stress approximately three

times larger than the present theory, and a larger stress reversal away from the free edge. The

mismatch component reduces the stress at the free edge and flattens the distribution as the

distance from the free edge becomes larger. Differences are also exhibited in the shear stress t_23

(Figure 5.12). For the [904/04 ]s laminate the current solution predicts maximum stress twice as
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largeasKL.

Theabovediscussioninconjunctionwithresultsobtainedfor theextensioncasesuggestthat

the additionalmismatchtermsincludedin thepresenttheory,overthoseincludedin theKL

formulation,arerequiredfor accurateanalysisinsomecross-plylaminatessubjectedto bending

loads.Additionalanalysesandcomparisonwith othersolutionsandexperimentalresults,as

theybecomeavailable,arenecessaryto supportor refutethisclaim.

Thecontributionsof thevariousphysicaleffectsfor thisproblemaresimilarto theextension

caseandarenotdiscussed.Totalthrough-thicknessandinteffacialdistributionsof stressesalong

with the individualcontributionsof globalandlocal mismatchcomponentsareprovidedin

AppendixC(FiguresC.4- C.7)

It is alsoof interestto comparethestressesdevelopedin laminateswhensubjectedto

extensionloadwiththosethatdevelopwhenthelaminateis subjectedtouniformbending.Here,

a comparisonis madebetweenthestressesat the0/90interfacein the[04/904]slaminate.In

orderto doso,aslightlydifferentnormalizationschemeisusedfor thebendingstressesthanwas

usedin thepreviousfigures.In thefollowingfiguresthebendingstressesatthe0/90interface

arenormalizedbytheaverageof thelongitudinalstresst_ll in the 0 ° and 90 ° plies obtained from

classical lamination theory at that interface. A similar normalization was used for the axial

extension load case and provides an indication of the severity of the interlaminar stresses relative

to the in-plane far field stress _Sxl.

Figure 5.13 shows comparisons of the 0/90 interface interlaminar normal and shear stresses

for the two load cases. The shear stress distribution is very similar for both load conditions, but

the character of the normal stress distribution is somewhat changed. In the bending analysis, a

larger maximum normal stress is noted, and a larger stress gradient shifted toward the free edge
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is observed. Further, the normal stress does not experience as large of a reversal away from the

free edge in the extension case as in the bending case. The boundary layer width is

approximately the same for the two load conditions. The maximum magnitude of both the

interlaminar shear stress and the interlaminar normal stress occurs for the bending case.

5.1.3 Unsymmetric Laminates - Extensional Load

This section discusses results predicted by the present theory for extensional loading (Ntl) of

an unsymmetric [04/904]t laminate. Through-thickness distributions of normalized classical

lamination theory in-plane stress _22, for extensional and bending loads (to be discussed in the

next section) are provided in Figure 5.14. The stresses for extensional loading are normalized by

Nll/2H, and the stresses for bending loads are normalized by Mll H/2I. The linear variation of

the in-plane stresses through the thickness for the extension loading results from a positive _¢lt

curvature which develops in the plate because of the laminate-membrane flexural coupling. For

the bending load, the laminate develops both curvatures _:H and _:_.

Through-thickness distributions (for the entire laminate thickness) of the normalized stresses

c33 and a23 near the free edge are shown in Figure 5.15. The bottom surface of the laminate is

denoted by X3/h =-1 and the top surface corresponds to X3/h = 1. As the figure shows, shear

stresses are nearly symmetric about the 90/0 interface and the normal stress is close to

antisymmetric. Changing the stacking sequence from [04/904]t to [904/04] t simply results in a

change in sign of the shear stress distribution. The maximum tensile normal stress occurs at

X3/]_ = 0.35, and the maximum shear stress develops at the 90/0 interface.

Figure 5.16 illustrates the character of the intcrfacial distributions of normal and shear stress

along the 0/90 interface. Note that a solution based entirely upon overall equilibrium, predicts

zero interlaminar normal stress at this interface. Recall that the interracial normal stress, or the
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normal stress at any z-location predicted by the equilibrium solution, is proportional to the

moment of the in-plane transverse stresses 022 about an axis parallel to the longitudinal axis X1,

lying in the XI-X3 plane of interest. This moment is represented by the term B7(k ) in equation

(3.90). As can be seen from Figure 5.14, moment equilibrium is satisfied by the lamination

theory stresses at the 0/90 interface; that is B7(k) is zero there. Interlaminar normal stresses are

therefore not required at this interface for sublaminate equilibrium, but arise solely from local

mismatch effects. As it tums out, the mismatch contribution is not critical for the load case

considered, but it may be significant for compression loading, or in a combined loading

situation. For the interlaminar shear stress (Figure 5.16b), mismatch and equilibrium effects

both contribute at the 0/90 interface. The mismatch contribution shifts the peak total shear stress

toward the free edge and results in larger maximum stress and steeper gradient than predicted by

a solution based on equilibrium considerations alone. As a result, shear stresses predicted by the

present theory are distributed over a smaller portion of the 0/90 interface than an equilibrium

solution would indicate.

5.1.4 Unsymmetric Laminates - Bending Load

In order to illustrate the influence of load conditions on the interlaminar stress state, an

analysis has also been conducted for uniform bending of the unsymmetric [04/904]t laminate.

Comparison of through-thickness distributions for the extensional (Figure 5.15) and bending

(Figure 5.17) load cases indicates larger through-thickness gradients and larger normalized

interlaminar stresses for extensional loading. However, for the bending load case, the maximum

normalized interlaminar normal stress occurs near the 0/90 interface, and is larger at the 0/90

interface than in the extension case. This stress is tensile if the stacking sequence is reversed, or

equivalently, if the direction of the applied moment is changed. Consequently, bending may
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representthemoresevereloadingcase,in termsofdelamination,for thislaminateconfiguration.

Interfacialdistributionsfor the contributionsof the variousphysicaleffectsareclearly

delineatedin Figure5.18. In contrasttotheextensionalloadingcase,mismatchandequilibrium

effectscontributeto thenormalstressat the0/90interface,but theequilibriumcontributionto

theshearstressis zero. Theinterlaminarshearstressat this interfaceresultsfrom mismatch

considerationsalone,andis distributedoverthelaminatewidthwith theself-equilibratingform

showninFigure5.18b. Themismatchcontributiontothenormalstresstendsto flattenthetotal

distributionandreducesthe maximumstressat the free edgefrom that predictedby the

equilibriumcontribution.

5.1.5 Unsymmetric Laminates - Combined Load

The results of the previous two sections can be superposed to obtain results for a variety of

combined load conditions, and examination of the figures together provides some insight into the

types and combinations of loading that will magnify the interlaminar stresses or make them less

severe. One loading condition of interest is that which produces constant strain ell and zero

curvature _:li in the laminate, since this type of condition allows for direct comparison with

symmetric laminates subjected to uniform end extension. Under such a loading, the laminate

will assume a pure cylindrical shape, with curvature K22. As Norwood 1761has discussed, the

upper half of a [0/90]s laminate is equivalent to an unsymmetric [0/90]t laminate constrained

from deflecting out of plane by the restraint u3(XI,X2,0) = 0 applied to its lower surface when

uniformly extended. Comparison of the interlaminar stress distributions for these two laminates

then gives an indication, within the limits of linear theory, of the influence of the out-of-plane

deflections on the severity of the interlaminar stresses.
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Stress distributions along the 0/90 interface of [04/904 ]s and [04/904 It laminates are provided

in Figure 5.19. The maximum interlaminar normal stress at the free edge is tensile in both

laminates (Figure 5.19a). The distribution for the unsymmetric laminate is, however, flatter

away from the free edge than in the symmetric laminate, and attains a lower peak value. The

maximum (_33 predicted by the present theory in the unsymmetric laminate is 24% smaller than

that obtained for the symmetric laminate. Similar observations are made for the interlaminar

shear stress a23 (Figure 5.19b). In both laminates the shear stress rises sharply as the free edge is

approached and then decreases rapidly to satisfy the traction free boundary condition. The stress

gradient in the unsymmetric laminate is seen to be slightly larger than in the symmetric

laminate, but as was the case for the normal stress, the maximum shear stress is smaller in the

unsymmetric laminate. The largest c23 predicted by the present theory is approximately 12%

percent smaller in the unsymmetric laminate than in the symmetric laminate. The predicted

trends are in agreement with those predicted by Norwood, 1761using a fmite element analysis, and

with his conclusion that interlaminar normal stress and shear stress "in the unsymmetric

[04/904]t laminate are relieved by out of plane deflections ''[761.

5.2 Angle-Ply Laminates

In contrast to cross-ply laminates, angle-ply laminates, with individual laminae oriented at

angles +0 and -0 to the global axis isolate the influence of local mismatch in coefficient of

mutual influence on the interlaminar stresses, since Poisson's ratios are identical for the 4-0 and

-0 layers. Results are presented only for the extension of symmetric angle-ply laminates

because of difficulties encountered when analyzing some angle-ply laminates subjected to

bending load, and unsymmetric angle-ply laminates subjected to extension loads. Before

presenting the results for the symmetric laminates a brief discussion of the nature of this problem
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is provided.

In laminates where there is large local mismatch in coefficient of mutual influence between

adjacent layers, in combination with a curvature _12 the numerical solution of the non-linear

system of equations became unstable, and jumped back and forth between two widely spaced

solutions. One of the solutions made sense physically, but the other led to extremely small

decay rates. This was found to be the case for both symmetric laminates subjected to bending

loads and unsymmetric laminates under uniform extension. Incidentally, this problem was not

restricted to angle-ply laminates. The solution for a [0/30Is laminate subjected to uniform

bending, for instance would not converge, while no problems were encountered with a [0/75],

laminate. The difference in these laminates is the magnitude of the local mismatch in coefficient

of mutual influence and the curvature _q2.

Unfommately, the source of the problem is still unknown, but a few possible explanations

are proposed. First, it is possible that some inconsistencies may have been introduced into the

analysis by the manner in which the end conditions are being applied. Currently, displacements

in the axial direction (ul) are prescribed and the other displacements are taken to be zero,

simulating the conditions that would be present in an end gripped specimen. This is in effect

introducing an axial dependence on the stresses that might be more severe for cases where _¢12is

large. Another approximation made, that may loose validity when large curvatures are present,

is the assumption that only half of the laminate width needs to be modeled. However, the KL

solution runs for all of these laminates. This suggests that if the above mentioned

approximations are the source of the problem, the errors introduced by making them are

magnified by the additional terms associated with coefficient of mutual influence mismatch that

are incorporated in the current solution. Or there may be an error in the computer program

associated with terms involving the product of the coefficient of mutual influence mismatch and
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linearlyvaryingstressesdueto _:t2-Finally,thereis thepossibilitythattheproblemis purely

numerical.

5.2.1 Symmetric Laminates - Uniform Extension

For the uniform extension of symmetric angle-ply laminates, the transverse in-plane stresses

1_22 from classical lamination theory are zero. Thus, interlaminar normal stress 033 and shear

stress a23 are not required for equilibrium, and have been shown to be small compared with t_13.

The present theory and KL solution predict identically zero c23 and a33, so the discussion that

follows will focus on the effects of fiber orientation and stacking sequence on interlaminar shear

stress a13. Results are presented for two different stacking sequences - clustered [+02/-'-02] s and

alternating [(+0)2]_ - of angle-ply laminates with 0 = l0 °. To achieve the same level of local

mismatch contribution for all laminates, a through-thickness decay length of one ply thickness (

h = 0.005) was used. For the clustered laminate this decay length corresponds to representing

each layer as two sublayers of equal thickness. The decay lengths and remaining constants in the

assumed stress states are provided in Table 5.5. For the angle-ply laminates, the only constants

of interest are _l, _3, L2, and Al, and the results of the study indicate _l = t_3. As previously

discussed, this reduced number of constants is a reflection of the fact that the approximate

solution predicts t_3 to be the only non-zero interlaminar stress component for angle-ply

laminates subjected to extensional load. Classical lamination theory stresses for the two

laminates are provided in Table C.3.

Through-thickness distributions of the interlaminar shear stress _!3 at X2/b = 0.999 for the

two different stacking sequences are provided in Figure 5.20. In this figure, and subsequent

figures, stresses are normalized by the average applied far field stress, Nil/EH. Normalized

stresses are denoted with an overbar. The results in Figure 5.20a for a [(+10)2/(-10)2 ]s show
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TABLE 5.5. Solution Parameters for Angle-Ply Laminates

Solution Parameters For Angle-Ply Laminates

Constant [(+ 10)2 ], [102/- 102 ]_

t_2 (1/in) 120.7 109.3

L2 4.135 3.727

AIXI0 -5 2.145 2.060

h (in) 0.020 0.020

reasonably good correlation between all three methods. Similar results were obtained for other

"clustered" angle-ply laminates with stacking sequence of the type [(+0)2/(--0)2]s. Recall that

the interfacial shear stress _3 predicted by the KL solution is proportional to the through-

thickness integral of the in-plane shear stresses t_12 above or below the interface of interest. This

integral is represented by the force sum B_k) in equation (3.87). For the clustered family of

laminates this force sum is non-zero at all locations X3, and sub-laminate equilibrium requires

the interlaminar shear stresses be non-zero throughout the laminate thickness.

On the other hand, in "alternating" angle-ply laminates (Figure 5.20b) equilibrium is satisfied

at the second interface by the lamination theory stresses, that is B_ ') is zero there. Consequently,

interlaminar stresses are not required for equilibrium and the KL solution predicts identically

zero shear stress t_i3 at this interface, while the modified solution of the present study and finite

element model predict shear stress of considerable magnitude. These large local interlaminar

shear stresses can be attributed to the large mismatch in _]xy,_ at the --0/0 interface. Also note
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that oh3 is large at the 10/-10 interface, having a magnitude of 0.25 times the average applied

stress. The stress is large because the the mismatch in lqxy.xiS large. As shown subsequently, the

shear stresses decrease for larger fiber angles as the mismatch in rhy,_ decreases.

The relative contributions of the two physical effects for this problem are depicted in Figure

5.21 where the total through-thickness distributions of at3 are presented along with distributions

of the global and local mismatch contributions to the stress field. It is clear from Figure 5.21

that for the layer discretization used to obtain these results, i.e. representing each layer as two

sublayers with thicknesses equal to one ply thickness, there is no local mismatch contribution in

the top and bottom halves of the first and second layers, respectively, whereas global mismatch

or equilibrium contributes throughout. As discussed previously, the through-thickness extent of

the local mismatch contribution to the stress field is governed by the thickness of the sublayers

adjacent to interfaces where a mismatch in material properties is present. In contrast to the

clustered configuration, both equilibrium and mismatch contribute throughout all layers of the

[(+10)2], laminate (Figure 5.21b). Again, the extent of the mismatch contribution would be

changed if different "sublayer" thicknesses were used.

lnterlaminar distributions of o13 along interfaces in the [(+10)2]s laminate are presented in

Figures 5.22 and 5.23. Figure 5.22 shows the predictions of the present solution, the KL

solution and finite element analysis along the first and second interfaces of the laminate. The

three methods compare quite well at the first interface (Figure 5.22a), but only the present

solution and finite element results agree along the second interface. As discussed above, the KL

solution predicts zero shear stress c_3 along the entire second interface, and the total stress

results solely from local mismatch effects. In Figure 5.23 the distributions of the total shear

stress and the individual mismatch contributions along the first interface are delineated. The

local mismatch distribution is self-equilibrating, integrating to zero over X2, while the
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equilibrium contribution is equivalent to a non-zero interracial force. The results indicate a

larger contribution from local mismatch at the intersection of the interface and free edge than

from global mismatch (equilibrium). However, the boundary layer width is approximately the

same for both effects.

The influence of fiber orientation on the stress field characteristics is illustrated in Figures

5.24-5.26 for both "clustered" and "alternating" stacking sequences. Figure 5.24 shows the

variation in coefficient of mutual influence and Poisson's ratio as a function of 0 for a T300-

5208 graphite epoxy with the material properties given in Table 5.1. As can be seen, r112,1

attains a maximum value at 0 = 15°. Thus, the interlaminar shear stresses are expected to be

maximum in angle ply laminates with adjacent +15/-15 layers. Figure 5.25, which shows the

variation in the maximum intensity of el3 with 0, for both stacking sequences, demonstrates that

this is in fact the case. The parameters in the assumed stress expressions are also functions of 0.

The variation of #1 with 0 for the two stacking configurations is depicted in Figure 5.26a where

it is evident that _1 attains a minimum at 0 = 30 ° for both stacking sequences. The constant Al

on the other hand reaches a maximum at 0 = 25 ° (Figure 5.26b). The constant _ is independent

of 0,but does depend on stacking sequence. As indicated in Table 5.5 _ =4.135 for the

alternating sequence and _ = 3.727 for the clustered sequence.

5.3 Quasi-Isotropie Laminates

Quasi-isotropic laminates are currently used extensively in practice because of their isotropic

in-plane elastic properties. Symmetric quasi-isotropic laminates made with equal percentages of

0, 90, +45, and -45 degree laminae orientations are examined here. There are twelve unique

configurations of this type, as shown in Table 5.6, if it is assumed that the +45 and -45 layers can

be interchanged. In the table, the laminates arc divided into two groups; those with adjacent :t:45
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layersandthosewith interspersed+45 layers. This terminology will be used throughout the

subsequent discussion.

In quasi-isotropic laminates, in contrast to the special cases of angle-ply laminates and

cross-ply laminates discussed in the previous sections, both a mismatch in v12 and rl12.1 may

exist between adjacent layers. Consequently, all stresses are in general non-zero, and the total

fourteen parameters 0i(i=l,5), )5 O =1,6), and Ak(k=l,2,3), in the assumed stress

expressions must be determined in order to evaluate the stresses in the individual plies.

5.3.1 Extensional Load

Analyses have been conducted for the uniform extension of all twelve laminates listed in

Table 5.6, but because of the large number of plots necessary to characterize the stress field near

the free edge in each laminate, results in the form of through-thickness and interfacial stress

distributions are provided for only three of these: [90/45/0/--45],, [45/90/0/-45], and

[0/45/-45/90]s. These laminates were chosen to illustrate the influence of adjacent +45 layers

and interspersed +45 layers on the interlaminar stress state and to study the relative magnitudes

of the mismatch and equilibrium contributions to the stress field for different stacking sequences.

Stress distributions for the interspersed [90/45/0/-45], and [45/90/0/-45], laminates and the

[0/45/-45/90], laminate with adjacent +45 layers are provided in Figures 5.27-5.31. Stresses

determined by finite element analysis, the KL solution, and the present theory (equations (3.86-

3.89)) are shown. The finite element results for the [90/45/0/--45], and [0/45/-45/90], laminates

were generated previously by Herakovich [9] using the program CLFE2D, and the finite element

results for the [45/90/0/--45]s were obtained by the author using Norwood's [761 program. The

present theory results were generated using a through-thickness decay length of one layer

thickness. All layers were of equal thickness, to`) = h = 0.005 in. The parameters 0i, kj, and Ak
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TABLE 5.6. Quasi-lsotmpic Laminates

Interspersed +45 Laminates

[90145/0/--45]!

[0/--45/90/45]s

[45/90/0/---45 Is

[45/90/-45/0]s

[45/0/90/-45 ]s

[45/0/-45190],

Adjacent -l-45 Laminates (ksi)

[90/01+45],

[90/+45/01,

[0/90/+451,

[0/+45/90]s

[-t-45/90/0] s

[:t:45]0/901,

for the laminates considered in this section are provided in Table 5.7. Solution parameters for

the remaining quasi-isotropic laminates listed in Table 5.6 are provided in Appendix D (Tables

D.2-D.5). In all figures, stresses are normalized by the average far field stress olt =N11/2H

where Nil is the far field load, and 2H is the laminate thickness. Classical lamination theory

stresses for the three laminates subjected to uniform extension are provided in Table D. 1.

Figures 5.27-5.29 display through-thickness distributions of the interlaminar stress

components for the two interspersed stacking sequences. The results in Figure 5.27 and 5.28 for

the interlaminar stresses in the [45/90/0/--45], laminate show similar trends in the predictions of

all three methods. The results of the present theory for the interlaminar shear stress o13, shown

in Figure 5.27a, and the interlaminar shear stress _23, presented in Figure 5.28, however, show

better correlation with the finite element solution than exhibited by the KL solution. The present

solution more accurately predicts stress magnitudes, and more closely approximates the

through-thickness variations in the stresses than does the KL solution.
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TABLE 5.7. Solution Parameters for Quasi-lsotropic Laminates

Solution Parameters For Quasi-Isotropic Laminates

I_ll =0.1%

Constant

OI (1/in)

02 (1/in)

_3 (1/in)

_4 (1/in)

05 (1/in)

Xs

AIXIO -5

(psi)

A2X10 -5

(psi)

A3XI0 -5

(psi)

h (in)

[45/90/01-45],

54.85

59.82

47.06

70.08

95.28

6.725

7.801

12.31

11.90

1.490

1.572

6.203

-10.57

-38.81

.020

[90/45/0/-45],

50.02

61.75

99.81

56.23

174.5

1.386

3.189

3.661

21.11

5.047

0.352

3.703

-3.801

-1.002

.020

[0/+45/90],

61.75

58.81

97.46

56.04

62.39

3.530

4.302

8.821

19.86

5.189

5.082

1.565

-1.505

-1.068

.020
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Similarobservations are made with regard to the normal stress predictions, depicted in

Figure 5.27b. All methods correlate fairly well, except at the laminate midplane. At the

midplane, the present solution and KL solution predict larger compressive interlaminar normal

stress than finite elements. A possible cause for the difference between the finite element

predictions and the present solution is discussed later in this section.

The similarities in the predictions of the three methods for stresses in the [45/90/0/-45]s

laminate discussed above suggests that, for this laminate, mismatch effects do not have much of

an effect on the overall distribution of stress in the laminate; that is, global equilibrium

dominates the development of the interlaminar stresses.

In the remaining interspersed laminates, where the 90 degree laminae is positioned at the top

or bottom of the stack, [90/45/0/-45], and [45/0/-45/90],, mismatch effects have a significant

influence on the total stress distributions. This is clearly illustrated for the [90/45/0/-45],

laminate in Figures 5.29 and 5.30. These figures show comparisons of the three methods for

through-thickness distributions of ct3 (Figure 5.29a) and interlaminar normal stress (Figure

5.29b), and for interfacial distributions of _23 (Figure 5.30). Evident from Figures 5.29a and

5.29b is the significant improvement of the present theory over the KL solution, with the present

theory predicting trends more similar to those displayed by the finite element results. The

modified solution of the present study and the finite element model predict more severe

through-thickness gradients for the interlaminar normal stress, and generally larger shear stresses

el3 than the KL solution. At the first interface (90/45), for instance, the present theory and finite

elements predict interlaminar shear stress o13 (Figure 5.29b) to be approximately 6% of the

average far field stress, where the KL solution predicts identically zero stress. At this interface,

equilibrium is satisfied by the KL solution, due to the in-plane shear stress t_12 being zero in the

90 degree layer. The non-zero stress a13 at this interface then results solely from the mismatch
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in 1112. I between the 90 degree and 45 degree layers.

There are also differences in the predictions of the three methods for the interlaminar shear

stress a23. Through-thickness finite element data is not available for a23, but interfacial results

(first and second interfaces), presented in Figure 5.30, indicate that the present solution compares

more favorably with finite element results than do the KL results. Recall, that the KL solution

requires the stress distributions at these interfaces to be of the same form, since stresses are

constrained to decay at the same rate in all plies. The present theory and the finite element

method, on the other hand, exhibit variations in the character of the interfacial distributions for

these two interfaces. The most significant difference in the interfacial predictions for a23

observed is at the second interface where the local mismatch contribution causes a reversal in

stress near the free edge (Figure 5.30b). These differences and the differences discussed above

in the al3 and a33 predictions could be significant when evaluating the structural response of

candidate laminates to an applied load, and are clear evidence of the influence of local mismatch

effects on the total stresses and the necessity for including these effects in the stress analysis.

Similar conclusions can be drawn for the quasi-isotropie laminates with adjacent +45 layers;

that is, in these laminates local mismatch effects are significant and a design or analysis ba_d

upon stress predictions obtained from global equilibrium considerations alone can be

misleading. This observation is illustrated in Figure 5.31, which shows predictions for

interlaminar shear stress a13 and a33 in a [0/45/-45/90]s laminate which are typical of results

obtained for laminates having adjacent +45 degree layers. Note from Figure 5.31a that the

maximum shear stress develops at the 45/-45 interface, where the mismatch in _12.1 is the

largest. The present theory predicts a13 at the 45/-45 interface 5% smaller than predicted by

finite elements, while KL underprcdicts the finite element stresses by 38%. Similar trends were

observed in the predictions of the three methods for the other quasi-isotropic laminates with
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adjacent :t:45 layers. In the other laminates, the shear stress predicted at the +45/-45 interface by

the present solution and the finite element method was as much as 50% to 100% larger than

predicted by the KL solution.

Results are also provided in Figure 5.31b for the interlaminar normal stress in the

[O/+45/-45DO]s laminate. Again, these results are typical of those obtained for the group of

adjacent quasi-isotropic laminates. Note that the finite element solution predicts larger through-

thickness gradients in the normal stress than predicted by either the KL solution or the present

solution. The present theory appears to be starting to pick up the trends displayed by the finite

element results, but does not predict the large compressive stress at the 45/-45 interface.

One possible cause for the differences in normal stress predictions of the present theory and

finite element methods at the 45/45 interface of the laminate shown in Figure 5.31b is the

assumed lack of coupling, in the present analysis, between the coefficient of mutual influence

mismatch and the interlaminar stresses a23 and 0.33, and between Poisson's ratio mismatch and

interlaminar shear stress 0.13. This lack of coupling is also thought to be the reason for the poor

correlation in the normal stress predictions of the present solution and the finite element results

at the midplane of the [45/90/0/-45], laminate discussed at the beginning of this section, and for

the differences in the normal stress predictions of the present theory and finite elements at the

first interface of the [45/-45/0/90], discussed in Section 4.1.3 (Figure 4.6).

Recall from the development in Chapter 3, that the coefficient of mutual influence mismatch

was assumed to affect only the 0.12 and th3 components of stress while the Poisson's ratio

mismatch was assumed to affect only the 0"22' 0.23 and t_33 stress components. This assumption

could be made for the problem studied since the assumption that stresses are independent of the

longitudinal coordinate Xi led to a reduced system of equilibrium equations, where the stresses
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o12 and o13 uncoupled from o22,023 and 033. However, as briefly discussed in Chapter 3, the

stresses are coupled by the compatibility equations, and would be in the equilibrium equations

for more general problems where the longitudinal independence could not be assumed.

Therefore, an improved stress field assumption would include the same eigenfunctions in the

expressions for all of the stresses, and would relate interlaminar stresses 022, o23, and 033 to the

mismatch in coefficient of mutual influence and interlaminar shear stress o13 to Poisson's ratio

mismatch.

To summarize the results of this section, the above discussion indicates that stacking

sequence has a significant influence on the relative magnitudes of the mismatch and equilibrium

contributions to the stress field. In the laminates with interspersed :1:45 layers, the factor having

the largest effect on the magnitude of the different contributions is the location of the 90 degree

laminae in the stacking sequence. This is explained by considering Poisson's ratio mismatch.

The variation in Poisson's ratio with fiber orientation 0 for a T300-5208 graphite-epoxy, is

shown in Figure 5.24. As can be seen from the figure, the mismatch in Poisson's ratio between a

+45 degree or -45 degree layer and a 0 degree layer is much larger than the mismatch between a

45 degree layer and a 90 degree layer. In the interspersed laminates with the 90 degree laminae

as a middle layer, there is only one occurrence of adjacent 0 degree and 45 degree layers. In the

interspersed laminates with the 90 degree laminae placed at the top or bottom of the stack, on the

other hand, there are two occurrences of adjacent 45 degree and 0 degree layers, and the

mismatch contribution to the total stress state is more significant. In the laminates with +45

layers, the coefficient of mutual influence mismatch is large, and the local mismatch effects

again contribute significantly to the total stress. These observations are made clear by

examining Figures 5.28, 5.29 and 5.31 together and comparing the relatives differences in the

predictions of the present method and KL solution for the different stacking sequences.
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5.3.2 Bending Load

In order to illustrate the influence of load condition on the interlaminar stress, quasi-isotropic

laminates subjected to bending load (negative curvature _ht) have also been analyzed. In this

section, comparisons of the through-thickness distributions of the interlaminar normal stress and

shear stresses for a [45/-45/90/0], laminate subjected to bending (-_ql) and extension loads are

presented (Figures 5.32-5.34). As usual, distributions are presented for the top half of the

laminate. In the case of bending, interlaminar normal stress is antisymmetric about the

midplane, and interlaminar shear stress is symmetric. For the extensional load case, interlaminar

shear stress is antisymmetric about the midplane and interlaminar normal stress is symmetric.

As has been done in the previous sections, bending stresses are normalized by MIIH/'2I, and

extensional stresses are normalized with respect to Nll/2H where MH and NH are the applied

far field loads. All results were generated using a through thickness decay length of one layer

thickness 0a = 0.005 in.), and the solution parameters I_i, _.j, and A k given in Table 5.8.

Comparison of the through-thickness stress plots in Figures 5.32-5.34 shows similar

distributions for all interlaminar stress components for bending and extension load. In both

cases, the maximum interlaminar normal stress is tensile and develops at X3/h = 1.6. The

maximum shear stresses also occur at the same through-thickness location in both load cases.

The maximum interlaminar shear stress t_13 develops at the first interface (Xa/h = 3), and the

interlaminar shear stress t_23 attains a maximum at the second interface. The combined load

case would then represent a more severe condition in terms of delamination potential, with

bending and extension stresses combining above the laminate midplane.
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TABLE 5.8. Solution Parameters for [45/--45/90/0]s Laminate

Solution Parameters For [45/-45/90/0] s Laminate

Constant Extension Bending

01 (1/in) 57.07 72.03

63.25 58.3702 (1/in)

03 (l/in) 99.07

04 (l/in) 66.82

05 (1/in) 95.58

_,1 1.966

69.22

46.96

48.99

4.744

L2 4.034 5.372

_,3 5.070 10.71

18.02 11.80

1.565 4.816

6.062 7.777

A2X10 -5 1.773 1.388

(psi)

A 2X 10-5 -3.741 -2.372

(psi)

A3XI0 -5 -1.892 -2.857

(psi)

h (in) .020 .020
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary of Method

The purpose of this study was to develop an efficient approximate solution for interlaminar

stresses near free edges of finite width, laminated composites subjected to bending and extension

loads and to demonstrate the utility of the methodology. The analysis developed is an extension

of a method recently presented by Kassapaglou and Lagace, [201 and is based upon the principle

of minimum complementary energy and an assumed stress state, derived by considering material

mismatch considerations and global equilibrium requirements. In the KL solution only the

mismatch between laminae and laminate material properties was considered. The present

solution extended their technique by including additional terms in the stress assumptions, which

account for the local material property mismatch in coefficient of mutual influence and Poisson's

ratio between adjacent layers in the laminate. The differential equations of equilibrium, the

interfacial traction continuity and boundary conditions of stress were identically satisfied by the

assumed stresses. The strain compatibility equations and interfacial displacement continuity

conditions were satisfied approximately by imposing the stationary condition of laminate

complementary energy.

The developed methodology is general, and in theory, can be extended for the analysis of

other load cases, such as in-plane bending and torsion, or to more general structural

configurations, provided a plane stress state is recovered in the member's interior region, and the

stress components do not vary with the longitudinal coordinate. The plane stress solution can be
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obtained from an analytical solution, if available, or from a numerical technique, such as the

finite element method. The methodology could then be employed in a global-local analysis to

obtain stress solutions in regions of high stress gradients with a coarser solution used to define

the response outside of these regions.

As the previous paragraph indicates, a major advantage of the method presented is the fact

that in-plane stresses, obtained from classical lamination theory, are the only required input to

the solution. Other advantages, as compared with numerical solutions, or some of the

complicated analytical models that have appeared in the literature, include the relative simplicity

of the theory, in terms of the number of parameters that must be determined in order to obtain

stress distributions, solution efficiency, output readability, and the ease of application for the

simple geometry considered. For the most general laminate, only fourteen parameters must be

determined prior to calculating stresses. This number reduces to ten for cross-ply laminates and

to three for symmetric angle-ply laminates subjected to extensional load. For bending of angle-

ply laminates, or extension of unsymmetric angle-ply laminates, the number reduces to six. In

any case, the number of parameters is independent of the number of layers in the laminate, their

material properties, and orientations. Consequently, the analysis can be applied to laminates

with a large number of plies. Finally, a major asset of the solution is the insight it provides into

the fundamental physical mechanisms, global equilibrium and local mismatch effects, that

contribute to interlaminar stress development. Contributions from each of these effects are

clearly delineated in the solution output. This type of information cannot be obtained from a

finite element analysis.

6.2 Conclusions

The development of the solution methodology has been accompanied by application of the
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stressanalysistoseveralfinitewidthlaminatessubjectedtouniformextensionandbendingload.

Symmetricandunsymmetriccross-plylaminates,symmetricangle-plylaminates,andsymmetric

quasi-isotropiclaminateshavebeenstudied.Comparisonsin stresspredictionswerepresented

for resultsobtainedusingthepresentsolution,theKL solution,andfiniteelementsolutions,

whereavailable.Severalconclusionscanbedrawnbasedupontheresultsof thesestudies:

(1) The presentmethodcompareswell with finite elementmethodsand provides

significantlyimprovedstresspredictionsascomparedwith the KL solutionwhich is based

entirely uponglobal equilibriumconsiderations.In particular,the presentsolutionmore

accuratelypredictsstressmagnitudesandinterlaminarstressgradientsnearinterfaceswhere

thereisa largematerialpropertymismatchbetweenadjacentlayers.Further,thepresentmethod

accuratelycharacterizesthe through-thicknessgradientsin the layer stressfields nearthe

interfacialsurfaces,whiletheKL solutionpredictsthelaminatebehaviorto bequalitativelythe

samethroughoutthethicknessof thelayers.

(2) Therelativeimportanceof localmismatchandequilibriumconsiderationswasfoundto

bea functionof stackingsequence.Thiswasthecasefor all of thelaminatefamiliesanalyzed.

Specifically,thefollowingobservationsweremade:

(a) In angle-plylaminatessubjectedto axial loadinglarge mismatchesin the

coefficientof mutual influenceinducedlarge interlaminar shear stress t_13. In

altemating stacking sequences, [(+0/-0)2]s, local mismatch resulted in stresses of

considerable magnitude at interfaces where the KL solution predicted zero stresses.

These results were in agreement with finite element results.

(b) In symmetric cross-ply laminates, subjected to both bending and extension

loads, local mismatch effects had a more pronounced effect on the stress predictions in
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[90/0], laminatesthanin [0/90], laminates,andwerethe cause of the asymmetry in

stresses observed in these laminates. More specifically, the mismatch contribution

associated with Poisson's ratio mismatch and the direct assumption on interlaminar

normal stress (referred to as normal mismatch contribution) was found to be the

component primarily responsible for differences in the stress predictions provided by the

present solution for the two laminates.

(c) In the quasi-isotropic laminates considered (laminates with equal percentages of

0, 45, -45, and 90 degree layers) the degree of local mismatch contribution was also

found to be dependent on stacking sequence. Specifically, in interspersed

configurations, with the 90 degree layer separating the 45 and .45 degree layers, the

mismatch contribution to all interlaminar stress components was small compared with

the equilibrium contribution. For these laminates it was concluded that the magnitude Of

the stresses was primarily dependent on the force and moment developed at any

through-thickness location by the intralaminar stresses o22. This was physically

explained by the fact that the Poisson's ratio mismatch and mismatch in coefficient of

mutual influence between adjacent layers in this laminate are smaller than in

interspersed laminates with the 45 and -45 degree layers separated by zero degree layers

and in laminates with adjacent +45 and -45 degree layers. These results clearly

indicated the influence of local mismatch effects on the stresses and the necessity for

including mismatch considerations in laminate design.

(3) For the laminates considered, bending and extension loads resulted in similar

interlaminar stress distributions in terms of magnitude and boundary layers widths.

(4) Comparison of results for an unsymmetric cross-ply [0/90It and a symmetric cross ply
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[0/90Is subjected to extension load showed that the out of plane deflections of the unsymmetric

laminate relieved both interlaminar shear stress and interlaminar normal stress.

(5) Difficulties were encountered in the analysis of laminates having large local mismatch in

coefficient of mutual influence in combination with curvature _12. This was true for both

symmetric laminates subjected to bending loads and unsymmetric laminates under uniform

extension. Thus, at the present time, there is a limitation on the general applicability of the

developed solution. The source of the problem has not been identified but may be attributed to

some possible inconsistencies introduced by the manner in which end conditions are currently

applied, or possibly with the assumption that only half of the laminate width needs to be

analyzed. The assumption of modeling half of the laminate width is recognized to be an

approximation for laminates with off-axis plies. This approximation may loose validity when

large curvatures _12 are developed. It is also possible that the problem is purely numerical or is

the result of a coding error. This topic was discussed in more detail in Section 5.2 and is an area

requiring additional study.

6.3 Recommendations for Future Work

The solution method developed has been shown to generally produce accurate predictions for

interlaminar stresses near straight free edges of laminated plates. Although the model was

developed for specific load conditions, and was based upon some assumptions that limit its

application, it can be extended to more general analyses. Some recommendations for extension

of the method and additional possible applications are presented in this section. First, however,

some suggestions are provided for solution modifications that might lead to increased accuracy

in the stress predictions. Recommendations related to solution efficiency are also provided.

The results of the previous chapter showed that the least accurate results were obtained for
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the interlaminar normal stress. It was suggested that improvements in the stress predictions

might be achieved by incorporating additional exponential terms in the assumed stress

expressions which account for the coupling between coefficient of mutual influence mismatch

and interlaminar stresses t_23 and a33, and the coupling between Poisson's ratio and interlaminar

shear stress c13. This could be accomplished by including an additional term in Equation (3.87)

for the interlaminar shear stress a13 with the same form as that multiplying A1 but proportional

to the mismatch in Poisson's ratio. Similarly, additional terms in the expressions for a23 and

_33 with the same forms as the mismatch terms incorporated presently, but proportional to

mismatch in coefficient of mutual influence could be included. The remaining stress

components would then by determined from the differential equations of equilibrium.

Another possible improvement to the stress assumptions would allow for a priori unspecified

through-thickness decay rates for the local mismatch effects. One way in which this could be

incorporated into the present theory would be to assume exponential functions for the through-

thickness variations of the local mismatch, expressed in terms of unknown through-thickness

decay parameters as was done for the width variations in the present solution. The el3 variation

would require one exponential function, while t_23 and t_33 would require a combination of two

functions.

The above recommended modifications should lead to improved accuracy, however, the

additional level of complexity introduced, may not be worth the effort. Further, solution

efficiency will decline as the number of terms is increased. In this connection, the issue of

computational efficiency of the current solution is addressed. The current solution generally

executes in less than 15 CPU seconds on an IBM RS6000, for twenty different initial

approximations to the solution. This run time, is of course dependent on the convergence

tolerance used when solving the non-linear system and how good the initial guess is. In
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generatingtheresultspresentedin thisthesis,asmanyas500initial guesseswereemployedfor

themostgenerallaminates.Thislargenumberof startingpointswasfelt necessarybecauseof

thedifficultywith thepresentmethodof determininga goodinitial guess.Additionalwork is

necessaryto improvethisaspectofthesolution.

Otherareasof possiblefuturework includeextensionto additionalloadcasessuchasin-

planebendingandtorsion,andto problemswherestressesarea functionof the longitudinal

coordinateX_. The methodcould also be extendedto analyzemoregeneralstructural

configurations.Oneconfigurationof particularinterest,is astiffenedpanel.Extensionof the

methodto analyzeskin-stiffenerinterfacestresses,orstressesin thetip of astiffenerbladeis an

arearecommendedfor futurework.

Couplingof the stressanalysiswith an experimentalprogramandsometype of failure

analysisor delaminationinitiation predictionsis also recommended.Analytical failure

predictionsor delaminationinitiationpredictions,baseduponthestressanalysisof thepresent

work,couldthenbecorrelatedwithexperimentallyobservedbehavior.

Finally,themethodologyshouldbelinkedwithanumericaloptimizationprogramto develop

adesigncapabilityfor laminatedcompositesinwhichinterlaminarstressesareconsidered.This

capabilitywill provideengineerswith anefficientmethodologyfor designingdelamination

resistantstructures.
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Appendix A: Energy Expression Expansion
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In this appendix the energy expression presented in Chapter 3 is expanded. To facilitate the

expansion contracted notation rather than tensor notation is used for the stresses. The assumed

stresses are written in the form

¢_m = FmiGml + Fm2Gm2 + Fm3Gnd + Fm4Gm4 + FmSGm5

where Fmi are functions of the decay parameters and y, and G_ are functions of z. The

functions Gmi can be taken directly from the stress expressions in equations (3.86)-(3.90) and are

not repeated.

Fret =0

F51 = a51 e-¢ly

F61 = (1 + a61el)

m=2,3,4

F22 = ( 1 + a22 e-_y + a23e -x]%y)
:-_y + -k]C_y_Fro2 = ( am2 e ande j m = 3,4

Fro2 =0 m =5,6

Fro3 =0 m =2,3,4

Fm3 = (am4 e'%y + am5 e--%_'2y) m = 5,6

Fro4 = (am6 e-_4y + am7 e-M*4y + amse -Tq_4y) m = 2,3,4

Fro4 =0 m =5,6

Fm5 = (am9 e'_Sy + aml0 e-Tq_Sy + atoll e-_c_sy) m = 2,3,4

F_ =0 m =5,6

where the aij's are determined from inspection of equations (3.86)-(3.90).

The energy expression can be written as given below

Hc = Cl + A! C2 + A2C3 + A3C4 + A] A2C 5
2 2 2

A2A3C 6 + AIA3C7 + AIC8 + A2C9 + A3CIo

where the terms Ci are defined below
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2 2 2 2 f21g21 + fslg51 )CI = 1/2(f2g222 + f23g23 + f24g24 + 2 2

+ f22f32gE2g32 + f61 f32g61g32 + f42fsI g42g51 + f61 f22g61 g22

+ (a22/02 + a23/( _2_C2 ) )g22 + ( _51/_1 )g61

C2 -- f51 1"53g51 g53 + f61 f63 g61 g63 + f63 f22 g63 g22 + I"63f32 g63 g32 + 1"53f42 g53 g42

+ [ a64/_3 + a65/( _.2_3) ]g63

C3 = f22f24g22g24 + f32f34g32g34 + f42f44g42g44 + f22f34g22g34

+ f24f32gE4g32 + f61 f24g61g24 + f61 f34g61g34 + f51f44g51 g44

+ [a26/t_4 + aET/(_-3t_4) + aEg/(_L4t_4) ] g24

C4 = f22f25g22g25 + f32f35g32g35 + f42f45g42g45 + f22f35g22g35

+ f25 f32gE5g32 + f61 f25g61 g25 + f61 f35g61 g35 + f51 f45g51 g45

+ [ a29/#5 + a210/(_,5t_5) + aEll/(_6t_5) ] g25

C5 = f63 f24 g63 g24 + f63 t"34g63 g34 + t"53f44 g53 g44

C6 = f24f35g24g35 + f34f25g34g25 + f24f25g24g25 + f34f35g34g35 + f44 f45g44g45

C7 = f63f25g63g25 + f63f35g63g35 + f53f45g53g45

2 2 2 2
C8 = 1/2[ f63g63 + f53g53 ]

2 2 2 2 2 2
C 9 = 1/2[ f24g24 + f34g34 + f44g44 ] + f24f34gE4g34

2 2 2 2
C10 = l:2[f25g25 + f35g35 + f45g45 ] + f25 f35g2_g35

The integrals required to evaluate the energy expression are expanded below. In these

expressions lower case fmi and gmi are used to denote the integrated product of the Fmi and Gmi
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functions.

for m = n = 2,3,5:

j'j'Rmn_m_3ndydz I 2 2= fm2gm2 + 2A2fm2fm4gm2gm4 + 2A3fm2fmsgm2gm5 +2A2A3fm4fm5

22 2 22 2 |
+ A2fm4gm4 + A3fmsgmsJ Rm,/2

for m=2, n=3:

IfRm.CmCndydz = [ f22f32g22g32 + A2(f22f34g22g34 + f24f32g24g32)

+ A3(f22f35gE2g35 + f25f32gEsg32) + AEA3( f24f35gE4g35 + f25 f34g25g34 )

2 2
+ A2(f24f34g24g34) + A3(f25f35g25g35)! Rmn

for m = n = 5,6:

f_RmnGmGndydz [ 2 2 2 2 2= fmlgml + 2Al(fmlfm3gmlgm3) + Al(fm3gm3 Rm./2

for (m = 6,n = 2,3),(m = 5,n = 4):

Ij'RmnGmGndy dz = [ fml fn2gml gn2 + A1 (fro3fn2gm3gn2) + A2(fml fn4gml gn4)

+ A3(fml fn5gml gns) + AI A2(fm3 fn4 + gm3gn4) + A1A3(fm3 fnsgm3gn5)] Rmn

where

f22 = 2a21/t_2 + 2a22/(_,1 _2) + a22e2.2 + 2a22a23e2.3 + a2e3.3

for (m = n = 3,4), (m = 2,n = 3)

fm2fn 2 = am2(an2e2,2 + an3e3.2) + and(an2e2.3 + an3e3.3)

f22f24 = a26/_4 + a27/(_,3¢_4) + a28/(_.4¢_4) + a22(a26e2.6 + a27e2.6 + a28e2,8)

+ a23(a26e3.6 + a27e3.7 + aEse3,8)
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for (m = n = 3,4), (m = 2,n = 3)

fm2fn4 = am2(an_e2. 6 + an7e2.6 + anse2.s) + am3(an, e2.6 +an7e3.7 + anse3.8)

f22f25 = a29/,5 + a21o/(Z,5_5) + a211/(_sCPs) + a22(a29e2.9 + a210e2.10 + a211e2.11)

+ a23 (a29e3.9 + a210e3.10 + a210e3.10)

for (m = n = 3,4), (m = 2,n = 3)

fro2 fn5 = am2(an9e2.9 + anloe2.10 + anlle2.11) + am3(a,9e2.9 +anloe330 + a,_e3.11)

for (m = n = 2.3,4), (m = 2,n = 3)

fro4 fn5 = am6(an9e6.9 + anloe6.10 + anlle6.11) + am7(an9e7.9 + anloe6.10 + anlle7.11)

+ am8(an9e8.9 + anloe8.10 + a_lles.II)

fro5 fn4 = an6(arn9e6.9 + amloe6.10 + amlle6.11 ) + an7(am9eT.9 + amioe6.10 + amlle7.11)

+ ans(am9es.9 + amloe8.10 + amlle8.11)

for (m = n= 2.3.4)

fro4fn4 = am6(am6e6.6 + am7e6.7 + am8e6.8) + am7(am6e6.7 + amTe7.7 + a_sev.s)

+ ams(am6e6.8 + amTe7.8 + amses.s)

for (m = n = 2,3.4)

fro5 fn5 = am9(am9e9. 9 + amloe9.10 + am9e9.11) + amlo(am9e9.10 + amloelo.lo + amllelO.ll)

+ amH(am9e931 + a_loe1031 + amlle11.ll)
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f21= 2a61/#!+ a21el.t
f21= a_lel.!

f61 f63 = a64/_3 + a65/'k2_3 + a61(a64el.4 + a65el.5)

fs1 f63 = asl(a54el.4 + a55el.5)

for (m = 5,6)

f2 3 2= am4e4.4 + 2am4am5e4.5 + a2mses.5

f61 f22 = a22/t_2 + a23/(_.lt_2) + a61/t_l + a61 (a22el.2 + a23e13)

f63 f22 = a64[_3 + a65/(_2t_3) + a64(a22e2,4 + aE3e3.4) + a65(a22e2,5 + a23e3,5)

f61 f24 = a26/_4 + aE7/(_.3t_4) + a28/(_,4t_4) + a61 (a26el.6 + a27el,7 + a2sel.8)

f61 f25 = a29/CP5 + a210/(_st_5) + aEll/(_t_5) + a61 (a29el.9 + aEloel.lO + aEllel.ll)

for (m = 6,n = 3), (m = 5,n = 4)

fml fm2 = aml (an2el.2 + an3el.3)

fm3 fn2 = am6(an2e2.4 + an3e3.4)

fml fn4 = am6(an_el.6 + an7el.7 + ansel.8)

fml fn5 = am6(angel.9 + anl0el.lO + anllel.ll)

for (m = 6,n = 2,3). (m = 5,n = 4)

fm3 fn4 ----am4(a_e46 + ante47 + anse4s) + am5(ar_e5.6 + an7e5.7 + a, ses.s)

where the ei. j's are given by



155

and

1
elj-

q_+qj

qt = ¢1 q2 = t_2 q3 = ¢2_'1

q4 = t_3 0,5= t_3_g2 q6 = @4

q7 = _L3¢4 qs = _t_4 q9 = ¢5

qlO = _k,505 qll =9,.6¢5
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The through-thickness integration terms are given by:

g2 = R22 [ B2t 3 + 3B3B4t 2 + 3B_t ]/3.

g]2 = R33/1260 15B2t7 + 35B3B4 t6 + 84B3B6 t5 + 63B2t5

+ ( 105B3B 7 + 315B4B 6 ) t4 +420 ( B4B7 + B 2 ) t3 + 1260 ( B6B7 t2 + B72t ) ]

g21 = R66/3 I B2t3 + 3Bi B2t2 + 3B2t ]

g22g32 = R23/30 IB2t 5 +5B3B4 t4 + ( 10B3B6 +5B42 ) t3 + 15 ( B3B 7 + B4B 6 ) t2

+ 30B4BTt]

g22g61 = R26/6[ 2B1B3 t3 +3 (BIB4 + B2B3 )t 2 + 6B2B4t 1

g32g61 = R36/120 I4BIB3 t5 + ( 15BIB4 + 5B2B3 )t4

+ ( 40BIB 6 + 20B2B 4 ) t3 + 60 ( BIB7 + BEB6 ) t2 + 120B2BTt ) ]

gsl g42 = R45/120 6BiB3t 5 + 15 ( BIB4 + B2B3 ) t4 + 20 ( BI B6 + B3B5 + 2B2B4 ) t3

+ 60 ( B2B 6 + BaB 5 ) t2 + 120BsB6t /
.J

g22 = R44/60[ 3B2t 5 + 15B3B4t 4 + 20( B3B6 + B 2 )t 3 + 60B4B6 t2 + 60B2t]

I3B2t s + 15BIB2 t4 +20(BIB5 +B2)t 3 +60(B2Bst 2 + B]t)]g21 R55/6o

g22 = 512/Sll ( 6B4CSIGI t + 3CSIG2 t2 + 2CSIG3 t3 )/6

g61 = $16/$11 ( 6BECSIG1 t + 3CSIG4 t2 + 2CSIG5 t3 )/6

g22g24 = R22 [ B3t_v(1)et + B4 ( DIFNU ) ]
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g224 = R2214/t (QUANU) ]

g32g34 = R33 / 252012B3t 5 ( DIFNU3 ) + 21B4t 4 DIFNU2 + 42B6 t3 DIFNU4

+ 210B7t 2 ( DIFNU ) ]

g]4 = R33 t3 ] 210 ( QUANU2 )

g61g63 = R66 / 3 [ Bit ( DIFMI2 ) + 3B 2 ( DIFMII ) ]

g623= 4R66 ] 3t ( QUAMII )

g61g34 = -R23 [ 60 [ B3 t3 ( DIFNU4 ) + 5B4t 2 ( DIFNU ) ]

g24g32 = R23 / 60[B3t 3 ( SUMNU3 ) +5B4 t2 ( SUMNU4 )

+ 60B6t_v(1)_ + 60B 7 ( DIFNU ) 1

g24g34 = -R23t/15 ( QUANU3 )

g22g63 = R26 / 3 [ B3t ( DIFMI2 ) + 3B4 ( DIFMI1 ) ]

g22g61 = R26 [ Blt_Sv(1)et + B 2 ( DIFNU ) ]

g24g63 = 2R26 / t [ 8v(1)_iTl(1)e 2 + _v(2)_Tl(2)e 2 ]

g32g63 = R36 ] 60 [ B3t 3 ( DIFMI4 ) + 5B4 t2 ( DIFMI3 ) + 20B6t ( DIFMI2 ) + 60B 7 ( DIFM[1 ) ]

g34g61 = -R36 / 60 [ B i t3 ( DIFNU4 ) + 5B2 t2 ( DIFNU ) 1

g34g63 = -R36t / 30 [ _ri(1)_ ( DIFNU4 ) - _n(2)eb ( DIFNU5 ) ]
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g42g53= R45 ] 60 [ B3t 3 ( SUMMI3 ) + 5B4 t2 ( SUMMI2 ) + 20B6t ( SUMMII ) ]

g44g51 = R45 ] 60 [ Bit 3 ( DIFNU4 ) + 5B2 t2 ( DIFNU ) ]

gg4g53 = R45 / 30 [ 8rl(1)et ( DIFNU4 ) - 8rl(2)e_ ( DIFNU5 ) ]

g42g44 = R44 / 60 [ B3t 3 ( DIFNU4 ) + 5B4t 2 ( DIFNU ) ]

g422 = R44t ] 15 ( QUANU3 )

g51g53 = R55 / 60 [ Bit 3 ( SUMMI3 ) + 5B2t 2 ( SUMMI2 ) + 20Bst ( SUMMI1 ) ]

g_3 = R55t/15 (QUAMI2)

g24 = S12 /Sll [ 8V(1)ett ( B9SII + B3Sl2 + B I S16 ) + ( DIFNU ) ( CSIG 1 ) ]

g53 --516] (3Sxl) [ t(DIFMI2) (B9SII +B3SI2 +BIS_6) +3 (DIFMI1) (CSIGI) ]

g22g25 = 522 [ - B3DIFNUB ]

g24g25 = $22 [ - 6 / t2 ( DIFNUB SUMNU ) ]

g2 _S22 [ 12/t 3 (DIFNU) 2 ]

g32g3s = $33h / 840 [ 5t3BaSUMNU5 + 28B4 t2 ( SUMNU6 ) + 42B6t ( SUMNU7 )

+ 420B7 ( SUMNU ) ]

g34g35 = - 11S33 t2/210 [ (DIFNU) (SUMNU) ]

g]5 = S33t / 35 [ QUANU ]
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g22g35= $23t/ 20 [ B3t ( SUMNU7 ) + 10B4 ( SUMNU ) ]

g32g25 = - S23 / 20 ( DIFNU ) ( 3B3t 2 + 10B4t + 20B6 )

g24g35 = 1 1S23 ] 10 ( DIFNU ) ( SUMNU )

g32g25 = $23 / 10 ( DIFNU ) ( SUMNU )

g25g35 = - 6S23 / ( 5t ) ( DIFNU ) 2

g61g25 = - $26B1 ( DIFNU )

g61g25 - 2S26 / t2 ( DIFNU ) ( SUMMI1 )

g61g35 = $36t/20 [ Bit (SUMNU7) + 10B 2 (SUMNU) ]

g63g35 = - S36 / 10 [ eb_rl(2) ( SUMNU8 ) - et_rl(1) ( SUMNU7 ) l

gsIg45 =$45/20 [ (DIFNU) (3blh2+ 10B2t+20B 5 ) ]

g53g45 = 3S45 ] 10 [ ( DIFNU ) ( SUMMI1 ) ]

g42g45 = $44 / 20 [ ( DIFNU ) ( 3B3 t2 + 10B4t + 20B6 ) ]

g45g44 = -- $44 ] 10 [ ( DIFNU ) ( SUMNU ) ]

g25 =6S44/ (5t) [ (DIFNU) 2 ]

where

SUMNU = [ 5v(1)et + 5V(2)ab ]
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SUMNUB = [ 8v(1)aet + 8v(2).eb ]

SUMNU2 = [ _v(1)et + 28v(2)_ ]

SUMNU3 = [ 7_v(1)et + 2_5v(2)% ]

SUMNU4 = [ 5_v(l)et + 8v(2)_ ]

SUMNU5 = [ 6_v(1)net + _V(2)n£b ]

SUMNU6 = [ 48V(1)n_ + _V(2)nEb ]

SUMNU7 = [ 78v(1).et + 38v(2).eb ]

SUMNU8 = [ 38v(1)net + 7_iv(2)neb ]

DIFNU = [ 8v(1)_ - _v(2)eb ]

DIFNUB = [ 8v(1)net -8v(2)n_ ]

DIFNU2 = [28v(1)at- _V(2)eb]

DIFNU3 = [58V(1)_t-2_V(2)_ ]

DIFNU4 = [3_v(1)_ -3_v(2)_ ]

DIFNU5 = [28v(1)v_ - 35v(2)_ ]

QUANU = [ 8v2(l_t 2 + 8v(1)_Sv(2)ebet + _5v2(2)_2 ]

QUANU2 = [ 2_SVZ(1)Et2 - 38v(l)_v(2)eb_ + 2_v2(2)_ 2 1
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QUANU3= [ 25v2(1)et 2 - _v(l_v(2)eb_t + 2_SV2(2)eb2 ]

QUANU4 = [ 138v2(l)ne 2 + 95v(1)n6v(2)neb_t + 13_Sv2(2)ne 2 ]

DIFMI1 = [ 8_3(I)_ - 8)1(2)% ]

DIFMI2 = [ 2_rl(1)et - _5_(2)% 1

DIFMI3 = [ 3_rl(1)_t -_5_q(2)% ]

DIFMI4 = [ 46rl(1)et - _(2)_ ]

SUMMI1 = [ 8¢1(1)g_ + _rl(2)eb ]

SUMMI2 = [ 3_Srl(1)et + _¢1(2)_ ]

SUMMI3 = [ 6_rl(1)et + _(2)_ ]

QUAMI1 = [ 8nU(1)e,2 - ebet$rl(1)Srl(2) + e2_2(2) l

QUAMI2= [ 3_2(1)et 2 + 8Tl(1)$rl(2)%et + 38"q2(2)e 2 ]
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Appendix B: Two-term Solution
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The expressions for the two term solution are presented below.

shear modulus of the resin layer and is taken to be 0.25 msi.

G ( _e-X*Y - e--*Y )_ [t-_-]2 [ 51112"t(k' 1)et 5_L2,1

-G#[_e-X*Y--_(1- k)( _y+ 1)e_y- -_e_Y] [Sv12(k. 1)e,) [6z/(t°°) 2- 2/te_)3

In these expressions G is the

03.1)

03.2)

(B.3)

a_ = 0?-_-i-_kl[e-X*Y- e-X'Y]IBm)z2/2 + B_)z+ B_]

+ G [e-*Y+ _(1 - Z.)ye-_' - e-X*Y][Svl2(k. 1)et0'){3z2/(t0'))2 - 2z/te']

03.4)

03.5)
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Appendix C: Cross-Ply and Angle-Ply Laminates
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TABLE C.1. CLT Stresses for Symmetric Cross-ply Laminates

Uniform Extension

Ell = 0.1%

Ply

o

90 °

[04/904],

O11

(ksi)

192.8

15.54

022

(ksi)

3.196

-3.196

o12 Ply
Ocsi)

0.000 90 °

0.000 0 °

[90J04]s

oll 022
(ksi) (ksi)

192.8 3.196

15.54 -3.196

012

(ksi)

0.000

0.000

Uniform Bending

_ll = 0.1

Ply

O

90 °

[04/904],

011

(ksi)

-57.76

-1.530

022

(ksi)

-0.661

1.542

012

(ksi)

0.000

0.000

Ply

90 °

o

[904/04],

Oll 022

(ksi) (ksi)

-4.677 0.146

-19.28 -0.3416

012

(ksi)

0.000

0.000
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TABLE C.2. CLT Stresses for Unsymmetric Cross-Ply Laminates

Uniform Extension

Nil = I000 Ib/in

Ply

O

90 °

011

0csi)

36.62

13.38

022

(ksi)

0.418

0.419

012

(ksi)

0.000

0.000

Ply

O

90 °

Uniform Bending

Mll = 1 lb--in/in

011 022

(ksi) (ksi)

-1.135 0.000

1.135 0.000

012

(ksi)

0.000

0.000
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TABLE C.3. CLT Stresses for Angle-Ply Laminates

[(+10)2], and [+102/-102], Laminates
Etl = 0.1%

Ply

lO°

_10o

011

(ksi)

17.80

17.80

022

(ksi)

0.000

0.000

012

(ksi)

2.779

2.779
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_33

---v--- Equilibrium
Normal Mismatch

.--,t__ Total
0.020

0.015
x3

0.010 O° ] _L l,_

90° ] h I/ ]

0.005

0.000

-0.005

0.8 0.9 1.0

X2/b

Figure C.1. _33 Stress at 0/90 Interface for [04/904] , Laminate - Extension
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X3/h
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_Normal Mismatch _' _ r
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I

-0.01 0.0
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90o
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X3/h

2.0

1.o

0.0
-0.01

90 °

0 o

l v i i r _ i ! i l i i

_ Equilibrium

"_ _ Shear Mismatch
_, _ Normal Mismatch

Total

0.0 0.01

m

(_23

(b) [904/04]s Laminate

Figure C.2. Contributions to 033 - Extension Load

0.02
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0.005

0.000

-0.Ol o

-0.Ol 5

Equilibrium
Shoar Mismatch
Total

-0.020
0.8 0.9 1.0

X2/b

(a) [OJ904]s Laminate

_23

0.020

0.015

0.010

0.005

0.000

x3

l _0o I
I 0o I h

x2

,, Equilibrium

-.-o--- Shear Mismatch
Total

-0.005
0.8 0.9 1.0

X2/b

(b) [90JO4]s Laminate

Figure C.3. Contributions to oz3 Stress at 0/90 Interface for [04/904] , and [904]04}, Laminates
- Extension
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._.,t_ Total ._

0 o

I

-0.01 0.0

90 °

m
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0.01
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2.0 ! |

1.0

I i ' I _ I

90°

II

0.0 ' '
-0.03 -0.02 -0.01 0.0 0.01 0.02 0.03

Equilibrium
--o-- Shear Mismatch

Normal Mismatch
__,t.__ Tolal

(Y33

(b) [904/04]s Laminate

Figure C.4. Contributions to 033 Stress at X2fo = 0.999 for [04/904], and [904/04] , Laminates -

Bending
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2.0 i

X3/h

1.o

0.00
.0.010

(a) [04/904]s Laminate

I I I I ' I I I j

C,, Equilibrium
Shear Mismatch
Normal Mismatch

_, Total

-0.005 0.000 0.005

(323

0 o

90 °

0.010

X3/h

2.0
I I _ ] I I I I I I I I ,j

/
Equilibrium 1/
Shear Mismatch #'

Normal Mismatch _/

I

90 °
1.0 0o

0.00
.0.030 -0.020 -0.010 0.000 0.010 0.020

(523

(b) [904/04]s Laminate

Figure C.5. Contributions to (323 Stress at X2/b = 0.993 for [04/904] , and [904]04], Laminates -

Bending
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_33

0.030

0.020

0.010

0.000

I I I I I I I I I I I I I I I I I I I
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Normal Mismalch
Total

x3

l 9o*
0* I h

-0.010 I t _ , _ , * t I t ' ' ' * _ * _ '
0.8 0.9 1.0

X2/b

(b) [904/04]s Laminate

Figure C.6. Contributions to o33 Stress at 0/90 Interface for [04,/904] s and [904/04] ' Laminates
- Extension
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1523

0.010 q , , , , , , , , I , ' ' ' _ ' i p ,

0.005

0.000

,, Equilibrium
Shear Mismatch

__L_ Total

'5"S'_'_'L'_"__'.T__'C'__'_........ '-'_ -: -- -- _'---._.,._,_

-0.005 , , , , , , , , _ I ' ' L ,
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X2/b

I I I I I
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0.01 L _ , , , ' ' ' ' I ' ' ' ' ' ' ' _ '
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,k Total

X3

I I I I I I I t-0.02 _ , _ , , , , , ' I '
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Figure C.7. Contributions to (_z3 Stress at 0/90 Interface for [0j904], and [90J04]s Laminates
- Extension
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Appendix D: Quasi-Isotropic Laminates
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TABLE D.1. CLT Stresses for Quasi-lsotropic Laminates

All quasi-isotropic

ell = 0.1%

Ply 011 o22 012

(ksi) (ksi) (ksi)

0 ° 19.18 -0.096 0.000

90 ° 1.455 -5.368 0.000

45 ° 4.858 2.730 -3.111

-45 ° 4.858 2.730 -3.111



177

TABLE D.2. Solution Parameters for Quasi-Isotropic Laminates - Group 1

Solution Parameters For Quasi-Isotropic Laminates

cll =0.1%

Comtant

01 (1/in)

02 (1/in)

03 (1/in)

[0/--45/90/--45], [90/45/0/-451,

66.93 50.02

81.68 61.75

57.73 99.81

[45/90/0/--45]s

54.86

59.83

47.06

04 (1/in) 128.4 56.23 70.08

05 (1/in) 59.99 174.5 95.28

5.698

4.223

3.394

1.386

3.189

3.661

X4 8.207 21.11

K5 6.748 5.047

18.68

1.242

-4.318

-0.009

AIX10 -5

(psi)

A2X10 -5

(psi)

A3X10 -5

(psi)

0.352

3.703

-3.801

-1.002

.020h (in) .020

6.725

7.801

12.32

11.90

1.490

1.572

6.204

-1.057

-0.386

.020
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TABLE D.3. Solution Parameters for Quasi-Isotmpic Laminates - Group 2

Solution Parameters For Quasi-Isotropic Laminates

ell =0.1%

Constant [45/90/-45/0], [45/0/90/-45]s [45/0/-45/90],

_1 (1/in) 66.66 53.10 52.32

t_2 (1/in) 82.13 61.39 47.25

_3 (1/in) 57.31 41.75 67.31

dP4(1/in) 130.4 77.69 43.01

_5 (1/in) 72.33 128.1 41.81

2t1 5.048 3.609 3.227

_z 4.178 7.492 4.040

_.3 3.320 14.18 25.14

2k4 7.882 7.074 6.388

7.223 1.856 8.910

12.59 3.578 5.618

A1X10 -5 1.234 0.504 1.564

(psi)

A2X10 -5 -4.843 -1.834 -1.935

(psi)

A3X 10-5 0.178 0.978 -0.025

(psi)

h (in) .020 .020 .020
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TABLE D.4. SolutionParametersfor Quasi-Isotmpic Laminates - Group 3

Solution Parameters For Quasi-Isotropic Laminates

ell =0.1%

Constant [90/±45/0]s [90/0/+45]s [0/90/±45]s

_Pl (1/in) k54.75 - 56.90

_2 0/in) 69.58 - 64.27

_)3 (1/in) 158.6 - 154.6

_4 (1/in) 65.94 68.45

Op5(1/in) 81.06 71.07

_q 1.473 2.134

)¢2 2.469 2.191

_'3 5.048 3.545

_.4 11.73 17.73

_'5 3.293 4.382

7_ 5.739 6.984

A1XI0 -5 5.838 - 6.984

(psi)

A2X10 -5 -2.084 - -4.332

(psi)

A3XI0 -5 4.212 - 0.432

(psi)

h (in) .020 .020 .020
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TABLE D.5. Solution Parameters for Quasi-lsotropic Laminates - Group 4

Solution Parameters For Quasi-Isotropic Laminates

_11 =0.1%

Constant [+45m/9o], [+45/90/0],

01 (1/in) 56.94

02 (1/in) 61.75

03 (1/in) 99.81

04 (l fro) - 56.23

05 (1]in) - 90.95

_l - 1.996

- 4.203

_,3 - 5.488

K4 - 15.96

L5 1.722

6.155

AIX10 -5

(psi)

A2X10 -5

(psi)

A3XI0 -5

(psi)

.020h (in)

1.682

-3.639

-1.352

.020

[0/5:45/90],

61.75

58.81

97.46

56.04

62.39

3.530

4.302

8.821

19.86

5.189

5.082

1.565

-1.505

-1.068

.020






