
NASA-CR-I90716

Configuration Management and
Software Measurement in the Ground

Systems Development Environment
(GSDE)

Victor E. Church

D. Long
Ray Hartenstein

Computer Sciences Corporation

/
/ j

/ ,)

/'

p-
_0

p_
,-d
f_
I

O"
Z

o_

Z

I" _ _0 U 0

0 uju_ E

LL_ _: O

I.L F.-,,.,

0<_ CO

Z_ZZ 0

0

0

Alfredo Perez-Davila
University of Houston-Clear Lake

February 1992

Cooperative Agreement NCC 9-16

Research Activity No. SE.34

NASA Johnson Space Center

Mission Operations Directorate

Space Station Ground Systems Division

Research Institute for Computing and Information Systems

University of Houston-Clear Lake

TECHNICAL REPORT

The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information Systems (RICIS) in 1986 to encourage the NASA

Johnson Space Center (JSC] and local industry to active]), support research

in the computing and information sciences. As part ofthls endeavor, UHCL

proposed a par_ership with JSC to Jointly define and manage an integrated

program of research in advanced data processing technology needed for JSC's

main missions, including administrative, engineering and science responsi-

bilities. JSC agreed and entered into a continuing cooperative agreement

with UHCL beginning in May 1986, to Jointly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educational facilities are shared by the two institutions to
conduct the research.

The UHCL/RICIS mission Is to conduct, coordinate, and disseminate research

and professional level education in computing and information systems to

serve the needs of the government, industry, community and academia.

RICIS combines resources of UHCL and its gateway affiliates to research and

develop materials, prototypcs and publications on topics of mutual interest

to its sponsors and researchers. Within UHCL, the mission is being

implemented through interdisciplinary involvement of faculty and students

from each of the four schools: Business and Public Administration, Educa-

Lion, Human Sciences and Humanities, and Natural and Applied Sciences.

RICIS also collaborates with industry in a companion program. This program

is focused on serving the research and advanced development needs of

industry.

Moreover, UHCL established rclaUonshlps with other universities and re-

search organlzaUons, having common research interests, to provide addi-

tionaJ sources of expertise to conduct needed research. For example, UHCL

has entered into a special partnership with Texas A&M University to help

oversee RICIS r=search an'l education programs, while other research

organizations are involved vla the "gateway" concept.

A major role of RICIS then Is to find the best match of sponsors, researchers

and research objectives to advance knowledge in the computing and informa-

tion sciences. RICIS, working Jointly with Its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nical and administrative support to coordinate the research and integrates

technical resulta into the goals ofUHCL. NASA/JSC and industry.

Configuration Management and
Software Measurement in the Ground

Systems Development Environment
(GSDE)

RICIS Preface

This research was conducted under auspices of the Research Institute for Computing

and Information Systems by Computer Sciences Corporation in cooperation with the

University of Houston-Clear Lake. The members of the research team were: Victor

E. Church and D. Long from CSC and Alfredo Perez-Davila from UHCL. Mr.

Robert E. Coady was CSC program manager for this project during the initial phase.

Later, Mr. Ray Hartenstein assumed the role of CSC program manager. Dr. Perez-

Davila also served as RICIS research coordinator.

Funding was provided by the Mission Operations Directorate, NASA/JSC through

Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and the

University of Houston-Clear Lake. The NASA research coordinator for this activity

was Thomas G. Price of the ADPE and Support Systems Office, Space Station

Ground Systems Division, Mission Operations Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors and

should not be interpreted as representative of the official policies, either express or

implied, of UHCL, RICIS, NASA or the United States Government.

Configuration Management and
Software Measurement in the

Ground Systems Development Environment

(GSDE)

Prepared for

Lyndon B. Johnson Space Center
National Aeronautics and Space Administration
Houston, Texas

by

Computer Sciences Corporation
System Sciences Division
Beltsville, Maryland and League City, Texas

and

The University of Houston - Clear Lake
Research Institute for Computers and Information Sciences
Clear Lake, Texas

under

Subcontract No. 075

RICIS Research Activity No. SE-34
NASA Cooperative Agreement NCC 9-16

February 1992

Preparation:
Quality Assurance:
Approval:

V. Church

D. Long
R. Hartenstein
A. Perez-Davila

Software CM and Measurement

Abstract

This report describes a set of functional requirements for software configuration

management (CM) and metrics reporting for Space Station Freedom ground

systems software. This report is one of a series from a study of the interfaces

among the Ground Systems Development Environment (GSDE), the development

systems for the Space Station Training Facility (SSTF) and the Space Station

Control Center (SSCC), and the target systems for SSCC and SSTF.

The focus of this report is on the CM of software following delivery to NASA,

and on the software metrics that relate to the quality and maintainability of the

delivered software. The CM and metrics requirements address specific problems

that occur in large-scale software development. This report describes

mechanisms to assist in the continuing improvement of Mission Operations

software development.

CSC/SSD - UHCL/RICIS ii February 1992

SoftwareCMandMeasurement

Table of Contents

Section 1 - Introduction ... 1

1.1. Software Development Context .. 1

1.2 Organization ... 2

1.3 References and related documentation .. 3

Section 2 - Requirements for CM .. 4

2.1 Configuration Management Goals ... 4

2.2 Requirements Definition and Analysis .. 6

Section 3 - Requirements for Software Measurement .. 10

Glossary

3.1 Goals of Software Measurement ... 10

3.2 Specific Metrics .. 10

3.3 Relationship to DA3 Metrics Initiative .. 12

........ 14

List of Figures

1. Ground Software Development Environment ... 2

CSC/SSD - UHCL/RICIS iii February 1992

Software CM and Measurement

Section 1 - Introduction

As part of the Space Station Freedom Program, the Mission Operations Directorate

(MOD) at JSC" is developing a Space Station Training Facility (SSTF) and a Space

Station Control Center (SSCC). The software components of these systems will be

developed in a collection of computer systems called the Ground Systems Development

Environment (GSDE). The GSDE will make use of tools and procedures developed by

the SSFP SSE contractor. Both the SSTF and the SSCC will be developed using
elements of the GSDE.

During development, SSTF and SSCC software will be configuration-managed using

contractor-specified tools in their respective software production environments (SPEs).

When the software is delivered to NASA (or sooner, depending on contractor-dependent

integration procedures), it will be placed under formal CM on the Ground Systems/SPF

(GS/SPF) using the tools provided by the SSE. Integration testing and build-up to

delivery to operations will involve both contractor and SSE CM capabilities.

This report specifies basic requirements for configuration management in the integration

and test stage of development. An earlier report, GSDE Interface Requirements

Analysis, presented overall CM requirements for the use of the GS/SPF. This report

extends that analysis based on further analysis and information on the SSCC and SSTF

projects. The software measurement requirements presented here are complementary to

the CM requirements. They provide additional guidance for software development

practices that can improve the quality and maintainability of ground system software.

1.1. Software Development Context

Ground systems software, specifically the SSCC and SSTF, will be developed and tested

using combinations of development computers and workstations (collectively referred to

as software production environments, or SPEs), a Ground Systems SPF (GS/SPF), and

target platforms that are essentially the operational target environments or equivalent.

Configuration management will take place in all three environments as software

progresses from code and unit test through integration to operational use. Figure 1 shows

the basic development context. The target environments include IBM mainframe

computers, Unix-based workstations, and mission-specific special-purpose hardware.

This report focuses on how the different CM tools (including the Software Test

Management capability on the GS/SPF) will be used to ensure the integrity of software

that is delivered to operations. (CM of operational software is outside the scope of this
report.)

" Acronyms and abbreviations that are in common use in the Space Station Freedom community are not spelled

out in the text, but are defined in the Glossary at the end of this report.

CSC/SSD - UHCL/RICIS 1 February 1992

Software CM and Measurement

ource code development, unit1

sting, test item development

evalopmsnt environment

(Rationals, servers) Acceptance-tested

Development I_AN

I developmentworkstations

The GS/SPF host is intended to

provide the only formal conduit between
the development environments and the
target systems. All software _at is
submitted for formal testing on the target
platform is first placed under formal CM.

During development, the STM system is
used to control software being tested

ir#_'mal CM of source code, _ on the target. STM makes use of

I object code, test data, etc. J contractor CM as well as formal CM.

ISTM of files during test and

I integration
k GS/SPF (Amdahl) Test software,

,. _..rocess scriptsTest items'

testresults,",,_ "_
build products,_ f
process metrics I Hardware and software /

I integration formal test, creation I

I''" in.tera_ve _ for tes.tand .d_.ug Iof operalional software /
_, Target environment ,)

Figure 1. Ground Software Development Environment

Software for the SSTF and SSCC will be developed in the SPEs or in subcontractor

facilities, and accepted into the GSDE (at Acceptance Test, or AT) for systems

integration and testing. Following AT, the software is placed under formal CM on the

GSDE host. The integration and test will take place in the target envirnonment, or on

platforms that are essentially equivalent to the target. Following this systems integration

test phase, qualification testing will be performed prior to delivery to operations.

The primary language for development of Space Station Freedom software is Ada*. The

SPEs will include Ada-compilation platforms (e.g., Rational R 1000 computers) to

support Ada development. It is also probable that a substantial amount of non-Ada

code, primarily C-language, will be developed (or reused) and supported. Workstations

and file servers will be used along with the Ada compilation platforms to support

development. Configuration management and software measurement in the SPEs will be

performed by the developers, using contractor-specified tools.

The GS/SPF is an IBM-compatible mainframe with an instance of the SSE SPF software

for each major system (SSCC and SSTF). The GS/SPF will host both the formal CM

system and the STM system, along with disk storage supporting both systems. Formal

CM will be used to manage software following Acceptance Test. For reasons of security

and software integrity, the GS/SPF will serve as the conduit for moving software from

the SPEs to the targets.

* Ada is a trademark of the U. S. Department of Defense, Ada Joint Program Office

CSC/SSD - UHCL/RICIS 2 February 1992

Software CM and Measurement

There are no planned interactions between the two ground system development efforts

(SSCC and SSTF). However, there are a number of common interfaces that will be

implemented to support the interfaces between SPE and target.

1.2 Organization

1.3

Following this introduction, Section 2 presents the CM requirements, including the goals

to be achieved through these CM mechanisms and recommendations on how to put those

mechanisms into effect. Section 3 describes the software measurement requirements, and

places them in context with the DA3 Metrics initiative.

References and related documentation

Babich, Wayne, Software Configuration Management: Coordination for Team

Productivity, Addison-Wesley, 1986

Card, David, and Glass, Robert, Measuring Software Design Quality, Prentice Hall, 1990

Computer Sciences Corporation, Digital Systems Development Methodology, May 1990

Computer Sciences Corporation, Ground Systems Development Environment (GSDE)

Interface Requirements Analysis Final Report, CSC/'rM-91/6102, June 1991

Computer Sciences Corporation, SSE Software Test Management (STM) Capability:

Using STM in the Ground Systems Development Environment (GSDE), February 1992

Miller, Edward, "Automated Software Testing: a Technical Perspective", American

Programmer, April 1991

NASA JSC, DA3 Software Development Metrics Handbook, Version 1, JSC-25519,
December 1991

CSC/SSD - UHCL/RICIS 3 February 1992

-- Software CM and Measureme.nt

Section 2 - Requirements for CM

The requirements presented in this section are not intended to constrain the development

methods used by the SSCC and SSTF contractors in generating and testing software.

The purpose is to specify a set of end-state conditions that are essential to the quality and

maintainability of software. The procedures used to achieve those end-state conditions

are not specified by this report. Feasible approaches are suggested in part to clarify the

requirements, and to illustrate the desired end-state conditions.

2.1

2.1.1

Configuration Management Goals

The requirements specified in this report are intended to achieve two major goals in

ground systems software development. This fast goal is to minimize obstacles to

sustaining engineering of operational software; this is to be achieved by controlling all

files that are required to regenerate such software. The second goal is improved overall

project productivity; this should result from managing the software interfaces between

programmers, between teams, and between releases of software.

Source Management

The first goal fits the traditional view of CM. Record-keeping and change control serve

as preventive measures needed because of the extreme ease of modifying software. CM

is essential to the long-term management of software as it is developed, maintained, and

enhanced.

A depressingly common occurrence in the software industry is the discovery that the

operational software can't be maintained (corrected or enhanced) because it doesn't match

the source. The thriving market in source code control systems attests to the prevalence

of the problem. The problem is particularly common when multiple releases are fielded

in parallel; the newest release may be under control, but the source code for previous

releases has been "improved" and does not match the executable code. The "improved"

source may have additional features, but it may also not integrate with the execution

context of the operational software. The ahematives are to back-out the changes, or to

forego sustaining engineering on the operational version of the software.

The cost of re-synchronizing source and executable may outweigh any expected benefit

from corrections or enhancements, leading to continued use of flawed software.

Effective CM can reduce or even eliminate this problem by ensuring that source code

exists (or can be regenerated) for all versions of all fielded releases.

Occasionally the source-executable mismatch is due to evolution of related or supporting

software (e.g., system services). In the fast-changing world of commercial software

(particularly in the areas of open systems and man-machine interfaces), stability is

difficult to achieve. Interactions among system elements may make it impossible to roll

CSC/SSD - UHCL/RICIS 4 February 1992

mr

Software CM and Measurement

2.1.2

back to a previous environment. Even so, knowledge of what system elements, such as

compilers and libraries, were used in a given build can assist in maintainers in

anticipating maintenance problems.

While it may not always be possible to recreate a previous environment (especially if

more than one upgrade has occurred), it is possible to characterize the environment, and

thereby manage the potential impact to delivered software.

Most long-lived software exists in several simulatneous versions during its operational

life. A particular concern involving multi-version software is that a correction

discovered for one version may be unevenly applied to others. Perhaps the source is

changed but the executable is not delivered to operations. Perhaps the change is

scheduled but not carried out, and then the maintainer is reassigned. Careful CM and

archiving of frozen versions, or "snapshots", can alleviate this problem.

Interface Management

The second goal of CM is improvement of overall project productivity. During

integration and verification, stability of the test software is extremely important.

Unreported changes can cause delays and wasted effort. Time, momentum, and morale

can all be squandered tracking down errors traceable to software that was changed

without notification. Configuration control may be a burden to individuals, but at the

project level it is critically important.

An essential difference between small and large projects is that on the latter, developers

can actually degrade project-level performance when they maximize their individual

productivity. On small projects the potential impact of unreported changes is always

local. Problems can be tracked down without undue difficulty. On large projects the

impact may be felt too far away from the cause for easy resolution. Thi_ need for

"bureaucratic" procedures such as check-out/check-in and independent logging of

changes increases with the size of the project.

The costs of CM in interfacing, coordinating, and sharing software are borne at the

individual and small-group level, while the benefits may only be obvious at the

subsystem or project level. Configuration management is a mechanism for imposing
order in what could be a chaotic environment.

The importance of this project-level control is obvious in theory, but rigorous control is

sometimes hard to apply in practice. The key role of individual talent in successful

projects is well known; the first rule for project success is "Get good people". It seems

counter-intuitive to assemble a good team and then to put obstacles in the way of top

individual performance. The reporting and approval requirements of CM are often felt to

pose such obstacles. Nevertheless without goQd CM the time saved in unfettered

"SLOC-slinging" will be lost many times over in trying to make different pieces fit

together, and in tracing down obscure errors during integration. CM is a project-level

CSC/SSD - UHCL/RICIS 5 February 1992

w

Software CM and Measurement

2.2

necessity for quality and productivity, and needs to be explained (and sold) to developers
in that context.

The requirements presented in the next section are intended to define mechanisms by

which these two goals can be achieved in the specific environments of the SSTF and the

SSCC.

Requirements Definition and Analysis

The following requirements are presented in terms of the conditions that should be true

as a result of CM activities. The mechanisms by which these conditions are achieved are

not prescribed; however, possible approaches are suggested by way of explaining the

requirements.

The scope of these requirements is essentially the scope of GS/SPF involvement in

ground systems software, that is, from acceptance test through system and integration test

to qualification test (QT) and delivery of executable software to operations. The focus of

these requirements is on the source code, and the overall goal is the certain knowledge

that there is source code on the GS/SPF for all operational software. A secondary goal is

knowledge of the status of all anomalies discovered and all changes approved for

controlled software.

A basic principle of configuration management and control is that CM responsibility is

independent of the software developer (persons or organizations). This independence is

similar to the independent role that is generally accepted practice for quality assurance.

The requirements below reflect this principle in specifying that NASA-managed CM

must be used to satisfy the requirements for delivered software.

2.2.1 CM Specifications

The requirements presented here include both the specifications, in sans-serif type, and

explanatory material, in normal (serif) type. The explanations are not part of the formal

requirements.

These specifications make use of a concept referred to as a "snapshot", which is an image

of a system or element at a given point in time. A snapshot is similar to a frozen

subsystem on Rational computers. Snapshots are used in the SSE STM to provide fixed

points of reference as software is developed and tested. This set of requirements assumes

that snapshots can be made and archived in the CM system.

° For any software that is delivered to operations: all software elements

necessary to recreate the delivered software, with the exception of
mission-specific data and COTS software, shall be under the control of

NASA-managed CM. CM records must be kept to demonstrate the

traceability from controlled files to operational software.

CSC/SSD - UHCL/RICIS 6 February 1992

Software CM and Measurement

o

°

This requirement does not specify that operational software must be generated

direcdy from NASA-managed CM storage. In practice, contractor-managed

object files and libraries may be linked with mission-specific data in the target

environment, without recompiling every source file. The requirement is that

source code, along with all related files such as compile scripts, build scripts,

configuration data, required libraries, and so on be up-to-date in the NASA-

managed CM storage. Complete records must exist showing the history of

any contractor-managed files used in creating operational software.

The exceptions for mission-specific data and COTS software reflect the fact

that these elements are provided by other organizations.

A convenient way to satisfy this requirement would be to stage the software

and archive a snapshot, using STM. The step of compiling and linking the

source files would generally not be required, as long as there is traceability

from formal CM to the contractor-managed files.

CM records must be kept to verify that the software that is delivered to

operations is the same as the software certified in qualification testing,
with the exception that mission specific data will be different for
operational software.

Other than mission specific elements, there should be no differences between

the software that is certified and the software that is delivered for operations.

This requirement says that traceability must be documented between the

controlled source files and the test version of executable software.

The "stage and snapshot" approach noted above is also applicable here.

For any software that is certified by qualification testing: all software

elements necessary to recreate the tests, with the exception of COTS
software, shall be under the control of NASA-managed CM. CM records

must be kept to demonstrate the traceability from controlled files to test
software.

This requirement says that the software used in QT (at least, at the end of QT)

must be able to be regenerated from controlled storage. Unlike requirement

1, this includes the "mission-specific" component of the executable software

as well as test cases and test frameworks. The STM archive capability

provides a mechanism whereby this could be done.

QT is a process that occurs over a period of time, and the software under test

may get changed (corrected, enhanced) during this process. This requirement

only addresses the final product of the QT process, not all of the intermediate

products. While formal CM provides the necessary change and configuration

control facilities for this process (particularly in conjunction with STM),

contractor-managed CM may also be adequate for control of intermediate

steps.

CSC/SSD - UHCL/RICIS 7 February 1992

-- Software CM and Measurement

4. The enforcement mechanisms for changes to controlled software,

whether automated or procedural, shall involve permanent records and

independent approval.

A key element of configuration control is that no changes occur to controlled

software without authorization and record-keeping. While automated

procedures are the preferred method of maintaining records and control, there

may be instances where procedural (manual) controls are more cost-effective.

The SSTF contractor, for example, has proposed procedural controls to ensure

that development files and qualification-tested files are not intermingled on

the reconfiguration computer.

This requirement says that the procedures, automated or manual, must

generate records, and must involve approval from someone other than the

developer. (The SSTF example mentioned above specifies such independent

approval).

5. The status of all approved changes to controlled software shall be

recorded and accessible. The status of an approved change shall include
references to all versions of controlled software that have been, or are

scheduled tO be, changed.

The intent of this requirement is to ensure that the status of approved changes,

whether applied, in process, or deferred, can be determined for any given

snapshot of controlled software. One of the most common forms of

uncertainty that CM is intended to prevent is "What changes have been

applied to this item of code?". Approved changes include those generated

from CRs, DRs, and (if applicable) STRs.

This requirement also plays a role in support of test planning and sustaining

engineering. It is a fact that the more often a component is changed, the more

likely it will be changed again. Frequently changed components are good

candidates for extra attention during testing, and careful review of the

software and its supporting documentation.

6. The status of all reported discrepancies involving controlled software shall
be recorded and accessible.

This requirement extends the historical knowledge of a software component

by requiring that any faults discovered after the component is placed under

formal control be recorded. The intent of this requirement is to assist in

assessment of quality, and to identify components that may need review and

perhaps redesign.

One of the best indicators that a component will have to be changed in the

future is that it has been changed in the past. The more faults detected in a

component, the more likely it is that further faults will be detected in that

component. Evidence from many projects, including NASA ground software,
indicated that a sizeable fraction of error corrections introduce further errors

or fail to correct the initial fault. A record of all faults detected after

CSC/SSD - UHCL/RICIS 8 February 1992

Software CM and Measurement

2.2.2

completion of acceptance test provides a good indication of the probable

stability of the code.

All formal DRs will, of course, be recorded. This requirement adds the

condition that informally reported errors also be recorded.

. For all software that is delivered to operations: the snapshot of the
delivered system shall include all relevant ICDs and IDDs.

The intent of this requirement is to ensure that maintenance on operational

software has a contextual baseline as well as a system baseline. The evolution

of systems often leads to changes in interfaces. By recording the interface

definitions that are in effect when a system is released, the CM system can

facilitate maintenance with explicit indications of interface changes.

Discussion of CM requirements
P

The primary intent of these CM requirements is to simplify the task of sustaining

engineering, by ensuring that critical information doesn't get lost in the press of multiple

version developments, changing requirements, and tight deadlines. By me time software

reaches operations, the simple defects have already been detected and corrected. The

faults that occur will generally be sensitive to operating conditions and combinations of

software. In trying to correct such errors, it will be essential to have the correct software

to modify and test. It will be very valuable to know whether any similar faults were

detected during development or test. The ability to run regression testing with the same

testbed that was used for certification will simplify verification of error corrections.

The CM requirements will impose additional work on developers, and may cause distress

in that all faults are recorded. Nevertheless, these procedures will help to develop and

maintain quality software in a timely fashion. The implementation of these requirements

should be automated as much as possible, both to minimize the impact on developers and

to assure consistency and completeness. Existing tools such as the SSE CM system and

the STM can be used to minimize the cost of implementing CM, with the added benefit

of smooth integration with the Build Process tools to be provided in SSE OI 7.0.

CSC/SSD - UHCL/RICIS 9 February 1992

Software CM and Measurement

Section 3 - Requirements for Software Measurement

The report focuses on measuring software in the post-acceptance-test phase. It assumes
that contractors for both the SSCC and the SSTF will have software measurement efforts

in place, and that these metrics will add to the contractors' understanding of the

development process. NASA has a similar interest in seeing what happens to software

after it is accepted. These metrics requirements involve questions of software quality and

process improvement. Requirements for project management metrics have been

addressed in the Software Metrics Guide developed by Mitre for JSC/DA3.

3.1

3.2

Goals of Software Measurement

The software measurement requirements detailed in this section are intended to support

specific actions to improve the quality of ground system software without unwarranted

impact on the developers. As far as possible, the metrics are based on procedures that do

not affect the developers at all (e.g., code analysis of software as it is entered into the CM

system), or can be made part of regular reporting activities.

The purpose of the software measurement activity is to gain a clear understanding of the

deliverable software. Together with project management metrics, this information will

enable NASA and contractors to improve the quality and reliability of current systems

while improving the forecasting and management of future systems. Software metrics

will be used to characterize different elements of the ground systems, and to correlate

that understanding with test resource requirements and maintainability.

Specific Metrics

This presentation assumes that the metrics specified in the DA3 Software Metrics Guide

are being reported. These requirements are in addition to that set.

1. Static source code measures that can be generated by automated code

analysis software should be collected when source code is checked in to

formal CM. Such measures should include size (e.g, number of source
lines, number of blank lines, number of non-blank comment lines, number

of comments, number of statements, number of executable statements,

number of declaration statements), internal complexity (e.g., McCabe

cyclomatic complexity), fan-out (the number of procedures invoked by this

procedure), and degree of change from previous version.

All code that's delivered to formal CM should be analyzed on arrival by use of

automated code analyzers. These analyzers will provide a wealth of data

without impact to the developers. The reporting of this information will

depend on the available resources and specific concerns that are system

dependent. The recommended reporting is to roll-up these measures as

CSC/SSD - UHCL/RICIS 10 February 1992

Software CM and Measurement _r

.

,

averages and standard deviations at the subsystem level, with more detailed

reporting as required to analyze specific problems.

,

Subsystem interface complexity should be measured using automated

analytical tools when a subsystem is submitted to formal CM, and with

each substantial change to the subsystem. Interface complexity includes
the size of the subsystem, the number of components, the depth and

breadth of the invocation tree, and the average fan-out of components to
other subsystem components.

In addition to measurements of internal complexity, the system complexity

will be measured by determining the interconnectedness of the system. This

measure is a counterpart to internal complexity; decreasing one in a system

often increases the other. In general, striking a balance between internal

complexity and interface complexity minimizes the errors in the system.

We recommend reporting these measures at the subsystem level, reporting

internal and interface complexity for the same set of components.

Test coverage should be measured at appropriate points in the

development process and reported during integration and qualification

testing. Test coverage metrics include unit test metrics (e.g., per cent of
source statements tested, per cent of paths tested) and interface test

metrics (e.g., report of all calling-called interface pairs with frequency
counts).

Test coverage is a difficult metric to collect, but automated tools can simplify

the process. Detailed test coverage analysis is somewhat intrusive, and best

performed in the unit test environment where performance is less likely to be

a factor. Integration testing provides the opportunity to determine which

components call which during simulated operational conditions.

Test coverage metrics should be reported to the testers in real-time, to help

focus efforts on less-well-tested parts of the system. These metrics should be

reported during integration and qualification testing at the subsystem level.

The amount and form of documentation that exists for software

components should be reported at qualification test. This metric includes

the fraction of components with current prologues, PDL, build definition

scripts, requirements trace, system description, and user/operator
information (as appropriate).

The availability of current documentation is a major factor in quality and

maintainability of software. This metric does not attempt to assesss the

quality of the documentation, but it does provide a measure of its availability.

Some of the documentation (e.g., prologues) is carried along with the source

code but often is not kept up-to-date, Other documentation for a component

may consist of a paragraph in the system description. For low-level routines,

there may be no appropriate user/operator information. The recommended

CSC/SSD - UHCL/RICIS 11 February 1992

Software CM and Measurement

reportinglevel is thesubsystem,summarizedfrom contractor-collected
detailedcomponentdata.

, The change history of each component should be recorded, indicating the
amount of new, changed, and deleted code associated with each change

action. The information should be collected as formally controlled

components are checked back in to the CM system.

For each distinct component, and rolled up to subsystems, this metric reports

the number of changes applied and the extent of changes. Changes to

software tend to increase the size of the components and disrupt the logical

structure created initially. Components that have grown significantly are a

result of several changes should be reviewed for possible redesign.

Reporting should be at the subsystem or system level with histograms

showing the fractions of components with different numbers of changes, and

the fractions with appropriate relative growth in size.

° The number of problem reports (if any) associated with each component
should be recorded when a component is initially entered into the formal

CM system, and after any period of informal testing (that is, without DR

actions). The metrics should include the classification (severity) of the

problems.

This metric is designed to capture the number of problems that are reported

outside the formal DR system, but after the software has passed its acceptance

tests. We recommend that this metric be reported at the subsystem level using

histograms of fractions of components with different numbers of formal and

informal problems reported. Because the intent of this metric is to provide

some indication of probable future errors, multiple reports of single errors

should be treated as single reports.

The maintenance organization may wish to receive a list of components that

have experienced high numbers of problems. Development managers may

want to review problem-prone components with a view toward redesigning

and reimplementing them (thus resetting the error problem counts).

3.3 Relationship to DA3 Metrics Initiative

During the past year, code DA3 at JSC has worked with ground software contractors to

develop a set of metrics for software development. The focus of this effort was to

identify a common set of measurements that are already being collected, and raise them

to a higher level of visibility. One goal of this effort is to establish better

communications between contractors and NASA. The recommended metrics primarily

(though not entirely) address the period from design through acceptance test.

The metrics proposed in this report are also somewhat limited in scope, as they are

intended to provide direct benefit on current projects. These metrics address the

CSC/SSD - UHCL/RICIS 12 February 1992

u

Software CM and Measurement

characteristics of the software after it has been accepted for integration testing. For the

most part, these metrics can be collected from the software itself or from reporting

mechanisms that will exist whether or not these metrics are reported (e.g, the CM

system).

Like the DA3 metrics set, these metrics are primarily intended to be reported at the

subsystem level. We expect that contractors will choose to collect and analyze these

metrics in greater detail internally, but the reporting to NASA is primarily at the

subsystem level.

The metrics described in this report should provide a good complement to the DA3

metrics set, adding product metrics to the management metrics defined by DA3.

CSC/SSD - UHCL/RICIS 13 February 1992

-- Software CM and Measurement

Glossary

Ada

C

CM

COTS

CR

CSC

DR

formal CM

GS/SPF

GSDE

ICD

IDD

JSC

NASA

OI

QT

RICIS

snapshot

SPE

SSCC

SSE

SSFP

SSTF

STM

STR

UHCL

the primary programming language for the Space Station Freedom

Project. Ada is a trademark of the US Department of Defense

a programming language commonly used with Unix systems and

applications programming

configuration management

commercial off-the-shelf (usually refers to software or hardware)

change request: a formal request to change a requirement

Computer Sciences Corporation

discrepancy report: a formal report that a system (in this case,

usually software) does not meet its requirement specification

the SSE-provided CM system residing on the GS/SPF; it manages

the software that has been delivered to NASA, a provides a

controlled baseline from which deliveries are made to operations

Ground Systems/Software Production Facility

Ground Systems Development Environment

interface control document

interface definition document

Lyndon B. Johnson Space Center, Houston, Texas

National Aeronautics and Space Administration

operational increment (the added functionality in a new release)

qualification testing--the last testing stage prior to delivery to

operational use (in the GSDE life cycle)

Research Institute for Computers and Information Systems

a complete stored copy of a software component or subsystem at a

specified point in its development; subsequent changes to the

software can be compared to the snapshot

software production environment

Space Station Control Center

software support environment (specifically, the SSFP SSE)

Space Station Freedom Project

Space Station Training Facility

software test management: a capability of the SSE

system (or software) trouble report: a less formal equivalent to a
DR

University of Houston - Clear Lake

CSC/SSD - UHCL/RICIS 14 February 1992

Copies of this publication have been deposited with the Texas State Library in
compliance with the State Depository Law.

