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FOREWORD

This report documents an engine parametric study expected to generate useful
planning and design information for the vehicle prime contractors developing concepts
for manned missions to the moon, Phobos, and Mars. The baseline engine uses some
form of a hydrogen expander cycle within the thrust range of 7.5K Ibf to 50K Ibf. The
data base for starting the study was the 7.5K Ibf OTV engine preliminary design. an
expander cycle engine was mandated. There was no comparison or tradeoffs with other
engine cycles. These constraints on the study served to focus it within a limited design
range highly dependent on the technology developed over the past decade by the
Orbital Transfer Vehicle (OTV) engine technology program sponsored by NASA Lewis
Research Center.

The terms Chemical Transfer Propulsion (CTP) engine and OTV engine are used
interchangeably in this report although the OTV engine may be just one of several
engines developed under the CTP program. The specific application of a CTP engine
for the Lunar return mission is designated as a LTV/LEV engine. The Lunar Transfer
Vehicle (LTV) and Lunar Excursion Vehicles (LEV) are expected to use the same basic
engine.

Interaction with and feedback from the vehicle prime contractors was very limited.
Interface requirements were gleaned primarily from the NASA-MSFC sponsored Phase
A Vehicle Studies plus direction from NASA-LeRC.

This study was initially directed by Jerry Pieper. The work was continued through
the Design and Parametric Subtask under the direction of Judy Schneider. Completion
of the study and preparation of the final report was done by Warren Hayden who

served as senior Project Engineer throughout the period of performance.

The period of performance for this study was October 1988 to May 1990.
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1.0 SUMMARY

The objective of the study was to develop advanced engine system descriptions
and parametric data for use by space transfer vehicle prime contractors and the NASA.
Parametric design data was obtained for a LOX/LH; advanced expander cycle engine
at five engine thrusts ranging from 7.5K Ibf to 50K Ibf. In addition, the study included
an evaluation of engine throttling over a 20:1 range (2000 psia to 100 psia chamber pres-
sure) and operation at mixture ratios from a nominal 6t 1 to 12+ 1. The two variation
studies were done at the 20,000 1bf thrust level.

The study was expanded to assist in preparation of the NASA response to
President Bush's space initiative. The Aerojet input included some parametric per-
formance data plus DDT&E and first unit production costs. One limitation of the study
was the lack of contact with vehicle primes to assess various vehicle/engine interface
issues. This is recommended as a follow-on task.

Acrojet and NASA LeRC have an eight year history in the development of the dual
propellant expander cycle engine. This cycle uses heated (400°F) oxygen to drive the
oxygen turbopump. This allows a design free of the need for a helium purge gas system
and reduces pressure demands on the hydrogen circuit for higher chamber pressure
operation. During this study a cycle variant, splitting the hydrogen flow between the
chamber and the baffled injector assembly, was examined and accepted as the design
baseline. This cycle can maintain a 2000 psia chamber pressure over the 7.5K Ibf to 50K
Ibf thrust range, can throttle over a 20:1 range, and can operate at the high mixture
ratios needed for efficient use of lunar oxygen as a supplement to earth origin
propellants. Based on an analysis with the Aerojet Modified Liquid Engine Transient
Simulation (MLETS) code, this cycle is predicted to be stable at thermal equilibrium,
and the basic engine control valve operation is expected to be nearly linear over the
throttling range. A throttle rate of 4 to 5 seconds from 10% to 100% of thrust was
predicted using the TUTSIM dynamics code.

Performance as measured by delivered specific impulse at MR = 6 and an area
ratio of 1200 is 483.1 seconds at 7.5K 1bf, 484.3 seconds at 20K 1bf, and 485.2 seconds at
50K Ibf. Predicted engine dry weight excluding gimbal and thrust takeout structure is
291.8 Ibm at 7.5K 1bf, 486.3 Ibm at 20K Ibf, and 1362 Ibm at 50K 1bf using available

RPT/1X0417 55a



1.0, Summary, (cont)

technology. Engine envelopes for a 1200:1 area ratio nozzle using one extendible/
retractable section varies from 120 inches length/58 inch exit diameter at 7.5K Ibf thrust
to 304.8 inches length/137 inches diameter at the 50K Ibf thrust with the nozzle
extended. These are large engines in terms of envelope. Packaging will be an important
consideration.

The DDT&E cost data was generated using a costing methodology found to be
well accepted on the Advanced Launch System (ALS) program. The program as costed
used assumptions typical of engine fabrication numbers and tests in a NASA MSFC
program. The total DDT&E cost was about $950M with a program start in FY91 and
first flight in 1999. First unit production costs are based on production numbers,
learning curve, engine thrust, and a complexity factor based on an RL-10 engine as the
reference. For the lunar return mission, Nth unit engine cost is expected to be in the
$6M to $12M range. As references, the current RL-10 cost is $3M to $4M and an OMS
engine is about $6M. Generation of life cycle costs was not feasible as they are
dependent on the mission life and maintenance scenarios which are still incompletely
defined.

The latest version of the dual expander cycle holds promise as a long-life engine
capable of meeting all mission performance requirements including 20:1 throttling and
MR = 12 operation. All major technical questions such as the 400°F oxygen turbine
drive are being evaluated under NASA LeRC sponsored programs. The platelet heat
exchanger technology is in qualification for space shuttle flight operations as this is
written, and a vigorous program start has been made to develop the integrated control
and health monitoring system (ICHM) capability under the OTV engine technology
program. A continuation of this work is recommended, but the scope should be
broadened to include more vehicle prime/engine contractor joint assessment of the
interface issues.

RPT/DO0417 55a 2



2.0 INTRODUCTION AND BACKGROUND

2.1 BACKGROUND

2.1.1  Orbit Transfer Vehicle (OTV) Engine Technology

The NASA has had some concept for a vehicle to move payloads and
people beyond low earth orbit (LEO) since the inception of the United States space pro-
gram. Over the years, the vehicle has had a number of names and many configurations,
but the basic concept of a general purpose vehicle for a variety of tasks beyond LEO has
persisted. Since 1982, this concept has been developed as part of the Orbit or Orbital
Transfer Vehicle (OTV) technology program. NASA-Marshall Space Flight Center has
been responsible for the vehicle studies while NASA Lewis Research Center has di-
rected main engine development. The work reported herein was completed under a
contract with NASA LeRC.

Over the seven years of this contract there has been an evolution in
the mission model from an emphasis on LEO-to-GEO payload delivery missions to the
current interest in the Lunar Return mission and a manned Mars mission. The effect on
the engine development has been to emphasize the reliability and redundancy require-
ments for a man-rated propulsion system. Also, space basing and multimission
capability place a premium on performance as measured by specific impulse and engine
throttling. The very long service life goal (500 starts, 20 hours) mandates a sophisticated
integrated health monitoring and control system. The engine resulting from these strin-
gent requirements will be the most technically advanced and highest performing liquid
oxygen/liquid hydrogen propellant engine developed in this century. It could serve as
the basic upper stage main engine for both manned and unmanned missions until the
middle of the next century.

The first phase of the NASA-LeRC sponsored program consisted of
study efforts to generate and evaluate innovative technology concepts at the subcom-
ponent, component, and engine system levels for an advanced O,/Hj propulsion sys-
tem. Pratt & Whitney, Rocketdyne, and Aerojet TechSystems were each awarded con-
tracts in 1982 for this phase of the work. Aerojet initiated several new concepts during
this work of which the most notable was the dual propellant expander cycle. This cycle

RI"T/1X417.55a 3



2.1.1, Orbit Transfer Vehicle (OTV) Engine Technology, (cont)

improves the conventional hydrogen expander cycle by heating both hydrogen and
oxygen for use as working fluids with consequent improvement in operating flexibility
and higher chamber pressure.

The Phase II program, which is the current contract, builds on the
Phase I work by evaluating through analysis, fabrication, and testing the concepts criti-
cal to the success of the proposed engine. The Aerojet technology focus has been on the
oxygen turbopump (successfully tested), the thrust chamber, oxygen/materials compat-
ibility, an engine preliminary design, and an Integrated Control Health Monitor System
(ICHM). Design and development work has been in accordance with NASA-LeRC
established technology goals. Table 2.1-1 summarizes the technology goals and gives
the existing RL-10 engine technology as a comparison. The 1988 requirements will
undergo some changes as the Lunar return mission is better defined.

The change in emphasis from an OTV for the LEO-to-GEO mission to
a vehicle capable of landing on the moon or other bodies in the inner solar system will
impact several of the engine requirements. The one most likely to change is engine
thrust. This study was planned to generate parametric data for engines ranging in
thrust from 7.5K 1bf to 50K Ibf as the actual mission thrust is very likely to fall within
that range. An important design selection factor affecting baseline engine thrust is the
number of engines per vehicle. For a man-rated vehicle at least two engines will be
required, but three or four engines may be optimum when such factors as length con-
straints are considered. As will be discussed later in this report, the current baseline
vehicles for the Lunar mission use a set of four engines each. An unmanned vehicle for
LEO-to-GEO missions may very well use only one or two of these engines. The lunar
mission requirements set the engine thrust once the number of engines in the
propulsion set is established.

Work on the Advanced Engine Study began in November 1988 and
concluded in the Spring of 1990 with this final report.

RPT/D0417 55a 4
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2.1, Background, (cont)

212 Aerojet Dual Propellant Expander Cycle Engine

In a conventional expander cycle engine, hydrogen is routed through
passages in the combustion chamber wall where it both cools the wall and acquires suf-
ficient thermal energy to power the turbine drives of pumps for both the hydrogen and
oxygen flow circuits. It is then routed to the injector for combustion. This cycle is fairly
simple, plumbing is straight forward, it offers good performance potential, and, as all
propellant is burned in the combustion chamber, it does not have the losses associated
with open cycles. Its limitations are related to dependence on only one propellant as a
turbine drive fluid which, in turn, requires interpropellant seals and a purge gas in the
oxygen turbopump. To obtain the needed power, the hydrogen must be heated to a
temperature very near to the design limit for the copper based alloys employed for the
chamber liner. With the added limits imposed by high cycle life, long operating times
without maintenance, and 10:1 or greater throttling requirement, the basic hydrogen
expander cycle is capable of only a modest improvement over the current production
expander cycle engine, the RL-10.

The Aerojet dual propellant expander cycle alleviates these limitations
by using oxygen as a working fluid as well as hydrogen. This reduces the demands on
the hydrogen circuit as the oxygen turbopump is driven by heated oxygen. It also
eliminates the need for an interpropellant seal and the associated helium purge
requirement. The gasified oxygen is also needed for the I-triplet gas-gas injector
element which provides high (~100%) energy release efficiency and excellent
combustion stability over a wide throttling range. The oxygen is heated to a maximum
of 400°F by flowing through a LOX/GHj heat exchanger and then through the
regeneratively cooled nozzle extension. The flow schematic is shown in Figure 2.1-1.
This is the schematic used for the advanced engine study. The hydrogen used to heat
the cold oxygen in the heat exchanger is the effluent from the hydrogen TPA turbine
and provides the thermal energy to the oxygen at an efficiency cost of some pressure
drop across the heat exchanger.

This cycle has proven more efficient than originally expected consid-
ering results of the 7.5K Ibf thrust engine preliminary design. That design had cold
hydrogen routed from the pump outlet to the regenerator, to the regeneratively cooled

RPT/DO417.55a 6
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2.1.2, Aerojet Dual Propellant Expander Cycle Engine, (cont)

chamber and then through the baffle circuit before powering the hydrogen turbine
drive. This series flow generated high hydrogen temperatures, but was temperature
limited by the copper walls of the chamber and baffles. Pressure drops were also high.
The combination of wall temperature and pressure drops limited the power and
flexibility of the cycle. A very effective remedy was to split the flow between the baffled
injector circuit and the regeneratively cooled chamber as shown in Figure 2.1-1. This
split or parallel flow version is capable of a 21:1 throttle range at the 20,000 Ibf thrust
design point (1000 Ibf thrust to 21,000 1bf thrust). Chamber and baffle wall
temperatures are well within design limits over the range of thrust.

Two key components in the engine are the hydrogen regenerator and
the LOX/GHj heat exchanger (HEX). Both are NASA-Z copper structures fabricated
from copper platelets using the same technology recently demonstrated on the Space
Shuttle Main Engine (SSME) heat exchanger program, and expected to be operational in
1990. They are very compact and thermally efficient heat exchangers. The regenerator
functions as a pre-heater for the hydrogen in the baffle circuit. It will be used to trim
the engine output by the setting of its bypass valve. The HEX provides approximately
65% of the enthalpy gain in the oxygen circuit with the balance acquired in the oxygen
cooled nozzle extension. The HEX bypass valve modulates to keep the oxygen entering
the turbine at or below 400°F.

An integral part of the engine thermal design are the hydrogen cooled
baffles. Baffles on an injector face are commonly used to enhance combustion stability.
Generally they are transpiration cooled with fuel passing through the baffle directly into
the chamber. In this engine the baffle is still designed to enhance stability but, more
importantly, it provides surface area for heat input to the hydrogen. From 40 to 60% of
the total hydrogen enthalpy change comes from the baffle flow circuits where hydrogen
is passed down one side and back up the opposite side of the baffle to be collected and
mixed with the regen chamber hydrogen prior to powering the hydrogen turbopump.
The baffles allow the thrust chamber to be relatively short compared to a non-baffled
hydrogen cooled thrust chamber of equivalent hydrogen heating capability. They
require, however, a significant percent of the chamber barrel section volume. The

RPT/D0417 55a 8



2.1.2, Aerojet Dual Propellant Expander Cycle Engine, (cont)

chamber diameter is increased to compensate giving an unusually high contraction ratio
(chamber injector area divided by throat area). Where storable propellant engines
commonly have contraction ratios of 2 to 4 this engine has a ratio of 15.3.

2.2 SCOPE

221 Objective

The objective of the study is to develop advanced engine system
descriptions and parametric data for use by space transfer vehicle primes and NASA
planners.

222 Requirements

The advanced engine continues the liquid oxygen/liquid hydrogen
propellant engine technology developed under the OTV engine technology program.
Specific engine system requirements and goals are given in Table 2.2-1. The baseline
engine start cycle and autogenous tank pressurization requirements are given in
Figure 2.2-1

223 Program Description

The Advanced Engine Study is a 15-month activity with five subtasks.
The subtasks and their interrelationships are presented in Figure 2.2-2.

223.1 Subtask 2 - Design and Parametric Analysis

The subtask objective is to develop the specific design and para-
metric data on advanced engines over a thrust range of 7.5K Ibf to 50K Ibf. The baseline
for the design is the 7.5K Ibf thrust OTV engine design developed under NASA LeRC
Contract NAS 3-23772. This task generates at a minimum, the following:

* Needed engine cycle changes over the thrust range.

* Identification and assessment of advanced technologies needed
for the advanced engine cycle.

RI"I/1)0417 55a 9



TABLE 2.2-1.
Engine System Requirements and Goals

Propellants:

Vacuum Thrust:

Vacuum Thrust Throttling Ratio:
Vacuum Specific Impulse:
Engine Mixture Ratio:

Chamber Pressure:
Drive Cycle:

Dimensional Envelope:
Length (Stowed/Extended)
Diameter (Maximum)

Mass:
Nozzle Type:

Nozzie Expansion Ratio:

Propeliant Inlet Temperatures:

Hydrogen
Oxygen

Inlet Net Positive Suction Head:
Hydrogen
Oxygen

Design Criteria:

Service Life Between Overhauls:
Service Free Life:

Maximum Single Run Duration
Maximum Time Between Firings:
Minimum Time Between Firings:
Maximum Storage Time in Space:

Gimbal Requirement:
Yaw Angle
Acceleration (Maximum)
Velocity (Maximum)

Start Cycle
* Engine Parametric Study Resulit
**Vehicle/Mission Study Result

10

Liquid Hydrogen
Liquid Oxygen

7,500 Ibf to 50,000 Ibf (Study Range)
10:1

*

6.0 (Design Point at Full Thrust)
5.0 - 7.0 (Operating Range at Full Thrust)

*

Expander

Bell With Not More Than One Extendible/
Retractable Section

End of Regen Section to 1200 (Study
Range)

378R
162.7R

15 ft-Ibf/ibm at Full Thrust
2 ft-ibf/lbm at Full Thrust

Human Rated
Aeroassist Compatible
Space Based

500 Starts/20 Hours Operation (Goal)
100 Starts/4 Hours Operation (Goal)

*k
%
*k

%

*k
L2

*k

(Figure 2.2-1)



auibuz ajotyap s9jsuel) sdeds-9194) yeis *-z'z ainbiyg

—— JALL

S
-

s —/

37a1-Q3dANd 3T7QI-QVIH-XNVL

‘1SNYHL
17N4 1LV ANV O1 NOILVH31300V ONIHNA
SINNILNOD NOILYZIHNSS3IHd SNON3IODO0LNVY

'ST3A3T AV3H NOILONS JAILISOd 13N LNIOd
NDIS3A L3INI dWNd OL SHNVL LNV113d0Hd
JT1OIH3A 3HL 40 NOILVZIHNSS3YHd
SNONIDOLNV FAINOHd OL IN3IOI44NS
T3A3THIMOC V LV 31vH3d0O SdWNd
'SNOILIGNOD Q31VvHNLVS 1V ATIVLLINI
a31NddNS 34V SINVT13404d ‘3701-a3dWNd

‘ANIONT 3HL

NOLLIANOD ATTVINHIHL ANV S1INV113d04d
3714138 O1 3AN3LNI SI NOILYH3dO

40 300N SIHL "SNOWLIONOD g31vHN1VS
1V SMNVL 3710IH3A IHL WOH4 d31NddNS
3HV SINVT13d0Hd 3701 V3IH-MNVL

1SNYH1LIING

11



sanAdY Apnis aulbul padueApy - 9Q JapIOXSBL "Z-2'Z 9inbi4

190a3Y VNI
14ve0 LHOd3Y TYNIJ

(13A37T XSVYLBNS) d £ § LS
INLVHLYN SS3HO0Ud TWOINHIIL ATHLINOW
ONUYOG3Y - § MSY18NS

SONU3IN
JFONVHOHIALNI
TYINHOIL
NOUYNIOHOO D
ONY SMIA Y
N 2UAVYaduHvd
ONY ON3LLY

NOU YNIQHOO D
AONUS INIONFAONLS
FIOHIA - » NSVLIENS

S10VanI
JONYWIO J3d ONVY NOIS30

t

2L 01 OUWVY
JHNLWONILG
LOZ Ol
M Eoc.cmngﬂxu IVAOUddY
+— WdVSWN
- 1INIOd NDIS3Q 197138
. 019 N
$IONLS
NOUWIIYA LNIWINO Y
INFONI - © MSVLENS
_ﬁ SININIBINO IY
ADOYONHOI L GIONVAQY
SISATYNY  Oittl INVYvd
MIME 0162
1Nd1NO a
30VIHAUNI
FOHIA-OL-INIDN3
SNOUWIIYA 3dO13ANI
ONY LHOIIM O8I
- 3ONVIVE W3IMOd NOIS30
ONV SISATYNY ALO 3NN3SVE
NOISIOINODS | o “onc)
S1d3ON0D TNDAD INONI SR
SISATVNY Ol 3WVYvd
ONV NDIS3Q - Z XSVLONS
[ Nviduom |
1NdinNoO _
NOwvzrun
30HNOS3Y
S3NOLS3I NN
HOMVYS ONY
FINOIHOS MHOM
NVId NHOM
-+ XSVLONS

—— 9yu

H3I0HO NSVL

12



2.2.3, Program Description, (cont)

Obtainable design point chamber pressure for each thrust
studied.

Appropriate thermal, performance, turbopump, and power bal-
ance data for each thrust. Power balance data is obtained at
mixture ratios of 5 and 7 as well as the design MR of 6, and at a
thrust of 0.1X nominal (10 to 1 throttle point).

Plots are generated for such control related factors as percent
turbine bypass versus thrust.

Estimates of delivered specific impulse, engine mass, and engine
envelope.

A preliminary definition of the engine-to-vehicle interfaces
including liquid oxygen and liquid hydrogen inlet location and
line sizes, thrust takeout structure, and gimbal system.

2.23.2 Subtask 3 - Engine Requirement Variation Studies

Defines the effect of increased throttling range (up to 20:1) and very
oxygen rich operation (MR = 12 + 1) on the design and engine performance. A single
thrust point selected by the contractor but approved by NASA LeRC, is used for this

subtask.

2.233 Subtask 4 - Vehicle Study/Engine Study Coordination

Discussion with and data supplied by the vehicle prime contractors
shall be used to generate the following:

RI"[/1X0417 55a

Engine maximum single run duration.
Maximum time between firings.
Minimum time between firings.
Maximum storage time in space.

Gimbal requirements.
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2.2.3, Program Description, (cont)

This information was to be supplied for each thrust level. NOTE:
There was insufficient contact with the vehicle primes to define the requirements for
any of these items during the course of the study.

2.3 RELEVANCE TO CURRENT ROCKET ENGINE TECHNOLOGY

There are three major program areas currently developing new chemical
propulsion system technology: the National Aerospace Plane (NASP), the Advanced
Launch System (ALS), and the Chemical Transfer Propulsion (CTP) program under
Project Pathfinder. This advanced engine study supports the CTP work. The engines
under development in all three programs use LOX/LH, propellants to meet program
performance requirements. All share a common technical base in copper alloy cham-
bers, pressurization by high speed turbopumps, and a need for an integrated control
and health monitoring system.

The engine cycles under development include variations of the hydrogen
expander cycle and gas generator cycles. The dual propellant expander cycleis
arguably the most sophisticated of the cycles, but variants abound even among the gas
generator cycles. Expander cycles have the merit of increased efficiency compared to
gas generator cycles, but other considerations, such as engine thrust, may rule out an
expander cycle. Results of the current study, however, support extending the thrust
range for an expander cycle beyond 100K Ibf. A modern expander cycle should be con-
sidered in any trade study for a LOX/LH, engine development up to 500K Ibf thrust.
Also, engine innovations by Aerojet, Rocketdyne, and Pratt & Whitney developed
under the NASA LeRC contracts have demonstrated a number of ways of enhancing
engine components to increase the effectiveness of the expander cycle. Examples are
the Rocketdyne ribbed chamber work to improve chamber heat transfer by about 40-
50%, and the Aerojet platelet heat exchangers that are used to increase the throttle range
and engine control capability. This recent improvement in expander cycle technology
has left even fairly recent texts on rocket propulsion obsolete concerning expander cycle
capabilities. (Ref. 1, p 156).

The most important rocket engine development trend in the last third of the
20th century is the reduction of the theoretical advantages of a LOX/LH, engine to

practise. The development of the RL-10 engines was a major achievement as was the

RPT/DO0417 55a 14



2.3, Relevance to Current Rocket Engine Technology, (cont)

Space Shuttle Main Engine (SSME). Both of these engines will see service in the United

States Space program for several decades. The OTV engine/CTP engine will be the

single most important space engine development of the next several decades, and a

version of this engine will likely be in use for the first half of the 21st century. The

results of this advanced engine study support several statements that help define its rel-

evance to current rocket engine technology:

1

2)

3)

4)

5)

6)

7)

8)

RPT/1XM17 55a

A high performance (>480 seconds specific impulse) expander cycle
engine can be produced.

A LOX/LHj engine capable of 20:1 throttling can be developed for the

Lunar Excursion Vehicle or other vehicles requiring engine throttling.

Oxygen cooling of nozzles and hot oxygen turbine drive for turbopumps
are now practical.

Operation of a LOX/LH; engine is practical at mixture ratios greater
than stoichiometric (7.94:1) if the copper chamber is given a protective
coating.

Current copper alloy combustion chamber technology is acceptable for
an advanced engine, but some increased capability can be expected with
continued materials development.

Chamber thermal design and manufacturing techniques give confidence
that a chamber/injector will survive 500 starts and 100 hours of
operation given a modern integrated control and health monitoring
system (ICHM).

Current state-of-the-art in electronics and controls makes possible a
control and health monitoring system that will greatly reduce engine
operation risks and extend engine life.

Recently proven turbopump technologies such as self-aligning hydro-
static bearings and sub-critical operating speed designs help meet a 500
start 100 hour engine operation requirement.

15



2.3, Relevance to Current Rocket Engine Technology, (cont)

9) Platelet heat exchanger technology can be used to improve chamber
thermal margins.

10) The Chemical Transfer Propulsion program within Project Pathfinder
can now define realistic performance and operating goals for the main
engine for Lunar Transfer and Lunar Excursion Vehicles.

2.4 SIGNIFICANCE OF THE PROGRAM

The NASA-LeRC directed LOX/LH> engine technology programs have suc-
cessfully positioned the propulsion industry for a low risk development of the engine
needed for Lunar Transfer Vehicle and Lunar Excursion Vehicle. The study results
reported herein are based on eight years of study, analysis, design, hardware fabrication
and testing. The relatively moderate cost of this extended technology work should be
amply repaid by the reduction in risk for a full scale engine development program. The
major significance of the program, then, is its direct applicability to propulsion
requirements for the Lunar Transfer Vehicle and Lunar ExcursionVehicle.

The engine design baseline presented in this report represents a real advance
in the state-of-the-art. The Soviets and the Japanese have now demonstrated successful
LOX/LH; engines. The Japanese have already held discussions with American com-
panies on licensing their engine technology. Without this program the United States
would have no high technology counter to the economic inducement presented by a
flight qualified Japanese engine. This program substantiates the position that the
United States is still the leader in LOX/LH> engine technology. If the development
does not continue, however, its significance will be that of potential wasted and
opportunity lost. This engine has great significance for the survivability of the United
States liquid rocket industry at a time when defense related development is vanishing
and NASA has conflicting priorities for a limited budget.

A third area of significance is the general upgrading of design tools in the
form of computer models and the increased sophistication of control and health moni-
toring capability. The design tools can better assess what is practical or possible when
approaching theoretical limits as the OTV engine does. This gives higher confidence in

RPT/D0417.55 16



2.4, Significance of the Program, (cont.)

designs prior to reducing them to testable hardware. The new control sophistication
can readily deal with the complexity and interactions of a modern expander cycle
engine while new sensors and a variety of software algorithms can be integrated into a
health monitoring/ management system that will greatly increase the safety of engine
operation over a service life previously unobtainable in a rocket engine. Without these
advances this engine could not be developed beyond drawings.

RPT/1XM417 55a 17



3.0 DISCUSSION
3.1 DESIGN AND PARAMETRIC ANALYSIS

This task began with a re-evaluation of the results of the 7.5K Ibf thrust
engine preliminary design (Ref. 2). The cycle schematic work for that design is the dual
expander series flow version as given in Figure 3.1-1. A concern in the evaluation was
the high chamber and baffle wall temperatures at full thrust (2000 psia chamber pres-
sure, mixture ratio of 6) and at the tank head idle condition (200 psia chamber pressure,
mixture ratio of 5). The flow of hydrogen from the pump to the regenerator, to the baf-
fles, and then to the TPA turbine section produced high hydrogen temperatures but had
penalties in system pressure drop and wall temperature. This was corrected by going to
the split or parallel flow schematic shown in Figure 2.1-1. When initial analysis proved
that temperatures were lowered with no performance penalty, the parallel flow version
was adopted for the study.

A hydrogen proportioner valve had to be added to the system to control the
hydrogen split to each circuit. This has proven a worthwhile addition as it can be used
to optimize the wall temperature of both the baffles and the regeneratively cooled
chamber. This has important implications for chamber life. The regenerator now func-
tions on just the hydrogen stream directed to the baffles. The chamber is always cooled
with hydrogen directly from the pump. Also, the injector manifolding was modified as
the baffle circuit is now independent of the chamber flow circuit. In all other respects
the components retain their function in the engine cycle.

At the outset of the study, an arbitrary decision was made to baseline a design
nominal thrust chamber pressure for each engine as 2000 psia. This was justified by a
concern that a 20:1 throttle range would lead to system pogo type instabilities if the low
thrust chamber pressure had to be extended below 100 psia. Also, 2000 psia was well
within current thermal design capabilities. High chamber pressure engines do have
greater development risk. This selection worked out very well for a 10:1 throttling
requirement over all the thrusts studied (see Table 3.1-1) and accommodated a 20:1
throttling design for a 20,000 Ibf thrust engine.

The task assignment bounded the engine thrust range between 7.5K Ibf and
50K 1bf. The intermediate points used in the study are given in Table 3.1-1. The 20,000

RI'T/D0417 55a-3.0-3.1.2 l 8
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3.1, Design and Parametric Analysis, (cont)

1bf thrust point was also selected for the engine requirements variation tasks after con-
sultation and direction from the NASA-LeRC program monitor. With a baseline engine
schematic, chamber pressure, and the five thrusts, the actual study results (see

Table 3.1-2) could be generated.

3.11 Engine and Cycle Definition

TABLE3.1-1

ADVANCED ENGINE STUDY THRUST SELECTION RATIONALE

7.5K 1bf OTV Program baseline; results available.

e 20K Ibf Minimum thrust for a 4 engine Lunar Transfer Vehicle and
Lunar Excursion Vehicle with 40 to 50,000-1b of payload.

e 25K Ibf Provides a 100K lbf total thrust for a 4 engine LTV/LEV for
minimum gravity losses.

e 35K Ibf Nominal thrust for three engine LEO-to-moon orbit transfer
vehicle (LTV)

* 50K Ibf Nominal thrust for two engine LTV. This is also half the
thrust of the baseline engine for the LEO-to-Mars transfer
stage, and results could be extrapolated to that thrust.

3.1.1.1  Thrust Chamber Assembly

a. Chamber Liner — The chamber liner is a copper alloy billet

machined to final dimensions with milled coolant channels on the backside. The base-
line alloy is GLIDCOP AL15 manufactured by the SCM Company using powder metal-
lurgy techniques. This is pure copper with 0.15% aluminum oxide (Al20O3) dispersed
throughout the metal matrix. The small amount of aluminum oxide greatly improves
the machining capability over pure copper and enhances the low cycle fatigue life of the
material. An alternate material is the NASA-Z alloy which was selected for the 3.0K
TCA

RPT/DD0417.552-30-3.1 2 20



TABLE 3.1-2

EXPECTED RESULTS OF THE PARAMETRIC STUDY

* Weight, Envelope and Performance Predictions for Engines at 7.5K and at
three intermediate points plus a 50K maximum.

* Power Balance Results at Each Thrust
* Changes in Cycle and/or Components on Scale-Up
* Assessment of 20:1 Throttling at a Selected Thrust Level

* Assessment of high mixture ratio performance (MR of 12) at a selected
thrust level

* Identification of Critical Technologies

* Preliminary Engine/Vehicle Interface Requirements

* Innovative Design Solutions or Technologies

* Interchange with vehicle primes at NASA-MSFC Conferences

* Preliminary DDT&E costs for a common engine for the Lunar Transfer
Vehicle (LTV) and Lunar Excursion Vehicle (LEV)

* Propulsion analysis for various mission and operational scenarios

* Final report suitable for use by vehicle primes in assessing propulsion
requirements

RI"T/71X0417-55a-T 21



3.1, Design and Parametric Analysis, (cont)

design. GLIDCOP is a dispersion hardened material less sensitive to the high radiation
environment of space than NASA-Z as yield strength and volume changes are
negligible for expected mission radiation doses. See Tables 3.1-3 and 3.1-4.

The low cycle fatigue life and chamber thermal performance are
improved through use of a microchannel design for the coolant channels. A conven-
tional channel design would use 30 mil channels in the throat with channel widening in
the chamber converging, diverging, and barrel sections. The temperature variation
using the 30 mil channels appreciably shortens chamber life due to higher induced
stresses. The small temperature variation in the micro-channel design (11 mil channels,
10 mil lands) reduces stresses and improves reliability as adjacent channels can ade-
quately cool the material around a blocked coolant channel. Channel geometry varies
in both width and depth for most effective cooling with lowest pressure drop. The basic
channel design was demonstrated in the NASA LeRC funded cooled throat program.
(See Reference 8)

b. Liner Closeout — The liner closeout utilizes technology devel-
oped under NASA LeRC contract for electroforming with two metals simultaneously.
A nickel cobalt (NiCo) electroformed closeout was demonstrated on the hydrogen
cooled throat for the 3.0K Ibf TCA program. This bimetal alloy has 3 times the strength
of a nickel electroform, allowing a thinner closeout and improved cycle life.
Alternatives to the NiCo closeout that could be used are Nickel-Manganese and Nickel-
Chromium. Strength would be about the same, but there could be an improvement in
the electroforming process that would give higher yields of finished liners. This could
be an important consideration given the high value of the machined copper liners.

¢. Dimensions and Manifolds — The 20,000 1bf thrust TCA cham-
ber has a throat diameter of 2.5 inches, a barrel diameter of 10 inches, and a length (L)
of 12 inches. The contraction ratio is 15.3. The hydrogen inlet manifold will be attached
at a position equivalent to a 28:1 area ratio. A platelet filter will be designed as an
integral part of the manifold to protect the microchannels from any debris that could
cause a flow blockage. The manifold will be designed for even flow distribution, and

22
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Table 3.1-3

CTP Engine Materials Selection

. THRUST CHAMBER ASSEMBLY IN A HIGH RADIATION ENVIRONMENT

Swelling of Neutron Irradiated Copper Alloys

Volume % Increase After Irradiation
Material 3 dpa'!’ 15 dpa?’

Copper:

Marz**grade (99.999%) 1.8 6.8

OF grade (99.95%) 2.1 6.6
DS Copper:

C15720 0.8 0.9

C15760 1.1 0.6
Precipitation Hardened:

Cu-Zr nil 3.6

Cu-Mg-Zr-Cr nil nil

1. 3dpa corresponds to fluence of 0.4 x 1026 n/m2 (En > 0.1 MeV)

2. 15 dpa corresponds to fluence of 0.4 x 1026 n/m2 (En > 0.1 MeV)

&k

Trade Name
SCM Metal Products
Cleveland, Ohio

17.44-7a/r1

dpa = displacements per atom
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3.1, Design and Parametric Analysis, (cont)

each channel will be flow checked and compared for acceptable uniformity. The
coolant hydrogen is collected in a manifold at the top of the chamber for routing to the
hydrogen turbopump.

d. Injector — The injector is unusual in that it incorporates inlet
and collection manifolds for the hydrogen flow to the baffles (Figure 3.1-1A) as well as
the usual inlets for hydrogen and oxygen for combustion. There are also flow circuits
for the two GOX/GHj, igniters and their laser ignition source. The dome of the injector
also has a structure for attaching the gimbal actuators for the pitch and yaw gimbal (as
illustrated in Figure 3.1-3).

(1) Element Design - The highest performing oxy-
gen/hydrogen injector element is the I-triplet. It delivers very nearly 100% energy
release efficiency in a chamber length of eight inches. The high energy release in such a
short combustion length poses a chamber compatibility problem. Aerojet has addressed
this in Task C.4 of the OTV engine contract by tailoring the element performance and
energy release for element position in relation to chamber or baffle walls. The injector
will have five versions of the element for maximum chamber compatibility and per-
formance. This element is designed for gas-gas mixing. The oxygen phase change is
accomplished in the LOX/GH heat exchanger (HEX) and all oxygen entering the
chamber is in the gas phase. Combustion stability with gas-gas elements is excellent
over a very wide range of chamber pressures. This is needed for a throttling range of
20:1 without excluded thrust bands or potential mixture ratio fluctuations as the oxygen
transits the two-phase region. (See Ref. 3).

(2) Face Bleed - The injector has precise etched flow passages
for hydrogen face bleed for cooling the face, the chamber wall, and the baffle plates near
the injector. This increases injector and chamber life at some cost to energy release effi-
ciency. The precise percentage of hydrogen used for face bleed will be determined in
the detail design, but should not exceed 6%. A means of reducing face bleed is to con-
struct the injector and baffle plates of platinum instead of nickel and copper as was
baselined in the 7.5K Ibf thrust engine design. Recent extensive development of plat-
inum series metal technology for rocket engine thrust chambers has reduced the risk of

such an approach and made it consistent with an ultra-high performance engine design.
(See Ref. 4)
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3.1, Design and Parametric Analysis, (cont)

(3) Injector Concept - The spoke and hub baffle design breaks
the injector face into several independent sections. These small injector areas are readily
constructed using Aerojet’s well developed platelet technology. The approximately 1/4
inch thick sections will be electron beam welded and/or brazed to the inconel injector
body to form the hydrogen circuit. Oxygen posts pierce the hydrogen manifold and are
centered in each element opening to complete the element. The dome of the injector
covers the oxygen compartment. Oxygen posts are welded to the base of this compart-
ment which also divides the hydrogen and oxygen manifolds. This is a substantial
structural part with all welded joints to assure there will be no internal hydrogen and
oxygen mixing. Both the oxygen and hydrogen compartments are partially segmented
to accommodate the hydrogen flow passages into and out of the baffles. They are also
tailored to accommodate the two ignitor ports.

(4) Baffle Construction - The baffle flow circuits are indepen-
dent of injector flow circuits as their function is to increase the heat input to the hydro-
gen. A secondary function is combustion stability. The baffles divide the injector into
small compartments to maintain a high proportion of wall area in close proximity to
combustion gas. From 40 to 60% of the total heat transferred to the hydrogen is due to
the baffles. The hydrogen is distributed to the baffle compartments by two semi-cir-
cular manifolds that are welded to the manifold used to collect hydrogen flowing from
the regen cooled chamber. This weld line forms the mechanical connection between the
injector and the regen cooled chamber. The hydrogen flows down into the baffles,
around the tip, and up the back side to a separate collector system terminating in two
semi-circular manifolds that are welded to the top side of the baffle inlet manifold. The
basic injector design has three separate manifolds which are stacked to form the hy-
drogen flow circuits. The baffle inlet and outlet manifolds are divided in two sections to
allow the igniter ports the necessary space to function.

The actual baffle plates extend above and below the injec-
tor face. They are built up as discrete sections. They are welded to the inlet and outlet
collectors a section at a time. The sealing surface between the inlet and outlet collector
may have to be brazed as there is no convenient means of welding the joint. The collec-
tors are constructed of nickel 200. The baffles are NASA-Z copper in the baseline
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3.1, Design and Parametric Analysis, (cont)

design, but may be constructed of platinum or platinum alloy depending on the
assembly techniques and thermal margins required. Both the copper/nickel system and
the nickel/platinum system have a common liquids so welding is possible. The baffles
are formed from platelets with chemically etched passages for the hydrogen flow which
are diffusion bonded into a unit. The rounded baffle end is finish machined to the
correct dimensions after bonding. See Figure 3.1-2 for a cutaway of the 7.5K Ibf TCA
baffle plate.

The injector segments are welded or brazed to the portion
of the injector body used as a hydrogen compartment. The dome of this compartment is
pierced by the oxygen posts that must be centered in the elements. The complete ele-
ment is formed when the injector segments are fitted into place with the respective oxy-
gen post inside. Hydrogen is fed to the compartment from a passage adjacent to one of
the ignitor ports. A similar passage adjacent to the ignitor port on the opposite side of
the engine feeds the oxygen compartment. The oxygen compartment dome is welded
onto the hydrogen dome with a circumferential fusion weld. At the top center of the
oxygen dome is a cylindrical extension used as an attachment point for the £6° pitch
and yaw gimbal system. This injector assembly is slipped into the conforming openings
in the baffle assembly and manifolds. Final assembly requires the injector segments to
be welded to the baffle plates and the oxygen dome to be welded to the baffle outlet
manifold structure. The injector body will be an inconel or monel alloy that forms a
good braze and/or weld joint with the nickel injector face plates, and that can be used
for both oxygen and hydrogen service. Manifolds will be of the same alloy. Differences
in thermal coefficients of expansion must be kept within bonded joint material limits for
the expected thermal cycling. The injector assembly will operate at fairly low temper-
atures as the baffle circuit is fed by liquid hydrogen and the hydrogen stream to the
injector has cooled considerably from heat given up in the LOX/GHj3 heat exchanger
and regenerator.

e. Stress Relief and Component Mounting Structure — The throat
area of the chamber must be protected from damaging stress or side loads. This is ac-
complished by using a “can” structure and extends to the hydrogen inlet manifold. The
connection to the inlet manifold is a sliding joint that allows for thermal expansion of
the chamber in the longitudinal direction but acts as a rigid stress takeout structure for
side loads (See Figure 3.1-3).
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3.1, Design and Parametric Analysis, (cont)

This “can” serves as a convenient mounting structure for var-
ious engine components. In particular, the two turbopumps will be mounted on it.
Bracketry extending from the can will be used to mount the various valves and to sta-
bilize the many lines and electrical wire bundles.

f. Gimbal Structure — The throat gimbal system must also serve
as a thrust takeout structure. This requires that the flanges connecting the circular box
gimbal structure to the hydrogen inlet manifold be of fairly robust construction. The
gimbal structure is located near the throat plane for a true throat gimbal. The actuators,
however, are located on the structure above the engine. They are placed 90° apart and
are connected to the cylindrical top of the injector oxidizer dome. Movement of the
actuator rods pivots the engine about the throat gimbal point in any combination of £6°
pitch and yaw change from a centered thrust vector. Actual thrust takeout is accom-
plished where the throat gimbal system attaches to the engine mounting structure. The
actuator rods see only the inertia loads related to moving this engine mass.

3.1.1.2 Oxygen Cooled Nozzle

a. Concept — No detailed design has been completed for the oxy-
gen cooled nozzle. The baseline concept is a copper alloy swaged tube bundle that is
welded and then contoured on a mandrel. The inlet manifold is at area ratio 35. All
tubes extend to the practical limit for forming and are then bifurcated. The bifurcations
extend to area ratio of 600:1. They are then doubled back for half the length of the
nozzle where they are terminated at the outlet ring manifold.

An alternative to the swaged and brazed tube bundle is a cop-
per platelet structure that would be formed in sections that are then welded into a con-
ical structure that would be formed to the final contour on a mandrel. A third possi-
bility is a structure formed from two copper sheets that are explosively welded together
with flow passages formed by material that could be removed by melting or solution. A
design trade study is needed to select the best configuration. Figure 3.1-4 shows the
three concepts that have received some study.
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3.1, Design and Parametric Analysis, (cont)
3.1.1.3 Radiation Cooled Nozzle

Material selection governs the design configuration. The candidate
materials are a 2 directional wound carbon-carbon composite, and columbium. The
joint temperatures are compatible with either material. The carbon-carbon will be
lighter but does not have the established reliability of the columbium. The columbium
requires a silicide or other coating to prevent oxidation. The carbon-carbon would
require a silicon carbide impregnated layer to control both erosion and oxidation. The
columbium nozzle would have two stiffening rings. The carbon-carbon nozzle would
have a thicker section at the nozzle exit and where the pads for the retraction/extension
assembly attach. Both would have sections of varying thickness to reduce weight. Both
would be contoured for optimum performance.

The retraction/extension mechanism uses three jackscrews driven
by 28 volt DC electric motors. The three motors are mechanically connected by a steel
cable drive shaft inside a circular tube. This shaft assures synchronized motor operation
and gives a doubly redundant capability to the mechanism as any one motor can oper-
ate all three jackscrews. The reliability of such a mechanism is demonstrated by the
millions of garage door openers that are of a similar design. The motors and cable way
are attached to the gimbal structure at the top of the engine. See Figure 3.1-5.

The attachment to the nozzle and the seal are critical design ele-
ments. The seal is a double finger leaf seal that can readily make and break the seal
many times without significant wear or an increased leak rate. With the seal at an area
ratio of 600, the gas pressure across the seal is only about 0.3 psia. This simplifies the
sealing problem. The design intent is to have a rugged seal capable of many nozzle
movements without an over emphasis on leakage rates.

3.1.1.4 Oxygen Boost Pump

The low propellant tank pressures pose a very difficult turbopump
design problem. Aerojet has determined that two separate units give the best perfor-
mance potential. The first is a low head rise, low speed four stage boost pump that
takes the oxygen at vapor pressure and boosts it to 55 psia for feed to the high speed
turbopump. The boost pump turbine is driven by a portion of the first stage TPA pump
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3.1, Design and Parametric Analysis, (cont)

output. Turbine outlet flow is combined with the pump output. The low speed oper-
ation allows a conventional ball bearing design for the rotating elements. This boost
pump is installed just below the dual, in-series vortex generation flowmeters. Flexible
line sections needed for gimbal motion connect it to the high speed turbopump.

3.1.1.5  Oxygen Turbopump Assembly

The oxygen TPA is of the design lineage of the 3.0K Ibf thrust oxy-
gen TPA developed and partially tested in the NASA LeRC funded OTV engine
program. (See Ref. 5 and 6). It has an inducer section, two pump stages, and a full
admittance turbine to be driven by 400°F (maximum) gaseous oxygen (GOX) (current
testing limited to ambient temperature GOX). The rotating assembly operates with a
hydrostatic bearing assembly. There is no need for an interpropellant seal or a purge
system. Materials selected for the TPA are copper and nickel in low stress areas, and
monel 400 and K-500 where material strength is demanded. These materials were
selected for best compatibility with oxygen, but the potential rub or friction areas are
further protected by silver plating on the non-moving surfaces and a newly developed
diamond film coating on the moving elements. This diamond film has the hardness of
diamond, the slickness of teflon, and a thermal conductivity several times greater than
pure copper. With this selection of materials and coatings the GOX driven LOX TPA is
capable of full service life and all the required unassisted (i.e., rubbing) bearing starts
required in the tank head start operation.

3.1.1.6 Hydrogen Boost Pump

The low speed hydrogen boost pump is very similar in design to the
low speed oxygen boost pump. It is a four stage pump driven by hydrogen from the
first stage of the hydrogen TPA. Rated pressure at full thrust is 55 psia. Itislocated in
the line just below the hydrogen flowmeters and is separated from the hydrogen TPA
by flexible line sections that accommodate the gimbal motion requirements. Both low
speed boost pumps are in an area that can be reached by an astronaut in a Space suit.
Component changeout will be possible with suitable line disconnects. The high speed
TPAs, however, are packaged in a restricted area that would likely require engine
removal for access. (See Figure 3.1-6).
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3.1, Design and Parametric Analysis, (cont)
3.1.1.7 Hydrogen Turbopump Assembly

Aerojet has developed a hydrogen TPA very similar in concept to
that needed for the CTP engine. This TPA is used on the Air Force XLR-134 engine
which is a low thrust LOX/LHj engine. That engine design features six pump stages
and two turbines divided between separate contra-rotating shafts contained in the same
housing. This double shaft system provides for a stout rotating assembly which does
not exceed the critical speed over the normal operating range. For the CTP Engine, the
design provides for an easier assembly and balance procedure. Each shaft will rotate at
whatever speed is needed for the output requirements, but maximum speed at rated
thrust is about 190,000 rpm. All bearings are hydrostatic to meet operating life
requirements. The very tight clearances with a hydrostatic bearing system require
careful materials selection so that expansion and contraction over the wide temperature
range needed for cryogenic operation do not either bind the assembly or produce
unacceptably high flow around the bearing. Materials must also lack susceptibility to
hydrogen embrittlement.

3.1.1.8 Hydrogen Regenerator

A regenerator is a heat exchanger used to transfer heat from the hy-
drogen gas exiting the turbine section of the TPA to the hydrogen stream directed
through the baffle flow circuit. This converts what was waste heat into usable energy
for driving the turbopump. The regenerator is downstream from the LOX/GH3 heat
exchanger and immediately upstream from the engine injector. One effect of the regen-
erator is to cool the hydrogen stream going into the injector. The result is a lowered
overall injector temperature. The regenerator is an example of the Aerojet platelet tech-
nology originally developed for injectors but finding wide application in various flow
devices. In appearance, it is a short block of metal shaped much like a dogbone with
rounded structures at the ends being used for hydrogen inlet and outlet line connec-
tions. The very fine, close proximity flow passages characteristic of platelet design give
an exceptionally efficient heat transfer structure. (See Figure 3.1-7). High AT’s are
maintained by counter-flowing the two streams. The baseline materials for the regen-
erator are zirconium copper platelets with either a silver or nickel bonding aid used in
the brazing. A proposed light weight alternative is to use beryllium platelets.
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3.1, Design and Parametric Analysis, (cont)
3.1.1.9  Liquid Oxygen/Gaseous Hydrogen Heat Exchanger (HEX)

The HEX is a critical element in the operation of the dual expander
engine. The engine cycle depends on the efficient heating of oxygen for turbine drive
gas for the oxygen turbopump. The HEX provides one-half to two thirds of the
enthalpy change needed with the balance gained in the oxygen cooled nozzle. The oxy-
gen out of the high pressure pump is counter flowed with hydrogen coming from the
hydrogen TPA turbine outlet. This gives a very high AT for efficient heat transfer
despite the poor heat transfer characteristics of oxygen. The HEX is similar in
appearance and general construction to the regenerator. It is larger, with more flow
passages to minimize pressure drop with the high flowrate of oxygen. The oxygen flow
passages will depart from the straight rectangular flow passage design used on the
hydrogen side in that they will include turbulence generating devices/geometries to
prevent unmixed two phase flow. Two phase flow is caused by rapid film boiling as the
oxygen changes from a liquid to a gas and is only a problem at low pressure operation.
At rated thrust the oxygen traversing the HEX is supercritical and the phase change
should take place uneventfully. The HEX is the preferred site of the phase change as the
exiting stream next enters the oxygen cooled nozzle. The oxygen must be homogeneous
to have predictable heat transfer characteristics for a critical cooling task. The materials
for the HEX are zirconium copper or NASA-Z platelets with monel and/or inconel
tubing for propellant inlet/outlet.

3.1.1.10 Engine Valves and Basic Engine Control

The flight engine requires a set of 12 valves for normal operation.
See Figure 2.1-1 for the valve position in the schematic. The major control valves and
their functions are described below:

a. Hydrogen Flow Proportioner Valve — This valve is used to
divide the cold hydrogen stream from the pump into two streams feeding the regen
cooled chamber and the engine baffle plates. Its neutral position is at a 50-50 split. It
can be commanded to adjust the flow +25% of total flow to either circuit. There is no
existing design for this valve and several mechanisms are possible. It will be a 28 volt
DC motor driven valve with separate drive coils with independent power sources for
reliability. The dominant failure mode is to fail safe to a centered flow split. The valve
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3.1, Design and Parametric Analysis, (cont)

is commanded to a particular position representing a flow-split that the engine
controller has computed will optimize the hydrogen stream temperature going to the
TPA turbine. This must be done in conjunction with the regenerator bypass valve posi-
tion which sets the flow split for the hydrogen going through the regenerator or directly
to the baffles. Any missetting of these two valves is compensated by an adjustment of
the hydrogen turbine bypass valve which has its own independent feedback loop. At
low thrust operation the proportioner will direct more flow through the chamber to
control the bulk temperature rise while the regenerator bypass valve will go to full
bypass. At full thrust a larger portion of the hydrogen flow will be directed to the baffle
circuit with maximum flow through the regenerator. This gives the greatest thermal
energy to the hydrogen TPA.

b. Hydrogen Regenerator Bypass Valve — This valve can direct all
but 25% of the hydrogen baffle flow through the regenerator. The 25% is reserved as a

control margin and can be reduced during overthrust or other abnormal operation.
When the valve is fully open it is pressure balanced with the regenerator so that some
flow always goes through the regenerator. The regenerator line may have to be orificed
to assure that the minimum flow needed for low chamber pressure operation is
attained. As noted above, the turbine bypass valve accommodates minor missettings of
this valve by changing the amount of hydrogen bypassed around the turbine. The fail-
ure mode of this valve is fail-in-place with fail-full-open as an alternative. The valve
will be powered by redundant 28 volt DC motors with independent power supplies.

c. Hydrogen Idle Valve — This valve is designed to provide mix-
ture ratio control during tank head start. On start it is fully open to provide a low pres-
sure drop passage to the injector. On light off the valve modulates between full open
and closed to assist in setting the mixture ratio until the hydrogen turbine bypass valve
becomes effective. Mixture ratio is computed from total hydrogen and oxygen flow
rates. With the main shutoff valves designed for simple open or closed operation, the
only possible mixture ratio control is to change the pressure drop in either the oxygen
or hydrogen circuit. The oxygen has the lowest tank pressure but the hydrogen circuit
has more components adding pressure drops. The hydrogen idle valve is positioned to
open a low pressure drop path for some of the hydrogen. With the circuits balanced for
a tank head start condition, the relatively small idle line is capable of the control needed
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3.1, Design and Parametric Analysis, (cont)

using a modulating valve. The valve is designed to close at line pressures of 200 psia so
that normal system pressurization can continue under increased output from the
hydrogen TPA. A “close” signal should also be given by the controller when the
hydrogen turbine bypass valve can assume responsibility for mixture ratio control.
Unlike the other modulating valves, the idle valve must make a tight, leak free seal on
closing. Its failure position is closed. Electrical redundancy is also needed for this

valve.

d. Hydrogen Turbine Bypass Valve — This valve is in a line paral-

leling the circuit through the hydrogen TPA turbine. Closing the valve directs all
hydrogen through the turbine. With the valve full open there will still be some flow
through the turbine as the circuits will be pressure balanced. It is a modulating valve
capable of stabilizing at any position from closed to full open. At nominal thrust it
should be at the 10% bypass position for normal control authority. This control margin
can be invaded for overthrust or other abnormal engine operation. The controller will
direct the valve to a particular position corresponding to the commanded thrust and
mixture ratio. It will then modulate based on feedback as to actual operation. When a
thrust or mixture ratio change is commanded the oxygen turbine bypass will start the
movement to the new position. The hydrogen turbine bypass valve will follow so that
the change is synchronized. After the oxygen turbine bypass valve has stabilized, the
hydrogen turbine bypass valve will make the final position change for mixture ratio
tuning. The bypass valve will also compensate for any initial missetting of the regen-
erator bypass and hydrogen proportioner valves as reflected by the hydrogen temper-
ature and pressure to the turbine. This compensation will be automatic up to the 10%
bypass minimum. The controller uses flowmeter readings for the hydrogen and oxygen
circuits to derive both thrust and mixture ratio information. This is correlated with
thrust calculated from chamber pressure. Flowmeter readings are also compared with
flowrate calculated from turbopump speed and output pressure. This is particularly
useful at low thrust operation where flowmeter readings have the greatest errors.

e. HEX Bypass Valve — The temperature of the oxygen entering
the turbine is controlled by the HEX bypass valve. This valve is on the hydrogen side as
it was judged better to route all oxygen through the HEX to assure the phase change is
completed prior to entering the oxygen cooled nozzle. The hot hydrogen from the
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3.1, Design and Parametric Analysis, (cont)

TPA turbine discharge is counterflowed with the liquid oxygen just discharged from the
oxygen TPA to give the oxygen about two thirds of the enthalpy change needed to
power the oxygen TPA turbine. The bypass valve adjusts the hydrogen flow based on
feedback from the oxygen turbine inlet temperature for a not-to-exceed maximum of
400°F and from the controller for an initial positioning corresponding to the
commanded engine thrust. This valve and the oxygen turbine bypass valve will be
closely synchronized so that there is no controls “hunting” during thrust changes. For
instance, on receiving a throttle up command the oxygen HEX bypass valve will go to
the 25% bypass position until the oxygen to the turbine approaches 400°F. At that
point, the turbine bypass valve will modulate to hold the selected thrust and the HEX
bypass will hold a stable temperature. This adds stability to the hydrogen circuit as the
hydrogen temperature to the regenerator will stay within a narrow range. The
regenerator bypass valve, then, has only a small amount of movement related to
temperature compensation. The valve will operate from 25% bypass to about 100%
bypass (based on power balance runs) to cover the engine operating range.
Specifications for this valve will be very similar to the hydrogen turbine bypass valve.

f.  Oxygen Turbine Bypass Valve — This valve is used for engine

thrust control. The controller commands it to move to a designated position cor-
responding to the desired thrust. After the move is made, feedback information on total
propellant flowrate and chamber pressure is used to trim the position to a setting cor-
responding to actual engine thrust. The hydrogen turbine bypass valve moves in step
with the oxygen turbine bypass valve until the designated position is reached. At that
time the hydrogen turbine bypass valve will modulate to establish commanded engine
mixture ratio. The oxygen turbine bypass valve was selected for thrust control as per-
cent bypass is very linear with thrust. Itis the master control valve for the engine. The
technique of commanding a modulating valve to a specific position in a “look-up table”
for setting thrust requires both well established valve operating characteristics and a
position indicator of high reliability and accuracy.

The oxygen turbine bypass valve must be fabricated from
materials found compatible with hot oxygen. Copper, nickel, several of the monels, and
various ceramic materials are good candidates.
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3.1, Design and Parametric Analysis, (cont)

g. Ignitor Valves — Simple poppet type valves are suitable for use
on the one quarter inch ignitor propellant lines. The hydrogen valve will have a cali-
brated leak path around the seat to allow hydrogen flow through the ignitor cavities for
cooling. Each valve will have dual redundant electrical actuation coils for reliability.
Ignitor flow is routed to two separate ignitors. These ignitors use laser ignition with
two lasers in each ignitor and two separate power supplies for reliability. The valves
must close at high (>300 psia) line pressures.

3.1.1.11 Engine Controller

Aerojet has developed an engine controller for the Advanced
Launch System (ALS) engine that can be readily modified to CTP engine requirements.

3.1.1.12 Health Monitoring System

This CTP Advanced Engine was designed with an integrated control
and health monitoring (ICHM) system baselined. All engine components will have
designed-in sensors selected to meet overall system requirements. Sensor data is evalu-
ated by health monitor algorithms in a computer. Selected data streams and computed
information are used for immediate action by the engine controller, or stored for later
maintenance decisions. As an example, during throttle-down operation the lower
flowrate of hydrogen through the regen chamber reduces cooling effectiveness. Should
throat temperature approach 800°F the health monitor system will signal the engine
controller that continued operation at the selected thrust load will require a mixture
ratio change to increase hydrogen flow (and chamber cooling) or a change in the pro-
portioner valve setting to direct more hydrogen to the chamber circuit. This is decision-
making to protect hardware and extend its life. More pressing failure indications
would lead to a shutdown prior to a catastrophic failure. The fact that this is a decision-
making system supports some software development using expert systems and artificial
intelligence techniques.

3.1.2 Power Balance

A rocket engine power balance is an energy and mass balance com-
puted at a particular point within the engine operating envelope. If a computation does
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3.1, Design and Parametric Analysis, (cont)

balance (i.e., there is a solution within the capability of the engine components), then the
point is, by definition, within the engine operating envelope. If there is no balance
(generally indicated by a failure to close on a solution after a defined number of itera-
tions), the selected point is outside of the engine operating envelope. An array of bal-
ance points on a plot of chamber pressure versus mixture ratio is used by Aerojet to
define the engine operating envelope. Thrust or total propellant flowrate could be sub-
stituted for chamber pressure to generate similar operating envelopes. As an example,
Figure 3.1-10 is the operating envelope for the series flow dual expander cycle used in
the 7.5K Ibf thrust engine design.

3.1.2.1 Power Balance Development

A power balance can be hand calculated from the basic equations
through 3 or 4 iterations in about 4 hours. The Aerojet OTV engine power balance pro-
gram from data input to printout takes about 15 minutes. This time savings was
achieved at a heavy input of programming hours in developing the code. It is now in
its fifth generation with the most recent modeling required to change from a series flow
to a parallel flow dual expander cycle.

Each active component must be modeled for a look-up table within
the program. Figure 3.1-11 gives some examples of the algorithms used for various
components. For this study actual preliminary designs had to be defined at each of the
five selected thrusts for accurate component modeling. This was particularly true of the
turbopumps and the thrust chamber injectors. The initial design point for each tur-
bopump was determined (See Tables 3.1-5 and 3.1-6) and performance curves calculated
(Figures 3.1-12 and 3.1-13). An equation is then developed for each curve, or points on
the curves are converted to an array of numbers for use in a lookup table. The thrust
chamber/injector was thermally modeled so that hot gas side wall temperatures at
rated thrust/design thrust were below the maximum. Also, preliminary configuration
studies were completed to determine baffle geometry and length. Very early in the
study a common 2000 psia chamber pressure was selected for each thrust as the rated or
nominal full thrust point (100% thrust). A worst case design point of 2000 psia and
MR =5 was selected for the thermal maximum expected operating point (MEOP). The
chamber design was adjusted so that hot gas side wall temperature would not exceed
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3.1, Design and Parametric Analysis, (cont)

the design maximum at MEOP. The power limiting operating point was expected to be
at a chamber pressure of 2300 psia and MR = 7. Also, the pressure and temperature cal-
culated for this point would be used for stress calculations. This point was not neces-
sarily within the actual operating envelope at all five engine thrust levels. It is a conser-
vative design point. The overthrust capability at 2300 psia chamber pressure is a useful
feature of the engine design. With the components modeled, the power balance devel-
opment followed the logic path as shown in Figure 3.1-14.

The power balance program begins by balancing the oxygen circuit
(see Figure 3.1-15). The HEX heat transfer rate is the most significant thermal coupling
between the circuits. It is used as an entry to balancing the hydrogen circuit (see
Figure 3.1-16). The operator has several inputs that can be adjusted to assist in the bal-
ance. It is an interactive program in that the operator can watch the iterations in
progress on the computer terminal and make real time adjustments if the iterations
show it is not closing. Propellant property data is looked up in NBS or NASA derived
tables for accurate calculations at each point in the cycle. This property data lookup
capability requires the program be run on the PRIME or the VAX computers. The
actual program architecture is based on a commercial spread sheet program.

3.1.2.2 Power Balance Results

The chart in Figure 3.1-17 summarizes the power balance results for
the 7.5K 1bf thrust engine at rated thrust. One of the features of the program is the
ability to iterate the effect of turbine wheel diameter on TPA performance. In this
example a 2.35 inch wheel diameter was used. Figure 3.1-18 gives the power balance
results for the parallel flow 20K 1bf thrust engine. The operating temperature and pres-
sures are much lower for the parallel flow version but the chamber pressure is the same.
Tables 3.1-7 through 3.1-12 give the important temperatures and pressures for engines
of 20K 1bf thrust and 50K 1bf thrust at mixture ratios of 5, 6, and 7. A gratifying result of
the power balance work was the ability of the cycle to sustain a 2000 psia chamber pres-
sure over the entire thrust range of interest. The engine envelopes were explored to see
what the maximum chamber pressure would be, given the baseline component perfor-
mance. For the 20,000 Ibf thrust engine the maximum chamber pressure at MR = 7 was
over 2500 psia giving a 25% overthrust capability. For the 50,000 Ibf thrust engine the

RI'T/DO417 55a-3.0-3.1.2 50



aouejeg 1amod e Bujziiaindwo) ul yled 21607 "pL-1'¢ a4nbig

sindinQ
Apaap
sajqeune
walsAs ay) u A“mm.h 2“, saunnoiqns
ISpPON auljeg aulag
siajaweled
ubisaq suondisay olewayas
jusuodwo) 9199 319Ao

51



1S114 paoue|eg S| 3pIS JAZIPIXO YL ‘Si-1°¢ 2inbiy

ay 68-22-2 .
ssanb=qImiMm ¢=d
L ssanb=1}) J1ZZON
3INIgYNL §.098=1 \d37000
X0
é=d wnwiuiw = pd
é=d é=1
=1 -
%012 00D I = J[EOM / QIN|W\
X3H . . .
2ORH ¢=0
| =orea] /oluyg
'Y
| = jreae dy / bas dy
ssenb=py
M =1 JUBJSISUOD |IIUN 8jeIs}|
. Aljigejeae Jjamodasioy pue
é=d dnnNd
¢=1 . 201
sjuswaiinbais Jamodasioy 8je|noje)
ueaib=dwndpm
1sd Gi=d d ® L elelpawiaiul elejnojen
HolCc9i=1
ueAIb=0g ANVL n1 ‘olurl‘aImm ‘Pd Sseno
[ssanb=olui] ] WOYd N3DAXO .
H3IaGNVYHO NOILSNBWOD od ‘dwndp indy)

1INJHID NIDAXO

52



aouejeg apIS XO WOJ S}NSaH Sas( aPIS |and Y1 ‘gL-|'¢ ainbig

whnwiuiw = pd

I = 9O M /qINIM

L =o1eaj/jfull

L = peae dysbaa dy
JUISISUOI jIIUN 3JEBI)| »

Ayiqejeae semodeasioy pue
sjuswalinbal Jjamodasioy ajenoje) .

d ? 1 Sielpauiiajuj ajeindje)d e«
oBas1v ‘Yuil ‘I ‘Pd sSOND
O ‘ad ‘dundMmindu; »

1£'062

[ssen B-qimim _
é=d &= Poep
¢=1 = uebay
%
. %0 1<
é=d

¢l

%SG ; =0
e @

A.\I
¢=d[ usbay uabay
A cH CH
¢ seonB= %0S

%08

yue] wouy
uaboupAH

Bquiey)
uonsnquwio)

11NJHIOD NIOOHAAH

A.\..u
uaAlb=dwndm
1sd 02=d
H.8°26=1

53



aouejeg Jamod ubisaq Aeuiwidid auibug ALO ISNIYL JGI NS L “ZL-L°E ainbBi4

1} noAual =ouy §6'b 1 =ouy 9=HW 5ev°0-0ud
eisd =d 65.'v=d %5 65=113 0ss€=d
H bap =1 098=1 ‘WeEZ = . 92/E'1=1
puaba] aNIgyNL sepweig | INIGYNL S$3134v8
1398UM Jojawe|qg [|93ym
8L1'G=d 481 2=d 929'c=d
608S=1 oLl =1 G /E6=1
(43141SVO)
X3H X3H
HIONVHOX3 LV3H
¢O/cH 2O/2H
MO14HILNNOD
 § ZEVP'0=0uY 20°1=ouy
L11'2=d 002'v=d
6LLL= ‘q/c=
£9'8=0uy 6'12=0uy L L8251
21€'2=d €I€'6=d
8€LL=1 z'88l=1 NIO3Y | H3IONVHOX3 LVIH [ N3ogy
CH MO14H3LNNOD ZH
€96 0=0yy mw.nu_ocm
160'2=d 062 v=d
L19E=1 S9tLl=]
St=ul g
L'291=u )
02=ut ¢
ANVL e
g€ =ul |
WOHL N3IDAXO
0002 =°d 0002 =°d WNVL

H3gWVHO NOILSNGINOD

LINJOHID NIODAXO

H3gWVYHD NOILSNEWOD

WOH4 N3DOHAJAH

LINJHIO N3IOOHAAH

~t
w



9 = HIN Je auibu3 jqj M0z 10} s}nsay aouejeg 19Mod 'gi-1°¢ a4nbig

09s/gl =M
2052 H mO—MH 1l
eisd= ¢4
6€8=1 6£8=1 o1ZzON 99
suiquny |8E0¥=d SL0V=d[ o 000 Hoov_moouh
X0 022=1
9eL=1 esve=
_ 6€5=1
%62 (sayiseD) XoH
- NM&MI seBueyox3 1eeH | z0/zH
MOI9)UN0Y)
> Siv=1
gs€ec=d
ovs=
uaboy
65°SE=M ¢H
£9.=1 %S . B
p0g2=d €6'S=M %08
6.€=1 18=
veee=d v.6€=
e le“F-
, 0002=d MMH ,._._,._.
| Jaqueyd jyue| wouy 0002=d jue] woy
| uopsnqwod uabAxQ equieys usBoJpAH
| uonsnquion

1INJHID NIODAXO LINJHID NIOOHAAH

55



Tank Conditions
Pump Conditions
Ox: Cool

Side Heat Exchanger

Fuel: Cool

Side Regenerator
Regen Jacket
Baffles

Ox Nozzle Cooling
Turbine Conditions
Hot Side HEX

Gas Side Regenerator

Injector

Combustion Chamber, Pc

RPT/1)X0417-55a-T

TABLE 3.1-7

CTP ENGINE POWER BALANCE

THRUST = 20K Ibf

P=
T=

T=

Oxidizer

MR =5
15.0  (psia)
162.7 (degR)
3629.8  (psia)
1824  (degR)
3319.7  (psia)
5370  (degR)
32922  (psia)
860.0 (degR)
23076  (psia)
7944  (degR)
2009.6  (psia)
8004 (degR)
2000 psia

56

Fuel

20.0
37.8

4543.4
93.5

4363.5
478.4

4122.8
601.5

4319.1
994.1

2595.7
723.2

2409.8
462.0

2224.1
373.9

2003.3
373.9

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)



Tank Conditions
Pump Conditions
Ox: Cool

Side Heat Exchanger

Fuel: Cool

Side Regenerator
Regen Jacket
Baffles

Ox Nozzle Cooling
Turbine Conditions
Hot Side HEX

Gas Side Regenerator

Injector

Combustion Chamber, Pc

RPT/D0417-55a-T

TABLE 3.1-8

CTP ENGINE POWER BALANCE

THRUST

P=
T=

P=
T=

P=
T=

= 20K 1bf

Oxidizer

15.0
162.7

3764.2
183.1

3441.0
555.0

3411.3
855.0

2343.3
786.1

20154
792.5

57

MR =6

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

2000 psia

Fuel

20.0
37.8

3958.7
87.1

3822.5
466.3

3635.0
646.1

3782.5
1012.5

2397.5
759.5

2300.5
435.6

2169.8
365.7

2002.9
365.7

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)



Tank Conditions
Pump Conditions
Ox: Cool

Side Heat Exchanger

Fuel: Cool

Side Regenerator
Regen Jacket

Baffles

Ox Nozzle Cooling
Turbine Conditions
Hot Side HEX

Gas Side Regenerator

Injector

Combustion Chamber, Pc

RI"{/IXM17-55a-T

TABLE 3.1-9

CTP ENGINE POWER BALANCE
THRUST = 20K 1bf

Oxidizer

15.0
162.7

3875.3
183.8

3547.1
586.8

3512.8
856.8

2378.2
785.2

2011.6
792.9

58

MR =7

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

2000 psia

Fuel

20.0
37.8

3705.1
84.9

3600.7
403.7

3393.0
675.9

3573.1
1009.7

2305.8
776.7

2231.8
377.0

2133.4
349.4

2002.9
349.4

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)



Tank Conditions

Pump Conditions
Ox: Cool
Side Heat Exchanger

Fuel: Cool

Side Regenerator
Regen Jacket
Baffles

Ox Nozzle Cooling
Turbine Conditions
Hot Side HEX

Gas Side Regenerator

Injector

Combustion Chamber, Pc

RPT/DO0417-55a-T

TABLE 3.1-10

CTP ENGINE POWER BALANCE
THRUST =50K1bf MR =5
Oxidizer
P= 15.0  (psia)
T= 1627  (degR)
P= 3670.7 (psia)
T= 1829  (degR)
P= 34046  (psia)
T= 560.0 (degR)
P=
T=
P=
T=
P=
T=
P= 33174  (psia)
T= 860.0 (degR)
P= 23119  (psia)
T= 7932  (degR)
P=
T=
P=
T=
P= 2006.2 (psia)
T= 7993  (degR)
2000 psia
59

Fuel

20.0
37.8

5555.5
104.7

5479.5
606.9

4044.3
554.7

5376.1
1354.0

2504.7
862.7

2351.7
585.6

2224.1
448.5

2003.6
448.5

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)



Tank Conditions
Pump Conditions
Ox: Cool

Side Heat Exchanger

Fuel: Cool

Side Regenerator
Regen Jacket

Baffles

Ox Nozzle Cooling
Turbine Conditions
Hot Side HEX

Gas Side Regenerator

Injector

Combustion Chamber, Pc

RI"T/1)0417-55a-T

TABLE 3.1-11

CTP ENGINE POWER BALANCE
THRUST = 50K 1bf

Oxidizer

15.0
162.7

3800.3
183.6

3523.0
582.0

3425.8
860.0

2346.0
790.1

2006.1
796.9

60

MR =6

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

2000 psia

Fuel

20.0
37.8

4722.9
95.9

4665.6
589.1

3588.6
589.6

4577.5
1368.6

2357.1
896.7

2253.1
550.2

2169.7
453.1

2004.6
435.1

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)



Tank Conditions
Pump Conditions
Ox: Cool

Side Heat Exchanger

Fuel: Cool

Side Regenerator
Regen Jacket

Baffles

Ox Nozzle Cooling
Turbine Conditions
Hot Side HEX

Gas Side Regenerator

Injector

Combustion Chamber, Pc
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TABLE 3.1-12

CTP ENGINE POWER BALANCE
THRUST =50K Ibf

P=
T=

Oxidizer

15.0
162.7

3943.0
184.4

3658.1
607.8

3553.1
857.8

2387.2
784.6

2011.6
792.2
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(psia)
(deg R)

(psia)
(deg R)

(psia)
(degR)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

2000 psia

Fuel

20.0
37.8

4193.9
90.3

4149.4
562.0

3315.1
611.3

4058.4
1399.9

2271.3
929.5

2194.8
506.4

2135.1
419.6

2004.8
419.6

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)

(psia)
(deg R)



3.1, Design and Parametric Analysis, (cont)

maximum chamber pressure was about 2100 psia at MR = 7. There is a dropoff with
increasing thrust, but it is less than was expected before the study calculations were
completed. With these encouraging results the baseline of 2000 psia chamber pressure
was kept throughout the study.

Additional power balances are given in Appendix B for the high
mixture ratio operation.

3.123 Modified Liquid Engine Transient Simulation Program (MLETS)
Analysis

The power balance program discussed in the previous paragraphs
assumes steady state engine operation with no consideration of the time dependency of
the engine operation. The MLETS program performs similar mass and energy balances
but adds the time dependent features of the components and engine system. The
MLETS is the most recent version of the LETS program which has been in development
for several years at Aerojet. Its complexity is about an order of magnitude greater than
the OTV power balance program. It was also developed for other engine systems and
has had to be adapted to the OTV engine. In its present form it still requires some
development to make it easily usable with the OTV engine, but the preliminary results
presented below show it to be a valuable tool for predicting engine operation and
control requirements.

a. Uses of the MLETS Program — The MLETS can provide valu-
able insight into many design concerns as it includes models for all components and
lines. Concerns of current interest are:

* Power balance (backup to the independent power balance
program).

* Engine sensitivities to component design changes.

* Control sensitivities to component operation and engine
operating scenarios.
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3.1, Design and Parametric Analysis, (cont)
* Engine stability in operation.

* Engine transient response time and linearity. This includes
start, throttling, and shutdown.

* Ready assessment of different engine configurations without
extensive code reprogramming due to its modular structure.

The program hours assigned to this task were insufficient to do
much more than a preliminary assessment of the engine transient operation. None of
the concerns given above were addressed in the depth desired.

b. Preliminary Results of the MLETS Analysis — The simplified
engine schematic used for the MLETS analysis is given in Figure 3.1-19. The LI

numbers refer to the hydraulic model for that particular line. PU 101 and PU 201 refer
to the TPA pump sections while TU 101 and TU 201 refer to the models for the TPA
turbines. The HEX is HE 101 and the regenerator is HE 102. It should be evident that
the MLETS analysis is limited by the accuracy of the algorithms used to model these
and the other components. In particular, the time dependency of component
performance is suspect until actual components are built and rates of temperature and
pressure change are measured. In practise, the component lags, efficiencies, and other
performance parameters were adjusted by the program operator until a relatively stable
operating configuration was found. The ability to do this in real time makes the MLETS
a valuable design tool. In effect, the component design can be adjusted to match the
circuit. When this program shows that a stable design point has been determined this
can be fed back to the component design team to be used for details of the actual design.

1.  Bootstrap Capability. The oxidizer side of the circuit
“bootstrapped” very effectively over the throttle range. This reflects its relative
insensitivity to control changes in the hydrogen circuit. The current engine operating
scenario calls for thrust to be adjusted by use of the oxygen turbine bypass valve. The
MLETS analysis confirmed this as the preferred scenario.

63
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Figure 3.1-19. CTP Engine Model for MLETS Analysis
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3.1, Design and Parametric Analysis, (cont)

The HEX bypass valve placement causes considerable
interaction with the hydrogen circuit and hydrogen regenerator bypass valve setting in
particular. This interaction can be reduced in a number of ways:

* Allow only a small number of thrust dependent oper-
ating points for the HEX bypass valve until it must act
as a temperature limiter for the oxygen going into the
Ox TPA turbine. This will prevent “hunting” of the
regenerator bypass valve.

* Reverse the position of the HEX and the regenerator in
the engine circuit. This effectively decouples the
hydrogen circuit from the oxygen circuit. There may be
a penalty in a larger sized HEX due to the lower delta
temperatures. A circuit schematic for this option is
given in Figure 3.1-20.

There was a “bootstrapping” problem in the hydrogen cir-
cuit. Turbine efficiency was adjusted and turbine bypass decreased until the circuit
“bootstrapped,” but the required bypass was far lower than energy requirements would
indicate. There may be an error in the algorithms that has not been detected. Available
energy should be more than adequate over the throttle range for quick response.

There was one mismatch between the MLETS algorithms
and the proposed control operations that increased the circuit coupling. An algorithm
has not been developed for the HEX bypass valve and the program assumes sufficient
energy extraction in the HEX so that oxygen to the turbine is at 400°F. This is a maxi-
mum value. As long as the oxygen turbine bypass valve is within the normal control
range, the oxygen to the turbine can be less than 400°F. As the oxygen turbine bypass
valve approaches 10% bypass, the HEX bypass must reduce the bypass and increase the
oxygen temperature until 400°F is reached. That marks the end of the usable range for
thrust control on the oxidizer side. With the present engine schematic, movement of the
HEX bypass valve should be limited to a few set points to reduce the circuit coupling.
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3.1, Design and Parametric Analysis, (cont)

2. Operating Stability. The composite plot in Figure 3.1-21
shows the engine variation with time from the rated thrust operating point with the
engine at thermal equilibrium. At t = 126 seconds the engine is allowed to operate
without any control changes. By t = 148 seconds the operating variables have shown a
very minor drift. The change is so slight and so regular that it could as easily be
attributed to minor round off errors in the algorithms as to actual engine instability.

The engine is either dynamically stable at the rated thrust point or very close to it. More
analysis and experimental testing will be needed to establish the actual condition. What
the analysis does, however, is confirm that the engine should be readily controllable.

The design baseline is for closed loop control. Relatively slow control rates should be
adequate for stability.

3. Engine Throttling. A simulation of engine throttling was
attempted using a controller for each circuit. Thrust was controlled by changing the
oxygen turbine bypass setting while the hydrogen circuit controller attempted to follow
the thrust change by adjusting the hydrogen turbine bypass valve. Proportional plus
integral controllers were used for both the thrust and mixture ratio commands. A num-
ber of runs were made using different controller gains. In each case the engine even-
tually went unstable. There was not enough time available to solve this control prob-
lem, but a solution should come from reducing the circuit coupling through the HEX
and from better modeling of the thermal and flow lags in the system.

The 7.5K 1bf thrust engine was modeled using a different
dynamic code called TUTSIM. (See Ref. 7). Throttle response for this series flow dual
expander cycle is shown in Figures 3.1-22 and 3.1-23. A 10% change in thrust could be
completed in about 0.3 seconds. The parallel flow dual expander should have a similar
response time. Throttle ratio (A thrust/unit time) decreases in the low thrust range due
to lags in the turbopumps at low speed. The engine should be capable of accelerating
from 10% thrust to 100% thrust in 4 to 5 seconds. Throttling down will be somewhat
faster. This is an important performance number for the vehicle prime contractors and
needs to be better defined early in the engine development.

RPT/D0417 55a-3.0-3.1.2
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Percent Rated Thrust

1044} Mixture 17.0

102.4 L\_'/f”"—" ~—— 6.0

14.0

. - Thrust (Actual) 3.0

Thrust (Command)

Time, sec

Figure 3.1-22. Predicted Response to 10% Throttle Up Command
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Figure 3.1-23. Predicted Response to 10% Throttle Down Command
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3.1, Design and Parametric Analysis, (cont)

3.1.3 Performance, Mass and Envelope Parameters

3.13.1  Performance — Specific impulse is the best standard for per-
formance measurement with both propellants and area ratio specified. An initial per-
formance comparison over the thrust range used a chamber pressure of 2000 psia and
area ratio (Ae/Ay) of 1200. Mixture ratio was plotted on the X-axis and thrust variation
is shown as the family of 3 curves on Figure 3.1-24. This plot is for delivered specific
impulse at steady state engine operation. The theoretical engine performance was first
calculated from the One Dimensional Equilibrium model (ODE) and then corrected for
kinetic losses using a One Dimensional Kinetic program (ODK) with further corrections
for divergence and boundary layer losses. The corrections for divergence and boundary
layer lossess are calculated using TDK (Two Dimensional Kinetics program) and BLM

‘Boundary Layer Model). The performance loss accounting is plotted in Figure 3.1-25 for
the 7.5K Ibf thrust engine. Table 3.1-13 summarizes performance corrections for 7.5K,
20K, and 50K Ibf thrust over an MR range of 5 to 13.

Performance changes with thrust are very minor over the range
studied. There is no significant advantage in changing engine thrust to improve deliv-
ered specific impulse. Thrust selection should be based on other design considerations.
Also, the maximum specific impulse is delivered over a mixture ratio range of 5 to 7
with only minor variations from the peak at MR = 6.3. This can be used to the advan-
tage of the vehicle designers by baselining an active propellant management system that
can program mixture ratio within this range to use all available propellant in the tanks
with no delivered performance penalty. The result is a maximization of the propulsion
system average specific impulse. This is usually more important than the nominal
engine specific impulse.

The dropoff in specific impulse above MR = 6.3 reflects the changing
composition of the exhaust gas species. At higher mixture ratios the average molecular
weight increases causing a reduction in the jet velocity, Vj, according to the equation

P,

1/2
¥1 \
; = _oh

V.= \N.2 Y
2™ f
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Pc=2000

Pc=2000

Pc=2000
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TABLE 3.1-13

PERFORMANCE LOSS ACCOUNTING FOR VARIOUS

THRUST LEVELS (7.5K, 20K, AND 50K Ibf)

7.5K 1bf Thrust Level
MR 5 6 7
ODE 491.1 494 .4 494.5
ODK 490.0 4925 490.5
TDK 488.0 490.5 488.5
ABLM 7.4 7.4 7.4

PL&Del 4806  483.1 481.1

11
409.7
424.9
423.2

74
415.8

Throat Radius, ry = 0.765"

20K Ibf Thrust Level
MR 5 6 7
ODE 491.1 494 .4 494.6
ODK 490.3 4929 4914
TDK 488.3 490.9 4894
ABLM 6.6 6.6 6.6

Pl &Del 4817 4843 482.8

11
429.7
425.7
424.0

6.6
417.4

Throat Radius, ry = 1.25"

50K 1bf Thrust Level
MR 5 6 7
ODE 491.1 494 .4 494 .5
ODK 490.5 493.3 492.1
TDK 488.5 491.3 490.2
ABLM 6.1 6.1 6.1

PIL &Del 4824 4852 484.0

11
429.7
426.3
424.6

6.1
418.5

Throat Radius, ry = 1.97"

74

12
4139
409.8
408.2

74
400.8

12
413.9
410.5
408.9

6.6
402.2

12
413.9
411.1
409.4

6.1
403.3

13
399.7
396.2
394.6

74
387.2

13
399.7
396.8
395.2

6.6
388.6

13
399.7
397.3
395.7

6.1
389.6



3.1, Design and Parametric Analysis, (cont)

where

= average exhaust gas molecular weight
Ru = universal gas constant

Y= ratio of gas specific heat at constant pressure and constant volume
Nj= efficiency factor relating theoretical and delivered jet velocity to the engine
losses

To = stagnation chamber temperature
Po= stagnation chamber pressure
Pj= jet pressure at the exit plane

The To/M ratio decreases consistently as mixture ratio increases despite the maxima of
T, at the stoichiometric point (MR =7.94). At any MR above stoichiometric the amount
of unreacted oxygen steadily increases in the exhaust stream. The operation of this
engine at high mixture ratios (>7) must be an economic decision; there is no per-
formance justification.

One other engine operating parameter derived from performance is
the total propellant flowrate. Figure 3.1-26 graphically presents flowrate for each of the
five thrust levels. Table 3.1-14 gives the propellant flowrates in more detail. Thisison a
per engine basis. For a vehicle with a four engine propulsion set multiply by four. This
figure can be readily used to calculate the total propulsion operating time (burn time) at
rated thrust for a given propellant load. For instance, for a set of four 20,000 Ibf thrust
engines, the flowrate is about 174 Ibm/sec. A 288,000 Ibm propellant load is one of the
figures used for the Lunar Transfer Vehicle (LTV). For a total propulsion operating time
of: 288,000 + 174 = 1655 seconds. Propellant residuals and a correction for attitude
control system propellant use would have to be subtracted from the loaded propellant
weight to determine the usable propellant. For a 4 hour total engine operating time
without maintenance, this represents about 8 missions.

3.13.2 Engine Mass Computations

A detailed weight and center of mass computation for the 7.5K Ibf
thrust engine was completed during the preliminary design task (Task D.5). The results
are presented in Table 3.1-15. The interface for separating engine weight from vehicle

RPT/D0417 55a2-3.0-3.1.2

75



Isniyy auibu3 sa ajeimol4 Juepedoid 9I0IYaA I9jsues) adedsg ‘9z-1'¢ 8inbiy

S€

uabAxQ

uaboipAH

NN

RS

GINCYES BELTTT

S¢

A\

0e

A\\\\\\\Y

A

\ LS S 8 8 % 8§ W

74}

08s/1Qq) ‘aleIMO|4

76



TABLE 3.1-14

LTV/LEV ENGINE PROPELLANT FLOWRATES

Thrust 75K 1bf 20KIbf 25KIbf 35K Ibf 50K lbf
Propellant Flow Rate to Engine
* Total (Ibm/sec) 16.38 43.49 54.36 7596 108.29
* Oxygen (Ibm/sec) 14.04 37.28 46.60 65.12  92.82
¢ Hydrogen (Ibm/sec) 2.34 6.21 7.77 1085 1547
Autogenous Tank Pressurization Flow Engine
* Total (Ibm/sec) 0.82 2.17 272 3.79 541
¢ Oxygen (Ibm/sec) 0.70 1.86 2.33 3.26 4.64
¢ Hydrogen (Ibm/sec) 0.11 0.31 0.39 0.54 0.77
Propellant Flow for Combustion
* Total (Ibm/sec) 15.56 41.32 51.65 72.17 102.88
¢ Oxygen (Ibm/sec) 13.34 35.42 44.27 61.86 88.18
* Hydrogen (Ibm/sec) 222 5.90 7.38 1031  14.70
Notes:

1. Autogenous propellant flow assumed to average 5% of flow to engine.

2. Table based on a mixture ratio of 6.

3. Propellant flow at thrusts below nominal are higher than a straight line
extrapolation would predict as specific impulse decreases as the engine is throttled

down.

77
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3.1, Design and Parametric Analysis, (cont)

weight was the mounting plane. The gimbal actuators and ICHM system were con-
sidered above this plane and are not included in the weight summary. An equally valid
interface would define engine weight as the sum of all items necessary for engine oper-
ation exclusive of the thrust takeout structure and propellant lines above the mounting
plane. These additions and a total are given in Table 3.1-16. Several other interfaces
could be defined with some validity. For example, the engine dry weight as delivered
to the vehicle contractor is a reasonable definition of engine weight based on a contract
requirement.

Table 3.1-16 includes a figure for engine insulation although this
could be applied after engine delivery. It does not include thrust takeout structure as
this is commonly a function of the vehicle design. There is no weight for any nozzle
snubbing system to secure the nozzle when the extendible nozzle section is retracted.
There is no weight for a helium purge system as this engine does not require one.
Those engines that do require a helium system often compute engine weight without it
on the assumption that it is a vehicle system. Users of engine weight data are cautioned
to put each manufacturers weight computations on the same basis before comparisons
are made. Note that a helium purge system can add several hundred pounds to the
vehicle weight, and would not normally be considered as engine weight, but it is
required for the turbopump assembly of a conventional expander cycle engine.

Another source of variability in engine weight estimates is material
selections. A lightweight material still in development can be proposed even though it
is unlikely to be used. Also, there may be design uncertainties that, when resolved, will
favor one material over another. An example is the radiation cooled nozzle material.
Table 3.1-17 contrasts the weights of four nozzles, any one of which could be selected
for the final design, yet there is a 2:1 weight ratio from lightest to heaviest. Part of the
selection criteria will be based on structural requirements, part on operating tempera-
ture, and part on a trade-off of weight versus delivered payload. An example of pay-
Joad sensitivity is given in Figure 3.1-27 for the four nozzles of Table 3.1-17.

The weight computation results for the engines used in the
Advanced Engine Study are given in Table 3.1-18. Note that this is the weight for the
components as would normally be delivered by the engine contractor to the vehicle

RPT/D0417.55a-3.0-3.1.2 79



TABLE 3.1-16

7.5K LBF THRUST PRELIMINARY ENGINE WEIGHT ESTIMATE

Component

Propellant Flowmeters (4)

COMPLETE ENGINE

Hydrogen Main Shutoff Valve

Oxygen Main Shutoff Valve

Primary Gimbal Actuators (2)

Engine Out Gimbal Actuator

ICHM System Electronics

Insulation
Sub-Total

Nominal Gimballed Component Weight

(From Table 3.1-15)
TOTAL

PRELIMINARY NOZZLE SYSTEM WEIGHT ESTIMATES,
7.5K LBF ENGINE

Nozzle Skin
Nozzle Attach
Nozzle Stiffener
Ballscrew (3)
Gearbox (3)

Ball Nut (3)
28VDC Motor (3)
Flex Cable (6)
Support Strut (6)

TOTAL (per TCA)

RIU/10437-554- 1

Current Weight Estimate

TABLE 3.1-17

3.0 Ibm

8.5

8.0
17.0
14.0
12.0
10.0
725

298.1

370.6

Columbium Carbon-Carbon
0.020-in. 0.030-in. 0.050-in. 0.060-in.

48.3 72.4 20.6 247
18.1 18.7 7.0 7.0
4.7 4.7 15 15
8.4 8.4 8.4 8.4
8.1 8.1 8.1 8.1
54 5.4 54 54
9.0 9.0 9.0 9.0
4.2 4.2 4.2 4.2
5.0 5.0 5.0 5.0
111.2 135.9 69.2 73.3
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TABLE 3.1-18

ADVANCED FLIGHT ENGINE WEIGHT ESTIMATES

Engine Thrust, Pounds Force

 Material Component 7.5K 20K 25K 35K 50K 7.5 20K 25K 35K 50K
Weight in Pounds Percent of Total Weight
GlidCop Thrust 36.66 64.51 8495 131.34 197.63 14.79 13.47 13.93 14.68 14,51
& NiCo  Chamber
NiBase Injector 2408 4597 56.24 79.07 121.15 9.71 9.60 9.22 884 8.89
ZrCu Baffles 8.50 9.79 14.03 22.08 35.17 3.43 204 2.30 247 2.58
TCA SubTotal 69.24 120.27 15522  232.48 353.95 27.93 25.10 25.45 25.98 25.99
Be Ox Cooled 14.20 38.80 49.50 71.80 109.10 5.73 8.10 8.11 8.02 8.01
Nozzle
Cc-C Rad. 73.34 14395 17511 24850 378.37 29.58 30.05 28.71 27.77 27.78
Cooled
Nozzle
Ox TPA 10.00 16.67 23.33 36.67 56.67 4.03 3.48 3.83 410 416
Ox Boost 18.60 31.00 43.40 68.20 105.40 7.50 6.47 7.1 7.62 7.74
Pump
Fuel TPA 10.00 16.67 23.33 36.67 56.67 403 3.48 3.83 4.10 416
Fuel Boost 6.40 10.67 14.93 23.47 36.27 2.58 2.23 2.45 262 2.66
Pump
TPA SubTotat 45.00 7500 10500 165.00 255.00 18.15 15.66 17.21 18.44 16.72
Be H2/H2 Re- 084 7.12 7.10 7.06 8.58 0.34 1.49 1.16 0.79 0.63
generator
Be H2/02 3.98 14.10 16.40 20.90 30.00 1.61 2.94 2.69 2.34 2.20
HEX
HEX & Reg SubTotal 482 21.22 23.50 27.96 38.58 1.94 443 3.85 3.12 2.83
Valves, 41.32 7985 10167 149.15 227.00 16.67 16.67 16.67 16.67 16.67
Lines,
& Misc.
SubTotal 20660 39923 50833 74574 1134.99 83.33 83.33 93.33 83.33 83.33
Total 24792 479.08 61000 89489 1361.99|] 100.00 100.00 100.00 100.00 100.00
Orig. Total 29180 48633 68087 106993  1653.53
RI"T/1D0417-55a-T
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3.1, Design and Parametric Analysis, (cont)

prime. A graphical presentation of the engine weights is given in Figure 3.1-28. This is
based on materials choices as indicated in Table 3.1-18. A more conservative materials
choice could add 10% to the totals as given.

Figure 3.1-29 plots the thrust/weight ratio versus engine thrust over
the range of interest. This engine cycle optimizes at about 20K Ibf thrust with a ratio of
28 Ibf thrust for each pound of engine. Another graphical presentation of the same cal-
culations is given in Figure 3.1-30 where engine weight is plotted directly against thrust.
This plot can be used to estimate engine weight at intermediate thrust points.

3.1.3.3 Engine Envelope

The criteria for the nozzle length is an area ratio of 1200:1 with a con-
tour for optimum performance. Aerojet performance programs were used with each
engine thrust, and a common 110% RAO nozzle was found to deliver maximum per-
formance for the 2000 psia chamber pressure and the selected area ratio. The result is a
very large engine. Engine half sections are shown in Figure 3.1-31. Note that the 50K
Ibf thrust engine is 25.4 ft long with the nozzle extended and 13.1 ft long with the radia-
tion cooled nozzle retracted. This is the length behind the aerobrake doors. At the 20K
Ibf thrust it is 106 inches. The impact on the vehicle is serious enough to warrant an
investigation of either mounting the engines where they do not interact with the aero-
brake design or of using an alternative to a conventional nozzle such as a plug cluster.

The engine configuration and nozzle contour for any thrust can be
calculated using the parametric data given in Tables 3.1-19 and 3.1-20. These tables
should be used in conjunction with Figures 3.1-32 which defines the symbols and
lengths in terms of a rocket engine half section.

A summary of the basic study engine dimensions is given in
Table 3.1-21.
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Overall
Engine .
Length |

Engine Half Sections

25.
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35K |

Engine Mounting Plane -

50K Ibt
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N

A

157"

'

35Kj—

50K —Y—

Figure 3.1-31. Change in Engine Length With Thrust
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TABLE 3.1-19

ADVANCED ENGINE DESIGN STUDY ENGINE CONTOUR
NORMALIZED BY THE THROAT RADIUS

Engine Thrust, 1bs 7.5K 20K 25K 35K 50K

Throat Radius, inches, r¢ 0.765 1.25 1.395 1.65 1.97

Parameter (non-dimensional) Normalized Dimensions

Chamber Length, L' 13.73 9.60 9.32 9.09 8.12

Barrel Section Length, Lc 6.81 6.58 6.34 6.14 5.30

Chamber Inner Radius at 6.86 4.80 4.66 455 4.06

the Injector, r¢

Radiused Transition, Barrel 2.0 2.0 2.0 2.0 2.0
to Converging, rj

Radiused Transition, Con- 2.0 2.0 2.0 2.0 2.0
verging to Throat, ry

Radiused Transition, 2.0 2.0 2.0 2.0 2.0
Throat to Nozzle, rq

Nozzle Length, L;, 141.318 141.318 141.318 141.318 141.318

Nozzle Exit Radius, re 34.641 34.641 34.641 34.641 34.641

Angular Relations

Chamber Barrel to 30° 30° 30° 30° 30°
.Converging Section, 9j

Iintial Nozzle Divergence 30 30° 30° 30° 30°
Angle, 6p,

Nozzle Exit, eC 4.90 490 490 490 490

RPT/1X417-552-T 88



TABLE 3.1-20

ADVANCED ENGINE DESIGN STUDY
NORMALIZED NOZZLE CONTOUR*

Nozzle Length/Throat Radius Nozzle Radius/Throat Radius
Station L/r r/ry

1 75 1.2842
2 2.50 2.3357
3 5.00 3.8379
4 7.50 5.340
5 8.459 5.916
6 10.344 7.006
7 12.100 7.949
8 15.727 9.727
9 19.152 11.243
10 23.758 13.089
11 30.096 15.349
12 35.370 17.036
13 41.893 18.927
14 56.310 22513
15 65.471 24.458
16 78.448 26.865
17 103.304 30.589
18 123.367 32.936
19 141.318 L=L, 34.641 r=re

* Engines of any thrust in the 7.5K to 50K Ibf thrust range have the same nozzle
contour.
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TABLE 3.1-21
ADVANCED ENGINE DESIGN STUDY

BASIC ENGINE DIMENSIONS
Thrust, 1bf
Parameter 7.5K 20K 25K 35K 50K

Throat Radius, inches, ry 1.53 2.50 2.79 3.30 3.94
Throat Area, inch? 1.84 4.89 6.12 8.54 12.18
Chamber Diameter, inches 7.64 9.80 10.92 12.89 15.40
Contraction Ratio Geom. 249 153 15.3 15.3 15.3
Baffle Cross-Section Area, inch2 14 26 32 45 64
Contraction Ratio Less

Baffle Area 17.3 10 10 10 10
Chamber Length, L', inches 10.5 12 13 15 16
Nozzle Exit Area, inch? 2208 5868 7344 10,248 14,616
Nozzle Exit Diameter, inches 53. 86.44 96.70 114.73  136.42
Nozzle Area Ratio 1395 1200* 1200* 1200* 1200*
*Assumes € = 1200 is fixed
RPT/DOA17-55a-T 91



3.2 ENGINE REQUIREMENT VARIATION STUDIES

The first of the two variations from the engine baseline was to look at an
extended throttling range. With the new program emphasis on engine capability for
missions within Project Pathfinder, there is a requirement for a throttling main engine to
land a vehicle on the moon, Phobos, or Mars. The exact throttle engine range needed is
a function of the number of engines in the set and the g-load requirements of the
vehicle/maneuver. For this subtask the Apollo mission g-load were used and the thrust
selected, after considerable coordination, was 20,000 1bf/ engine with a four engine set.
The throttle range was 20:1 versus 10:1 on the baseline. No throttle rate was given
although this is recognized as an important number for mission planning.

The second variation from the baseline engine requirements was an investi-
gation of the effects of high mixture ratio (MR > 7) operation on the engine design. The
reason for this investigation is the possibility of using oxygen mined from Lunar rocks
as a propellant. For this portion of the study, a high MR operating point of MR = 12 + 1
was investigated.

A summary of the engine design parameters used for the variation study is
given Table 3.2-1. The basic mechanical design of the engine is unchanged but the high
mixture ratio study evaluated platinum alloys for the baffle plates as well as the base-
line NASA-Z material.

321  Design for 20:1 Throttling

3211 Component Design

The turbopump design points for the 10:1 throttling engine were
selected using worst case design conditions at a chamber pressure of 2300 psia and mix-
ture ratio 7 (oxygen TPA) or 2000 psia and mixture ratio 5 (hydrogen TPA). Flowrates
were calculated based on flow at these conditions plus 5% for autogenous tank pressur-
ization. See Section 3.1.1 for the 10:1 throttling engine baseline. For the 20:1 throttling
case a single design point at a nominal thrust of 20,000 1bf was calculated.

A normalized performance chart for this TPA is given as
Figure 3.2.1-1. This performance curve is applicable to a single stage for either TPA.

RI'T/1XM41755a/32-3.8 92



TABLE 3.2-1
STUDY BASELINE - ENGINE REQUIREMENTS VARIATION

Parameter, dimension 20:1 Throttling High Mixture Ratio
Engine Thrust, Ibf (Nominal) 20,000 TBD
Specific Impulse, Ibf-sec/Ibm 484 Varies
Mixture Ratio Range 5107 7t 13
Chamber Pressure, Pc, psia, (Nominal) 2000 TBD
Maximum Gas Side Wall Temp., Thrust
Chamber, °F 1050 1050
Baffle Plate Maximum Wall Temp., °F
* Copper (NASA-Z Alloy) 1050 1050
¢ Platinum (pure or 10% Rhodium) 2000 2000
Oxygen TPA Turbine Inlet Temp., °F 400 400
(Maximum)
Chamber/Baffle Hydrogen Flow Split, % 30 to 70 30 to 70
Turbine Bypass Minimum Flow, % 10 10
Regenerator Bypass Minimum Flow, % 25 25
LOX/GHz HEX Bypass Minimum Flow, % 10 10
Fuel Idle Valve Range, % of Hz Flow 0to 10 0to 10
Regen Cooled Chamber Material NASA-Z NASA-Z Copper,
(for Property Data) Copper Gold Plated
Oxygen Cooled Nozzle Material NASA-Z NASA-Z Copper,
(for Property Data) Copper Gold Plated
Regen Chamber Inlet Area Ratio, & 28:1 28:1
Oxygen Cooled Nozzle Inlet Area Ratio, € 351 351
Oxygen Cooled Nozzle Exit Area Ratio, € 600:1 600:1
Chamber Internal Diameter, inches 9.8 9.8

RPT/D0417-55a-T 93



TABLE 3.2-1
STUDY BASELINE - ENGINE REQUIREMENTS VARIATION

(CONTINUED)

Parameter, dimension 20:1 Throttling  High Mixture Ratio
Chamber Contraction Ratio, Ajnj /At 15.3:1 15.3:1
Radiation Cooled Nozzle Area Ratio, 1200:1 1200:1
Ae/ A (e)
Nozzle Contour

e Toeg=35 27° Angle 27° Angle

_ Rao, Optimum Rao, Optimum

e Toe=1200 Bell Bell

Regen Channel Geometry in Throat 011" x .083" Depth 011" x .083"
Depth

Channel Land Width in Throat, inches .010 .010

RI'T/D0417-55a-T
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3.2, Engine Requirement Variation Studies, (cont)

Note that the speed ratio lines (N/N design) have a negative slope
from Q/Q design = 0 throughout the operating range. This characteristic was
considered necessary to avoid low speed stall and other instabilities. The predicted
engine throttle line is also plotted on this figure for reference. The stall line for this TPA
design falls on the Y-Axis. Cavitation performance can be inferred from Figure 3.2.1-2
where head loss is plotted against suction specific speed.

The concern in designing for 20:1 throttling was the TPA
performance at low chamber pressures. The design point was selected to assure stable
pump performance at the low speeds corresponding to a 100 psia chamber pressure.
This changed the top end performance, in particular, the overthrust capability. The
selected TPA design points given in Table 3.2.1-1 will only give a 5% overthrust
capability at MR = 7. Broad band performance is traded for low speed controllability
and stability. The engine operating envelope is depicted in Figure 3.2.1-3.

With a wide throttling range it is important to consider injector low
frequency combustion stability or "chug". Tests of the I-Triplet injector have shown
stability over a range representative of the 20:1 in this study. Appendix C includes a
discussion and test reference for "chug" stability.

Extended operation at the low throttle limit is dependent on the
chamber and baffle temperatures at equilibrium. With NASA-Z /Narloy-Z chamber
liner and baffles, the maximum operating temperature is 1050°F based on material heat
treated at 1700°F for 2 hours with aging at 900°F for 4 hours. A stress versus temper-
ature plot for the Narloy-Z material is given as Figure 3.2.1-4. The design allowable
0.2% yield strength curve was added to the Rockwell chart. There will be a gradual
reversion to annealed properties at 1050°F that will set a life limit for the chamber. The
desired normal operating temperature limit is 900°F.

The chamber at the 20:1 throttle down point should be designed not
to exceed 900°F. With platinum baffle plates this is readily accomplished by biasing the
hydrogen flow to the chamber and letting baffle temperatures reach 2000°F. With cop-
per baffles, the recourse is to reduce the chamber length. This shortens the hydrogen
flow path and transient time. It also reduces the enthalpy pickup of the hydrogen that
is needed at nominal thrust., Figure 3.2.1-5 shows the hydrogen circuit enthalpy pickup
required for the nominal thrust condition for each of the three active components:

r
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TABLE 3.2.1-1

ADVANCED EXPANDER ENGINE TURBOPUMP DESIGN SPECIFICATION

Engine Conditions
Rated Thrust, F, 1bf
Throttle Range

Chamber Pressure, Pc, psia
Overthrust Pc, psia
Propellant
Propellant Inlet Temp., °R
Propellant Inlet Pressure, psia
To Low Speed Boost Pumps**
To TPA's

Pump Conditions

Propellant Density

Shaft Speed

Total Discharge Pressure
Total Suction Pressure
Total Pressure Rise

Total Head Rise (cavitating)
Weight Flow

Capacity

Specific Speed (Based on
Cavitating Head)

Efficiency

Fluid Horsepower

Shaft Horsepower

Net Positive Suction Head
Suction Specific Speed

INLET DIA.
DISCHARGE DIA.

Q/N
AH/N?

RPT/1X417-550-T

Value Fuel
20,000
20:1
2,000
2,300*

LH>

38

20

50

Dimensions Fuel

Ib/ft3 4.42

rpm 150,000

psia 4,650

psia 50

psi 4,600

ft 138,231

Ib/sec 5.903

gpm 599.4

rpm x %gml/ 2

ft 1,448

% 65

h.p. 1,483

h.p. 2,279

ft 1,792

rpm x g/gm1 /2

ft 1 13,334

in. TBA

in. 2.44

3.993 x 10-3

6.144 x 106

98

Oxidizer

LOX
163

15
50

Oxidizer

71.2
55,230
4,650
50
4,600
9,313
35.42
223.3

1,464
68
600
881
111

24,133

TBA
2.44
4.043 x 103
3.053 x 10-6



TABLE 3.2.1-1

ADVANCED EXPANDER ENGINE TURBOPUMP DESIGN SPECIFICATION

(CONTINUED)

Turbine Conditions Dimension Fuel Oxidizer
Gas GHz? GO?
Shaft Power h.p. 2,349 908
Gas Mass Flow Ibm/sec 5.31 31.9
Gas Inlet Total Temperature °F 770 400
Pressure Ratio 1.67 2.1
Slatic Back Pressure psia 2,460 1,920
Shaft Speed rpm 150,000 55,230
Efficiency % 80 80
Gas Inlet Total Pressure psia 4,109 4,038
Nozzle Area (effective) in.2 0324 0.414
Specific Heat BTU/Ib°R (1) (2)
Specific Heat Ratio (N (2)

Gas Constant ft/°R (1) (2)
Diameter, Mean in. 2.77 2.42

REFERENCE

(1) Hydrogen — NBS Technical Note 617 April 1972

(2) Oxygen

»

— NBS Technical Note 384 July 1971

The design point was based on a 15% overthrust rating. The power balance did not
confirm this as a viable operating point. The TPAs are slightly overcapacity using
this design point.

** Refer to the engine schematic in Figure 3.1-1 for the relationship of the low speed

boost pumps to the high speed TPAs.
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3.2, Engine Requirement Variation Studies, (cont)

hydrogen regenerator, regeneratively cooled chamber, and hydrogen cooled baffles. At
the 20K Ibf thrust level the regen jacket input is very important. Reducing the enthalpy
input in the jacket would require more energy extraction at the regenerator with a con-
sequent increase in its size and weight. This can be one of the penalties for a wide
throttle range.

For reference, the enthalpy pickup plot for the oxygen circuit is
given in Figure 3.2.1-6 The oxygen picks up about 2/3 of its enthalpy increase in the
HEX with the balance acquired in the oxygen cooled nozzle. The enthalpy increase per
pound is substantially lower than for the hydrogen, but the oxygen flowrate is six
pounds per pound of hydrogen at nominal conditions. There is some interplay in HEX
and regenerator sizing. The regenerator must increase in size if more energy is
extracted from the incoming hydrogen from the turbopump turbine by the HEX. The
regenerator has lower delta temperatures for heat transfer. During throttle down
operation, all components are effectively “oversized”. The regenerator and HEX bypass
valves will be bypassing most of the hot hydrogen flow around these components.

3212 Power Balance at 20:1 Throttling

A power balance was run at a chamber pressure of 100 psia to eval-
uate the engine operation when throttled 20:1. Results are given in Table 3.2.2-1. The
actual throttle ratio at this point is 20.67:1 and predicted specific impulse is 453.7 Ibf
sec/lbm. This represents a decline of 30.6 Ibf-sec/lbm from the 484.3 Ibf-sec/lbm at
20,000 Ibf thrust. Losses come from a small decrease in mixing efficiency but mainly
from boundary layer losses. The thrust chamber is no longer optimum size at the
throttle down conditions.

Temperatures are within the design limits. Note that the hydrogen
out of the regen cooled chamber is at 587°F and out of the baffles it is at 653.7°F.
Maximum wall temperature with a 50/50 hydrogen split from the proportioner valve
(assumed by the power balance) is 1030°F for the regen cooled chamber and 810°F for
the baffle. The proportioner valve split should be changed to better optimize these
temperatures, but they are still within design limits.

RPT/DOA17552/3.2-3 8 103
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Table 3.2.2-1

Engine Power Balance
At 20:1 Throttle Down Condition

Delta P
T

H

Rho in

Rho out
CdA

Ett
Eff

(hyd)
{mah)

Pout
Delta P
Tin
Tout
Deilta T
Hin
Hout
Rho in
Rho out
Qdot
Wdo t

.00
.80
.38

(pslina)
(deg R)
(BTU/ )

(#/cuft)

= 10.00000

37.
-117.
4.34
4.34

(BTU/?)
(#/0utt)
(#/cutt)

(in"2)

188.
3.
43 .44

4.3349

4.1748
0.320
0.301
1.000

17529 .54

8.97

(deg R)
(Ib/tt3)
(1b/¢13)
(Iib/sec)

(rpm)
(HP)

.0018889 (gpm/rpm)

+
OTV ENGINE POWER BALANCE
+
Oxidizer |
+
579.70 (in/deg R) | R
+
18.00 (psia) | Pout
162.70 (deg R) | Tout
-87.17 (BTU/¢) | Hout
71.17 (#/cuft) | Rho out
+
= 15.00 (psia) | Pin
- 16.00 (psia) | Pout
= 0.00 (psit) | Delta P
= 162.70 (deg R) | T
= -57.17 (BTU/#) | H
71.17 (#/cuft) | Rho in
71.97 (#/cuft) | Rho out
8.03000 {Iin"2) | CdA
+
16.00 (psia) | Pin
137.88 (psia) | Pout
162.70 (deg R) | Tin
164.37 (deg R) | Tout
71.17058 (ib/tt3) | Rho in
70.9994 (Ib/1t3) | Rho out
1.919 (Ib/sec) | Waot
0.360 | Et? (hyd)
1.000 | Etf {mch)
7361.48 (rpm) | N
2.34 (HP) | HP
-00168438 (gpm/rpm) | Q/IN
+
= 137.85 (psia) | Pin
= 123.20 \psia) | Pout
- 14.486 (psi) | Deita P
= 164.37 (deg R) | Tin
= 184.37 (deg R) | Tout
= 0.00 (deg R} | Detta T
= 56.30 (BTU/#) | Hin
= -68.30 (BTU/#) | Kout
71.00 (#/cuft) | Rho In
71.00 (#/cuft) | Rho out
0.00 (BTU/s) | Qdot
- 1.92 (#/se0) | Wdot
| % bypass
+
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23.
-97.
122,
4.17
0.58
28,41
0.12
25.00

(BTU/#)
(BTU/#,
(#/cult)
(¢/cult)
(BTU/s)
(#/0ec)



Table 3.2.2-1
Engine Power Balance
At 20:1 Throttle Down Condition (Cont.)

............. ‘.........-...-.-..------.--------}---.-----.------.--------------+
OTV ENGINE POWER BALANCE Page 2 |

............. 4.,.....---....-.----~...--------+--.-------’-~------------------+
| Oxlidizer | Fuel |
............. *...............-------...-V----+----.--.-------.-----------.---+
} | Pin = 156.68 (psin) |

Regen | | Pout = 143.92 (peia) |
Jackst | | Delta P = 12.78¢ (psl) |

| ] Tin = 43 .44 (deg R) |

| | Tout = 1043 .44 (deg R) |

| | Deita T = 1000.00 (deg R) |

{ { Hin = -97.36 (BTU/#) |

| | Hout = 3662.64 (BTU/¢) |

| | Rho in = 4.17 (#/cuft) |

| | Rho out = 0.03 (#/cuft) |

| | Wdot = 0.18 (#/sec) |
............. e R R
| | Pln = 158.27 (psia) |

Baftles | | Pout = 148.74 (psla) |

| | Detta P = 7.53 (psl) |

| | Tin = 57.31 (deg R) |

| | Tout = 1113.31 (deg R) |

{ | Detta T = 1056.00 (deg R) |

| | Hin = 87.74 (BTU/#) |

| | Hout = 3805.88 (BTU/#) |

| | Rho In = 0.99 (#/cutt) |

| | Rho out = 0.03 (e#/cuft) |

| | Wdot = 0.16 (#/sec) |
------------- +-------A..-.----.--.--.--------4...,....._..-.....;...-.........-+
| Pin = 123.20 (psia) | |

Ox | Pout = 123.12 (pesia) | t
Nozzle | Delta P = 0.08 {psi) | i
Cooling | Tin = 184.37 (deg R) | ]

| Tout = 540.70 (deg R) | ]

| Delta T = 376.33 (deg R) | |

| Hin = -56.30 (BTU/#) | {

| Hout = 116.687 (BTU/#) | |

| Rho in = 71.00 (#/cuft) | |

| Rho out = 0.66 (#,/cuft) | |

| wdot = 1.92 (#/sec) | {
------------- ’--------.-----»-----a----.-..--’-------......«..-.--........-...
|

]

!

!

|

|

|

............. T T T T T T L T I I IR NP R A R R R e

106



Table 3.2.2-1
Engine Power Balance
At 20:1 Throttle Down Condition (Cont.)

............. e e e e e e e et e e e e e e
OTV ENGINE POWER BALANCE Page 3
............. L T T T T T
| Oxidizer ] Fuel
............. T T
| Pin = 123.11 (psia) | Pin 143 .92 (psia)
Turbine | Pout = 111.92 (psia) | Pout = 128.31 (psla)
Conditions | Wdot = 0.988 (ib/sec) | Wdot = 0.129 (lb/sec)
| Tin = $40.70 (deg R) | Tin = 1078.38 (deg R)
| Tout = B532.90 (deg R) | Tout = 1004.34 (deg R)
| Hin = 118.67 (BTU/#) | Hin = 3884.19 (BTU/#)
| Hout = 116.00 (BTU/#) | Hout = 3835.02 (BTU/#)
| Rho In = 0.88 (#/cutt) | Rho in = 0.02 (#/cuft)
| Rho out = 0.83 (#/cuft) | Rho out = 0.02 (#/cuft)
| Etf - 0.832 | Ett = 0.408
| WP = 2.33 (HP) | WP = 8.95 (HP)
{ PR = 1.100 (Pin/Pout) | PR = 1.122 (Pin/Pout)
| U/Co = 0.208 (fps/tps) | U/Co = 0.088 (fps/fps)
| Whee! dia = 2.542 (in) | Whee! dia = 3.080 (in)
| %bypass = 48.04 | % bypass = 59.74
............. e e e e e e e e e e e
| | Pin = 128.31 (psla)
Hot | | Pout = 127.31 (psia)
Side | | Delta P = 1.00 (pst)
Hea't | | Tin = 1072.79 (deg R)
Exchanger } | Tout = 1072.79 (deg R)
[ | Detta T - 0.00 (deg R)
I | Hin = 36084.45 (BTU/#)
] | Hout = 3864.45 (BTU/#)
| | Rho in = 0.02 (#/cutt)
| | Rho out = 0.02 (#/cuft)
| | Qdot = 0.00 (BTU/!s)
| | Wdot - 0.23 (#/sec)
[ | % bypass = 25.00
............. L
| | Pin = 127.31 (psia)
Gas ] | Pout = 125,61 (psia)
81ide | | Detta P = 1.80 (psl)
Regenerator | | Tin = 1072.79 (deg R)
| | Tout = 1047.88 (deg R)
i { Delta T - 24.91 (deg R)
| | Hin = 3884.458 (BTU/#)
| | Hout = 3876.42 (BTU/#)
| } Rho in = 0.02 (#/cuft)
i | Rho out = 0.02 (#/cuft)
1 | Qdot = -26.41 (BTU/s)
| | wdot = 0.30 (#/sec)
............. 4...--.....---.-.----...---...--*....-».-..--.....---.----------
| Pin = 111.02 (pesia) | Pin = 1285.681 (psia)
injsctor | Pout = 100.07 (pela) | Pout - 99.87 (psia)
| Tin = 538.74 (deg R) | Tin = 1047.88 (deg R)
| Rho in = 0.62 (#/cuft) | Rho in - 0.02 (#/cuft)
] Rho out - 0.58 (#/cuft) | Rho out = 0.02 (#/cutt)
| Wdot = 1.827 (1b/sec) | Wdot = 0.305 (Ib/sec)
| Orop = 11.88 (psia) | Drop - 25 .64 (psila)
| CdA = 1.0890190 (in~2) | CaA = 0.67923 (tn"2)
............. *......------.----.------.------*------.------------.-----------
Combustion | PC = 100.00 (paia) MR - 6.00 (O/F)
Chambe s | DPcc - 0.18 (pslia) Wdo! - 2.13 (Ib/sec)
| ERE - 1.000 Dthroat - 2.500 (in)
| F = 887.20 (ibt) lsp = 483.68 (sec)



3.2, Engine Requirement Variation Studies, (cont)
3.21.3 Conclusions

The baseline engine design readily accommodates 20:1 throttling
with only a shift in the turbopump operating points through the control of the
hydrogen and oxygen back pressure valves (Figure 3.1-1) to assure stable low speed
performance and control. Thermal margins are adequate for unrestricted operation at
the throttle down condition. The penalties for 20:1 throttling versus 10:1 throttling
come in top end engine overthrust capability as usable overthrust is reduced to 21,000
1bf from 23,000 Ibf for the nominal 20,000 1bf thrust engine. There seems to be no
significant effect on engine weight or life.

3.2.2 High Mixture Ratio Operation

The ground rules for the high mixture ratio subtask were:

1) The engine design defined for the 20:1 throttling variation is to be
used for the high MR variation without major component changes.

2) Throttle ratio at high MR need not be as great as at nominal MR.
3) Maximum thrust could be below the nominal for MR = 6.

4) A thrust/MR combination is within the operating envelope if it is
capable of continuous operation without violating thermal design limits.

5) Oxygen flowrates above the oxygen TPA design point were not
considered in the operating envelope (oxygen side limitation).

6) Hydrogen flowrates through either the regen cooled chamber or
baffle plates that were insufficient to keep the gas side wall temperature below design
limits (1050°F wall, 800°F throat) are outside of the operating envelope. (Hydrogen side
limitation).

7) Any high MR region where control instability is encountered is
outside of the operating envelope. (There were insufficient hours available in the pro-
gram to evaluate high MR control stability).
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3.2, Engine Requirement Variation Studies, (cont)

In essence, these groundrules say that the engine used for nominal
MR operation must be used for high MR operation without any design change or
special modification. One of the gratifying results of this analysis was the confirmation
that the engine operating envelope includes operation up to MR = 10 with copper baffle
plates, and to MR = 13 with platinum baffle plates. (See Figure 3.2.1-3). The operating
envelope is unusually expanded for a rocket engine.

3221 Thrust Chamber Life at High Mixture Ratios

A hot copper surface (>600°F) will rapidly oxidize in the presence of
even small amounts of free oxygen. Chamber life becomes a major issue at any MR
approaching stoichiometric (MR = 7.94) or higher. For instance, at MR = 10, atomic
oxygen is present in the combustion gases at 1.6 volume percent (chamber pressure =
3000 psia, gases at chemical equilibrium). The small diameter of the oxygen atom
allows it to diffuse into the metal lattice where it reacts with a copper atom to form
copper oxide. During subsequent operation where the MR = 7 and Pc = 3000 psia, there
will be 2.7 volume precent atomic hydrogen that diffuses into the copper surface where
it will reduce the copper oxide to elemental copper and form water vapor. Later
thermal cycling and water coalescence can generate water bubbles with internal
pressures of 200,000 psia. Grain boundaries are enlarged, and cracks and blisters are
formed in the surface of the metal. (See References 9 through 11, and Figure 3.2.2-1 for
photomicrographs).

Chamber Blanching

The progressive oxidation/reduction reaction described above
leaves visual effects on a copper chamber wall that have been termed “blanching” due
to the whitish, new-copper penny appearance. Blanched surfaces are commonly
interconnected by subsurface “wormholing,” severe interconnected porosity, and cracks
running parallel to the coolant flow passages. Surface roughness of 300 microinch CLA
(Center Line Average) is common. Blanched areas have indicated surface temperatures
on the order of 1988°F with substrate temperatures greater than 1700°F. Structural
properties of all common copper alloys (NASA-Z, OFHC, ZrCu, etc.) are severely
degraded at such temperatures. Blanching can progress until the thrust chamber fails
due to crack penetration of coolant channels and subsequent chamber burn through.
See Figure 3.2.2-2.

RET/DO17 5523238 109



ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

Mag 2000X

The TGA Specimen Exposed to a Reducing Environment Shows a
Reasonably Smooth, Undulating Surface (Top), While an Oxidized
Specimen Shows a Granular Surface (Bottom)

Figure 3.2.2-1. NARloy-Z Exposed to Oxidizing/Reducing Environments
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3.2, Engine Requirement Variation Studies, (cont)

The high surface temperatures are due to the porosity and increased
surface roughness which decreases the material thermal conductivity due to the loss of
contact at many points. Photomicrographs of a blanched surface are given in
Figures 3.2.2-3 and 3.2.2-4 where the increase in roughness is apparent. The combi-
nation of increased wall temperature, reduced structural integrity and degradation of
material properties over several cycles leads to cracking. Strain is an effect of blanching,
not a cause. Refer to Reference 11 for an in depth discussion of the phenomenon as it
relates to rocket engine chambers.

Another chamber concern is the progressive imbalance in the oxy-
gen/hydrogen momentum ratio at the “I”-triplet element as mixture ratios increase.
One of the objectives of Contract NAS 3-23772 Task C.4 is to improve the ele-
ment/chamber wall compatibility by tailoring the momentum ratio and hydrogen
impingement pattern. Reduced hydrogen flow restricts the effectiveness of this element
tailoring by greatly increasing the momentum ratio. At high MRs the oxygen rich
stream will have more wall contact than at lower MRs. In short, element/wall
compatibility degrades while the oxidizing potential of the gas stream increases. This is
of particular concern in the portion of the chamber within 2 or 3 inches of the injector
face. Careful design of the injector hydrogen face bleed openings protect the face of the
injector and the first inch or so of the chamber and baffle walls, but element
optimization is considered the best means of assuring injector/chamber compatibility.
The next best solution is to prevent blanching from occurring despite some element
asymmetry.

Blanching Prevention

Preventive measures tried to date include 1) surface smoothing, 2)
wall temperature reduction, 3) reducing oxygen concentration at the wall, and 4) pro-
tective surface coatings. The SSME Narloy Z chamber is refurbished after blanching
becomes evident by mechanically smoothing the surface by a combination of peening
and grinding. This reduces surface roughness and porosity, but is limited in application
as material is removed each time it is done. It also requires engine disassembly and is
manhour intensive. The second method, wall temperature reduction, depends on chan-
nel cooling that will keep the wall temperature at or below 600°F. This may not be prac-
tical, and may be ineffective as coolant channel deposits form or injector element
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BLACK AND YriTe vHOTOLRAPH

Tested at 1100°F, MR = 10, 300 psi, Oo/H5 Cycle

a) Cu-Skin
b) Indication of Blanching on Cu -Skin
c) Oxide Layer Beneath Cu Skin

Figure 3.2.2-3. Uncoated NASA-Z Cylinder After Oxidation and Reduction Test
Cycle-26 Slot Area (1.8% Strain)
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Tested at 1100°F, MR = 10, 300 psi, O5/H5 Cycle

a) Cu Skin
b) Indication of Blanching on Cu Skin
¢} Cu Skin and Oxide Layer Underneath

Figure 3.2.2-4. Uncoated NASA-Z Cylinder After Oxidation and Test —
Center Area (>2.7% Strain)

114



3.2, Engine Requirement Variation Studies, (cont)

asymmetries lead to higher wall temperatures. The third method would require
hydrogen film cooling for the complete chamber or operation at mixture ratios below 7
for all phases of engine operation (no oxidizer lead or tailoff). This compromises engine
operating flexibility. The last option is to apply a thin non-oxidizing coating to the cop-
per surfaces. This was the method selected by Aerojet.

An evaluation of the gas species distribution over the engine
mixture ratio range (see Figure 3.2.2-5) shows that atomic and molecular oxygen in a
fully mixed combustion gas stream increase rapidly above MR = 6. At MR =13
molecular oxygen is second only to water vapor among the species present. An engine
expected to operate at high MR must cope with the hot oxygen present. The use of a
nonoxidizing coating or a noncopper alloy chamber liner must be considered. The
results of the MCA program (Reference 11) show that such coatings are practical.

The MCA investigators tested three coatings: nickel aluminide,
nickel, and gold. Two types of nickel aluminide were deposited on copper test articles
by a gas diffusion process. The coatings were bomb tested, checked for oxidation resis-
tance at high temperature and oxygen concentration, and then subjected to bend tests.
The nickel aluminide protected the copper surface from blanching but suffered some
tensile cracking in the bond test. The nickel was brush plated on the copper test articles
and tested. There was no cracking or spalling but many pin holes were observed in the
material and, on sectioning, many transverse subsurface cracks had formed in some
specimens. It was concluded that an effective nickel plating technique would require
some development time.

The gold coating was excellent in all respects when gold plating was
done on a 30 millionths thick nickel strike. Without the nickel strike there was a void
formation, typically called Kirkendall voids, due to the gold propensity to diffuse into
the copper surface. After reviewing the discussion in the MCA report (Ref. 11) the
Aerojet team has no reservations in recommending the gold plating as the method of
choice for preventing blanching of the copper chamber. This is cheap enough
protection to baseline it for the engine design even if high MR operation is not an
operational requirement.

RPT/1X041755a/3.2-3.8
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3.2, Engine Requirement Variation Studies, (cont)
3.22.2 High Mixture Ratio Performance

For a constant propellant mass flow rate engine thrust will vary with
specific impulse:

F=Ispm Where F = Thrust

Isp = Specific Impulse

and: M = Propellant Flowrate
Fu_Ispe@12
F, Isp@é6

Subscripts Refer to Mixture Ratio

but: T = Absolute Temperature of Combustion

Isp @12 ,« T/ Ag.GasMolWt. @12
Ep@6 T¢/ Ag.Gas MOlWt@6

The baseline OTV Engine operated at MR = 12 and maximum oxy-
gen flowrate should produce about 81% of rated thrust. A more extensive and more
rigorous presentation of engine performance change with mixture ratio is given in
Figures 3.2.2-6, 3.2.2-7, and 3.2.2-8. Figure 3.2.2-6 is for the 7.5K thrust engine baselined
under the current OTV engine contract. All 3 charts have a family of curves for
chamber pressures between 100 psia and 2000 psia. This represents a throttling range of
20:1. These are theoretical performance predictions and it should not be assumed that
an engine can operate over the entire charted range. Figure 3.2.2-7 is the performance
prediction for a 20K Ibf thrust engine, and Figure 3.2.2-8 is the chart for a 50K Ibf thrust
engine. Note that there is a slight performance improvement for the higher thrust cases
atany given MR and chamber pressure. At MR =12 and Pc = 2000 psia the specific
impulse is at or slightly above 400 seconds. This is 83% of specific impulse at MR = 6
which confirms the simpler analysis based on combustion temperature and gas molec-
ular weight changes.
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3.2, Engine Requirement Variation Studies, (cont)

These delivered performance predictions assume a 100% energy
release efficiency (ERE) is attained. This is not an unreasonable assumption based on I-
triplet element efficiency and the mixing afforded by a chamber length greater than 10
inches. Baseline performance for the 7.5K and 20K, and 50K Ibf thrust engines (MR =6,
Pc = 2000 psia, E = 1200) measured in delivered specific impulse (Isp) is expected to be
483:1, 487.3, and 485.2 Ibf-sec/lbm, respectively. The Isp loss in throttling down from
2000 to 100 psia chamber pressure is 30 to 45 1bf-sec/Ibm. The loss in Isp by going to
high mixture ratio is much greater, and can only be justified by the economies realized
by using oxygen recovered from lunar material.

Under the guidelines for the high MR study, engine thrust could
vary from the nominal at MR 6 + 1. Power balance runs over the full MR range used a
maximum oxygen turbopump capacity as one of the limiting parameters. The design
point for the oxygen turbopump was set at the flow condition for MR =7, Pc = 2300 psia
on the assumption that this was a realistic operating point (15% overthrust). This was
the design point in the 7.5K Ibf engine preliminary design. For a nominal 20,000 Ibf
thrust engine this is a flow of 43.66 Ibm/second of oxygen. The design flowrate
includes an additional 5% for autogenous tank pressurization. The lower curve in
Figure 3.2.2-9 plots oxygen flow to the injector. This curve flattens at MR =9 as it
reaches LOX TPA rated capacity. The upper curve in Figure 3.2.2-9 plots thrust versus
MR and shows an engine thrust peak at slightly above MR = 8 (near stoichiometric). At
higher mixture ratios thrust falls off rapidly. The engine cycle does balance at MR = 13,
however. An interesting result of this analysis is that engine thrust loss at high MR
does not become a concern until MR > 10. Actual maximum engine thrust is attained at
MR = 8.3 where an overthrust of 21,200 1bf is reached.

The baseline regen cooled chamber and baffle plates were evaluated
extensively at MR = 12 for their thermal performance. The evaluation was done at two
chamber pressures: 2000 psia and 1500 psia. Later power balance work showed that
2000 psia was not attainable for MR = 12 operation while the actual maximum was
about 1550 psia. The analysis also evaluated both NASA-Z and platinum baffle plates.
Results of the 2000 psia analysis are given in Figures 3.2.2-10 and 3.2.2-11. With the
hydrogen regenerator preheating hydrogen to the baffle plates (Tin. = 499°F) the
NASA-Z or Narloy baffle wall temperature is above the thermal limit for all settings of

RPT/DO41755a/32-3.8
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3.2, Engine Requirement Variation Studies, (cont)

the flow proportioner valve. A platinum baffle, however, is well within design
capability at proportioner valve settings where the chamber is also below thermal
design limits. The next chart, Figure 3.2.2-12, assumes the regenerator is not used at all
and hydrogen enters both the chamber and baffles at 90°R. For this case, the optimum
proportioner valve setting has 54% of the hydrogen flow going to the chamber, and the
copper alloy baffle is adequate. A platinum baffle would provide more margin as
indicated on the plot. Figure 3.2.2-13 gives the actual bulk temperature rise where
Figure 3.2.2-10 gave the actual maximum wall temperature.

Design margins and engine life are set by the hot gas side wall tem-
peratures, but the engine power capability is a function of the bulk temperature rise of
the hydrogen in the channels. This is presented in Figures 3.2.2-14 and 3.2.2-15 for
various settings of the hydrogen proportioner valve and MR = 10. A design goal for
continued development of this engine would be to optimize the sum of the enthalpy
gains by adjusting chamber and baffle geometries as well as the proportioner valve
setting.

One issue that has to be addressed in the design is the equalization
of pressure drops over the two parallel hydrogen circuits. Figure 3.2.2-16 shows the
pressure drops for various settings of the proportioner valve. Two possible solutions
are to 1) increase the velocity and pressure drop in the baffle circuit by restricting the
channel size, and 2) orificing the baffle outlet circuit before it mixes with the regen
chamber outlet to increase pressure drop. The criteria is to equalize the pressure drops
downstream of the proportioner valve with circuit elements. Otherwise, they will
equalize hydrodynamically and, in effect, change the flow distribution from that
desired and commanded at the proportioner valve.

3.22.3 Chamber and Baffle Wall Temperature Limits

A high mixture ratio implies a reduced hydrogen flow rate for this
design study. This is shown in Figure 3.2.2-13 where hydrogen flowrate to the TPA
(which includes 5% autogenous pressurization flow) is plotted against mixture ratio at
the condition of maximum engine thrust for that mixture ratio. The maximum thrust
condition is determined by an iteration process during the power balance, and has small
errors that cause the curve as plotted to have some minor inflections. It should be a
smooth curve.

RPT/1X0417.554/3.2-3.8 1 2 5
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Hydrogen Temperature From Cooled Chamber and From Baffles, °F
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3.2, Engine Requirement Variation Studies, (cont)

As hydrogen flow is progressively reduced, the velocity through the
chamber slows and the residence time of the hydrogen in the heated channels increases.
The result is a bulk temperature rise at lower flow rates. This is shown in Figure 3.2.2-
13. The thermal control limits set in the power balance program correspond to a maxi-
mum throat hot gas side wall temperature of 800°F (1259.6°R), a chamber wall temper-
ature near the injector face of 1050°F (1509.6°R), and a baffle gas side wall temperature
of 1050°F for copper alloy baffles. A platinum baffle would increase the allowable wall
temperature to 2000°F (2459.6°R). The plots as shown in Figure 3.2.2-13 are for copper
alloy chamber and baffles, but hydrogen baffle outlet flow temperature would be little
changed if platinum were used as the lower thermal conductivity of platinum compen-
sates for the higher hot gas side wall temperature. This indicates that actual enthalpy
pickup is relatively independent of the material selected and the use of platinum does
not compromise performance capability.

The design concern is the chamber maximum wall temperature. At
mixture ratios above 10 the wall temperature begins to exceed the design limit of 1100°F
for the NASA-Z material. If the hydrogen proportioner valve is adjusted to route more
hydrogen to the chamber circuit, the baffle temperature increases. This relationship is
shown in Figure 3.2.2-15. Note that the crossover point is at a proportioner valve setting
of 0.52 flow fraction to the regen chamber for the copper chamber and baffle. If plat-
inum baffles are used, the proportioner setting can be increased, reducing chamber wall
temperature. This relationship between the two circuits establishes an important design
limit. At any mixture ratio up to 10, copper baffles give adequate design margin. At
mixture ratios from 10 to 13 a platinum baffle would have to be used to keep the regen
chamber temperature within design limits. The platinum baffles would also improve
engine life at lower mixture ratios as the operating point could be biased towards lower
chamber temperature.

Similar plots are given in Figures 3.2.2-17, 3.2.2-18, and 3.2.2-19 for
the 1500 psia chamber pressure condition. Again, the platinum baffle allows for a lower
regen chamber maximum that should improve engine life. Note in Figure 3.2.2-18 that
there is some separation of the curves for the copper versus the platinum baffles where
hydrogen bulk temperature rise is evaluated. This discrepancy can be readily evened

RI'T/DM17 553/32.38 131



Z1 = uW ‘eisd 005 1= °d 10j aumesedwey jlepm wnwixey auibul ‘21-g-2'c .nbid

IoquIey) UIFay 03Ul UOI}OeI] MO[]
. 90 G0 v'0 €0

) U U S U U WY VN U U A ON N U B B OA B O B S O B A A e
-+ 00V

-— — e -

|
i
|
IIIIIIII B I N 009
|
|
|

I o
o
Q
o

0001t

(1) sanyeradurgy,

: a13jed :
! “ wnur}e[d _

132



Z1L = HW “eisd oS = 24 403 aamesedwa) uaboipAH winwixew auilbug "gL-g'2'¢ ainbidy

Iaquaey) Uagay 03Ul UOIjoerl] MO[Y

L0 90 G0 0 ¢0

# U U T W U N I “ S U U T B T S “ U U Y U S T I * RS U S S N S N O O OOO

| | | |

| | | |

| | | l

[ Lo e e — - — 009

| |

[

! =3
| ¥ g'gL=ULL ZaquUEy) s
R e bt N wiiill” alili- ) el 00L

~ B
I g
_ e
b B v ot i et 008 o
_ =
_ —
| .

R e e 0o
[ oliyed \..M
“ wununeid 2
et 00014

|||||||| 0041

133



21 = U ‘eisd 00g |1 = °d 10} doiq ainssaid auibug ‘g 1-2°2°¢ aInbi4

‘_wnEm:,o uabay ojui uonoei4 moj4

L0 90 G0 0 ¢0
Lt 1 T A A S A A { L1 5 1 404 O
! | i | -
_ Can m n
! L eisdzglz=ulg | J% -
| | aljjeg | _ -
! | wnuie|d g AoueN . | _ u
v e - 05
_ -
I [
| - 3
| = ®
| - 7
......... C 001 £
_a - P
= O
I -
- (=]
| - ©C
_ - S
T - 0G| @
. omFm
......... 002

0G<Z

134



3.2, Engine Requirement Variation Studies, (cont)

out by a slight adjustment of the regenerator bypass valve. Figure 3.2.2-19 gives the
chamber and baffle pressure drops at MR = 12 over the range of the hydrogen
proportioner valve. The baffle circuit would have to be orificed to equalize the pressure
drops prior to stream mixing.

3.3 VEHICLE/ENGINE STUDY COORDINATION

One of the study objectives was to coordinate the work of the three contractor
engine study teams with the simultaneous work of the Boeing and Martin-Marietta
vehicle study teams. Aerojet, Pratt and Whitney, and Rocketdyne are under contract to
the NASA Lewis Research Center while the two vehicle primes are under contract to
NASA Marshall Space Flight Center. This required coordination between the NASA
centers on data requirements, format, distribution, and meeting attendance. An initial
problem was the late start of the two primes on the vehicle study contract. The
Advanced Engine Study was well underway before vehicle study contracts were let.
The coordination effort was also affected by the NASA's need to prepare a response to
President Bush's new space initiative. Nearly all of the material in this section was gen-
erated to support that effort. The kind of vehicle prime/engine contractor coordination
envisioned at the start of the study was never accomplished. In particular, the
engine/ vehicle interface definition had very little work or discussion. The material that
follows is an edited version of the original submission to LeRC and MSFC. In some
instances corrections were made where errors were found in the material as submitted.
Also, some material is updated based on later work done in the study.

3.3.1 Engine Design, Development, Test and Engineering Cost Estimates

During 1988 and 1989, Aerojet TechSystems made major changes to
system cost estimating techniques during contract work on the Advanced Launch
System (ALS). The improved cost methodology was used in estimating ALS engine
costs, and initial comments from reviewers were highly favorable. Reference 14 has a
summary section covering the application of the system to the ALS with a breakout of
costs in specific areas such as design, fabrication, and test. The same methodology was
used to cost DDT&E for the CTP engines. The methodology was considered appro-
priate for the following reasons:
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3.3, Vehicle/Engine Study Coordination, (cont)

* Customer test and acceptance requirements should be very similar
as MSFC is the customer for both the ALS engine and the flight
version of the CTP engine.

* Both engines use cryogenic propellants.
* Production runs are within the same order of magnitude.

* Asboth engines would be in development at the same time the
technology and industry capabilities are the same.

* Physical size difference of the two engines has only a minor effect
on DDT&E cost.

The basic assumptions for the cost study are given in Table 3.3.1-1.
The study assumed an on-contract, full funding start on 2 Jan 1991. A breakout by cal-
endar year of design and engineering costs is given in Figure 3.3.1-1. Fabrication would
start in 1992 with completion in 1998 as shown in Figure 3.3.1-2. Development testing
would also start in 1992 as shown in Figure 3.3.1-3. These three charts are totaled and
summarized by cumulative cost in Figure 3.3.14. Note that the total cost is about
$950M in 1990 dollars. It should be emphasized that the costs are directly related to the
assumptions shown in Table 3.3.1-1. Costs will increase or decrease, for instance, as the
number of development and qualification tests are changed from the 960 given in the
table. The development schedule is given in Figure 3.3.1-5.

Following submission of the DDT&E costs a clarification of the cate-
gories and numbers of tests was requested. The 960 tests assumed a total of 58 equiva-
lent engines for the development program. This includes 15 equivalent engines for
component development and a total of 43 engines for development, qualification, relia-
bility demonstration, life testing, flight readiness firing, and cluster testing. The 43
engines have an average life of 30 full duration tests with appropriate refurbishments
and major overhauls. The testing program is equivalent to 36 engines x 30 tests/engine
= 960 tests.
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Table 3.3.1-1.
LTV/LEV Engine DDT&E Cost

ASSUMPTIONS:

@1990 FIXED $

© COMMON ENGINE FOR LTV/LEV MISSION

®ENGINE THRUST RANGE 20-30K LBF

OFIRST UNIT PRODUCTION COST=$9-13M

OENGINE LIFE = 30 MISSIONS

.85 LEARNING CURVE USED

eNUMBER OF DEVEL/QUAL ENGINES = 32

e TOTAL # OF DEVEL/QUAL TESTS = 960

®SINGLE ENGINE RELIABILITY = 0.990
@90% CONFIDENCE LEVEL

O® CONTROLLER/HEALTH MONITORING
SYSTEM DERIVATIVE OF ALS STME
PROGRAM
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3.3, Vehicle/Engine Study Coordination, (cont)
Test program, test type, and facilities are planned as follows:

a) Component development database acquisition: 2 stands each for
the oxygen and hydrogen turbopumps, and 2 new or existing stands for cham-
ber/injector testing. Tests will be performed at Aerojet using existing facility "J" area
zone control room, instrumentation, and tank farm facilities. Oxygen and hydrogen
turbopump tests will use new facility gas generators (GG’s) and heat exchangers (HX's)
to obtain the warm gas oxygen and hydrogen at required inlet temperatures, flowrates
and pressures to simulate engine chamber exit conditions. GG's will be a pressure fed
O,/H; design. All thrust chamber/injector tests at the component level will be
performed with facility pressure fed propellants. Combustion stability (bomb), mixture
ratio, throttling, thermal and performance tests can be performed at this level. These
tests may require the use of ] area altitude diffuser capabilities due to the cooled thrust
chamber/nozzle expansion ratio.

b) Breadboard and prototype engine testing: 2 additional test stands
required in "E" area - may require workhorse chamber at sea level expansion ratio to
allow system testing without vacuum diffuser. These tests also demonstrate and vali-
date controller and health monitoring systems and instrumentation. Testing uses
existing control room capabilities with supplemental provisions for facility
controller/engine controller interface and development.

¢) Engine level systems testing: will utilize the 2 additional test
stands required in the "E" area - also requires supplemental control room and instru-
mentation capabilities.

d) Reliability demonstration testing: requires 1 additional test stand
in ] area using existing control room and existing altitude capability. Full up engine
testing will be done with the exception of radiation cooled nozzle extension (possible
facility limitation for thrust level at very high (>1000) area ratios and long duration
burns. Also requires 1 additional identical facility at (TBD), possibly with altitude
capabilities.
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3.3, Vehicle/Engine Study Coordination, (cont)
e) Engine qualification testing: same as reliability testing (d) above.

f)  Preliminary Flight Readiness Testing (PFRT): Adaption to test
cells at SSC - verifies system level transients and engine interactions, thermal radiation
environments. May require a diffuser adapter for unique engine cluster nozzle configu-
ration envelope.

g) Flight Readiness Testing: same as PFRT (f) above.

h)  Acceptance testing: each engine will be individually acceptance
tested in J area at altitude conditions (same as d).

One question asked by reviewers concerned the number of engine test
failures assumed for the test program. The short answer is "none" if the type of failure
is catastrophic. This would be of sufficient violence to seriously damage a test stand as
well as destroy the test engine. Less serious failures can be expected where a test article
is no longer usable. From 6 to 10 of these failures can be expected based on the test
history of the RL-10 and SSME engines. One of the goals of the test program is to use
the ICHM system to predict and preclude catastrophic failures. The total number of
tests per engine, however, will result in some engines exceeding design life, and some
failures can be expected.

To summarize:
* 6 test stands required in J area for component development

* 2test stands and an additional control room required in E area for
prototype and engine level testing.

* lengine test stand required in J area for relia-
bility /qualification/acceptance testing at altitude conditions.

* 1teststand required at (TBD) for reliability / qualification/ testing
at altitude conditions.

* Special diffuser may be required for cluster PFRT and FRT
development.
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3.3, Vehicle/Engine Study Coordination, (cont)

3.3.2 Engine Production Cost

Estimates of engine production cost require 1) a baseline for
comparison, 2) the engine thrust, and 3) an expected learning curve. The baseline for
comparison is the Pratt and Whitney RL-10 engine. This is a fully mature product now
in the portion of the learning curve that is essentially flat. It is also a 15,000 1bf
(nominal) thrust engine where the CTP engine is expected to have a thrust in the range
of 20K to 30K Ibf. The CTP engine, with its increased capability and higher level of
technology will be more complex and, therefore, more costly to build. The study used a
series of complexity factors from 10% to 50% to gauge the cost impact due to
complexity. Learning curves of 80 and 90% were considered likely bounds for this
engine with 85% a good median figure. Production cost was then parameterized using
thrust, percent learning curve, and production quantity as the entering agruments with
a different complexity factor on each chart. The results are given for Figures 3.3.2-1
through 3.3.2-5.

The charts are used by selecting a production quantity, say 48 engines;
a thrust, say 20K Ibf; a learning curve, say 85%; and then entering the chart with the
appropriate complexity factor. For the example given, Nth unit cost ($M) is:

Complexity Factor 1.1 12 13 14 15
Nth Unit Cost M) 55 60 66 72 7.7

These are 1990 dollars. A basic assumption is that DDT&E costs are sunk costs and are
not spread over production engine cost. This makes a clean break between develop-
ment and production costs. One likely area of additional cost is continuing engineering
support. This was not estimated but is highly discretionary in any case; the customer
can expect to get any level of supporting engineering desired subject to funding
constraints.

3.3.3 Mission Related Costs

One of the questions asked after receipt of the Aerojet input on
DDT&E costs concerned the impact of having planned engine servicing only versus
some unplanned engine servicing.
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3.3, Vehicle/Engine Study Coordination, (cont)

The answer is dependent on what the mission architects plan to do,

and whether the integrated control and health monitoring system is used for real time

maintenance decisions A maintenance scenario is needed. Some guidelines that may

assist the planners are:

RPT/D0417.55a/32-3.8

An engine should not be designed for in-space maintenance if the
capability is not going to be available during its operational life.
“Don't pay for something you don't need.”

Series production of an engine can be used to expand the mainte-
nance capability to space-based maintenance as the facility is
developed and newer engines are built.

The basic in-space maintenance capability that must be developed
first is engine removal and replacement. Even a block 1 design
vehicle should include this capability.

The vehicle design must provide access to the space maintainable
components to a person in a space suit. This is non-trivial, the
suits require a lot of maneuvering room.

A realistic assessment of in-space maintenance costs and timelines
is needed to determine the cost effectiveness of component change-
out versus engine change-out.

Maintenance costs include:

- Training

- Facility

- Downtime

- Spares and Spares Storage
- Tools/Diagnostic Devices
- Personnel Costs

- Inspection/Certification

- Administration
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3.3, Vehicle/Engine Study Coordination, (cont)

* In-space maintenance presents problems not encountered in nor-
mal shops or flightlines:
- Vacuum Environment
- Specialized Tool Kit
- Lack of Gravity Assistance
- Limited Effective Working Time
- Access Problems for Mechanics in Space Suits

* Reliability in reconnecting flow lines after maintenance is a
concern.

* Insulation and connections for health management sensors
complicate component change out.

* Actual, demonstrated in-space repair operations have been far
more time consuming and fatiguing than expected.

The Aerojet 7.5K Ibf Thrust Engine Preliminary Design included a
careful look at designing for in-space maintenance (see Ref. 2). The first concern was to
develop a rapid, uncomplicated engine changeout procedure. All engine removal oper-
ations except for the extendible/retractable nozzle are done at the engine/vehicle inter-
face plane. All operations can be done by one person, in a space suit, within normal
arm reach once access is gained to the vehicle/engine interface. Table 3.3.3-1 is a list of
the required removal steps. Replacement is the reverse of this sequence. A prime
mover of some sort is expected to be available for the actual physical handling of the
engine.

Engine removal can be done with a tool kit of very few items. Aerojet,
for instance, has a design for the engine attachment to the thrust takeout structure that
requires only two ball lock devices for keeping the engine in place. Engine removal
should not require more than an hour once access is gained to the engine/vehicle inter-
face area.

Some of the questions asked related to the effect on DDT&E cost of
various design requirements. In general, there is no impact unless requirements exceed
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TABLE 3.3.3-1

CTP ENGINE REMOVAL OPERATIONS

* Engine Centered, Nozzle Extended
* Propellant Isolation Valves Closed
* Electrical Power Removed from the Engine
¢ Manual Operations:
—  Electrical harness Disconnnected, Connectors Capped, Harness Stowed

— Extendible Nozzle Removed, Screw Assemblies Secured, Regen Cooled Nozzle
Edge Protector Installed

— Main Hydrogen Line Disconnected Below Shutoff Valve, Capped
— Main Oxygen Line Disconnected Below Shutoff Valve, Capped

— Hydrogen Tank Autogenous Pressurization Line Disconnected Below Shutoff
Valve, Capped

— Oxygen Tank Autogenous Pressurization Line Disconnected Below Shutoff
Valve, Capped

—  Engine Handling Fixture Connected

—  Control Gimbal Actuators Disconnected

—  Flex Lines Restrained, Upper Engine Covered with Protective Material
—  Prime Mover Connected to Engine

—  Engine Thrust Structure Locking Devices Removed

* Engine Moved Out of Engine Compartment
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3.3, Vehicle/Engine Study Coordination, (cont)

those listed in Table 2.1-1. This is true of such things as throttle range and reliability
requirements. Life cycle costs are implied by questions regarding the number of uses
between missions and whether the engine is expended after five missions.

The OTV engine design requirement is for five missions prior to
engine removal and refurbishment. This would be for a mature system with some
operational history. During early operation of the vehicles a removal and inspection
may be planned after two or three missions. In all cases anomalous or out of limits
operation recorded by the integrated control and health monitoring system (ICHM)
would be justification for an engine change. Also, an optical inspection of the engine
after each mission (by remote video unit and/or astronaut) could detect a cause for an
engine change. There are a number of things that are hard to predict when building a
new system. We do not have experience with a complex system routinely maintained
in space. (Skylab is a possible exception). The number of uses prior to the end of
service life is dependent on the maintenance scenario. Our design requirement has
been an operational life equivalent to 40 missions with periodic maintenance following
every fifth mission. The engine would be discarded after 40 missions (equivalent of 20
hours operation and 500 starts). The economics of refurbishment in space versus
returning the engine to earth for refurbishment are not defined. The present space
station design has no provision for a maintenance facility. Our baseline engine design
emphasizes a quick engine change-out capability assuming that will be the most
important maintainability feature during the early years of operation. If the engine is
returned to earth for refurbishment after five missions it could, in terms of a space
deployed system, be considered expended even though it was returned to operation at a
later date.

The LTV duty cycle (typical) would have a translunar injection burn, a
lunar orbit burn, a de-orbit and earth return burn, two midcourse correction burns, a
pre-airbrake correction burn, and a post airbraking circularization burn for a total of
seven engine starts each mission. Total LTV propellant (288,000 Ibm) is sufficient for
about 1655 sec operation on 4 engines of 80K Ibf total thrust. A fifty mission life would
total about 24 hours of engine operation and about 350 starts. This is close to the life
goal set for the OTV engine program. With 5 reuses prior to scheduled maintenance
each engine would accumulate 35 starts and about 2.4 hours operating time. To put this
in perspective, this is about 7 times the operating time accumulated by the space shuttle
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3.3, Vehicle/Engine Study Coordination, (cont)

main engine (SSME) on an orbiter mission. We are not aware of any SSME that has
gone seven missions without extensive maintenance. Some storable propellant engines,
such as the OMS engines with a fairly high-margin, conservative design, can meet this
maintenance free goal. Meeting it with a high performance cryogenic engine will be a
challenge.

One of the capabilities needed at the Lunar base is engine changeout
and storage. At some time in its evolution, a greater maintenance capability may be
considered necessary if the Lunar Excursion Vehicle (LEV) is based there. The cost of
establishing such a capability will be substantial.

334 In-Space Maintenance and Servicing

The previous section addressed in-space maintenance from the stand-
point of factors comprising the life cycle cost. This section addresses design features of
the Aerojet version of the engine that will be of concern when assessing the maintain-
ability of the engine. The rapid engine removal/replacement features (see Table 3.3.3-1)
received major design emphasis. Component replacement was given less consideration
because of the concern for reliability in component changeout with the engine in place.

With a competent in-space maintenance capability the engine compo-
nents that could (subject to limitations as noted) be replaced is given in Table 3.3.4-1.
The list is both engine design and vehicle design sensitive. Without access through the
vehicle structure and /or aerobrake some of these components will be inaccessible.

The full range of maintenance and servicing functions involving the
engines are given in Tables 3.3.4-2 and 3.3.4-3 respectively. These were adapted from
the Phase A vehicle studies. In three of the six servicing operational functions, the
engines health monitoring system is used. This system would appear to be very critical
to the mission operation and safety. Despite a scheduled maintenance plan, if this
system indicates there is an engine problem the decision is likely to be “fix it now, not at
the scheduled time.” With a sophisticated ICHM system it will be very difficult to
adhere to a timephased maintenance plan. Preventive maintenance may very well be
engine condition determined, not time determined.
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TABLE 3.3.4-1

CTP ENGINE SPACE MAINTAINABLE COMPONENTS
7.5K LBF THRUST ENGINE

Component

Comment

Hydrogen Main Shutoff Valve
Oxygen Main Shutoff Valve
Hydrogen Boost Pump (Low Press)
Oxygen Boost Pump (Low Press)

Hydrogen Autogenous Pressurization
Valve

Oxygen Autogenous Pressurization
Valve

Hydrogen Regenerator Bypass Valve

Oxygen Regenerator Bypass Valve

Gimbal Motors

Gimbal Actuators

Extendible Nozzle

Extendible Nozzle Deployment Motors
Extendible Nozzle Dep. Mechanism

Fuel Flowmeters
Oxygen Flowmeters
Controller

Sensor Signal Conditioning Units

Miscellaneous Hardware, Brackets,
Wires, External Sensor Elements

RPT/D0417-55a-T

Requires Access Near Engine/Vehicle Interface
Requires Access Near Engine/Vehicle Interface
Requires Access Near Engine/Vehicle Interface
Requires Access Near Engine/Vehicle Interface

Requires Access Near Engine/Vehicle Interface
Requires Access Near Engine/Vehicle Interface

Design Dependent; May be a Bolt-On to a
Manifold

Design Dependent; May be a Bolt-On to a
Manifold

Requires Access Near Engine/ Vehicle Interface
Requires Access Near Engine/Vehicle Interface
Ready Access

Requires Access Near Engine/Vehicle Interface
Requires Access Near Engine/Vehicle Interface

Design Dependent; May be Bolt-On to Low
Pressure Boost Pump

Design Dependent; May be Bolt-On to Low
Pressure Boost Pump

One or Two Removable Boxes with Cannon
Plugs

Designed to Allow Sensors to Remain in Place,
only Electronics Changed (Requires System
Recalibration)

Dependent on Access
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TABLE 3.3.4-2

SPACE-BASED CTP ENGINE MAINTENANCE FUNCTIONS

Perform scheduled maintenance

e  Transfer propellant to and from LTV
e  Perform visual inspection (includes engines)
e  Determine LTV fault status

*  Replace ACS (Altitude Control System) modules (after each mission if
packaged storables are used)

*  Replace engine module* (after TBD mission time)
e  Perform system operational testing

*  Service batteries and fuel cells

e  Replenish stored helium (if used)

Perform unscheduled maintenance

e  Perform damage assessment (beyond scheduled inspection)
e  Verify any electrical failure

e Isolate fault to replaceable unit

¢  Perform damage repair

*  Perform required “remove and replace” due to failure

* The vehicle can be developed with replaceable propulsion modules or for individual
engine replacement. In-space handling requirements may dictate one or the other
design solution. Table 3.3.3-1 lists the steps in removing an engine in Aerojet's

design concept.
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TAB 3.4-3
CTP ENGINE SERVICING OPERATIONAL FUNCTIONS

BERTH LTV
* Rendezvous LTV with Station
* Capture LTV at Station
* Berth LTV at Station
TRANSFER PROPELLANT
* Verify Interface Integrity
* Perform Propellant Leak Check
* Transfer Residual Propellant from LTV To Station Tank Farm
INSPECT LTV
* Perform Visual Inspection
* Determine LTV Fault Status”
* When Fault or Damage Detected*
—  Perform Damage Assessment (TV/EVA)
— Initiate Electrical Test Routine to Verify Fault
— Initiate Fault Isolation Routine
* Formulate Integrated Maintenance Plan*
PERFORM LTV MAINTENANCE
* Perform Scheduled/Unscheduled Maintenance Tasks*
* Mission Reconfigure
* Perform System Operational Testing*
* Deactivate and Stow LTV (if not required for mission at that time)
MATE LTV AND PAYLOAD
* Transfer Payload to LTV
* Mate Payload to LTV
* Verify LTV/Payload Interface
* Perform LTV/Payload Integration Test
LAUNCH LTV/PAYLOAD
* Perform Prelaunch Operations*
* Transfer Propellant from Station to LTV
¢ Launch LTV/Payload*

* Operations where the LTV engine Health Monitor System is used.

RPT/D(417-55a-T
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3.3, Vehicle/Engine Study Coordination, (cont)

3.3.5 Engine Requirements for the Lunar Mission

3.3.5.1 Vehicle Concept

NASA-MSFC provided a vehicle concept for the Lunar Return
Mission. With the actual vehicle studies just started the concept may change.

The NASA MSFC concept of the lunar base support proposes two
vehicles. One is the lunar transfer vehicle (LTV) which is based at Space Station
Freedom. This is a modular vehicle built up form three modules:

* LTV Core Stage. This is a single tankset structure with the basic
stage propulsion system. Four engines comprise the main propul-
sion array. An aerobrake is part of the core stage.

e Separable Tanksets. The core vehicle has provisions for attaching
four tanksets in a cross shaped pattern around the core vehicle.
During the trans-lunar injection (TLI) burn two of these tanksets
are jettisoned when emptied. The other two are retained for com-
pletion of the TLI burn and to transfer propellant to the lunar
excursion vehicle (LEV). They are then released for impact on the
moon or, possibly, soft landed at the lunar base. The LTV returns
to earth on the propellant in the core tankset.

* Crew Module/Cargo Module. A payload of 27 metric tons is
proposed. This can consist of a 4.8 metric ton crew module plus
cargo or can be all cargo for an unmanned logistics support
mission. The crew module can be transferred to the LEV in lunar
orbit along with the cargo module.

The second vehicle is the lunar excursion vehicle (LEV) which has a
set of landing legs for actual operation to and from the lunar surface. As noted above, it
is serviced with propellant from the LTV and is actually based at the lunar station. The
four engines on the LEV are identical to those on the LTV except the
extendible/retractable nozzle extension used on LTV engines has been removed. This
reduces the length required for the landing legs. During operation, only two engines

RI’T/1)0417.55a/32-38
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3.3, Vehicle/Engine Study Coordination, (cont)

are operated above pumped idle thrust as the thrust requirements for the LEV are lower
than those for the LTV. The vehicle is capable of hovering over the touchdown point
and of a controlled landing at a fraction of a "g". Conceptual sketches of both vehicles
with dimensions and weights are given in Figure 3.3.5-1.

This vehicle concept was evaluated using an engine set of four 20,000
Ibf thrust engines. One of the study items was to determine the sensitivity of the LTV
weight in low earth orbit at the start of the mission to the engine specific impulse for the
baseline 27 metric ton payload. The results of this trade are presented in Figure 3.3.5-2.
The importance of a high specific impulse engine is evident. The curve as plotted has
inflections that were a result of the assumptions built into the program used to generate
the vehicle weights based on the MSFC concept. What is not clearly shown is why, at a
440 seconds specific impulse, the initial weight goes towards infinity. A companion
curve could be prepared that would have maximum payload versus specific impulse for
a direct evaluation of the effect of specific impulse on payload. As it stands, however,
this curve shows why the OTV engine program emphasis on high performance is
necessary. The proposed lunar mission profile is given in Figure 3.3.5-3.

3.3.6 Issues in Engine Throttling
The issues in throttling, over any range, are:
* Control system stability and change rate.
* Hot section temperature rise on throttling down.

* Oxygen circuit liquid-to-gas phase change at low system
pressures.

* Combustion stability over the throttling range.

160
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3.3, Vehicle/Engine Study Coordination, (cont)
* Turbopump operating range.
* Engine operating envelope restrictions.
* Specific impulse degradation as thrust decreases.

As the throttle range increases beyond 10:1, there is increased concern
with hot section (primarily thrust chamber) gas side wall temperature increases due to
the lower mass flow and velocity of the hydrogen coolant. A maximum throttle range
may be set by the thrust level where the wall temperature reads 1050°F or lower (copper
alloy chamber). This is also the range where turbopump operating curves may show
dis-proportionate speed changes for the output pressure change. This can lead to some
control system instability or a lower response rate.

A special problem is the oxygen phase change. At high system pres-
sures the oxygen makes the transition to gas uneventfully with predictable properties at
all times. At lower pressures where the oxygen enters the 2-phase “dome” of the T-S
diagram the thermodynamic properties are unpredictable and mass flow rates are
erratic due to film boiling and 2-phase flow. A gas-liquid combustion element could
show erratic mixture ratio and energy release changes. Aerojet uses a gas-gas element
with the oxygen phase change performed in a LOX/GHj heat exchanger (HEX)
upstream of the injector. This removes the problem from the combustor to a less critical
component.

The hot section temperature rise establishes the regeneratively cooled
chamber channel length and geometry. For wide variations in throttle ratio the
resulting chamber is too short to transfer the thermal energy needed to run the cycle at
full thrust. A solution is to use a hydrogen circuit regenerator where the excess energy
in the hydrogen gas exiting the hydrogen TPA turbine section is counterflowed with the
cold hydrogen entering from the pump section. The resulting heat transfer can increase
the engine thrust by 40%. Figure 3.3.6-1 shows the effectiveness of the hydrogen regen-
erator for CTP engines of various thrusts. Note that the regenerator is a significant con-
tributor to the thermal energy for the cycle at all thrusts above 7.5K Ibf.

Refer to Section 3.2 for additional discussion of engine throttling.
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Figure 3.3.6-1. CTP Engine Dual Propellant Expander Cycle
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3.3, Vehicle/Engine Study Coordination, (cont)

3.3.7 Weight Penalties for Space Basing

Space basing may actually save some engine weight as an inert gas
purge system is not needed for the AT version of the CTP engine. The cryogenic
propellants are self-purging under vacuum conditions and the hot oxygen driven LOX
turbopump baselined for the engine does not require an interpropellant seal purge gas.

Valve actuators, control electronics, gimbal actuators and sensor sig-
nal conditioning units will need to be insulated and thermally conditioned with thermo-
statically controlled heater circuits. This will add a few pounds weight to the assembly.

The most significant weight penalty will be in engine spares and
maintenance equipment/facility. This does not add directly to LTV or LEV weight but
must still be carried into orbit for a space-based maintenance capability.

3.3.8 Parametric Data Requests

Aerojet responses to request for various types of parametric data are
included, for the most part, in the information in Section 3.1. Some requests could not
be answered as generation of the information was outside of the contract scope for this
study. Now that specific areas of interest are known a follow-on to this study should
generate that information. A few items not covered in Section 3.1 are given below.

Electrical Power Requirements

Electrical power requirements were determined for the 7.5K Ibf thrust
engine preliminary design task (see Ref 2). Table 3.3.8-1 gives the power required
(worst case) in watts for 13 different engine operation state points. The state points are:

00 Nozzle extension/retraction

Engine Out Gimbal (2 engine vehicle configuration)
Configure engine for chilldown prior to start
Chilldown O; TPA

Chilldown H, TPA

Engine Start (tank head)

Tank head idle

G - W N = O
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3.3, Vehicle/Engine Study Coordination, (cont)

Pumped Idle Mode
Normal Operating range
Overthrust

Normal Shutdown

10 Normal Gimbal

11 Operational Storage

External Radiation Environment (Buried Engine)

The engine thrust chamber would be cold to the touch even at full
thrust operation from the hydrogen inlet manifold (area ratio 28) to some point above
the throat. With the chamber inside a can structure (see Figure 3.1-5) and the lines to
and from the injector/baffle circuits insulated, external radiation will be negligible for
the upper portion of the engine. The maximum external temperature of the oxygen
cooled nozzle would be 400°F near the exit manifold (area ratio 600). The
extendible/retractable nozzle will, unless insulated, have much higher outside
temperatures. Figure 3.3.8-1 gives the temperature versus area ratio for a columbium
nozzle. The two curves are needed to account for the effect of heating by an adjacent
engine (near side curve) or exposure to space for direct radiation cooling (far side
curve). Figure 3.3.8-2 gives the same variables but for a carbon-carbon nozzle extension.

Cluster Constraints

O 00 g o

All Aerojet design work to date has assumed a 12 inch clearance
between engines at the nozzle exit plane. The adequacy of this clearance is dependent
on side loads, mechanical constraints on engine movement, engine nozzle length and
flexibility, and gimbal system tolerance. This is one of the items that requires some dis-
cussion with the vehicle primes to determine.

Attach Points and Gimbal Method

The engine is actually attached to the thrust takeout structure by one
pair of the two sets of gimbal brackets. Aerojet has a design where this attachment is
made with two ball lock devices that can be connected by a person in a space suit; no
nuts, bolts, or other fastening devices. The pitch and yaw axis gimbals are attached to a

RPT/DO0AY7 552/32-3 8 168



UORISOd °SA @injesadwa] |[eM 91ZZON wniquinjo) "ul-0£0°0 "1-8°¢'€ ainbi4

013Dy Dauy

169

08G | 08¢ L 0811 086 08/ 085
ST T SN U N0 N U0 U U U 0 U U006 0 N T U U U U 000 O U U0 G0 TS O U 0 W VU T Y G A WA U O B O A G O O
"ul '}poJdyy} wiodj 20uDbisI(]

86 88 8L 89 8G 5% Be--
_F_::___:_____:_:__:_pp::h_:__:__:___::_:_______ %

‘ﬂd

Re,

-

- O
[
9pls JD B

RS

wU_m JDON — S
L

Jsmyouadwa] Q0

E



UOINSOd "SA aimeladwa] ||eM 9]ZZON u0qie)-uoqied "ui-0S0°0 "Z-8'c'c a4nbig

013Dy Dauy
086G| 08¢ Ol 086 082 08¢

N TS U U0 W TS T TN NN S N OO A A TN N TN SN0 S UG 0 UG N UG UG A O S N U0 U Y T U 0 O O U O O O AN O OB AR O

Ul 00Uy ] Wwiod) 8ouDisI(

86 1213 S/L 89 8¢S 8P B¢ —
Ll vy v v bbb r vty b v e vt v b n iy MHU.
B
i
"o
O
- O
mb_m A0 4 B
L NS
| O
-
= Oy
L

4 ‘aurppdadwa] qon

170



3.3, Vehicle/Engine Study Coordination, (cont)

structure at the top of the engine injector. Actual placement of the gimbal point would
be for a true throat gimbal. The gimbal actuator arm connection to the engine could be
done by slip-on clamps with securing by thumbscrews so that no tools were required
for assembly or disassembly. It is possible that all engine-to-vehicle connections can be
made or broken without tools. This would greatly simplify the task of an astronaut
making an engine changeout in space.

3.4 ENGINE BASELINE DESIGN UPDATE

3.4.1 Dual Propellant Expander Cycle

The parallel flow version of this cycle should be an excellent
performer. The engine schematic given in Figure 2.1-1 was developed at the beginning
of the study based on the thermal design results for the parallel flow dual propellant
expander cycle when compared to the series flow cycle developed in the 7.5K Ibf thrust
engine preliminary design task. It is the current engine design baseline although the
version in Figure 3.1-20 should be evaluated. The latter version has the hydrogen
regenerator upstream of the HEX for better isolation of the hydrogen circuit from the
oxygen circuit. It may be penalized by an increase in HEX weight due to increased
surface area needed for the lower delta temperatures. Either version would give the
same engine performance. The choice would be made based on engine control
capability and weight minimization. The resulting engine promises to be highly flexible
with excellent thermal margins for very long life. It represents the current expander
cycle state-of-the-art.

3.4.2 Engine Control Baseline

This engine will require a closed loop control system, a dozen control
valves, and an array of sensors for input to the integrated control and health monitoring
system (ICHM). The basic engine valves and sensors are listed in Table 3.4-1. The basic
engine operation sequence is outlined in Table 3.4-2. A discussion of valve function is
given in Section 3.1.1.10. The corresponding component states are given in Table 3.4-3.
The Modified Liquid Engine Transient Simulation Analysis (MLETS) preliminary
results indicate that the engine is controllable and is dynamically stable once it is at
thermal equilibrium.
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Table 3.4-2
Engine Operation Sequence

Table Entry
Number Qperation
00 Nozzle Extension
Retraction
0 Engine Gimbal
1 Configure Engine
for Chilldown
2 Chilidown O2 TPA
3 Chilldown Ha TPA
4 Lightoff
5 Tank Head Idle
6 Pumped I|dle Mode

17.44-7a/rv2

Actions/State
28V DC Motor Driven Ball Screws Terminated
by Limit Switches/Torque

28V DC Driven Actuators (2)

Close Fuel and Ox Turbine Bypass,
Open Fuel Regen Bypass Valve,
Close Fuel Idle Valve,

Open Hex Bypass Valve,

Open Ox Igniter Valve (Ignition Off)

Open Ox Main Valve (Gaseous O2 Flows
Through the TPA Pump, Hex, Ox Cooled
Nozzle, TPA Turbine, Injector, and Out the
Engine Nozzle). Close Ox Main Valve on TPA
Reaching Operating Temperature, Close Ox
Igniter Valve

Open Ha Igniter Valve, Open Fuel Main Valve
(Gaseous Hydrogen Flows Through the LH2
Pump, Chamber and Baffle Circuits, Ho TPA
Turbine, Regenerator, Injector, and Out the
Engine Nozzle). Close Fuel Main Valve on
Reaching the TPA Operating Temperature,
Close H2 Igniter Valve.

Open Ox Main Valve, Open Fuel Main Valve,
Open Igniter Valves, Actuate Igniters

Modulate Fuel Idle Valve for Mixture Ratio
Control, Hydrogen Proportioner Valve for
Chamber/Baffle Temperature Control, Engine
Temperatures Stabilized, Combustion
Smooth, Igniters Off

Modulate Turbine Bypass Valves Towards
Closed, Close Fuel Idle Valve, Close Regen
Bypass Valve, Close Hex Bypass Valve until
Ox Turbine is 400°F. Accelerate TPA’s to
Pumped Idle Speed, Hold by Modulating
Turbine Bypass Valve, Stabilize Engine
Temperature. Evaluate Health Monitor
System Readings. Begin Main Tank
Autogenous Pressurization.
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Table Entry
—Number

7

10

11

17.44-7a/r1/3

Table 3.4-2 (cont.)

Operation
Normal Operating
Range

Overthrust

Normal Shutdown

Normal Gimbal

Operational Storage

Actions/Sta
Command Engine Thrust. Ox Turbine Bypass
Valve Moves to Thrust Schedule Setting With
Fuel Turbine Bypass Valve Following. Regen
Bypass Valve Moves Towards Closed
Position to Meet Thrust Requirement Hex
Bypass Valve Modulates to Keep Ox Turbine
Inlet Temp at 400°F. Hydrogen Proportioner
Valve Adjusts to Keep Throat Temperature
Within Limits. Mixture Ratio Trimmed by Ho
Turbine Bypass Valve.

Command Engine Thrust With Override on
Turbine Bypass Control Lower Range.
Increase Mixture Ratio to 7. Ox Turbine
Bypass Moves to Thrust Schedule Setting
With Other Valves Following as in Normal
Operation. Health Monitor System Will
Reduce Thrust on a Trend Towards Unsafe
Temperature. Thrust May Fluctuate as
Controller Maintains Mixture Ratio With a
Turbine Bypass Valve at Zero Bypass.

Shutdown Command Initiates Throttle Down
to Pumped Idle Range. At Idle TPA Speeds
the Fuel and Oxygen Main Valves are Closed,
Turbine Bypass Valves Commanded Full
Bypass, Regen Bypass and Hex Bypass
Valves to Full Bypass. Idle Valve Full Open.
Igniter Valves Open, Ignition On. Residual
Propellant is Vented to Space Through the
Nozzle. Engine Centered.

28 V DC Gimbal Actuators are Activated Per
Controller Instructions at Any Time During
Engine Operation.

Thermostatically Controlled Heater Power for
Valves and Sensor Electronics and DC
Motors, Thermal Control Power to ICHM
System, Engine Centered, Nozzle Extension
Retracted.
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3.4, Engine Baseline Design Update, (cont)

Basic engine control is accomplished with the two turbine bypass
valves. The oxygen turbine bypass valve sets the engine thrust with the hydrogen by-
pass valve following and then modulating to hold mixture ratio. The HEX bypass valve
is primarily a control to regulate oxygen temperature to the OX TPA turbine section.
The regenerator bypass valve is used to supplement available energy in the hydrogen
stream at higher thrust levels. The hydrogen split between the cooled chamber and the
baffle circuit is controlled by the proportioner valve. Other valves are for start and for
shutdown or tank pressurization. There is no helium purge system or required helium
lines and valves. Once operating, engine control is done through just five valves.

The power balance program was used for an initial assessment of the
control curves for both turbine bypass valves. Figure 3.4.2-1 shows turbine bypass flow
plotted against engine chamber pressure. Discrete settings of the HEX bypass and
regenerator bypass valves were used to reduce the control interaction. These settings
are indicated on the plot as well. The linearity is very good considering that the power
balance will have a few percent error in the valve settings. These are very acceptable
curves for controls modeling. There will be an upward inflection at low chamber
pressure points on the curve (Pc < 100 psia) as the engine transitions from pumped idle
to tank head idle. At 2000 psia the curves crossed because the power balance program
was set to adjust the other variables to give a 10% bypass at this point. Note also that
power margin condition, at which there is positive bypass flow available to increase
power available to the turbine, is not critical until 2000 psia is reached. With some
adjustment in the TPA design points even more margin is available for additional
chamber pressure (and thrust) at the top end.

3.43 Engine Components

The engine component discussion in Section 3.1.1 represents the latest
design thinking for the engine baseline. During the study, each component was sub-
jected to a complete reevaluation. To remain in the design it had to survive such
questions as:

* Can the engine operate if it is removed?

* Canits function be assigned to another component at a savings in
weight and complexity?

RIT/DD0417 55a/32-3.8 1 76
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3.4, Engine Baseline Design Update, (cont)
* Can the design be changed to save weight?
* Isit producible?

* Does it have safety implications? If so, what are the failure modes
and effects?

* Isitan engine life limiter? If so, what changes are needed to
improve its life?

Some of the potential design changes that came out of the re-evalu-
ation included:

1) Combine the regenerator and HEX into one unit. This was ques-
tioned on grounds that packaging may be difficult with one, massive unit.

2) Eliminate the regenerator. This was rejected as it was incom-
patible with either a 10:1 or 20:1 throttling engine.

3) Use a stepped valve with only 3 or 4 positions for both the hydro-
gen regenerator and the HEX bypass valves. This may have merit but requires consul-
tation with the valve designers to be sure that there will be any improvement in reli-
ability or cost over a continuously variable valve.

4) Provide a recirculation loop for chilldown of the turbopumps.
This would use the propellant dumped in chilldown but would add a line and an addi-
tional valve to each circuit. The valve would also have to be positioned where its failure
would preclude engine start. A preferred option is engine operation at tank head idle in
the latter stages of chilldown if that can be done without severe popping or pressure
fluctuations.

5) Add line quick connects/disconnects for each major component.
This was considered premature until the NASA decides on a specific engine main-
tenance scenario. The design baseline calls for simplified engine removal. Four propel-
lant lines, several electrical cable connectors, two gimbal actuators, and locking
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3.4, Engine Baseline Design Update, (cont)

devices at two points on the thrust takeout structure would be in one plane processed
through an opening large enough to accommodate an astronaut in a space suit.

6) Add redundant valves for critical applications. This was rejected
as adding complexity without necessarily improving reliability. All valves have dual
actuating coils powered by physically separate electrical circuits. Each circuit will open
on a ground fault within the system. The main propellant shut-off valves are powered
open against a spring force and latched in place by a solenoid that releases if power is
lost to effect an engine shutdown. It is also possible to build these valves so they can be
manually closed or opened from the crew station. The engine valving is either fail op-
erational or fail safe depending on the failure mode.

3.5 IDENTIFICATION OF CRITICAL TECHNOLOGIES

A major goal of the OTV engine technology program is to identify the critical
LOX/LH; engine technology issues and develop design, materials, and systems
approaches to put them to practice. Aerojet program personnel believe a great deal of
progress has been made over the life of the contract to fulfill this goal. The following
discussion should be considered a status report as well as a call to pursue additional
technology efforts.

3.5.1 Thrust Chamber Technology

3.5.1.1 Performance Improvement — Performance for a LOX/LH> rocket engine
is usually stated as the figure for delivered specific impulse (Isp). The Aerojet version
of this engine using Aerojet’s performance computation methodology will, theoretically,
deliver 484 Ibf-sec/lbm (at a chamber pressure of 2000 psia, area ratio of 1200:1, and a
mixture ratio of 6). In general, Aerojet has a good record of test stand verification of Isp
using our methodology. With injector energy release efficiencies (ERE) greater than
95% using well established element designs such as the coaxial and swirl coaxial, a
reasonable combustion chamber length will yield very nearly 100% ERE. Although it
will be difficult to pick up additional engine Isp in the future, real gains in vehicle
performance may come from:
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3.5, Identification of Critical Technologies, (cont)

RPT/D0417 55a/32-38

Reduction of initial chilldown propellant dumping prior to engine
start.

Maintenance of injector energy release efficiency over the entire
throttle range (there is a drop off at the lower range with most
injector elements).

Active Propellant Management (APM) systems to minimize tank
residuals on each mission.

Reduction in hydrogen boiloff and consequent reduction in
vehicle specific impulse during periods when the engines are
shutdown. One approach would utilize the engine as a black
body radiator to deep space with the liquid hydrogen circulating
through the regen cooled chamber and back to the tanks.

Improving the efficiency of a LOX/LH attitude control system
by using a high pressure gas supply pumped up by the main
engines during their operation.

Reduction in engine physical size and weight. The engine oper-
ating envelope includes a high mixture ratio (MR > 7) overthrust
capability (5 to 25% increase in thrust over nominal) that can be
used to keep engine size down. Weight is a function of the num-
ber of components, materials selection, thrust, and chamber pres-
sure. There is a continuing premium in developing and using
strong, lightweight materials with a high (2000 psia or greater)
chamber pressure engine.

Long engine service life. Every item carried into space has a large
transportation cost that usually exceeds that of the item. In space
maintenance, using people in space suits has been estimated to
cost $100,000 per hour. These formidable costs mandate a long
life for a space based engine. Long service life can be the equiva-
lent of higher specific impulse as it reduces the amount of propel-
lant expanded to support the actual mission.
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3.5, Identification of Critical Technologies, (cont)

Engine throttling has two performance aspects. One is the range:
10:1, 20:1, or whatever the mission requires. A high throttle range requires (for the
Aerojet design) an added control valve and a regenerator. There is a small engine
weight reduction as throttle range is decreased from 20:1. The other performance
consideration is throttle rate (A thrust per unit time). As noted in Section 3.1.1, a
preliminary transient analysis indicates a 10% thrust change in 0.3 seconds is possible
without violating engine operating parameters. This should be adequate for present
state-of-the-art engine controllers, but must be verified by the vehicle prime contractors
for mission suitability.

3.5.1.2 Thrust Chamber Design — The Aerojet TCA design is defined in
some detail in Section 3.1.1. It embodies several state-of-the-art features:

e Microchannel design in the throat for reduced thermal strain and
better heat transfer. See Appendix A for dimensions and
Figure 3.5.1 for a machined test specimen.

» Codeposited bimetal electroformed closeout. Three combinations
(NiMn, NiCo, and NiCr) are recommended to increase strength
by a factor of three over a conventional nickel electroform
closeout. The NiCo has been demonstrated in the OTV
technology program.

e Optimized I-triplet injector elements. Aerojet has selected the I-
triplet element (see Figure 3.5-2 for construction) as having the
best performance potential of all LOX/LH; injector elements. It
can attain ~100% ERE within 4 to 8 inches of the injector face.
This allows baselining a short chamber, as a long chamber is not
needed to get high ERE. The high energy release prompted a
modification of the element under Task C.4 to assure better wall
compatibility. The resulting patterns are shown in Figure 3.5-3
based on adjustments to the momentum ratio between the oxygen
and hydrogen streams. The various patterns were verified by
water flow and the mass distributions plotted (See Figure 3.5-4).
The success of the element modification program will be mea-
sured by an increase in chamber life.

RPT/D417 55a/32-3.8
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Predicted Mass Flow Patterns for Fuel and Oxidizer Elements

Lelt Baffle
Element

Right Batfle
Element

Center Element
Wall Element

3K Element

/) !

7
& <

O ¢

00X Fuel

Figure 3.5-3. Modified Injector Element Patterns
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3.5, Identification of Critical Technologies, (cont)

¢ Hydrogen cooled baffles. By dividing the hydrogen flow between
the regen cooled chamber and baffle plates the heated metal sur-
face area is increased by 80%. The practical result is an abun-
dance of energy that can be turned into chamber pressure.
Chamber pressure is effectively limited only by hot section life
capabilities. A further extension of capability to 3000 psia may be
possible with consequent reduction in engine size and an increase
in throttle range.

The major area for improvements in TCA technology will come in
the use of improved materials. Aerojet has begun an investigation of a new family of
copper alloys from the SCM company using copper, dispersion hardened by the inclu-
sion of finely dispersed aluminum oxide particles. These GLIDCOP alloys have excel-
lent machining characteristics, very little loss in thermal conductivity compared to pure
copper, and excellent mechanical properties at elevated temperatures (See Figure 3.5-5
for a comparison). Work is also being done in copper metal matrix composites that
show some promise. Aerojet has also been very successful in adapting platinum and
other noble metals to thrust chamber applications. Platinum may well be the material
of choice for the baffle plates despite the raw material cost. The emphasis in future
work should be on increasing engine life while reducing engine weight.

3.5.2 Turbopump Technology

Aerojet has tested an oxygen turbopump with 50°F oxygen turbine
drive gas (See Reference 5 and 6) and a hydrostatic bearing system. A continuation of
the oxygen turbopump work including operation with 400°F oxygen turbine drive gas
should concentrate on reducing seal leakage and improving overall efficiency. Minor
work on low friction surface treatment to minimize wear during the rubbing starts
required in a hydrostatic bearing system would be worthwhile.
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3.5, Identification of Critical Technologies, (cont)

The hydrogen turbopump technology currently considered state-of-
the-art uses hydrostatic bearing systems with a dual spool configuration (see
Figure 3.5-6 for a representative design) for subcritical speed operation. A dual spool
six stage hydrogen pump was tested for the Air Force XLR-134 engine program in late
1989 and early 1990. The dual spool concept was proven practical, but the XLR-134 TPA
uses a conventional ball bearing system. A demonstration of this critical technology
with a hydrostatic bearing system is needed.

Such a hydrogen pump should also be designed to verify design
capability at turbine tip speeds greater than 2000 ft/sec, rotating assembly speeds of
200,000 rpm, and pump pressure rise of 7500 to 8000 psid. Various static seal systems
could be designed for test using TPA hardware so that seal capability could be assessed
with the same basic TPA. This demonstration hydrogen TPA could identify the design
problems at the operating limits for any expander cycle turbopump needed by the
chemical transfer propulsion program for engines in the 7.5K to 50K Ibf thrust range.
The current critical technology could be demonstrated for any projected engine for the
CTP program and also for NASP.

3.5.3 Heat Exchanger Technology

The Aerojet platelet heat exchanger technology using copper alloys
has now reached the flight qualification stage with current testing of a platelet heat
exchanger on the Space Shuttle Main Engine. Section 3.1.1 has a discussion of the
advanced engine LOX/GHj heat exchanger (HEX) and the hydrogen regenerator used
with the dual propellant expander cycle engine. The value of these components is
twofold: 1) chamber size can be reduced and throttle range greatly increased by using a
regenerator, and 2) the HEX provides about 65% of the energy needed to operate the
oxygen turbopump with excess heat from the stream leaving the hydrogen turbopump.
A bonus is the ability to trim the engine operation with bypass around these com-
ponents. Nearly any variant of a hydrogen expander cycle engine can benefit from one

RET/DOA17 552/32-3 8 188



dwndoqiny uaboipAH |0ods jeng "9-6'¢ ainbi4

191Ul % 10K
auiqiny auiqn
loodg puodeg + oods 18115
dwng
afieig Isu
abelg paylt IS 154
v ] v / v QJ‘E 1 TYU =rHE v \H\q / U
dwnd v v _ _ . o
abeig pue : ' ' < syuej] woiq e =B
e = — — = e e ettt et o
woi4 . . _ 2INssald MO

ainssaid YybiH . = _ _

- \ / _ - ﬁ 9]

\ t : / —

B0 Ve Paas' 1} st aHnon 1 la 2Bl |
abreyosiq S 7 —/ N ¥ obIEYosIq
abeis uiy abeis puz
dwng
abe)g yuno4 Jaonpu|

181InQO

21101 sbuueag 211e)1S0IPAH |BUOIIUSALOYD



3.5, Identification of Critical Technologies, (cont)

of these heat exchangers. The price is some added complexity and weight. A critical
technology for the platelet heat exchanger would be a demonstration of their fabrication
in beryllium. This material substitution could reduce the component weight over 70%
from the weight in copper alloy. There are also serious questions concerning beryllium
compatibility with oxygen that need to be resolved.

A design issue for the HEX is the selection of a channel geometry for
the oxygen side that will assure turbulent mixing of liquid oxygen as it reverts to the
gas phase under conditions of high velocity and high heat transfer rates. Without
mechanical mixing from designed-in channel turbulence generators the oxygen would
exit as a two phase stream, and the overall heat transfer coefficient for the HEX would
be greatly reduced.

3.54 Proportioner Valve Technology

Engine control and thermal balance is dependent on several propor-
tioner valves (see Figure 2-1.1 and Section 3.1.1.10). None of the proposed valves has a
production history in the desired configuration. The main development issues are pre-
cision metering and reliability. The valve preliminary design task for the 7.5K Ibf thrust
engine design (see Reference 2) confirmed that 28 volt dc motors would be adequate for
these valves. Aerojet proposes that each valve have dual actuating coils with separate
power supplies for the redundancy needed for a man-rated system. A loss-of-power
type failure would leave the valves in the last position commanded by the controller. A
critical technology demonstration would have an oxygen system turbine bypass valve
fabricated and tested with 400°F oxygen at pressures expected in normal engine
operation. Control response would be verified based on current engine control models.

3.5.5 Oxygen Cooled Nozzle

The dual propellant expander cycle extracts about 35% of the thermal
energy needed to operate the oxygen turbopump from the oxygen cooled nozzle exten-
sion. The use of oxygen as a coolant has been demonstrated in chamber tests at NASA-
LeRC (Ref: Cooling of High Pressure Rocket Thrust Chambers With Liquid Oxygen,
NASA-TM-81503). This is a critical technology that should be reduced to practise by
designing, fabricating, and testing an oxygen cooled nozzle on a test bed engine.
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3.5, Identification of Critical Technologies, (cont)

3.5.6 Extendible/Retractable Nozzle

The NASA-MSFC is expected to fund a program to demonstrate the
materials and joint for an OTV engine extendible/retractable nozzle. As of this writing
the contract had not been awarded. Assuming it is funded and the development
successful, a follow-on program should be considered to assess the
deployment/retraction mechanism(s) for reliability. This should include an assessment
of the seal for leak free operation after numerous cycles. This is a critical technology so
long as the CTP engine nozzle is required to operate through an aerobrake with
alternate extension and retraction required.

3.5.7 Integrated Control and Health Monitoring System (ICHM)

This has been recognized by NASA LeRC as a critical technology with
continued task work under the OTV engine technology program. The most recent task
(Task E.7 to Contract NAS 3-23772) addresses in depth the requirements for the CTP
engine. Additional development is likely based on recommendations coming from the
E.7 task work.

3.5.8 Engine/Vehicle Synergisms

The list of areas for vehicle performance improvement given in
Section 3.5.1 requires the collaboration of vehicle and propulsion system designers for
several of the items. The collaboration of engine/vehicle designers should also be
extended to include gimbal design, thrust take-out structure design, aerobrake door
design, optimization of propellant tank pressurization, integration of the attitude
control system with the main engine system, and flight station control and display
information. The proposed vehicle prime/engine contractor interfacing has not been
carried out to the extent intended at the start of the study. Aerojet believes that a
number of critical technology items will be identified when such a collaboration takes
place. Also, the efficiency of both vehicle and engine design (synergy) will be
improved.
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4.0 CONLUSIONS AND RECOMMENDATIONS

4.1. CONCLUSIONS

Three conclusions stand out due to their importance in meeting the ultimate
goal of producing a new high performance LOX/LH> rocket engine for space transfer
applications:

1) The NASA LeRC-sponsored work has materially advanced the state-of-
the-art in LOX/LH3 rocket engine technology to the point where an engine develop-

ment program can be started at any time with relatively low technical and schedule
risks.

2)  The Aerojet-developed parallel flow version of the dual propellant
expander cycle engine is a major advance over the 1960 technology represented by the
RL-10 engine in terms of delivered specific impulse, operational envelope, thermal
margins, and modern control and health monitoring capability.

3)  The collaborative efforts in response to President Bush's space initiative
helped define vital engine design parameters such as thrust, and showed that vehicle
prime contractor/engine contractor interchanges are needed on a regular basis. This
engine development is rapidly moving towards a real vehicle application; vehicle
primes are working on study contracts; and there is national interest in specific missions
where this engine is needed. The program needs to focus on the real near-term
application.

Conclusions specific to engine technology and study results include:

4)  The development of the parallel flow version of the original Aerojet
expander cycle improved thermal margins, reduced pump output pressure require-
ments, and expanded the operating envelope. This may well be the cycle of choice
where long engine life and operating flexibility are emphasized.

5) A major benefit of the Aerojet cycle is the elimination of any helium
purge system. This is a major benefit in the context of the overall vehicle design
requirements.

6) A throttle range of 20:1 is well within the operating capability of the
baseline design with only minor adjustment to the turbopump design points.
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4.1, Conclusions, (cont)

7)  High mixture ratio (MR > 7) operation is readily accommodated by the
baseline engine cycle and components. Protection of the copper chamber will require a
gold plating of 1 1/2 mils. Above MR = 10, the baffle plates should be constructed of
platinum alloy for better thermal margins.

8) Engine delivered specific impulse is very close to realistic upper limits.
New work should emphasize improvements to propulsion system specific impulse.

9) A maintenance scenario needs to be developed to assess the need for
individual component changeout versus complete engine removal. Access and engine
packaging constraints will limit component changeout despite any quick connect/ dis-
connect features.

10) Materials technology remains a major area for continued research and
development. In particular the GLIDCOP copper alloys and platinum alloys for thrust
chamber use, and beryllium for heat exchange versus lightweight composite materials
can be used in a number of places to replace metals.

11) The question of turbopump life as a limiter to engine service life may be
answered by using TPAs with hydrostatic bearing systems.

12) Integrated control and health monitoring system development will
remain a fruitful area for continued work for the forseeable future. The rocket propul-
sion industry is at least a decade behind other industries in adapting new electronic and
sensor technology to rocket engines.

13) Work with the MLETS code showed that analytical tools of this sophisti-
cation hold great promise in reducing development risk, but they are time intensive.

42 RECOMMENDATIONS

The study work was left incomplete in those areas where a cooperative effort
was needed between engine and vehicle contractors. The first three recommendations
address this need:

193

RPT/D(417 55a/4.0-5.0



4.2, Recommendations, (cont)

1)  The study should be continued with more specific tasks requiring
coordination among vehicle contractors and the engine contractors. Such topics as tank
head start, gimballing requirements, and thrust takeout structure design should be
included for resolution.

2) A maintenance scenario for these engines needs to be developed as soon
as possible as it has engine design implications. This should be included as one of the
cooperative tasks for the vehicle contractors working with engine contractors.

3) A focused task to improve propulsion system specific impulse should be
included in any follow-up study. Again, this requires vehicle and engine contractor
collaboration.

4) Continued work under the OTV engine technology program should
include a number of materials development tasks.

5) A demonstration program for a hydrogen TPA using hydrostatic
bearings, subcritical rotor design, and a variety of seal designs would resolve concerns
on this key component.

6) Development of an engine steady state analysis code adaptable for use
throughout the industry should be funded. (This may be a product of the Advanced
Expander Test Bed Engine program).

7)  ICHM capability should be improved by continued research and devel-
opment. In particular, some techniques of artificial intelligence decision making should
be adapted to handle this propulsion system.
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A1 INTRODUCTION

The material contained in this appendix was derived from Aerojet TechSystems
Engineering Analysis Report: “OTV High Thrust Feasibility Study”, 9985:0234, 10 May
1989. It documents the first in-depth thermal analysis of the parallel flow version of the
dual propellant expander cycle engine. K. Dommer, the report's author, was also the
lead analyst for the 7.5K 1bf thrust OTV engine TCA thermal design.

The thermal analysis evaluated designs for 20K, 35K, and 50K Ibf thrust. The 25K
Ibf thrust engine was assumed to be very similar to the 20K design point.

A2 DESIGN METHODOLOGY

A preliminary analysis indicated that the five major components (thrust chamber,
oxygen cooled nozzle, Hj regenerator, HEX, and baffles) could not be analyzed as sepa-
rate and independent entities, but rather that the analysis had to consider their thermal
and hydraulic interdependence. This led to an iterative analytical approach. Estimates
of the assumed oxygen and hydrogen pump discharge conditions for each thrust were
obtained from the AT Systems Engineering Group and were considered constant over
the entire mixture ratio and thrust range. Because the hydrogen inlet condition to the
regeneratively cooled chamber is not dependent on the other components, the
characterization of the chamber was conducted first. Next, an inlet temperature and
pressure to the baffle was assumed and its thermal and hydraulic predictions were
made. The mixed mean temperature of the baffle and the regenerative cooled chamber
was then determined. This defines the hydrogen temperature at the turbine inlet. The
pressure drop through the chamber defines the hydrogen inlet pressure to the turbine.
The temperature and pressure drop across the turbine defines the H; inlet condition to
the heat exchanger. The total energy required to operate the oxygen turbine minus the
amount of energy available in the nozzle defines the amount of energy transfer in the
heat exchanger. This defines the hot hydrogen HEX exit/regenerator inlet condition.
The hot hydrogen inlet temperature to the regenerator then defines the maximum
possible temperature the cold Hj entering the regenerator can attain. If the resulting
temperature of the hot hydrogen entering the regenerator is greater than the assumed
baffle inlet temperature, the regenerator is evaluated. Finally, the solution is considered
converged when the regenerator is sized to give an outlet temperature on the cold
hydrogen side which equals the assumed baffle inlet temperature.
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A 2, Design Methodology, (cont)

Table A-I gives the analytical assumptions for the start of the analysis. Table A-II
gives chamber design parameters. Tables A-III, A-IV, and A-V summarize the inlet
conditions for all the components.

A. REGENERATIVELY COOLED CHAMBER AND BAFFLES

The regeneratively cooled chamber and baffles are modeled using the SCALE
computer code to predict their hydrogen pressure drop and bulk temperature rise char-
acteristics. The parameters defined in Table A-I are held constant throughout the anal-
ysis. Table A-II defines the parameters and their values which are varied for each thrust
level.

A preliminary power balance provided estimates of hydrogen inlet tempera-
ture and pressure for the regeneratively cooled chamber. The pressure drop through
the regenerator is typically small; therefore, the Hj pump discharge pressure is assumed
to represent the Hj inlet pressure to the baffle as well. The baffle analysis preceded the
O2/H3 heat exchanger and hydrogen regenerator work, but the operation of these com-
ponents is interelated. An estimate of the H; inlet temperature to the baffle has to be
estimated initially. As a result, the initial thermal and hydraulic characterization of the
baffle was evaluated as a function of Hj inlet temperature. The trends are shown in
Figure A-1 through A-6.

At each thrust level evaluated, an optimum channel geometry profile through
the regeneratively cooled chamber is determined for the MR = 6 operating condition.
This channel geometry profile is then held constant and the thermal and hydraulic char-
acteristics of the chamber cooling channel design is determined at mixture ratios equal
to5and 7. The thermal and hydraulic predictions of the chamber are shown in
Figures A-7 and A-8.

The baffle channel configuration (channel and land widths, channel depth,
gas-side wall thickness, channel back-side wall thickness) of the 7.5K Ibf design (Ref. 1)
is maintained for this study. The baffle cross-sectional area and number of channels is
assumed to increase proportionally with thrust, however. The baffle characteristics are
evaluated at the three mixture ratios and thrust levels. The predictions are shown in
Figures A-9 and A-10.
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TABLE A-l

oTVvV
ANALYTICAL ASSUMPTIONS
RELATED TO REGENERATIVELY COOLED CHAMBER AND BAFFLES

I. Operating Conditions and Flow Splits:

Chamber Pressure (psia) 2000
Chamber / Baffle Flow Split 50/50
Mixture Ratio 5, 6, 7

II. Regeneratively Cooled Chamber:

Actual Contraction Ratio 10
Geometric Contraction Ratio 15.3
Inlet Area Ratio 28
Gas-Side Wall and Land Material Narloy 2
Close-Out Material Ni-Co
Maximum Aspect Ratio 10

Radius of Curvature upstream
of convergent section /

throat radius ~ 2.0
Radius of Curvature upstream

of throat / throat radius 2.0
Radius of Curvature downstreanm

of throat / throat radius 2.0
Convergence angle (degree) 40.0
H2 inlet pressure (psia) 5500
Maximum channel width in nozzle (in) 0.030
Channel width in throat (in) 0.011
Land width in throat (in) 0.010
Land width in Barrel (in) - 0.025
Gas-Side Wall Thickness at Throat (in) 0.020
Gas-Side Wall Thickness in Nozzle (in) 0.060
Gas-Side Wall Thickness in Barrel (in) 0.060
Back-Side Wall Thickness (in) 0.020
Channel roughness (in) 60.E-06

III. Regeneratively Cooled Baffles:

Gas-Side wWall and Land Material Pt-2GS
Close-Out Material Pt-ZGS
Channel width (inch) 0.020
Channel land width (inch) 0.020
channel wall thickness (inch) 0.025
Cchannel backside thickness (inch) 0.020
Channel depth (inch) 0.100
channel roughness (in) 60.E-06
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TABLE A-ll

REGENERATIVELY COOLED CHAMBER AND BAPFLE
GEOMETRY AND PROPELLANT FLOW RATE
ASSUMPTIONS VERSUS THRUST

THRUST (1bf)
20K 35K 50K
Throat area (in##2) 4.89 8.54 12.18
Barrel Diameter (in) 9.76 12.89 15.40
Barrel Length (inch) 6.31 7.49 7.01
L' (inch) 12 15 16
Baffle Length (inch) 4.88 6.45 7.01
Baffle Cross-Sectional
Area (in*#2) 26 45 64
Total Propellant
Flow Rate (1lb/s) 41.32 72.17 102.88



TABLE A-lll

REGENERATIVELY COOLED CHAMBER, BAFFLE, AND NOZZLE
COOLANT INLET CONDITIONS

THRUST (1bf)
| 1 SR K S0 NS T T S O S R R -’----..-----------.----
20 K 35 K 50 K
E SR SE IR --------.--------—--m-—“n—-mm--n----
A. CHAMBER - coolant = H2
Inlet Pressure (psia)
MR = 5,6,7 5500 5500 5500
Inlet Temperature (°R)
MR = 5,6,7 90 90 90
Coolant Flow Rate (1lb/s)
MR = 5 3.44 6.01 8.57
MR = 6 2.95 5.16 7.35
MR = 7 2.58 4.51 6.43
B. BAFFLE - coolant = H2
Inlet Pressure (psia)
MR = 5,6,7 5500 5500 5500
Inlet Temperature (°R)
MR = 5 503 459 430
MR = 6 499 459 430
MR = 7 497 459 430
Coolant Flow Rate (1lb/s)
MR =35 3.44 6.01 8.57
MR = 6 2.95 5.16 7.35
MR = 7 2.58 4.51 6.43
c. NOZZLE - coolant = 02
Inlet Pressure (psia)
MR = 5 4862 4908 4906
MR = 6 4849 4897 4895
MR = 7 4844 4888 4887
Inlet Temperature (°R) :
MR = 5,6,7 610 610 610
Coolant Flow Rate (lb/s)
MR = 5 34.43 60.14 85.73
MR = 6 35.42 61.86 88.18
MR = 7 36.16 63.15 90.02
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TABLE A-lV

HEX INLET CONDITIONS

THRUST
nmmm“mm-mmm-m
20K | 35K | SO0K
-m--—-mm-mmm-m-m-m
02 INLET TEMPERATURE (°R)
MR=5,6, &7 188. 188. 188.
02 INLET PRESSURE (PSIA)
MR=5,6,4L7 5168. 5168. 5168.

H2 GAS INLET TEMPERATURE (°R)

MR=5 805. 869. 868.
MR=6 841. - 90S. 903.
MR=7 874. 940. 940.

H2 GAS INLET PRESSURE (PSIA)

MR=5 3229. 2971. 2601.
MR=6 3287. 3096. 2829.
MR=7 3295. 3180. 2980.
TOTAL FIOW RATE (LBS/SEC) 41.32 72.17 102.9

H2 FLOW RATE WITH 25% BYPASS (LBS/SEC)

MR=5 5.17 9.02 12.86
MR=6 4.43 7.73 11.02
MR=7 3.87 6.77 9.65

02 FLOW RATE (LBS/SEC)
(1058 OF FLOW RATE)

MR=5 36.15 63.15 90.02
MR=6 37.19 64.95 92.59
MR=7 37.96 66.31 94.52



TABLE A-V

REGENERATOR INLET CONDITIONS

THRUST
--u-----“------m-------.--mm----------m-m-n----
20K | 35K | SOK
H2 HOT INLET TEMPERATURE (°R)
MR=5 579. 642, 641.
MR=6 572. 633. 631.
MR=7 564. 624. 624.
H2 HOT INLET PRESSURE (PSIA)
MR=5 3096. 2838. 2448.
MR=6 3190. 3001. 2725.
MR=7 3221. 3109. 2904.
H2 COOL INLET TEMPERATURE (°R)
MR=S,6,7 90. 90. 90.
H2 COOL INLET PRESSURE (PSIA)
MR=5,6,7 5500. 5500. 5500.
H2 HOT FLOW RATE (LBS/SEC)
MR=5 6.89 12.03 17.15
MR=6 5.90 10.31 14.70
MR=7 5.17 9.02 12.86
H2 COOL FLOW RATE (LBS/SEC)
(50% OF FLOW RATE)
MR=5 3.58 6.32 9.00
MR=6 3.10 5.41 7.72
MR=7 2.69 4.74 6.75

L 3 =
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A.2, Design Methodology, (cont)

B. OXYGEN/HYDROGEN HEAT EXCHANGER AND HYDROGEN/
HYDROGEN REGENERATOR

The steady state counterflow heat exchanger model, HEXSS, is used to deter-
mine the pressure drops and the energy exchange between the working fluids in the
H3/0; heat exchanger (HEX) and the Hy/ H; hydrogen regenerator. The HEXSS code
uses an iterative technique to solve the steady state energy and momentum equations
for the cooled and heated fluid streams. The channel geometry, the core length, and
fluid inlet conditions and the desired fluid outlet conditions are provided to run the
program. Design parameters for the HEX and hydrogen regenerator are given in Table
A-VL

The heat exchanger and the regenerator channel geometry are assumed to be
the same as those of the 7.5K Ibf/thrust engine design (Ref. 2). The cross-sectional area
of the two components are assumed to increase with thrust, however, to maintain a
similar mass flux per channel as that of their corresponding 7.5K Ibf engine component.
The total number of channels and the core length needed to obtain the required fluid
outlet temperature are determined at the MR = 6 operating condition for each thrust
level. The thermal and hydraulic characteristics for the complete MR range at each
thrust level are then determined using that baseline geometry. The predictions for the
HEX are shown in Figures A-11 through A-14. The regenerator predictions are shown
in Figures A-15 through A-18.

The O liquid inlet temperature and pressure to the HEX were determined in
a preliminary power balance. The O, outlet temperature from the HEX is based on an
estimate of the total energy required to run the oxygen turbine and the energy available
in the oxygen cooled nozzle. The H, inlet pressure to the HEX is based on the pressure
drop through the regeneratively cooled chamber and a 37% loss across the turbine. This
pressure loss percentage is based on the turbine loss used in the preliminary power
balance using turbopump design points provided by the turbomachinery group.

Because the initial value of the baffle inlet temperature is unknown and
effects the performance of the downstream components, the baffle inlet temperature is
iterated until the corresponding inlet temperature to the hot side of the hydrogen regen-
erator is greater than the assumed baffle inlet temperature. This assures that there is
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TABLE A-VI

DESIGN PARAMETERS AND ASSUMPTIONS

FOR THE H2/02 HEX AND H2/H2 REGENERATOR

HEX WALL MATERIAL
CHANNEL DEPTH 02
CHANNEL DEPTH H2
CHANNEL WIDTH

WALL THICKNESS BETWEEN
LIKE CHANNELS

WALL THICKNESS BETWEEN
HOT AND COLD CHANNELS

OXYGEN CRITICAL PRESSURE

REGENERATOR WALL MATERIAL
CHANNEL DEPTH H2 COOL
CHANNEL DEPTH H2 HOT
CHANNEL WIDTH

WALL THICKNESS BETWEEN
LIKE CHANNELS

WALL THICKNESS BETWEEN
HOT AND COLD CHANNELS

HYDOGEN CRITICAL PRESSURE

ASSUME INCOMPRESSIBLE FLOW

A-20

ZrCu

.03 IN.
.04 IN.
.06 IN.

.043 IN.

.036 IN.

730. PSIA

ZrCu
.02 IN.
.04 IN.

.056 IN.
.043 IN.

.034 IN.

188. PSIA
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Figure A-14. Pressure Loss H2 Side Hex vs Thrust
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Figure A-15. Temperature Loss Hot Side Regenerator vs Thrust
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A.2, Design Methodology, (cont)

sufficient energy available in the hot Hj from the HEX to transfer to the cold Hj from
the pump to result in the assumed baffle inlet temperature. The regenerator is then
evaluated and sized to achieve the assumed baffle inlet temperature. The H pump dis-
charge conditions are assumed to be the inlet conditions to the cold side of the
regenerator.

The HEX and hydrogen regenerator geometries as determined in the analysis
are given in Table A-VIL

C. OXYGEN COOLED NOZZLE

The region of the nozzle that is regeneratively cooled with oxygen (area ratio
of 28 to 635) is modeled using the SCALE computer code to predict the coolant pressure
drop and the bulk temperature rise characteristics. The parameters defined in
Table A-VIII are held constant throughout the analysis.

A preliminary power balance provided estimates of the required oxygen tur-
bine inlet temperature and pressure. Coupling the temperature requirement with an
estimate of the total energy available in the oxygen cooled portion of the nozzle results
in an assumed oxygen inlet termperature to the nozzle of 610 R for all thrust levels.
Since the pressure drop through the nozzle is typically low and the oxygen enthalpies
are fairly insensitive to pressures in the range of this study, pressure effects are
neglected in the estimate. The oxygen inlet pressure to the nozzle is assumed to be
equal to the HEX 02 outlet condition. Figure A-19 summarizes the pressure drop vari-
ation with thrust for all components.

A channel geometry profile through the regeneratively cooled nozzle is
determined assuming an MR = 6 for each thrust level. The maximum channel depth
profile (assuming a maximum allowable aspect ratio of 10) is determined using the
design option of the SCALE program. The profile is then modified to reflect a maxi-
mum channel depth of 0.500 inches throughout the nozzle. Holding this cooling chan-
nel geometry profile constant at a given thrust level, the thermal and hydraulic charac-
teristics at mixture ratios equal to 5 and 7 are then determined. The predictions are
shown in Figures A-20 and A-21.

DOA1755a-App A A-29



Table A-VII
Ho/02 Hex Geometry

Thrust
20K Ibf 35K Ibf 50K Ibf
Core Length (in.) 17.6 15.0 15.1
Core Weight (lbm) 58.8 87.1 125.
Total No. of Channels 02 966 1679 2392
Total No. of Channels Ho 966 1679 2392
—_—
H2/H2 Regenerator Geometry
Thrust
20K Ibf 35K Ibf 50K Ibf
Core Length (in.) 15.4 8.6 7.4
Core Weight (Ibm) 41.08 39.73 48.2
Total No. of Channels Hz — Hot 861 1491 2100
Total No. of Channels Hz — Cold 861 1491 2100

17.44-7a/rv4 A—3O
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Figure A-20. Oxygen Cooled Nozzle 02 Delta Temperature vs Thrust
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A.3 BOUNDARY CONDITIONS

The Bartz equation is used to evaluate the gas-side heat transfer coefficient for the
regeneratively cooled chamber and baffles:

: 0.
Nug= 0.026 Cg(z)Rey Pry

Symbols are defined in Section A.7. All properties are evaluated at the film temperature
equal to the average of the wall temperature and the adiabatic wall temperature. All
property and temperature data are obtained from the TRAN 72 computer program.

The 15.3 to 1 chamber contraction ratio assumed for all thrust levels in the present
study is smaller than the near 17 to 1 value used in the 7.5K Ibf design, however, the
heat fluxes near the fore end of the barrel are assumed to be similar. Reference 3 asserts
that gaseous hydrogen injectors often yield higher than nominal heat fluxes when the
GHj, injection velocity exceeds the one dimensional isentropic chamber gas velocity.
The injector designer states that this is the case with the OTV engine injector. Because
the actual GH} injection velocity used in this study is assumed to be the same as that of
the 7.5K Ibf engine design, the magnitude of the fore end heat flux should remain the
same as well. However, the relative increase in Cg over the generic barrel value of 1.0
should be lower than in the 7.5K 1bf engine study due to the smaller contraction ratio.
The corrected barrel Cg’s are determined and compared to the generic barrel value of
1.0. The higher of the two is assumed. The resulting profile reflects a constant Cg value
of 1.0 throughout the barrel. This infers that due to the smaller contraction ratio, the
one-dimensional isentropic gas velocity has become sufficiently large to overpower the
high fore end heat fluxes created by the injector element characteristics. The Cg profile
from the aft end of the barrel to the end of the regeneratively cooled nozzle is
maintained from the 7.5K Ibf engine design. The complete profile is shown in Figure A-
22.

The Hess and Kunz correlation (Ref. 4) is used to describe the forced convection
heat transfer coefficients for hydrogen in the baffles, the regeneratively cooled chamber,
the heat exchanger and the regenerator. This relationship is:

Nug= 00208 ReL*Pro(1. + 0.01457 220

HPw

10417.55a-App A A-34
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A 3, Boundary Conditions, (cont)

The supercritical LOX correlation (Ref. 5) used to evaluate the convective heat
transfer coefficients of oxygen is:

2/3,

Nup= Nt *{py/p) (/o) **(ep/cp) """

Nu,= 0025 *Rey* Pro-

P/P ,) [1+2/(1/d)] where

The coolant pressure drop for a cooling channel within the regeneratively cooled
chamber and baffle relates the exit static pressure to the inlet stagnation pressure. It is
calculated as:

A PS= A Pinlet+ A Pfric+ A den

One half of the dynamic head loss is assumed at the channel inlet to account for
flow contraction.

The flow through the HEX and regenerator is assumed to be incompressible for the
two components. This method results in a conservative pressure loss estimate when
compared to a compressible pressure drop assumption.

The friction factor calculation (Ref. 6) used in all friction pressure loss evaluations
is:

1/3
f=.0055 ll. +(20E04*e/D +10°/ Re) ]

A roughness of 60.0 E-6 inches is assumed for the regeneratively cooled chamber, baf-
fles, and nozzle and a roughness of 125.0 E-6 inches is assumed for the HEX and
regenerator.

A.4 DISCUSSION

A. GEOMETRY ALLOWABLES - ALL COMPONENTS

The maximum channel width to wall thickness for all components considers
bending loads applied to fully-elastic hot walls and is described as:

D0417.55a-App A A‘36



A 4, Discussion, (cont)

1/2
2*Fy, /

A Pmax

max

w
tw

The maximum channel width to land width criteria used for all components
considers tensile loads applied to fully elastic hot walls and is calculated as:

By
A Pmax

w
Land

max

B. REGENERATIVELY COOLED CHAMBER

The geometric assumptions and general descriptions of the coolant channels
in the regeneratively cooled chamber are summarized in Tables A-I and A-II. Table A-
III describes the assumed hydrogen inlet conditions to the chamber.

The cooling channels in the chamber are assumed to be fabricated with a
straddle mill rather than a constant width cutter. This method allows a smooth transi-
tion in increasing or decreasing channel width to minimize pressure loss. The channel
sizes indicated in Table A-I are based on those used in the 7.5K Ibf engine design with
the exception of the channel and land widths at the throat and the land width in the
chamber barrel section.

The channel width at the throat was increased and the land widths in the bar-
rel were decreased from those values used in the 7.5K Ibf engine design to decrease
pressure drop. The channel width at the throat is increased to 0.011 inches rather than
0.010 inches used in the 7.5K Ibf engine design. Because the total channel width center
to center spacing is maintained from the earlier design, the land widths are decreased
correspondingly to 0.010 inches from the 0.011 inches used previously. Coupling this
assumption with the maximum 10 to 1 aspect ratio (channel depth/channel width) limit
results in a channel flow area increase and flow velocity decrease of 21% at the maxi-
mum allowable channel depth. For the three thrust levels evaluated, the design of the
channels in the throat region are, in general, geometrically limited and are therefore
overcooled. The increase in flow area saves pressure drop. The maximum land width
in the barrel was decreased from 0.040 inches used in the 7.5K Ibf design to 0.025 inches.

DO417.55a-App A A_37



A4, Discussion, (cont)

Because the total number of channels is determined by the throat geometry,
the decrease in barrel land width results in an increase in channel width of
approximately 27%. Wall temperature control dictates the channel depth profile
through the barrel, however the total coolant flow area is still larger with the 7.5K Ibf
engine assumption. The only constraint applied to the minimum land width definition
is that the lands must provide structural support. Fabrication and weight issues were
not considered.

The system schematic was changed to the parallel flow version with a 50/50
flow split occuring upstream of the regenerator (Figure A-23). The preliminary power
balance was evaluated parametrically and a pump discharge pressure of 5500 psia was
assumed. This pressure coupled with a low hydrogen inlet temperature of 90 R related
to the new flow path significantly reduced the delta pressure through the chamber as
compared to the series flow version of the dual propellant expander cycle.

The bulk hydrogen temperature rise and pressure drop versus thrust trends
for the regeneratively cooled chamber are shown in Figures A-7 and A-8, respectively.
Because the contraction ratio and the channel geometry at the throat remain constant for
each thrust level evaluated, the amount of coolant flowrate per channel increases with
the thrust level. This occurs because the throat and chamber diameters increase with
the square root of thrust. An increase in hydrogen pressure drop and a decrease in bulk
temperature rise as thrust increases is the result.

C. BAFFLES

The geometric assumption and general description of the coolant channels in
the regeneratively cooled baffle are summarized in Tables A-1and A-II. The hydrogen
inlet conditions are summarized in Table A-IIL

The initial baffle material assumption differed from that of the 7.5K Ibf
design. The current effort started with a platinum alloy (Pt-ZGS) baffle rather than the
NASA-Z baffle assumed in the earlier work. The NASA-Z baffle is limited to a 1050°F
maximum gas-side wall temperature. In the previous study, the required hydrogen
inlet temperature to the turbine was high (1000°R/540°F) and maintaining a wall
temperature less than 1050°F at the coolant exit plane of the baffle was difficult.

D0417.55a-App A
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A 4, Discussion, (cont)

Platinum was chosen as the baseline material for this effort because of its high thermal
conductivity (similar to Nickel) and its high wall temperature capability (up to 2000°F).
A later evaluation showed that copper alloy baffles could be used for all engine
operations up to mixture ratios < 10.0.

The cooling channels in the baffle are assumed to be identical to those of the
7.5K Ibf engine design; however, the core of the baffle is the only region evaluated; the
tip and the corner regions are not analyzed for the present parametric study. The
maximum baffle length is taken as either the length of the barrel section or 1/2 the
chamber diameter, whichever is smaller. A baffle longer than the barrel section is not
desirable in order to maintain a rectangular baffle shape and to prevent exposure to
higher heat flux conditions associated with the convergent section. A baffle longer than
1/2 the barrel diameter was not considered because of combustion stability considera-
tions. At the 20 and 35K Ibf thrust levels, the combustion stability criteria defines the
baffle length. Figure A-24 illustrates the resulting baffle lengths for the three thrust
levels evaluated.

The selection of the baffle length affects the total heated surface area which, in
turn, affects the turbine inlet temperature. Figure A-25 shows the bulk temperature rise
trends for both the chamber and the baffle for the MR = 6 condition. As discussed in
Section A.4B, the bulk temperature rise through the chamber goes down with thrust due
to the relationship of heated surface area and Hj flowrate to thrust. The Hj through the
baffle has the opposite trend, however. Because the number of coolant channels in the
baffle are assumed to scale directly with thrust and the H mass flux per channel
remains constant for all thrust levels. The baffle length then becomes the parameter
which differentiates the total heated surface area for the different thrust levels. Because
baffle length increases as thrust goes up, so does the bulk temperature rise of the fluid.
The turbine inlet temperature is a function of the delta temperature in both components.
The sum of these temperature increases is very close for the 35 and 50K Ibf thrust levels
(963 and 960 R, respectively). At the 20K lbf thrust condition the resulting turbine inlet
temperature is lower by approximately 68 degrees R due to the limited heated surface
area. Figure A-26 shows the resulting turbine inlet temperature as a function of thrust.
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A.4, Discussion, (cont)

The pressure drop also increases with thrust. The losses are small compared
to those of the chamber, however. An orifice directly downstream of the baffle is
assumed to achieve the same exit pressure as that of the chamber. The Joule-Thompson
effect is negligible for the pressure range of this study.

The bulk temperature rise and pressure drop versus thrust trends for the
regeneratively cooled baffle for the MR = 5-7 range are shown in Figures A-9 and A-10,
respectively.

D. HEAT EXCHANGER AND REGENERATOR

The divergences in pressure drop for the Hy and O; in the HEX and the hot
and cold Hj in the regenerator are small at the three thrust levels evaluated. This is
because the total number of fluid channels is assumed to increase directly with thrust to
maintain a similar mass flux per channel throughout the thrust range. The differences
in pressure drop for the fluids at the three thrust levels are attributable to the fluid inlet
conditions and the overall length of the HEX or regenerator.

Because the hydrogen enthalpy is fairly insensitive to pressure for the pres-
sure range of this study, the Hj inlet temperature to the HEX is approximated as a
50/50 mixture of the fluid temperatures from the baffle and the regeneratively cooled
chamber and a 6% loss across the turbine. The percent of turbine temperature loss was
based on that assumed in the preliminary power balance using design curves supplied
by the turbopump group.

T = 94*(5*T +.5*T )
Mixture Regeneratively Baffle
Cooled chamber

The HEX is sized to vaporize the oxygen prior to entering the O3 cooled
nozzle to achieve a turbine inlet temperature of 860 R (max) at a MR = 6 condition. The
resulting hydrogen exit conditions are used as the inlet conditions to the hot side of the
regenerator. A 25% bypass of Hj around the HEX was assumed based on the optimum
bypass determined in the 7.5K Ibf analysis. The inlet temperature to the hot side of the
regenerator is determined by:

A-44
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A4, Discussion, (cont)
Tixture= 75 * THaouHEX + -25 * THain HEX

The inlet conditions for the HEX and the regenerator are listed in Tables A-IV
and A-V, respectively. These conditions are given as a function of thrust and mixture
ratio.

The geometry and the dimensions for the HEX and the regenerator are listed
in Tables A-VI and A-VII. The delta temperature trends for the O, and Hj sides of the
heat exchanger are shown in Figures A-11 and A-12, respectively. Figure A-13 shows
the pressure loss across the HEX for the oxygen stream as a function of the thrust level.
The inlet pressures and temperatures for all mixture ratios and thrust levels are
assumed to be equal to the pump discharge conditions. The oxygen outlet temperature
is constant throughout the thrust range for a given mixture ratio. Because the H, tem-
perature at the HEX inlet is low at the 20K Ibf thrust condition, the HEX is longer than
at the higher thrust levels to compensate for the lower driving potential. The low
temperature is due to the low chamber and baffle heated surface area to hydrogen flow

rate ratio. A higher pressure drop at the lower thrust case results. The curves tend to
flatten out beyond a thrust of 35K Ibf due to the similarity in Hy inlet temperature to the

HEX.

Figure A-14 illustrates the HEX Hj side pressure loss trends for the three mix-
ture ratios. The Hy delta pressure for thrusts from 20 to 35K Ibf remains relatively con-
stant, while at a thrust of 50K Ibf losses increase. The pressure drops for the two lower
thrust levels are similar because of the interaction of the HEX axial length and the H>
inlet conditions. While the low thrust HEX is longer than that of the 35K Ibf design, the
lower Hj dynamic pressure head (due to the higher H inlet pressure and lower inlet
temperature) compensates for the additional length. The H inlet temperature and HEX
lengths are similar for the 35 and 50K Ibf thrust engines, however, the dynamic pressure
head and total pressure loss for the 50K 1bf design is higher due to the lower Hj inlet
pressure.

The temperature losses and gains as a function of the thrust level for the hot
and cool hydrogen streams of the regenerator are depicted in Figures A-15 and A-16,
respectively. At the 20K Ibf level, in order to maintain the specified Hj baffle inlet tem-

perature of approximately 500°R, more energy is required to transfer from the hot to the
cold H3 to compensate for the reduced heated surface area per hydrogen flow rate in

DO417.55a-App A A-45



A .4, Discussion, (cont)

the chamber and baffle. As a result, the temperature gain across the cool side and the
temperature loss across the hot side of the regenerator are the highest at the 20K Ibf
condition.

The Hj pressure drops across the hot and cool side of the regenerator as a
function of the thrust level are depicted in Figures A-17 and A-18, respectively. Since
the inlet temperature and pressure for the cool hydrogen stream is constant for all
thrust levels and the required outlet H, temperature from the regenerator to the baffle is
the highest at the lowest thrust level, the required regenerator length and the pressure
loss of the cool Hj is largest at the 20K Ibf condition. The axial length of the regenerator
also becomes the driving parameter in determining the pressure loss on the hot Hy side
of the regenerator even though the inlet pressure goes down as thrust goes up. Since
the velocities of the hot Hj through the regenerator channels are relatively low
throughout the mixture ratio and thrust range, deviations in dynamic pressure head
attributable to the different hot Hj inlet pressures and temperatures are small.

E. OXYGEN COOLED NOZZLE

Table A-VIII summaries the geometric assumptions for the coolant channels
in the regeneratively cooled nozzle. The assumed inlet conditions are listed in
Table A-III.

The cooling channels in the regeneratively cooled nozzle are assumed to be
fabricated with a straddle mill cutter rather than a constant width cutter to minimize
pressure drop. The assumptions for the cooling channel configuration do not reflect
optimized values. They are, rather, based on maintaining reasonable ratios between
channel width, land width, and gas-side wall thickness throughout the nozzle. Strength
of both the gas-side wall and the land width are considered. The channel depth profile
allowed for a maximum aspect ratio of 10 for channel widths less than or equal to 0.050
inches. As a comparison to the hydrogen cooled portion of the chamber, the maximum
channel width in that region is 0.056 inches with a maximum allowable aspect ratio of
10. Rather than allow a maximum aspect ratio of 10 for the entire O, cooled nozzle
region (the channel widths are assumed to be as large as 0.200 inches near the exit), the
maximum allowable channel depth is set at 0.500 inches to represent a more reasonable
total wall thickness. Due to the low coolant velocities in the region of the nozzle

D0417.55a-App A
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Table A-VHll

Oxygen Cooled Nozzle
Assumptions

. Thrust (Ibf) .

20K _ _39K 90K __
Coolant Inlet Area Ratio 28 28 28
Coolant Exit Area Ratio 635 635 635
Throat Area (in.2) 4.89 8.54 12.18
Total Flow Rate (Ibs) 41.32 72.17 102.88
Maximum Channel Width (in.) .200 .200 .200
Ratio of Channel Width to Land Width, max 20 2.0 2.0
Maximum Channel Depth (in.) 0.5 0.5 0.5
Single Bifurcation Yes Yes Yes
Channel Width at Bifurcation (in.) .100 .100 .100
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A4, Discussion, (cont)

affected by this prescription, the additional pressure drop penalty related to the maxi-
mum 0.500 inch channel depth assumption is negligible when compared to the pressure
drop related to a maximum 10 to 1 aspect ratio maintained throughout the nozzle.

The resulting coolant delta temperature and pressure across the oxygen
cooled nozzle are shown in Figures A-20 and A-21, respectively. The increase in
pressure drop and decrease in bulk temperature rise with increasing thrust is similar to
the trend seen for the regeneratively cooled chamber and is also attributable to the
manner in which the surface area and propellant flow rate scale with thrust.

A5 CONCLUSIONS

The thermal and hydraulic predictions were based on O; and Hy pump exit condi-
tions determined in a preliminary power balance and should be viewed as reference
values. Adjustments in pressure drop for each component should be made if the pump
discharge pressures for either the oxygen or hydrogen are altered from the reference
values (discharge pressure of O and Hp are 5168 and 5500 psia, respectively) to account
for density variations. Since the H and O3 enthalpies are fairly insensitive to pressure
for the pressure range of this study, the thermal trends can be used directly assuming
the same pump discharge temperatures (90°R for the H pump and 188°R for the O

pump)

Of the five components evaluated, the regeneratively cooled chamber and the HEX
are the limiting components for the system delta pressure on the Hp and O; sides,

respectively.

Prohibitively high Hj pressure drops occur through the regeneratively cooled
chamber when the 50/50 flow split (50% of the Hj to the chamber and 50% to the baffle)
is used and Hj is preheated by the regenerator. When the coolant flow split is moved
upstream of the regenerator and the Hj to the chamber comes directly from the pump,
the pressure drop through the chamber is substantially decreased. The higher density

inlet hydrogen is predominantly attributable to the lower temperature. The difference
in Hp bulk temperature rise through the regeneratively cooled chamber for the parallel

flow versus series flow is small, approximately 2%.
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A.5, Conclusions, (cont)

The Hp temperature at the inlet to the turbine reaches a peak value (963°R) at an
engine thrust of 35K Ibf thrust. The corresponding Hj pressure drop from the pump
exit to the turbine inlet is approximately 590 psid. For the 50K Ibf thrust condition, the
H; turbine inlet temperature is only slightly lower than that of the 35K Ibf thrust case,
but the pump-to-turbine delta pressure is nearly twice the 35K Ibf thrust loss.

If the total energy available to heat the hydrogen is not sufficient to obtain a
system power balance for any chamber pressure or thrust level, it is recommended than
an increase in chamber length (L’) be considered. Because the baffle length is already
limited due to combustion stability considerations (L,baff < 1/2 D,barrel) for the 20K lbf
and 35K Ibf thrust engines, additional L’ would provide more heated surface area only
in the outer chamber’s cylindrical section. For the 50K Ibf thrust case the baffle length is
currently limited by the length of the cylindrical barrel section. By increasing L,
additional surface area could be obtained in both the outer cylindrical section and the
baffles. The additional pressure drop penalty would have to be considered, however.

The weights of the heat exchanger and regenerator could be reduced by allowing
higher hydrogen pressure drops through the components. The pressure drop penalty
on the hydrogen side of the heat exchanger and on both sides of the regenerator is small
compared to that of the regeneratively cooled chamber (particularly at thrusts in the
range of 35K Ibf to 50K Ibf); therefore, additional delta pressure would have a small
effect on the hydrogen side of the system balance. Additional pressure drop on the
oxygen side of the heat exchanger could also be investigated to reduce weight. No
attempt was made to weight-optimize the HEX or hydrogen regenerator.

The O3 cooled nozzle is adequately cooled at the inlet area ratio of 28 and through-
out the nozzle for a single pass of the oxygen. Mechanical design of the nozzle to
accommodate the extendible/retractable section of the nozzle requires a pass-and-a-half
flow design so that the collection manifold can be located away from the end of the
cooled nozzle. The only penalty is a small increase in pressure drop due to loss in the
180° turn.

In summary, the parallel flow schematic has significantly improved the thermal
margins for the dual expander cycle engine. There are no major thermal design limits
for the required operating envelope.

DO417.55a-App A A-49



A.6 REFERENCES

1.

D0417.55a-App A

Dommer, K.T., “OTV Regen-Cooling Jacket and Baffle Preliminary Design,”
ATC TAR 9985:008, 14 Jan. 1988.

Hayden, W.R., and Sabiers R., OTV Engine Preliminary Design Final Report,
Contract NAS 3-23772, October 1988.

Ito, J.I, “A Physically Mechanistic Design Dependent Approach for Estimating
Thermal Compatibility,” ATC TAR 9980:2024, 21 Aug. 1987.

Hess, H.L., and Kunz, H.R., “A Study of Forced Convection Heat Transfer to
Supercritical Hydrogen,” ASME Paper 63-WA-205, 1963.

Spencer, R.G., and Rousar, D.C., "Supercritical Oxygen Heat Transfer,"
Contract NAS 3-20384, November, 1977.

Ewen, R.L., Calorimeter Chamber and Cooled Resonator Design, High Density
Fuel Combustion and Cooling Investigation, Report No. TFD 9752:0185,
Contract NAS 3-21030, ALRC,m 31 May 1978.

A-50



A7 NOMENCLATURE

Cg Turbulent Pipe flow Correlation Coefficient
Cp Specific Heat
CF Integrated Average Specific Heat from Twto Tp
d inside tube diameter
D diameter
f friction factor
Fyy Yield Strength
k Thermal conductivity
L Length
] Length from Start of Heated Tube to Temperature Measurement
L’ Axial length from injector to throat
Land land width
Nu Nusselt Number
Nuref Reference Nusselt Number = .0025 * Rep * Pri;1
P pressure
Pr Prandtl Number
Re Reynolds Number
T Temperature
tw Wall Thickness
\' Velocity
W Channel Width
Greek Letters:
v} dynamic viscosity
£ roughness
p density
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A.7, Nomenclature, (cont)

Subscripts:

b Evaluated at bulk temperature
cr Critical property

dyn  Dynamic

f Evaluated at Film Temperature
fric friction

H Hydraulic

inlet  inlet

max  maximum

min minimum

s static

w Evaluated at Wall Temperature
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APPENDIX B

ADVANCED ENGINE POWER BALANCE

CONTENTS

B.1 Introduction

B.2 Power Balance At Mixture Ratio = 8
B.5 Power Balance At Mixture Ratio = 10
B.8 Power Balance At Mixture Ratio = 12
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B.1 INTRODUCTION

This appendix contains power balance results at three mixture ratios outside of the
normal operating range of MR = 6 + 1. This power balance work supports the Engine
Variations subtask investigation of high mixture ratio operation. Balances at MR =38,
10, and 12 were made at or very near to the maximum thrust point for the engine. A
line connecting such points marks the high thrust boundary for the engine operating
envelope. This maximum thrust limit is set by either the oxygen TPA maximum
flowrate or by a design point temperature limit for the regeneratively cooled chamber
or hydrogen cooled baffles. Another limit is set by available energy for the turbo-
pumps. In general, high MR operation is both chamber wall temperature limited and
hydrogen TPA energy limited before the oxygen flowrate limitation is effective. These
power balances are supported by a detailed thermal design (see Appendix A) that
confirms wall temperatures will be within design limits (800°F for the throat, 1050°F for
all other copper surfaces) at these balance points.
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C.1 INTRODUCTION

A study was performed to assess the potential for low frequency combustion
instability, commonly known as "chug" arising from deep throttling of the advanced
OTV engine.

The engine parameters used in the study include, a GH,/GO; system with 20,000
Ibf thrust, a nominal mixture ratio of 6, chamber pressure of 2000 psia and a 20:1 throt-
tling range. The injector is composed of Premixed I-Triplet elements. Some excellent
sources of stability data for hot-fire testing of this injector are given as references (1) and
(2). This element type was tested over a wide range of chamber pressures and mixture
ratios and was never observed to chug. The evidence from reference (2) is especially
compelling.

In the OTV series, only the 7500 Ibf chamber has undergone detailed geometry
characterization. The injector for that chamber was derived from the previous 3000 1bf
injector by simply using more of the same size elements. If one assumes that same phi-
losophy for the 20,000 Ibf injector (using more of the same size injector elements), then
the injector has already been demonstrated to be chug stable by virtue of the reference
(1) program. If a larger size element must be used for the increased-thrust chambers in
the series, then the chug stability margin must be inferred by analytical rationale until
experimentally verified. The confidence level in the analytical rationale that predicts
stability is very high.

C.2 TECHNICAL DISCUSSION

It is generally understood that the low frequency combustion instability called
chugging is a coupling between the propellant feed system and the initiation of com-
bustion. The two most important variables characterizing the process are the injection
Delta P/Pc ratio and the combustion time lag.

In a system using liquid propellants, the time lag is dependent on many factors:
The injection velocity, orifice size, the type of injector element, the atomization length,
and the droplet vaporization rate. The typical situation is that an injector will be chug
stable at full Pc, but as the engine is throttled down the injection Delta P/Pc decreases,

1X0417.55a-App C C-2



C.2, Technical Discussion, (cont)

the injection velocity decreases, and the combustion time lag increases and thus the
injector becomes chug unstable. This is why throttling is a great concern for liquid
propellants.

That is not the case for a system using gaseous propellants. In that situation, the
propellant Delta P/Pc ratio and combustion time lag are only a function of mixture ratio
and propellant temperature. Since the gas density and mass flow rates are both linearly
proportional to P, the injection velocity and combustion time lags will therefore be
independent of Pc. This is illustrated in Figure C-1. This shows a plot of injection
velocity as a function of Pc for a hypothetical OTV-type injector for two cases: the first
with the gas being treated as incompressible (dashed lines on the plot), and the second
being the actual density changes (solid lines). This shows that as the engine is throttled
for the case of an incompressible (liquid) propellant, the injection velocity falls off with
Pc. For the actual case of compressible flow, the injection gas velocity increases slightly
with decreasing Pc. This is due solely to the fact that C* decreases by 3 percent over
that range of pressures. Otherwise, the curve would have been flat.

With gaseous propellants, the combustion time lag has no component due to atom-
ization or vaporization, but there can be a component due to mixing. With some ele-
ment types that have slow mixing characteristics, such as impinging like-on-like
doublets or shear coaxes, this component may be enough to cause chugging, if designed
with a low delta P. However, the element type under consideration for OTV (the pre-
mix I-triplet) is such as to bring the time lag due to mixing to an absolute minimum.
The impingement of fuel and oxidizer, and hence incipient combustion actually occurs
within the injector face. So the propellants are already burning when they emerge from
the injector.

There exist several sources of data on low frequency stability of this type of injector
element under hot-fire conditions. These are listed above as references (1) and (2). The
data from reference (1) is given as Table C-1, and data from reference (2) is given as
Table C-2. Of particular note in Table C-2 are the tests numbered 122 and 115. both of
these have mixture ratios are slightly less than that considered for OTV (5.4 and 5.6,
respectively). The difference in chamber pressure with the two tests is 106 versus
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JABLE C-1
HOT-FIRE DATA (REFERENCE 1)

Stability Data

For Single-Element Injectors, 1973

DelP DelP

Test Pc

No. Chamb. MR (psia) Pc ox Pc £ Stability
135 -3 6.01 291 .182 .208 Stable
138 7.63 258 .181 .194 Stable
139 2.05 325 .410 .581 Stable
140 3.97 522 .227 .291 Stable
141 4,02 103 .217 .278 Stable
143 0.99 302 .707 1.159 Stable
144 -2 3.93 303 .226 .291 Stable
145 2.03 304 .438 .625 Stable
146 6,01 291 .166 .191 Stable
147 4.12 98 .221 .279 Stable
148 ~1 3.94 317 .221 .283 Stable
149 2.06 329 .398 .569 Stable
150 3.90 524 .218 .283 Stable
151 5.99 290 .176 .203 Stable
152 4.14 103 .213 .270 Stable
153 -3 6.08 91 .185 .208 Stable
154 1.96 105 .420 .600 Stable
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