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A new method of predicting the strength of cross-plied fibrous composite laminates is based on 
expressing the classical maximum-shear-stress failure criterion for ductile metals in terms of strains. 
Starting with such a formulation for classical isotropic materials, the derivation is extended to ortho
tropic materials having a longitudinal axis of symmetry, to represent the fibers in a unidirectional com
posite lamina. The only modification needed to represent those same fibers with properties normal
ized to the lamina rather than fiber is a change in axial modulus. A mirror image is added to the 
strain-based "lamina" failure criterion for fiber-dominated failures to reflect the cutoffs due to the 
presence of orthogonal fibers. It is found that the combined failure envelope is now identical with the 
well-known maximum-strain failure model in the tension-tension and compression-compression 
quadrants but is truncated in the shear quadrants. The successive application of this simple failure 
model for fibers in the 0° /90° and ± 45 ° orientations, in turn, is shown to be the necessary and suffi
cient characterization of the fiber-dominated failures of laminates made from fibers having the same 
tensile and compressive strengths. When one such strength is greater than the other, the failure enve
lope is appropriately truncated for the lesser direct strain. The shear-failure cutoffs are now based on 
the higher axial strain to failure since they occur at lower strains than and are usually not affected by 
such mechanisms as microbuckling. Premature matrix failures can also be covered by appropriately 
truncating the fiber failure envelope. Matrix failures are excluded from consideration for conventional 
fiber/polymer composites but the additional features needed for a more rigorous analysis of exotic 
materials are covered. The new failure envelope is compared with published biaxial test data. The 
theory is developed for unnotched laminates but is easily shrunk to incorporate reductions to allow for 
bolt holes, cutouts, reduced compressive strength after impact, and the like. 

INTRODUCTION 

Failure or yield of metals has traditionally been characterized in terms of applied stresses. It makes 
little difference for isotropic materials whether such expressions are formulated in terms of stress or 
strain. However, it makes a tremendous difference in predicting failure of orthotropic materials such 
as fibrous composites. Indeed, the almost universal preference for a stress-based reference has handi
capped failure prediction for composites for a quarter of a century. In stress formulations, it has been 
incorrectly assumed that the longitudinal and transverse properties of the unidirectional lamina, 
which have served as the basis of laminated composite analysis, are independent quantities that need 
to be specified separately for use in an interactive type of failure criterion. 

If the formulation had been in terms of strain, the dependence between longitudinal and transverse 
strengths would have been apparent. The characterization of failure or yield in terms of strain rather 
than stress permits a single universal criterion to cover all materials, isotropic and orthotropic. In the 
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case of fibrous composites, the current longitudinal tests (tension and compression) are sufficient to 
fiber-dominated failures while the measured transverse strengths, which 

the failure of the fibers, can serve as the basis of a separate failure criterion for 
the resin matrix. 

This paper explains how failure can be characterized in terms of strain rather than stress. The conver
sion for isotropic materials - metal alloys, for example - is derived first to show the tie-in to estab
lished methods. The formulation in terms of strain is then extended to orthotropic materials. That 
nonsymmetric failure criterion for a unidirectional fibrous composite lamina is next simplified by 
su perposi tion wi th an eq uivalen t strength cutoff for any orthogonal layer of the same com pos i te rna te
rial since, for most practical structural laminates, some orthogonal fibers will always be present. 

The reduced envelope is then recognizable as a truncation in the in-plane shear quadrants of the well
known maximum-strain failure model. Whenever there are orthogonal fibers present, such an enve
lope is not an arbitrary truncation but is directly equivalent to the generalized maximum-shear-stress 
failure criterion developed earlier by the author. But now it is simplified to the point where it should be 
more appealing to designers and, more important, it is so formulated that there is no need to specify 
any transverse properties. Consequently, researchers and analysts need not be skilled in the art to 
make realistic laminate strength predictions. 

THE MAXIMUM-SHEAR-STRESS FAILURE CRITERION 
IN TERMS OF STRAIN FOR ISOTROPIC HOMOGENEOUS MATERIALS 

Since the shear stresses and strains are related for isotropic materials by the simple relation 

r = Gy (1) 

there is a one-to-one match between stress r and strain y. The characterization of failure in terms of 
Mohr circles of stress and strain (Figures 1 and 2, respectively) is as follows. 

For uniaxial tension, for example, failure can be expressed by the following equations. 

Gerit = 2rerit (2) 

or 

Yerit = (1 + V)Eerit (3) 

Similarly, for pure shear, the equal and opposite orthogonal principal stresses at failure are equal to 
the shear strength of the material. 

G = r erit (4) 

and 

E = ± Yerit/2 (5) 
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The general stress-strain relations for isotropic materials, using x and y as principal in-plane refer
ences and z as the thickness (normal) direction, are as follows. 

(6) 

(7) 

and 

(8) 

Failure would occur when any of the three principal strain differentials (Ex - Ey), (Ex - Ez), (Ey - Ez), 

exceeded the material allowable shear strain Yerit. This condition is expressed in Figure 3. The figure is 
unbounded along the diagonal because, with triaxial (hydrostatic) stresses all having the same sign 
(positive or negative), the differences between the principal strains can remain too small to cause fail
ure. That open-ended ness can be eliminated for the special two-dimensional load case of interest here, 
in which there are no normal or through-the-thickness shear stresses. For this case, 

Oz = Txz = Tyz == 0 

and Equations (6) to (8) reduce to the following. 

1 
Ex = E (ax - Yay) 

and 

(9) 

(10) 

(11) 

(12) 

Figure 3 represents the critical differences between the in-plane (x andy) strains. The missing charac
teristics refer to the differences between the other pairs of strains. For the case Ex - Ez = Yerit, the addi-

tional cutoffs are defined by 

(13) 

while, for Ey - Ez = Yerit, the remaining cutoffs (for positive and negative strains) are given as follows. 

(14) 

Together with the cutoff Ex - Ey = Yerit shown in Figure 3, the complete failure envelope in the absence 

of surface stresses is as shown in Figure 4. 

Figure 5 adds to the failure envelope the traces for the uniaxial load lines Oy = Oz = 0 and 

ax = Oz = 0, inclined from the reference axes by an angle defined by the Poisson's ratio, as shown. 
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FIGURE 4. ADDITIONAL CUTOFFS DUE TO ABSENCE OF NORMAL STRESSES (az = 0) 

667 



TRANSVERSE TENSION 

PURE SHEAR 

UNIAXIAL COMPRESSION 

a = ARCTAN v 

Oz == 0 

BIAXIAL TENSION 

UNIAXIAL TENSION 

BIAXIAL COMPRESSION 
PURE SHEAR 

NOTE PARALLEL LINES AND 
TWO AXES OF SYMMETRY AT TRANSVERSE COMPRESSION 
±4S0 FROM REFERENCE AXES 

FIGURE 5. TWO-DIMENSIONAL MAXIMUM-SHEAR-STRESS FAILURE CRITERION FOR 
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These uniaxial load lines intersect the failure envelope at points A, B, C, and D. At the biaxial points E 
and F, O( = Oy in tension and compression, respectively. G and H indicate the points of pure in-plane 

shear, for which Ox = - Oy. 

All but the in-plane shear failure lines AB and CD in Figures 4 and 5 have precisely the same length 
and one of only two orientations, with slopes defined by the Poisson's ratio. 

The uniaxial strain at failure is given by 

fa = Yeritl(1 + v) (15) 

and it is now apparent that the critical shear strain, or principal direct strain difference, is the primary 
quantity and that the axial strain fa is secondary. The critical strain combination at the biaxial points 

is defined by 

( I-V) fx = fy = 1 + V Yerit = (1 - V)fO 
(16) 

while the in-plane strains at the shear failure points can be seen to be as follows. 

fx = - fy = ± Yeritl2 = ± (1 + v)fo/2 (17) 

Before generating equivalent failure criteria for orthotropic materials, it is useful to interpret some of 
the less obvious lines in Figure 5. The radial lines OA, OB, ~C, and OD are easily interpreted as uni

axial load lines. At point A, Oy = Oz = 0 and Ox ~ O. Along the line AE, the stress Oy is increased in 
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such a way that the stress difference ax - az is held constant because the application of ay stresses 

cannot possibly induce any stresses in the x - z plane - only compatible Poisson strains. Therefore, 
the axial and normal strains Ex and Ez must decrease by an amount VEy as ay increases. Since az is 

zero at point A, ax is constant all along the lines AE and DE The normal stress az is zero throughout 
Figure 5, so the stress difference ax - az is also constant along the lines AE and DE Similarly, ay is 

constant along the lines CE and BE 

The lengths of all the sides of the hexagon in Figures 4 and 5 would be identical only for one particular 
value of the Poisson's ratio. That value is obtained by equating the lengths of the usually different sides, 
as in the following equation. 

)(1 + Vl) = fi (~) 
(1 + v) 1 + v 

(1 + Vl) = 2(1- 2v + Vl) 
or 

1- 4v + Vl = 0 (18) 

The result, v = 0.2679 is typical for metals, so that the sides of most hexagons would be nearly equal. 

THE (ISOTROPIC) MAXIMUM-SHEAR-STRESS FAILURE CRITERION 
FORMULATED IN TERMS OF STRAINS FOR ORTHOTROPIC LAMINAE 

The next step is to generalize the preceding analysis to orthotropic layers. The failure criterion to be 
derived should actually refer to the fiber, for fiber-dominated failures, not the lamina. However, the 
fibers and matrix obviously share a common strain along the fiber axis. For the usual case, in which 
strong, stiff fibers are embedded in a soft matrix, it is possible to bypass the micromechanical calcula
tions relating the transverse strains of the fiber to those of the lamina because of the greater criticality 
of the fiber failure criterion. Such a simplification may not be realistic for some of the more exotic 
advanced composites, and a more comprehensive theory would be needed then. 

It is assumed again that there are no normal or through-the-thickness shear stresses acting on the 
laminate. Using the subscripts L, T, and N to denote the longitudinal, transverse (in-plane), and nor
mal directions, respectively, Equations (10) to (12) can be generalized for transversely isotropic mater
ials to read as follows when the axis of symmetry is longitudinal. 

and 

1 
EL = EL (aL - VLJOT) 

1 
ET = -(aT-VTLaL) = -vLJOL/EL + adET 

ET 

(19) 

(20) 

(21) 

For a uniaxial load along the fibers, with neither lateral nor normal applied stress, the axial strain in 
both the fiber and lamina will be EO at failure and the associated lateral and normal strains will be 
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- VLTEO in the lamina. The corresponding orthogonal strain in the fiber, which can be presumed to have 
a different Poisson's ratio from the homogenized lamina, is undefined. However, for typical carbon
epoxy composites, the similarity of the Poisson's ratio VLT for the unidirectional lamina and for an 
isotropic resin matrix, implies that the corresponding Poisson's ratio for the fiber must also be similar. 
If a substantial difference is expected between the Poisson's ratios for the fiber and monolayer, one 
would need to complete the micromechanical analyses relating the two before proceeding with the 
formulation of the failure criteria. And the appropriate distinction would need to be made for all states 
of stress being considered. 

Figure 6 shows the traces of these uniaxial load lines, in tension and compression, on the fL - fT 

in-plane strain plane. If the tension and compression strengths are the same, it is possible to locate the 
45-degree sloping shear-failure lines on which the uniaxial failures are represented by individual 
points. If the tensile and compressive strengths differ, the numerically greater value defines both 
shear-failure lines, as shown in Figure 6, while the lesser strength defines a cutoff due to some other 
failure mechanism, such as microbuckling under compression. 

For a uniaxial in-plane load perpendicular to the fibers, a different Poisson's ratio, Vn, is involved and 
the uniaxial load line is no longer symmetric as it was for isotropic materials in Figure 4. The traces of 
this unidirectional load condition can be added to Figure 6, and wherever they cross the shear-failure 
lines denotes the points of failure of the fibers. * 

a = ARCTAN vLT 

{3 = ARCTAN vn 
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FIGURE 6. SHEAR FAILURE LOCI FOR ORTHOTROPIC MATERIALS 
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• With unidirectional laminae, the matrix may fail prematurely under transverse tension at a lower strain, but that is 
normally suppressed for any typical cross-plied structural laminate and may be considered as a special case. 



-----------

It is apparent that the same critical shear strain holds throughout the entire region of interest in Figure 
6 since the sum of longitudinal and orthogonal strains is always 

EO + YEO = Yerit (22) 

no matter what the value of the Poisson's ratio v for any particular cross-plied laminate. 

To complete Figure 6, and make it equivalent to Figure 5, constant-stress lines are added through the 
uniaxial stress points associated with shear failures of the fibers. Or, if there are premature failures 
under other modes, the additional lines must be placed where the missing shear failures would have 
occurred. Consider, for example (Figure 6) the addition of transverse stress to the point of uniaxial 
tension loading, while holding the longitudinal stress in the fibers and lamina constant without altering 
the stress-free state in the normal direction. Doing so would require that the additional strains be in 
the same relation as those following the purely transverse tension line in Figure 6. Along that line, with 
a slope defined by VTL, only the transverse stress varies. There are no incremental longitudinal and 
normal stresses, so no shear stress can be induced in the L-N plane. Likewise, the missing line from the 
transverse tension to the biaxial tension points must be parallel to the original longitudinal tension line 
in Figure 6. The entire envelope is shown completed in Figure 7 for the special case in which the tensile 
and compressive strengths of the unidirectional laminae are equal. Unlike Figures 4 and 5, which are 
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FIGURE 7. SHEAR FAILURE ENVELOPE FOR ORTHOTROPIC MATERIALS HAVING EQUAL 
TENSILE AND COMPRESSIVE STRENGTHS 
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doubly symmetric, Figure 7 is skewed because of the difference between the two in-plane Poisson's 
ratios. The third Poisson's ratio is involved in establishing the compatible normal strains, but does not 
appear in the in-plane failure envelope shown in Figure 7. 

Figures 8 and 9 show the effect of fiber-dominated cutoffs at either end of the failure envelope. The 
cutoff representing microbuckling of the new (small-diameter) high-strain carbon fibers is drawn 
perpendicular to the strain axes because compression buckling is not usually sensitive to orthogonal 
stresses. The other cutoff, representing a lower tensile than compressive strength, is drawn parallel to 
the unidirectional load line since it is more likely to be a stress-imposed limit than not. 

a = ARCTAN vLT 

f3 = ARCTAN vTL 
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FOR LONGITUDINAL COMPRESSION 

FIGURE 8. FAILURE ENVELOPE FOR ORTHOTROPIC MATERIALS WHICH ARE STRONGER 
IN TENSION THAN IN COMPRESSION 

Figure 10 shows a postulated cutoff for matrix-dominated transverse tension failures. Since this would 
appear to be a stress rather than strain limit, the cutoff is drawn parallel to the constant transverse 
stress line on the basis that any longitudinal load would not induce any stress in the T -N plane. 

Figures 7 through 9 refer to a fiber-dominated unidirectional lamina and could be used directly as a 
ply-by-ply failure criterion for analyzing cross-plied structural laminates. However, many simplifica
tions ensue from reinterpreting this criterion in the context of laminates before it is used as a strength 
check, as discussed in the next section. 
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FIGURE 9. FAILURE ENVELOPE FOR ORTHOTROPIC MATERIALS WHICH ARE STRONGER IN 
COMPRESSION THAN IN TENSION 

THE "MAXIMUM-SHEAR-STRAIN" FAILURE CRITERION 
FORMULATED FOR CROSS-PLIED STRUCTURAL LAMINATES 

It is now apparent that the generalization of the classical maximum-shear-stress failure criterion for 
ductile metals is actually most conveniently expressed as a maximum-shear-strain criterion for ortho
tropic materials, encompassing the classical hypothesis as a special case. Care is needed to exclude 
shear strains caused by factors other than stress: as, for example, by nonuniform thermal expansion or 
swelling due to absorbing moisture. Even when attention is paid only to the mechanically caused shear 
strains, there are still some difficulties since some of the Poisson-induced strains have no correspond
ing stresses, as discussed in the next section. 

In design of composite aircraft structures, it is customary to have a minimum percentage of fibers in all 
of the four standard directions - 0 0

, + 45 0
, 90 0

, and -45 0
• That being the case, the greater strains in 

Figures 7 through 9 in the transverse rather than longitudinal direction would be truncated by longi
tudinal failures in orthogonal plies. So, if there were really orthogonal plies for each fiber direction, 
these figures could be simplified with no loss of accuracy. This has been done in Figure 11 by adding a 
mirror image to Figure 7 about the biaxial strain diagonal axis and taking the smaller strength cutoffs 
for each segment of the envelope. The new figure is doubly symmetric, just as Figures 4 and 5 were for 
isotropic materials. More importantly, the corner points are defined by the Poisson's ratios for the 
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unidirectional laminae on which the failure envelope is based. This is of vital importance because, as 
shown below, those corner points remain fixed for all cross-plied laminates, regardless of the Poisson's 
ratios of the actual laminate. 

Because Figure 11 is drawn in strain space rather than stress space, it remains doubly symmetric even 
if the percentages of 00 and 90 0 fibers are not the same. The two laminate Poisson's ratios Yxy and Yyx 
would vary with the proportion of 0° and 90° fibers, but the failure envelope would not do so. 

Consider the case of a laminate containing equal percentages of 0° and 90° fibers, with no ± 45° 
fibers, for which both in-plane Poisson's ratios are approximately 0.05. Figure 12 shows where the 
uniaxial load lines in the longitudinal and transverse directions would intersect the failure envelope in 
Figure 11. No intersections fall on the 45-degree sloping shear-failure lines, and the associated maxi
mum shear strain (1 + Yyx)EO appears insufficient to have caused failure. 

The explanation of this apparent anomaly is that failure is actually caused by the stress states in the 
planes perpendicular to the fibers, involving the normal rather than in-plane direction. A longi
tudinally stretched all-0° laminate contracts as much laterally as it does through the thickness. How
ever, the presence of the orthogonal in-plane fibers in the 0° /90° laminate restricts the in-plane lateral 
contraction, and hence the in-plane shear stress developed in both the lamina and fiber, so that this 
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plane becomes less critical than the one defined by the fiber axis and the normal direction. Failure is 
still predicted to occur on the diagonal shear failure line in Figure 6, only now the failure point is loca
ted on Figure 12 by a radial line with a slope defined by 'JILT rather than by 'JIxy • This is generally true 
for all laminate patterns for which 'JIxy > 'JILT for the unidirectional lamina on which Figure 6 is based. 

What is happening may better be understood by drawing the appropriate Mohr circles, as has been 
done in Figure 13. Yet, for all practical purposes, the lines with slopes defined by 'JIyx in Figure 12 and 
'JIxy (not shown) also correctly identified the failure strains EO for the 0°/90° laminate. Similarly, the 
biaxial failure strains, which obviously are not associated with in-plane shear strains, are also correctly 
located. 

If, for this same 0° /90° laminate, biaxial rather than uniaxial loads were to be applied, one could easily 
envisage a little transverse compression combined with a predominantly longitudinal tension load so 
that the transverse strains were made to coincide with those developed by a uniaxial load on a unidirec
tionallamina. In such a case, failure would occur precisely on the corner point in Figure 7 because 
those would be the applied strains in the laminate, only they would have been developed partly by 
orthogonal loads instead of entirely by Poisson contractions. 
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FIGURE 12. UNIAXIAL FAILURE POINTS FOR 0°/90° CROSS-PLIED LAMINATES WITH LOW 
POISSON'S RATIOS 

Likewise, one could apply equal and opposite loads in the 0° and 90° fibers. This would induce equal 
and opposite strains, and failure would be predicted to occur at an axial strain of Ycrir/2, as noted in 
Figure 11. Indeed, that is the point where all purely in-plane-shear failures will occur, regardless of the 
particular Poisson's ratios for any particular cross-plied laminate. 

Consider next a nonstructural cross-plied laminate consisting of 33 percent of the fibers in the 0° 
direction, and the remaining 67 percent shared equally between the ± 45° directions. For this lami
nate, the Poisson's ratio Vxy will be about 0.67, much higher than the typically 0.25 for a unidirectional 
lamina and the 0.33 for a quasi-isotropic laminate. In the absence of 90° fibers, one should ideally draw 
the unidirectional load lines on Figure 7 rather than Figure 11. The other Poisson's ratio Vyx should be 

about 0.2. Figure 14 shows these radial uniaxial load lines added to Figure 7. It is significant that, in the 
longitudinal direction, the shear-failure line is intercepted at a lower axial strain than was the case for 
the unidirectional lamina. The critical difference between strains does occur in-plane in this case and 
the longitudinal strain at failure is expected to be less than that of the unidirectional lamina in the 
following ratio: 

flaminate = flamina X (1 + vLT)/(1 + vxy) (23) 
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In this case, the reduction is to only 75 percent of the nominal value. Thus, this laminate without any 
90 0 fibers is not only impractical because of its disproportionately small transverse (90 0

) strength and 
stiffness, but also because it does not allow the load-carrying 00 fibers to work to their full extent. 

Actually, the loss of efficiency is probably overestimated slightly because no distinction has been made 
between the lateral strains in the fiber and the lamina. With a truly soft matrix, the fibers would not 
compress quite as much as the lamina would shrink; with a lower lateral strain experienced by the 
fibers, the appropriate values of transverse stress would need to be reduced. Doing so would violate the 
standard assumption that plane sections remain plane throughout the laminate. The maximum-strain 
failure model for composites may be looked upon as an overcorrection for this problem inasmuch as 
no allowance is made for any loss of fiber strength caused by a lateral stress of the opposite sign to the 
axial stress in the fiber. This issue can be resolved only by micromechanics; the same problem also 
exists with all the pseudo-scientific laminate strength theories. 

For a quasi-isotropic laminate, the strain to failure would be predicted by Equation (23) as 94 percent 
of that of the unidirectional lamina. Again, in reality it would be slightly higher but, with good test 
specimens and test technique, it should be possible to detect a statistically significant small reduction 
from the unidirectional value. 

If one were to test a cross-plied laminate that had the same Poissin's ratios as the unidirectional 
lamin'j because of the particular mixture of 90 0 and ± 45 0 fibers, the longitudinal strains to failure 
would logically be identical and the unidirectional load lines would be the same as in Figure 7. 

Now, even though Figure 11 can be applied to woven fabric laminates as well as to cross-plied tape 
ones, the Poisson's ratios defining the corner points must be those of the unidirectional lamina, which 
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may be difficult to measure on a woven fabric. However, they can be easily related and the required 
values can be deduced reliably from measurements of the Poisson's ratio of a ± 45° woven laminate. 
(The direct use of the 0° /90° laminate is not recommended for this purpose since its Poisson's ratio is 
so small as to be difficult to measure.) 

The failure envelopes in Figures 7 through 9 would be applied, in turn, to the 0°/90° combination of 
fibers and the ± 45° set. This would be necessary and sufficient to assess the strength of such lami
nates for fiber-dominated failures of in-plane loads. These are not unreasonable limitations since resin 
matrices are traditionally so weak that designers should always avoid applying direct transverse shear 
loads. Also, normal pressure loads must always be small in comparison with the in-plane stresses for 
any thin-shelled structures, although such might not be the case for deep submersible vehicles. Fur
ther, if the matrix is so weak as to prevent the fibers from developing their full strengths before failure 
ofthe laminate under in-plane loads, the matrix or the fiber pattern should be changed rather than the 
analysis method. 

THE TRUNCATED MAXIMUM-STRAIN FAILURE MODEL 

The transverse monolayer Poisson's ratio lITL is only about 0.025 for the usual case of carbon, boron, 
or glass fibers embedded in polymeric matrices like epoxies, polyester, and phenolics. It is not 
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unreasonable under such circumstances to approximate the almost horizontal and vertical lines 
joining the uniaxial and biaxial load points in Figure 11 by exactly horizontal and vertical lines, as in 
Figure 15. If that is done, the new failure criterion appears as a close approximation of the now classi
cal maximum-strain failure model for fibrous composites (see Reference 1), but with the latter's over
estimated strengths in the shear quadrants eliminated. A sample of these unconservative predictions 
is presented in Figure 16. 

MATERIAL WEAKER 
IN COMPRESSION 
THAN IN TENSION 

a = ARCTAN vL T FOR UNIDIRECTIONAL LAMINA 

MATERIAL EQUAllY 
STRONG IN TENSION 
AND COMPRESSION 

Ey 

MATERIAL STRONGER 
IN COMPRESSION 
THAN IN TENSION 

FIGURE 15. TRUNCATED MAXIMUM-STRAIN FAILURE MODELS FOR FIBER-DOMINATED 
FAILURES OF CROSS-PLIED COMPOSITE LAMINATES 

Obviously, this type of simplification should not be expected to be valid for such composites as 
whisker-reinforced metal matrices for which the assumption of strong and stiff fibers and a soft and 
weak matrix would no longer be valid. But many of the structural applications of fiber/polymer com
posites would be well characterized by the simple failure models shown in Figure 15. Basing the appli
cation of the new failure criterion - that of the generalized maximum-shear-stress recommended by 
the author in References 2 through 4 - on an improvement in the well-known maximum-strain model 
for analyzing composite structures should have the effect of making the physics of the phenomena 
easier to understand. And, since it is now seen to be directly equivalent to the truly classical ductile
yield failure theory for metals, few designers and analysts should feel the kinds of insecurity and con
cern that have been associated with earlier composite failure criteria. 

Nevertheless, the author again cautions that until a proper two-phase failure theory is developed to 
characterize the in situ strengths of the fibers and matrix separately, even this theory is capable of 
misapplication. It is unlikely to be improved upon for general~purpose analyses of today's fiber
reinforced polymer matrices, except for Kevlar (aramid) fibers that exhibit more than the two modes of 
failures observed in carbon fibers, so long as designs are confined within the outer shaded area in 
Figure 17. However, matrix failures prevail outside that area and no failure analyses are currently 
available for matrix-dominated failures of cross-plied laminates. The problem is that this new theory, 
like all prior theories, is capable of being misapplied without any restrictions on permissible fiber pat
terns, and without warning the user that he should not believe the predictions. This problem is critical 
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AREA OF UNCONSERVATISM 
BETWEEN PLATEAU AND PEAK 

QUASI-ISOTROPIC HTS CARBON-EPOXY LAMINATE SHOWN 

FIGURE 16. UNCONSERVATISM OF UNTRUNCATED MAXIMUM-STRAIN FAILURE MODEL 

for laminate selection by computer optimization codes which are not programmed to reduce the 
laminate strengths for matrix-dominated failures, merely because no one has derived the necessary 
equations. 

Ironically, a better theory for state-of-the-art fiber/polymer composites should merely discourage the 
use of impractical fiber patterns that have already been identified on the basis of accumulated experi
ence but are still very much in vogue because oversimplified analyses have failed to condemn them. A 
better theory should not be expected to improve the strengths predicted for practical fiber patterns. 
However, the author believes that such improvements, from the derivation of a truly two-phase theory 
with possibly interface failures as well, will be vital to the use of the more exotic composites on which 
research has already begun. 

In comparison with the "generalized maximum-shear-stress" failure criterion coded in the BLACK
ART computer program (see Reference 4), the new strain-based formulation will predict the same 
composite laminate strengths whenever input data for BLACKART have been appropriately selected 
to make them represent the behavior of the unidirectional lamina within a cross-plied laminate, rather 
than in the isolated circumstances in which it has customarily been tested. The real beauty of the pres
ent strain-based formulation is that there is no opportunity to enter transverse properties that are 
incompatible with the longitudinal properties. The only data needed are the lamina effective strain-to
failure in tension and compression and the Poisson's ratios of the lamina and laminate. Conversion to 
the corresponding strengths requires the addition of only the laminate stiffnesses, which have been 
calculated reliably for a long time. 
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FIGURE 17. FIBER PATTERNS TO AVOID PREMATURE MATRIX FAILURES IN UNNOTCHED 
CROSS-PLIED CARBON-EPOXY COMPOSITE LAMINATES 

It may appear that the author has made precisely the same mistake that he criticized others for; that is 
homogenizing the fibers and matrix into a single orthotropic composite material. It is true that the 
material properties are expressed at the lamina level, but the new failure criterion is really a normal
ized expression of the failure of the fibers alone. Actually, one should perform micromechanical 
analyses of the lamina and its constituents to relate the Poisson contractions of the fibers to those of 
the lamina because the transverse strains of the fibers need not be the same as for the lamina. And it is 
possible that, when this is done, pure-shear failures will be found to lie slightly off the -45-degree line in 
Figure 7, but still on the same shear failure line as for fiber failure under longitudinal tension or 
compressIOn. 

However, in the context of Figure 15, if the longitudinal Poisson's ratios of the fiber and lamina differed 
significantly, an equivalent failure envelope could be prepared for the Poisson's ratio of the fiber. There 
would be a compensatory shift in the location of the uniaxial failure points, but the form of the failure 
envelope would not change at all because the transverse strains were expressed at the lamina rather 
than fiber level. (Obviously, the longitudinal strains must be the same except for edge effects not nor
mally addressed by laminate analysis.) Nevertheless, this simplification is appropriate only for those 
laminate patterns that are associated with fiber-dominated failures. The precise two-phase analysis 
would be required for matrix-dominated failures. 

As is explained later, in order to superimpose fiber and matrix failure criteria, it is first necessary to 
use a common strain base - that of the laminate and hence of each lamina - rather than the strains of 
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the constituents. So, the failure envelopes should always be expressed at the lamina rather than constit
uent level. The net effect of a micromechanics analysis distinguishing between constituent and macro
strains would then appear as a change in slope of the line relating longitudinal to transverse strains 
within each lamina. The Poisson's ratio slopes given by VLT and Vn in Figure 7 would not change, but 
those defined by Vxy and Vyx in Figures 12 and 14 could. Likewise, the pure-shear point at the laminate 
level might not be precisely on the -45° sloping line when assessed from the point of view of either the 
fiber or matrix. 

EFFECTS OF IN-PLANE SHEAR ON THE "LAMINA" FAILURE CRITERION 

If the principal directions of stress or strain do not coincide with the fiber axes, a question arises as to 
the validity of the preceding failure criteria that makes no provision for such a situation. In the case of 
ductile homogeneous materials, the maximum-shear-stress failure (or yield) criterion in Figure 5 can 
always be used by a simple rotation of reference axes to coincide with the principal stress and strain 
directions, so this criterion is inherently complete. However, for fibrous composites, such a rotation of 
reference axes would invalidate the use of the simple stress-strain relations in Equations (19) through 
(21). Many more terms would then be needed to characterize the stress-strain relations. And the seem
ingly simple alternative of computing separate principal strains, applying them to the fiber directions 
instead of the real strains, would be incorrect in such a case. 

Fortunately, a simple physically realistic resolution of this problem is available for the cases of most 
common interest in which stiff strong fibers are embedded in soft matrices. It is apparent that any 
shear stresses with respect to the fiber axes can cause neither longitudinal nor transverse stresses be
tween those same axes. The principal effect of such shear stresses is to cause longitudinal and trans
verse direct stresses in those fibers inclined at 45° to the fibers under consideration. Such an effect is 
easily accounted for when checking the strength of those other fibers under a combination of only axial 
and transverse loads. Likewise, any shear between axes inclined at ± 45° with respect to the (0°) refer
ence fibers is accounted for in the form of direct longitudinal and transverse stresses in the 0° and 90° 
fibers. 

Nevertheless, the "minor" effect of the shear deformation is of potential concern. If the composite were 
truly homogeneous, both the fibers and the matrix would undergo the same shear strain in addition to 
any direct longitudinal and transverse strains. It would not be permissible to ignore the effects of such 
shear strains on the strength of the fibers. However, when the matrix is much softer than the fibers, 
most of the shear strain will be confined to the (resin) matrix and the fibers will not experience signifi
cant shear stresses. In such a case, it is reasonable to complete the "lamina" characteristic in the form 
shown in Figure 18. The in-plane shear strain cutoff shown for 0° /90° shear on the resin matrix would 
normally be truncated by prior failure of the ±45° fibers carrying the shear load. However, there 
would be no difficulty in applying the matrix shear strain as the dominant limit for very brittle 
matrices. 

Unless there is a compelling reason to do otherwise, it is recommended here that the minor in-plane 
shear effects be ignored and consideration be given only to the associated direct loads in the ± 45° 
fibers and possibly the matrix-dominated 0°/90° strength under those shear loads. Materials for which 
this simplification is reasonable include carbon, fiberglass and boron reinforced organic matrices like 
the epoxies. 
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FIGURE 18. STRAIN-BASED LAMINA FAILURE CRITERION 

Er 

Although Figure 18 refers to each individual lamina within the laminate, it is possible to deduce a 
universal failure envelope for any membrane state of stress (as opposed to bending) in any cross-plied 
laminate containing two axes of material symmetry. This means that the percentages of the 0° and 90° 
plies may differ but that there must be the same number of + 45° plies as -45° plies. Such a failure 
envelope is illustrated in Figure 19. It should be noted that this figure may be applied only with respect 
to the 0° and 90° axes, not with respect to the ± 45 ° axes. The single application of this form of failure 
criterion, however, encompasses all four fiber directions. Failure of either a 0° or 90° fiber occurs on 
the vertical "walls" of the failure envelope, while failure of the + 45 ° or -45 ° fibers is predicted to occur 
somewhere on the roof. The zero-shear-strain (Ex - Ey) plane is easily understood because it is taken 

directly from Figure 11. The height of the shear-strain plateau, likewise, follows from Figure 11, which 

shows that the equal and opposite direct strains in the ± 45 ° fibers then have a magnitude of Yerit/2. 

The size of the plateau in Figure 19 can be established by examining the strains in the + 45 ° and -45 ° 
fibers at the points of uniaxial load. As shown in References 2 and 4, the strain in those fibers is less 

than in the 0° fibers, in the ratio of (1- v)/2 to 1. That would leave a longitudinal strain capacity of 

[(1 + V)/2]E = Yerit/2 to resist any simultaneously applied in-plane shear load. This is sufficient to 
accommodate an in-plane shear strain of precisely Yerit with respect to the 0° 190° fiber axes. The ± 45° 
fibers are critical in the L-N and T -N planes for this combination of 0° uniaxial tension and 0° 190° 
shear. The L-T plane is not critical because the associated in-plane strain perpendicular to the more 
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a = ARCTAN vLT FOR UNIDIRECTIONAL LAMINA 

FIGURE 19. UNIVERSAL STRAIN-BASED LAMINATE FAILURE CRITERION 

highly loaded fiber has the same sign as the axial strain. Since the governing Poisson's ratio is for the 
unidirectional lamina, this result applies for all cross-plied laminates, regardless of their particular 
Poisson's ratios. (Obviously, for this combination of loads, only one of the ± 45° fiber directions will be 
critical, not both). 

Of course, there is no shear strength capacity at the points of biaxial tension or compression in the 
Ex - Ey plane because all fibers are equally and fully strained there. The shear strength capacity varies 
linearly between those corner points and the edge of the shear strength plateau. 

The applicability of Figure 19 to all cross-plied fiber patterns with the same percentages of + 45° and 
-45° plies is the reason why, in Figure 21 'bf Reference 4, the edges of the shear stress plateaus were at 
the same location for all three fiber patterns considered; 0°/90°, ± 45°, and quasi-isotropic. 

While Figure 19 encompasses the great majority of failure envelopes for typical fibrous composites, 
there appears to be no justification for making similar simplifications for Kevlar (aramid) fibers that 
are weak in transverse shear or for metal-matrix or carbon-carbon composites with relatively stiff 
matrices. It would appear that the use of the maximum shear strain calculated from Mohr circles 
would then be more appropriate as a lower bound estimate of the failure of the fibers. However, this 
technique is complicated because the maximum shear strain could occur either in the L-T or L-N 
plane, or possibly in some other plane altogether, depending on the combination of applied loads. 
Moreover, not all shear strains in orthotropic materials are associated with any stresses (as is dis
cussed later)' and it is the stresses, not the strains, that cause failure of the material. 

(Figure 20 is shown on the following page.) 
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The author advises caution in applying any simplified failure criteria to the more exotic composites 
under investigation today, and reminds the readers again that the very useful simple methods pres
ented here should be applied only to conventional fibrous composites such as carbon epoxies, in which 
strong, stiff fibers are embedded in relatively soft matrices. 

EXPERIMENTAL VERIFICATION 

The author's research into predicting the strength of cross-plied composite laminates was motivated 
by the development over 15 years ago of a reliable in-plane shear test specimen, shown in Figure 20. 
The laminate strengths achieved on that specimen, which were twice as high as had been obtained on 
more customary contemporary shear test coupons, were still only about half as high as predicted by 
contemporary failure criteria. Almost another decade passed before the author could determine what 
was wrong with those theories. With a fuller understanding of the subject, it became apparent that 
unidirectionally loaded test coupons were so completely dominated by the behavior of fibers aligned in 
the same direction as the load that they could never invalidate faulty strength-prediction theories. Only 
biaxial tests were sufficiently sensitive to other properties as well to be able to validate theories. 
Accordingly, the author prepared a series of papers on biaxial test specimens (see References 5 
through 7) to make it possible to discriminate between failure theories that were suitable for fibrous 
composites and those that were not. 

Fortunately, other researchers felt the same way. Swanson, in particular, generated biaxial test data on 
carefully fabricated and tested pressurized axially loaded tubes. The results of Swanson and his 

SIZE OF COMPOSITE PANEL IS 
3.0 INCHES LONG BY 2.3 INCHES WIDE 

REUSABLE RAILS 
MACHINED FROM STEEL 

COMPRESSIVE LOAD IS APPLIED VIA 
RODS RESTING IN VEE·BLOCK GROOVES 

FIGURE 20. DOUGLAS BONDED, TAPERED RAIL-SHEAR TEST SPECIMEN 
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co-workers (Reference 8) are reproduced here in Figure 21 and compared with the present theory. The 
agreement is obviously excellent for the tension-tension biaxial loads, covered by the first series of tests 
and identified by the solid symbols. 

However, the author suspects that the second batch of tubes were either made with more precision or 
of stronger material since the open symbols display a higher strength at the uniaxial hoop load point. 
The predicted shear failures, based on the earlier tensile strengths, seem to be premature, but would 
agree well if the 45-degree sloping lines were moved outward to pass through the higher unidirectional 
strain-to-failure for the later tests (identified by the open symbols). It was obvious to Swanson and his 
colleagues that the predominantly compressively loaded specimens were failing prematurely, even 
though they were unable to find reasons for this. 

SOLID SYMBOLS - FIRST SERIES OF TESTS 
OPEN SYMBOLS - SECOND SERIES OF TESTS 

TESTS BY SWANSON ET AL 
ON AS4I3501 CARBON-EPOXY TUBES 

SHEAR FAILURE 
OF FIBERS 

---

\ 

\ 
'. \ 

-0.016 -0.012 -0.008 -0.004 
- .. ' 0 
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MICROBUCKLING (1) 
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FIGURE 21. COMPARISON BETWEEN TEST AND THEORY FOR TRUNCATED MAXIMUM-STRAIN 
FAILURE MODEL FOR CARBON-EPOXY COMPOSITES 

The predicted compressive strengths shown in Figure 21 are based on the unidirectional compressive 
strain-to-failure cited by Swanson but, even so, the tubes failed at a still lower strain. Some, but not all, 
of the most premature failures were associated with compression of the thinnest tubes tested. Even 
when all these premature failures are explained, it is likely that the cause would recur in real structures 
subject to the same kind of loading, submersible vehicles, for example. 

It is evident that some mechanism other than shear failures of the fibers must have governed those 
compression failures. However, as shown in Figure 15, the present theory makes provision for such a 
possibility, and it is not at all difficult to add a cut-off representing a different compressive failure 
mode in part of a predominantly shear-failure envelope. Indeed, Figure 21 makes such a distinction. 

Unfortunately, tests of biaxially loaded composite specimens are often conducted without analysis of 
probable failure modes and strengths, and most of these data are generally regarded as unreliable. 
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Therefore, such tests failed to influence researchers developing composite failure criteria. And, since 
the far more numerous uniaxially loaded test specimens were incapable of exposing defective theories, 
analytical improvements were not forthcoming. Indeed, as explained in Reference 9, none of the stan
dard test coupons, with one exception, the tension test of a ± 45° laminate, could even be relied upon to 
generate reliable lamina data from which to calculate the strength of cross-plied laminates. 

However, since the standard composite failure theories were incapable of making consistently correct 
predictions, even if they were given good input properties, such shortcomings of the standard test spec
imens were not as bad as they seemed at first sight. Composite designs are customarily carried out at 
reduced strain allowables to allow for stress concentrations at bolt holes and for damage tolerance. 
Barely 1 percent of typical commercial aircraft composite structures are sized by unnotched allowable 
strengths. 

A BROADER PERSPECTIVE 

As shown in this paper, a failure criterion can be based on a single shear strain allowable if hygro
thermal strains that do not cause any stresses are eliminated from consideration. Shear strains 
induced by Poisson contractions in the absence of any shear stress must also be eliminated. There is no 
counterpart of this phenomenon for isotropic materials that have only one Poisson's ratio. However, 
for materials having different Poisson's ratios with respect to different material reference axes, the 
presence of strain in the absence of equivalent stress is quite possible. Heating an unrestrained 
homogeneous isotropic material cannot create either shear stresses or strains. For an orthotropic 
material, on the other hand, if the coefficient of thermal expansion varies with orientation, the princi
pal thermally induced strains will differ so that shear strains must be developed. However, since the 
orthotropic object is presumed to be unrestrained while being heated, there can be no stresses. In a 
strict mathematical sense, this phenomenon and the equivalent one involving Poisson contractions are 
covered by assigning the value zero to the appropriate coefficients in the thermo-elastic relations. 

In the absence of applied normal stresses, an axial load in a unidirectional lamina will cause the same 
Poisson contractions in both the transverse and normal directions. Therefore this load cannot possibly 
contribute to any shear strains in the plane of isotropy perpendicular to the fiber axes. This is con
firmed by rearranging Equations (20) and (21) for transversely isotropic materials to express the differ
ence between normal and transverse contractions for any combination of axial and transverse loads. It 
is found that 

(24) 

no matter what longitudinal stress is applied. 

The corresponding principal strain differences between the other pairs of axes follow similarly from 
Equations (19) to (21). First, 

( 
1 + VLT) ( VTN - Vn ) EL - EN = E aL + aT 

L ET 
(25) 
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in which the second term cannot contribute to the stresses in the L-N plane and must therefore be 
omitted from the failure criterion. Finally, 

(26) 

in which both terms contribute fully to the stresses in the L-T plane, but the first has no effect on the 
T-N plane. 

With reference to Figure 15, the 45-degree sloping lines are defined by both terms in Equation (26) 
while the vertical lines are defined by the first term on the right side of Equation (25) and the horizontal 
lines are defined by the mirror images of the vertical lines. Equation (24) is assumed here not to be a 
governing strength limit for strong, stiff fibers in a soft matrix. 

The general theory of elasticity for anisotropic materials could probably be applied to reduce the fail
ure criterion to an unambiguous state without needing logic to drop certain terms from the simpler 
formulation given here. However, the end result should be the same for fiber-dominated failures of the 
composite materials considered here, but this approach might be incredibly complex. 

What concerns the author most is not good designs in today's composite materials; it is the identifica
tion of impractical fiber patterns that lead to weak structures with matrix-dominated failures. Fiber
dominated failures can be analyzed using a theory as simple as the present one. The more complex 
theories accounting properly for matrix-dominated failures are needed only to identify fiber patterns 
that should not be used and for which, therefore, there should be no need to predict the strengths. 
There is also a concern that the present theory is probably inadequate for the more exotic composite 
materials of the future. It is time to stop pretending that there is a scientific validity to the majority of 
the methods used to predict the strength of fibrous composite materials, no matter how elegant the 
mathematics, and it is time to acknowledge the need for much new work on a secure foundation. There 
are opportunities for tremendous contributions to this field, provided that they have the scientific real
ism needed for such analyses. 

Since the presentation of his first papers on composite failure theory (References 2 and 3) the author 
has been progressively deriving various pieces of the theory needed for a completely rigorous two
phase composite strength-prediction theory. The intent had been that, on its completion, that work 
would be simplified for the customary fibrous composites in use today and any approximations made 
would be justified by comparison with the more general theory. As fate would have it, the second step 
has been completed first. Nevertheless, a summary of certain features of the more precise analyses, 
may help to guide future researchers. 

Figure 22 indicates the features needing to be included in a proper two-constituent (phase) character
ization ofthe strength of cross-plied fibrous composite laminates. One or the other envelope may dom
inate, depending on the particular state of stress. And, although the shear-strain plateaus are not 
shown, the same consideration of one or the other being dominant is just as applicable as for the inter
action between the direct in-plane loads. 

In order that the individual failure envelopes for each constituent (or phase) of the composite material 
may be superimposed as shown, all strains must be expressed at some common level, for example, that 
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FIBER FAILURE CHARACTERISTIC 
MATRIX FAILURE CHARACTERISTIC 

.. - .... --. 

FAILURE ENVELOPE FOR "LAMINA" 

FIGURE 22. SEPARATE FAILURE CHARACTERISTICS FOR FIBERS AND MATRIX 

of the lamina rather than at the constituent level. For example, longitudinal strains parallel to fibers are 
inevitably the same for both fibers and matrix, except for a minute edge zone. On the other hand, the 
strains perpendicular to the fibers need not be common and are usually not. Therefore, the fiber failure 
characteristic in Figure 22 could appear to have a different Poisson's ratio than an isolated fiber, for 
example. Likewise, for the resin matrix in which the transverse strains vary considerably because of the 
fibrous "inclusions," the transverse strains in Figure 22 would have to be averaged over a small but 
finite distance. The "failure" strain shown would correspond to some different strain at the micro
scopic level that was actually associated with the stress at which failure occurred. 

This difference between constituent and equivalent "lamina" behavior is explained in Figure 23, where 
there are two shear failure lines drawn for the fiber failure envelope. The fiber is presumed to have a 
higher transverse stiffness than the resin matrix so, for a common axial strain under a unidirectional 
load, two different lateral contractions (corresponding to two different Poisson's ratios) are estab
lished. It is, of course, the same failure characteristic, but it can be superimposed on matrix failures in 
only one form. Figure 23 shows also the corresponding locations of the pure in-plane shear failure 
locations. It is apparent that, in this case, the blind use of the "lamina" rather than the "fiber" Poisson's 
ratio would result in an underestimate of the axial strain in the fiber at which in-plane shear failure 
occurred. (But the converse could happen for titanium-matrix composites, for example.) 

Figure 23 is not only designed to explain how the generalization of the classical maximum-shear-stress 
failure criterion can still be applied in combination with micromechanics analysis for the more exotic 
composite materials, but to reinforce the suggestion that there is no need to go to such lengths for 
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FIGURE 23. EQUIVALENT SHEAR FAILURE CRITERIA AT FIBER AND LAMINA LEVEL 

conventional fiber/resin composites in which the differences between the Poisson contractions of the 
fiber and lamina are small enough to be neglected. 

The shape of the individual failure envelopes in Figure 22 for the fibers and matrix could change with 
the operating temperature. Similarly, there could be a shift in the origins OF and OM which are offset 
appropriately to allow for residual thermal stresses in each constituent from curing at an elevated tem
perature and operating the structure at high temperatures, where it is very cold. The amount of shift 
between the origins can be computed on the basis of micromechanical analysis, as in Reference 10. 
Since the origin shifts and the matrix failure envelope would vary with operating temperature, the form 
of the overlapping region of the individual failure envelopes would correspondingly change with ser
vice temperature as well. Such an effect cannot be accounted for in any homogenized model suppos
edly characterizing any composite material. 

There is no evidence to suggest that these residual thermal stresses can creep out and relieve them
selves significantly. When the residual stress intensity is high at room temperature or below, the matrix 
is highly resistant to creep. And, when the creep resistance is reduced at elevated temperatures, so are 
the stresses that would cause the creep. Moreover, the suggestion that the residual thermal stresses can 
be nullified by swelling stresses due to moisture absorption, merely clouds the issue by making the 
stress-free temperature vary with the manufacturing and service history for each particular structure. 
In any event, the rate of diffusion is typically so slow that reliance on any absorbed moisture to relieve 
curing stresses would in turn introduce the problem of how to treat the effects of that water during a 
rapid change in temperature. 
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It should be noted that the residual stresses are definitely not a lamina property. Most prior treatments 
of residual thermal stresses have started with the false premise that the individual lamina is homoge
neous and inherently stress-free in isolation, no matter what its temperature. Such an oversimplifica
tion cannot possibly explain matrix cracking. It is even questionable for use in characterizing edge 
delaminations resulting from stacking together too many parallel layers of unidirectional material, 
whether these delaminations be caused by thermal or mechanical stresses. It was actually these edge
delamination stresses that led to the outer fiber-pattern limits in Figure 17 (for typical carbon-epoxy 
composites), so there are really three potential failure modes to consider for typical fibrous composite 
laminates. 

Matrix failures, either intraply or interply, always represent an inability to develop the full strength of 
the fibers and should therefore be avoided by choice of an appropriate fiber pattern and layer 
sequence for each laminate. Mathematical composite failure theories have not adequately addressed 
matrix failures and, until they do, one should use good judgment to exclude the inferior arrangements 
rather than believe that such constraints do not exist merely because one's computer program is not 
smart enough to advise users of its weaknesses. Actually, far more restrictive limits on fiber patterns 
arise when one considers bolt holes, which introduce even further matrix-dominated influences on the 
degree of stress-concentration relief, as shown by the inner fiber pattern limits in Figure 17. The author 
believes that matrix-dominated failures will continue to require empiricism even after rigorous two
phase theories have been developed for unnotched laminates. So, the use of a simple failure model that 
adequately characterizes only fiber-dominated failures can be just as reliable as more elaborate theo
ries, provided that it is used in conjunction with realistic constraints on fiber patterns. 

IMPLEMENTATION OF MAXIMUM-SHEAR-STRESS FAILURE CRITERION 
FOR FIBROUS COMPOSITE LAMINATES 

TESTS: 
RECORD COMPLETE LOAD-DEFLECTION CHARACTERISTICS: 

1. 0° LAMINATE - MODULUS AND POISSON'S RATIO 

2. 0°/90° LAMINATE - MODULUS, TENSILE AND COMPRESSIVE STRENGTHS, AND STRAINS 
TO FAILURE 

3. ±45° LAMINATE - MODULUS, POISSON'S RATIO, AND TENSILE STRENGTH 

UNIDIRECTIONAL (ALL CO) LAMINA PROPERTIES: 
WOVEN FABRICS SHOULD BE CONSIDERED A COMBINATION OF TAPE LAYERS: 

1. LONGITUDINAL MODULUS EL - FROM TEST 1 

2. TRANSVERSE MODULUS ET - FROM DIFFERENCES BETWEEN TESTS 1 AND 2 

3. LONGITUDINAL POISSON'S RATIO VLT - FROM TEST 1 (OR DEDUCED FROM TEST 3 FOR 
WOVEN FABRICS) 

4. IN-PLANE SHEAR MODULUS GLT - FROM TEST 3 

5. LONGITUDINAL TENSILE AND COMPRESSIVE MONOLAYER STRENGTHS FLU AND FEU (OR STRAINS 
TO FAILURE) - DETERMINED FROM TEST 2 USING PROPERTIES 1 AND 2 

6. IN· PLANE SHEAR STRENGTH Ff,- - FROM TEST 3 

7. TRANSVERSE STRENGTH F~u - IRRELEVANT FOR CROSS·PLlED STRUCTURAL LAMINATES OF 
TYPICAL FIBER/POLYMER COMPOSITES 

APPLICATION: 
CHECK COMBINATION OF LONGITUDINAL AND TRANSVERSE STRAINS FOR EACH FIBER DIRECTION 
OR FOR ORTHOGONAL SETS OF FIBERS 
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CONCLUSIONS 

A simple and physically realistic method for predicting the strength of cross-plied fibrous composite 
laminates has been shown here to follow from a generalization of the classical maximum-shear-stress 
yield criterion for ductile metal alloys. 

The generalization to orthotropic materials has required that the failure criterion be expressed in 
terms of strains rather than the more customary stresses, even though the actual governing criterion is 
one of stress. 

The new failure criterion is shown to be similar to a simple truncation in the in-plane shear quadrants 
of the well-known maximum-strain empirical failure model for composites. Therefore. this new work is 
closely related to the best known classical failure models for both ductile metals and composite lami
nates. The new theory has also been compared favorably with biaxial test data of other researchers. 

While the new theory is unlikely to be improved upon for state-of-the-art fiber/polymer composites, 
there remains a need for a proper two-phase strength analysis. Separate accounting for failures in the 
fiber or in the matrix will be needed both for matrix-dominated failures in impractical fiber patterns 
with today's composites and for predicting any failures of the more exotic composites that are as yet 
only in the research and early applications stage. 
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