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I. INTRODUCTION

The source of the broad-scale, slowly varying, large-amplitude

portion of the geomagnetic field observed at and near Earth's surface is

widely held to be electric current flowing in Earth's electrically

conducting core and, to a lesser extent, electrically resistive mantle

and magnetically permeable crust. Maintenance of this current against

resistive dissipation is usually attributed to motional induction in the

liquid outer core: motion of the magne£ized fluid relative to the solid

mantle and crust generates electromotive force and thus electric current

(LARMOR, 1919). If the curl of this electromotive force field is

neither zero nor perfectly balanced by magnetic diffusion, then the

fluid motion will induce slow or secular change of the geomagnetic field

in accord with Faraday's law (ELSASSER, 1946a,b, 1947). Indeed, if an

initial magnetic field, the relevant material properties, and the

evolving fluid velocity field were all known within the Earth, then a

straightforward, classically deterministic prediction of geomagnetic

secular change could be made, The inverse problem of estimating the

fluid motion within the Earth given real observations of the magnetic

field near its surface and rough estimates of key material properties

is, of course, not quite so straightforward.

Both the rich variety of geomagnetically significant Earth

properties and processes and the mathematical subtlety of the implied

geophysics present formidable obstacles to core flow estimation. It has

thus seemed appropriate to seek a qualitative understanding of

geomagnetic secular variation in terms of a simple model, attempt

quantitative explication of the observations, and to then systematically

restore essential geophysical detail. In addition to using a simple

magnetic earth model, I have further restricted my study to the

geomagnetic effects of induction by hypothetically steady fluid motion

(and steady magnetic diffusion) near the top of Earth's core.

The purpose of this series of papers is to share the findings of my

decade-long investigation of steady induction effects in geomagnetism.

These findings include qualitative geophysical arguments, rigorous

mathematical proofs, technical development and application of new

methods, and quantitative numerical results. Considered space is

devoted to the technical introduction, background theory, mathematics,

and physics needed to make these findings clear to the general reader.

Indeed, some reviewers have demanded more detail precisely where others

have demanded less. I hope that experts will share my belief that the

findings transcend occasionally divergent stylistic preferences.

i.I A Simple Magnetic Earth Model and Some Enabling Conditions

Following ROBERTS & SCOTT (1965), BACKUS (1968), BENTON (1979) and

others (see, e.g., HIDE & MALIN, 1981; VOORHIES, 1984, 1986a, 1987a;

BLOXHAM & JACKSON, 1991), attention is focused upon the fluid motion

near the top of the core by adopting a simple model of the magnetic

Earth: the source-free mantle/frozen-flux core model (or SFM/FFC model).

In this model, a rigid, impenetrable, electrically insulating mantle of

uniform magnetic permeability surrounds a spherical, inviscid, perfectly

conducting outer core in anelastic flow. The collective use of these

eight suppositions to account for recent broad-scale geomagnetic secular

change is expected to yield errors of about 7%-as will be discussed in

Part II (VOORHIES, 1986c, 1987c) . In the SFM/FFC model, geomagnetic

lines of force that thread the core-mantle boundary (CMB) are rooted in



the fluid at the top of the core; lateral motion of this fluid induces

secular change by advecting the two footpoints of each such magnetic

field line so as to reconfigure the scaloidal magnetic field outside the

core. In and just above a SFM, the magnetic flux density vector B is

the negative gradient of the scalar potential V: B = -VV.

Granting these simplifying suppositions, even complete and perfect

information about the geomagnetic field at Earth's surface does not

allow unambiguous determination of the fluid motion at the top of the

core (ROBERTS & SCOTT, 1965; BACKUS, 1968). The radial component of the

induction equation at the top of a frozen-flux core attributes the time

rate of change of the radial magnetic flux density component to the

surface convergence of the product of this component with the lateral

fluid velocity (_tBr = -Vs. BrVs), so any cryptic flow which induces no

secular change is not detected (any v s' such that Vs. BrV s' = 0) .

Despite this toroidal ambiguity in BrV s (BACKUS, 1982), some components

of this motion could be so determined at special locations (BENTON,

1981). Moreover, this motion could be uniquely determined from such

information under certain conditions: e.g., if and when the motion is

steady (VOORHIES & BACKUS, 1985) or, in broad areas, if and when it is

tangentially geostrophic (HILLS, 1979; BACKUS & LEMOUEL, 1986).

Such enabling conditions, and the SFM/FFC model itself, can be

viewed as approximations to a more realistic core geodynamo model:

supposition of steady flow is accurate to lowest order in a temporal

Taylor series expansion of the fluid motion; tangential geostrophy might

hold to lowest order in core dynamics' The inaccuracy of these

approximations might be demonstrated quantitatively by analysis of

geomagnetic observations. If only to establish the importance of other

effects, such conditions may then be treated as hypotheses to be tested

against geomagnetic data (or models thereof) in the context of the

SFM/FFC model (or refinements thereof).

Geomagnetic data will be neither complete nor perfect within the

forseeable future, so geomagnetic testing of such hypotheses is further

embedded in at least one additional supposition regarding the

geomagnetic field itself. For example, an initial condition is needed

to test the steady motions hypothesis; therefore, the rigor of

geomagnetic tests of this hypothesis is limited by the completeness and

accuracy with which an initial geomagnetic field can be specified.

Magnetic field measurements do not isolate the slowly varying,

broad-scale portion of the field-the "core field" of interest here.

This isolation is imperfectly achieved with truncated spherical harmonic

models derived to fit select, often low-pass space- and time- filtered,

geomagnetic data (see, e.g., LANGEL, 1987); however, such models do

represent the relevant portion of the observations. In recognition of

the effects of external and non-core internal sources, the use of such

models is here preferred to the use of raw data. Spherical harmonic

models are convenient to work with; yet substitution of spatially

complete, but spectrally incomplete, truncated spherical harmonic models

for (in effect) spectrally complete, but spatially incomplete,

measurements is not without pitfalls. For example, spherical harmonic

(Gauss) coefficients of the scalar geomagnetic potential are uncertain

and cross-correlated (LANGEL, ESTES & SABAKA, 1989; LANGEL, 1991);

moreover, coefficients that are not estimated are not necessarily

assumed to be zero. Spherical harmonic models may represent reduced,

filtered, and analyzed data; but neither derived model parameters such
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as Gauss coefficients nor annual averages of magnetic observatory data

should be confused with the result of a physical measurement.

1.2 Some Motivation for Considerin_Steady Core Surface Flow

The supposition of statistically steady surficial core flow during

intervals of a few decades or more is adopted for a variety of reasons.

Theoretical arguments (invoked a posteriori) based upon ties between core

surface flow and extremely slowly varying thermal, topographic, and

compositional anomalies in the deep mantle support this supposition.

For example, obstacles to a persistent westward flow posed by

depressions of the CMB could result in an effectively steady, yet

spatially complicated flow near the core surface. RUFF & ANDERSON

(1980) and BLOXHAM & GUBBINS (1987) suggest "thermal core-mantle

interactions," whereby laterally varying heat flow from the core to the

thermally heterogeneous deep mantle establishes a steady, superficial

core circulation. JAULT & LEMOUEL (1989) suggest "topographic locking,"

whereby the pattern of perturbation pressure driving core surface

circulation becomes locked to the topography of the CMB. Another

possibility is "Lorentz linkage," whereby strong Lorentz forces inhibit

the motion of fluid parcels lying on field lines which thread regions of

anomalously high conductivity in the deep mantle. Such patches of

relatively stagnant fluid maybe separated by mobile streams wherein

fluid parcels are but loosely coupled to overlying areas of weak mantle

conductivity. Such streams could slowly but steadily transport fluid

laterally from large-scale source regions towards sinks. The sources

could be buoyant FeO or FeS enriched reservoirs trapped near the CMB

after columns or plumes from the inner core boundary have impinged upon

the CMB (suggested by S. I. BRAGINSKY, pers. comm., 1989); the sinks

might be compositionally depleted due to w_stite underplating of the

initially low-conductivity region overlying the stream. One might also

imagine steady drift of an otherwise standing wave field.

Facts, practical considerations, and empirical arguments may offer

more compelling reasons. For example, supposition of surficially steady

flow is simple, annihilates a key formal ambiguity (VOORHIES & BACKUS,

1985), and retains the lowest order term in a temporal Taylor (or

Fourier) series expansion of the flow which, by definition, always

merits consideration. BLOXHAM (1987a) Suggested that all geomagnetic

estimates of core surface flow suppose steadiness on some time scale.

Those which do not (e.g., BENTON & CELAYA, 1991) still suppose some

other form for the time dependence and make at least one quasi-steady

approximation. Moreover, the primarily kinematical supposition of

steady flow provides an alternative to specific dynamical assumptions

and might thus shed some light on core dynamics-a view strongly

advocated by WHALER (1991). It also brings all relevant data to bear on

the problem of estimating a single core surface flow-a statistically

interesting property in light of practical ambiguities resulting from

the finitude of geomagnetic measurements, each of which is influenced by

myriad geomagnetic phenomena. Perhaps most importantly, it turns out

that such a single steady core surface flow explicates recent secular

change to better than first-order accuracy.

Most of the recent secular variation (SV) indicated by broad-scale

spherical harmonic models of the observed geomagnetic field can be

explained quantitatively in the SFM/FFC model by a steady surficial core

flow (VOORHIES & BENTON, 1983; VOORHIES, 1984, 1986a)-especially when

the derived flow is not artificially constrained to induce minimal
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narrow-scale SV (VOORHIES, 1986b). Published studies by K. Whaler, J.

Bloxham, and others, and unpublished, if not wholly reported, studies by

this author and others confirm this fact. In particular, this fact

remains when the steady flow is constrained to be, in effect,

surficially geostrophic (VOORHIES, 1986d; 1991); when the spatial

complexity of the flow is damped (BLOXHAM, 1986, 1987a,b, 1988a, 1989;

VOORHIES, 1987b, 1988a; WHALER & CLARKE, 1988) ; and when both

geostrophic and smoothness constraints are enforced (VOORHIES, 1987c,

1988a, 1989, 1991; BLOXHAM, 1987c, 1988b) . This fact supports the

argument that time-varying flow near the core surface and departures

from the SFM/FFC model in the real Earth are of secondary importance in

the correct explication of recent SV. It also supports the argument

that the flow near the top of the core is similar to the estimated flows

-many estimates derived by different groups using diverse methods and

models being positively correlated (WHALER, 1990).

These arguments seem provocative enough to motivate an in-depth

exposition of both the physical foundation upon which, and the methods

by which, this fact is established. Moreover, colleagues suggest that

the approach, theory, method, techniques, and results of some recent

attempts at steady surficial core flow estimation merit more than

mention at meetings. There are, of course, other reasons to investigate

steady induction effects in geomagnetism-one being to learn to

distinguish such effects from other effects.

Limited quantitative success of a simple interpretation does not

prove it correct. Indeed, interpretation of recent SV solely in terms

of the SFM/FFC model and steady surficial core flow is in error due to

the extreme simplicity of these seemingly relevant idealizations.

Nonetheless, the demonstration that these idealizations provide a

powerful tool for quantitative explication of SV reflects favorably upon

the power of any more realistic core geodynamo model It also shows

that statistlcaiiy steady surficial core flow can dominate geomagnetic

field behavior over appreciable intervals, may thus be a component of a

more realistic core geodynamo model, and might even be a minor feature

Of an accurate core geodynamo theory. The geomagnetic effects of steady

motional induction thus merit study not only to establish interesting

facts, estimate core surface flow, and provide a fascinating contrast to

other possible sources of SV, but because an understanding of these

effects is important, and perhaps essential, to the correct

interpretation of SV-if not the phenomenon of geomagnetism itself.

1.3 Outline of the Series on Steady Induction Effects

To investigate steady induction effects in geomagnetism, and to

help establish the importance of other effects, it is often useful to

regard t_e SFM/FFC model as a first approximation and to treat the

supposition of steady surficial core flow as a hypothesis. To test

hypotheses against observations it seems appropriate to (a) understand

both; (b) develop a satisfactory method for mimicking the relevant data

in accord with the hypotheses; (c) apply the method to make quantitative

predictions; and (d) subtract predicted from observed values and measure

such residuals in units of the estimated uncertainty in the data. This

series of papers describes an effort to meet these requirements using

relevant geomagnetic field models to test the SFM/FFC earth model (and

refinements thereof) and the hypothesis of (piecewise, statistically)

steady surficial core flow.



In Part I, the steady surficial core flow estimation problem is
examined and solved in the context of the simple SFM/FFCearth model.
The present, introductory paper (IA) reviews the basic theory and
develops some implications of the steady motions hypothesis. Paper IB
develops a method for solving the non-linear inverse motional induction
problem posed by the hypothesis of (piecewise, statistically) steady
core surface flow and the adoption of an initial geomagnetic condition.
This inverse problem is generally non-linear because of the nature of
the solution to the forward problem and because neither the models nor
the observations they represent are either complete or perfect. Paper
IC describes application of this method to the Definitive Geomagnetic
Reference Field (DGRF)models (IAGA, 1988). Paper ID presents numerical
results of applying the method and conclusions drawn therefrom.

In Part II, the SFM/FFC model is reexamined; errors induced by

oversimplifying suppositions are assessed and targeted for systematic

elimination. In Part III, the supposition of perfect core conductivity

is replaced with that of steady magnetic flux diffusion near the top of

a resistive core and an effort to allow for, and indeed estimate, deep

mantle electrical conductivity is described.

2. THEORY

Many geomagnetic estimates of core surface motions rely on the

magnetic induction equation for a fluid medium of isotropic magnetic

permeability _ and steady, isotropic electrical conductivity

_t B = Vx(vxB) + Vxo-l[Vx(_-IB)] (la)

where B represents the magnetic flux density vector, _t B its partial

derivative with respect to time t, and v the fluid velocity vector. The

first term on the right of (la) describes motional induction; the second

describes magnetic flux diffusion. The optional appendices offer a

derivation of this equation for general readers and an analysis of

conditions under which it is a useful summary of the Maxwell equations.

For homogeneous _ and uniform _ (la) reduces to

_t B = Vx(vxB) + I]V2B (ib)

where _ _ [_]-I represents the magnetic diffusivity and the vector

identity VxVxA = VV.A - V2A has been applied to solenoidal B.

In s2herical polar coordinates (r,O,_) with orthonormal unit

vectors (r,O,$), let A represent a vector field with radial component A r

m r.A and surficial component A s _ A - rA r. Let V s, denote the surface

divergence operator on the sphere of radius r: Vs.A = V-A - r-2_rr2A r =

[rsin0]-l[_oAosinO + _A_]. Because r.[Vx(AxZ)] = ?s.[ArZs - ZrAs], the
radial component of (ib) is

_tBr + Vs.[BrV s - UBs] = _r-IV2rB r m d r (ic)

where B r and u m v r represent, respectively, the radial components of B

and v, B s and v s the surficial portions of B and v, and d r denotes the

radial magnetic flux density diffusion. Equation (Ic) is the radial

induction equation for uniform, isotropic media. To restore effects of

displacement currents, add _q_t2Br to the left of (Ic) - where _q _ £/_
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is the charge relaxation time and e is the uniform, isotropic dielectric

permittivity (Appendix A) ; omission of this term filters out

electromagnetic radiation in accord with the quasi-steady approximation.

2.1 Radial Induction at the Top of a Spherical Core

The magnetic flux density vector B(r,t) and the fluid velocity

vector v(r,t) within the Earth may vary with time t and position vector

r reckoned in geobarycentric spherical polar coordinates (r,8,#) fixed

to the solid Earth; henceforth r is radius, 8 is colatitude south from

the reference pole of rotation, and _ is longitude east from the

Greenwich meridian. The upper part of the outer core is treated as a

low-viscosity liquid of uniform _ and uniform _ wherein (i) applies.

The CMB is approximated by the sphere of radius b = 3480 km-the mean

PREM core radius (DZIEWONSKI & ANDERSON, 1981). The surrounding mantle

is treated as a perfectly rigid, impenetrable, electrical insulator of

uniform magnetic permeability wherein, perforce, v = 0 and scaloidal B =

-W. The viscous boundary layer just beneath the CMB is treated simply

as a sheet vortex; points on the spherical surface just beneath it lie

at the top of the free-streaming core and are assigned positions r = b.

The kinematic boundary condition is applied at b; thus v(b,t).r _ u(b,t)

= 0, v(b,t) = Vs(b,t) is tangent to b, and (ic) at (b,t) is

!

= I -- dr (b, t) (2)_tBr(b't) + Vs'[Br(b't)vs(b't)] 1][r-lV2rBr*(r't)] b

The asterisk on B r emphasizes that only portions of the field that are

not purely scaloidal contribute to d r .

Across a spherical boundary B r is continuous, _rBr can jump with B s

due to a sheet electric current, and _r2Br will jump with the lateral

electric current density Js (see Appendix A). The radial component of

any part of the field which is not purely scaloidal, say B r , vanishes

at the spherical base of a source-free mantle, so it is negligible at b
2 *

by continuity; however, D r B r will typically be non-trivial at b, as

will dr(b,t) . When the core is treated as a perfect conductor _,

vanishes and dr(b,t) is zero-unless a sheet current and jump in _rBr

dictate otherwise. Though radial flux diffusion at the top of the free-

stream may well account for about 6% of broad-scale secular change

(VOORHIES, 1986c; 1988 unpublished, 1989), dr(b,t) is omitted in part I.

The result is the celebrated ROBERTS & SCOTT (1965) equation

_tBr(b,t) + Vs.[Br(b,t)vs(b,t)] = 0 (3)

which describes frozen-flux motional induction at the surface of a free-

streaming spherical outer core.

2.2 Kinematics

Mass density p(r,t) is treated as the sum of a mean state Po(r) a

fluctuating perturbation p'(r,t). Mass conservation at (r,t) implies

%tP' + V-[p'v] + V.[PoV] = 0 (4)

where Ve is the full divergence operator. The anelastic approximation

r

V.[Po(r)v(r,t)] = 0 (5)

filters out high-frequency acoustic radiation in much the same way that

omission of displacement currents from the Ampere-Maxwell law filters



out high-frequency electromagnetic radiation. It does not require
vertical advection of the mean stratification and is considered more

appropriate to the slow outer core flow of interest here than is the

supposition of solenoidal flow (VOORHIES, 1987c, 1988 unpublished ms.).

Equation (5) differs from equation (1.36) of GUBBINS & ROBERTS (1987) in

that advection and flow convergence are allowed to change p'(r,t).

In a spherical outer core, Po(r) = Po(r), so (5) and the kinematic

boundary condition at b imply incompressible flow at b: V.vl b = 0. Then

Vs.Vs(b,t ) = -_rU(b,t), surficial convergence (or confluence Vs.V s < 0)

implies downwelling (_r u > 0), and (3) reduces to

_tBr(b,t) + Vs(b,t).VsBr(b,t) = Br(b,t)_rU(b,t). (6)

This is the usual frozen-flux radial induction equation at b.

In this frozen-flux core (FFC) approximation, the mean square

radial magnetic flux density linking the core changes only when fluid

downwelling correlates with the squared radial magnetic flux density.

To see this, let <_(r,t)> represent the mean value of any scalar field

_(r,t) averaged over the sphere of radius r

<_;(r,t)> - (4K)-IS

2_

[_(r,t)]sinSdSd_

0 0

(7)

and let _(r,t) rms denote the root mean square value of _(r,t) averaged

over the sphere of radius r, <_(r,t)2> I/2. Note that <Vs-A> = 0 for any

vector field A(r,t) with single-valued differentiable components. Now

consider the mean square radial field averaged over b

2K

(4_)-15 5 [Br(b,t)]2sin%ded _ _ <[Br(b,t)]2> _ [Br(b,t)rms]2 (8)

0 0

The value of (8) indicated by a finite set of Gauss coefficients is

easily calculated in the SFM model (LOWES, 1966; VOORHIES, 1984). With

(3) and Vs.Vs(b,t) = -_rU(b,t) the time derivative of (8) is

<2Br(b,t)_tBr(b,t)> = <2Br(b,t) [Br(b,t)_rU(b,t) - Vs(b,t).VsBr(b,t)]>

= <2Br28rU - Vs.[Br2Vs] + Br2Vs.Vs>

= <[Br(b,t)]2_rU(b,t)>. (9)

Indeed, at (b,t) we have 2<Br_tBr> = <Br2_rU> = 2<BrVs. VsBr>; yet the

contribution to (9) from lateral advection is one half, but opposite,

that from downwelling.

In the special case of purely toroidal flow at the surface of a FFC

Vs(b,t ) : VT(b,t ) _ [VsT(b,t)]x[r], where -T is the streamfunction; then

Vs.VT(b,t) = 0, there is no downwelling, and the right-hand side of (6)

and (9) vanish with _rU(b,t). Any purely toroidal flow at the surface

of a FFC therefore conserves the mean square radial flux density

averaged over the surface. This is obviously so for rigid rotations,

but also holds for arbitrarily complicated toroidal flows-allowing a

quick check on the compatibility of estimates of Br(b,t) with the
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hypotheses of purely toroidal FFC surface flow. Alternately, if the

flow is toroidal, then there is a second way to locate the core

magnetically: seek the sphere upon which <Br(r,t)2> is unchanged over

some time interval. (The first way is described by HIDE & MALIN (1981),

VOORHIES & BENTON (1982), VOORHIES (1984), BENTON & VOORHIES (1987)).

Mean square radial field conservation is also easy to impose on models

of the evolving geomagnetic field; such biased models might be useful

for seeking purely toroidal flows. Of course, a geomagnetic field model

constrained to be smooth in a well-defined sense that also yields small

values of (9) will, perhaps unintentionally, be more compatible with the

no-upwelling hypothesis than models that are not so constrained.

It is clear that supposition of sphericity is not needed (BACKUS,

1968) to equate the time rate of change of the mean square magnetic flux

density normal to the closed surface of a perfect fluid conductor

bounded by a rigid, impenetrable exterior with the mean value of the

product of the squared normal flux density and the surface convergence

of the surficial fluid velocity averaged over the surface.

2.3 Simplified Dynamics

The dynamics of the outer core is a subject of debate; however, a

reasonable approximation to the equation of fluid motion therein is

p[_t v + v._Tv + _tFbxr + 2_b<v] = V-_ + Pge + JXB (i0)

where _ is the bulk angular velocity of the solid earth; R is the

hydrodynamic stress tensor (including pressure and bulk and shear

viscous stresses) and VoR is its divergence; ge = -V[_N - 0"51_12] is

the effective gravitational acceleration for Newtonian potential _N and

centrifugal potential -0.511_<r12; and J is the electric current density

(from A3d) . Physically, VoN is the macroscopic representation of net

microscopic electromagnetic force densities and the Lorentz force

density JXB represents the divergence of macroscopic magnetic stresses

(see, e.g., VOORHIES, 1991).

The mean state of the outer core is taken to be the equilibrium

between forces caused by hydrostatic pressure and by gravitational

attraction and centrifugal effects: VPo(r) _ Po(r)ge(r), where V is the

gradient operator and Po is -1/3 the trace of diagonal R for a Newtonian

fluid at rest in the reference frame rotating at _. This mean state is

subtracted from (i0) . High-frequency fluctuations in _ and tidal

effects are omitted (in Part I). For a modest to weak magnetic field,

scale analyses of the residual perturbation momentum equation in the

upper part of the core suggest that, just beneath a thin (8 cm) viscous

sub-layer, the relative, advective, and precessional pseudo-force

densities on the left and viscous, centrifugal, and Lorentz effects on

the right of (I0) contribute little to the primarily geostrophic balance

between Coriolis, perturbation pressure, and radial buoyancy forces

(see, e.g., HILLS, 1979; LEMOUEL, 1984; BENTON, 1985; VOORHIES, 1991).
A

Then with p' << Po' omission of perturbations in ge' and ge = -rg,

A

2Po_oXV + Vp'+ p'gr = 0 (ii)

where the prime indicates the (non-tidal) perturbation relative to the

mean state. A modest magnetic field at the top of the free-stream is

consistent with an effectively SFM, but need not imply a weak field at
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depth (e._., below a 90-km-thick magnetic boundary layer). With _(t) =

_o = _o (rc°s8 - _sinS), the radial component of the curl of (Ii)

evaluated at b reduces to the geostrophic radial vorticity balance

v

_rUCOS0 + -sin8 = 0
b

(12)

which has long been used to constrain some numerical estimates of core

surface flow. Physically, (12) requires downwelling to be accompanied

by poleward flow except at the equator (where v = 0) and at the poles

(where _r u = 0) (VOORHIES, 1987d). Note that (12) approximates the full

radial vorticity equation under somewhat less restrictive conditions

than those under which (ii) follows from (I0) (BENTON, 1985; VOORHIES,

1991). Flows obeying (12) are "surficially geostrophic" and include

tangentially geostrophic flows defined by BACKUS & LEMOUEL (1986).

3. STEADY MOTIONAL INDUCTION_ THE FORWARD PROBLEM

For steady flow, (3) reduces to

_tBr(b,t) + Vs.[Br(b,t)Vs(b)] = 0
(13a)

For steady anelastic flow, (6) reduces to

_tBr(b,t) + Vs(b)'VsBr(b,t) = Br(b,t)_rU(b).
(13b)

Equations (13) also describe frozen-flux motional induction during an

interval t o _ t S tf when the flow is steady in the statistical sense:

when correlations between fluctuations about short time averages of v s

and B r contribute negligibly to short time averages of _tBr and the

short time averages of v s do not vary during the long time interval

[to, tf] (VOORHIES, 1986a, section 2.2). A flow that is statistically

steady during consecutive intervals is piecewise statistically steady;

though v s may change between intervals, (13) holds within each interval.

Effectively piecewise steady flow might arise physically when long

intervals of statistically steady flow, hence statistically balanced

forces, are punctuated by rapid shifts to a new flow configuration.

Given initial condition Br(b,t o) and Vs(b) the forward solution to

(13) is of transcendental exponential operator form [Voorhies, 1986b]

- (t-t o )Vs.V s (b)

Br(b,t) = (e }0{B(b, to)}
(14a)

or, perhaps more clearly,

- (t-t o )V s, [v (b)

Br(b,t) = {e }oB(b, to)].
(14b)

This is a special case of the general solution to forward steady

motional induction problems presented by HOYNG (1985). To derive (14)

time differentiate (13a) and back substitute k-i times:

_t2Br + Vs.[VsBtBr] = _t2Br - Vs.[Vs{Vs-[VsBr])] = 0
(15a)
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_t3Br + Vs.[Vs_t2Br ] = _t3Br + Vs.[Vs{Vs.[Vs(Vs,[VsBr]}]}] = 0 (15b)

_tkBr = (-l)k(Vs.[vs}koBr ] (15c)

where (15c) follows by logical induction. Equation (15c) at t o is

substituted into the Taylor series expansion for Br(b,t) about to

1 k k
Br(b't) = _ --(t-to) _t Br(b'to)

k=0 k!

(-I) k

: Z --(t-to)k{Vs,[vs}koBr(b, to )]

k=0 kJ

= 7. --(-(t-to)Vs.[vs]koBr(b, to ) ]

k=0 k!

- (t-t o )V s,[v s (b)

= (e ]oBr (b, to) ]

which is (14b) or, with the transcendental exponential operator taking

precedence over the surface divergence operator, (14a).

One feature of evolution equation (14) is that action of a given

steady surface flow on different initial radial magnetic flux conditions

induces predicted flux configurations which can diverge exponentially

with time in some regions and converge exponentially with time in other

regions. Consider the iterative map obtained by forward numerical

solution of the steady motional induction problem (13b) with an

arbitrarily small time step 6t

Br(b,t+St) = Br(b,t) + [_tBr(b,t)]St.

With time measured in units of _t

Br(b,t+l) = Br(b,t) + _tBr(b,t)

= Br(b,t) - v(b).VsBr(b,t ) - Br(b,t)Vs.V(b )

(16)

(17a)

17b)

dBr(b,t+l)

dB r (b, t )

= 1 - Vs,V(b) = 1 + 8ru

and the Liapunov exponent is

l

1 N dBr(b,t+l) 1 N

L - lim - _ inl I = lim - _ inll + _rUl = inll + _rUl.

N--)_N t=l dBr(b,t) N-)_N t=l

Restoration of the original measure of time yields

L = inll + 6t_rUl.

The Sign of the Liapunov exponent is the sign of the downweliing!

17c)

18)

(19)
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For downwelling _r u > 0, L > 0, and chaotic behavior is indicated.

Downwelling draws in magnetic field-line footpoints; basins of

downwelling are field-line footpoint attractors. For upwelling _r u < 0,

L < 0, and 'normal' behavior is indicated. Upwelling blows away field

line footpoints; domes of upwelling are field-line footpoint repulsors

(VOORHIES, 1987e). L is zero for purely toroidal flow.

Downwelling at a stagnation point (v s = 0) causes exponential

growth of B r with time constant [_ru]-l; a strongly magnetized unipolar

region called a core spot (Benton & Voorhies, 1981 discussion) or a flux

bundle or spot (BLOXHAM & GUBBINS, 1985) may form in an area of

downwelling. Upwelling at a stagnation point causes exponential decay

of Br; a weakly magnetized region may form in an area of upwelling.

Elsewhere the evolution of B r is complicated by lateral advection:

laterally variable downwelling may strengthen horizontal gradients VsB r

whose advection by v s can lead to chaotic field behavior.

If v s is a rigid rotation (e.g., bulk westward flow), then Br(b,t)

is periodic in time. Between extremes is the quasi-periodic regime

characterized by weak meridional shear, non-zonal flow components, and

regions of up- and downwelling embedded in a bulk flow. For example, an

existing core spot advected through a mild upwelling spreads out and

weakens, then intensifies upon encountering a mild downwelling and, if

not absorbed or disrupted downstream, eventually circumnavigates the CMB

to reencounter the same regions of up- and downwelling. Finally,

advection of very steep lateral gradients in B r produced by vigorous

downwelling plumes can yield chaotic field behavior. The steady

surficial motional induction problem is apparently a fine, easily

visualized example of deterministic chaos which, depending on v s,

exhibits: extreme sensitivity to initial magnetic conditions; periodic,

quasi-periodic, and/or non-periodic behavior; fixed attractive or

repulsive stagnation points with associated basins of attraction or

repulsion; and regionally chaotic behavior (VOORHIES, 1988b).

4. SOME EFFECTS OF PERSISTENT, SURFICIALLY GEOSTROPHIC FLOW

An interesting conceptual view of secular change results from

supposing core surface flow is both steady and surficially geostrophic.

With _r u = -vtan_)/b, chaos may rule in regions of poleward flow.

Because downwelling, which may form core spots, is accompanied by

poleward flow, I expect poleward drifting core spots. Conversely,

regions of low radial flux density formed by upwelling shift towards

lower latitudes. The implied flux partitioning mechanism can create an

axial dipole moment from a non-dipole field with a non-axisymmetric

component; moreover, persistent, surficially geostrophic motional

induction can cause this axial dipole to grow and fluctuate.

To see how persistent, surficially geostrophic flow can create and

fortify an axial dipole moment, note that the time rate of change of the

axial dipole coefficient for a conventional Schmidt-normalized spherical

harmonic expansion of the scalar geomagnetic potential near Earth's

surface (r = a = 6.3712 Mm) is

0 3

_tg I = 2<_tBr(a,t)cos%>. (20a)
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With either (6) or (13b) just beneath a SFM,

3
0 3b

_tgl = --<_tBr(b,t)cosS> -
2a 3

-3b 3

<?s.(BrVsCOSS) + BrvsinS/b>
2a 3

-3b 3

= --<BrvsinS/b>. (20b)
2a 3

Frozen-flux variations in the axial dipole require net transport of

radial field towards the rotation axis, hence poleward flow.

Surficially geostrophic poleward flow requires downwelling (12), so

0 3b 3

_tgl =--<BrCOSe_rU>. (20c)
2a 3

The time rate of change of the axial dipole is proportional to the mean

product of the downwelling and the axial projection of the radial field.

Pressure perturbations are single valued, so the horizontal

components of (ii) imply that _r u has no axisymmetric component;

therefore, only the non-axisymmetric part of the radial field Brna

contributes to (20c) for tangentially geostrophic flow. Tangentially

geostrophic downwelling where Brnacos8 "< 0 (or > 0) decreases (or
0

increases) gl This can create a normal (or reversed) polarity axial

dipole from a purely non-dipolar field with a non-axisymmetric

component. This axial dipole will grow until the correlation between

Brnacos8 and the downwellingchanges Sirgn. For steady fiow_this could

be quite some time-roughly half the time required for Brna to change

sign. Indeed, then _t2gl 0 = 3b3<BrVs-Vs_rUCOSS>/2a3.

It is suggested that surficially geostrophic downwelling in a like

polarity core spot intensifies the spot and shifts it poleward,

strengthening the axial dipole; upwelling in a like polarity core spot

disperses its flux and shifts it equat0rward, weakening the axial

dipole. Conversely, downwelling in a reversed flux patch intensifies it

and shifts it poleward, weakening the axial dipole; upwelling in a

reversed flux patch disperses it and shifts it equatorward,

strengthening the axial dipole (VOORHIES, 1987d) . If such spots or

patches drift westward, alternately encountering regions of steady (or

merely persistent) upwelling and downwelling, then quasi-periodic dipole

oscillations are expected.

Because there is no downwelling at the poles, a core spot should

neither form at nor reach the highest latitudes-which should then be

regions of weak radial field. Because downwelling implies poleward

flow, there can be no downwelling at a stagnation point-except at the

equator. Runaway intensification of a core spot is therefore limited by

the tendency for the flux to shift poleward (towards regions of weaker

downwelling). Downwelling at an equatorial stagnation point appears

problematic.- though flux advection from adjacent latitudes vanishes with

v, an equatorial 'dot' might develop from weak equatorial flux density

after a few times [_r u]-_, Yet such a point feature can develop no

absolute flux linkage as it has no area, its source region (the equator)

has no area, and downwelling just off the equator is accompanied by the

12



usual poleward flow. Moreover, Lorentz forces and magnetic diffusion

likely become important near such a dot in violation of (12) and (3).

Suppose a basically non-axisymmetric configuration of radial field,

perhaps established by a previous episode of convective/diffusive flux

expulsion, is subjected to a persistent, surficially geostrophic flow

which is partly non-zonal. The expected value of (20c) may be zero, but

the chance of (20c) being exactly zero (of there being no correlation

between axial field Brcose of one polarity and the downwelling) is nil.

So suppose areas of downwelling correlate initially with areas of normal

polarity. Then normal polarity flux is attracted by basins of

downwelling, tending to form core spots, but is also shifted poleward,

forming high-latitude core spots. The poleward shift inhibits runaway

intensification of core spots and thus runaway growth of the mean square

radial field. It seems unlikely that all the flux would end up in an

axisymmetric configuration; indeed, as normal polarity field-line

footpoints become stranded poleward of the downwelling loci, dipole

growth should slow. It seems more likely that flux partitioning would

continue until some maximum eligible fraction of the normal polarity

flux has been shifted poleward. Roughly equal partitioning of the mean

square radial field between dipole and non-dipole configurations might

be a preferred, possibly metastable state; however, this has not yet

been demonstrated and continued downwelling might transport reversed

flux poleward. Perhaps more importantly, nearly zonal advection of

high-latitude core spots through the high-latitude fringes of

alternating regions of up- or downwelling would induce quasi-periodic

dipole oscillations. With a few core spots and a few foci of up- and

downwelling, local effects may dominate dipole oscillations at the CMB.

Yet the global dipole oscillations would appear relatively more

prominent at Earth's surface.

This simple picture can be enriched by magnetic flux expulsion: the

entrainment of toroidally magnetized fluid into the magnetic boundary

layer, toroidal to poloidal field conversion by the implied laterally

heterogeneous vertical motion, and diffusion across the CMB. Weak field

flux expulsion might occur at the low latitudes favored by surficially

geostrophic upwelling (estimates mapped and posted by VOORHIES (1988a)

show foci of steady surficially geostrophic up- and downwelling to be

confined to within about _30 ° of the equator) and perhaps at the high

latitudes seemingly favored by density and angular momentum poor plumes

from the inner core boundary. So the simple scenario should be modified

to include radial flux diffusion dr(b,t) (which may also help regulate

core spot amplitudes by eliminating strong curvature r-iV2rBr ) and

effects of the strong field with appreciable curl expected at depth.

Sufficiently vigorous vertical advection of such fields may generate

Lorentz forces that violate even surficial geostrophy and may thus

change such a flow. Yet such changes may but punctuate intervals of

ordinary convective vigor when the Lorentz forces implied by warping a

strong toroidal field tend to oppose the driving vertical motion. Then

the simple scenario may commonly hold to a fair approximation.

To help complete the simple picture, suppose that despite such

opposing forces, vertical motion at depth grows locally strong enough to

not only thin the magnetic boundary layer, but to bring toroidally

magnetized fluid close to the CMB at some intermediate latitude; then

toroidal to poloidal field conversion by vertical motion and flux

diffusion can form core spot pairs. If, upon restoration of a

13



surficially geostrophic balance, the spot foci remain in the region of

upwelling, then such pairs should weaken and drift equatorward. Though

such spot pairs are distinguished from the unipolar core spots discussed

above, the distinction may be artificial. Low-latitude flux expulsion

and ageostrophic effects may form a spot pair that splits into different

hemispheres; such spots should be repelled by the upwelling. Subsequent

restoration of a surficially geostrophic balance and interactions with

regions of surficially geostrophic downwelling may lead to further

separation of the originally paired spots and the formation of seemingly

unrelated unipolar regions.

In the long view, a statistically steady, surficially geostrophic

flow regime characterized by quasi-periodic dipole oscillations could be

punctuated by vigorous convection (overstability being preferred in

fluids with small Prandtl and magnetic Prandtl numbers (CHANDRASEKHAR,

1961) and emergence of one or more bipolar regions. If these spot pairs

emerge at low latitude and drift into hemispheres of (either like or)

opposing polarity, subsequent flux partitioning upon restoration of a

new, persistent, surficially geostrophic flow may dramatically alter the

dipole moment. Indeed, if enough flux of opposing polarity were

involved, this could appear as an excursion, or even a reversal, of the

geomagnetic axial dipole.

The simple scenario of approximately steady, frozen-flux,

surficially geostrophic core flow predicts: (I) low-latitude regions of

low flux (and occasional spot pairs); (2) high-latitude unipolar core

spots; (3) polar regions devoid of spots; and (4) a strong axial dipole.

Many maps of the broad-scale radial field at the CMB (constructed by

many workers since BOOKER [1969]) reveal such features. It follows that

this scenario deserves closer scrutiny. To this end, and in search of a

quantitatively acceptable explication of recent SV, subsequent papers

document an effort to describe broad-scale models of the slowly varying

observed geomagnetic field in terms of (piecewise, statistically)

steady, optionally surficially geostrophic, core surface motions.

5. SUMMARY

The simple source-free mantle/frozen-flux core (SFM/FFC) earth

model has been used to review and extend the kinematic and elementary

dynamic theory of geomagnetic secular change. The ROBERTS & SCOTT

[1965] equation was used to prove that the mean square radial magnetic

flux density averaged over a FFC, <Br(b,t)2> , changes if and only if

fluid downwelling, -?s. Vs(b,t) = _rU(b,t), correlates with squared

radial magnetic flux density, and is thus conserved by any purely

toroidal FFC surface flow. For a SFM, the contribution from the broad-

scale portion of the radial magnetic flux density to <Br(b,t)2> can be

easily estimated from broad-scale models of the evolving geomagnetic

field and used to check the compatibility of such models with the no-

upwelling hypothesis.

The kinematical forward problem posed by steady motional induction

at the top of a FFC was solved analytically (albeit not in closed form).

The sign of the Liapunov exponent describing evolution of the radial

magnetic flux density Br(b,t)'was shown to be the sign of the

downwelling _rU(b)-raising the possibility of steady motional induction

of geomagnetic chaos. Steady m0tional induction at the top of a FFC was

found to a be fine, easily visualized example of deterministic chaos
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which, depending on Vs(b), exhibits extreme sensitivity to initial

geomagnetic conditions; periodic, quasi-periodic, and non-periodic field

behavior; fixed basins of magnetic field-line footpoint attraction or

repulsion surrounding fixed stagnation points; and regionally chaotic

field behavior.

Downwelling implies poleward flow for surficially geostrophic core

flow. Some aspects of persistent, surficially geostrophic core motions

were described, including the flux partitioning mechanism whereby the

formation and poleward drift of core spots in regions of fluid

downwelling can create and fortify an axial dipole from a field that is

at least partly, and could be entirely, non-axisymmetric. Features

expected to result from persistent, surficially geostrophic flow are

evident in many mapped estimates of the broad-scale radial field near

the top of the core, and may be present in records of paleomagnetic

secular variation. However, magnetic flux diffusion, Lorentz forces,

and time-dependent flow are expected to play key roles in the correct

interpretation of very long term SV and geomagnetic reversals.

In one long-term scenario, intervals of persistent, partly non-

axisymmetric, surficially geostrophic core flow characterized by quasi-

periodic global dipole oscillations and regionally chaotic field

behavior are intermittently punctuated by major changes of the flow in

the outer core. The instability envisioned is of internal origin-a

natural consequence of thermo-compositional convection within a rapidly

rotating, roughly spherical annulus of strongly magnetized liquid metal-

alloy subject to very slowly changing, inhomogeneous cooling from above

(due to thermal instability of the deep mantle) and a very slowly

changing, heterogeneous flux of buoyant material from below (due to

condensation of the inner core). It is characterized by uncommonly

strong poloidal flow within the upper core, entrainment of toroidally

magnetized fluid into the magnetic boundary layer (say the upper 90 km

of the core), conversion of toroidal to poloidal field by the vertical

motion, flux diffusion across the CMB, and formation of core spot pairs

-particularly, but by no means entirely, at the low latitudes favored by

surficially geostrophic flow. There may be many such pairs which split

ageostrophically; if enough spots of sufficient flux happen to drift

towards, if not into, hemispheres of opposing polarity, then the process

appears to be either an excursion or a reversal of the axial dipole.

Relaxation to a new pattern of persistent, partly non-axisymmetric,

surficially geostrophic core flow leads to intensification and poleward

drift of such spots, formation of unipolar core spots at high latitudes

and reestablishment of an axial dipole. The polarity of the new dipole

is the polarity of the spots which happen to correlate with the new,

surficially geostrophic pattern of downwelling.

This is of course but one of many conceivable scenarios in need of

development and, more importantly, testing. Many paleomagnetic data and

geomagnetic data can be brought to bear upon speculations, properly

framed hypotheses about the core, and geodynamo theory in general if the

physical suppositions, mathematical means, and numerical methods needed

to connect hypotheses and observations are developed. In order to test

simple hypotheses such as (statistically) steady, piecewise steady, or

persistent surficially geostrophic flow and, perhaps more importantly,

in search of a quantitatively acceptable explication of recent SV, a

method has been developed to connect the SFM/FFC kinematics of secular
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change to broad-scale models of the evolving geomagnetic field. This

method is described in the next paper.
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APPENDIX A

The magnetic induction equation, though familiar to some, is not as

widely known as can be hoped. Moreover, some textbook derivations of it

(e.g., ROBERTS, 1967; JACKSON, 1975; GUBBINS & ROBERTS, 1987) skip a few

points of interest in geomagnetism; in particular, a common rationale

for using Ampere's law is inadequate for some geomagnetic purposes. So

we return to the differential form of the macroscopic Maxwell equations.

Let q represent the electric charge density scalar (with dimensions

of C/m3), E the electric field vector (V/m), D the electric displacement

vector (C/m2), J the electric current density vector (A/m2), B the

magnetic flux density pseudo-vector (T), and H the magnetic field

strength pseudo-vector (A/m). The Maxwell equations describing the

position r and time t -dependent electromagnetic field are then

V.D = q (Ala) V.B = 0 (Alb)

V×E = -atB (Alc) VxH = J +atD (Ald)

where _ denotes partial differentiation with respect to the ensuing

subscripted variable, V. the divergence operator, and V× the curl

operator. The divergence of the Ampere-Maxwell law (Ald) is charge

conservation

_tq + V.J = 0. (Ale)

In the reference frame K' moving with a physical medium the

macroscopic constitutive relations are

B' = _-H' (A2a) D' = £-E' (A2b) J' = (_.E' (A2c)

where _(r',t') represents the second-rank magnetic permeability tensor

(H/m), &(r',t') the dielectric permittivity tensor (F/m), and __(r',t')

the electrical conductivity tensor (S/m) of the medium. In (A2) the dot

product • indicates the first-rank result of a second-rank tensor

operating on a first rank vector (or pseudo-vector). For non-linear

media _, __, and __ depend implicitly on H' and E'. For steady media _,

&, and G are independent of t' For homogeneous media _, __, and __ are

independent of r'. Because H' and E' are generally functions of both r'

and t' a medium which is steady, or homogeneous, or both (i.e., uniform)

will generally be linear. For isotropic media _, __, and __ are diagonal

matricies, each with three identical elements, and are described by the

scalars _, E, and (_. In an isotropic medium, the speed of light is c =

(_£)-i/2, the charge relaxation time is _ -= e/O, and the magnetic

diffusivity is I] = (_)-i q

Jump conditions across the interface between two different media

are derived from the integral forms of (AI) (see, e.g., JACKSON, 1975).
A A

Let n be the unit vector normal to the interface, A n = A.n, and A s -= A -

Ann. Then these conditions are continuity of B n and E s and jumps {D n) =

and {H s) = Cxn, where _ is the idealized surface charge at the
interface and C is the idealized surface current at the interface.

Given _, &, a, and time-dependent boundary conditions, suitable initial

conditions at t' = 0 for solving (AI, A2) are E' (r',0) and B' (r',0).
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For a medium moving with uniform velocity u relative to an inertial

reference frame, the comoving frame K' is inertial and equations (AI)

and (A2) are implicitly covariant under the special relativistic Lorentz

transformation (see, e.g., JACKSON, 1975). For the outer core, the

fluid velocity v is not uniform so K' is not inertial. Moreover, v is

defined relative to the non-inertial reference frame K fixed to the

imperfectly rigid, solid Earth which is in non-uniform rotational and

orbital motion relative to an inertial reference frame.

The portions of the electromagnetic field of geophysical interest

are described qualitatively by their length scale of spatial variation

k, time scale of temporal variation _, and typical speed U _ i/_ - IvJ .

Slow changes of the geomagnetic field attributed to core sources are

described by I S 2Kb = 22 Mm and T _ 1 year = 32 Ms, so U S 0.69 m/s.

Typically I _ lo _ 2_b/14 = 1.6 M_m, _ _ _o = 102 years, and U = 5x10 -4

m/s. Clearly U is much less than the speed of sound c s = 104 m/s within

the Earth and the vacuum speed of light c o = 3.0x108 m/s; however, Earth

is not vacuum, so geophysical scale analyses comparing U with c o may be

irrelevant. If E o _ C S 10 -2 F/m and if _ = _o = 4Kx10-7 H/m, then c

9x103 m/s >> U; but do we know C? Because hydrodynamic stress and key

bulk material properties (elastic moduli) used to describe sound are

macroscopic representations of microscopic electromagnetic interactions

between particles, sound is an electromagnetic phenomenon. So the top

speed at which information can propagate electromagnetically within the

Earth is not less than the sound speed. Then c _ c s >> U and progress

can be made even in the absence of measured ultra-low frequency values

for £ and _ of deep-Earth materials.

With U << c K c o the general transformation from K' to K should

approach the Lorentz transformation which, in turn, approaches the

Galilean transformation B' = B and E' = E + vxB; moreover, J' = J - qv

and charge invariance imply q' = q. Scale analysis of Faraday's law

(Alc) yields IEI - l[B[ /_ = UIBI , so the Ampere-Maxwell law (Ald) is

approximated by Ampere's law (VkH = J) because the displacement current

is allegedly small compared with the curl of the field strength:

' ' ''[_tDI/IVxH[ - £[E[_k/IB[_ - (U/c) 2 << 1 (ROBERTS, 1967). This should

hold even with c << Co; yet [_tD[/[VxH] = 1 in regions where J = 0 and

the geomagnetic field is supposedly scaloidal. Conditions under which

Ampere's law is useful are offered in Appendix B: for steady _ and o it

is shown that _ must be very much greater than __ for this ultra-low
q

frequency, electromagnetically quasi-steady approximation to be useful.

For electrically neutral media q = 0 and J' = J - qv = J. More

generally, Jqvl = I (Vo£E)vl - £jE[U/l - U2[B[_/k and scale analysis of

Ampere's law yields [B[/_l - IJI; therefore, [qvl/IJl - U2/c 2 and J' is

approximated by J (ROBERTS, 1967). This holds even with c << c o .

These approximations yield the pre-Maxwell equations appropriate to

the magnetohydrodynamics of an isotropic medium

V.£E : q (A3a) V.B : 0 (A3b)

VxE : -_t B (A3c) Vx(B/_) = J (A3d)

and Ohm's law

J = O(E + vxB) . (A3e)
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The vxB term is an order-zero relativistic effect-much like classical

kinetic energy moV2/2. (Recall that for invariant rest mass m o, E

moc2(l-v2/c2)-i/2 = moC2 + moV2/2 + terms of order v2/c 2 (OKUN, 1989)).

Jump conditions across the fixed interface between two different

media in which (A3a-d) hold are derived from (A3b) , (A3c) , the

divergence of (A3d), and (A3d). These conditions are continuity of B n,
A

Es' Jn' and jump {Bs/_} = C×n across the interface. If J is finite,

then (Bs/_} = 0. If _ is finite at the interface, then finite E, v, and

B in (A3e) imply finite J; then it seems C = 0 and Bs/_ is continuous.

If the finitude of _ is omitted (as in frozen-flux), then C _ 0 and

discontinuous Bs/_ are allowed; then B s may jump even _ if _ does not.

The appropriate initial condition at time t = 0 is B(r,0) . The initial

condition on E is not important in the quasi-steady approximation and

must be sacrificed because (A3d) is a singular perturbation of (Ald).

Given solenoidal B (A3b), Ampere's law (A3d) determines solenoidal J;

further given v, Ohm's law (A3e) determines E. Then Gauss's law (A3a)

determines q and {_En} = _. Comparison of VoJ = 0 with the true charge

conservation law (Ale) confirms that sources of displacement currentc

_tq (along with qv, _t Z, and Zv) are omitted in the quasi-steady

approximation.

Evaluation of _tq from (A3a-e) yields

_tq = _tV.(£E) = _tVO(TqJ - £v×B) = _t(VTq-J) - V-_tC£v×B ) (A3f)

= V._t(_qV×H - c-2vxH)

which must be negligible compared with q/Tq, IJI/l, and IBl/_k 2 for

Ampere's law to be useful in conjunction with (A3e) . If the quasi-

steady approximation is to be strictly compatible with true charge

conservation (Ale), then (A3f) must be identically zero. For uniform

media this would require £Vo_t(vxB) = £_t(B._ - _v.J) = 0, where _ _ Vxv

is the vorticity. This requirement is always met in the comoving frame

(v = 0) ; in the limi_ as £, and thus _q and c -2, approach zero., in

electrically neutral media; and when (B._ - _v.J) is steady (e.g.,

irrotational sub-relativistic motion of an electrical insulator). The

unimportance of (A3f) is necessary, but not sufficient, for use of the

quasi-steady approximation.

Elimination of E from (A3c) using (A3e) yields

%tB = Vx(vxB) - Vx(J/C). (A4)

Substitution of Ampere's law (A3d) into (A4) yields the magnetic

induction equation (la).

Omission of qv does not imply J = 0. Charge density q is a

macroscopic average over the microscopic charge carriers of their

individual charge alone; charge current density J is an average over the

charge carriers of their individual charge multiplied by their

individual velocity. Similarly, mass density p is a macroscopic average

over the microscopic mass carriers of their individual mass alone; mass

current density pv is an average over the mass carriers of their

individual mass multiplied by their individual velocity. Because pv is

dominated by ponderous mass carriers (neutral molecules, 'holes', and

ions) while J is dominated by mobile charge carriers (conduction and

free electrons), pv need not be obviously related to J. The electro-
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magnetic quasi-steady approximation (VeJ = 0) does not imply the

acoustic quasi-steady approximation (Vepv = VePoV = 0, where Po(r) is

the mean density stratification Po(r) >> p(r,t) - Po(r) = p' (r,t)) ;

moreover, a steady mass current density (_t[Pv] = _t[0o v] = Po_t v = 0)

does not imply a steady charge current density (_t J = 0).

APPENDIX B

For media in which E and o are non-trivial, isotropic, and uniform

equations (Ala), (Ale), (A2b), and (A2c) in comoving frame K' require

EV'e_t,E' + OV'eE' = _t, q' + Tq-lq ' = 0 (BI)

so

-t'/Zq -t'/_q
q'(r',t') = q'(r',0)e = EV'eE'(r',t') = £V'.E'(r'0)e (B2)

Provided _q > 0, both q' and V'.E' decay exponentially towards zero with

time constant Tq = _/O. (Note g, _, and O are regarded as purely real
for simplicity).

If £ and G are non-trivial, isotropic, and steady, but possibly

inhomogeneous, then in K', equations (Ald), (A2b), and (A2c) require

_t,E' + _q-iE' = £-IV'xH'. (B3)

Because _ (r')= g(r')/o(r') is also isotropic and steady the solution
q

of this first-order equation is

-t'/Tq
E'(r',t') = E'(r',0)e +

t' -(t' - _)/_q
£(r')-iS V'xH'(r',_) [e ]d_. (B4)

0

Suppose __ is positive definite-which excludes 'anti-ferroelectrics' or

'anti-conductors. _ Then E' forgets its initial condition at t'=0 after

a few Z_ and is effectively the exponentially weighted running average
q

of E-IV'xH' thereafter (BACKUS, 1982). Time integration of (Alc) after

using (B4) to eliminate E'(r',t'>0) yields

-t'/_q

B'(r',t') = B(r',0) - V'xE'(r',0)_q[l - e ] -

t' T -(T - _)/_q
V'x£(r')-l_ {S V'xH'(r',_) [e ]d_}dT. (B5)

0 0

If part of H' does not vary exponentially on time scales near Tq

when t' >> _q > 0, then only values of this part of E-IV'xH ' within a

few _q of t' contribute much to E' because the weight factor in (B4)

definftely decays exponentially. Slow or secular variations in E' and

H' on time scales long compared with _q may then be considered quasi-

steady: E' = _q_-IV'xH' or, by (A2c),
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VXH'(r',t') - J'(r',t') (B6)

which is Ampere's law. Physically, the Maxwell displacement current in

(Ald) is omitted in (B6) because fast changes in D', hence in q', E',

and thus B' by (B5), contribute negligibly to the slowly varying

portions of interest. A more rigorous derivation of (B6) follows.

We are concerned with the comoving frame K' but omit the prime

notation for now. Again suppose E and _ are non-trivial, isotropic, and

steady; suppose H(r,t) is also real. During the time interval from 0 to

t, H(r,_) is the sum of a constant Ho(r), a linear trend _o(r) [Z-to],

and a fluctuating portion h(r,z) = _k hk(r)sin(_kZ+_k):

H(r,T) = Ho(r) + Ho(r)IT -t o ] +

OO

E hk(r)sin(_)kT + _k ) .
k=l

(B7)

If _k were 2_k/t, then the sum would be the Fourier representation of

the zero mean detrended magnetic field strength during the interval. We

do not insist on this choice so as to allow flexibility in defining the

mean, the trend, and any fundamental period; indeedl a transform over

continuous _ may replace the discrete series. With (B7) the three

contributions to the integral on the right of (B4) are:

t - (t-_)/Tq -t/Tq

f VXHo(r)e dT = V×Ho(r)Tq[l-e
0

] (BSa)

t - (t-T)/_q -t/Tq

; VXHo(r) [_-to]e d_ = VXHo(r)_q(t - [to+_ q] [l-e ] )
0

(B8b)

t -(t-_)/Tq

J V×hk(r)sin(_kT + _k)e

0

dT

= Vxh k (r) Tq [l+(_k2Tq2 ] -I (sin (_)kt+_k) - _)kTqCOS (_)kt+_k)

-t/%q}
- [sin_k - (_kTqCOS#k]e

(B8c)

-t/Tq

= VXhk(r)_q[l+0_k2Tq2]-l[sin_k - _)kTqCOS_k] [I - e ]

where the last step would follow from (BSc) only if the _k were 2Kk/t.

With (B8a-c), multiplication of (B4) by _(r) yields

-t/Tq -t/_q

J(r,t) = J(r,0)e + VXHo(r)[l-e ]

+ VXHo(r) [t - [to+T q] [l-e -t/_q])

21



OO

+ _ Vxh k(r) [l+_k2Tq2]-i {sin(£Okt.¢k) - £0kTq(cos0_kt+#k)
k=l

-t/Tq)
- [sin_k - £0kTqCOS_k]e

When t >> _q, exp(-t/Tq) = 0 and

(B9)

J(r,t) = V×Ho(r) + V×Ho(r)[t - to - rq] +

OO

7_ Vxh k(r) [l+_)k2_q2]-l[sin(£0kt+#k) - (0k_qCOS(0)kt+_k
k=l

]. (Bl0a)

For t >> _q, one may choose to: Tq << It - tol. So choosing implies

[t - t o - _q] = [t - to]. If I_kIT q << 1 for all non-trivial _<hk, then

to order zero in the small quantity @kTq[l+@k2Tq2]-i = @k%q = 0,

J(r,t) = V×Ho(r) + VXHo(r) [t - to ] +

= VxH(r,t).

OO

Z Vxh k (r) sin (£Okt+_k)
k=l

(Bl0b)

Restoring the primes converts (Bl0b) into Ampere's law in the comoving

frame (B6). Ampere's law holds only for frequencies 10)kl small compared

with T_ -1, so it is strictly an ultra-low frequency approximation.

£0k were 2_k/t, then l_kIT q << 1 would imply _ << 2_t/k.

Ampere's law is thus broken by any non-trivial V×h k with% > 2_t/Zq.

If, however, the V×hk(r) are negligible for k > K, then the sum can 5e

truncated at k = K; then Ampere's law will be useful provided 0_KT q =

KTq/2_t << 1 (i.e., t >> K_q/2_). More generally, _k (or continuous £0)

can be very high; yet Ampere's law will hold if the _xh k are negligible

for lO)kl >> Tq -I Clearly the use of Ampere's law is tantamount to

truncating the sum over frequencies; higher frequencies require (Ald).

When the total electromagnetic field has finite energy in finite

volume, it has finite energy density at all but a finite number of

singular point sources with finite charge and finite magnetic moment.

Then we may insist that the macroscopic averaging procedure give hk2(r)

which approach zero as IfDkl approaches infinity. Unfortunately, it is

not clear that the cutoff frequency above which the h k are negligible

will be small compared with _q. On Earth's surface, high-frequency
electromagnetic oscillations comprising the solar and geothermal fluxes

break Ampere's law, but have far less energy density than the main

geomagnetic field; yet within Earth's core, the electromagnetic energy

density associated with high-frequency inter-molecular collisions (hence

hydrostatic pressure) vastly exceeds that of the main field.

Nevertheless, when £ and a (and _) are steady, the temporal linearity of

the Maxwell equations in the comoving frame ensures that different

frequencies are linearly independent. Then it is useful geomagnetically

to filter out high-frequency electromagnetic oscillations by truncating

the sum in (Bl0b). This is accomplished experimentally either by using

low-pass magnetometers or by averaging the results in time.
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Because Ampere's law holds to order zero in the relaxation time Tq,
it is tempting to think of it as the limit as _ and thus c -2 approach

zero; then (A3f) would approach zero. Although the quasi-steady

approximation (A3d) and (A3e) follows from treating c -2 and e (but not

_) as if they were zero, it does not require E to be treated as if it

were zero in (Ala) or (A2b) . Use of Ampere's law merely requires

l_tDl/IJl = I_L(£E)I/I_EI -I_V._t(£E)I /I_EI -_q/_ << i. Galilean

invariance, Ohm's law, and the omission of qv, hence the quasi-steady

approximation, further require terms of order U2/c 2 to be negligible.

In the special case when _ is identically zero in some region, then

J is zero, q is constant, and Zq is infinite. Then t cannot be greater

than _q and Ampere's law holds only if _t D = 0. Yet Ampere's law can
still be used if displacement current sources outside the region, which

give rise to solenoidal _t D = V×H within the region, contribute

negligibly to the portion of H of interest. Then this portion of H is

irrotational and originates outside the region of interest.

Curiously, one rationale for the omission of displacement currents

(I_tDI/IVXHI - (_/Tc) 2 = U2/c 2 << i) typically fails in regions where H

is irrotational (where _ is homogeneous and B is scaloidal). Moreover,

this rationale is often used to justify the use of Ampere's law in

conductors, where it is not sufficient. Fortunately, conditions under

which U2/c 2 << 1 but T = Tq appear to be but rarely encountered in solid

Earth geomagnetism; however, they appear to be common where fluctuations

in the conductivity and dielectric properties of sub-relativistic

plasmas are of considerable interest. Such non-linear media are

considered briefly in Appendix C-as are steady, anisotropic media.

APPENDIX C

Real media are at best statistically steady and statistically

isotropic, so it seems worth considering the case of inhomogeneous,

anisotropic, and unsteady media. This includes non-linear media in

which the dependence of _, _, and _ on electromagnetic fields is

implicit in the dependence of their elements on position r and time t.

The Ampere,Maxwell law (Ald) and the anisotropic, possibly non-linear,

constitutive relations in the comoving frame require

£,_t E + ((_ + _te),E = V×H = Vx[_-I,B] (CI)
---_ = _- =

where the prime notation is again supressed and only media in which

possibly non-linear second-rank operators _-l, q-1 and _-l exist are

considered. Define the tensor relaxation time operator __q(r,t) via

_[_-l.(a + _t C) ]at -= t__q-I (c2)

where the integrand is the second-rank result of matrix multiplication.

With (C2) and (A2c), the solution of the first-order equation (Cl is

written

-t_q -I
E(r,t) = (e }.E(r,0) +

t -(t - _)_ -i
kq

I {e
0

},{£(r,T)-l,Vx[_(r,_)-l,B(r,1) ]}dr C3)
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where exp(-t_q -I) is itself a matrix operator that varies with (r,t).

If it is possible to represent the elements of _q-i L-l, d-1 and

B in terms of their mean values, trends, and fluctuating portions during

the interval from 0 to t, then one may proceed by analogy with Appendix

B. Substitution of these expansions into (C3) reveals that the curly

bracketed term on the far right of (C3)

U(r,T) m (e(r,T)-l.Vx[_(r,_)-l.B(r,T)]] (C4)

will include terms proportional to: (a) (_-to)n for n = 0, i, 2, or 3;

(b) the products of single oscillations and (_-to)m with m = 0, I, or 2;

(c) the products of two oscillations and (_-to)i with i 0 or i; and

(d) the products of three oscillations. The interactions of _, _, and B

generally will contribute mean, secular, and oscillatory terms to the

expansion for U. For example, under resonant conditions in which the

two oscillations in the i = 0 terms of case (c) have the same frequency

and phase, there generally will be a non-zero contribution to the mean

value of U. Therefore the mean value of U will generally not be the

same as obtained by combining the mean values of _, _, and B according

to (C4). This can be the case even if _-i is steady, provided _ and B

are not. And the exponential Operator in (C3) must contain the trend

and oscillations in _q as well as its mean value.

It therefore seems extremely unlikely that Ampere's law will hold

for unsteady media; however, the problem does not arise for steady media

even if they are anisotropic. And from the macroscopic perspective,

unsteady media often appear to be near a statistically steady state. If

this is the case, then the macroscopic constitutive relations (A2) can

be considered definitions of the statistically steady, macroscopic

properties of the medium.

Of particular interest in solid-Earth geomagnetism are cases in

which _ and _ in (A2b) and (A2c) are taken to be (statistically) steady,

albeit possible anisotropic and inhomogeneous. To the extent that _ and

g are steady, _q-i _ _-l.q is steady. If H is used instead of _.B,-then

one can proceed by analogy with Appendix B, albeit in matrix notation,

without placing restrictions on _. Indeed, with possibly complex c(r)

and _(r), and with

i_kT

H(r,T) = Ho(r) + Ho(r) [T - t o ] + Z hk(r)e
k

equation (C3) becomes

-tT_q -I
E(r,t) = [e -

-t__q-I

],E(r,0) + [I -e - ]._=-I.vxH o

-tTq -I

+ [[t - to]I - Z_q + [e = ].[toX - __q]].(_-IvxH o

-t__q-I iC0kt

+ [I - e - ].[__q-i + i0)ki]0£-l.vx[ _ hk e ]
= - k

(C5)

where _ is the identity matrix.

(C5) simplifies to
If, for large t, exp(-t_q -I) = Q, then
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E(r,t) = o-loV×H o + ([t - to]I - _q)oa-IV×H o

i_kt

+ [__q-i + i(_ki]-ioE-l,_ VXhk e
- = = k

(C6)

If the frequencies of interest are so !Qw that [_ -i + i_)_i]-I = _, and
• -- --_ , .--- --_

if the elements of posslbly complex _q 1 are negllglble compared wlth [t

- to]I, then (C6) reduces to Ampere's law. In such cases, Ampere's law

is a justifiable ultra-low frequency approximation to the Ampere-Maxwell

law for inhomogeneous, anisotropic media with unsteady magnetic

permeability.

The possibility of unsteady _ yields a flexibility which may be

useful when dealing with time-dependent crustal rock magnetization

-I_M(r,t), where M(r,t) _ [_o (r,t) - _].H(r,t). Note that _i(r,t) =

_i_i(r,t) can be a sum of matricies. One such portion could be the

product of a matrix @(r,t) and the diagonal matrix with elements

inversely proportional to H(r,t). This would yield a hard magnetization

which is independent of the 'inducing' H, but, depending on the form of

_, might depend on other macroscopic parameters such as temperature

T(r,t) . Other portions of _(r,t) can be constructed to mimic other

sorts of highly non-linear behavior, including thermo-viscous remanent

magnetization.
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