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Abstract

The popular 3-cornered hat method used for evaluating the noise contributions of individual fre-

quency standards is revisited. This method is used in several cases, but sometimes the results are not

consistent because one or more estimated clock variances turn out to be negative. Different causes of

this unacceptable result have been conjectured: among them one regards the hypothesis of uncorrelated

clocks, essential in this method. Since recently realistic cases of correlation between clocks, mainly due

to the environmental conditions, have been observed, this paper proposes an entird.y revisited version of

the 3-cornered hat method which permits to evaluate the individual variances and also the possible co-

variances between clocks, by relaxing the hypothesis of uncorrelafion. The uncertainty and the lack of

contemporaneity of the measurement series are assumed to be negligible. The lack of the uncorrelation

hypothesis calls for a more general mathematical model leading to an underdetermined linear system.

The estimates of the (co)variances of the measurement series as well as those of the individual clocks"

are introduced by means of the scalar product of the related time series and arranged in the respective

covarianee matrices S and R. Since covariance matrix is positive definite by definition, the problem

consists in estimating the unknown R, subject to the constraint of positive definiteness, from the known

S. Unfortunately, this constraint is not sufficient to estimate e_ Therefore a suitable optimization crite-

rion is proposed, which assures the positive definiteness of R and, at the same time, minimizes the global

correlation among clocks. Examples of frequeney instability measurements processed by the "classical" 3-

cornered hat method and the here-revisited method are presented showing that the solutions are identical

only when the uncorrelation hypothesis doesn't violate the positive definiteness of tL
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1 INTRODUCTION

The evaluation of fl'equency standards is performed by comparing two or more of them and mea-

suring dill>rences in their signals. Results depend on the simultaneous contributions of all the

standards and it is often desirable to estimate the noise contributions of the single units. In the

past years, this problem has been considered in several papers, which introduced the popular "3-

cornered hat" method [1], successively extended to N clocks [2,3,4] and further investigated in

[5,6]. In all the above papers, a basic hypothesis consists in considering all the clocks uncorrelated.

In the classical a-cornered hat method, three clocks are considered, three series of time differences

between all the possible pairs are measured, and their variances are estimated. Three linear equa-

tions are then written, which tie the three unknown variances of the single clocks to the known

variances of the time differences. In this way, a uniquely solvable system is obtained [1]. If more

than three clocks are compared, such a system becomes overdetermined because the number of

possible pairs exceeds the number of clocks. In this case, it has been suggested either to deal with

different triads of clocks and then combine the results in a (weighted) average [1], or to utilize the

N clocks together with a least squares technique [2,3].

Independently of the number of clocks, a more crucial problem arises: the estimated clock variances

can turn out to be negative. In such a case it has been suggested to use the absolute value [2] or

to consider vanishing a variance that should turn negative. However these tricks are not justified

by any theoretical consideration.

Several questions related to the statistical processing of these measurements and the causes of

negative estimated variances are still open:

1. Uncertainty in the measured time differences.

If the noise of the measuring device is not negligible, it adds a term in the variance of the

measured time differences and the linear system is not longer deterministically solvable [4,5].

To the authors' knowledge, this uncertainty is negligible in most cases, particularly in high

resolution measurements. The case can be different if the clocks are compared at a distance,

through a synchronization link, but the synchronization noise, usually corresponding to a

white phase noise, can often be suitably modeled and filtered.

2. Lack of contemporaneity of measurements.

In this case, the contribution of each clock cannot be considered the same in each difference

measurement [5,6]. However, the lack of contemporaneity of the different measurements is

negligible when the integration times over which the stability is to be estimated are far longer

(days) than the shift in time of the beginning of the different measurements (seconds).

3. Low number of measured samples.

In this case, a statistically significant characterization of the involved noises is not ensured

[5,10]. The low number of statistical samples remains an open question because it gives a

low confidence on the estimates and particular care is to be paid.

4. Correlation between clocks.

In recent years cases of correlation between clocks, mainly due to the environmental condi-

tions, have been detected [8-18]. Different methods have been used to evidence correlation

between clocks and the discussion is still lively also in understanding which is the clock com-

ponent responsible for the effect but, in each case, an appreciable presence of correlation

between clock data has been pointed out.
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To the authors' knowledge, cases of negative estimated variances appear even when there are several

measured samples and causes 1) and 2) above are certainly to be excluded. Usually, the problem

appears over long integration times (months) where correlated noise can become significant but, in

the same time, not easy to be modeled and previously depurated [18].

This work lifts the assumption of uncorrelation, all in considering negligible the causes indicated

in points 1 and 2 above, and proposes a new method which formulates an underdetermined but

consistent system of equations involving variances and covariances (jointly denoted as (co)variances)

between individual clocks. In order to estimate clock (co)variances, the (co)variances of the measure

series are also introduced and arranged in positive definite covariance matrices, implicitly assuring

the positiveness of the variances. With 3 clocks the uncorrelation hypothesis leads to a uniquely

solvable linear system, while the lack of this hypothesis leads to an underdetermined linear system

of three equations in six unknowns. A method to solve this underdetermined system, subject to

the constraint of positive definiteness of the clock covariance matrix, is proposed.

2 STATEMENT OF THE PROBLEM

The statistical tool useful to characterize stability is the variance estimated by means of the available

measured data. Let us denote x i the signal of the i-th clock and i .xk(k = 1,2,...,M)its samples
at the time instants tl, t2, ..., tM. The M samples can be represented as the vector -2i =

[x_ x_ ... x_4] r , where superscript T denotes transposition. The estimate of the expected value of
x i is

M
i

_2i= g[x i] = (I/M) _ x k (1)
k--:l

which is arranged into a vector of M coincident elements x i = [2ixi...._i]T. With these notations

the estimated (co)variances rij of x i and xJ are:

rij = E[(x i - 2i)(x j - _J)] = [1/(M - 1)](x i - "_i)T(xJ -- _J) i,j = l, 2, 3 (2)

When i = j, rij represents the variance of the i-th signal, otherwise, it represents the covariance

between the i-th and j-th signals.

In the case of frequency standards, measured data are often filtered, tbr instance, introducing the

Allan-variance. In the following, the general case of a signal x i will be dealt with, whatever may

have been its previous filtering, in order to obtain a procedure applicable in all cases.

In clock stability characterization, the physical quantities involved in x i are time deviations of the

i-th clock. Since they are not directly measurable, the clock (co)variances rij play the role of the

unknowns to be evaluated. The available measured quantities are differences between the signals

of pairs of clocks: yij = x i _ xj" When one of the three clocks, for instance clock #3, is chosen

as the reference and it is compared at M different instants with clocks #1 and #2, two distinct

measure vectors y13 = x 1 _ x 3 and y23 = x 2 _ x 3 are obtained.

The novelty here is that not only the variances of the signals y13 and y23 are estimated but also

their covariance. This covariance was already suggested in [4_5]; however, full advantage of it could
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not be taken in that work, because of the uncorrelation hypothesis. Tile estimates of the above

measure (co)variances are:

sij = [1/(M - 1)][(y ia - 5/a)Z(y ja -- y/a)] i,j = 1, 2 (a)

where the index 3 of the reference clock has been dropped in aid Sine sij (j = 1, 2) and rid (i =

1, 2, 3) represent estimates of variances and they are sums of squares, they are necessarily positive.

On the contrary, sia and rij(i = 1, 2, 3)0 may be either positive o1" negative, being estimates of
covariances.

In case of noiseless measurements, when the covariance s12 is taken into account, the other possible

difference measure vector yI2 = x I _ x 2 and the related (co)variances don't add ally information

because they all can be obtained as linear combinations of s11, s22 and s12. In the 3-cornered hat

method, the vector y_2 and the related variance is used instead of the covariance y12, but, in this

context, the use of s12 is more appropriate.

The 2x2 covariance matrix S and the 3x3 covariance matrix R are defined a.s follows:

[
Substituting the definition yia = x i - x 3

between S and R:

11 812 ] (4)S12 822

q

rll Y12 r13 /

Jr12 r22 r23

r13 r23 r33

(5)

(i = 1, 21) in (3) leads to the following relationship

 121=[ r,,+r33 r,3 ,2+T33r13r231812 -q22 1"12 -[- r33 -- r13 -- 7'23 T22 -I- T33 -- 2r23 "
(6)

From measure vectors y13 and y23, three independent estimated (co)variances, s11, s22 and s12 are

calculated and, according to (6), they tie the six unknowns rll, r12, rla, r22, r2a and ra3 in three

independent equations.

Under the hypothesis of uncorrelated clocks, (6) simplifies to:

i 11 12]=[ 11+T33T33] ,7,812 $22 r33 r22 -_ 7"33

By inspection of (7), it can be seen that the uncorrelation hypothesis is acceptable only if matrix S

verifies the following conditions ensuring the positiveness of the estimated variances r11, r22 and raa.

sl2 > 0

812 < 811

$12 < 822

(s)
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Ill such a case, the solution of (7), formally different but equivalent to that of the classical 3-cornered

hat method [1], is:

F33 z N12

;ell _- 811 -- S12

r22 = $22 -- 812

(9)

Moreover, (7) reveals that if the third (reference) clock is "quasi-ideal" (r33 << rll and 7"33 <<

r22, then s12 << Sll and s12 << s22 and S, as well as R, can be considered diagonal. So, if S

is ahnost diagonal, the reference clock is of high quality and by changing reference clock we can

get an idea of which of the clock is less noisy because it will result ill a matrix S with minimum

off-diagonal terms. On the contrary, when the values of Sll. s22 and ._12 are clos, tile variance r33

is dominant with respect to the other variances of R.

Conditions (8) do not assure the uncorrelation of all the clocks, because many different matrices R
can be associated to the same matrix s and only one of them is diagonal. In any case, (8) suggest

that the uncorrelation assumption is reasonable. If one of (8) is violated, the classical 3-cornered hat

method cannot be applied and the complete (non-diagonal) matrix R n/ust be taken into account.

As stated above, the matricial equation (6) is underdetermined. Some more reasonable requests

are to be added in such a way as to fix the extra parameters and obtain ,_.stima.tes for the unknown

elelnents of R. Supposing to know somehow the three (co)wtriances rl3, r23 and r33 involving the

reference clock, the other (co)variances rlt, r22 and r12 Call be uniquely calculated. In fact, from

(6), the following expressions are obtained:

rll = 811 -- r33+2r13

r12 = 812 -- T33 + r13 + r23

F22 = 822 -- F33-1- _F23

(10)

In order to fix the values of the free paranleters r13 , r23 and 1"33atl appropriate criterion ought to

be formulated but there is an important constraint which bounds the solution domain and which

guarantees a significant result: the estimated covariancc matriz R m_lst be positive definite.

hi fact, by means of their definitions both S and R as any covariance matrix are positive definite.

Such a property does not depend on the number M of samples used in the estimation of the

covariance matrix and it is shared by all the matrices defined as the product of a matrix times its

transpose. For this reason the treatment here exposed is independent of the particular statistical

tool used to estimate stability, it holds either for the variance as in (2) or for a different process as

the commonly used two-sample variance. '['he positive definiteness of the covariance matrix implies,

as a particular case, the positiveness of its diagonal elemenls, i.e. the variances.

The scalar conditions ensuring positive definite matrices regard the positiveness of the leading

minors but, since matrices R and S are linked by (6), the positive definiteness of the unknown

matrix R is ensured by a unique scalar condition according to the following property:

Property 1: The 3x3 matrix R, with arbitrary r13 , r23, r33 and with rll , r'22, r12 obtained from
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thepositivedefinite2x2matrixS accordingto (10),ispositivedefiniteif andonlyif thedeterminant
of thematrix R, denoted] tt ], is positive,i.e.:

[ R [ -._- Tllr22r33 + _r12r23r13 - r_3T22 - I,_2r33 - r23rll > 0 (11)

The proof is reported in [19]. It is also interesting to note [19] that the condition (1 l) would allow

r12 = r13 = r23 = 0 only if the same conditions (8) above are satisfied.

The positive definiteness of matrix R can be geometrically interpreted. To begin with, let's regard

r33 as a known parameter; the necessary and sufficient condition (11) can be rearranged as:

(12)

where the (co)variances ru, r22, r12 have been substituted by (10). This expression describes the

area inside an ellipse in the plane r13, r23. The center is in the point of coordinates (r33, r33).

The direction of the principal axes depends only on S and does not depend on r33, because the

coefficients of the quadratic terms are independent of r33. The positive definiteness of R is then

fulfilled when the choice of the parameters (r13, r23 corresponds to a point inside this ellipse (for

a given value of ra3). Fig. 1 illustrates several ellipses depending on different values of r33 for a

given matrix S. The geometrical dimensions of the ellipse grow and the position departs from the

origin for increasing values of r33.

3 CHOICE OF FREE (CO)VARIANCES

In the previous section it was shown that the choice of the free parameters r13, r23 and r33 must

always fulfil the positive definiteness of R. Setting H(rl3, r23, r33) = I R 1, such a condition

characterizes the domain of acceptable solutions in the space of free (co)variances r13, r23 and r33

(see (12)):

H(r13, r23, r33)= r331S I- s22(rla - g33)2-Jv2812(r13 - r33)(r23--r33) -- 811(T23--r33) 2 > 0 (13)

However, this condition is not sufficient to determine a unique solution for R and further require-

ments are therefore necessary.

The leading idea in defining an optimum choice for the free (co)variances is the hypothesis that

no information is available about the possible covariances between different clocks, but they are

supposed to be low. This is the same hypothesis of the "classical" method, but instead of forcing

the solution of completely uncorrelated clocks, the solution of minimum correlation, compatible

with the positive definiteness of R, is sought. Therefore the here-proposed solution should coincide

with the "classical" one (9), when the positive definiteness of tt (11) is safeguarded.

To this aim, the quadratic mean covariance ¢(r22 -1-r12a+ r23)/3 is defined as a measure of the global

covariance among clocks. According to (10), it can be expressed as a function of r13, r23 and r33:

[G(r,3, r23, r33)] 2 = (r_2 + r_3 + r23)/3 (14)
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[2(r13 -- /'33)2 -1L2(/'13 -- 1"33) 2 + 21'13 -- r33{r23 -- £33) + 2(1'23 -- 1"33) 2

+ 2(2r33 + s12)(r13 -/'33) -[- 2(2r33 4- ._J2)(r23 - 7"33)+ 2r]3

+ (s12 + r33)2]/3

From experience, it can be assumed that tile global covariance can be different from zero but, oll

the other hand, not too high. In fact a full correlation between two clocks would imply that their

signals are coincident, apart froln a multiplicative factor, and this fact is to be excluded.

To combine the request of positive definiteness of the estimated matrix R (13) and the minimization

of the global covariance (14), let us introduce the objective function F(r13, r23, r33):

S I[G(q3, ,",3, ,:,3)]=
H(Q3, r23, r33) (15)

where the fixed factor 3v/] S ] has been introduced for the sake of adimensionality.

In the solution domain F(r13, r23, ra3) represents a sort of squared global correlation and it is

always positive or zero; it is zero when G(rla, r23, r33) is zero, in the c:_se of full uncorrelation. Tile

minimization of F(r13, r2a, r33) leads to a solution of minimun_ global correlation safeguarding the

positive definiteness of the resulting matrix R. The quani:ity It(ria, r2a, r33), in the denominator

of the objective function (15), prevents the choice of the free (co)variances from falling on tile

boundary of the feasible domain defined by (la). Such occurrence would yield a matrix R only

positive semidefinite with a disequilibrium in the estimated covariance terms. Since no information

is supposed to be available about the possible covariance b(_tween clocks, tile solution with estimated

covariance terms of similar amount is here preferred.

Such features have led to the choice of this objective function among the several ones investigated
at the early stages of this work.

One and only one global minimum of F(r13 , /'23, r33) exists insMe the solution domain, while

F(r13, r23, r33) goes to infinity on its boundary. In fact, three-dimen:ional surfaces F(rl3, r23, r33) =

f (with F a positive constant) are associated to decreasing values of F going inward from the surface

tI(rl3, r23, r3a) = 0 (corresponding to f = oc, until they collapse to a single point corresponding

to the global minimum. By the study of these surfaces [19], the minimization of F(rm3, r23, r33)
rain nfin and rain ofcan be performed in a analytical way supplying, as a result, the coordinates r13 , r23 r33

the minimum. The provided solution coincides with the "classical" one (see (9)) of uncorrelated
clocks, when conditions (8) are verified.

As a final remark it should be added that this definition of the objective function f(r13, r23, r33)

can be useful when the clocks are to be considered of the same quality level and when there is

no information about their possible correlation. Otherwise F(rl3, r23, r33) could be defined by

introducing a weighting factor for each covariance term in (14), if some reasons for two clocks to be

less correlated than the others were known. The less correlated pair can have a larger weight factor

multiplying its covariance term in (14), so that the search of the minimum will attribute a smaller

correlation coefficient to that pair of clocks. Similarly, if the clock variances are expected to be

different, (for instance, when clocks of different types are compared ), also weighs for the variances

vii can be introduced in the minimandum function (15).
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4 EXPERIMENTAL RESULTS

In order to illustrate the effective capabilities of the method here-proposed, the data of three

commercial cesium beam frequency standards maintained at IEN, Torino, Italy during the whole

year 1987 are considered. The three clocks, designated by the serial numbers 12 303, 14 1%0, 14

893, are considered as the first, second and third clock hereafter. The time difference of the clock

signals are measured once a day and arranged in vectors y13 and y23. The measured samples are

processed according to the Allan variance with overlapping samples for the integration times 1, 2,
5, 10, 30, 60, 100 days.

For each integration time the matrix S is calculated (second column of Table 1). The corresponding

matrix R, evaluated according to the here-revisited method, is reported in the third column and

the (necessarily diagonal) matrix R calculated according to tim classical 3-cornered hat method, is
reported in the last column.

For short integration times (1, 2, 5, and 10 days) the results supplied by both nlethods coincide.

In fact the matrix S doesn't violate conditions (8) allowing the uncorrelated solution and the

minimization of the proposed function leads to the minimum allowed global correlation.

For longer integration times, the uncorrelated solution is not allowed and the matrix R estimated by
tho new method is not yet diagonal but gives information also about the covariance between clocks.

The application of the classical method to these cases results in one negative estimated variance.

By definition, the proposed minimandum function (15) leads to a solution with covariance terms of

similar amount because no weight are inserted in (15). This is the simplest hypothesis when there
is im information about the different clocks and their noises.

5 CONCLUSIONS

This paper reports a revisited version of the popular 3-cornered hat method suitable for estimating

the individual clock variances and covariances, by lifting the too restrictive hypothesis of uncor-

related clocks. This formulation requires the introduction of covariances of measured data and of

clocks arranged in positive definite covariance matrices and leads to a underdetermined system of

equation. The underdeterlniness has been resolved by considering a suitable objective function,

whose minimization supplies an unique solution. Examples of the application of the proposed

method to data of clocks maintained at IEN, Torino, Italy are presented: the obtained results show

that, in this case, for long integration times the uncorrelation hypothesis doesn't hold and the revis-

ited 3-cornered hat method provides a consistent solution of minimum allowed global correlation.
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r23
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=r13
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Fig. 1: Elliptical regions yielding the positive definiteness of R on the plane Ip_.rza) for a given
matrix S (sl_ = 10, s2_ = 3, s_2 = -5) and different values of/'_ 3 (r33 = 2,3,4)
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[days]

measured difference clock covariance matrix by the
covariance matrix here-revisited method

rll F12 rl3

I Sit s12 ] r12 r22 r:3
kS12 s_j

/'13 r23 r33

clock variances by the
classical method

Ftl

i r=

F33

-284 0 0 -
-412 128-

0 33 0
128 161

0 0 128

I284 33

L 128

2

-146 0 0 -

247 101- 0 5 0
101 106 0 0 101

- 146

I 5

101

5

66.4 0 0 _
- I

115 48.6- 0 4.7 0 I
48.6 53.3

0 0 48.6

-66.4

4.7

48.6

10
-50.1 0 0

_ 80 _ 6 30.5- i

0 25.5 0
30.5 56

0 0 30.5 i

50.1

25.5

30.5

30

r 55.21 - 14.05 17.78-

39.5 -28.3- - 14.05 121.8 16.32
-28.3 109 17.78 16.32 19.85

"67.8

137.3

-28.3J

60

117.0 -43.23 60.64-

55.2 -99.1- -43.23 260.9 54.67
-99.1 211 . 60.64 54.67 59.44

-154.3

310.1

-99.1

134.2 -44.39 61.46 -174.3

72.3 - 102 -44.39 234.3 57.15 283
100 - 102 181 61.46 57.15 60.99._ -102

Table 1: Estimated variances and covariances for different integration times of three clocks maintained
at IEN, Torino,Italy during 1987. The matrix elements are in unit of l0 2a.
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