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Abstract

The current study explores the use of an automated direct/iterative

design method for the reduction of drag for transport configurations, in-

cluding configurations with engine nacelles. The method requires the user

to choose a proper target-pressure distribution and then develops a corre-

sponding airfoil section. The method can be applied to two-dimensional

airfoil sections or to three-dimensional wings. The three cases that are

presented show successful application of the method for reducing drag from

various sources. The first two cases demonstrate the use of the method

to reduce induced drag by designing to an elliptic span-load distribution

and to reduce wave drag by decreasing the shock strength for a given lift.

In the second case, a body-mounted nacelle is added and the method is

successfully used to eliminate increases in wing drag associated with the

nacelle addition by designing to an arbitrary, pressure distribution that has

an elliptic span-load distribution with reduced shock strength. The third

case does not show a large drag decrease, but does demonstrate the elimi-

nation of nacelle influence on the original pressure distribution as a result

of the redesigning of a wing in combination with a given underwing nacelle

to clean-wing, target-pressure distributions. These cases illustrate several

possible uses of the method for reducing different types of drag. The mag-

nitude of the obtainable drag reduction varies with the constraints of the

problem and the configuration to be modified.

Introduction

Drag reduction is an important consideration in
any aircraft design. While drag can never be elim-

inated, its minimization will result in reductions in

fuel consumption for transport aircraft. Drag reduc-

tion can also extend the range or reduce the time to
destination for both commercial and military vehi-

cles. When drag is reduced, the engine power necdcd

to overcome it is reduced; therefore, smaller and qui-

eter engines can be used. Smaller engines mean less

weight and a further reduction in drag.

Historically, reducing the drag of a given vehicle

has meant many hours of wind-tunnel testing, in-
volving modifications to the configuration through a

cut-and-try approach. With the advent of compu-

tational fluid dynamics (CFD), the cut-and-try ap-

proach has been updated to take advantage of analyt-
ical techniques. Currently, one of the more promising

methods of drag reduction is automated design. A

considerable amount of development work has been
done in this area. There is a wide spectrum of unique

design codes available. These codes can also be used

for functions besides drag reduction, such as control-

ling pitching moment. While design methods exist

for a variety of aircraft components and flow condi-

tions, this paper focuses on drag reduction in tran-
sonic wing design, including design in the presence of
nacelles.

Automated design methods can be used to re-

duce specific types of drag, such as wave drag, vis-

cous drag, induced drag, and interference drag. The
following discussion identifies four major classifica-

tions of design methods and addresses their advan-

tages and disadvantages in the area of drag reduction.

These categories are optimization mcthods, fictitious

gas methods, inverse methods, and direct/iterative
methods. The first two types of methods can be used

to address drag directly, while the second two types

address drag through the modification of a pres-
sure distribution. One disadvantage common to all

these methods is that they typically produce single-

point designs, which have favorable characteristics at

the design flow conditions but unknown performance
under other conditions.

Optimization methods (Hicks, Murman, and

Vanderplaats 1974; Kennelly 1983) directly address
the reduction of drag for an airfoil or wing. These

methods identify drag as an objective function and

then systematically perturb the design until the drag

function reaches a minimum. The drag function
that is minimized can be total drag or some specific

drag component. Optimization methods can be con-
strained to allow certain characteristics to be main-

tained while performing a design. Two disadvantages
of these methods are that they can require an order

of magnitude more computer time for their search



thanother typesof methodsasdiscussedby Slooff
(Anon.1990)andcansometimesonlyreachalocal
minimum.

Fictitiousgasmethodshavebeendevelopedto
directlyeliminatewavedrag(Sobieczkyct al.1979).
By usingthesemethods,thedesignercaneliminate
shocksfromtheflowaroundanairfoil. Thismethod
is calledfictitiousgasbecausethe densityof the
gasin the supersonicregionis alteredto allowthe
potential-flowequationsto remainelliptic. Thesu-
personicregionis thenrecomputedfromthe poten-
tials on the sonicsurface.A newstreamlinethat
intersectsthe old surfaceis usedasthe newairfoil
shape.By definition,thesemethodscannotgenerate
designswithshocks,whichareoftenunavoidableand
sometimesdesirable(if weak)at transonicconditions
asdiscussedby Whitcomb(Anon.1980).

Inversemethods(VolpeandMelnik 1985;Giles
and Drela 1986) and direct/itcrative methods

whendiscussingdesignfor reduceddrag. To be
reliable,anycalculatedimprovementsin the drag
coefficientof a configurationshouldbe largerthan
the errorbandfor that particularmethodof drag
computationasdiscussedby Henne(Anon.1990).

The current study exploresthe use of the
Direct/IterativeSurfaceCurvature(DISC) design
methodfor the reductionof dragfor transportcon-
figurations. Sincethe methodis a dircct/iterative
method,specifictypesof dragcanbe reducedby
modifyingpressuredistributions. The variousex-
amplesshowndemonstratea reductionof induced
drag by usingelliptical spanloading,a reduction
of wavedragby modifyingtarget-pressuredistribu-
tions for decreasedshockstrength,anda reduction
of the interferencedragassociatedwith nacellesby
recontouringthewingin thepresenceof thenacelle.

Symbols

AR

CL

Cp
c

Cave

cl

DISC

(Campbell and Smith 1987) are two separate classes aspect ratio

of methods, but they appear similar to the user. Nei- wing-body lift coefficient
ther method can address drag directly, but both can
reduce drag with a low-drag target-pressure distri- pressure coefficient

bution. Both methods iteratively modify a start- local chord

ing geometry until the target-pressure distribution average chord
is reached. The techniques for modifying the air-

foil shape distinguish the two types of methods. Di- section lift coefficient

rect/iterative methods directly solve the flow about Direct/Iterative Surface Curvature

a given geometry and use an algorithm to modify design method
airfoils based on the difference between the current

and target pressures. This process is iterated until e Oswald's efficiency factor

the differences become small. Inverse methods solve M Mach number

the flow in reverse by using specified local flow veloc-
TTE twist-to-elliptic

ities as boundary conditions and solving for the ge-

ometry that meets the flow tangency requirements. WB wing-body

Boundary-layer thickness can be accounted for by WBN wing-body-nacelle
subtracting it from the final design shape. Typically
a direct/iterative method is easier to develop, be- WBPPW _Ving-Body-Pod-Pylon-Wingiet

cause its algorithm can bc installed in any existing code

flow solver, x streamwise coordinate

All methods that require a target-pressure distri- y vertical coordinate
bution can address specific types of drag by the de-
sign of that distribution. For example, reducing the 77 fractional spanwise location

(see fig. i)
slope of an adverse pressure gradient can delay sep-

aration and reduce viscous drag. A disadvantage of Description of Design Method
working with target pressures is that, while the sur-
face pressures may be free of shocks as specified, a Design Algorithm

strong shock may develop in the flow field just above The DISC method of Campbell and Smith is used
the designed surface (Volpc 1990). Also, constraints in this study. The basis of the method is described in
are needed to ensure that the designs produced are

physically possible (e.g., no crossed trailing edges). Campbell and Smith (1987), and applications and ex-
tensions are discussed in Smith and Campbell (1991).

Poor correlation between calculated drag values This automated design method computes modifica-

and experimentally determined values is a key is'sue tions to an airfoil or wing by use of an algorithm

h



that relates changes in local velocity to changes in

surface curvature. A target-pressure distribution is

required as input. The method is coupled with a
suitable aerodynamic code that is used to analyze

a geometry at the design flow conditions to obtain

a pressure distribution. This pressure distribution is

compared with the target-pressure distribution in the

design module, and the geometry is modified based
on the differences. Each new geometry is analyzed

in the aerodynamic code to obtain an updated set

of pressures. This process is continued for a preset

number of cycles. The choice of aerodynamic analy-
sis code can allow the method to include viscous and
aeroelastic effects.

As part of this study, the DISC method was ex-

tended to allow design to a target span-load distri-

bution by modifying and smoothing the twist distri-

bution of a wing. This algorithm is separate from
the surface curvature modification, although the two

can be done concurrently. The target span load is

obtained as follows. Based on an analysis of the con-

figuration, the incidence angle of each section is ad-

justed to drive it toward the target cl for that sec-
tion. After each section is adjusted, the twist dis-

tribution is smoothed along the span of the wing to

eliminate abrupt changes in twist from one station to

the next. The configuration is then reanalyzed, and

new adjustments are made. This pattern of analysis,

adjustment, and smoothing continues for the preset
number of cycles.

Aerodynamic Analysis

For this study, the Wing-Body-Pod-Pylon-

Winglet (WBPPW) transonic small-disturbance code

(Boppe 1987) was used in combination with the
design method. It has the capability of model-

ing both two-dimensional airfoils and complex three-

dimensional aircraft geometries at transonic speeds
and has been applied to a wide range of config-
urations. The code solves a version of the tran-

sonic small-disturbance equation that has been ex-

tended to yield improved results for configurations

with swept shocks. Flow solutions for a wing-body

case are acquired through calculations on two rect-

angular grid systems: a global crude grid and an

embedded fine grid on the wing. Since the wing
boundary conditions are applied on a plane, only the

boundary conditions need to be updated after a de-

sign cycle; it is not necessary to modify the grid. A

two-dimensional strip boundary-layer approximation

based on the method of Bradshaw and Ferriss (1971)
is used to simulate viscous effects.

Since the focus of this study is drag reduction,

a brief discussion on the accuracy of the methods

used to compute the drag for the test cases fol-

lows. Waggoner (1980) noted that for an advanced

transport configuration with a supercritical wing, a

wing-body version of the WBPPW code was not
able to predict absolute drag levels very accurately,

but could compute drag increments within about

5 counts of experimental values for conditions with

weak shocks. Experience has indicated that this

correlation deteriorates for conditions with stronger

shocks, primarily because of the pressure integration

approach used in the code. The drag coefficients used
in this study were therefore computed by combining

an estimate of the wave drag from a method based on

the approach of Lock (1985) with the induced drag
value calculated in the WBPPW code. Lock esti-

mates his method has an error band of -10 percent

to 30 percent of the calculation. The induced drag

for the configuration is computed by the commonly
C 2

used formula _-YA_e_,where Oswald's efficiency fac-
tor e is determined by means of a fast-Fourier anal-

ysis applied to the configuration span-load distribu-
tion. Since the span-load distribution is computed

fairly accurately for a given configuration lift coef-

ficient, the error band of the induced drag compu-

tation should be about =t=5percent of the computed
value.

Results and Discussion

The following test cases illustrate various applica-
tions of the design method. These cases demonstrate

the use of the design method to reduce drag by de-

signing to target pressures with low shock strengths

and elliptical span loadings. Reduction of nacelle in-

fluence is demonstrated by designing to clean-wing

target pressures in the presence of nacelles. Even
though viscous drag reduction is not addressed in

this study, local Mach numbers are held below 1.3 to
reduce the chance of separation as demonstrated by

Haines (1987). No attempt was made to constrain
other parameters, such as pitching moment, in this

study. All designs were run for 90 cycles, which al-

lowed more than adequate convergence of the design
process. Convergence was determined by inspection.

Case 1--Elliptic Clean Wing

To test the effectiveness of the design method
in reducing wave and induced drag, a wing-body

configuration was redesigned to an elliptic span load.

This redesign was done in two parts. First, the twist

distribution was changed to obtain the elliptic span

loading; second, the airfoils were redesigned to reduce
shock strength.

A generic executive-jet configuration with an a×-
isymmetric body, a 23 ° swept wing, and an aspect



ratioof 7.1wasusedasthebaseline.Theplanform
is shownin figure1. Tile valuesof r/ shownin fig-
ure1representthelocationsofdesignchanges.These
changeswerethenlinearlyinterpolatedfor the area
betweenstations.An overwingnacelleis shownin
this figure,but nacelleeffectsarenot consideredun-
til ease2. All analysesconductedon theexecutive-
jet configurationwereperformedat M = 0.79 and

cL = 0.55.

An analysis of the baseline configuration showed

that this shape had an efficiency factor e for the
wing of 0.986 and an induced drag coefficient of

0.0140. To bring the baseline to an elliptic span

loading, and to modify the twist distribution of the

wing, the new twist adjustment extension (twist-to-

elliptic, TTE) was activated. Figure 2 illustrates
the change. The twist values along the wing were

adjusted by as little as 0.2 ° inboard to as much as

1.9 ° near the mid semispan. Twisting tile wing to

achieve this elliptic load distribution increased the
value of e to 0.994, decreased the computed induced

drag coefficient by 0.0004, and increased the wave
drag by 0.0002 from the baseline values. These

numbers show the trends associated with twisting the

wing but are not large enough to be significant when
computational accuracy is considered.

To further decrease drag, shock strengths were

weakened for the elliptically loaded wing by redesign-
ing the wing pressure distributions at each station.

An analysis of the elliptically loaded wing was per-

formed to establish the corresponding wing pressures.
These pressure distributions were modified to reduce

shock strength and were then used as target pres-

sures for a new design. The design philosophy was
to lower the local Mach number ahead of the shock

(i.e., increase the pressure), thus reducing the shock
strength and associated wave drag. A possible addi-

tional benefit of this philosophy is to delay or remove

separation (Haines 1987). When modifying the pres-

sure distributions, the section lift coefficients were re-
tained so that the elliptic span-load distribution was

maintained. No other considerations, such as pitch-

ing moment, were addressed. These target-pressure

distributions simply represent possible designs devel-

oped by the authors and in no way represent the "op-
timum" distributions.

Figure 3 shows a typical target-pressure distri-
bution and design history. Comparison of the ini-

tial and final curves illustrates the magnitude of the

changes made in these design exercises. Compari-
son of the final and target curves illustrates the ac-

curacy with which target-pressure distributions are

achieved. Thus, analysis pressures of DISC designs

shown in figure 4 do not differ substantially from the
target pressures used to produce the designs.

Figure 4 shows the pressures associated with the

analysis of the baseline configuration, the elliptically
loaded wing (TTE), and the wing redesigned using

the DISC method. The pressures are shown at
3 stations along the wing. At each station, use of the
DISC method resulted in some reduction in shock

strength. Figure 5 shows the differences between the

baseline and redesigned airfoils. The vertical scale is
expanded to show detail. The root and mid scmispan

show only minimal changes in airfoil thickness and

contour, while the outboard station shows a decrease
in thickness of 1.4 percent chord.

Table 1 shows the drag coefficients obtained in
each step of the design process. The change to elliptic

span loading (TTE) produced only a slight decrease

in induced drag, because tile original configuration

was nearly elliptic. This change also increased the
wave drag. The target-pressure recontouring (DISC)

produced a substantial reduction in wave drag, and

the total drag coefficient was decreased by 0.0033
from the baseline.

Case 2--Elliptic Wing With Nacelle

After the clean-wing design was developed, the

overwing, body-mounted nacelle (fig. 1) was added

to the configuration. This arrangement is typical
of current business jets and can profoundly affect

the flow over the wing root area. To determine

this effect, the new configuration was analyzed by
using _,VBPPW. The addition of the nacelle caused a

sharp drop in inboard lift and a loss of the elliptic

span loading. (See fig. 6.) To regain the elliptic

span loading, a design was carried out that used

the clean-wing pressures developed in the previous
case as targets and the DISC geometry designed in

case 1 with the nacelle added as the starting shape.

This effort was moderately successful. Outboard,
the target pressures wcrc attained with only minimal

changes to the airfoil sections. Inboard, however,

where the nacelle has the most effect, the target
pressures were only met over a portion of the surface

(fig. 7), and the airfoil sections became extremely
thick (20 to 25 percent).

To compensate for the effects of the nacelle, the

clean-wing pressures were modified to obtain new

target pressures. Although changing the position or --
contours of the nacelle could relieve its influence on

the flow, it was assumed in the context of this sam-

ple case that the nacelle position was fixed and that
only the wing contours could be modified. Several

steps were taken to revise the target pressures. The

4



distributions were shifted to slightly more positive

pressures to reduce airfoil thickness. Shock strengths
were reduced at some stations. Also, some aft loading

was added to maintain the required section lift coeffi-

cient, but no consideration was given to pitching mo-

ment. The revised target pressures were then used to

compute a new wing shape, again starting from the

geometry developed in case 1 with the nacelle added.

Shown in figure 8 are pressures from an analy-
sis of the clean-wing design (nacelle off) of case 1

and an analysis of the nacelle-on design. This fig-

ure illustrates the differences in pressures necessary

to compensate for the nacelle. Airfoil sections of the

nacelle-on wing design are compared in figure 9 with

the nacelle-off (clean wing) design of case 1. The root
airfoil shows some twist and increased thickness rela-

tive to the nacelle-off design. The mid semispan sta-

tion airfoil is considerably thinner than the nacelle-

off airfoil and might require additional design work to

be practical. At the tip, the nacelle-on airfoil shows
some rotation and slightly more aft camber than the
nacelle-off airfoil.

A span load obtained from analysis of the design

is shown in figure 10. The figure shows that ellip-

tic loading has been approximated for the nacelle-
on case. Table 2 compares drag coefficients for the

generic, nacelle-on executive-jet configuration with
the nacelle-on DISC design. Substantial improve-

ments are again seen in drag. For this case, the

wave drag coefficient is reduced by 0.0123 and the

induced drag coefficient by 0.0018. Both these incre-
ments are considerably larger than the error bands

on the respective drag computations. A comparison
of tables 1 and 2 shows that, because of the refine-

ments made to the target-pressure distributions, the

nacelle-on design has lower drag measurements than

the clean-wing design. One of the results of this re-
finement was a decrease in wing thickness at the mid

semispan, which typically yields reduced drag.

Case 3--High-Wing Transport

The third case demonstrates the use of the

method for a slightly different type of nacelle in-

tegration problem. The goal is to maintain the
clean-wing pressure distributions for this case while

adding underwing nacelles. This combination is pos-
sible because underwing nacelles do not perturb the

flow as greatly as the inboard overwing nacelles that
were used in the previous case. A transport-type

configuration with a high wing is used (Lee and

Pendergraft 1985). The wing has an aspect ratio of

7.52 and a quarter-chord sweep of 30 °. Figure 11

shows the planform of the configuration, the nacelle
location, and the stations where the design work was

performed. Only a small portion of the nacelle was

directly under the wing; the rear of the nacelle was at
about 40 percent chord for the inboard station and

about 25 percent chord for the outboard station.

Computations that are detailed in this section

were performed at a Mach number of 0.807 and an

angle of attack of 2.25 ° and resulted in a lift coef-
ficient of 0.60. These conditions were used in an

attempt to match experimental pressure distribu-

tions obtained by Lee and Pendergraft near the cruise
condition.

To test the ability of the design method to remove

the nacelle effect, the magnitudes of pressure changes

due to the presence of the nacelle needed to bc similar

computationally and experimentally. A reasonably

good match between experiment and computation
was made for the clean-wing configuration (fig. 12),

but discrepancies were noted for tile full configura-

tion. The computations did not show the effect of
the nacelle installation on the upper surface pres-

sures, and the effect, while present, was smaller on

the lower surface. Similar discrepancies were shown

by Waggoner of Vought Corporation in 1982 and were
attributed to insufficiencies in the way the WBPPW

code models the pylon geometry. The code allows

only for a pylon directly under the wing, and tile ac-
tual pylon extended substantially ahead of the wing.

To compensate for the inadequacies in the nacelle-

on prediction, the nacelle geometry was altered

slightly by using the following approach. The dif-

ferences between wind-tunnel and analysis pressures

were computed for the lower surface of the wing

adjacent to the nacelle. An adaptation of the de-

sign algorithm was then used to change the nacelle
curvature at several stations to correspond to the

required changes in wing pressure for the wing sta-
tion just inboard of the nacelle (7/= 0.33). The na-

celle curvatures were altered only on the rear portion

of the nacelle, under the wing, where there is a di-

rect relationship between surface contour and pres-
sures. The results of the modifications are shown

in figure 13. The upper surface pressures were not
affected by this change, and the separation on the

lower surface (fig. 13(b)) was not reflected in the re-

sult; thc boundary-layer calculation in the WBPPW
code is not adequate to predict the behavior of sepa-

rated flows. However, this modification improved the

agreement between experimental and computational

pressures on the forward portion of the lower wing
surface and increased the magnitude of the nacelle
influence in that area. Therefore, this altered nacelle

was used in all the results discussed in the remainder

of this section.

5
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Thedesignprocesswastheninitiatedto remove
the nacelleeffectsthat werepredictedby the code.
Thedesignprocessusedanalyticallyobtainedclean-
wing pressuresas targetsand tile nacelle-oncon-
figurationasthe startinggeometry.The resulting
wing-body-nacelleconfigurationyieldsthesamewing
pressuresas the original wing-body configuration.
Figure 14 presents pressures from a nacelle-off anal-

ysis of the original configuration (WB), a nacelle-on
analysis of the original configuration (WBN), and an

analysis of the new configuration with the redesigned

wing and nacelles on (DISC WBN). Figure 14 illus-
trates the significant effect of the presence of the na-

celles on the lower surface pressures; this effect was

eliminated by recontouring with the DISC method.

Figure 15 presents the changes in airfoil shape. The

new airfoils show a change in incidence angle and
an increase in thickness, primarily in the midchord

region.

Table 3 details drag comparisons for the original
and the redesigned nacelle-on configurations. Be-

cause the span load was similar for tile two wings,
the induced drag remained the same. The wave

drag decreased by 0.0003. This decrease is small,

as was expected, because the changes in pressure oc-
cur primarily on tile lower surface, where no shock is

present. More sophisticated drag measurement tech-

niques need to be applied to fully evaluate ttle drag
reduction for this particular ease.

Further computations were made to investigate
the performance of the new wing shape at an off-

design condition. First, the baseline wing-body con-

figuration with the original nacelle and with the
modified nacelle was analyzed at a Mach number

of 0.7. These results are compared with experimen-

tal data in figure 16. As was the case at the cruise

condition, the WBPPW analyses only partially re-
fleet the nacelle-pylon effects; the modified nacelle

shows slightly better agreement with the wind-tunnel

data. Next, the redesigned DISC wing with the

modified nacelle was analyzed at Mach 0.7. Fig-
ure 17 shows the resulting wing pressures and calcu-

lations for the baseline wing-body configuration with

and without the modified nacelle. The pressures for

the redesigned wing match those for the clean wing-

body configuration very closely. Thus, even though

the new wing is a point design, the design goal of

removing the effect of the nacelle on the wing pres-
sures appears to hold, even at off-design conditions.

Concluding Remarks

The current study explores the use of a di-

rect/iterative design method for the reduction of drag

6

for transport configurations, including those with en-

gine nacelles. The method requires a target-pressure

distribution as input and then develops a correspond-

ing airfoil section. The method can be applied to two-
dimensional airfoil sections or to three-dimensional

wings. The three test cases that are shown demon-

strate the use of the method for reducing drag; two
types of nacelle integration problems are included.

The first case demonstrates the use of this method

to design to an elliptic span-load distribution and to

reduce wave drag by decreasing the shock strength

while maintaining the elliptical span-load distribu-

tion. For this case, designing to an elliptic span-load

distribution slightly decreased the induced drag, but
it also slightly increased the wave drag. Decreas-

ing wave drag produced a greater drag savings than
decreasing induced drag and resulted in an overall

reduction in drag coefficient of 0.0033.

In the second case, an overwing nacelle is added
to the final configuration from the previous case; this

nacelle has a significant effect on the performance of

the configuration. The design method is successfully

used to remove the inviscid drag that is produced by
adding the nacelle and to return to an elliptic span-

load distribution with reduced shock strength. For
this case, the sum of the wave drag coefficient and

induced drag coefficient is decreased by 0.0141.

In the third case, nacelle interference is eliminated

by designing a wing-nacelle combination to reach

clean-wing, target-pressure distributions. For this

configuration, adding the nacelle to the clean wing
makes only a slight difference in computed inviscid

drag, so recontouring does not produce notable drag
reductions. The design method is successful in re-

turning the lower surface pressures to the clean-wing
distribution and thus eliminates the interference of
the nacelle.

These cases illustrate several possible uses of

the method for reducing different types of drag.
These designs arc typically point designs valid for

only one specific set of flow conditions. Additional

analyses, as demonstrated in the third case, may

verify that the designs are improvements over a range

of conditions. The magnitude of the drag reduction
obtained varies with the constraints of the problem

and the configuration to be modified when the code
is applied.

NASA Langley Research Center
Hampton, VA 23681-0001
August 7, 1992
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Table 1. Clean-Wing Drag Coefficients

Drag

Indliced

Wave

Total

l Baselineconfiguration

TTE

approach

DISC

approach

0.0140 0.0i36 0.0136

•0045 .0047 .0016

0.0185 0.0183 0.0152

Table 2. Wing-Nacelle Drag Coefficients

Baseline

Drag configuration

Induced 0.0150

Wave .0124

Total 0.0274

DISC

approach

0.0132

.0001

0.0133

Table 3. High-Wing Transport Drag Coefficients

Baseline DISC

Drag configuration approach

Induced 0.0192 .......... 0.0192

Wave .0015 .0012

Total 1 0.0207 0.0204

m
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Figure 2. Use of twisting to obtain elliptic span load. M = 0.79.
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