
NASA-CR-190717

SSE Software Test Management
STM Capability:

Using STM in the Ground Systems
Development Environment (GSDE)

..........]::

o Victor E. Church

, - _o Ha i /_ _--v ., _ Ray rtenste n
z = o = Computer Sciences Corporation

v-4

Alfredo Perez-Davila
" " co"_ _,::-_:----uI izy oT H z L;u_n'vers'_ -_"'ous-on-A'ear Lake

!-

w

_- _ c February 1992Z •
LLJ 1-4 _

_ w_
:_ _ c Cooperat_'ve_Ag reement NCC 9-16

31= _.-
Research No. SE.34,, _ _ _ _cz,v,_y

_ w _ E _ NASA Johnson Space Center
-J _-- z O - Mission upur'-era';onsDirectorate

u_ _ >. =_ ,-, _ Space StatiOn Ground Systems Division
c_ C_OE

• . __ _
"" _ Z _ _

_C_Z_ _,_

r_ l--o_ oJ _ v3 __

0", I-- _,-,__ "-

I _ Z C::)• E

t,_ v'_ ,,,¢: w u_ 0 -.......

Research Institute for Computing and Information Systems

= _ _ .. : ,:::,,, University of Houston-Clear Lake

m

TECHNICAL REPORT

w

I

The RICIS Concept

The Unlvcrslty of Houston-Clear Lake established the Research Institute for
Computing and Information Systems (RICIS) in 1986 to encourage the NASA

Johnson Space Center (JSC) and local industry to actively support research
in the computing and information sciences. As part of this endeavor, UHCL

proposed a partnership with JSC to jointly define and manage an integrated

program ofresearchinadvanced data processingtechnologyneeded forJSC's
main missions, includingadministrative,engineering and science responsi-
bilities.JSC agreed and entered into a continuing cooperativeagreement
with UHCL beglnning inMay 1986, toJolntlyplan and execute such research

through RICIS. Additionally,under Cooperative Agreement NCC 9-16,
computing and educational facilitiesarc shared by the two institutionsto
conduct the research.

The UHCL/RICIS mission istoconduct, coordinate,and disseminate research

andp-rofesslonalleveleducation in computing and:hxTormatlon sys_ms to
serve the needs of the government, indush-y, community and academia.
RICIS combines resourcesofUHCL and itsgateway affiliatestoresearch and

develop materials, prototypes and publications on topics of mutual interest

to its sponsors and researchers. Within UHCL, the rrdsslon is bcing
Implemented through interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-

tion, Human Sciences and Humanities, and Natural and Applied Sciences.
RICIS also collaborates with industry in a companion program. This program

is focused on serving the research and advanced development needs of
industry.

Moreover, UHCL established relaUonships with other universities and re-

search organizations, having common research interests, to provide addi-
tional sources of expertise to conduct needed research. For example, UHCL
has entered into a special partnership with Texas A&M University to help
oversee RICIS research an-1 education programs, while other research

organizations are involved vta the *gateway" concept.

A major role of RIC!S then is to find the best match of sponsors, researchers
and research objectives to advance knowledge in the computing and informa-

tion sclcnces. RICIS, worklngJointlywith itssponsors, advises on research
nccds, recommends principalsforconducting the research,provldcs tech-

nlcaland admlnlstratlvcsupport to coordinate the research and integrates
technicalresultsintothe goalsof UHCL, NASA/JSC and industry.

ha#

J

w

w

SSE Software Test Management
STM Capability:

Using S TM in the Ground Systems
Development Environment (GSDE)

b .

=

w

= .

w

m

=--

ml

iN

'mum

m

m

Imml

m

m

_mw

m
u

i RICIS Preface

L =

w

This research was conducted under auspices of the Research Institute for Computing

and Information Systems by Computer Sciences Corporation in cooperation with the

University of Houston-Clear Lake. The members of the research team were: Victor

E. Church and D. Long from CSC and Alfredo Perez-Davila from UHCL. Mr.

Robert E. Coady was CSC program manager for this project during the initial phase.

Later, Mr. Ray Hartenstein assumed the role of CSC program manager. Dr. Perez-
Davila also served as RICIS research coordinator.

Funding was provided by the Mission Operations Directorate, NASA/JSC through

Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and the

University of Houston-Clear Lake. The NASA research coordinator for this activity

was Thomas G. Price of the AEiiSE and Support Systems Office, Space Station

Ground Systems Division, Mission Operations Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors and

should not be interpreted as representative of the official policies, either express or

implied, of UHCL, RICIS, NASA or the United States Government.

w

i

w

m

n

m

u

i

I

m

u

m

W

I!

m

[]
gl

B
m

I

SSE Software Test Management
(STM) Capability:
Using STM in the Ground Systems Development
Environment (GSDE)

=

w -

w

B

m

w

w

Prepared for

Lyndon B. Johnson Space Center
National Aeronautics and Space Administration
Houston, Texas

by

Computer Sciences Corporation
System Sciences Division
Beltsville, Maryland and League City, Texas

and

The University of Houston - Clear Lake
Research Institute for Computers and Information Sciences
Clear Lake, Texas

under

Subcontract No. 075

RICIS Research Activity No. SE-34
NASA Cooperative Agreement NCC 9-16

Febmary 1992

Preparation:
Quality Assurance:
Approval:

V. Church

D. Long
R. Hartenstein
A. Perez-Davila

w

g

i

i

'!it

i

Using STM in GSDE

w

--=

w

\ Abstract

This report is one of a series discussing configuration management (CM) topics

for Space Station ground systems software development. It provides a

description of th_'SS_-developed SOftware Test Management (STM) capability,

and discusses the possible use of this capability for management of developed

software during testing performed on target platforms. This report is intended to

supplement the formal documentation of STM provided by the SSE Project. The

report describes how STM can be used to integrate contractor CM and formal CM

for software before delivery to operations_ STM provides a level of control that

is flexible enough to support integration-_d debugging, but sufficiently rigorous

to insure the integrity of the testing process.

=

w

CSC/SSD - UHCL/RICIS February 1992

qmw

m
INto

m
xmv

m

m

_m

qmw

imm

m

Imw

'm

_m,

qm

m

B

l

Using STM in GSDE

2

=

r_

--=

--=

V

Table of Contents

Introduction 1

GSDE software development context ... 2

Overview of the STM capability .. 3
STM data structure ... 4

STM operations 8

Staging a testbed .. 9

Results Capture .. 10

Checkout/Checkin .. 10

STM Reporting .. 11

Implications for use in the GSDE .. 11

Requirements for test planning and definition 12

Requirement for staging and target scripts .. 13

Comparison of STM and CM interfaces to targets 13

Integrating contractor CM during testing .. 14

Summary ... 15

Glossary and Abbreviations ... 15

List of Figures

1. Ground Software Development Envh'onment .. 2

2. Four steps in target-based testing .. "4

3..Example of a Test Configuration Specification ... 5

4. Test plans are based on software design .. 6

5. Development of test definition scripts ... 7

6. Sample of a test process script (in TPL) .. 8

7. Staging elements in a testbed .. 9

=
!.,..

CSC/SSD - UHCL/RICIS February 1992
_m

w

W

l

U

J

m

g

u

B

u

w

W

m

i

J

m
m

w

Using STM in GSDE

w

,==_)

= =

w

7

w

r-

Introduction

This report briefly describes the operation and use of the Software Test Management

(STM) system, a capability that will be provided by the Space Station SSE ° in OI 6.0,

scheduled for April 1992. This description is based on material presented by SSE Project

personnel; it is tailored to the development of ground systems software. The intent of the

report is to identify potential impacts to the process of testing software for the Space

Station Control Center (SSCC) and the Space Station Training Facility (SSTF).

This report is one in a series of reports on configuration management issues in the

development of Space Station ground systems software. The reports are part of a study

of GSDE interfaces being conducted by COmputer Sciences Corporation and the

University of Houston - Clear Lake for the Lyndon B, Johnson Space Center Mission

Operations Directorate (D J).

STM is a SPF host-based capability that supports the definition, staging, and reporting of

tests performed on target platforms. (Test execution is supported only indirectly, with

target platform command scripts that can be managed by STM.) STM can support

testing during development (e.g., unit testing that requires the target platform) as well as
formal testing performed for qualification and operational delivery.

STM is not an alternative to formal SPF-based CM. While it does provide controlled

storage and tracking of comp0nent Status, it is intended to work with the SSE CM system

and the Rational-based CMVC system--not to replace them. STM will also provide a

development path to the use of the SSE Build Process system that will be available with

OI 7.0 in April of 1993.

This report is intended to supplement the formal documentation of the STM by

addressing the particular circumstances of SSTF and SSCC development. The reason for

this supplement is as follows: The primary focus of the SSE Project (and of SSE

documentation) is the production offlight software. The primary flight software target

platform is a Standard Data Processor (SDP), an Intel 80386 processor with the Lynx

real-time Unix operating system. Ground software systems, in contrast, will use IBM

mainframes and various Unix-based workstations as the primary target platforms. Some

of the mechanisms and procedures described in SSE documentation must be modified or

interpreted to apply to ground systems software. This report focuses on use of STM in

the context of the Ground Systems Development Environment (GSDE).

r==._

r

" Abbreviations that are in common use in the Space Station Freedom Program are not spelled out in the text. but

are defined in the Glossary at the end of this report.

CSC/SSD - UHCL/RICIS 1 February 1992

Using STM in GSDE

m

GSDE software development context

Ground systems software, specifically the SSCC and SSTF, will be developed and tested

using combinations of development computers and workstations (called Software

Production Environments, or SPEs), a Ground Systems SPF (GS/SPF), and target

platforms that are essentially the operational target environments. It is worth noting that

there is no separate rIVE for either ground system. Figure 1 shows the basic

development context. The target environments include IBM mainframe computers,

Unix-based workstations, and mission-specific special-purpose hardware.

u

m

IIW

m

OUrCecode development, unit 1
sling, test item development
evetopment environment

(Rstlonslll, urvers) Acceptarce..tes_13d

•x._rce code

_ai CMof _uree code,

STM of files during test and
integration

The GS/SPF host is intended to
provide the oNy formal conduit between
thedevelopment environments and the
target systems. All software that is
submitted for formal testing on the target
platform is first placed under formal CM.

During development, the STM system is
used to controt software being tested
on the target. STM makes use of
contractor CM as well as formal CM.

Dev _m_t I_AN
i ml

development
workmtlons

• GS/SPF (Amdshl) Test software, Test item s,

test results,",,,.
build products,_

process metrics fHardware and software

_ integration formal te_t, creation I

I---in_ract_,e a c2_s for tes.t_ d .chug....... Iof operational software /

I t /

__ Target environment J

Fisure 1. Ground Software Development Environment

J

mm

m
u

lib

Im

lib

The SPEs will include Rational computers to support Ada' development. It is also

probable that a substantial amount of non-Ads code (primarily C-language) will be

developed (or reused) and supported. Workstations and file servers will be used along

with the Rationals to support development.

The GS/SPF is an IBM-compatible mainframe with an instance of the SSE SPF software

for each major system (SSCC and SSTF). The GS/SPF will host both the formal CM

system and the STM system, along with disk storage supporting both systems. STM will

serve to support target-based testing prior to operational delivery. Formal CM will be

used to manage software following Acceptance Test. For reasons of security and

m

i

i

J

* Ada is a trademark of the U. S. Department of Defense, Ada Joint Program Office

CSC/SSD - UHCL/RICIS 2 February 1992

g

m

g

Using STM in GSDE

v

software integrity, the GS/SPF will serve as the conduit for moving software from the

SPEs to the targets.

There are no planned interactions between the two ground system development efforts

(SSCC and SSTF). However, there are a number of common interfaces that will be

implemented to support the interfaces between SPE and target.

=

v

v

=

=

Overview of the STM capability

For the most part, development and initial testing of ground systems software will take

place on Rational Ada development computers or on workstations supporting C-language

development. Current experience with Ada suggests that it is productive to keep

development activities in the Rational environment as long as possible before

transitioning to the target environment. There is also some value to performing as much

development as possible in the less formal SPE (compared with the more rigorously

controlled target environments) to facilitate changes and debugging. The transition from

SPE to the target system is usually late in the development cycle.

The transition must eventually be made, however, and software testing must be

performed on the target platform. Integration of components, either with test harnesses

or with other integrating software, is performed (or repeated) on the target. Where the

software must interface with special purpose hardware devices, this target-based testing
is even more essential.

Effective testing (of complex systems) generally requires that a testbed be assembled,

comprised of integrating software, data, test plans, compile-and-build commands, and

operator instructions. Testing also requires a mechanism for recording the results of each

test in a sequence, and for capturing products (executable images, test output, etc.) for

further examination and/or use. Finally, a mechanism is needed to record and make use

of relationships among components, such as "After test A is passed, perform test B with

the output from test A". These requirements are addressed by the SSE STM system.

STM provides support for defining and controlling test elements, for assembling test

resources in a testbed, and for capturing results and products. Through the use of

command scripts (which are themselves controlled), STM also supports the transfer of

test elements to target platforms, the initiation of compile-build-test sequences, the

recovery of products, and the baselining (into formal CM) of tested components. STM

does not directly support the execution of tests on the target; that function is left to the

test operator (or ITVE system, if one exists). Figure 2 shows in broad strokes the support

provided by STM for testing on target platforms.

CSC/SSD - UHCL/RICIS 3 February 1992

Using STM in GSDE

Fi+ure 2. Four steps in tar+et-based testin+.

Target Dlatform

--,_.

Tut Environment

STM data structure

The SSE STM system is based on a structure of data objects and relationships recorded

in an Oracle-based data structure. A test plan is actually stored as the set of objects and

relationships that comprise the plan. (Some of the possible relationships are predefined;

others can be added by the STM administrator on a particular SPF'). The STM system

deals with both logical and physical objects.

STM objects include operation scripts as well as test objects such as source files and test

data. These scripts amplify the test information embodied in the object relationships.

STM objects (logical and physical)

A primary element of the STM system is the data structure used to represent logical

objects. STM distinguishes between physical objects, such as source files, and logical

objects, which are definitions and descriptions of physical objects. The STM data

structure itself contains logical objects, which may include pointers to physical objects.

(The physical objects may or may not reside on the STM host computer.) The logical

object data structure in the STM system provides support for recording relationships and

attributes of physical objects.

The STM system uses the host-computer file system to provide storage for physical

objects. This capability can be used to free up data storage in the SPEs. But the physical

w

UP

g

i

IR

m

i
i

i

g

w

m

m

CSC/SSD - UHCL/RICIS 4 February 1992

g

Using STM in GSDE

v

location of objects is relatively unimportant to the STM, which provides a measure of

location independence through its logical object definitions.

The STM system includes a mapping between storage location data and the commands

that STM uses to retrieve the specified file. For example, the storage location "SSE

CM" maps to a "Get component" command with appropriate parameter substitution.

This mapping can be augmented by the STM administrator to include any accessible

storage (e.g., a file server in an SPE). The specification of a physical object can be as

precise (e.g., name, type, version) as is supported in the storage system.

Figure 3 provides examples of storage location specifications in object de. finitions.

L_

m

Test_Configuration MODULE_I_Test

--Attributes

Description "This is a test procedure"
Date_Created "December'l, 1991"
Creator "Sam"

--Relations

Uses_Component MODULE_I
Uses_Buildlnstructions BUILD_MODULE_I
Uses_Host_Load COMMON_HOST_LOAD
Uses_TesLScript TEST RUN DELTA_I

END MODULE_I_TEST

Component MODULE_I

.-Attributes

Description "This module is in Formal CM"

--Location data
Location,."SSECM"

Location_data="CSCl_l.CSC_2.CSU_3,
3.2.1"

END MODULE 1

Component MODULE_2

--Attributes

Description "This component is on a sewer"

--Location data
Location "VAXServ er_l "
Location_Dat a "[CSC 1.SAM] modu le_2_1, aria"

END MODULE_2

Figure 3. Example of a Test Confisuration Specification

A typical logical object can be a specific test configuration: a specification of elements

required in testing a particular software component. The test configuration could include

the following elements and attributes:

• a reference (pointer) to the software component to be tested, including the

component name (and CCB version number, if appropriate), the location (e.g.,

formal CM, a Rational, or other storage), and a specific reference used in

retrieving the component from storage (e.g., a file name)

CSC/SSD - UHCL/RICIS 5 February 1992

Using STM in GSDE

references to test data, related libraries, test scripts, compile/build scripts--to each

of the items needed to perform the specified test

• reference to a staging script, which is used to collect all items into a staging area

and ensure that all requisite items (including satisfactory completion of

prerequisite testing) are available

• status of the test procedure itself (Ready for Test, Passed, Failed, etc.)

Figure 3 shows a sample test configuration in script form. Within the STM system, this

definition would be stored as objects, attributes, and relationships.

The STM logical structure is designed to support the natural interrelationships of tests in

a software structure. It supports a hierarchy of testing, with user-specified conditions.

A test procedure can be defined to be dependent on the passage of other, prerequisite

tests. Using these dependency relationships, a tree structure is defined that models the

build-up and integration process for major elements such as CSCIs, subsystems, and

systems. Figu_. 4 represents the graph structured nature of test procedures compared

with an integration graph structure.

m

m

w

q_

m
m

g

m

g

The test plan structure is a directed graph of procedures.

g

Test item A with stubs
I

6-Test item D_¢

L_._,mma
readyfortest

m itembeing tested

r_ previouslytested i> (_ Test item B with A o Test procedure

• _ Test item C with A

Test item E with A, C

Test item Fwith A, C, E

The structure of the software drives the test
plan, with dependencies between tests
defining the sequence of testing. In this
example, Tests 2 and 3 can be performed
in parallel. Test 6 depends on Tests 2 and 5.

5 2

3 <J1

m
B

J

J

IB

Fisure 4. Test plans are based on software design I

CSC/SSD UHCL/RICIS 6 February 1992

=

The STM uses Oracle to store logical objects in relations and attributes. The database is

constructed from one or more definition scripts, created as text files on workstations and

interpreted by the STM Resource Definition tool (TResDef). The object definition

scripts can be regenerated from the database, for example to Serve as templates for

different build structures. Figure 5 illustrates the definition process for object definitions

as well as for operation scripts (discussed below).

w

w

/

=

w

Figure 5. Development of test definition scripts

The object definition scripts define objects that make up the test plan. The Resource

Definition tool also supports definition af new types of objects and relationships, such as

user-defined storage locations for physical storage of objects.

Operation scripts

In addition to the object definition script, two other types of scripts can be created and

made known to the STM. Staging, scripts are used by the STM to assemble all items of

the testbed and transfer them to the target. Staging scripts are written to be executed on

the STM host computer; they can be written in the command language of the host

(REXX for the GS/SPF) or in the host-independent TPL format that supports translation

of STM object names to host-based file names (as required). Target scripts are invoked

CSC/SSD - UHCL/RICIS 7 February 1992

w

Using STM in GSDE

on the target platform to perform compilation, linking, and possibly testing of

components. Target scripts are written in the command language of the target platform.

Figure 5 illustrates the construction of operation scripts, along with the creation of object

definition scripts. Figure 6 shOws a sample Script. r

M

W

E

w

..Test procedure for MOOUL E__I

LET COM_STATUS '= FAIL
LET LINK_STATUS = FAIL

PERFORM COMPILE WITH SOURCE_ID .=ADA_I_S,
LIB_NAME .. 'CONSOLE_LIB'

PERFORM COMPILE WITH SOURCE_ID = ADA_I_B,
LIB_NAME = 'CONSOLE_LIB'

IF COM STATUS =.. GO THEN
PERFORM LINK WITH UNIT_NAME = MAIN,

LIB_NAME = 'CONSOLE_LIB'

IF LINK_STATUS == GO THEN
PERFORM RUN_SCRIPT WITH SCRIPT_ID = INALKTHRU.TEST',

OBJ ECT_ID = ADA_I_S

Figure 6. Sample of a test process script (in TPL)

STM operations

The primary operations supported by the test management tool are:

staging all necessary test files, and invoking any supplied scripts (copying

them to the target),

capturing the results of tests, including both status and products,

checkout/checkin and tracking of change status on controlled files, and

providing reports on test status.

Other operations include processing specific inquiries about status and structure, setting

test status without performing tests (e.g., "failing" a component to make it unusable to

other tests that require it), import and export of definition scripts, and facilitating

component checkin to formal CM.

CSC/SSD - UHCL/RICIS 8 February 1992

imw

m

I

w

m

J

w

J

lid

m
w

U

m

II

I

Using STM in GSDE

r

v

Staging a testbed

Staging a test procedure uses the test procedure definition to determine the status (e.g.,

Ready for Test or Passed Test) of all necessary files, and to assemble the files in a

staging area. The files to be retrieved may reside on the host (for ground systems

software, the GS/SPF) under STM control; they may be under formal CM (also on the

GS/SPF); they may be under CMVC conti'ol on a SPF-connected Rational; or they may

reside in some user-defined location (e.g., contractor CM) accessible over the LAN. The

staging area is implemented in the GS/SPF file system.

The staging script'is written to be executed on the SPF (that is, the STM host computer);

not, for example, on the target platform. The staging script can submit a target-platform

script to manage the test setup and execution process, but it does not directly execute on

the target.

Figure 7 illustrates the test staging process.

7 -

v --

1 - Verifythatall required
itemsare availableforuse

2 - Retrievephysicalobjects
from storage,collectthem
all in GS/SPFstagingarea

3- Using stagingscript,
move filesto target and
execute commandlist

Figure 7. Stagin_ elements in a testbed

CSC/SSD - UHCL/RICIS 9 February 1992

mw

Using STM in GSDE

Testing is performed on the target. Testing may include compilation and linking,

definition of resources (such as hardware devices or communications streams), and

execution of the component being tested. STM is not directly involved in this process.

,!

Results Capture

STM supports capture of test results after the test execution. The tester f'trst copies to the

STM host any product files that are to be captured. (The STM system does not have the

capability to retrieve files from another platform). The tester then logs into STM and

invokes the Results Capture tool to report on the status of the test. The tool prompts for

products that should be placed under STM control on the SPF, and then retrieves those
products (e.g., compiler output, executablefiles, output data) and places them under

STM control. The Results Capture tool does not perform any analysis on the results; it

merely records the test operator's report.

The products captured are a special type of object, derivative of some oother controlled

object. They cannot be checked out for editing. If the base object is checked out or

otherwise modified, the captured products are marked "unavailable for test".

The STM can be directed to perform a component checkin to the CM system upon

successful completion of testing. In this functions, the STM system essentially acts as a

user of the CM system; STM does not interact directly with CM tables or data structures.

In order for the checkin to succeed, the STM user must have appropriate CMO authority

and relevant change-instrument ID(s), just as would be needed in a user-directed checkin

to formal CM.

Checkout/Checkin

m

g

B

W

III

m

m
m

lib

z
I

lib

STM provides a level of configuration management for object under its control. Objects

can be checked out for editing and checked back in after changes. Note that since the

physical objects may reside in the development area, the checkout/checkin is primarily a

logical control procedure.

When an object is checked out, it becomes "Not ready for Test" and so cannot be used in

any testbed which might require it. Also, as noted above, any derivative product of the

item, such as an executable image that has been captured from the target, is marked

unusable for testing. (This prevents related tests from using an obsolete product.) When

the component is checked back in, it may be marked "Ready for Test".

m
g

D

I

CSC/SSD

g

- UHCL/RICIS 10 February 1992
nil

Using STM in GSDE

w

i

STM Reporting

STM provides a set of predefined reports on the contents of the database. It also

provides a limited capability for user-defined reports (the STM ad-hoc report) to be

specified and generated. The internal structures of the STM system are not published

information, to maintain the integrity of the STM security model; there is no capability

for users to create SQL access commands for reporting. (This differs from the capability

provided by the SSE CM system). The ad-hoc report format, however, does provide for

user-specified selection and reporting parameters. Detailed information on the reporting

process (e.g., specific report definitions) is not yet available.

w

w

u

w

,.,=...

m

Implications for use in the GSDE

STM clearly will play a significant role in the later stages of target based testing of

ground system software. Depending on the particular processes, it may play a role in

early (unit-level) target testing as well. There are several implications for the overall

development process that stem from the capabilities provided, and those not provided, by

STM. This report addresses the following four implications: need for advance planning,

need for target-command-language scripts, availability of a "low-cost" controlled conduit

to the target, and integration 6f:$_ with contractor CM.

Each of these topics is discussed in a separate section below. Briefly, the four

implications are:

A substantial amount of advance planning and test definition is required to make

effective use of STM. (This planning will reap dividends in using the SSE Build

Process capabili W, to be provided in OI 7.0).

To use STM as a coordinator for target-based activities (or at least as an initiator),

scripts written in the target command languages will have to be created and

recorded in the STM system. Some general standards and templates for target-

based scripts would greatly simplify this process.

The STM system provides a controlled conduit between the SPEs and the target

platforms that does not require the rigor of the formal CM system. This conduit

should obviate the need for any "short-circuits" bypassing the GS/SPF.

STM can make use Of files stored under contractor CM as well as those stored on

the GS/SPF. This will simplify the integration of STM with the development

process.

Each of these considerations is discussed in the followings sections of this report.

CSC/SSD - UHCL/RICIS 11 February.1992

i

Using STM in GSDE

Requirements for test planning and
definition

Testing software elements of a complex system involves testing a large number of

interfaces_ These include program structure ("will various components compile

together?"), functional interplay ("are the services provided precisely what other

components expect?"), data compatibility, and timing considerations. Because of the

complexity of these interfaces, it is often more effective to use the developed software as

its own test scaffold than to build complete test scaffolding for each component. As the

subsystem under test grows (i.e., more elements are integrated), stubs are replaced with

working software and the entire subsystem is tested.

STM is specifically designed to support such gradual integration testing, but the overall

test sequence and goal (a description of the completed system) must be specified in some

detail. This advance planning has an added benefit in complex systems development:

since many subsystems will be built and tested by teams of programmers, the test

definition can usefully serve as a governing framework to control and monitor the

testing.

Object definition scripts (which are loaded with the Resource Definition Tool) must
define precisely where every required component is stored. For components managed by

formal CM, a specific CCB version can also be specified. As changes are made during
integration and test, the test definitions may have to be changed to reflect new

components (i.e., new versions). The test configuration can be defined to retrieve the

latest version, or some specified version of a file.

STM is intended to operate on the most recent edition of a file. It does not save multiple

versions of logical objects in its own controlled storage. Although it can save.sequential

physical files, it ordinarily provides access only to the latest version. (Earlier versions of

physical objects can be retrieved with the Checkout procedure.)

For components that are logically managed by STM but physically stored outside the

STM system (for example, in contractor CM), changes made are only known to STM

when a changed component is checked back in. If such components are changed without

using the checkout/checkin procedure, the integrity of the test process will be

compromised. STM presumes that externally stored files are under some form of CM,

and does not exert its own control.

The design of STM is intended to provide maximum flexibility in the use of the tool,

without overly constraining the manner of use. It is based on the assumption that

components are placed under some form of trusted storage. Files can be checked in to

the STM for controlled storage, or kept under contractor CM in the SPE. However, the

carefully constructed test plans will not be useful unless some control is applied to the

files named in the plan.

CSC/SSD - UHCL/RICIS 12 Feb. ruary 1992

I

I

I

I

I

I

I

I

I

J

m
I

m

I

I

I

I

II

Using STM in GSDE

w

w

w

L_

From a system operations perspective, it is critically important that the software that gets

delivered is the same as the software that was successfully tested. The Build Process

capability that will be provided in OI 7.0 for formal delivery will likewise require a

detailed, rigorous definition of how components are integrated to make up a delivery.

The Build Process will make use of the same support structure as the STM. Test plans

constructed for the STM should therefore be useful in constructing the build scripts for

software delivery.

Requirement for staging and target

scripts

The staging scripts (typically written in TPL) created for the STM can be used to

orchestrate the build-up of executable images on a target system. The staging scripts can

direct the use of predefined, controlled target scripts to compile and link source files and

libraries. "The target scripts direct the a_ual target processes. Predefined target scripts,

for example, would be used to select a library, compile a source file into that library, and

generate an executable image. The TPL syntax includes a PERFORM command that can

be extended by the STM administrator for special purposes. Platform-unique functions

(e.g., compiling a module) can be performed through this tailoring mechanism.

These target scripts might also serve as the build definition scripts for formal build and

delivery. When the Build Process becomes available with OI 7.0, these scripts may be

convertible to the build control lists for formal delivery.
7 _ 7 7 _

The capabilities for tailoring and templates provides an opportunity to standardize the

interface between the SPEs and the target environments. The availability of standard

scripts (e.g., "compile item x into library l") and templates for target-based processes

would help in simplifying the cross-platform testing activity. Since the SSE is currently

concentrating on the SDP as a target, and not on ground system target platforms, we

recommend that an effort to create standard scripts and templates for use in ground

system testing be initiated.

Comparison of STM and CM interfaces

to targets

STM provides a mechanism for transferring software to the target for compilation and

test without the rigor of the formal CM system, while providing enough control to ensure

that development proceeds in a manageable fashionl

There are compelling reasons why there should be restrictions on the process of moving

source files onto target platforms. Physical security of the target environment is one

reason; ensuring integrity and reliability of delivered software is another. NASA has

directed that all source file transfers to the targets are to occur through the GS/SPF.

CSC/SSD - UHCL/RICIS 13 February 1992

Using STM in GSDE

There has been some concern voiced that formaJ CM on the GS/SPF could become a

bottleneck during some stages of testing, such as during hardware/software integration.

The number of steps required to change a controlled component is daunting, even when

approval authority resides with the contractor (i.e., no NASA review is required).

Formal CM was not designed to support the frequent small changes that may occur

during rehosting and testing with new hardware.

The suggested alternative of bypassing control (to facilitate development) is obviously

unacceptable on projects as large as the SSTF and the SSCC. $TM provides a means of

using the GS/SPF as the transfer point without the elaborate formal control provided by

the CM system.

The emphasis in STM is on recording operations, rather than on limiting and controlling

them. Files must be defined to STM before they are transferred to the target. STM relies

on the file access and security mechanisms of the host or of the SPE to ensure that only

valid files are checked in. In that sense, STM acts as an interface between contractor CM

system and the target environment.

After successful testing under STM control, tested components can be checked in (or

back in) to formal CM for build-up and delivery.

u

m

E

U

U

g

U

Integrating contractor CM during testing IBm

As noted above, STM can utilize user-defined file storage for physical objects that are

logically checked-in to the STM data structure on the GS/SPF. This means that

developers can keep files in the contractor CM system during the testing process,

promoting the files into formal CM only when necessary for integration purposes. This

capability should reduce the concern about the onerous requirements of formal CM for

testing purposes. It does, however, entail some risks. STM has no way of detecting

whether a user-controlled physical object has been changed following a successful test.

(Before an object passes its tests, changes do not affect other objects and so are not of

concern to STM. After passing its tests, however, an object becomes available for use by

other tests. Such an object therefore should not be changed without notification).

To mitigate this risk, we recommend that STM in the GSDE be restricted to using

controlled files in the SPE for physical object storage ("trusted storage" in STM

parlance). The STM should not be permitted to retrieve files from any and all locations

(e.g., a developer's workstation), but only from configuration managed storage.

Since STM does not provide version control for parallel testing of different versions of

the same software, developers will have to use version-specific names to maintain

integrity of files. This implqesthat project-wide namingconventions should be

developed to ensure consistent use of file names. (Another approach would be to write a

CR to the STM to support such versioning).

Q

D

J

m
m

I

m

m

CSC/SSD - UHCL/RICIS 14 February 1992 __

w

Using STM in GSDE

w

L

v

w

w

Summary

In spite of its flight software orientation, the Software Test Management capability

appears to be a good match for a number of unresolved problems in ground systems

software development. There are some shortcomings, particularly in the area of parallel

development of different versions of software, but workarounds do exist. The major

benefit of using STM is that controlled access to the target environment can be provided

without the excessive rigor of formal CM.

We recommend that the SSE STM system be adopted as an integral element of the

GS/SPF. We also recommend that all transfers of source files to the target platforms

make use of either formal CM or STM. (This would not affect interactive access to the

target environment, which is required for testing and debugging.)

We recommend that CRs be written to require that STM support multiple, parallel

versions of software, and that the STM system be able to retrieve products from

platforms other than the SPF.

We also recommend that an inventory be performed of the platforms to be used in the

SSCC and SSTF target environments. If there is sufficient commonality in the command

languages used (e.g., the Bourne shell), a CR should be written to require that the TPL

support one or more of those target command languages along with DCL and REXX.

w Glossary and Abbreviations

CCB

CM

CMO

CMVC

contractor CM

csc

CSCI

DCL

DEC

formal CM

GS/SPF

GSDE

IBM

ITVE

configuration control board

configuration management

CM Office (or Officer)

Code Management and Version Control (a Rational subsystem)

a CM system managed by the contractor for software which has

not been delivered to formal CM; part of the SPE

Computer Sciences Corporation; also computer software

component

computer software configuration item

command language used for DEC VAX computers

Digital Equipment Corporation

the SSE-provided CM system residing on the GS/SPF; it contains

the software which has been delivered to NASA, and forms the

basis for delivery to operations

Ground Systems/Software Production Facility

Ground Systems Development Environment

International Business Machines Corporation

integration, te_t, and validation environmen t

CSC/SSD - UHCL/RICIS 15 February 1992

w

Using STM in GSDE

JSC

LAN

OI

REXX

RICIS

SDP

SPE

SQL
SSCC

SSE

SSTF

STM

TPL

TResDef

UHCL

Lyndon B. Johnson Space Center, Houston, Texas
local area network

operational increment (the added functionality in a new release)

command language used for IBM VM mainframe systems

Research Institute for Computers and Information Systems

standard data processor (for Space Station Freedom)

software production environment - -

structured query language(a database access language)

Space Station Control Center

software support environment

Space Station Training Facility

Software Test Management (an SSE capability)

Test Process Language (defined for the STM)

Resource Definition Tool (used to define objects in the STM

system)

University of Houston - Clear Lake

I

I

I

I

I

I

I

I

I

I

m

I

I

z

I

I

I

CSC/SSD - UHCL/RICIS 16 February 1992

I

m

I
I

