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Navier-Stokes Analysis and Experimental Data Comparison of Compressible Flow in a Diffusing S-Duct

Gary J. Haxloff*

Sverdrup Technology, Inc., LERC Group, Brook Park, Ohio,

Abs_act

Full three-dimensional Navier-Stokes computational

results are compared with new experimental measure-
ments for the flow field within a round diffusing S-duct.

The present study extends previous computational and ex-

perimental results for a similar smaller scale S-duct. Pre-
dicted results are compared with the experimental static

and total pressure fields, and velocity vectors. Addition-

ally, wall pressures, velocity profiles in wall coordinates,

and skin friction values are presented. The CFD results

employ algebraic and k - c turbulence models. The CFD

computed and experimentally determined separated flow

field is carefully examined.

Introduction

any aircraft employ bending rectangular and cir-
cular duct geometries in the inlet and exhaust of

the propulsion systems. Examples of aircraft with inlet
S-ducts include the Boeing 727, Lockheed Tristar (L-

1011), General Dynamics F-16, and McDonnell-Douglas
F-18. Often, the cross-sectional area of the S-duct in-
creases downstream in order to decelerate the flow and

achieve higher static pressure at the engine compres-
sor. To achieve maximum engine performance the S-duct

should minimize flow field total pressure losses through-

out the duct and minimize total pressure distortion at the

duct exit to avoid engine stall.

Changes in the duct cross-sectional shape or curva-
ture of the duct centerline give rise to streamline cur-

vature. The cross stream pressure gradients resulting

from the streamline curvature can produce significant sec-

ondary flows. Additionally, the adverse streamwise pres-

sure gradient caused by increasing cross-sectional area

can lead to flow separation. Often, the aircraft designer
faces a difficult dilemma. Size and weight restrictions
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encourage the use of shorter S-ducts. However, this re-

suits in greater streamline curvature and adverse pressure

gradients and increases the risk of unacceptable duct per-
formance.

The performance of these types of ducts is usu-

ally determined by wind tunnel testing. Researchers at

NASA Lewis Research Center are developing computa-

tional fluid dynamic (CFD) methods to aid the design

and analysis of aircraft propulsion components and sys-
tems. A review of this effort is given by Anderson. 1 Re-

cently, CFD capabilities have improved, and both parabo-

lized and full Navier-Stokes computer programs are used

to predict the flows in these ducts. The highly three-

dimensional and perhaps separated flow in a diffusing

S-duct presents a substantial challenge to CFD. A careful

comparison of numerical predictions with detailed exper-

imental data is necessary to establish and improve the

numerical accuracy.

The purpose of the present study is to predict the

measured flow field with a full Navier-Stokes (FNS) com-

puter program, the PARC3D code, of a representative

three-dimensional duct geometry with strong secondary

flows. The full, three-dimensional Navier-Stokes equa-

tions have been solved using algebraic and k - c turbu-

lence models. CFD computations of the flow through a

diffusing S-duct, with concurrent experimental measure-

ments were performed at NASA Lewis Research Cen-

ter. This concurrent approach allows a synergism that is

beneficial to both efforts and proved to be particularly

successful in the recently completed study of circular-to-

rectangular transition duct flows. 2

The computational and experimental work was un-
dertaken to extend previous studies, to provide for ad-

ditional CFD validation data and to help model flows

with strong secondary flows and boundary layer separa-

tion. Previous experimental studies in the incompressible

range have been considerable. 34 Vortex pairs are evident

in the exit planes of S-ducts, transition ducts, and bend-

ing rectangular ducts. These vortices are due to secondary

flows induced by pressure gradients. However, although
benchmark CFD validation data exist for incompressible

flow, few data sets are available for compressible CFD
validation.

Previous incompressible and compressible flow nu-

merical predictions have been extensive. 9-1_ A possible
limitation of both algebraic and k - ¢ turbulence model-

ing for strong secondary flows has been noted by several

researchers. The mechanism that produces the low total



pressureregionattheexit isaninviscidrotationalphe-
nomenon,providedaninletboundarylayeris present.
Thus,correctinletboundaryconditionsareobviously
needed.Previouscomputationalinvestigationsappearto
belimitedtoFNSorPNScomputationsthatdonotac-
countfor theupstreameffectof massflowadjustment,
boundarylayergrowth,andflowblockage;i.e.,thepub-
lishedsolutionshavespecifiedinletconditions,withthe
exceptionofRef.15.In thispresentstudy,theupstream
staticconditionswereallowedtoadjust.

This studyextendsthe computationalstudyof
Harloffet al. 16"t7 and Smith et al. 18 In the previous stud-

ies the computed total pressures were generally in good

agreement with the experimental data of Vakili et al. 19,

and the velocity vectors were in qualitative agreement

with the experimental data. The predicted static pres-

sures did not compare as well with the measurements,

possibly due to a failure of the turbulence model to prop-

erly account for secondary flow and imbedded vorticity

effects, or possibly to undocumented disturbances in the

inflow or inadequate grid resolution. However, the two

counter-rotating vortices at the S-duct exit were predicted.

It was concluded that the modeling could be improved by

incorporating a finer grid and more advanced turbulence
models. The first grid point in the sublayer had a y+ of

about 14. The complete duct length should be modeled

because of the importance of vorticity generation effects.

Additional fundamental experimental and numerical stud-

ies were recommended to properly address the turbulence

modeling issues with imbedded vortices and strong sec-
ondary flows. The present study is conducted with a

much finer grid with the first points off the duct surface

having a y+ value of order 1. The total number of grid

Fig. 1 The geometry of the diffusing S-duct

points for the present study is 500,479 compared to the

previous number of 82,810.

Experimental and Numerical Methods

The geometry of the diffusing S-duct examined in

this study is shown in Fig. 1. The duct centerline

is defined by two circular arcs with an identical radius
of curvature, R, and subtended angle 0m,_/2. For the

duct constructed, R = 40.2 inches and Oma_:/2 = 30 °.

Both arcs lie within the zz-plane as shown in Fig. 1.

The coordinates (zct, yet, zct) of the duct centerline are

given by Eq. (1). The cross-sectional shape of the duct

perpendicular to the centerline is circular. The radius of
the cross section varies with the arc angle 0 and is given

by Eq. (2). In Eq. (2) rl is the radius at the duct inlet

and r2 is the radius at the duct exit (with corresponding

inlet and exit diameters D1 and D2). The values used for

construction are r_ = 4.02 inches and r2 = 4.95 inches

which provide an area ratio of A2/Aa = 1.52. The offset

of the duct resulting from centerline curvature is 1.34Dx,

and the length of the duct measured along the centerline

is 5.23D1. This duct is larger than, but geometrically

similar to, the duct studied by Vakili et al. 19

Oread,

For 0 < 0 <
2

x_t = Rsin0

Yet : 0

zct = RcosO- R

For 0m,x <0< 0,n,x
2

Xct = 2Rsin (_LS") -

Yet = 0

zct : 2Rcos (_'_'L) -

2Rsin (Oma x -- O)

R - R cos (Om._:-- O)

(0

r 1 + 3 (r__2 1)( 0m-_ ) _ (r__) (0____) a
--= - -2 -1
rl \rl

(2)

While discussing numerical and experimental re-

suits, axial position will refer to distance to cross stream
planes measured along the duct centerline and normal-

ized by the duct inlet diameter, s/D_. Position within

cross stream planes is specified by the po'lar angle 4_,

measured from the vertical in a positive clockwise direc-

tion as shown in Fig. 1, and the radial distance from the
centerline r.

Experiment

Experimental measurements of the duct flow field

were made at NASA Lewis Research Center using the



InternalFluidMechanicsFacility.This facility was de-

signed to support the research of a variety of internal

flow configurations and is described in detail by Porro et

al. 2° Smooth circular pipes of appropriate diameter were

attached upstream and downstream of the S-duct to pro-

vide a uniform incoming flow and a smooth, continuous

condition for flow exiting the duct. The lengths of the

upstream and downstream pipes were each 3.75D_. De-
tailed measurements were made with calibrated three- and

five-hole probes at cross-stream planes near the duct's in-

let (at s/DI = -0.5, one-half inlet diameter upstream of

the S-duct inlet) and exit (at s/D, = 5.73, one-half in-
let diameter downstream of the S-duct exit). The surface

static pressure was measured through 220 static pressure

taps located axially at angles 4, = 10', 90 ° , and 170 ° and

circumferentially within cross stream planes at s/D_ =
0.96, 2.97, and 4.01. The duct inlet Mach number was

M = 0.6 for all experimental measurements. The in-

let boundary layer thickness was approximately 4% of

the duct inlet diameter and the Reynolds number, based

on inlet diameter was approximately Reo_ = 2.6 x 106.

Additional information about the experimental program
is contained in Ref. 21.

Computation

The PARC3D 22 computer program solves the

full, three-dimensional Reynolds-averaged Navier-Stokes

equations in strong conservation form with the Beam and

Warming approximate factorization algorithm. The im-

plicit scheme uses central differencing for a curvilinear

set of coordinates. The code was originally developed
as AIR3D by Pulliam and Steger; z3 Pulliam later added

the Jameson _ artificial dissipation and called the code

ARC3D 25 Cooper adapted the ARC3D code for internal

propulsion application and named the code PARC3D. The

computations were carried out on the NASA Lewis YMP

computer.

The Baldwin-Lomax 26 algebraic turbulence model,

developed for two-dimensional flow, assumes is,tropic

equilibrium turbulence and has no allowance for sec-

ondary flow effects. The computer code uses only vor-

ticity in the local boundary layer to avoid secondary flow

effects on the eddy viscosity. The length scale search

was restricted to be within the wall boundary layer. A

low Reynolds number k - _ turbulence model of Speziale
et al. 27 was also used. The numerical solution algorithm
is that of Nichols. 2s

The grid was developed using trigonometric rela-

tions for the walls and centerline from Eqs. (1) and (2).

The computer program Gridgen was used to build the

grid from the definition of the walls and centerline. Three

blocks were used with O grid distribution of 32 x 71 x
53, 69 x 71 x 53, and 32 x 71 x 53 in axial, circumfer-

ential and radial directions respectively. A fourth block

with an H grid was used in the center with distributions
of 129 x 11 x 15. The largest grid models the S-duct,

the other two grids model the circular pipes located up-
stream and downstream of the S-duct, as described in the

previous section. The first point off the duct surface has

a V+ value of less than 1.

The boundary conditions used were no slip at the

walls, total pressure and temperature specified at the entry

of the circular pipe upstream of the S-duct, static pressure

specified at the exit of the circular pipe downstream of the

S-duct, and symmetry about the zz-plane. The entrance
velocity and static pressure were solved by averaging an

incoming and an extrapolated interior Riemann invariant.

Results and Discussion

The total and static pressures in this section are
presented as pressure coefficients given by Eqs. (3) and

(4). The pressures P0 and p represent the local values

of total and static pressure. The reference variables,

subscripted cl (centerline) or wall, were evaluated at a

location one radius upstream of the S-duct inlet (s/Dt =

-0.5).

C,,o - P0 - Vw_a_ (3)
P0,cl -- Pwall

Cp - V-Pw_n (4)
P0,cl -- Pwall

Plots of velocity presented in wall coordinates have been

normalized by the conventional definitions, Eq. (5) where

p, v, and rw represent density, kinematic viscosity, and
wall shear stress.

_+ _- It y+ U*y It* 4 r/"__ = D, = (5)
It* ' P' Vp

Skin friction results are presented as a local skin friction

coefficient, defined by Eq. (6)

r,o (6)_'J' -- 1 2
_Pcl Ue!

The computed upstream total pressure coefficient

contours (at s/D, = -0.5), as shown in Fig. 2, agree
well with the experimental measurements. Fig. 3 shows

the velocity profile in wall coordinates. Experimental val-

ues have been plotted with symbols and numerical results

with lines. Calculations for both the k - • and algebraic

turbulence models agree well with the experimental data.

Both experimental and numerical results show negligible
circumferential variation, indicating minimal upstream in-

fluence of the S-duct at this location. The algebraic model

results indicate a slight velocity increase at _ = 10'. The

two predictions and the experimental data indicate that the

entrance velocity profile was a fully developed turbulent

boundary layer profile.

Values of the computed (lines) and experimental

(symbols) surface static pressure coefficient at 4' =

10',90", and 170' are shown in Fig. 4 for both turbu-

lence models. The shaded region from 2.02 < s/D1 <_



(a)

I

Experiment Computation

(b)

Experiment Computation

Fig. 2 Total pressure coefficient contours

at s/D1 = --0.5, (a) k -- ¢ turbulence

model, (b) algebraic turbulence model.

4.13 in Fig. 4 indicates the location of separation at

_b= 180 ° as determined by experimental surface flow vi-

sualization. The k - c and the algebraic turbulence mod-
els predict separation between 2.59 < s/Dl < 4.25 and

2.69 < s/D1 < 4.52, respectively. For computational

results, separation was determined by examining the ve-
locity at the first grid point off the duct surface along

= 180 °. Note that the predicted separation lengths
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Fig. 3 Boundary layer wall coordinate plots at

s/D1 -- --0.5, k - _ turbulence model

(upper), algebraic turbulence model (lower).
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Fig. 4 Axial surface static pressure
coefficient, (a) k - ¢ turbulence model,

(b) algebraic turbulence model.

of 1.66 (k - _ model) and 1.83 (algebraic model) are
shorter than the experimental value of 2.11. The com-
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Fig. 5 Circumferential surface static

pressure coefficient, (a)k - _ turbulence
model, (b) algebraic turbulence model.

puted pressures upstream of the experimental separation
region are in good agreement with each other and with
the experimental data. The flow deceleration that results

from increasing duct cross sectional area and duct sur-
face curvature stops at ff = 900 and 170 ° in the region
2 < s/Dl < 3 because of aerodynamic flow blockage.
The flow blockage results from the boundary layer sep-
aration. Low momentum fluid is convected away from
the duct surface by secondary flow. The k - e model fol-
lows the experimental data in the separation region more
closely than the algebraic model. Both turbulence models
predict higher values of static pressure than was observed
experimentally. The constant value of static pressure at
both _ = 90° and 170° in the region 2 < s/D] < 3,
is not predicted by either turbulence model. However, at
@= 170° the k - c turbulence model predicts a constant
surface static pressure at s/D] = 2.5 and the algebraic
model predicts a similar result at s/Dx = 3.2. Thus
the angular extent of the boundary layer separation is
under predicted, and the predicted separation occurs fur-
ther downstream than was observed experimentally. This
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Fig. 6 Skin friction coefficient, (a) k -

turbulence model, (b) algebraic turbulence model.

indicates that the turbulence models do not correctly ac-

count for boundary layer separation and/or strong three

dimensional flow effects. Both turbulence models ap-
proach the experimental data downstream of the separa-
tion.

The three vertical lines in Fig. 4 at s/D_ = 0.96,
2.97, and 4.01 indicate the location of the circumferen-
tial surface static pressure measurements shown in Fig.
5. Good agreement in the computations for both turbu-
lence models is observed at s/D_ = 0.96, upstream of
the boundary layer flow separation. Both computations of
surface static pressure at s/D] = 2.97 and 4.01 are higher
than the experimental data. The k - ¢ model predictions
are closer to the experimental data and the results for both
turbulence models are similar in shape to the experimen-
tal data. The higher values of computed static pressure
at s/D] = 2.97 and 4.01 indicate that the blockage re-
sulting from the boundary layer separation, as previously
mentioned, is under predicted by both turbulence models.

Values of the computed skin friction coefficient at
= 100,90 *, and 1700 are shown in Fig. 6. At



(b) (a)

(c)

Fig. 7 Streamlines near the S-duct surface,
(a) k - 6 turbulence model, (b) algebraic

turbulence model, (c) experimental result.

s/D1 < -0.5 the skin friction is independent of _b for
the k - e model and is lower at _b = 10 ° than either

900 or 170 o for the algebraic model. Upon entering the

duct the skin friction first increases at _b = 1700 as the

flow accelerates and decreases at ¢ = 10 ° as the flow

decelerates. Skin friction decreases at s/D1 > 0.3 as

the whole flow decelerates. The values predicted by both

turbulence models are similar both up and downstream

of the separation. The zero skin friction region is longer

in the algebraic case than the k - _ case. The skin fric-

tion coefficients are expected to be negative in separated

flow. The numerical models prevent the C! values from

becoming very negative. Experimental data, available

at only two axial locations, show values of skin friction

higher than was predicted.

The computed streamlines near the wall for both
turbulence models are compared with the experimental

surface flow visualization in Fig. 7. The flow in Fig. 7

is from left to right and the view is looking in the vertical

z-axis direction (or the projection onto the horizontal

xy-plane). The experimental results show only the boxed

region indicated in Fig. 7 (a) and Co). The similar features

include large flow angles (relative to the x-axis) and the
region of separation indicated by the pair of spiral nodes.

The results predicted by the k-6 turbulence model appear

to agree better with the experimental results than the

algebraic turbulence model.

(b)

(c)

Fig. 8 Streamlines along the S-duct centerline,

(a) k - c turbulence model, (b) algebraic
turbulence model, (c) experimental result.

The predicted streamlines along the duct centerline

are shown in Fig. 8. The experimental result was

obtained by placing a thin metal plate between the two

symmetric halves of the S-duct, spanning the duct in

the xz-plane. Symmetry requires the xz-plane of the
flow field to be a stream surface, therefore not allowing

flow across this plane. However, the physical presence

of the plate within the S-duct does introduce shear and
blockage, so the comparison shown in Fig. 8 should be

considered qualitative. The streamlines predicted by the

k - _ turbulence model appear more like the experimental

data, particularly in the separated region. Following
reattachment, both turbulence models predict the flow

field region strongly influenced by the separation to lie

below the S-duct centerline while the experimental results

indicate this region extends above the duct centerline.
This feature is related to the late CFD separation and

6



Experiment Computation Experiment Computation

(a) (a)

Experiment Computation

(b)
(b)

Fig. 9 Total pressure coefficient contours

at z/DI = 5.73, (a) k - c turbulence
model, (b) algebraic turbulence model.

an under prediction of the separation length and lateral

extent. The size of the separation, and the aerodynamic

blockage, is under predicted by both models.

Contours of the total pressure coefficient at the

downstream location (at s/D_ = 5.73, one-half inlet di-
ameter downstream of the S-duct exit) are shown in Fig.

9. The experimentally determined region of diminished

total pressure extends above the duct centerline and oe-

Experiment Computation

Fig. 10 Axial Mach number contours

at s/D1 = 5.73 (a) k - c turbulence

model, (b) algebraic turbulence model.

ner boundary layer near the vortices than the algebraic

model or the experimental data. The axial Mach number

contours shown in Fig. 10 are similar except that the 0.4
contour from the experiment is above the duct centerline

and above both predicted 0.4 contours. The transverse

components of velocity, shown in Fig. 11, are similar to

cupies more area than is predicted by both turbulence the experimental vaIues. However, the center of the vor-

models. The predicted values of total pressure are lower

in this region then the experimental values. This geomet-

rical difference is undoubtedly related to the late separa-

tion prediction and the under prediction of the separation

size. The predicted pair of counter-rotating vortices is
too concentrated compared to the experimental vortices.

The shapes of the predicted vortices differ and the k - c

vortices are rounder. The k - c model predicts a thin-

rices predicted by the k - ¢ turbulence model are lower

and further from the symmetry plane than the algebraic

turbulence model predicts. Both turbulence models pre-

dict transverse velocities in the region of the vortices that

are greater than was observed experimentally, and trans-

verse velocities in the core flow region that are less than

was observed experimentally. Because the calculations
under predict transverse velocities in the core flow re-



(a)

(b)

Experiment Computation

Experiment Computation

Fig. 11 Transverse velocity components

at s/D1 = 5.73 (a) k - _ turbulence
model, (b) algebraic turbulence model.

gion, the predicted vortices are not convected as far from

the duct surface as was observed experimentally.

The velocity profiles in wall coordinates are shown

in Fig. I2 at the downstream measurement plane. The

experimental data and the numerical predictions are in

reasonable agreement in the log linear portion and in

qualitatively agreement in the wake region. The k -

turbulence model predicts u + values in the log linear

region that are lower than both the numerical results and

the results predicted by the algebraic turbulence model.

The velocities at _b= 100 are higher than the velocities

at _b = 170 ° which lie within the region of diminished

total pressure. This large departure from the law of the
wall has been noted by Schubauer and Klebanoff 29, and
Baldwin-Lomax. 26 and is characteristic of the convected

vortices.
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Fig. 12 Boundary layer wall coordinate plots

at s/Dt = 5.73, k - ¢ turbulence model

(upper), algebraic turbulence model (lower).

Conclusion

The previous CFD studies of compressible, diffus-

ing S-duct flow _7' is indicated an inadequacy in either the

grid resolution or the algebraic turbulence model used.
This work extends the previous studies by utilizing a

finer grid and the addition of a k - _ turbulence model.

New calculations were completed and compared with a

new set of comprehensive experimental data. The com-

puted flow fields are in reasonable agreement with the
experimental flow field. Both turbulence models under

predict the length and angular extent of the boundary
layer separation, and the predicted separation occurs fur-

ther downstream than was observed experimentally by

approximately 0.5 s/D_. Both turbulence models predict

transverse velocities in the region of the counter-rotating

vortices that are greater than was observed experimen-

tally, and transverse velocities in the core flow region
that are less than was observed experimentally. It is con-

cluded that neither turbulence model adequately accounts

for strong secondary flows with separation.
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