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Summary

During the first part of this fourth reporting period research has concentrated on performing a

detailed evaluation, to zero order, of the guidance algorithm developed in the first period taking the

numerical approach developed in the third period. A zero order matched asymptotic expansion

(MAE) solution that closely satisfies a set of 6 implicit equations in 6 unknowns to an accuracy of

10 -10, was evaluated. Guidance law implementation entails treating the current state as a new

initial state and repetitively solving the MAE problem to obtain the feedback controls. A zero order

guided solution was evaluated and compared with the optimal solution that was obtained by

numerical methods. Numerical experience shows that the zero order guided solution is close to

optimal solution, and that the zero order MAE outer solution plays a critical role in accounting for

the variations in Loh's term near the exit phase of the maneuver. However, the deficiency that

remains in several of the critical variables indicates the need for a f'u'st order correction. During the

second part of this period, we explored meth_s for computing a first order correction.
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1. Introduction

The primary objective of this research effort is the development of near optimal guidance

solutions for aeroassisted orbit transfer vehicles that are implementable in real time and on-board

the vehicle. Therefore, solutions that are both near optimal and that require a minimum of

computation are of primary interest. During the first reporting period, the application of matched

asymptotic expansions (MAE) to the problem of inclination change with minimum energy loss has

been explored. A complete set of integrals for the state and costate equations for this problem were

found1, 2. Enforcing the matching conditions, boundary conditions and optimality conditions

results in a set of 20 nonlinear algebraic equations. The solution of these equations provides the

information needed to form a guidance algorithm. An attempt to solve this set of equations was

made during the second reporting period, but was unsuccessful due to its complexity 3. An

alternative approach that greatly simplifies the solution procedure was taken in the third period

during which it was found that, by exploiting the structure of the MAE solution procedure, the

original problem could be further reduced to a set of 6 implicit equations in 6 unknowns. During

the first part of the fourth reporting period research has concentrated on performing a detailed

evaluation, to zero order, of the guidance algorithm developed in the first period taking the

numerical approach developed in the third period. Guidance law implementation entails treating the

current state as a new initial state and repetitively solving the MAE problem to obtain the feedback

controls. The optimal solution, obtained using numerical methods, serves as a reference solution

to compare with the guided solution. During the second part of the fourth reporting period, we

have explored methods for obtaining first order correction.

A straightforward approach entails numerical solution of the first order Euler-Lagrange

equations (state and costate system). This approach requires that the state transition matrix be

obtained by quadrature, and a second quadrature is needed to deal with the forcing term. The state

transition matrix is obtained by computing unit responses and collecting them in a matrix. This

approach appears to be computationally intensive if it has to be performed on line (although the

quadratures can be performed in parallel), but it offers the potential of precomputing the zero order

solution and the quadratures and storing them for later use in flight. An alternative approach

consists of performing a MAE expansion the Hamilton-Jacobi-Bellman partial differential equation,

and performing a single quadrature to obtain the first order costates. Although this requires only a

single quadrature, it must be performed on-line at each control update. It has been shown that

using this approach, the first order correction for the outer costates do not contribute to the

composite costates, thus it is sufficient to obtain the first order correction for the inner costates

alone. The current effort entails using this approach to obtain a numerical evaluation of a first

order guided solution.
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2. Current Research Results

2.1 Zero Order MAE Approximate Solution

The numerical method used to obtain the zero order MAE solution is developed in Ref. 4. A

summary of this procedure and the results from Ref. 1 are presented below. A complete set of

integrals for the state and costate equations for the problem of inclination change with minimum

energy loss, were found in Ref. 1. Enforcing the matching conditions, boundary conditions and

optimality conditions results in a set of 20 nonlinear algebraic equations. The solution of these

equations provides the information needed to form a guidance algorithm. By exploiting the

structure of the MAE solution procedure the original problem is simplified by further reducing it to

a set of 6 implicit equations in 6 unknowns. The unknowns are the common parts of the inner and

outer solution (which are equal to one another). The iteration procedure involves repeated solution

of the inner and outer problems using the common parts as artificial boundary conditions. The

common parts are adjusted in the iteration process until the actual boundary conditions are satisfied

by the composite solution. The matching conditions are enforced at each iteration by simply

equating the inner and outer common parts.

Summary of Results from Ref. 1

The reduced three dimensional point mass equations of motion for a lifting vehicle over a

spherical non-rotating planet are given by:

du/dh = -Bu(1 +_,2)e-h/E/eE*sin_, _ 2/(1+h) 2 (1)

d_//dh = B_,coskte-h/_/esin_ , + [ 1/(1 +h)- 1/u( 1 +h)2]cot_/ (2)

d_/dh = BLsinl.tehle/esin'ycos'y (3)

where the parameter e is the ratio of the atmospheric scale height to the minimum trajectory radius

rs. For Earth the value of e is approximately 1/900. The definitions for the remaining variables are

given below.

The controls are the normalized lift coefficient _. and the bank angle It which are assumed not

to be beyond there limits. The optimal control is obtained as a function of the state and costate

variables by solving the optimality conditions. The resulting expressions are:
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_, = E*(p_,cosla+pvsinl.t/cosT)/2Upu (4)

tanl.t : p¥/p_,cosy (5)

where Pu, P_, and p_ are the associated costate variables.

The zero order equations for the out_er problem can be obtained by simply taking the limit as

e approaches zero on the right hand side of Eq's. 1-3. The general solution for the outer system to

zero order in e is given by:

u ° = 2[c1+1/(1+h)] (6)

cost ° = c2/(1 +h)u ° 1/2 (7)

_/o = C3 (8)

pO = _a2/2uO+al (9)

p_ = a2tanTO (10)

P_= a3 (11)

The dimensionless variables h and u appearing above are defined in terms of the original

dimensional state variables as:

h = (r-rs)/rs (12)

u = V2/gsrs (13)

where rs is the reference radius corresponding to the lowest point in the trajectory. In the inner

region, where the aerodynamic force is dominant, a new stretched altitude h and state variables W

and V are defined as:

W = Be -_, h = h/e, B = CLPss/2ml5 (14)

E ln(1/gsrsU), E* C */(2 *= L / D (15)
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Thezeroorderequationsfor theinnerproblemcanbeobtainedby expressingthesystemin

Eq's. 1-3in termsof the innervariablesappearingin Eq's.14-15,andsimply takingthelimit ase

approaches zero on its right hand side. The general solution for the inner system to zero order in e

is given by:

_= -k1_2/2 + k2_+ k3

w °= [k1_3/6 - k2_2/2 - k3_ + k4]/(I

v°= (a+l/c)x_ ° + t_[(_/°kl-k2)3]/3kl + k5

= (p%)v° + c

pO = constant

pO = constant

(16)

(17)

(18)

(19)

(20)

(21)

where

m m

kl = P°/2o2p°, k2 = -c/2oP ° (22)

The superscript "o" denotes the fact that these are the zero order solutions in the expansion

variable, e = 1/_rs. The overbars in the above equations are used to distinguish an inner solution

variable from an outer solution variable.

In the above expressions V is the velocity, r is the radius from the earth center, z is the

altitude above sea level, _ is the inverse of the scale height associated for an exponential air density

model, p s is the reference air density at r = rs, s is the reference area, m is the mass and CL* and

CD* are the lift and drag coefficients corresponding to the maximum lift to drag ratio. The

subscript s is used to denote the reference radius value, corresponding to the lowest altitude of the

trajectory. Note that h---T=0 at this reference radius, and that h was used as the independent

variable for the original problem and for the outer solution, while _/was used as the independent

variable for the inner solution.

The inner solution variables w and v are related to the outer solution variables h and u by

the transformations in Eq's. 14 and 15. The outer solution costate variables can be expressed in

terms of the corresponding inner solution costate variables using:
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P--_u= -E°_°v°/U' P--_= -2o'_ (23)

wherea is the normalized horizontal lift component given by

a = [1/(1 + k22 + 2klk3)] 1/2 (24)

A uniformly valid zero order approximation for the optimal solution is constructed by

adding the outer and inner solutions, and subtracting their common pans

xC0a) = xO(h) + _(g)- xO(0) (25)

The superscript c is used to denote this composite solution, and x is used to denote any of the

variables of interest. Note that the composite solution must have h as the independent variable, to

be consistent with the original MAE problem formulation. Also note that the matching conditions

require xO(0) = _-_(00), and that the boundary conditions are satisfied using the composite solution.

The entry and exit Keplerian arcs (outer solution) are different in their orbital parameters

thus there are two separate outer solutions (called the left and right solutions in Ref. 1). In total,

there are 18 integration constants (twelve from the two outer solutions and six from the inner

solution) that need to be evaluated to obtain a composite solution. The reference radius (rs) and the

horizontal component of lift (¢J), which was shown to be constant to zero order in _, bring the total

number of unknowns to 20. The left and fight matching conditions and the boundary conditions

for the composite solution provide 18 algebraic equations. Two additional equations are obtained

by using Ha = 0 (Eq. 24 above) and the fact that r = rs when _ = 0. This gives a total of 20

coupled algebraic relations between the constants and an iterative method is needed to calculate

them.

Figure 1 presents a summary of results from Ref 4. The converged zero order MAE

solution for % v, P% Pu and the controls _ and t.t indicate that the composite solutions for T and p_,

are significantly different from the inner solution. In particular, the major variation in p_, is due to

the outer solution, which (as explained in Ref. 1) in effect amounts to a correction for the large

variation in Loh's term during the exit phase. The implications of this important correction have

been fully addressed in Ref. 1, and will not be elaborated here. The normalized lift control _, is

always near 1 corresponding to flight a near maximum lift to drag ratio. The bank angle la is

always near 90 degrees indicating that most of the aerodynamic force is utilized in performing the

turn.
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2.2 Zero Order Guided Solution

Closed loop guided solutions are obtained by using the optimal control expressions given in

Eq.s 4 and 5. These expressions involve both the states and the costates thus knowledge of both

states and costates is needed to evaluate the controls. Assuming that the states are available for

feedback, only estimates of the costates are required at each control computation along the

trajectory. Feedback implementation en_streating the current state (from the simulation) at each

control update as a new initial state, and calculating the costate values corresponding to the same

time instant. The estimate for these costates (to zero order) are obtained by repetitively solving the

zero order MAE problem.

At the first step, an initial guess and boundary conditions are supplied to initiate the procedure

of obtaining a zero order MAE converged solution. Next, the costate expressions in Eq's. 9-11

and 19-21 can be evaluated as a function of the corresponding independent variables and used in

Eq. 25 to construct the composite costate expressions which are in turn used in Eq's 4 and 5 to

compute the controls. When a predetermined time increment has been reached, the current states

are used as initial conditions for the next MAE calculation. It follows that the initial guess is

available in every step of the zero order MAE calculation after the first.

For between-updates control computation, the integration constants from the last update are

used. The transformations defined in Eq's. 12-15 are used to transform the simulated dimensional

variables into the inner and outer dependent and independent variables. The transformed altitude h

is used in Eq's. 6,7,9 and 10 to compute the left and right outer costates. The heading xV° is used

in Eq. 19 to evaluate P)', and Eq. 25 is used to calculate the composite costates. The composite

costates and the current _' and u (from Eq. 13) are used in Eq's. 4 and 5 to evaluate the optimal

controls between the MAE update calculations.

During the exit phase, the left outer solution is discarded, and matching is required only

between the right outer solution and the inner solution. In this case, the constants of integration for

the inner solution are viewed as free parameters used to satisfy the boundary conditions.

Numerical Results

Fig's 2 through 6 present a comparison between the optimal solution and the zero order

guided solution for A_=20 o. The corresponding control time histories are given in Fig's. 7 and 8.

Loh's term (corresponding to the optimal solution) is given in Fig. 9. The time increment between

guided solution updates is 5 seconds, with the control computed between updates at every

integration step following the procedure described earlier. These results indicate that the guided

solutions and the optimal solutions are in a very good agreement throughout the trajectory. The
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error thatdoesexist in someof theguidedsolutionvariables,for examplethey andthealtitude(z)

solutions, indicate the needfor afirst ordercorrection. Fig's 4 and 7 clearly indicatehow the

variation in Loh's term neartheendof thetrajectoryis partially accountedfor in the zeroorder

guidedsolution. Specifically,thenormalizedlift coefficient_.givenin Fig. 7 doesnot saturatein

the exit phaseasin previousstudies5, but reducesto nearzero. Fig. 10comparesthe velocity
historiesnear the end of thetrajectory. The optimal and guided solution valuesfor terminal

velocitiesare6751m/sex:and6736m/secrespectively.Thechangeof theguidedvaluefrom the

optimaloneis 15m/sec.Theseresultsaretobe presentedat theAIAA Guidance,Navigationand

Control Conference,Hilton Head,SC,August10-12,19926.
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2.3 First Order Correction

The results of Section 2.2 indicate the need for a first order correction due to the deficiency

that remains in some of the critical variables, for example the _, and the altitude (z) solutions (Fig's.

2 and 6). A straightforward approach to obtain a first order correction is by retaining the O(e)

terms in the expansion of equation 1-3 and the corresponding costate equations. This result in a

nonlinear zero order system the solution to which was obtained analytically in Ref. 1, and a linear

system with variable coefficients for the first order terms of the expansion. The solution to the fit-st

order linear system can be obtained by numerically constructing the state transition matrix and

evaluating the first order costates at the initial time. The costates values to first order are used in

the control expressions 4-5 which provide the feedback control functions for the guided solution.

The drawback of this approach is that the state transition matrix must be computed from unit

responses. This means that 2n quadratures are required (where n is the state dimension), followed

by an additional quadrature to handle the forcing term. The 2n quadrature for the state transition

matrix computation can be performed in parallel. The advantage is that it offers the potential of

precomputing the zero order solution and the quadratures and storing them for later use in flight 7.

This issue will be explored during the next reporting period

An alternative approach to obtain guided solutions to higher orders is to assume that the states

are available for feedback, thus only estimates of the costates are needed at each control

computation along the trajectory. In Ref. 5 a regular perturbation method was used to obtain a first

order correction for the costates by performing quadratures at each control update. However, the

problem addressed is actually the inner part of a two time scale analysis based on singular

perturbation theory (Ref. 1). Thus there is no correction for the variation in Loh's term in the zero

order solution. In theory, the solution in Ref. 5 is not a uniformly valid approximation to any

order in e.

Summary of Results from Ref. 5

The dynamic system is given by

= f(y,u) + eg(y) (26)

where y is an n-dimensional state vector, u is an m-dimensional control vector, e is a small

parameter, "cis the independent variable, 5; = dy/dx, x is the initial state and t is the initial value of

the independent variable. The optimization problem is to find u to minimize J=¢(yf) subject to
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dynamicsof Eq' (1) and the terminal constraint _(yf)=0. The Hamilton-Jacobi-Bellman partial

differential equation (HJB-PDE) is

Pt = - H°pt (27.a)

Hopt = min H = Px(f°P t + eg) (27.b)
u_U

where U is a class of continuous-bounded controls, fopt = f[y,uOpt(x,t)], and u°pt(x,t) is given by

the optimality condition Hu = 0, assuming that Huu is positive definite. P(x,t) is the optimal return

function defined as the performance index for an optimal path starting at x and t and satisfying the

terminal conditions. P(x,t) is expressed as a series expansion in E as

P(x,t) = _ Pj(x,t)e j (28)

j=o

and the optimal control as
oo

u°Pt(x't) = u°Pt(x'Px't) = Z uJ(x't)_j

j=O

(29)

where the expression for u°pt(x,t) is obtained by substituting Eq. (28) into the expression obtained

from the optimality conditions u°pt(x,Px,t) and expanding the function. Hence, by determining the

partials Pjx, an optimal control law in a feedback form can be constructed. By expanding f(y,u)

and substituting the expansions for f(x,t) and P(x,t) into Eq. (27.b), the expansion of the HJB-

PDE is given by
oo _ oQ

Pt = Z PJ, ej =-( Z PJ, ej )( eg + Z fJej ) (30)
j=O i=0 j=O

Assuming that an analytic solution for the zero order problem is available, the first order HJB-PDE

is given by _,

P1, + Pl,_0 vt = - Po, g(x) (31)

Partial differential equations of this type are solved by the method of characteristics. The

characteristic curves of the HJB-PDE, for any order of pj, are given by the zero order optimal

trajectory

-14-



_"= fo (32)

whose solution is denoted as y0(x; x, t).

P_(x, t) = - Po.g(y)d'_

Then the solution for PI in Eq. (31) is given by

(33)

The partials PI, (the costates), which are needed to construct the optimal control ul, are given by

differentiating Eq. (33) with respect to the arbitrary current conditions x as follows:

PI_ = _)pl/_X =- _)[Po_g(y)]/_x dz - [Po.g(y)]tfOtf/Ox (34)

and are valid only at the initial time t.

First Order Correction in the Context of the MAE Problem

In Ref. 1 it was shown that the problem in [5] is actually the inner part of a two time scale

analysis based on singular perturbation theory where the constant Loh's term approximation, for

which complete analytic results are available, corresponds to the zero order solution in [5]. It

follows that to generalize the approach in [5] to two time scale problems, the analysis in [5] has to

be carded out for the inner and outer sub-problems separately, and the boundary conditions have to

be satisfied by the composite solution of the return function. Following the assumption that led to

Eq. 28 in the context of the MAE problem, each term in the expansion is actually the composite

solution of the return function to any order in e. The first order term of the composite return

function is constructed by adding the outer and inner first order solutions and subtracting the

common part

P](x,t) = P_(x,t) + P-_l(x,t/e) - P_(x,O) (35)

In Appendix A it is shown that the first order return function is constant with respect to the

independent variable, thus it does not contribute to the first order composite return function.

Hence the inner first order return function, evaluated along the zero order inner analytic solution

(Ref. 1) and satisfying the boundary conditions, serves as the composite first order correction for

the return function. Consequently, the analysis in [5] can be used to obtain a first order correction

for the costates with some modifications that pertain to two time scale type problems. Specifically,
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Eq. (28) is understoodto betheexpansionof theinnerreturnfunction,andtherestof theanalysis

in [5] is valid up to Eq. (33) where the integration is performed along the zero order inner
characteristiccurve. Themainconceptualdifferenceis in theway thecostatesareobtainedin Eq.

(34). In [5], thederivativesin Eq.(34)areof thezeroordersolutionwith respectto thetrue initial
conditionsbecausethenotionof innerandoutersolutiondo notexist in theregularperturbation

formulation thatwasusedthere. In thecontextof theMAE problem,thederivativesin (34) are

understoodto beof thezeroorderinnersolutionwith respectto thetrue initial conditions. In Ref.

1numericalevaluationof thezeroordersolutionamountsto asolutionof asetof 20equationsfor

18 integrationconstantsandtwo parameters.This maysuggesta practicalway to calculatethe

derivativesin (34)of the innersolutionwith respectto thetrueinitial conditions.

3(innersolution) 3(inner solution)

3(true initial conditions) 3(20 parameters)

3(20 parameters)

x 3(tree initial conditions) (35)

The details of this method are given in Appendix A. The composite costates to first order, together

with the measured states, are used in Eq's. 4 and 5 to obtain the control expressions which are

used in the simulation program.

2. Future Research

During the next reporting period we plan to complete the development and evaluation of the

guidance algorithm including first order corrections. Both approaches outlined in the preceding

section will be evaluated, including the possibility of precomputing and storing the zero order

solution and all the required quadratures for the first order solution for the first method discussed.

This will form an complete evaluation of MAE methods for skip trajectories from the perspective of

guidance law development.
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Appendix A

Auxiliary Derivations

A.I The first order outer costate

Equations (1-3) can be written in the following form

_)y/Oh = f(y,h) + g(y,u,h/e)/e (A.I)

where y is an n-dimensional state vector, u is an m-dimensional control vector, e is a small

parameter and h is the independent variable. The optimization problem is to find u to minimize

J=_b(yf) subject to dynamics of (A. 1) and the terminal constraint V(yf)--0. The outer Hamilton-

Jacobi-Bellman partial differential equation (HJB-PDE) is

Pt = - H°pt (A.2)

Hopt = min H = Px(f + g°pt/e) (A.3)
ue U

where U is a class of continuous-bounded controls, gOpt = g[y,uOpt(yi,hi)], and u°pt(yi,hi) is given

by the optimality condition Hu = 0, assuming that Huu is positive definite. P(yi,hi) is the outer

optimal return function defined as the performance index for an optimal path starting at Yi and hi

and satisfying the terminal conditions. P(yi,hi) is expressed as a series expansion in e

oo

P(yi,hi) = Z PJ(yi,hi)ej (A.4)
j=o

and the outer optimal control as

uopt(yi,hi) = uOpt(yi,Py,h) =

oo

Z uj(y i'hi)ej
j=O

(A.5)

where the expression for uOpt(y,h) is obtained by substituting (A.4) into the expression obtained

from the optimality conditions uOpt(y,Py,h) and expanding the function. Hence, by determining

the partials Pjy, an optimal control law in a feedback form can be constructed. By expanding

g(y,u,h/e)/e and substituting the expansions for g(y,u,h/e)/e and P(y,h) into Eq. (A.3), the

expansion of the outer HJB-PDE is given by
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Ph = Z PJ, Ej =- ( Z PJ, Ej )(f + Z (gJ/_:)ej )

j=0 j=0 j=0

(A.6)

By observation of Eq's (1-3) the functions g(y,u,h/e)/e can be decomposed in the following

manner

g(y,u,h/e)/e = g_(y,u)e'h/e/e (A.7)

where gl(y,u) are the parts of g(y,u,h/e)/e that do not contain h or e. It is clear that the exponential

part in Eq. (A.7) and its derivative, evaluated at e=0, are identically zero. thus the outer HJB-PDE

are homogeneous to any order in E and the fast order outer equation is given by

Plh + Plyf = 0 (A.8)

It follows that the first order return function is constant and does not contribute to the first order

composite return function.

A.2 Sensitivity of the inner solution to perturbations in the true initial

conditions

In [5] the dynamic equations where transformed into the form of Eq. (26) through the use of

the following nondimansional variables

_"= ln(V2/--gr), w = C_pS/2m13, dx/dz = 13/wV (A.9)

where V is the velocity, g is the gravitational acceleration, r is the radius from the earth center, p is

the density, S is the reference area, m is the mass, 13is the inverse of the scale height and z replaces

time (x) as the independent variable. The zero order dynamic equations in [5] are obtained by

simply setting e--0 in (26) and are identical to the zero order inner equations in the MAE problem.

The fast order inner costates are calculated using Eq. (34) but in the context of the MAE problem.

PI,- OP]/_y =- O[Po, g(y)]/Oyi dz - [Po, g(y)]z_Zf[Oy i (A.IO)

where the integrand in (A. 10) is the partial derivative of the function P0,g(Y) of the zero order inner

solution, with respect to the true initial conditions Yi. Since the true initial conditions are not the
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sameasthe inner initial conditions, it is necessary to calculate the derivative of the function Po_g(Y)

in two steps. We rely on the fact that the zero order MAE solution is defined by a set of 20

parameters that are evaluated so as the true boundary conditions are satisfied by the composite

solution. This suggests that we fhst take the derivative of Po_g(Y) with respect to this set of 20

parameters, and multiply it by the sensitivity of these parameters to perturbations in the true initial

conditions.

The explicit form of the function P0)g(Y), denoted by R_, is given in Ref. [5] as

rs [ _,,(l_2e._')y + ps(1.e-_' ) ]Rl =_y (A.11)

The zero order inner solution for the MAE problem was obtained in Ref. 1 and is summarized in

Eq's. (16-22). Out of the 20 parameters that define the composite zero order MAE solution in Ref.

1, only 8 appear in the inner solution (16-22) and in R_. These are k3, k4,ks, c, Pw, Pv, t) and rs.

What remains is to take the partial derivative of R_ with respect to each of these parameters and

multiply the result by the sensitivity of the parameters to perturbations in the true initial conditions.

Since the velocity V was normalized differently in [5] and in [1], it is necessary to relate between V

defined in Eq. (15) and _ as defined in Eq. (A.9), and between the corresponding costates Pv and

Pv. These relations are given by

= -v/E* 4nf-gr), F, = -E* P,, (A. 12)

Using Eq's. (16-22) in (A.11, A.12) gives the explicit dependency of R_ on the above 8

parameters. A relation between the differentials of w and r as obtained by the use of the def'mitions

in (12) and (14), is given by

dr = -dw/13w (A. 13)

and the partials of R_ with respect to each of the 8 parameters can now be taken explicitly.

Finally, it is left to determine the sensitivity of the set of parameters to perturbations in the true

initial conditions. Denoting the set of parameters by a vector x, and the true initial conditions by a

vector Yi, the set of 20 equations for x can be written in the following form (Ref. 1)

F(x,yi) = 0 (A. 14)

Differentiating (A. 14) we have
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_)x/igyi= -[igF//)x]-l_F/Oyi (A.15)

wheretheJacobianmatrix OF/Oxis numericallycalculated once every control update using the

converged zero order MAE solution. Finally, the partials of R_ with respect to the true initial

conditions are given by

igRl/_)yi = _Rlf0x x _x/igyi (A.16)

This expression is used in (A. 10) to evaluate the In'st order correction of the inner costates which

are used in (4,5) to find the correction for the controls.
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