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INTRODUCTION

This report documents a study by FWG Associates, Inc., in support of NASA Contract

# NAS5-30936 to Goddard Space Flight Center. This report documents the Task 3 requirements

of the Basic Contract and Task 1 of Option 1 to that contract. The objective of these tasks were

to specify the airborne instrumentation and the optknum airplane to best support the advancement

of parameterization research for General Circulation Models (GCM'). The report consists of four

major appendices. Appendix I is an indepth review presentation which fully outlines the overall

NASA requirements of the contract effort. Appendix II documents a review of the physical

principles involved in state-of-the-art GCM models. Measurement requirements to advance

parameterization models of these physical principles were identified from the review. These

requirements establish the selection criteria for the instrumentation specification and airplane

recommendation which is documented in Appendix III. Results of the other tasks carried out

under NASA Contract NAS5-30936 have been reported under separate cover to the Defense

Intelligence Agency, Redstone Arsenal, AL 35898-5500. Cover sheets from these three reports

are given in Appendix IV.

FWG prepared an indepth review (Appendix I) of the procedures used in the selection of

the criteria for the instrumentation and the aircraft. The intent was to schedule a review meeting

with NASA to establish NASA's inputs and approval of the design and budget to proceed with

the hardware development. The review was never accomplished so that instrumentation design

presented herein will require a number of iterations relative to the user inputs prior to final design

and hardware construction. NASA could never schedule a time for this indepth review. Copies

were sent to the contract COTR for in-house review.

1
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In the review, however, the mission of the instrumented aircraft has been defined and the

aircraft recommendation has been narrowed to two options. The instrumentation and data

acquisition system, to be installed on the aircraft, has also been identified. The final choice of

instrumentation will be influenced by the aircraft selection to some degree and a final consensus

of the measurement requirements by the user.

The aircraft recommended is either the EGRETT II or the remotely piloted Aurora Perseus

t3. Both these aircraft have high altitude capable and are thus suited for the cloud

parameterization studies identified as a major need for advancing GCM models. Specification

of instruments and a preliminary airborne pallet designed to support the instruments is given in

Appendix III. The main thrust of the report deals with turbulent flux modeling in which FWG's

strengths lie. However, the report also considers instrumentation for cloud physics and radiation

flux studies. In this area reference is frequently made to a feasibility study by Aurora Hight

Science Corporation supported under a Battelle Pacific Northwest Laboratories contract. This

system appears to represent an advanced approach in this area.

Both Appendix II and lIl are considered stand-alone reports containing their own

appendices as needed.

2
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APPENDIX I

PRESENTATION ON DESIGN CRITERIA AND

INITIAL RECOMMENDATION
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CRITERIA SPECIFICATION
AND PRELIMINARY

INSTRUMENTATION DESIGN
AND AIRCRAFT

RECOMMENDATION
PRESENTATION

NAS5-30936

FWG Associates, Inc.
July, 1991
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PROJECT OBJECTIVES

Primary goal is improvement of general
circulation model capabilities

Identify potential GCM improvements

Identify data for addressing
improvements

Design and build an instrumented pallet

Select an airplane for study support

5
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OVERVIEW

Discuss general circulation models

Identify potential GCM improvements

Outline research for improvements

Define supportive measurements for
research

• Define instrumentation for measurements

Define airplane specifications and make
recommendations

6
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GENERAL CIRCULATION
MODELS (GCM)

GCM is a long term climate forecasting
tool

Finite element models predict lar.ge scale
atmospheric motion from first principles

Sub-element processes predicted
from large scale phenomena by
parameterization

7
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GCMs CONSERVATION LAWS

Momentum:

d_Z
H

dt
m m
m fkX_TH-VHP + FH

Horizontal flow driven by Coriolis,
pressure, and friction forces

Energy:

dT

dt
ldp+Q

pc_ dt cp

Temperature driven by expansion
and external sources

Moisture:

aq
aT

- E-C

Moisture content changes with
evaporation and condensation



GCM SUPPLEMENTAL
EQUATIONS

Mass:

+Vxp¢.=O

Vertical velocity related to large scale
convergence

Hydrostatic Equation:

az

• Pressure is related to air mass

Ideal gas law:

p = pRT

Pressure is proportional to
temperature and dens=ty

9
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GCM PARAMETERIZATIONS

Surfaces fluxes (energy, moisture,
momentum) are related to bulk properties

F =uAc_

Cloud interaction with radiation related to
bulk water (liquid and vapor) content

Convection predicted from large scale
lifting and stability

Complex radiant exchange simplified to
broad band models

10
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POTENTIAL
PARAMETERIZATION

IMPROVEMENTS

Hydrological effects on radiant exchange

Convection and compensating
subsidence-

Clear sky radiation data for model
walidation



RADIANT EXCHANG

• Concentrate on cirrus clouds

Measure effects of cirrus on radiant
divergence

Characterize crystal sizes and number
densities



CONVECTION

Concentrate on cumulus/convective
columns

Measure moisture/heat flux surrounding
column

Determine net transport from boundary
layer to upper altitudes



RADIATION DATA

Clear sky data needed for model
validation

• Flux data needed at all levels

Top of tropopause data particularly
scarce



MEASUREMENTS SUMMARY
AND DOMAIN

Energy flux (sensible and latent heat)

• Moisture flux

• Radiant flux

Particle sizing

Boundary layer --> Top of tropopause



ENERGY FLUX

_o7 o /P% ½ + Kz (T'w') -v. _ + s

Driven by mean and turbulent
advection, radiant divergence,
evaporation/condensation sources

Wind velocity, temperature, humidity
and broad band radiation
measurements needed

16
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MOISTURE FLUX

-- a
w aq + (q/W) - Q

a2 az

Driven by mean and turbulent advection,
evaporation/condensation sources

Wind velocity, humidity measurements
are needed

1"/



RADIANT FLUX

Short wave (<4 #) flux from solar
sources and reflections needed

Long wave (> 4 #, <40.#) from surface
and atmospheric emissions

18



PARTICLE SIZING

Number densities and sizes needed for

high altitude cirrus

Smallest sizes (1-100 #) have greatest
impact on radiant flux



MEASUREMENTS
SUMMARY

Wind velocity

Temperature

Humidity

• Pressure

Long and short wave radiant flux

• Particle sizes and counts

2O



STATE VARIABLES
TEMPERATUR

Measurement complicated by velocity
kinetic energy <=>temperature
flow <=>convective cooling

Steady state thermometer has high
temperature recovery factor (Rosemount)

Fast response thermometer has high
frequency response (NANMAC)

21



STATE VARIABLES
HUMIDITY

Steady state cooled mirror has long term
stability (Eastern)

Lymen-aipha (AIR) has high frequency
response



STATE VARIABLES
AMBIENT PRESSURE

Measurement complicated by velocity
pressure <=>momentum

Pressure measurement is position
sensitive

Proper placement and calibration
requ_redfor true measurement

23
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AIRBORNE WIND VELOCITY
OVERVIEW

Wind is calculated as the vector

difference of relative air velocity and
airplane inertial velocity

Gust probe is used to measure relative
air velocib J

Inertial attitude (from an INS) is used to
"rotate" the a=rplane coordinates to earth
coordinates

Inertial velocity (from.an INS)is .
subtracted from relatwe atr velocity
resulting in earth-frame wind velocity

24



AIRBORNE WIND VELOCITY
GUST PROBE

Airspeed and flow angles define air
velocity

Airspeed calculated from impact
pressure, ambient pressure, and
temperature

Flow angles calculated from probe
differential pressures

25



AIRBORNE WIND VELOCITY
INS

Inertial navigation system (INS)
traditionally provides attitude (elevation,
bank, heading) and velocity (north, east,
vertical)

Recent approach replaces INS with GPS
system and inertial measurement
transducers

Will use combination of GPS, IMU,
inclinometers, and magnetic flux sensor
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RADIANT FLUX

Requires measurement of gross flux
(upwelling and downwelling)

Requires separation of solar and
terrestrial components



PARTICLE SIZING

Smallest particles affect radiation
(1-1 O0 #)

PMS forward scattering spectrometer
probes

29
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DATA ACQUISITION SYSTEM

• DAS controller

Analog input

• GPS interface

• PMS interface

Large capacity tape storage



REMOTE SOUNDING

Lidar can potentially be used for
cloud height, humidity profiles, and
flux measurements

Requires development of both instrument
and data acquisition system



AIRPLANE REQUIREMENTS

Payload capacity of .- 100 kg+

Altitude capability ideally- 18 km

Low airspeed - 100 m/s

Initial and operational costs

32



CONVENTIONAL AIRPLANES

• Guifstream IV

Has good payload, duration, altitude
capability

Highly recommended by NCAR study

Egrett II

Has good payload, duration, altitude
capability

Extremely low airspeed at high
altitudes

Inexpensive compared to gulfstream
IV

33
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REMOTELY PILOTED VEHICLES
(RPV)

Boeing Condor

Has good payload, duration, altitude
capability
Potentially expensive acquisition
Pursued by NOAA

• Aurora Perseus B

0

Has good duration, altitude capability
Low acquisition and operating costs
Marginal payload capacity
Potential for dedicated studies



EGRETT II

Wingspan 30 m

Aspect ratio 20:1

True cruise airspeed 80 m/s @ 14 km

Maximum rate of climb 8 m/s

Maximum payload 9OO kg

Endurance 6-9 hrs

Service ceiling 14km +

35
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CONCLUSIONS

Dedication to hydrological cycle study
needed

Radiative exchange relations to
hydrological cycle

High altitude capability needed
(EGRETT I!)

Development of lidar instrument

37
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APPENDIX H

AIRBORNE MEASUREMENT REQUIREMENTS FOR

GENERAL CIRCULATION MODEL SUB-SCALE

PARAMETERIZATION RESEARCH



1.0 INTRODUCTION

A General Circulation Model (GCM) is a numerical model, typical requiring the services

of a super-computer, which solves the partial differential equations describing the motion of the

atmosphere. Implicit in the prediction of atmospheric motion is the solution of the equations

describing the transport of momentum, energy and moisture within and at the boundaries of the

atmosphere. Energy is transported as sensible heat, latent heat of vaporization and fusion, and

radiation. Moisture is transported as vapor, liquid, and solid. Because of the nature of these

transport processes, particularly as influenced by turbulence and in the case of thermal radiation,

as influenced by reflection and scattering, parameterization or empirical models are used within

the GCM to describe the physical process.

The parameterization of energy and moisture transport is typically the cause of the

greatest discrepancy between predictions made by different current models; given the same initial

conditions and forcing functions. Additionally, problems with transport parameterization can be

attributed to both cumuliform (convective) and high altitude stratiform (cirrus) clouds.

Cumuliform clouds are the mechanism by which both moisture, and sensible and latent heat are

convected from the planetary boundary layer _BL) to the free atmosphere. Moisture that does

not precipitate to the surface or subside in the region surrounding the cloud can feed the

formation of high altitude stratiform, or cirrus clouds.

compared to their towering cumulus brethren, are

Cirrus clouds, although physical thin

optically thick. Thus, cirrus clouds

significantly influence the exchange of radiation between space and the atmosphere. In Section

3.0, recent research regarding inter-model comparisons and the influence of clouds is discussed.

The discussion emphasized measurements required from an airborne instrument pallet in support

of parameterization modeling research. These include measurements for moisture, latent heat,

sensible heat, radiant heat, and momentum flux calculations, and measurements for describing

39
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the compositions of cirrus clouds. Measurement of cirrus cloud particles include water droplets

and ice crystal size distributions and concentrations. Airborne measurements under, over, around,

and in clouds are required.

The conclusion of this study, calling primarily for the study of clouds, is supported by

reported results of recent major research programs. In these programs both airplanes and other

measurement platforms were used to support research in defining the mechanisms which govern

the birth, death, and influence of clouds and in defining the mechanism of radiative transport.

The long range goal of this study is to customize the present understanding of airborne

instrumentation to support GCM parameterization models and to recommend instruments and a

pallet design for future research programs. As second goal is to analyze the capability of several

airplanes, commercially available and those presently operated by NASA and other government

agencies for use in experimental parameterization studies. Many capabilities are duplicated to

a large degree, but deficiencies in the existing fleet of research aircraft were apparent. For

example, a large gap in altitude capability can be seen in the existing fleet. This gap is from

approximately 9 to 15 km above sea level as is clearly recognized in a recent study by Johnson

and Cooper (1989). An airborne instrument pallet design and suggested aircraft with performance

characteristics to bridge this gap are recommended in FWG Contract Report (1992).

2.0 THE EARTH'S CLIMATIC SYSTEM

The climate system consists of the atmosphere (comprising the Earth's gaseous envelope

and its aerosols), the hydrosphere (comprising the liquid water distributed on or beneath the

Earth's surface), the cryosphere (comprising the snow and ice on and beneath the surface), the

surface lithosphere (comprising the rock, soil and sediment of the Earth's surface), and the

biosphere (comprising the Earth's plant and animal life, and, by extension, man himself). These

components have quite different physical characteristics. They are linked together such that

40



changesin one part generallyaffect the behaviorof other parts,thussettingin motion a chain

of eventswhich may either reinforceor cancelthe original changes. Thesevariousphysical

processesof the Earth's climatesystemare illustratedschematicallyin Figure 2.1.

SPACE

Terresl t_al

Radllhon

HzO, Nz. Oz,COz, 03, etc
Aor.b_OrnaSS

Aerosols Prec_pdahOn .land

AJr-:ce Couphng Evaporation Couphng

ATMOSPHERE

'_ Heat E_,cr_ange _' W,nd Stress BIOMASS

ICE
I _C////////////A ET_ I_ _

l a \,_e._._ _ - _ .......... __ ....... /__

ix o.. T /
_,.oge_o,L.oO_eato,e_.I I
Or o,graDhy Vegetshon I 1

albe_o elc I l C_anges ot Ocean Bas,,',

Shape. Sahndy. eTc

Figure 2.1 Schematic illustration of the Earth's climatic system, with some examples of

the physical processes responsible for climate and climatic change (From

Gates, 1979).

The fundamental process driving the Earth's climatic system is heating of the Earth's

atmosphere by incoming shortwave solar radiation and the cooling by long-wave radiation to

space. The heating is strongest at tropical latitudes, while cooling predominates at the polar

latitudes of at least the winter hemisphere (Vonder Haar and Suomi (1971)). The bulk of the net

41
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incoming solar radiation is absorbed not by the atmosphere but by the underlying surface.

Evaporations of moisture and the heating of the Earth's surface lead, however, to much of this

energy being transferred to the atmosphere as latent heat and, to a lesser extent, sensible heat.

Thus the dominant direct heating of the atmosphere is found to be the latent heat release

associated with deep tropical convergence. Figure 2.2 summarized the global radiation and heat

balance of the climate system. The balance is maintained by a large number of feedback

processes involving the transfer of radiation between the atmosphere, clouds, and the Earth's

surface.

S_PAC£ It_comit_
So,Lm' Ou tgo_ng R_i.=t)on

R =,dL=tk_ S,h<x-t-wa.ve. l_on,g-wa,ve

ATMOSPHERE

Ab-,orbed

by Water
Vapor. Omt. O)

Ab_0_bed

by Clouch

OCEAN. LAND

r

100 6 20 4

51

6 38 25

Net Emic_0qn by
Wat_ Vapor. CO-

Emh=_n
by Clou_

A I:n_rptio_n
by Water

Vapor. CO_

I

/ 1i He=t Flux

Net Surfac_ Sen_bl_
Emit=k)n of Heat Flux

Long-wave Radiation 1

21 7 23

Figure 2.2 The average global radiation and heat balance of the atmosphere relative to

100 units of incoming solar radiation. (From U.S. National Academy of

Sciences, 1975.)
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3.0 GCM DESCRIFFION

General circulation models are numerical simulations of the dynamics of the interactions

between sun, land, sea, and atmosphere. The forcing from any of these elements in driving the

atmosphere can be prescribed as a boundary condition or calculated, depending on the temporal

and spatial extent of the model and the complexity of the model. A simulation which uses the

entire planet as the domain is commonly referred to as a global circulation model. These models

are either finite difference models, with horizontal mesh sizes of several degrees latitude and

longitude and with vertical layers several kilometers thick, or spectral models. The wind velocity

vector field and the temperature and moisture scalar fields are controlled by the conservation of

momentum, moisture, and energy. The following description of the mechanics of GCMs comes

largely from Gates (1985), with modifications in nomenclature consistent with Panofsky and

Dutton (1984). The language used is in the context of global circulation models, although the

text is more often than not applicable to smaller scale models.

Time dependent partial differential equations developed from physical principles of heat,

mass and momentum transfer are solved simultaneously for the description of atmospheric motion

and the distribution of moisture and energy in the atmosphere. Large scale atmospheric motion

is often described in terms of variations from geostrophic winds. Geostrophic winds result from

a balance between pressure and Coriolis forces. The uneven solar heating of the atmosphere

between the equatorial and polar regions creates pressure gradients which drive winds poleward.

An apparent force, or Coriolis force, induced by the rotation of the Earth, drives a north or south

wind eastward. Friction between the atmosphere and the Earth drives winds eastward. The

balance of these forces results in a circulation pattern comprised of Rossby waves (I)onn (1975)),

centered around alternating high and low pressure centers, depicted in Figure 3.1.
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Equator

G /"

(_) = Low Pressure Center

(_ = High Pressure Center

-- Wind Direction

Figure 3.1 Northern FIemisphere Rossby waves.
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The differential equationfor the conservationof momentumis derivedby applicationof

theseforcesto a differential volume element of air as:

D17_ 1 Vp-gf- 2c-t x I7+ 1 V- I_V17 (3.1)
Dt p p

This equation is integrated for the solution of the horizontal wind velocity field, I7, where

p is air mass density, p is ambient pressure, g is the acceleration due to gravity, /_ is the unit

vector in the direction of gravity, _ is the vector representation of the rotation of the Earth, _t

is the viscosity of air, and t is time.

The term on the left-hand-side of Equation (3.1) is the total derivative of the vector

velocity 17 and represents the change of 17 with time and with divergence in the convective

transport. The first and fourth terms on the right-hand-side of Equation (3.1) represent the

surface forces on a differential volume due to pressure gradients and frictional forces,

respectively. The second and third terms of the right-hand-side of Equation (3.1) represent the

body forces on the differential volume from gravity and Coriolis effects, respectively.

Pressure gradients, on large scales, and buoyancy gradients on smaller scales, are the

result of the uneven distribution of thermal energy through the atmosphere. The sources and

transport of thermal energy are modeled in much the same way as those of momentum. The

differential equation for the conservation of energy is:

DT

G P-N- + pV' ¢ = -V',_ + V-kxvr + S_ + r' I V 17 I= (3.2)
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whereCv is the constant volume specific heat of the air/moisture mixture, T is temperature, /_

is the vector representing radiant flux, k H is the thermal conductivity of air, and SH is a latent

heat source/sink term.

The first term in the left-hand-side of Equation (3.2) is the total derivative of the scalar

temperature T. The second term is a compression or expansion work term. An example of this

work term is the effect of a vertical exchange of air, where a rising parcel of air expands and is

cooled as it does work on the surrounding environment. Conversely, a sinking parcel of air is

compressed and receives work energy from the surrounding environment. This action heats the

sinking parcel of air. On the right-hand-side of Equation (3.2), the first term represents the

divergence of radiation flux, the second term represents the heat transfer from thermal

conduction, and the third term represents the net release of heat due to the evaporation and

condensation of moisture. The last term represents work done on a differential volume due to

friction forces.

The explicit treatment of atmospheric moisture is also crucial to modeling the circulation

of the atmosphere. Moisture, through evaporation, is the mechanism by which latent heat is

transported from the surface of the Earth. The condensation of moisture at higher altitudes

releases latent heat, maintaining the buoyancy of clouds and heating the upper atmosphere. The

differential equation representing the conservation of moisture is:

Dq ÷ qV" I7 = Sq + V. k_Vq (3.3)
Dt

where q is specific humidity, Sq

water vapor in air.

is a source/sink of humidity, and 1%

46
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The first term on the left-hand-sideof Equation(3.3) is the total derivative of specific

humidity andthe second term represents the loss of specific humidity from a differential volume

due to flow dilation. The first term on the right-hand-side of Equation (3.3) is the net gain of

specific humidity from evaporation and condensation, and the last term represents the diffusion

of water vapor by concentration gradients.

The final differential equation is the conservation of mass:

Dp
+ p V- 17 : 0 (3.4)

Dt

Constitutive equations consist of the ideal gas equation of state,

p=pRT (3.5)

where R is the ideal gas constant for air.

Thus, seven equations are available for the solution of the three wind velocity

components, and the pressure, density, temperature, and moisture.

In the solution of Equations (3.1) through (3.5), some approximations are made for

calculation simplification. In solving for horizontal winds, the gravitational term is ignored in

Equation (3.1) by assuming negligible vertical winds in comparison to horizontal winds.

Frictional work is considered small in the energy Equation (3.2), and is ignored. Molecular

dissipation, represented by thermal conduction in Equation (3.2) and mass diffusion Equation

(3.3), is also considered small compared to transport by convection and turbulent mixing, and is

ignored.
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Parameterization Methods

The grid size, which is large compared to crucial micro-meteorological events, requires

bulk treatment of momentum, moisture, heat, and radiation transport. The sub-scale processes

which are not solved explicitly include surface-friction effects on the horizontal wind, the

complex interaction of the long-wave radiation field between the Earth and clouds, and the

transport of moisture and energy through convective clouds. Surface drag is modeled as

proportional to the characteristic surface roughness and to the square of the wind speed at the

surface. For example, the effect of surface drag is modeled in the University of California at Los

Angeles (UCLA) GCM as the flux of momentum from the surface layer (Suarez and Arakawa

(1983)):

Fv_ = rl C_ t7u I lTu I (3.6)

where Fv, is surface momentum flux, Cu is an empirical surface transfer coefficient, 17u is the

vertical mean velocity for the PBL, and r ! denotes surface conditions.

Similarly, the flux of energy and water vapor from the surface layer are modeled as:

Fo, = n u. Co (0s-0 u) (3.7)

and

F,,-- rl u, Ce [1 (r*CTg)-ru) (3.8)

respectively. F o and Fr are the fluxes of thermal energy and water vapor mixing ratio,

respectively, u. is the friction velocity, defined by the surface stress and density, (_[Fv/P).

C o is an empirical surface transfer coefficient, r'(Tg) is the temperature dependent saturation



water vapor mixing ratio, r is the water vapor mixing ratio, and 13is the fraction of available

surfacewater,O is potentialtemperature,subscriptg denotesthe groundvalue, andsubscriptM

denotesthe vertical meanfor the PBL

The empirical surfacetransfercoefficientsare correlatedto stability through the bulk

Richardsonnumber. The sameapproachas used in the UCLA GCM model is used in the

GoddardInstitute for SpaceStudies(GISS)GCM (Hansen,et al. (1983)).

Convectionof moistureandlatentheat(andsubsequentprecipitation)is modeledasflow

inducedby unstabletemperaturelapserates,althoughothermethodsare used(as discussedby

Del Genio and Yao (1988)). Vertical massflow is predictedby buoyancygradientsbetween

stackedelementsin amodel. Furtherdiscussionof convectiveparameterizationschemeswill be

given in Section4.0.

The net long wave radiation flux through the different levels of the atmosphereare

calculatedas functions of the temperature-dependentsurface flux, the ambient temperature,

pressure,andhumidity, carbondioxide andwater concentration,and thefractional cloudcover.

The methodof calculatingshortwaveflux is simplerbecauseof therelative transparencyof the

atmosphereto solar radiation(with the exceptionof ozoneandultraviolet light). The complex

interactionbetweenreflectingandabsorbingsurfacesandgasesis modeled. The most detailed,

andprobablythemostaccuratemethodof calculatedair constituentdependentradiantflux is the

line-by-line (LBL) method, by which each absorptionband of a given constituentin the

atmosphereis consideredin transmittanceandemittancecalculations.Becauseof thecomplexity

of this calculation and subsequentcomputationtime, the LBL method is not useddirectly in

GCM codes.However,simplificationsof theLBL method,namelynarrowbandmodels(Nt3M)

andwide bandmodels(WBM), areused. Descriptionof theLBL, Nt3M, andWBM modelsare

given in Luther andEllingson (1985)andwill be discussedfurther in Section4.0. Short-wave
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models are simpler due to the transparency of the atmosphere (with the exception of clouds and

ozone) to solar radiation. Slingo (1989) gives a simple model for calculating the transmittance

of short-wave flux through clouds as a function of depth and liquid water content.

4.0 GCM RESEARCH NEEDS

The widely recognized weaknesses of GCMs are in the sub-scale parameterizations of

turbulence convective transport and cloud feedback. Presently, a wide-scale application of GCMs

is the study of increasing amounts of carbon dioxide in the atmosphere, and the associated

"greenhouse effect". The increase in carbon dioxide will not only directly cause an increase in

the temperature of the atmosphere, but the predicted change in cloud cover and patterns will

create a positive feedback to the carbon dioxide-induced warming (Wetherald and Manabe

(1988)). Del Genio and Yao (1988) give some insight into the difficulties of modeling

convection with the varying results of different parameterizations with the Goddard Institute for

Space Studies (GISS) GCM. Cess, et al. (1990) demonstrated the radiative cloud feedback

modeling difficulties by comparing predictions made from different GCMs given the same

boundary conditions. Finally, Gates (1985) gives priorities for GCM improvement, which

includes better parameterization of sub-grid processes, such as the effect of non-precipitating

stratiform and cirrus clouds on radiation flux and greater validation of model predictions with

observations.

Luther and Ellingson (1985) discuss the effect of past and projected increases in the

atmospheric concentration of carbon dioxide. An increase in the amount of carbon dioxide in

the atmosphere is the primary forcing function of the greenhouse effect, or the projected increase

in the temperature of the atmosphere. Carbon dioxide is transparent to short wave solar radiation

incident on the earth's atmosphere, but opaque to the long wave radiance of the relatively cool

:.tmosphere. Thus, an increase in the concentration of carbon dioxide in the atmosphere will
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cause a decrease in the radiance of long wave energy, at a constant atmospheric and surface

temperature, while leaving short wave transmission unchanged. The net effect, however, is a

compensating increase in surface and atmospheric temperatures to balance the atmospheric

radiation budget. This atmospheric and surface warming will also increase the amount of water

in the atmosphere, which acts much in the same way as carbon dioxide in the transmission and

absorption of short and long wavelength radiation. The significance of the research of Luther

and Ellingson (1985) to the goals of this project is to emphasize the importance of accurate cloud

modeling; this emphasis is also apparent in the research of others discussed below.

Wetherald and Manabe (1988) modeled an atmosphere with fixed cloud cover and an

atmosphere with a calculated cloud cover, both with a doubling of the concentration of carbon

dioxide in the atmosphere. In both simulations, the doubling of carbon dioxide affecting an

increase in average global surface temperature and a decrease in the average stratospheric

temperature. Furthermore, the increase of surface temperature in the model with a calculated

cloud cover was 25 percent greater than the surface temperature increase in the model with a

prescribed cloud cover. Decreases in high altitude moist static stability from the increase in

surface temperature causes moisture to rise to the upper troposphere and tropopause in the

tropics, and the transmission of solar radiation subsequently is increased due to a net loss of

albedo. In the middle latitudes, a similar shift in cloud covers occurs, although not to the same

extent as in the tropics. In the high latitudes, the more stable atmosphere traps moisture close

to the ground and results in an increase of low altitude cloud cover. The middle and high

altitude increases in cloud cover, affects a net increase in surface albedo and subsequent decrease

in solar radiation. The middle and high altitude cloud-induced cooling, however, is not sufficient

to offset the increase in solar radiation in the tropics. Thus, a change in clouds patterns induced

by warmer global temperatures was predicted to further increase the average global temperature.
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Del Genio and Yap (1988) experimented with different convective parameterizations to

demonstrate the sensitivity of GCM predictions to the validity of the convective model. A

control run was made with the GISS GCM, simulating a perpetual January climate, with

convection prescribed as a mass movement upwards between stacked elements coinciding with

the occurrence of buoyant instability. The predictions made by the control run were compared

to four separate simulations in which the convective parameterization was varied. These were:

(1) the use of large scale lifting for cumulus mass flux,

Mc -- on wm (4.1)

where Mc is the cumulus mass flux and W is the large scale vertical velocity. The subscript B

denotes conditions at cloud base,

(2) the combination of large scale lifting with surface flux influence,

Fq,] (4.2)uc--p, w,, ÷

where Aq is the moisture discontinuity across the cloud base,

(3) the addition of mass flux fi'om a fluctuating boundary layer height,

Fq, aZmL (4.3)
M,= pjrV_+ PB

Aq Ot

where ZLCL is the lifting condensation level, and

(4) the inclusion of explicit down&aft calculations.



Two resultsof this experimentwere (1) that one simple cumulusflux parameterization

may not be appropriatefor all situations,and (2) that the appropriateexplicit modelingof the

downdraft, compensatingthe cumulusupdraft, may have significant positive results in the

accuracyof modelpredictions.The useof calculatedlargescalelifting to modelcumulusmass

flux helpedto improvethecomparisonbetweensomemodelpredictionsandobservation,andthe

useof surfaceflux effectshad mixed results. The surfaceflux effectson convectionfrom the

boundarylayerwerepositiveoverlandbut over-predictedprecipitationoveroceans.Theexplicit

modelingcumulusmassflux dueto theriseandcollapseof boundarylayerheighthadlittle effect

on the predictions of the model. The modeling of downdraft fluxes, however,had effects

consideredworth furtherstudy. Theeffectswereconsideredqualitativelyrealisticbut thesimple

parameterizationwas in needof "fine tuning". The deepconvectivecolumnswith downdrafls

werepredictedto dry theboundarylayer,similarly to thepredictionsof dry subsidencemodeling.

Downdraflscoincidingwith shallowconvection,however,were predictedto restoremoistureto

theboundarylayer. This producedhumidity profiles moreconsistentwith observation.It was

concludedthat studiesof precipitationclimatologieswere needed,complementingthe dataset

of InternationalSatellite Cloud ClimateProject (ISCCP) and others, to better understandthe

convectiveprocess,particularlythe natureof downdraft in and aroundthe convectivecolumn.

The studies of Cess,et al. (1990) further illustrate the affect of cloud feedbackto

atmosphericwarmingandashortfall of currentGCMs. NineteendifferentGCMsweresubjected

to an experimentin which theglobalaveragesimulatedseasurfacetemperature,ratherthan the

atmosphericconcentrationof carbondioxide,was forced througha 4 K" temperature change.

Although expression was made for a more realistic forcing function, such as an atmospheric

carbon dioxide concentration increase, modulation of sea surface temperatures was advantageous

in terms of computation time and inter-model comparisons. The qualitative results were
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consistent with those of Wetherald and Manabe (1988) (discussed above) in that the changes in

cloud cover resulting from atmospheric warming further increased the warming. However, the

magnitude of the increase in the predicted average temperature varied considerably between the

different models. These differences were attributed to the treatment of clouds in the different

models, e.g., cloud formation and optical properties. The radiation exchange in the areas of clear

(cloud free) sky compared well between the different models.

Ellingson, et al. (1991) describe parameterizations used for modeling long wave

(terrestrial) radiation propagation in the atmosphere. The importance of accurate long-wave flux

modeling is demonstrated by the influence of the atmosphere on the upwelling radiation back into

space; it is estimated that 90 percent of the long wave flux at the top of the troposphere

originates from the atmosphere rather than the ground. Radiation modeling comes in three levels

of complexity, only the simplest of which is used in GCMs. The most complex, and most

consistent model, is based on the LBL (line-by-line) method as mentioned in Section 3.0. The

LBL method calculates spectral transmittance in a finite element by considering each pressure

and temperature dependent absorption band of each atmospheric constituent in the element. The

monochromatic transmittance of the air in an element is calculated by:

where % is the monochromatic transmissivity, 8z is the transmittance path length, K,, is the

monochromatic absorption coefficient, p, is the density of one absorbing gas, and Ix is the Zenith

angle cosine.



The monochromatic absorption coefficient is calculated by:

k,. (4.5)

where Sj is the integrated line intensity at the jth frequency, and fj is a line shape factor

dependent on pressure, temperature, and frequency. Sparrow and Cess (1978) define the

integrated band absorption in terms of wavelength as:

(46 

where z_ is the wavelength interval containing the absorption band. The shape factor is an

empirical fit of the shape of the measured absorption band.

Various LBL model predictions of radiative properties compare consistently, lending

credence to the accuracy of the model. Unfortunately, the tremendous computation time required

by LBL models precludes their direct use in GCMs. Simplified versions of LBL model, narrow

band models and wide band models are used instead. The LBL models are used to validate the

prediction of the simpler models.

Both Ellingson, et al. (1991) and Luther and Ellingson (1985) discuss the need for

validation data for LBL models. The data used for the development of the LBL models (such

as HITRAN; Rothrnan, et al. (1987)) is derived in the laboratory; model validation by comparison

with atmospheric observations is often hindered by the absence of a complete data set. The data

most significant to clear sky fluxes are the profiles of water vapor, carbon dioxide, ozone, and

aerosols. Of these, the determination of water vapor distribution is the most important. Cloudy

sky flux modeling is further complicated by the difficulty in obtaining data in a field of



sufficiently homogeneouscloud distributionconduciveto finite elementdescription.

It is thus concludedthat thegreatestpotential for the advancementof GCMs lies in the

betterunderstandingof the (1) creationand dispersionof cirrus clouds andthe affect of cirrus

clouds on the Earth's radiationbudget,(2) the transport of moisture and latent heat from the

planetary boundary layer to the free atmosphere through convective clouds, and (3) the validation

of radiation codes by comparison of data to predicted constituent dependent radiant fluxes. Since

model performance and observational and theoretical knowledge are far from perfect in many

instances, parameterization tends to vary substantially from model to model, at least in questions

of detail. The general extent of interactions involved in GCMs is summarized and illustrated in

Figure 4.1.

Figure 4.1 Schematic illustration of the processes commonly included in atmospheric

general circulation models. The thickness of a particular arrow gives a

qualitative indication of the importance of the interaction the arrow

represents. (From Simmons and Bengtsson, 1988.)
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5.0 ENERGY FLUX MECHANISMS

Energy exchange in the atmosphere occurs due to sensible and latent heat transfer by

convective turbulent mixing and due to radiative absorption and emission. The study of

atmospheric energy transport must also include the study of cloud physics, which significantly

governs the transport of atmospheric energy. The air currents which transport the thermal energy

originate from radiant heating by the sun, which warms both land and sea by day and from

radiant cooling at night due to transfer of energy to the cold sky which cools the earth. Thus,

a periodic cycle is born, by which the sun heats the earth, and the heat is lost, ultimately by

radiation to the upper atmosphere.

The different forms of thermal energy of interest to the climatologist, excluding radiant

energy, propagate with the atmosphere as a medium. As a result, the determination of

atmospheric motion is required for a complete model of the atmospheric energy flux. The motion

of the atmosphere can be considered as consisting of a mean and of a fluctuating flow,

representing the convection of energy due to the mean motion and the diffusion of energy by the

turbulent eddies. The energy in the flow can also be divided into two components, the first being

the sensible heat of the moving air, realized in vertical gradients in potential temperature, and the

second being the latent heat in the water vapor contained in the air. Water vapor rises from

warm low altitudes to condense in clouds, releasing the heat of vaporization, which drives the

buoyancy of the cloud or which may be released as radiant heat from the cloud summit. The

measurements and calculation required for the dete_ination of these fluxes are discussed herein.

The transport of radiant heat is also a complex process. Short wave solar radiation is

scattered and absorbed by clouds and the Earth's surface and the seas. The long wave terrestrial

radiation is scattered, emitted, and absorbed by comparatively cool bodies, the Earth's surface,

the seas, the clouds, and the atmosphere. The absorption and emittance of long wave radiation
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by theatmosphereis highly sensitiveto the compositionof the air.

Theflux of sensibleandlatentheatisdependenton themotionof theatmosphere;vertical

mean and fluctuating motions arecorrelatedto the mean and fluctuating horizontal velocity,

temperature,and humidity, for the calculationof momentum,velocity, andtemperaturefluxes,

respectively. The separationof meanand fluctuating flux componentsis doneby meansof

Reynoldsdecompositionof theconservationequations(momentum,energy,andmass)discussed

earlier.

A simplified versionof themomentumconservationequation,afterdecomposingvelocity

into meanand fluctuating parts,is:

- ÷ ; + a -1 (5.1)

where velocity is broken into horizontal and vertical components, u and w, the overbar denotes

a mean component, and the prime denotes a superimposed fluctuating component. This

simplification is for illustrative purposes and ignores the Coriolis, buoyancy, and frictional effects

in Equation (3.1).

The additional flux advection terms in the momentum conservation Equation (5.1)

compared to Equation (3.1) are due to the decomposition of the momentum flux divergence into

mean and fluctuating components by means of ensemble averaging. The fluctuating exchange

of fluid, with no net fluid exchange, particularly in the boundary layer, is often the more

significant means of transport for momentum. As can be seen from Equation (5.1), the

determination of vertical momentum fluxes will require measurements of time dependent

horizontal and vertical wind speeds which can be decomposed into mean and fluctuating
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components.The fluctuatingcomponentscanthen be correlated to provide terms like u--r-'w7 from

which a physical understanding and parameterization models can be developed. To make these

measurements from an aircraft, will require pressure, temperature, and flow angle measurements

relative to the airplane.

The conservation of energy and moisture equations can be decomposed likewise into the

simplified forms:

and

[pC v u aT + -__T + = V "_ + C (5.2)
ax &

(5.3)

As with momentum, the fluctuating exchange or turbulent mixing of air is often the more

significant means of energy and moisture transport. These parameters will require the time

dependent measurement of temperature and humidity from the airplane in order to determine

turbulent fluxes of energy and mass represented by such terms as _ and _-7, respectively.

Clear sky and cloudy sky radiative modeling support will require knowledge of both

radiative divergence and atmospheric constituents affecting divergence. This will require a

combination of spectral radiometers and measurement of water vapor, carbon dioxide, and ozone

concentrations, at a variety of altitudes through the troposphere. The spectral measurements will

include a reference band unaffected by the atmosphere, by which a virtual black body

temperature and Plank function for the long wave flux can be established, and for the absorption

bands of the listed constituents affecting the long wave flux.
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6.0 CLOUD PHYSICS STUDIES

The cloud studies promoted herein are intended to advance the parameterizations used to

predict the interaction of clouds with the transport of energy through the atmosphere. Energy

transport affected by clouds includes (1) convective transport, from the boundary layer to the free

atmosphere, (2) the compensating flow from the free atmosphere back to the boundary layer, and

(3) radiative transport, by the interdiction of stratiform clouds, particularly cirrus, in the exchange

of both solar and terrestrial radiation between space and the Earth/atmosphere system. The

measurements needed for convective studies have already been discussed; the parameters needed

are wind velocity, temperature, and humidity. Radiative transport will require radiation flux

measurements and a physical description of clouds affecting that flux. A description of clouds

will be comprised of vertical extent, horizontal extent, particle sizes, particle number densities,

and emissivity and transmissivity for both solar and terrestrial radiation.

The airborne instrumentation system design must consider convection related

measurements pertaining to determination of moisture and heat transport upwards through a

convective column and of the nature of the compensating flow downwards. Determination of the

transport of moisture and heat from the boundary layer by airplane flights is envisioned to consist

of flights on the surface of a hypothetical controI volume containing the cumulus column of

interest. The net flux into the volume, at cloud base, would be measured, as well as the net flux

from the cloud by measurements at the cloud top and sides. Penetration into the cloud will be

desirable, although turbulence, precipitation, and ice accretion on the airplane may preclude such

maneuvers. The subsidence of air surrounding the cumulus column will also be studied for

determination of the moisture in flow compensating the cumulus updraft. Such a mission is

illustrated in Figure 6.1. Any studies of this nature will require measurements of momentum,

heat, and moisture flux as previously discussed.

6O

t,q



E

E
L_

m

o_
OD

\
o

61



Radiative transport can be determined in much the same way that convective transport can

be determined; the primary difference lies in the measurement of radiative flux into and out of

stratiform clouds instead of convective heat and moisture into and out of cumulus clouds. A

typical mission, as envisioned, is illustrated in Figure 6.2.

gross radiation flux beneath and above a cirrus cloud.

It will involve the measurement of

Radiometers, above and below the

airplane, will be required for such measurements. As a minimum, broad band radiometers,

enabling the differentiation between solar and terrestrial radiant flux are required. The cloud

should also be penetrated for determination of the particles comprising the cloud, in size and

number density. State-of-the-art technology with particle sizing requires probes using laser

scattering for particle measurement and counting. Particle mapping might also be done remotely

by lidar. The radiation balance of the cloud, combined with a description of the cloud material,

will advance the parameterization of cloud optical properties by predicted moisture content,

pressure, and temperature (Figure 6.3).
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7.0 CONCLUSIONS

The most significant potential for advancements in the performance of GCMs lies in a

better understanding of the hydrological cycle and in improvements in the modeling of radiative

transfer within an atmosphere of spatial and temporal varying optical properties. The

measurements which are best supported by an airplane in realizing the goals of more accurate

numerical climate modeling will determine the flux of energy and moisture from the top of the

boundary layer to the top of the troposphere and will provide increased understanding of some

of the factors affecting these fluxes. In short, the instrumented pallet recommended as most

needed by the GCM community is one which primarily supports studies of clouds, both

cumuliform and high altitude stratiform and which secondarily supports collection of data for the

validation of numerical codes used for radiative flux predictions.

The pallet will be comprised, in part, of the instrumentation necessary for the

measurement of momentum, energy, and moisture turbulent flux. This is considered a baseline

for aircraft involved with atmospheric research. Turbulent flux determination requires temporal

and spatial measurements of wind velocity, temperature and humidity below, above and around

convective columns and cirrus clouds. The pallet will, in turn, have the capability of supporting

studies of cloud microphysics which influence latent heat and radiation transport.

The measurements necessary for support of radiative transfer models are spectral radiation

and concentrations of particular atmospheric constituents. These constituents, which most

significantly influence the transfer of both short and long wave radiation, are water vapor, carbon

dioxide, and ozone. Other constituents, of lesser importance but worth consideration, are

methane and nitrous oxide.

The scope of these measurements will define the requirements of the supporting airplane.

The measurement of the fluxes of momentum, energy, and moisture, are most easily performed
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at low airspeeds since increasing airspeed directly affects the confidence in these measurements.

Thus, as is desirable with any airplane performing in-situ measurements of state variables, a low

airspeed aircraft is a requirement. The most important specification for this airplane, however,

is the service ceiling. Ideally, the airplane has the capability of penetrating the lower stratosphere

for cirrus cloud studies; a compromise is a tropopause capability, which will encompass the great

majority of the domain intended for study of cloud physics and spectral radiative flux.
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APPENDIX HI

INSTRUMENTATION PALLET DESIGN CONCEPTS

AND AIRCRAFT DEFINITION FOR

GENERAL CIRCULATION MODEL

FLUX PARAMETERIZATION RESEARCH



1.0 INTRODUCTION

The objective of this report is to specify the instrumentation for an airborne pallet and to

recommend an airplane with which it can be deployed in support of advancing mass, momentum

and energy flux parameterization studies for General Circulation Models (GCM).

2.0 PALLET CONCEPTS

Two preliminary concepts have been developed of an airborne instrumentation pallet

designed for atmospheric measurements in support of flux parameterization studies for general

circulation models. The concepts emphasize primarily the determination of energy and mass flux,

in the atmospheric boundary layer, in and around cumuliform clouds, and in and around high

altitude cirrus clouds. Consideration, however, is also given to determination of high altitude

cloud microstructures which effect the Earth's long- and short-wave radiation flux budget.

The atmospheric parameters considered of primary importance and which can be

effectively measured from an airborne platform, are listed in Table 2.1. The parameter list

represents the consensus of high priority needs as expressed by a sample of the GCM community

(-Paige (1991)) and from a literature review (FWG Contract Report (1992)). The measurements

necessary to determine these parameters, with recommended candidate transducers for the

airborne pallet design, are listed in Table 2.2.

The instrumentation component can be essentially divided into two groups. Those

required to measure wind velocity, temperature and moisture fluctuations which produce the

turbulent fluxes such as momentum flux ( ulw I, ulv I, vlw I ), heat flux ( TCu/, TOw/, 7¢v / ), and

moisture flux ( qtul, q/w I, qlvl ); and those required to measure thermal radiation flux and liquid

or solid mass flux.
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Table 2.1 Variables Requiring Airborne Measurement in Support of
Flux Parameterization Models

Momentum and Sensible Heat Flux

Mass and Latent Heat Flux

Radiation Heat Flux

Ambient Pressure

Ambient Temperature

Density

Wind Velocity

Humidity

Dew Point Temperature

Particle Size Distribution

Particle Concentration

Short- and Long-wave Radiant Flux

Cloud Reflectivity

Cloud Transmissivity

Cloud Emittance
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Turbulent Flux

The calculation of turbulent flux of momentum, energy and moisture, in the atmosphere,

from measurements made from an airplane with six degrees of motional freedom, requires

instruments from which the velocity of the moving air mass with respect to the earth can be

extracted. The velocity of a moving air mass with respect to earth, is obtained by vectorially

subtracting aircraft velocity with respect to the air mass from aircraft velocity with respect to

earth. These velocities are referred to as airspeed and ground speed, respectively. Since airspeed

is measured in a body-axis (airplane fixed) reference system, it is necessary to transform the

airspeed vector into the inertial (earth fixed) flame of reference. FWG has derived the detailed

governing equations required to make this transformation in a number of related studies. A

derivation of these equations is given in Appendix A (see also: Frost, et al. (1987); Crooks, et

al. (1967); Houbolt, et al. (1964); Lenschow (1972); Axford (1968); and Crawford, et al. (1990)).

The instruments specified in Table 2.2 are selected to provide measurements of all the

variables required to solve the equations given in Appendix A. FWG has also carried out

numerous analyses of sources of inaccuracy in data reduction procedures and identified

instrumentation errors which influence the accuracy of the computed wind velocities. A recent

overview of measuring winds with instrumented aircraft carded out for NASA/MSFC under

Contract NAS8-37893 is provided in Appendix B for the convenience of the reader. This report

provides a detailed description of instrumentation and principles of wind measurements,

uncertainty analysis and methods of data communication. The selection of the instruments and

data communication system recommended in Table 2.2 are based on the methods described in

Appendix B and on FWG's extensive experience with turbulence measurements from aircraft and

other systems (see pertinent documentation listed in Table 2.3).
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Table 2.3 Related References to Wind Measurements With Aircraft

1,

o

2a.

2b.

2e.

o

.

°

Frost, W., H. P. Chang, and E. A. Ringnes.

"Analyses and _ments of Spanwise
Gust Gradient ,Data from NASA 13-5713

Aircraft," Final report under Contract

NAS1-17989 for NASA Langley Research

Center, February 1987.

5a.

Camp, D. W., W. Campbell W. Fros4 H.
Murrow, and W. Painter. "NASA's B-57B

Gust Gradient Program," Journal of Aircra_

21(3):175-182, March 1984.

5b.

Frost, W., "Measuring STS Winds with
Instrumented Aircraft," Presentation at

NASA/Dryden on Contract NAS8-37377,

May 1987.

5c.

Frost, W., E.F. Arman, K. Hill and D.
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The pallet design concept is thus based on a foundation established with flux measurement

systems from previous and existing aircraft studies. The traditional approach for airborne

measurement of turbulence employs an Inertial Navigation System (INS). Though well proven,

the INS approach is very expensive. It requires significant space and power, limiting application

to large platforms and further increasing cost. Its large size precludes co-location with the air

motion sensors that are usually mounted on a boom. Thus, relative motion between the INS and
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the air motion sensors is significant, introducing additional terms into the governing equations

(Appendix A) which require additional measurements, which must be very accurate.

Recently however, Crawford, et al. (1990) developed the theory and instrumentation and

demonstrated a low cost "generic" Mobile Flux Platform (MFP) to measure atmospheric turbulent

structure and trace-gas air-surface exchange. The Atmospheric Turbulence and Diffusion MFP

was made possible by recent technological advances in both low cost miniature sensors and

computer technology.

The system proposed by Craw-ford, et al. (1990) is simplified by co-location of sensors,

an approach recently made possible by technological advances in low-cost miniature acceleration

and pressure sensors. Although orientation with respect to earth coordinates is not measured,

overall accuracy is enhanced by directly measuring the linear translation components of the

sensor-head motion. At each time step (40 Hz) the velocity vectors are computationally

translated from platform to earth coordinates, obviating the need for a physically oriented

measurement platform.

Platform velocity is determined by measuring the three acceleration components and

integrating. Since the coordinate system orientation of the mobile platform is continually

changing relative to the earth, each acceleration measurement is computationally rotated to earth

coordinates before integrating with an efficient coordinate rotation algorithm. Since integration

compounds any error over time, a low-frequency (0.67 Hz) position measurement is blended with

the accelerometer data during integration. This technique retains fast response while suppressing

the error growth.

The instrumentation specified in Table 2.2 is based on the design concept of Craw-ford,

et al. (1990) and thus calls for "fast" and "slow" response instruments. The gust probe, state

variable measurements, and inertial reference unit are handled as separate subsystems positioned
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carefully on the airframe. The preliminarydesignproposesa modular unit, compatible with the

suggested airframes, in which the critical hardware will be mounted in a bolt-on pod. The

concept of such a pallet is shown in Figure 2.1. The gust probe, fast response temperature

sensor, fast response humidity sensor, and inertial reference unit are packaged within the same

rigid structure. Other hardware, such as radiometers, particle sizers, and steady-state temperature

and humidity sensors, can readily be located elsewhere on the aircraft without detriment to the

accuracy of the measured turbulent flux data.

The instrument pallet design has been biased towards the acquisition of an EGRETT II

aircraft, recommended in Section 3.0 as the instrument pallet deployment vehicle. In Section 3.0

results of a survey of potential airplanes for use in the parameterization program is discussed and

a recommendation as to the optimum aircraft for the GCM parameterization studies is provided.

The proposed modular instrument pallet would be mounted as a pod under the wing of

an EGRETI" II. The pod, which would resemble a missile, and be aerodynamically designed to

minimize drag will house the fast response instruments necessary for the inertial dependent

measurements (to be used for correlation and cross-correlation calculations supporting turbulent

flux studies) and instruments for which the mounting alignment is critical. These instruments

include the IMU, inclinometers, flux gate sensor, and probe head. Other instruments, such as the

radiometers and particle measuring units, can be located elsewhere.

The initial design of the pod calls for a truss frame with a non-supporting skin. Analysis

based on the weight of the pod, static deflection, and vibrational characteristics of the truss frame

suggest this design is preferable to a thick walled tube with no internal supports. Confirmation

of the design is pending a decision by NASA to proceed with hardware procurement and

construction. Ease of fabrication and maintenance has also been considered in the recommended

selection between the two potential design approaches.
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Inertial Measurement

Typically, an INS system is required for measuring the inertial velocity of the aircraft.

However, based on the study by Crawford (1990), it is recommended that the inertial navigation

system (INS) be deleted from the system and a low cost inertial measurement unit (IMU), forced

inclinometers, and a flux-gate compass be employed in its place. The concept behind this choice

of instruments, which will be used to determine the inertial velocity, attitude, and heading of the

aircraft, is fully described by Craw'ford (1990).

Slow response, but highly stable, inclinometers and flux gate sensor are used to determine

the attitude and heading of the aircraft. The differentiation of the position of the aircraft, as

determined by the global positioning satellites (GPS), will provide the slow response, but very

accurate, inertial velocity of the aircraft. An inexpensive IMU will be used for high frequency

changes in the velocity, attitude, and heading of the aircraft. Because the IMU will be used as

a fast response instrument, the effects of long term drift typical of INS systems will be

nonexistent. Additionally, this combination is significantly less expensive than an INS and is

suitable for the airborne modular instrumentation system under development.

The fundamental concept of inertial navigation is the existence of an inertial reference

frame in which Newton's second law holds. By measuring accelerations in three independent

directions, vehicle motion in this reference system can be described. Velocity is found by

integrating acceleration by one integration and position by a second integration. In an INS, a

reference frame with one component along the gravity vector and the two others in a plane

normal to the gravity vector is maintained. This is accomplished by three gyroscopic elements.

The gyroscopes are positioned on the stable table which is gimballed to the aircraft such that it

is free to rotate about the three axis (roll, pitch, and yaw). Any angular disturbances are sensed

by the gyros and proportional signals sent to three torque motors that keep the stable table in the
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sameinertial planeindependentof aircraftmotion. The threeaccelerometersalsolocatedon the

stabletable describethe time history of aircraft movementalong the threeaxis in an inertial

referenceframe.

A major source of error in an INS with a gimballed stable table is the Schuler pendulum

effect. An initial alignment error or a system imperfection will set in motion an oscillation of

the stable table equivalent to an earth radius pendulum. The resulting misalignment of the stable

table causes the two horizonal accelerometers to pick up a component of the gravitational

acceleration thus introducing the error. This error is carried through the integrations and will

translate into velocity and position errors, as well. The nature of this oscillation is such that the

Schuler errors are small initially but will grow with time and periodically change polarity.

Earth rotation errors may be a significant source for inertial navigation errors depending

on the time span of aircraft missions. Also, because of the relation upon latitude, earth rotation

errors are greatest in the polar regions of the earth. Pertaining to the specified area of operation

these errors may be of significance. By removing the source of these errors through the GPS

system, the accuracy of the wind velocity calculations is expected to be significantly improved.

Also, the cost of the system is significantly reduced.

Cloud and Radiation Physics

It is envisioned that the aircraft missions, as determined in FWG Contract Report (1992),

will concentrate on studies of high altitude clouds, particularly high troposphere and tropopause

cirrus, and convective cumulus and on radiation flux and its interaction with clouds. This

requires the measurement of cloud particle sizes and radiation flux, as well as momentum, heat,

and moisture flux. Langford, et al. (1990) recently examined the scientific questions to be

addressed in defining instruments for an airborne cloud and radiation testbed. Although the

design was tailored to the unique capabilities of the unmanned aircraft, the study is

79



comprehensiveof the major needs for all aircraft.

Q

Their study focused on four missions:

Measuring net radiation at the top of the troposphere

• Conducting radiometric measurements between cloud layers

• Cirrus cloud microphysics

• Warm cloud microphysics

Table 2.4 taken from Langford, et al. (1990) summarizes a canonical instrument array

believed appropriate to accomplish essentially all of the major measurements required to support

these missions.

Table 2.4 Integrated Atmospheric Radiation Measurement Program

Proposed by Prof. J.G. Anderson, Harvard University, as reported by Langford, et aL (1990)

OBJECTIVE

IR Radiance

IR Radiance Difference

COpwelling, downwelling)

IR Radiance Directionality

IR Radiance Divergence

IR Broadband Flux

IR Broadband Flux Difference

IR Broadband Flux Divergence

INSTRUMENT DESIGNATION

Dual Channel Interferometer Sounder

Spectral resolution: 1 cm 1

Spectral range: 600-2800 cm 1

Weight: 20 kg

Ins_ent description: Bias between

upwelling/downwelling channel removed

by 180 ° rotation, dual black body

in-flight calibration

Pyrogeometer

Spectral range: 3-50 Ix

Weight upwelling channel: 2 kg

Weight downwelling channel: 2 kg

Instrument description: Bias between

upwelling]downwelling removed by 180" rotation

Subunits commercially available: EKO MS-200
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Table 2.4 (Continued)

OBJECTIVE

Visible Radiance,

Radiance Directionality,

and Radiance Divergence

Visible Flux, Flux Difference

(Upwelling/downwelling)

Flux Divergence

UV Radiance, Radiance Difference

(Upwelling/downwelling)

Radiance Directionality

Radiance Divergence

UV Flux, Flux Difference

(Upwelling/downwelling)

Flux Divergence

H20 Vapor

Cloud Liquid Water

H20 Ice

INSTRUMENT DESIGNATION

Dual Channel Ebert 1/4 meter Spectrometer

with Diode Array Detection

Spectra]_resolution: 1.5 nm

Spectra| range: 300-700 nm

Weight: 10 kg

Instrument description: Fiber optic coupled

upward/downward radiance directionality

observing heads, 180 ° rotation to eliminate offset

Dual _annet (upwelling/downwelling)

Pyranometer

Spectral range: 0.3-3 IX

Weight: 1 kg per channel

Instrument description: Detector heads

Available commercially: K & Z CM 11

Dual _annel Ebert 1/4 meter Spectrometer

with Diode Array Detection

Spectral range: 250-400 nm

Spectral resolution: 1 nm

Weight: 10 kg

Instrument description: Fiber optic coupled

upward/downward radiance directionality

observing heads, 180" rotation to eliminate offset

Dual Channel Fiber-Optic Coupled

UV Integrating Radiometer

Spectral range: 250-400 nm

Weight: 2 kg

Lyman-ct Fast Flow Fragment Fluorescence:

H20 + hv _ OH" + H

309 nm

OH

with simultaneous Lyman-a absorption

heated inlet for ice and liquid phase

Ozone In Situ UV Absorption

CO 2 In Situ IR Absorption

CCN Aerosols PMS ASASP-X

0.1-3 Ix



Table 2.4 (Continued)

OBJECTIVE INSTRUMENT DESIGNATION

Cloud drop and large aerosol PMS FSSP

concentration and size distribution

2-50 _t size

Two-dimensional images PMS-2DP

of ice crystals

Pressure, Temperature

Relative Humidity

Data Systems, Instrument Control 386-based, space-qualified flight systems

Telemetry, Data Storage developed for ER-2 and unmanned aircraft

The advantages of the integrated instrumentation/unmanned aircraft approach as

summarized by Langford, et al. (1990) is presented in Table 2.5.

The properties of clouds that govern the latent, as well as the radiant energy flux and

mass flux include not only the bulk structure of the cloud, but also their microphysical

characteristics including the liquid water content, droplet size distribution, and ice particle

concentration and size distribution. The size of water droplets and ice particles has been

measured by many researchers dating back as far as 1972 (Heymsfield and Knollenberg (1972)).

However, in past studies, the instrumentation used has not been able to sample small particles

and thus has led to underestimates of particle densities and over estimates of mean particle size.

Heymsfield and Platt (1984) estimated that 50 percent of extinction in cirrus is due to particles

less than 20 microns in diameter which have not been measured with instruments used to date.
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Table 2.5 Objectives of Proposed Atmospheric Radiation Instrumentation

(Table 2.4) as Stated by Langford, et al. (1990)

• OBJECTIVE 1: Radiance and Flux_Observations

These observations depend on the instruments themselves, rather than on

the details of their installation in the unmanned aircraft or on the trajectory flown

by the unmanned aircraft. Each wavelength interval (UV, VIS, IR) will provide

both spectrally resolved data, as well as absolute radiance and flux measurements,

as described in the instrument section. An advantage of the dual channel approach

is the redundant cross-calibration it affords between each

interferometer and the pyranometer/pyrogeometer combinations.

spectrometer/

OBJECTIVE 2: Radiance and FIuxDiver_zence

Dramatic improvements in the determination of this quantity is realized

with the integrated design of the instrument and fuselage. Suppose dL represents

the observed radiance for flux, and let the hemisphere represent a single channel

of the detector such that in configuration (a) channel 1 would be observing the

downwelling radiation and channel 2 would be observing the upwelling radiation:

Configuration (a)

in configuration (b) the channels would be rotated by 180°:

Configuration (b)

The flux difference would then be observed first in configuration (a) and then in

configuration Co) so that the downwelling flux, _L, would first be determined in

configuration (a) by channel 1, yielding 91_ and _ upwelling, _T, by channel 2,

yielding _2T. Configuration (b) would generate 92.[ and _IT. But since _ and

_T are both real quantities independent of the observing channel,
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Table 2.5 (Continued)

_11- $2t = el

is the offset between the channels for downwelling, and

$1T- @2$-- e2

is the offset for the upwelling channel. First, a consistency check can be applied

to the difference, el - _2, to determine its cause. But second, this approach

allows a very precise determination of

_,[ - _$ = Flux or Radiance Difference

because the instrumental offset can be precisely eliminated at high frequency

during each flight measurement phase.

• OBJECTIVE 3: Radiance or Flux Divergence

Determination of the _ • "_ is the ultimate goal of radiation measurements

in the atmosphere and a quantity for which previous observations were

insufficiently precise to determine at a level of interest to theoretical analysis.

The barriers to such observations are removed using the unmanned aircraft in

conjunction with the dual channel optical instruments. The strategy of Langford,

et al. (1990) is to use two aircraft flying trajectories initially together to inter-

calibrate the dual channel instruments (UV, VIS.IR) then diverging to determine

the radiance gained or lost in columnar increments, and then reconverging to

cross-calibrate at the end of the measurement sequence.
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Ice particlesamplersfollow two approach_, thosebasedon impactcoupledwith some

mechanismof imaging. Advanced systems under testing promise 7 Ixm size detection with 1 I-tm

resolution (l-Ieymsfield and Hagen (1989)). Other Samplers use optical array techniques. These

units are commercially available and detect 10-600 l.tm size particles (I-Ieymsfield and

Baumgardner (1985)). However, at high aircraft speeds, the minimum detectable size is on the

order of 100 I.tm. Moreover, crystal habit is detectable only to ice sizes greater than 125 lxm

with current optical systems.

The liquid water content of ice particles can be obtained by integrating the particle size

spectrum when knowledge of the crystal shape and density is available. At cirrus cloud

formation temperatures, ice crystal habits typically include hexagonal plates, columns, single

bullets, and bullet rosettes in order of occurrence at increasing temperatures. Aggregates of

crystals are common at the warmer end of the temperature spectrum (i.e. 25 - 45 degrees C) with

average sizes ranging from 0.5 - 1.0 mm. In some cases at slightly cooler temperatures, ice

particles have been observed to be as large as 2.0 mm (Langford, et al. (1990)). The density of

ice in cirrus particles is typically in the range of 0.6 - 0.9 g cm 3 (Heymsfield and Knollenberg

(1972)).

FWG has recommended that for the interim, particle size information be obtained in the

range of 10-100 Ixm with a PMS Model OAP-2D,GA2. The PMS Model OAP-2D-GA2 probe

with the ice phase detection option can be set-up with any magnification from unity up to 20 x

which allows the user to select any sizing resolution from 10 to 100 microns per element. The

probe can operate at slice rates up to 5 MHZ which allows reported resolution down to 20

microns per element at 100 meters per second particle velocity. Mechanical and optical

constraints limit the selectable sizing resolution of the two configurations of the probe as follows:
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Microns Per Array Element

Configuration MIN MAX

Cloud Droplet 10 100

•Precipitation 50 150

For interim radiation measurements the Epp Pyranometer PSP8-48 and Epp Pyrogeometer

PIR instruments are suggested. However, it is further recommended that for radiation and cloud

physic measurements that the comprehensive work of Langford, et al. (1990) be closely followed.

The feasibility of their system was established under Battelle Pacific Northwest Contract 126351-

A-R2 and appears to represent an advanced system concept which will meet the measurement

needs of NASA's future parameterization modeling studies.

3.0 AIRCRAFI'S ..........

FWG Associates, Inc. considered the pros and cons of several different aircrafts as to

optimal characteristics for deployment of the flux measurement system. These are listed in Table

3.1. The considerations were based heavily on a report by Johnson and Cooper (1989) who

reported results in a survey of atmospheric and oceanic scientists and of research managers

representing all or most of the scientific areas of NASA. Table 3.2 gives a reduced version of

the results and recommendations from Johnson and Cooper's (1989).

FWG, however, chose to focus attention on two, state-of-the-art aircraft which were not

considered in the Johnson and Cooper (1989) survey. These two options are based on an analysis

of the foreseeable missions of the instrumented aircraft required for the NASA GCM flux

parameterization measurement programs, along with cost and operational considerations.
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Table 3.1 Types of Aircraft Surveyed

Gulfstream I

Gulfstream II

Gulfstream 13I

Gulfstream IV

Sabreliner

Canadair Challenger 601-3A

Electra

King Air

Queen Air

FAll

T-28

Falcon 900

F-106

Grumman A-6

Lockheed S-3A

Convair F-106B

DC-9

DC-IO

DC-8

ER-2

P-3

Boeing 737

EGRE'Vr II

Aurora Perseus B (unmanned)
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Table 3.2 Results of Aircraft Survey (Summarized from Johnson and Cooper (1989))

What is your choice selection limited to?

G-I Turboprop
Mid-Sized Jet

Storm-Penetration Aircraft

What is your choice selection limited to?

G-I Turboprop

King Air
Electra

Small Jet

Mid-Sized Jet

DC-9

Storm-Penetration _Aircraft

Which mid-sized jet would you select?

G-II Class

G-III Class

G-IV Class

What is your second choice aircraft?

King Air Class

Turboprop (large)

Turboprop (middle)

Medium-large Jet
Storm-Penetration

1

35

2

1

2

1

0

27

5

0

0

0

31

2

1

2

7

16
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The first option is a manned aircraft with a payload, range and altitude, comparable to that

of the Gulfstream IV which is the favorite of Cooper, et al. (1989). FWG's investigation,

however, indicates that an E-systems EGRETT II aircraft has an acquisition and operating cost

significantly less than that of the Gulfstream IV (the Gulfstream IV has an acquisition and

operating cost of, respectively, $25M and $1,100/hr, whereas the EGRETT II has an acquisition

cost of $10M and an operating cost of $330/hr). The EGRETT II does sacrifice, however, the

inherent capability of the Gulf.stream IV to carry pa_ngers. Details of the EGRETT II are given

in Appendix C. The second option is an unmanned aircraft which is limited to a much smaller

payload than the EGRETT 1I, but has a greater altitude, range and duration capability. The

unmanned aircraft considered is the Aurora Perseus B.

Neither the EGRETr II nor the Perseus B is currently under production. However, an

early version of the EGRETr II has flown in support of the International Cirrus Experiment

(ICE) over northern Europe (Raschke, et al. (1989)) and a Perseus proof-of-concept is expected

to fly in late spring of this year.
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The velocity of a moving air mass (or the wind) with respect to earth, is obtained by

vectorially subtracting aircraft velocity with respect to the air mass from aircraft velocity with

respect to earth. Since airspeed is measured in a b6dy-axis (airplane fixed reference system), it

is necessary to rotate the airspeed vector into the inertial (earth fixed) frame of reference. The

governing equations are listed below. For a more detailed derivation of these equations see Frost,

et al. (1987); Crooks, et al. (1967); Houbolt, et al. (i964); Lenschow (1972); and Axford (1968).

The wind velocity vector components at some position f" measured from the c.g. of a

rigid aircraft are designated W"m W e and W z. These are measured in the coordinate system with

the x-axis pointing north, the y-axis point east, and the vertical axis pointing along the local

vertical (gravity vector; positive downward). The coordinate system is called the true north

coordinate system and is taken as the inertial system in this analysis (however, see Rhyne

(1976))." The WN, W e and W z components point north, east, and vertical, respectively, and are

given by:

w+w j
(A-l)

where it is assumed that effects due to the earth's r0tation are small.

* Grid north is true north at the platform alignment location, but as the platform moves

east or west from its initial alignment point, its north-south axis is not torqued to point at true

north but remains parallel to a vertical plane through the meridian at which it was aligned. (The

north-south and east-west axes are torqued to be perpendicular to the local vertical at all times,

however.) For all practical purposes, the inertial-platform axis system can be assumed to be

aligned with true north, considering the latitudes of operation and the east-west distances flown.
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The symbols, U, V, and W designate the components of the aircraft velocity vector relative to

the air mass measured in the true north coordinate system; VN, V_ and V z are the inertial

velocity vector components of the e.g. of the aircraft; and U_, V_ and W R are the rotational

velocity components of the position F relative to the e.g. (or INS) of the aircraft due to rotation

of the frame of reference fixed on the airplane, i.e., the body coordinate system.

The velocity of a point F = Ixi" + l,j + 1,k-' measured in the airplane frame of reference

(i.e., body coordinates) which is rotating relative to the fixed frame of reference (i.e., inertial

frame taken as the true north coordinate system in this study) is given by _ x f', where _ is

the angular velocity of the airplane frame of reference relative to the inertial frame of reference.

The velocity components of the position f' in body coordinates, U_, 1/R, and _ (rotational

velocity) expressed in terms of the Euler angles (_, 0, t_) are:

/ /
= / -[/(_-_sin0)+/(0sin_-_cosd_cos0)] /

( /(, -t_sinO)-/.(Ocos(_ +*sin(_ cosO) )

(A-2)

These rotational velocity components, /-'dR, I/R, and I_ (in the body coordinate system)

are transformed into the velocity components, Ul, V_, and Wj in the inertial coordinate system

by:
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(A-3)

where, the matrix Lzn transforms the velocity components in the body coordinate system to the

inertial coordinate system. This transform matrix has the following form: roll angle (_), yaw

angle (_), and pitch angle (0).

L/B =

f

cos0cosW sin_sin0cosW cosCpsin0cosW

-cos¢ sinW +sinCpsinW

cosOsinW singsinOsinW cosCpsinOsinW

+cosOpcos_ -sinqcosW

- sin0 sin0cos0 cosdp cos0

(A-4)

The values of U, V, and IV in Equation (A-l), which are the true airspeed components

in the inertial coordinate system, are not measured directly in the flight experiments. Rather, the

true airspeed of the aircraft, V, is measured in a coordinate system aligned along the relative

airspeed vector. The velocity components U/, 1/, and W ¢ (i.e., measured in body coordinates)

m

are related to the true airspeed, V, by the relationship:

(A-5)
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where

LBW --

'cosctcos[3 -cosctsin[3 -sinct'

sin[3 cost3 0

sinctcosl3 -sino_sinl3 cosa

(a-6)

and a and [3 are the angle of attack (a = tan-i WC[U I) and sideslip angle (13 = sin -1 W/V),

respectively. Law transforms the velocity components measured in a frame of reference for

which x-axis is located along the relative velocity vector (Etkin (1972)) calls this the "wind"

coordinate system) to the body coordinate system.

The above assumes that the actual magnitude of the relative velocity or true airspeed is

measured and not some fractional component such as can occur with a pitot tube. The aircraft

velocity components U, V, and W in the inertial coordinate system are:

/--L m W
W /

(A-7)

Substituting Equations A-3 and A-7 into Equation A-l, the wind velocity measured in the

inertial coordinate system is thus given by:

w,
(A-8)
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In fully expanded form, the nonlinear system of equations for computing the wind velocity

vector components in an inertial frame of reference is:

WN = - V[cos a cos/3 cos • cos 8 + sin 13(- sin _i' cos ¢ + cos @ sin 8 sin ¢)

+._i_ _ ¢o_/3(¢o_• sln0 ¢o_¢ + sin q_sin ¢)] + VN

- t_(,_ sin _,cos0 - 0cos • sin0)

+ lu[t_ sin ¢ cos 0 cos • + ¢(sin ¢ sin 'Is + cos ¢ sin t_cos _)

- _(cos Coos• + sln0sin Csin _V)]

+ t.. [t_cos ¢ cos 0 cos ',is+ ¢(cos ¢ sin • - sin ¢ sin 0 cos _)

+ *(sin ¢ co__, - sin 0cos 0sin V)]

wE = - Vinos _ cos_3sin _,cos0 + sin_(¢o_ • cos¢ + sin • sin 0sin ¢)

+ sin a cos/3(sin • sin 0 cos ¢ - cos • sin ¢)] + VE

- t_(0sin 0si_ ,I,- _ co_¢ co_0)

+ lu[0 sin ¢ cos 0 sin _ + ¢(- sin ¢ cos '-I' + cos Csin0 sin _)

- ,i,(co_¢ sin _,- sin 0sin ¢ cos_V)]

+ l,[0 cos ¢ cos 0 sin 62 - _(cos q5cos fie"+ ¢in ¢ sin 0 sin ',I')

+ _(sin Csin _ + sin0cos ¢cos _)]

Wz = - V[- cos a cos/3 sin 0 + sin/3 cos t_sin ¢ + sin a cos/3 cos _ cos ¢]

+ Vz + z,_ coso - t_[osin ¢ sino - ¢ cos ¢ coso)

- 1,[0 cos ¢ sin 0 + ¢ sin q5cos O]

The variables which must be measured in order to compute wind velocity vector

components from these equations are listed in Table A.1 and 1x, ly, 1z are distances in meters

from the INS measuring element to the probe measuring station (assuming the g, _ and V

sensors are mounted on a probe) along the three body axes, respectively.



Table A.1 Variables Requiring Measurement In Order

To Compute Wind Velocity Components

CHANNEL SYMBOL DESCRIPTION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Ct

0

0

P

T

LAT

LONG

VN

VE

Vz

V

time (sec)

angle of attack (rad)

sideslip angle (rad)

roll angle (rad)

pitch angle (rad)

heading angle (rad)

roll rate (rad/sec)

pitch rate (rad/sec)

yaw rate (rad/sec)

static pressure (Kp,)

temperature (Kelvin)

latitude (deg)

longitude (deg)

north-south airplane inertial velocity (m/sec)

east-west airplane inertial velocity (m/sec)

vertical airplane inertial velocity (m/sec)

true airspeed (m/see)
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Crawford, et al. (1990) have located the airspeed sensors around the INS system (actually

the accelerometers). This significantly simplifies the equations because the l_, ly and l z terms

vanish. Thus:

i

W_ = - V [cosceospcosq_eosO+sint3(-sinq_cos¢+eosq_sinOsin¢)
+sin,_cosp(cosqrsinecos¢+sin_sin¢)]+ VN

w

We = - 1/[cosacospsin$cosO +sinp(eosSeos_+sinSsinOsin¢)
+sinaeosp(sinq_sinOeos¢-eosq_sin_)] + VE

Wz = -P [-eos_eospsinO+sinpeosOsin¢+sineeospcos0cos_)] + V=

The above equations assume that inertial velocities Vt¢, Vg and Vz are available from the INS

output. Crawford, et al. (1990) does not use an INS or stabilized platform and integrates

accelerometer outputs. The wind velocity becomes:

where

)¢ = v/,,f. w_f + w=k"

¢,=v_f

and is obtained from the relationship:

+ v_f+ v=k"



The term b' is the output of the accelerometers.

The advantages of Craw-ford, et al. (1990) approach is explained in the main text.
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DESIGN METHODOLOGY AND PROCEDURES
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This appendixcontainsthe report "Guide to Measurementof Winds with Instrumented

Aircraft". It describes,in detail,thebasicmethodoqogiesusedin selectinginstrumentsand data

communicationsystemspresentin the main textof this report.

Thereport is appendedfor the convenienceof thereadersinceit is not readily available

in the openliteratureand, in principle,hasservedas thedesignhandbookfor the airborneunit

developedunder this NAS5-30936contracteffort.
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1.0 INTRODUCTION

Instrumented aircraft have been used for measuring atmospheric winds and

turbulence for a number of years. In general, these measurements have been for

straight and level flight where limited range instrumentation can be used to measure

the parameters of interest and linearized_ equations can be used to reduce the data.

R.ecently, however, there has been considerable interest in measuring winds along

steep flight paths, for example, with respect to STS wind profile measurements in

support of day-of-launch activities. The purpose of this report is to review aircraft

measurements techniques. R,eview of past and present applications of instrument

aircraft to atmospheric observations is presented. Questions to be answered relative

to measuring mean wind profiles as contrasted to turbulence measurements are then

addressed. Finally, requirements of instrumentation and accuracy, data acquisition,

data reduction, and theoretical and certainty analysis are considered.

Review of Pas_ and Present Applications of Instrumented Aircraft to

Atmospheric Observations

The past and present use of instrumented aircraft has been primarily' to measure

clear air turbulence and winds and turbulence associated with convective storms or

gust fronts. The limitations of these aircraft experiments were primarily straight

level flight with limited range sensors, limited environmental exposure, simplifi-

cation of the trigonometric functions of the aircraft attitude and linearized wind

equations. A review of the scope and objectives of a variety of aircraft measure-

ment programs as reported in the literature follows.

Telford, Wagner, and Vaziri (1977) point out that the measurement of air

motion has now advanced to the stage where routine measurements c,f the three

components of the velocity of the air can be made from aircraft to an accuracy
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of about 0.3 m/s. They further note that techniques have advanced, from using a

simple accelerometer at the center of gravity of the aircraft to give an indication

of the updrafts causing the aircraft gust load, to the present inertial platform base

systems now is use. Prior to this report, Telford and %Vagner (1974) described the

measurements of horizontal motion near clouds from aircraft. They described the

measurement of air motion for flight in and around small cumulus clouds using a

high quality inertial platform and an integrated data handling system. McBean and

MacPherson (1976) discuss measurements of the fluctuations of wind, temperature,

and humidity using an instrumented aircraft at altitudes from 30 to 300 meters

above Lake Ontario. A NAET-33 turbulence research aircraft (a single engine mil-

itary trainer) was used for the experiment. As instrumented, this aircraft was

capable of measuring the three orthogonal components of the true gust velocity and

the related fluxes of heat, momentum, and water vapor. Other in flight measure-

ments allowed computation of atmospheric pressure, temperature, humidiLv, and

Doppler wind speed and direction, as wetI as the altitude, speed, and orientation of

the aircraft..4, description of the aircraft, its instrumentation, and the data analysis

program are available in MacPherson (1973).

Extensive clear air turbulence measurements have been carried out with an

instrumented NASA B-57B aircraft. These measurements were part of the NASA

Langley Research Center's MAT (Measurement of Atmospheric Turbulence) pro-

gram. Measurements were carried out to altitudes ranging as high a 15 kin. The

particular emphasis of this program was to extend power spectral measurements of

atmospheric turbulences to wavelengths of at least 9,000 m under several different

meteorological conditions. The flight instrumentation system for acquisition of the

atmospheric turbulence data is given by Meissner (1976). Some of the measure-

ment results are presented in two volumes. The first volume (Davis, Champine
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and Ehernberger (1979)) presents the flightplanning, operations, and turbulence

forecastingaspects. The second volume (_VVaco(1979)) presents 27 maps of flights

of particular meteorological interestwith narrative summaries and with synoptic

maps and rawinsonde sounding data.

Winebarger (1986) employed a highly instrumented F-106B Delta Dart airplane

to make thunderstorm penetrations in the storm hazards program. Details on the

F-106B airplane and the criteriaused in choosing the airplane for the mission can

be found in Fisher, Keyser, Gerald, Deal, Perry, Thomas, and Pitts (1980) and

Fisher, Keyser, Gerald, and Deal (1982). The F-106B isequipped with a number

of data systems to measure the environmental and electro-magnetic characteristics

of thunderstorms during penetration.

The Royal Aircraft es-tablishment,\_oodfield and Vaughn (1983), has employed

an HS-125 to conduct both _vindshear and vortex wake studies for many years. In

addition to basic instrumentation to measure turbulence in three axis at frequencies

up to 20 Hz, the RAE HS-125 was uniquely instrumented with a laser airspeed

system (LATAS), which detects windshear several hundred meters ahead of _he

aircraftand a Marconi AD660 Doppler Velocity Sensor which could be used as the

basis of a ground speed/airspeed display.

RideL Thomson, and Verinder (1971) fitteda Mirage A-376 with a modified

nose cone to carry a differentialpressure gust probe. The probe was extensively

tested in a transonic wind tunnel and the resultswere confirmed by comprehensive

flighttest programs. The instrumented Mirage fighteraircraft carried out three

fiightsin an area of severe and low level turbulence. True gust velocitieswere

computed for 840 seconds of recorded data and power spectral energy distributions

were determined which confirm various levelsof turbulence.

Crooks, Hoblit, and Prophet (1967) describe high altitude clear air turbulence
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(HICAT) flight investigations. A digital instrumentation system for the measure-

ment of CAT in the wavelength range from about 100 ft to 60,000 ft was utilized.

The program effort required the measurement of CAT velocity components at al-

titudes of 45,000 to 75,000 ft in seven geographical areas. Instrumentation carried

aboard the HICAT aircraft, and Air Force U2 consisted of a PCM system, a iner-

tial navigation system, aerodynamic and aircraft response sensors (including a fixed

vane gust probe), an oscillograph record, and a digital magnetic tape recorder. The

program objective was to determine the statistical characteristics of high altitude

CAT so as to improve structural design criteria. Time histories and power spectra

are provided in Volume I of the report while meteorological data and flight track

maps are included in Volume II.

Frost, Chang, and R)ngnes (19S7) present the analysis of turbulence measured

across the airfoil of a Cambera B-57 aircraft. The aircraft was instrumented with

probes for measuring winds at both wing tips and at the nose. Statistical prop-

erties of the turbulence are reported. These consist of the standard deviations of

turbulence measured by each individual probe, standard deviations and probability

distributions of difference in turbulence m.easured between probes, and auto and

two-point spatial correlations in spectra.

Ganzer, Joppa, and van der Wees (1977) used a similarly equipped aircraft to

measure turbulence. A Beechcraft D-18S, a low wing all-metal semi-mono-coque,

aircraft was used. The aircraft was instrumented to measure and record the variables

necessary for the calculation of the turbulence velocity in longitudinal, lateral, and

vertical directions at the wing tips of the aircraft. A detailed description of the

instrumentation and calibration is presented in the report.

Kraus, Hacker, and Hartmann (1990) earned out research flights in the Coorong

coastal area of South Australia to investigate sea breeze fronts. The flights yielded



data sets of the structure of the fronts in the cross frontaddirection with a spatial

resolution of approximately three meters. The study is focused on the budgets of

sensible and latentheat in the vicinityof the front and on frontogenesis/frontolysis

processes which are closely related to budget considerations. A light,well instru-

mented aircraftdeveloped by the Finders Institute for Atmospheric and Marine

Sciences (FIAMS) was used. The aircraft,a GROB GI09B, along with itsinstru-

mentation and capabilitiesare described in detail by Hacker and Schwerdtfeger

(1988). Air temperature was measured using a fast PTI00 sensor, humidity was

measured with an A.I.R.,Inc. Lyman-c_ hydrometer and a Meteolab dewpoint mir-

ror. The three dimensional wind vector was sensed by a system consisting of a

five-holeprobe, a Rockwell-Collins AHS-85 altitude and heading reference system

and a Trimble TANS GPS navigation system (satellitebased Global Positioning

Systems). The horizontal wind vector was determined from an algorithm which

utilizedhigh resolutionintegrated inertialdata from the AHRS with the stable low

resolution data from the GPS navigation system. The accuracies of the instru-

mentation were reported as approximately 0.02 I(° for temperature and 0.02 g/kg

for humidity. For the wind vector, the reported accuracies were 0.9 m/s for the

horizontal wind and a few centimeters per second for the verticalwind.

Lenschow, Li, Zhu, and Stankov (1987) present measurements of the stable

stratifiednocturnal boundaries layer obtained with the Queen Air NCAR aircraft

during the severe environmental storms in a mesoscale experiment (SESAME). The

eases presented were obtained over rollingterrainin central Oklahoma, with a mean

slope of about 0.003. The results are reported to be in general agreement with

previous modeling and observational studies for the mean and turbulence structure

of the nocturnal boundary layer.An exception was that the eddy diffusivityof heat

and consequently the flux Richardson numbers are lessthan expected.



Stromberg, Mill, Choularton, and GalJagher (1989) made airborne measure-

ments of stably stratified airflow over the Pennines using an instrumented glider.

The parameters measuredin flight were air temperature, airspeed, vertical accel-

eration, and vertical velocity. Airspeed and pressurealtitude weremeasuredusing

sensitivepressuretransducersand resolution was reported as better than one mil-

libar for altitude and approximately one meter per secondfor airspeed. Vertical

velocity of the air was measuredusing the sail plane variometer system. In this

system, the inherent sink rate at a particular speedwas automatically subtracted

from the total signal to give the vertical velocity of the air itself. The resolution

was better than t meter per second and accuracy to within plus or minus 0.1 meter

per second.

Lenschow and Johnson (1968) made concurrent airplane and balloon measure-

ments of atmospheric boundary layersstructure over a forrest.Mean wind profiles

up to a height of 2,000 m and supporting surface layer measurements were observed.

The airplane measurements of verticaland horizontal velocitywere obtained from

a pressure differentialgust probe mounted on a boom on the nose of a twin engine

Cessina 310 airplane.Further description of the airplane isprovided in Dutton and

Lenschow (1962) and Lenschow (1965). The system removes airplane motions from

the air verticalvelocity measurements by measuring the pitch angle and vertical

acceleration of the airplane. The technique is limited to wavelengths of less than

1.3 km for airspeeds of70 m/s primarily because of driftin the gyro used to measure

pitch angle. The velocityfluctuationswere filteredwith an RC high-pass filterwith

a time constant of 3.0 seconds which resultsin a half power wavelength of 1.3 kin.

Temperature was measured with a thermal couple mounted on the boom lessthan

50 cm behind the gust probe sensors. The time constant of the thermal couple is

about 1 second.
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Benjamin (1989) reports an objective analysis scheme for meteorological vari-

ables on constant potential temperature surfaces. The analysis uses the form of

multivarient statistical interpretation and is designed to retain mesoscale detail

in various observations including rawinsonde, surface, aircraft, satellite, and wind

profiler data while combining them with a forecast background field. Commercial

aircraft observations of temperature and wind were used. Aircraft reports of icing

were converted into approximate observations of 100% relative humidity.

Parish and Bromwich (1989) report instrumented aircraft observations of the

katabatic wind region near Terra Nova Bay. Two aircraft missions were flown to

sample the boundary layer dynamics associated with the intense katabadc winds.

An LC-130 instrumented aircraft developed for meteorological research was utilized.

The data system is described in Renard and Foster (1978) and an itemization of

the onboard instrumentation is given in Gosink (1982). The LC-130 is equipped to

record a total of 18 data channels of meteorological and navigational parameters at

1 second intervals on high density magnetic tapes.

Gage and Nastrom (1986) present a theoretical interpretation of the wave num-

ber spectra of winds and temperature obtained from an analysis of data from over

6,900 flights during the global atmospheric sampling program (GASP). Data were

collected automatically on specially instrumented Boeing 747 aircraft in routine

commercial service, with most measurements made in the altitude range between

9 and t4 km. For most flights the flight interval is 75 km and the length scale

sampled range to about 5,000 km. The 6,900 flights in the GASP data base were

made during all seasons and covered a wide variety of latitudes and longitudes.

The proceeding summarizes types of aircraft measurement programs which

have been carried out using a range of aircraft from highly instrumented aircraft,

to gliders to commercial aircraft of _opportunity". The principle of extracting
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winds from the measurements, however, is basically the same. This principle is

described in the next section. Essentially, it is a matter of measuring the aircraft

inertial velocity vector and the velocity vector of the air relative to the aircraft. The

difference is the wind velocity vector. The parameters which need to be measured

and a variety of the instrument types used are described in the next section.

8
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2.0 INSTRUMENTATION AND PRINCIPLES OF WIND

MEASUREMENT

The principle and governing equations relative to the measurement of winds

from an aircrai't are wetl documented (for example see Axi'ord (1968); Lenschow

(1986); Frost, Chang, and Ringnes (1987)). The basic physical principle is embodied

in the vector relationship

<y:?_-_o (2.1)

where PP is the wind vector, Ve is the aircraft inertial velocity vector and l_, is the

relative airspeed vector. The aircraft therefore must be equipped with instruments

that measure ground speed (i.e., inertial) and the speed of the air relative to the

aircraft. Expressing the Wectors 17_ and V_ in an appropriate coordinate system to

provide windspeeds in the earth's coordinate system requires that the 6 degree-of-

freedom motion of the aircraft be measured. The system of equations required to

reduce the aircraft measurements into components of windspeed are thus complex.

They b.ave been fully derived, however, and are reported in the previously mentioned

references (Frost, Chang and Ringnes (1987) is an example). This derivation is

partially reproduced in Appendix A.

The fully expanded form of the system of equations for computing the wind

velocity vector components in the earth's frame of reference is:

WN = - V[cos a cos/3 cos _ cos 8 + sin/3(- sin vI, cos ¢ + cos vI, sin 8 sin ¢)

+ sin a cos/3(cos _ sin 0 cos ¢ + sin_ sin 4>)]+ Vzv

- z_(,_sin _,cose - e cos_ sin e)

+ 1_[_ sin ¢ cos 0 cos • + ¢>(sin ¢ sin • + cos 4 sin O cos _) (2.2)

- _' (cos ¢ cos • + sin 6 sin ¢ sin g')]

+ 4[e cos¢ cos o_os_, + $(cos ¢ si_ _, - sin ¢ sin ocos_)

+ ,_(sin ¢ cos _, - sine cose sin _)1
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I_VE = -- V[cos c_ cos ;3 sin g' cos 8 + sin/3(cos ¢2 cos _ + sin g' sine sin q5)

+ sin a cos/3(sin 9 sin 8 cos _b - cos ¢_ sin q5)] + V_

- t,(OsinOsinV9 - 9 cos4_cosO)

+ l_[/) sin q_cos O sin v9 + _(- sin q5cos • + cos _ sin O sin vg) (2.3)

- _(cos _bsin vI, - sin 0 sin _ cos ¢)]

+ t=[O cos q_cos 0 sin g' - $(cos q5cos g' + sin q5sin Osin _)

+ 9(sin _bsin • + sin 0 cos _ cos vg)]

Wz = - V[- cos o_cos j3 sin 0 + sin/3 cos 0 sin q5+ sin o_cos 5 cos 0 cos qS]

+ Vz + I=0cos 0 -Iy[0 sinqSsin0 - _ cos qScos0) (2.4)

-_=[0 cos _sin0 + _sin_ cos0]

where WN, l&'S, and Wz represent the north, east, and vertical components, respec-

tively, of the wind velocity vector. Inspection of these equations shows the variables

required in computing wind velocity vector components are those listed and defined

in Table 2.1.

Sections 2.1 and 2.2 describe the basic principles of the various sensors avail-

able for making the required measurements and the advantages and disadvan:ages

of different types. However, a review of overall systems for measuring wind as

applied to different aircraft as reported in the literature is given first. Brown, et

al. (1974) describes a research gust probe system. The system was installed on a

DC-6 aircraft. It was initially developed and used in the Barbados oceanographic

and meteorological experiment (BOMEX). A digital instead of an analog recording

system was subsequently added and the system was used in the International Field

Year on the Great Lakes project (IFYGL). The system was essentially composed of

a fixed vane sensor mounted on a noseboom. The fixed vane sensor is reported in

Crooks, et al. (1976) and consists of a vertical sensor (a-vane) and a lateral sensor

(¢3-vane) attached to a specially constructed strain gauge beam. Ambient pressure

is sensed by a Conrac type 555 T-1 absolute pressure transducer/servo assembly.

A thermistor temperature probe assembly and a microwave cavity instrument to

A
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Table 2.1 Variables required for wind computations.

Symbol Description

t

#

¢

0

P

T

LAT

LONG

VN

VE

Vz

V

time(sec)

angle of attack (rad)

sideslip angle (rad)

roll angle (rad)

pitch angle (rad)

heading angle (tad)

roll rate (rad/sec)

pitch rate (rad/sec)

yaw rate (rad/sec)

static pressure (Kp_,)

temperature (Kelvin)

latitude (deg)

longitude (deg)

north-south airplane inertial velocity (m/sec)

east- west airplane inertial velocity (m/sec)

vertical airplane inertial velocity (m/sec)

true airspeed (m/sec)
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measure index of refractivity are also mounted on the noseboom. Two Statham

strain gauge accelometers were mounted on the boom to sense normal and lateral

boom accelerations. A third Statham strain gauge accetometer which was tempera-

ture controlled was used to sense longitudinal accelerations of the Mrcraft. A Litton

LTN-51 inertial navigation system provided the basic information regarding aircraft

motion with respect to the earth. Signals recorded from the INS were vertical ac-

celeration, roll, and pitch. Aircraft angular motions rates of pitch, roll, and yaw

were provided by gyros. Elevator position was also monitored. A model MC013

data acquisition system provided means of measuring up to 64 analog voltages at

sample rates up to 3,20o samples per second (50 scans per second of 64 inputs);

thus provided a recording of all digitM forms along with the time, day of the year

and manually entered header data. Recording was carried out on a 7-track gapped

tape, IBM compatible.

Gamo, et al. (1975, 1976), Yamamoto, et al. (1977), and Yokoyama, et al.

(t977a, 1977b) describe an airborne measurement system mounted on a Cessna 9.07

aircraft. The system consisted of a hotwire anemometer used for measuring longi-

tudinal velocity fluctuations (observations are made with _he aircraft flying parallet

to the wind), sonic anemometer used to measure vertical fluctuations, horizontal

vanes used to measure the lateral component of the wind, thermistor psychrometer

used to measure mean temperature and humidity, sonic thermometer used to mea-

sure temperature fluctuations, thermocouple thermometer also used to measure

temperature fluctuations, and a radiation thermometer used to measure surface

temperature. The airplane's pitching, roiling, and yaw angles and vertical, lateral,

and longitudinal accelerations were measured with an inertial platform system.

Scott, et al. (1989) describes the meteorological measurement system incorpo-

rated on the NASA ER-2 aircraft. The meteorological measurement system (MMS)
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consists of a special inertial navigation system, a differential pressure system in-

stalled in the nose of the aircraft, a data acquisition system, and airdata instrumen-

tation. The high resolution INS is especially configured with a data bus which is

updated at 25 Hz. The differential pressure system provides sensitive measurements

of the airflow angles (angle-of-attack and angle-of-sideslip). The data acquisition

system meets the requirements to sample, control, and process 45 parameters at a

sampling rate up to 40 Hz. per parameter and store the data in a tape recorder (20

MB.) and a hermetically sealed Winchester hard disk (10 MB.). Special and redun-

dant instrumentation for aircraft and pressure measurements are also installed on

the aircraft.

Poeltet (1990) describes the University of North Dakota, Cessna Citation tI, air-

borne weather research system. Parameters of temperature, dewpoint and pressure

are measured by relatively standard methods using state-of-the-art ii_strumenta-

tion. The position measurements are based on a Litton LTN-T6 inertial navigatioi_

system. Air motion measurements are derived from measurements of acceleration

pitch, roll and yaw combined with angles-of--attack and sideslip and indicated air-

speed. The instrumentation pallet also includes radiation instrumentation, cloud

microphysics measurement equipment, and a forward or side looking video camera

to provide a visual record of flight conditions. Data are sampled at various rates

from 1-24 times per second. The sampling is controlled by the onboard computer

system which also displays the data in reM time.

A number of other reports discuss evaluation of different instrumentation for

use in atmospheric measurement programs. Murrow and Rhyne (1975) describe

flight instrumentation for atmospheric measurements; Lenschow and Kelley (1975)

discuss atmospheric mesoscale measurements from aircraft including instrumenta-

tion and measurement techniques; Bjarke and Ehernberger (1989) discuss inflight
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techniques for wind measurements in support of the space shuttle program, and

Lenschow (1986) discussesaircraftmeasurements in the boundary layer.

The following section describes the physical principlesof some of these instru-

ments used in the aforementioned systems.

2.1 Relative Airspeed

The relative airspeed vector requires a magnitude and direction measurement.

Magnitude is generally calculated with pitot measurements and direction with either

flow vanes or differential pressure transducers.

Relative airspeed magnitude is computed from the equation

v. = -1 9_.5

where the measured parameters are total pressure, Po, static pressure, p. and total

temperature, To. Figure 2.1 illustrates schematically the measurements required to

determine airspeed magnitude, and a detailed derivation of Equation 2.5 ix given in

Appendix A.

The direction of the air relative to a probe is fixed by the angle-of-attack, a, and

sideslip angle, ft. These angles are generally determined with either a differential

pressures flow angle probe or vanes. A comparison of the flow angle differential

pressure probe versus vane measurements is given in Appendix A. The pressure

differential flow angle probe is illustrated in Figure 2.2(a) and the vane system in

Figure 2.2(b).

A variety of types of flow angle measurement techniques are reported in the

Iiterature. Gracey (1958) reviews and summarizes methods of measuring angle-

of-attack on aircraft. Three types of angle-of-attack sensing devices - the pivoted

vane, the differential pressure tube, and the null seeking pressure tube - are pre-

sented. Flight data on the position errors for three sensors locations (ahead of the
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fuselage-nose,aheadof the wing- tip, and on the forebody of the fuselage)are also

presented. Gracey reports that for operations throughout the subsonic, transonic,

and supersonicspeedranges,a position aheadof the fuselage-nosewill provide the

best installation. Moreover, if the shapeof the fuselage-noseis not too blunt, the

position error will be essentiallyzerowhen the sensoris located 1.5 or more fuse-

lage diameters aheadof the fuselage. The report concludeswith various methods

of calibrating angle-of-attack installations in flight.

Lenschow (IOTl) describes two types of vanes that were used to measure the

angle of airstream with respect to an aircraft.One type is a rotating vane that is

freeto alignitselfwith the airstrearnand the angle issensed by the angle t_ansducer.

The other type isconstrained from rotating and the angle isobtained by measuring

the force exerted on thd vane by the airstream and dividing by the pitot-static

pressure. It is reported that the freevane measures the angle directly and isnot

sensitiveto acceleration while the constained vane has a faster response time and

has no bearing friction.With an aircraftspeed of 70 m/s, both vanes are able to

resolve changes in angles of less than 0.02 degrees, which corresponds to a gust

velocityof about 2 cm/s, and to respond to within 5% of a step function change in

angle in a distance of lessthan 5 meters.

Barna and Crossman (1978) carried out experimental studies of the aerody-

namic performance and dynamic response of flow directionsensing vanes. System-

atic investigationsof a variety of aerodynamic surfaces were carried out. Single

vanes consisting of fiatplates of various plan forms having aspect ratios between

0.5 and 5; hi-vanes with aspect ratioof 2.5;various cones and box vanes; and various

cruciform configurations were all studied. Lift and drag force measurements and

damping and frequency testswere allperformed under a variety of flow conditions

in a wind tunnel.



Lenschow,et al. (1978a) reports the status of air motion measurementson a

NCAR. aircraft for three types of gustsprobe sensors.Measurementof airflow angles

werestudied for: a fixed "constained"vanewhich measuresthe forceof the airstream

on the vane surfaceat varying flow angles,a rotating vane which aligns itself with

the airstream, and a differental pressureprobe which sensesthe pressuredifference

acrossa symmetric set of ports at various flow angles.They concludethat although

the frequency responseof most of the gust probe sensorsis sufficient for turbulence

flux measurements,it is not sufficient for measuring high frequencycharacteristics

of turbulence such as direct measurementsof viscous dissipation or the variation

in turbulence intensity on very small scales. Lenschow,et al. (19785) there%re

studied a hot-wire anemometer system capable of measuring two frequencies of

several kilohertz. The sensing elements of the hot-wire anemometer were typically

fine tungsten wires 4 #m in diameter and 1.25 ram long. These were mounted

transverse to the airflow on a probe attached to the aircraft nose- boom. The nose-

boom mount permitted velocity measurements within a few tens of centimeters

of the standard gust probe sensors at a location that is relatively free of upwash

effects induced by flow around the aircraft. Lenschow, et al. concluded that the

hot-wire anemometer system is an effective means of extending aircraft velocity

measurements to high frequencies and small space scales and that the commercial

tungsten wire probes were found to be sufficiently strong so that breakage was

not a severe problem in clear air. Further applications of the hot-wire system

were reported to consist of measurements of the vertical and transverse velocity

components with multiple wires placed at angles to the flow. Jacobsen (1977)

reports use of a three-wire array mounted on a trailing aircraft to measure vorticities

generated by a large aircraft.

The NASA ER-2 aircraft uses the nose of the Mrcraft as a differential pressure
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transducer system. This concept has been studied by others. Hillje and Tymms

(1980) investigated the use of a biconic spike probe on the nose of the space shuttle

external tanks to evaluate ascent airdata. Pressure measurements were calibrated

to obtain vehicle speed, attitude (relative to the local air mass) and dynamic pres-

sure during launch. They describe the geometry of the ascent airdata system and

results of wind tunnel tests carried out for calibration. They concluded that from

wind tunnel calibrations, a 30 degree/10 degree spike measured pressure could be

converted to the desired airdata parameters for post flight analysis. A typical value

for the angle-of-attack error for a Mach range between 0.6 and 1.0 and an a = 3

degrees was estimated at + 0.32. Other accuracies of the system are presented in

the paper. Hillje and Nelson (1981) provide additional data on the space shuttle

ascent airdata system.

Brown, Friehe, and Lenschow (19S3) describe the use of pressure fluctuations

on the nose of an aircraft for measuring the air motion. __Ieasurements of angle-

of-attack and sideslip angles and dynamic pressure are described. The sensing

probe consisted of an array of five pressure holes in the standard radome of a twin

jet research aircraft. Comparisons with air motion measurements (angle-of-attack

and dynamic pressure) obtained from conventional differential pressure flow angle

sensors at the tip of a nose-boom 1.5 fuselage diameters ahead of the aircraft body

are reported. The results indicate that the radome system works well down to

scale sizes slightly larger than the fuselage diameter. Finer scale measurements

were found to be limited by pressure transducer response. It was learned from

comparison of the power spectra determined from the conventional and from the

radome angles-of-attack that the response of the radome system was superior to the

conventional system due to the shorter pressure lines that were used.

Other types of pressure differential probes have been reported. For example,
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Hermann, et al. (1984) describes an airfoil probe for angle-of-attack measurements.

The results of the study showed that a small airfoil probe consisting of a small

canard wing mounted appropriately on an airframe and properly tapped can serve

as a viable probe for sensing angle-of-attack. An NACA 0019 airfoil section was

used in wind tunnel tests. The study reported that differential pressure coeffcients

greater than 3 at high angles-of-attack were achieved. These coefficients are reported

to be an improvement of a factor of 9-3 over comparable coefficients obtained from

hemispheric probes.

In addition to the direction of the relative air velocity, the magnitude must

also be measured. Computation of the magnitude of relative airspeed requires a

measurement of total temperature. Total temperature is typically measured with

a thermocouple or resistahce temperature device (RTD). Typically, a total temper-

ature probe is designed with the temperature sensing device situated in a volume

where the air is partially stagnated, vented, and shielded to minimize radiation heat

losses. For example, the NASA F-104 andtheNASA ER-2 instrumented aircraft

obtain total temperature measurements from a strut-mounted transducer positioned

on their respective fuselages.

The quality of the total temperature measurement, however, is less important

than the quality of the total and static pressure measurements, and the uncertainty

in the final wind calcuIation is virtually independent of small errors in the total

temperature measurement. Therefore, an inexpensive thermocouple generally gives

sufficient performance. Insulation of the thermocouple from the fuselages is neces-

sary to prevent the thermoeouple from measuring the temperature of the aircraft

instead of the air with each instrument calibra}ion is required. Each type of instru-

ment, however, has its own calibration problems. The following briefly summarizes

the literature associated with calibration of airborne wind meaurement instruments.
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Gracey and Scheithauer (1951) present results of a flight investigation of the

variation of static pressure error on a static pressure tube with distance ahead of a

wing and a fuselage. A discussion of the effect of distance in front of the aircraft on

the error of static pressure measurement is presented for both a wing tip installation

and a fuselage-nose installation.

It is reported by Haering (1990) that the airdata calibration required for mea-

suring winds with an instrumented aircraft must be more accurate than that needed

for other aircraft research programs. He reports tower fly-bys with the NASA F-104

aircraft and the use of radar acceleration-decelerations to calibrate Mach number

and total temperature. The F-104 aircraft and instrumentation configuration, flight

test maneuvers, data corrections, calibration techniques and resulting calibration

and data repeatability are discussed. The paper concludes that the N[ach number

indicator could be calibrated repeatedly at 4- 0.003 subsonically and 4- 0.005 su-

personically. Total temperature was calibrated and found to have a recovery factor

of 0.986 with a 4- 0.009 scatter in the data. The author recommends, from his

investigation, a number of design and operation procedures for future airdata sys-

tems for aircraft used to measure winds aloft. These include (1) using a nose-boom

with dual angle-of-attack and flank angle-of-attack vanes to reduce the sensitivity

of upwash and sidewash on Mach number; (2) rigidly attaching the nose-boom and

IRU to the same structure to minimize geometric alignment variability.

Oeenen and Moulton (1991) describe a system to calibrate airdata probes at

angles-of-attack between 0 and 90 degrees. The system uses a test fixture mounted

to the roof of a ground vehicle which includes an onboard instrumentation and data

acquisition system for measuring pressures and flow angles. The system was de-

signed to provide convenient and inexpensive airdata probe calibrations for projects

which require airdata at high angles-of-attack. The authors note that previous sub-
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sonic data for the NACA standard pitot-static tube with vane type flow direction

indicators was limited to 20 degrees angle-of-attack. The new type of probe intro-

duced was tested to 90 degrees angle-of-attack in a wind tunnel and with the ground

vehicle system. They also report an airdata probe with a swiveling pitot-static tube

and the calibration of it with the ground vehicle system. They conclude that the

swiveling-head airdata probe's larger region of total and static pressure insensitivity

to angle-of-attack and angle-sideslip make it more suitable for high angle-of-attack

flight than the standard NACA airdata probe.

Moes and Whi_more (1991) present preliminary results from an airdata en-

hancement algorithm with application to high angle-of- attack flight. The technique

is developed to improve the fidelity of airdata measurements during dynamic ma-

neuvers. The technique is reported to be particularly useful for airdata measured

during flight at high angular rates and high angles-of-attack. A I(alman filter was

used to combine information from research airdata, linear accelometers, angular

rate gyros, and altitude gyros to determine better estimates of airdata quantities

such as angle-of-attack, angle-of-sidesIip, airspeed and altitude. The paper develops

the state and observational equations used by the Kalman filter and shows how the

state and measurement coherence matrix was determined from flight data. Flight

data is used to demonstrate the results of the technique and the results are com-

pared to an independent measurement source. Flight test data from the F-18 HARV

were used to show that the Kalman filter-estimated airdata is more realistic than

measured airdata during high angle-of-attack and high angular maneuvering. This

has been verified using information from radar and meteorological data.

Larson and Ehernberger (1985) describe a flight test technique for controlled

survey runs to determine horizontal atmospheric pressure variations and system-

atic altitude errors that result from space positioning measurements. The survey
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data can be used not only for improved airdata calibration but also for atmospheric

structure and space positioning accuracy performance. The authors report that data

from the survey technique developed indicate that increased accuracy and improved

static pressure position error calibration using radar and rawinsonde pressure mea-

surements was achieved. In addition, the survey technique can be useful in studies

of pressure gradients, atmospheric refraction and radar tracking performance.

Larson, et al. (1987) carried out flight tests with an F-14 aircraft to evaluate

the use of flush pressure orifice on the nose section for obtaining airdata at transonic

speeds over a large range of flow angles. The flight tests provided data to validate

algorithms developed for the shuttle entry airdata system design at NASA Langley

Research Center. Data were obtained for Mach numbers between 0.6-1.6 for angles-

of-attack up to 26 degrees-and sideslip angles up to 11 degrees. The authors conclude

that with careful calibration of airdata systems with all flush orifices can provide

accurate airdata information over a large range of flow angles. Several orifices on

the nose cap were found to be suitable for determination of stagnation pressure.

Other orifices on the nose section aft of the nose cap were shown to be suitable

for determining static pressure. Pairs of orifices on the nose cap provided the

most sensitive measurement for determining angles-of-attack and sideslip, although

orifices located further aft on the nose section could also be used.

2.2 Inertial Measurements

Vehicle inertial attitude and velocity are typically provided by inertial naviga-

tion systems (INS) for wind measurements from aircraft borne sensors.

Ground speeds and angles, as well as Euler angles and rates, are determined

from the INS. Two types of INS have been used: stable platform systems and

strapped down systems. The NASA B57 Camberra and the NASA ER-2 aircraft

use a stable platform system CarouseI IV and Litton LTN-72RH, respectively, while

t3q



the NASA F-104 employed a strapped down, ring laser gyro. A brief description

of an INS system is that the INS utilize inertial elements (i.e., accelerometers and

gyros) to sense vehicle acceleration from which velocity and position can be de-

termined. In the stable platform system these sensors are mounted on gimbaled

platforms, containing at least three gimbals, which isolate them from vehicle mo-

tion and physically locate them in the desired coordinate reference frame. In local

level north pointing systems, this reference frame is the local geodetic frame, and

the gyro and accelerometer input axes are forced to remain as closely coincident as

possible to the north, east, and vertical directions when the vehicle is in motion.

If the sensors are "s[rapped down" on the carriers directly, no gimbals and

servo-motors are necessary. This type of INS mechanism is called a s_rapdown

system (SDS). The accelerometer signals are measured in a body-fixed coordinate

frame and transformed to a navigational reference frame by means of the tyro

signals. This results in the following advantages in comparison with the stable

platform systems (Lechner (1980)):

• simple mechanical construction

• the provision of accelerations and angular rates in body-fixed axes

• easy maintenance due to the modular construction

and the economical provision of redundancy by means of skewed sensitivity

axes.

However, against these advantages must be weighed certain drawbacks:

• increased demands on the efficiency of the navigation computer

• and extreme demands on the accuracy of the sensors, which have to mea-

sure the full dynamic environment of the SDS.

Regardless of which type of INS is used, it can introduce significant dynamic

error into the wind vector computed from the measured ground speeds. These errors
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are discussed in detail in the section on error analysis.

Considerable literature is available on INS systems. General descriptions are

given in Puckett and Ramo (t959); O'Doanell (i964); and Pitman (1962).

Gorenshteyn and Shul'man (1970) describe the theoretical principles under-

lining inertial navigation and the basic functional dements of inertial navigation

systems. General and specific representations of the algorithms for determining the

running coordinates of an object are examined as applied to certain practically im-

portant methods of constructing an INS. The classification, analysis of error, prepa-

ration for operation, and also problems of protecting INS from external sources is

also discussed.

Lechner, Hotop, and Zenz (1983) provide a description of the instruments and

the data evaluation techniques for testing of inertial navigation systems both hard-

ware and software. They discuss the inertial navigation system (platform systems)

installed in an aircraft and how it provides signals for course and altitude, ground

speed, and position determination. They note that the systems can be flight tested

for various criteria: checking the system accuracy, determining its reliability, check-

ing the aiding method for increasing the system's accuracy, obtaining knowledge

as to the air behavior of an inertial systems in flight by means of the use of air

models and optimal filters. They also point out that external measurement aids

are available which include radar tracking systems, cinetheodolites and TACAN for

exact positioning of the aircraft.

A comptete description of the Carousel IV inertial navigation system used in

the NASA B-57 aircraft is provided in the System Technical Description Manual,

provided by the manufacturer (AC Electronics, Division of General Motors Cor-

poration). Weber (1975) also reports on statistical studies of the accuracy of the

Carousel IV inertial navigation system. Three Carousel IV inertial navigation sys-
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terns were studied by Weber for accuracy during flights over the north Atlantic.

Errors associated with inertial platform are also discussed by Geller (1968). Geller

describes the differential equations for navigation errors of a local level and un-

damped inertial platform that continuously rotates in azimuth. From these, the

time response equations for the vector position error produced by a constant level

gyro drift error, as a function of platform rotation rate, are computed and evalu-

ated. The paper shows that platform rotation attenuates the systems position error

due to gyro bias and that this attenuation is a a nonlinear function of rotation rate.

McConnelI (1966) reports on the kinematics of a three axis gimbaled system.

The equations of constraint which must be satisfied during gimbal motion are stud-

ied. The phenomena of gimbal lock and timbal flipping are considered and demon-

strated for one type of ,;'ehicle motion, Curves indicating angular displacement,

velocities and accelerations are computed and presented showing the need of a re-

dundant four axis gimbal system to avoid gimbal lock.

Rhyne (1980) reports an experimental assessment made of _wo commercially

available inertial navigation systems with regard to their inertial velocity measure-

ment capability. This study was particularly designed for use in wind, windshear,

and long wavelength atmospheric turbulence measurements. The assessment was

based on 52 sets of postflight measurements of velocity (error) during a Schuler

cycle (84 minutes) while the inertial navigation system was still operating but the

aircraft was motionless. A maximum postflight error for the 52 cases was found

to have a root mean square value of 2.82 m/s with little or no correlation of error

magnitude with flight duration in the 1-6 hour range. As discussed in Section 3.2,

this Schuler drift effect in the INS system has a particularly significant influence on

the accuracy of the wind measurements.

Strapdown inertial navigation systems as contrasted to the plateform systems
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are becoming more prevalent. Studies associated with error analysis in the strap-

down inertialnavigation systems have been reported. Shibata (1986) describes the

strapdown inertialnavigation error equations based on a quaternion relationship

between flxed body frame and navigation (localvertical)frame for terrestrialhy-

brid navigation systems. Potter (1982) proposes steady-state Kaimal filtersused

as estimators for a strapdown INS. The report describes investigations as to the

sensitivityof the steady-state Kaimal filtersto inaccuracy in the filterparameters

such as the dimensional stabilityderivatives.

Hotop (1985) describes the measuring and data analysis technique used for

flighttesting two Litton LTN-90 laser gyro strapdown type navigation systems.

Reference data was produced by the Carousel IV. In the mean, accuracies of 1.4km

per hour maximum for position,of 1.2 m/s for velocity and of lessthan 0.i degrees

for angular position and azimuth were reported for the LTN-90 navigation systems.

Miller (1980) presents a description of an algorithm for attitude and navigation

computations for strapdown inertial navigation systems. Also, Friedland (1978)

presents a brief review of the theory of strapdown and inertial navigation systems.

He shows that the error in the quaternion vector causes a scale factor error and

an equivalent tilt vector error that propagates the same way as the platform tilt

vector in a gimbaled system. A set of equations for error analysis are derived and

interpreted in this paper.

Error equations for the Psi-angle in strapdown inertial navigation systems are

provided by Weinreb and Bar-Itzhack (1978). It is proven in this paper that apart

from a sign change the side angle differential equation in the error analysis of strap-

down inertial navigation systems is identical to the one used in conventional gim-

baled inertial navigation systems.



3.0 UNCERTAINTY ANALYSIS

The design of an instrument system requires an uncertainty analysis to quantify

the affectof individual instrument uncertainties on the finalwind velocity deter-

mined by combining the measured values through the reduction equations. Ap-

pendix B contains a detailed uncertainty analysis procedure. Typical magnitudes

of potential uncertainties are presented graphically in Section 3.1. Other uncertain-

ties resulting during operations and calibration problems also must be considered

in a measurement of wind from an aircraft. The propagation of error from mea-

surements inaccuracy of pressure, temperature, flow angle, angular displacement,

and inertial velocity and discussed in Sectign 3.1. Error encountered during flight

operations are described in Section 3.2.

3.1 Design Uncertainties

Figure 3.1 shows the effect of pressure and temperature measuremene uncer-

tainties on calculated airspeed. The airspeed uncertainty, which is calculated from

the combination of Equations (A.2) through (A.7), is based on the assumptions

that the static and total pressure measurement uncertainties are equal and that

supersonic free stream flow iscompressed by a normal shock wave before coming

into contact with the ports used for pressure measurements.

Figure 3.1 also indicates that the minimal airspeed uncertainty is calculated

from measurements made near unity Mach number. However, because pitot probes

used for total and staticpressure measurements are known to induce localizedre-

gions of supersonic flow, the simple one-dimensional theory used here may not be

adequate for uncertainty predictionsnear unity Mach number. The uncertainty in

the transonic airspeed calculationrequires testing and indepth analysis.

Figure 3.2 shows the uncertainty in the square of the magnitude of the relative
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velocity of the air vector, I/kI_12, resulting from the airspeed uncertainty and the

measured flow angleuncertainty. The uncertainty in t_V_l (see Equation (A.9) is

based on the assumption that the flow angles, c_ and _3, are small (< 5 °) and the

flow angle uncertainties, /ka and &/3, are equal.

Figure 3.3 shows the uncertainty in the square of the magnitude of the wind

velocity error vector I_l 2. The uncertainty is plotted as a function of the uncer-

tainty in the Euler angles where it is assumed _x<} =/k0 = A_b.

Figures 3.1, 3.2, and 3.3 are tools developed for a "back-of-the-envelope" de-

termination of the wind velocity uncertainty from the uncertainties in airborne

measurements. The use of these relations is illustrated by an example.

Assume that the parameters measured on an airplane have the uncertainties

listed in Table 3.1.

Table 3.1 Example Measurement Uncertainties.

O.5 %
P

0.5 %To

Ac_, Aft 0.1 deg.

A_, A_9, Aq 0.1 deg

)zxv l 1



IO° - _" = Earth-sin-face wind velocity vector

-. I7_ = Airspeed velocity

]V_] = Magnitude of the airspeed

¢, 8, • = Euler angles

t = Time fl:om data initiaSzadon

n = An arbitrary power

I7e = Aircraft inertial velocity vector
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Figure 3.3 Wind velocity uncertainty as a function of relative airspeed

velocity uncertainty, inertial velocity uncertainty, euler angle

uncertainty, and airspeed.



Ifthe airplaneisHying at Mach 0.5 at sea level(V= _ 345m/s), the pressure and

temperature measurement uncertainties can be used with Figure 3.1 to determine

the relativeairspeed uncertainty of 0.4%.

Figure 3.2 isthen used to determine the effectof the angle-of-attackand sideslip

angle uncertainties.For the given flow angle uncertainty of 0.I deg., the power n

on the abscissa of Figure 3.2 is set equM to -i and the relativemagnitude of the

uncertainty of the relativeairspeed velocity is0.5%. Figure 3.3 is used in a similar

manner, with the uncertainty in the measured Euler angles and in the inertial

velocity,a relativewind velocity uncertainty of + 2.3 m/s can be calculated. Note

that no information about the direction uncertainty iscontained in the Hgures.

3.2 Operational and Dynamic Uncertainties

Extensive investigation reported by Chang and Frost (19S5); Frost, et al.

(1985)" Ringnes and Frost (1985); and Hill (1990) using data gathered with the

Cambera B-57 aircrafthas been carried out. The following draws heavily from

these reports.

3.2.1 Sources of Inaccuracy in Data Reduction

Instrumentation errors influence the quantities appearing on the right-hand

side of Equations 2.2, 2.3, and 2.4 and thus the accuracy of the computed wind

velocities.Of these sources of instrumentation errors,the most difficultto correct

is the dynamic error in the velocity inherent in the INS, termed the Schuler error

to which aircraftmotions contribute. All other errorscan be removed by careful

calibration.The effectson the magnitude of the measured wind and also turbulence

calculationsdue to the sources of error in the instrumentation are presented next.

3.2.2 InertialVelocity and Position Errors

The accuracy of the calculationsof horizontal winds depends upon the perfor-

mance of the INS and itscapabilityto provide correct measurements of the inertial
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(ground) speedof the aircraft. In recent yearsmechanicaland electronic advances

have greatly improved INS accuracy. However,a cumulative oscillation in the INS

stable platform element called the Schuler drift effect, first pointed out in the fa-

mous paper by Schuler(1923), can be quite significant. Inertial navigation theory

including derivation of the Schulerpendulum effectsis explained in many textbooks

(seefor example, Boxmeyer (1964)). The Schulererror is essentially periodic with

a period near that of an earth radius pendulum, 84.4 minutes. Huber and Bogers

(1983) point out that a platform usedin anairplane cannotstrictly bekept tuned to

To = 84.4 minutes aftertakeoffsince R (distance between the airplane and centerof

the earth) and g (gravitationalacceleration)change with altitude.They propose to

define To = 84.4 minutes as the Schuler constant (forthe earth). The actual period

of oscillationproposed by:these authors for a specificSchuler-adjusted system takes

into account the gravity gradient, the mass distributionin the system, and the cen-

trifugalforces due to the velocity of the carrying vehicle.This iscalled the actual

oscillationperiod. The actual oscillationperiod of a specificSchuler-adjusted sys-

tem (accelerationinsensitivesystem) under specificcircumstances isgiven by them

as:

r = k.2 v /g

where k willalways have a value between 0.5 and oo. The Schuler error behaves

sinusoidallyand willthus change polarity.The errorcaused by a slow oscillationof

the INS stable platform causes the two horizontal accelerometers to detect a part

of the gravity vector. This false indication of accelerationis carried through the

integration for velocity and produces errors in the WE and _'VN values. Distance

traveled or geographical position isobtained from a second integration of the mea-

sured accelerations.Thus the Schuler oscillationswillcreate errors in acceleration,

velocity,and position. The followingprocedures can be used to estimate the velocity



errors associated with Schuler drift.

Position error can be computed from aircraft data during overflight of land-

marks where exact geographical locations are known. Since acceleration, velocity,

and position errors are all interrelated, the Schuler error can experimentally be in-

vestigated by obtaining data on either one of the three parameters having a Schuler

oscillation induced error. The vetocity error is generally small but increases with

time, e.g., after several hours of operation it can be on the order of 3 to 5 m/s

(Rhyne (1980) and Lenschow (1983)). The magnitude of the position errorsfor the

Carousel IV INS used in ]3-74? aircraftreported by _vVeber(19]'$)normally are on

the order of 10 nautical miles or less even after transatlantic flights. These errors

are not critical for pure navigation purposes. But, when the objective is to calculate

wind velocity, the Schulet: error can be quite important.

To illustrate the magnitude of in-flight Schuler error, data from a Ftight with

the NASA Carnbera B-57 aircraft are presented (Frost, et al. (1987). A box pattern

flight plan as shown in Figure 3.4 was flown sequentially at 1000 ft levels over

Boulder, Colorado, in February 1984. Details of the flight and results are given

in Chang and Frost (1985). Each time the B-57 flew the leg heading east, an

event marker on the ground was activated to record the moment a north-south

running road lined up perpendicular to the flight path (see Figure 3.4). INS recorded

longitude at the time of the event marker can thus be compared with the known

longitude of the road to construct the Schuler position error (see Figure 3.8a). The

exact latitude of the aircraft at the time of the event markers is less certain. In fact,

it depends upon the ability of the pilot to fly the intended flight path. But, since

the flight paths were flown toward a fixed landmark, only small deviations in the

latitude position of the east-west runs would occur. A similar indication of position

errors has also been plotted for the latitude, Figure 3.5b. In both cases, the error
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appears to have a sinusoidal behavior. A curve fit of the data suggest the latitude

error has a 77-minute period of oscillation, and the longitude has an Ill-minute

period. The latitudinal period is reasonably close to the Schuler constant of 84

minutes, but the longitudinal period does not conform to that for the latitude.

Another flight following the same flight pattern and the same technique for

marking geographical position by event markers is shown in Figure 3.6. The dashed

lines outline sinusoidal trends but are not represented by mathematical equations.

The latitude oscillation compares with a period of approximately 110 minutes which

is similar to the previously reported longitude oscillation. The longitude error con-

tains more scatter in the data, although the period seems to be of roughly the same

length as the latitude oscillation on this flight.

The magnitude INS i_osition errors identified are within a range of less than 15

km or 10 nautical miles. From a commercial aircraft operation standpoint, these

errors are not a large problem, particularly in the proximity of an airport where

other means of navigation are available. However, Schuler position errors are of

significance for wind measurements. Exact ground tracks are needed to determine

terrain effects on turbulence such as wake regions behind mountains, etc. An error

on the order of several kilometers can drastically distort the picture.

The INS velocity errors which are feinted to position error can be of the same

order of magnitude as the wind speed being measured. An estimate of the velocity

errors are presented in Figure 3.7. The velocity error curves are calculated by taking

the derivative of the position error curve fits illustrated in Figure 3._. The influence

of these errors is discussed later.

The Schuler error was further investigated with other flights. The aircraft was

tracked by the NASA EPS-16 # :34 tracking radar. The radar track provided the

location and the ground speed of the aircraft throughout the flight. The post-flight
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Schuler velocity errors were investigated. The north-south and east-west velocity

errors of the flight and the ensuing post-_ght velocity measurementsare plotted in

Figures 3.8 and 3.9. The in-flight velocity errors are obtained by comparing aircraft

and radar data assumingthe radar indications are free of error. The data recorded

on the ground is a direct measureof the indicated velocity from the INS while the

aircraft was parked and hencenot moving. This velocity fluctuation is attributed

to the Schuler error. The INS was left on during the entire time span covered

in the plots. Both figures show one complete cycle of a near perfect 84-minute

Schuler oscillation in the post-flight data while the vehicle was parked. This is in

keeping with Huber and Bogers (1983) who noted that near the ground without

accelerations involved the Schuler oscillations will have an 84.4-minute period. In

the Krst half of the flight the errors are more random in their behavior and the

oscillation is irregular. This complicates attempts to model or predict the error in

advance. Lenschow (1972) suggests that post-flight data recorded with a stationary

aircraft be used to back out the error. He proposed to simply trace back a recorded

post-flight error oscillation with an $4-minute period constant amplitude sinusoidat

curve. The Frost, et al. (1987) study shows, however, that both the period and

the amplitude of the velocity error are altered substantially during flight and thus

the Lenschow (1972) approach would not be successful in their case. It should

be noted that while the inertial velocity measurement errors strongly influence the

horizontal wind vector calculations, they generally have little effect on the gust

velocity computations because the effect of the slow variations in velocity is greatly

diminished or eliminated when the average velocity is removed.

3.2.3 Flow Vane Errors

Kingnes and Frost (1985) observed in analyzing the B-57 data that constant

differences existed between the angles of attack measured at the three different
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stations along the wing. The constant offset from the true value again h_ little

influence on the computed turbulence since the mean value is removed during the

computation. The angle of attack terms have negligible effect on the computed

values and the. refore the inaccuracies cause no problems in the total horizontal

wind vector computation. The cause of the angle-of-attack difference, however,

were attributed to misalignment of the wing tip booms.

The average sideslip angles were also found to be different from the expected

value. All aircraft are designed directionally stable and will fly with zero average

sideslipangle unless forcefullykept in a sideslipflightcondition. During one flight

an average sideslipangle of o.23 degrees was recorded. The source of the error isnot

clear but boom misalignment or problems with the data acquisition system were

suspected causes.

3.2.4 Influence of Error Corrections

The influence the INS velocity and position, sideslip angle, and airspeed errors

have on the calculation of horizontal winds is discussed next. A series of wind

vectors are plotted before and after corrections have been made along the flight

path recorded by the INS during given flights of the NASA Cambera B-57. Each

vector represents a one-second average from the 40 samples per second data tapes.

In Figure 3.10 one of the box patterns flown on a particular flight is plotted. In

this figure, no corrections have been made. There are some obvious inconsistencies

in the wind vectors, particularly, at the corners where it is expected that the wind

should agree closer between the two runs. The aircraftmade 270-degree turns

between runs which take lessthan two minutes. The wind direction isnot expected

to change significantlyduring that short of an interval. Instrumentation errors

are, therefore,the probable cause for the discontinuitiesin wind direction. Figure

3.11 differsfrom Figure 3.10 only by removal of the 2.23-degree sidesliperror in
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the calculation of the wind vectors. It is debatable whether this correction alone

has improved the wind vectors but it clearlydemonstrates that seemingly small

errors have significant effect on the wind vectors. In Figure 3.12 corrections have

been made for. all known errors. The discontinuities in the wind vectors at the

corners have all but vanished except for the bottom left-hand corner. However, as

the numerical order of the runs indicates the box pattern was flown in a clockwise

direction; thus, the beginning of the first leg of the run and the last are separated

in time by approximately 15 minutes. Therefore, it is conceivable that the wind

could have changed in that time span.

Discussion of other sources of errors and their magnitudes is given in the afore-

mentioned references. These are less significant in calculating wind velocities and

the interested reader should consult tl_e references directly for more info_mation.
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4.0 DATA COMMUNICATION

4.1 Data Transmission

Communication of transducer data to a ground based data acquisition system

isgenerally required for an instrumented aircraftmeasurement program. Therefore,

telemetry techniques capable of transmitting instrumentation data to the ground-

based data acquisitionsystem are required. Although severalmethods are available,

specifically, three telemetry methods are most promising: pulse-amplitude modula-

tion (PAM), frequency modulation (FM-FM), and pulse-code modulation (PCNI).

The PCM telemetry technique is potentially the best for aircraft measurements

based on cost and performance factors,which are discussed in detailin thissection.

Several factorsinfluencethe choice of telemetry techniques for a specificappli-

cation, including noise,filtering,and sample rate. Signals are especiallysusceptible

to noise contamination along data transmission linesbetween the transducer and

amplifier. Standard practices involving the use of twisted-pair wires, shielded ca-

bles,and differential-inputamplifiers,can be used to minimize noise picked up by

transmission wires. Since severalof the specifiedtransducers have maximum signal

levelsin the millivoltrange, their signalsmust be amplified to a level compatible

to the data acquisition system. If the transducer signal is amplified before the

noise is introduced, the problem is greatly reduced early in the transmission path.

For this reason, only transducers with integral amplifiers should be used. Integral-

transducer amplifiers reduce the parts Count significantly in addition to reducing

noise.

Additional signalconditioning,such as filtering,isnot generally required aboard

the aircraft,but must be performed by the ground- based data acquisitionsystem.

The data acquisition system includes an appropriate mass storage device for later
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retrieval and conditioning of the wind data. Figure 4.1 illustrates the data path

aboard the aircraft.

Although the telemetry data link must introduce a minimal amount of noise,

other constraints on the design are equally important with the telemetry data link.

Specifically, sample rate (when applicable) and cost must be considered. The min-

imum tolerable sample rate of the aircraft's telemetry system is dependent on the

data layer thickness and the speed of the aircraft. For a detectable layer, d, and an

aircraft speed, V, the minimum sample frequency per channel is:

2V

f_ = T (4.1)

since a minimum of two samples must be taken for a layer to be detected where

V = speed of the rocket, d = minimum shear layer resolution, and f_ = sample

frequency. Figure 4.2 is an example plot of required sampling frequency for an ll-

channel system as a function of vertical ascent rate. This takes into accoum neither

oversampling, which would be required with a digital filter nor the use of multiple

data channels, which could be used on the aircraft. Oversampling n channels s

times results in a sample frequency

2Vns

fs -- d (4.2)

The minimum sample frequency is not a factor if an FM-FM system is used.

FM-FM systems transmit a continuous signal of summed subcarrier oscillator signals

which correspond to individual transducer voltage signals. The minimum detectable

data layer thicknesses depend on the center frequency and modulation index of the

individual subcarrier oscillators. Therefore, provided that the center frequencies

are sumciently higher than the cutoff frequencies of the corresponding transducers,

no data will be lost due to frequency limitations of the telemetry system.

PAM and PCM are not continuous telemetry schemes and thus must sample

no slower than the minimum sample frequency as described above. PA._[ is the
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simplest method of time-division multiplexing: the separatetransducer outputs are

sequentially switchedto a commonoutput which forms a compositewaveformof the

individual channels' outputs. The period of the waveform is equal to the sample

interval of one channel times the total number of channels in the system. PCM

operates similarly, with the exception that data is convertedfrom analog signals to

digital signals. Current samplerates of PA.Mand PCNI encodersare up to 200,000

samples/secand 3.2 megabits/secrespectively.

Crosstalk, gain and offset errors, and incidental frequency modulation are

sourcesof error in data transmission. Of the three telemetry methods considered,

PAM has the poorest absolute accuracy specification: typical errors between 2%

and 5% of full scale can be expected. FM-FM system accuracy,as well as that of

the other two methods, is highly dependent upon proper setup of :he transducer

output gain and offset. Dependingon how closeto launch time the :ransducer cal-

ibration is made, errors of 1% to 4% canbe expectedfrom an F:XI-F.XItelemetry

system. If proper setup is obtained with a PC.Y'Isystem, the error induced by this

system will be oneleast-significantbit (LSB) sincethe data is conver_edto a digital

form. For an 8-bit telemetry system,one LSB equalsone part in 28;or about 0.4%.

The recommendedtelemetry technique is the PC_I system, basedon reason-

able cost, sufficient sample rate, and superior accuracy to the other methods of

telemetry. This type of system allows more flexibility with the number of data

channels transmitted than the FM-FM system since the latter will require addi-

tional capital expenditures for each additional channel transmitted. Additionally,

the worst-caseerror of the final data will be due primarily to the transducersinstead

of the telemetry system aswould be the c_e with PAM. Table 4.1 summarizesthe

characteristics of the three telemetry methods.



Table 4.1 Telemetry comparison.

Telemetry
Method

PAM

FM- FM

PCM

Data Channel

Capacity

Low

Low

lligh

Availability

Low

Moderate

IIigh

Accuracy

Low

Moderate

High

Cost

Low

High

Moderate

Other necessary components of an onboard telemetry data link are the trans-

mission antennas and the_transmitter. Three blade antennas mounted on the rocket

will transmit the telemetry signal adequately in all directions. The transmitter can

be adjusted to broadcast a selec[ed fl'equency which must correspond to the fre-

quency of the receiver on the ground. This flexibility in transmission frequency

could prove to be beneficial in regard to the frequency allocation and certification

by the N_tionat Telecommunications and Information Administration (NTIA) upon

review by the Spectrum Planning Subcommittee (SPS). The transmission frequency

will typically be in the L or S band in the radio frequency spectrum.

4.2 Data Acquisition

A ground based data acquisition system is required for storing and processing

the telemetered wind parameter data. An appropriate system is described next.

A ground station consisting of a telemetry reception, data acquisition, and data

processing system will produce all desired atmospheric profile data, store historical

atmospheric profiles for future profile predictions, and permit portability to various

sites.
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The choice of data acquisition system is dependent on the type of telemetry

system aboard the aircraft. Even though the transmitter and receiver remain the

same for all types of telemetry considered, the way in which the signal is decoded

to provide data from all channels is determined by the format used to transform

the data signal to a telemetry signal. Since PCM is recommended as the optimum

telemetry scheme for most applications, a data acquisition system compatible with

PCtvI is discussed.

The fundamental components of a PCM data acquisition system consist of the

a PCM bit decoder to translate the frequency-modulated radio signal

into a digital pulse stream,

2. a data decommutator to separate the digital signal into individual

channel signals,

3. a digital-to-analog converter to transform the digital channel data into

analog data, and

4. a serial time-code reader to provide time correlation with the acquired

data.

In addition to these requirements, other features that will greatly benefit system

quality will be incorporated. These include adaptability to a range of PCM codes,

digital and analog mass storage capability, real-time display of multiple channel

signals, and scaling and manipulation of these channels into desired engineering-

unit parameters. These features will be incorporated into a user-friendly, stand-

alone system, and will result in a highly versatile telemetry system.

Turn-key telemetry data acquisition systems are available which will accom-

modate all requirements for aircrafts data system. One particular system includes

both the hardware and the software which obtains telemetry data. In addition to

following:

1.



fulfilling all of the cited requirements, the system provides data record archiving

and editing capability, 16 channelsof real-time analog output, user-programmable

display formatting, and various scaling and look-up table capabilities. This system

is available as a retrofit to a dedicated IBM PC/AT compatible or as a rackmount-

able 80386systemwith a 100megabytehard disk drive. The latter option is viewed

as being the more advantageous one since the data acquisitionsystem may be in-

stalledin a singlerack with the ground station receiverand a multi-channel analog

tape machine used as a back-up data storage device.



5.0 SUMMARY

A review of salient features associated with measuring winds from aircraft

has been given. Included is a discussion of the typical instruments and systems,

the equations for reducing aircraft measurement to winds in the earth coordinates

system, error analysis for assessing the accuracy of instrumentation, as well as, pro-

cedures for correcting and calibrating for errors associated with flight operations

and an overview of methods for communicating measurements from the aircraft to

ground station for data processing. Throughout the report a summary of the litera-

ture pertaining to various techniques available for measuring winds including some

of the measurement programs for which instrumented aircraft have been developed

and employed is provided. A discussion of the various types of instrumentation

that have been used in previous programs, the reported potential errors and me,h-

ods of correcting and calibrating the instrnments and the problems associa:ed with

obtaining accurate ground speed values from INS systems is given.

The report provides a guide to researchers in the process of developing instru-

merited aircraft for measurement of atmospheric phenomena.
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APPENDIX A

Wind Vector Calculations from an Airborne Platform

Windspeed and direction, based on measurements made from an airborne plat-

form, are calculated from the vector addition

VV = V_- Vo (.4.1)

where _V is the wind velocity with respect to an observer on earth, V_ is the air

velocity according to an observer on the airborne pIatform, and !2_ is the platform

velocity in the frame of the earth. Measurements from the platform provide the

information for airspeed and direction in a coordinate system that rolls, pitches,

and yaws with the platfgrm. An inertial measurement system on board the air-

craft measures the angles, angular velocity, and linear velocity which describe the

platform motion and orientation with respect to the earth. With the airflow vector

known in the moving coordinate system and the orientation of the moving coordi-

nate system with respect to the earth known, the wind vector in the earthbound

coordinate system can be calculated.

A.1 Body-Fixed Frame

Airspeed in the coordinate system fixed to an aircraft (the true airspeed of the

aircraft), is calculated from total pressure, ambient pressure, and total temperature

measurements. Etkin (1973) calls this coordinate system the body-fixed coordi-

nates, which is defined as having the x-axis pointing forward through the aircraft

nose along the aircraft centerline, the y-axis pointing out the starboard wing, and

the z-axis pointing out the aircraft underside. The origin of the coordinate system

is located at the aircraft center of gravity.

The magnitude of the relative speed of the air to the aircraft, IV_ I, is determined
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from the Mach number, i_zfa, and the sonic speed, c, by:

y. = cMa (A.2)

The Mach number of the airplane is calculated from the total and ambient pressures

according to the expression

where po is the total pressure, p is the ambient pressure, k is the ratio of specific

heats for air (1.4), and Ma represents the Mach number.

The total pressure and static pressure, measurements, or pitot measurements,

are taken, respectively, where the airflow is brought adiabatically and isentropically

to rest and where the flow speed is undisturbed from the free stream flow. When _he

vehicle is traveling supersonically, a shock wave in front of the rocket or attached to

the rocket will reduce the total pressure and increase the static pressure, compared

to the total pressure and static pressure on the supersonic side of the shock wave.

The subsonic Mach number calculated from Equation (A.3) is subsequently less

than the free stream Mach number. The shock wave in front of the total and static

pressure transducers, mounted on the rocket nose cone or at the end of a boom, is

assumed to be a normal shock wave. For the airspeed calculation, the free stream

Mach number (on the supersonic side of the shock wave) is calculated from the

measured total pressure and measured static pressure from

k--I

and

(k - 1)M g + 2
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where Ma_ = subsonic Mach number squared at the sensor, and Ma_ = supersonic

free stream Mach number squared.

The sonic speed is defined by

_= _ (.4.6)

where R is the ideal gas constant for air, and T is the static temperature of the air.

Since only total temperature can be measured, the static temperature of the

air is calculated from the relationship between the known Mach number, the total

temperature, and the static temperature:

T = ro[l + _MO-]-' (A.7)

where To is the airstream total temperature.

_vVithstatic temperature calculated, the sonic speed can be calculated from

Equation (A.5) and airspeed is calculated from Equation (A.4). The airstream

speed is then calculated from total pressure, static pressure, and total temperature

from the expression

I (.-t.s)

The direction of the air relative to a probe is fixed by the angle-of-attack, a,

and sideslip angle, /9. In the body-fixed coordinate system the components of the

relative airspeed vector are:

/ cos a cos _ "_

VBF = IV_I[ cos_sin_) (,4.9)\ sin c_

The Dryden F-104 and the Ames ER-2 use different methods for measuring c_

and ]9. The Dryden F-104 uses flow vanes such as shown in Figure A.1, and the

Ames ER-2 uses differential pressure measurements on the radome (Figure A.2)

which are correlated to particular flow angles.
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Figure A.1 Free vanes on an air data probe for flow angle measurements

(Sakamoto, 1976).
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The standard NACA airdata probe, which is used by the Dryden F-104, is

equipped with vanes which measure airflow direction by vane displacement. The

actual flow angle is found by correcting the displacement angle according to wind

tunnel calibrations for varying Mach number, angle-of-attack and sideslip. Figure

A.g shows typical flow angle errors and indicated flow angles (Sakamoto, 1976).

Similarly to the differential pressure measurement system on the ER-2, probes

are designed to measure flow angles and flight Mach number for aircraft and wind

tunnels from differential pressure measurements. Such a probe, with a hemispherical

head, is illustrated in Figure 2.2. A flow angle in a given plane would be calculated

from (see Scott, et al. (1989))

_ aP (.4.10)
kq

where c_ is the flow angle, Ap is the differential pressure, ]c is the airflow angle

sensitivity factor, and q is the dynamic pressure, po-p. The airflow angle sensitivity

factor would be found from wind tunneI calibrations and is roughly constant within

small Mach number domains. Bryer and Pankhurst (1971) recommended that for

high subsonic, transonic, and low supersonic measurements, a hemispherical probe

be used (Figure 2.2).

Before the air velocity is transformed into the earth-surface coordinates, with

the x-axis pointed north, the y-axis pointed east, the z-axis pointed down, and the

origin fixed to an observer on earth, the vehicle rotation rate must be accounted for

in the body-fixed frame. The instruments that measure the pressurbs and angles

necessary for the wind vector calculation rotate around the vehicle center of gravity.

The linear velocity of the instruments due to the vehicle rotation is

17,- = oF x F: xF (A.ii)



Figure A.3

I

i
M = 1.20

I

I

I

o 4

Typical flow angle error from free vanes (Sakamoto,197"6).
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where p is the vehicle rate of roll, q is the vehicle rate of pitch, r is the vehicle rate

of yaw, and F is the position vector of the instruments. The instrument velocity

vector must be added to the relative airspeed velocity vector. The air velocity to

be transformed from the body-fixed to an intermediate frame (the vehicle-centered

vertical frame) is then

/' cos cos#)= Iv ,Ii cos sin# +a x (A.12)
\ sin 0¢

A.2 Vehicle-Centered Vertical Frame

The vehicle-centered vertical frame, as defined by Etkin (1972), has its origin

fixed at the aircraft center of gravity, with the x-axis pointed north, the y-axis

pointed east, and the z-axis pointed in the direction of the local gravity vector.

Etkin (1972) gives the transformation of vector components from a body-fixed to a

vehicle-centeredverticalcoordinates as

- cos _ sin • + sin 4_sin •

!/)c = cos0sin_ sin_sin0sin_ cos_sin0sin_ __y (.4.t3)
+ cos _ cos • - sin _bcos •

- sin 0 sin _ cos 0 cos q_cos 0

where _} = aircraft roll angle, 0 = pitch angle, and _ = yaw angle. The angles _,

0, and 4, called the Euler angles.

These angles are typically provided by gyroscopic measurements from an iner-

tial navigation system (INS).

A.3 Earth-Surface Frame

The vehicle-centered verticM frame and the earth-surface frame differ only in

the relative velocity between their respective origins. Thus the transformation of

a vector from the former to the latter involves only the addition of the velocity of

the vehicle-centered vertical frame relative to earth-surface. This relative velocity

is simply the ground speed of the vehicle:
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The vehicle ground speed is determined by integration of acceleration mea-

surements on the aircraft. Typically, an INS provides velocity information in the

earth-surface frame. If acceleration measurements only are used they are trans-

formed from the frame of the vehicle to the earth-surface frame by the same vector

transformation used with the calculated a_r velocity.



APPENDIX B

Error Analysis for Instrumentation Requirements for Wind Velocity
Calculation from Measurements Made from an Airborne Platform

The uncertainty in the calculation of awind vector from measurementsmadeon

an airborne platform is determined herein with the Taylor serieserror propagation

approximation

(aF) = (B.I)

where F is the parameter of interest and the set of {i are the independent variables

governing F.

In the case of wind calculations from an airborne platform, the platform being

an airplane or a rocket, Equation (B.1) becomes:

(.8.2)

where ;'_" is the wind vector, _/_ is the inertial velocity vector of the vehicle (or ground

speed) in the earth- surface frame, and IPa is the relative airspeed vector. The inertial

velocity, which is determined by an INS, radar, radio navigation, or other means,

and is treated in this analysis as a given function of the instrumentation.

The earth-surface frame is defined as a Cartesian coordinate system with the

z-axis pointed north, the y-axis pointed east, and the z-axis pointed down. The

origin of the earth-surface frame is arbitrary since the wind vector is a velocity

rather than a position. The earth-surface frame is not considered curvilinear here,

since the earth can be approximated as flat for the spatial scale of interest.

The error in the vehicle ground speed vector, AI?_, which is dependent on

the instrumentation used for that measurement, is an independent variable in the

error analysis. The relative air velocity vector is also an independent variable in

the error analysis and is a function of the inaccuracies of the relative airspeed
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instrumentation. The error analysis is best carried out in terms of components in

the particular referenceframes of interest. Toward this goal the relative airspeed

vector components typically measured in the body-fixed frame are transformed into

the earth fixed frame. The matrix equation is:

V_E_ = Lv's V_Br (B.3)

where V_sF is the relative airspeed column matrix of components measured in the

body-fixed frame, and LFB is the transformation matrix which rotates a vector in

the body-fixed frame to the earth fixed frame.

The body-fixed frame is defined, in terms of an aircraft, as having the z-axis

projected from the aircraft nose along the fuselage centerline, the g-axis projected

from the starboard wing, the z-axis projected from the aircraft underside. The

origin of the coordinate system is at the aircraft center of gravity. Etkin (1973)

derives the transformation matrix £_,'s as:

- cos ¢ sin _ + sin ¢ sin

Lvs = cos 0 sin _ sin _ sin0sin • cos Csin0 sin _ (B.4)
+ cos ¢ cos • - sin ¢ cos

- sin 0 sin ¢ cos 0 cos ¢ cos 0

where ¢ is aircraft bank, 0 is aircraft elevation, and _ is aircraft heading.

The components of f_, in the body fixed coordinates, are defined for conve-

nience as

and the error as

(B.5)

AVasF = (AVe, AVy, ALP.) (B.6)

The components of I,_a, in the earth fixed coordinates or vehicle centered coordinates,

are defined as

Vov = (E, v;, v') (s.7)
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and

awovc= (_v',_v_,_W) (B.8)

Three equations result from the expansion of Equation (B.3) with substitution

into Equation (B.I) . Using index notation, these equations are

= \aE) (AE + axe) (AX')2
(B.9)

where X1 = ¢, X2 = O, and X3 = _.

The derivativeson the R.H.S. of Equation (B.9) for AV_ are

av;
-- = cos O cos
cOY=

c)V" _ sin6 sin0 cos • cos 0 sin_,

oL'
-- cos@sinOcos9 +sincsing,

OV=

9V_ = V_(cos_singcos 9 +sin6sing)
0_

- K=(sin 0sin 8cos 9 ÷ cos Csin 9),

1_(sin 8 cos 9) ÷ "v'ysin _bcos 8 cos 9

+ V=cos¢ cosOcos 9,

and

aV_' =- V_ cos 0sin • - V_,(sinCsinOsin9 + cos ¢cos9)
89

+ V=(- cos ¢ sin 9 sin 9 + sin ¢ cos 9)

The derivatives on the R.H.S. of Equation (B.9) for AV_ are

or;
-- - cos 0 sin 9,

8V/t - sin ¢ sin O sin 9 + cos $ cos 9,
ov_

or;
-- = cos ¢ sin 0 sin 9 - sin ¢ cos 9,
av,
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av/, = G(_os _ sin esin ,_ - sin _5cos _V)
694) (B.19)

+ V,(- sin ¢ sin 0 sin ',_ - cos ¢ cos ¢),

and

00
-- = - V_ sin Osin _ + Vy sin 4 cos 8 sin 9

+ V_ cos q5cos 8 sin _,

- V_ cos 8 cos Gd+ V_ (sin 4 sin 8 cos LT2-- cos ¢ sin _)

+ V_(cos ¢ sin 8 cos ¢2 + sin ¢ sin _)

(B.20)

(B.21)

The derivatives on the R.H.S. of Equation (B.9) for A-V_ axe

or:
-- sin 8, (B.22)

a½

OV'. _ sin _ cos 8, (B.23)

Or'
---= = cos ¢ cos 8, (B.24)
0G

0V_'

Do - V_ cos ,6 cos 8 - V_ sin 6 cos 8, (B.25)

av,,
- V_ cos 0 - Vy sin 4 sin 8 - Xv'_cos 0 sin 8, (B.26)

08

and

or:
a¢ =0 (B.27)

With the assumption that the uncertainties in the Euler angles are approxi-

mately equal, Equations (B.10) - (B.27) can be simplified by inspection after sub-

stituting the small angle assumption for the bank, ¢, elevation, 8, and heading, _b,

angles to:

iLXV_v_I_= tAV_,,,.I_ + 2(L.X_y

The error in the angle measurements are considered equal, i.e., A$ = ,._k_b= £x8.

The uncertainty in the angles ¢, 0, and ¢_ is dependent on the instruments, usually
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gyroscopes, which are used to measure those angles and thus, A¢, A#, and ZX@ are

independent variablesin the error analysis.

At this point, the rotation rate of the vehicle should be considered in the

error analysis. As the vehicle rotates, a wind vector is induced at the windspeed

instrumentation proportional to the rotation rate and the distance between the

aircraftcenter of gravity (c.g.)and the windspeed instrumentation. However, the

product of the rotation rate and length between the c.g. and instrumentation is

normally small and the contribution to the measured windspeed isnot significant.

Thus, the error contributed by the measured rate of the vehicle rotation will be

neglected here.

The three components of the relativeairspeed vector in the body-fixed frame,

V:, Vy, and V:, are deriv_edfrom the magnitude of the airspeed IV_I,the angle-of-

attack, a, and sideslipangle, ,$:

Vy = t;'LI | cosasinfl (B.2S)

1/: \ sin o_

The resultant errors in the calculations of the body-fixed wind vector compo-

nents are:

(av_) _ -cos __cos_9(_lV,_l)=+ lv_,t=

+ levi_cos_,_sin__(,_9)_,

(_V_,)_-=cos_o_sin_9(AtVol)_+ IVol_

+ IVol=cos_o_cos_9(/',9) 2,

and

sin 2 c_cos2 _(/-Xc_) 2

(B.29)

sin 2 c_ cos 2 _(/_Xa) _-

(B.30)

(AV,)_ :sin s _(AI_I) = +lV_l_cos=_(_x_)= (B.31)

Defining IA_I _ = (/',V_)2+(ZXE) _+ (_xV_)_, incorporating Equations (B.29),

(B.30), and (B.31) and normalizing by the vehicle airspeed then with the small

angle approximations, we can write:
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2

where it is assumed Ac_ = A_.

The errors in the measured angle-of-attack and sideslip angles are functions of

the instruments used to make these measurements and are therefore independent

variables.

The magnitude or absolute value of the airspeed of the vehicle, Iv l, is calcu-

lated as the product of the local sonic velocity and the vehicle flight Mach number:

lV_l =cMa (B.35)

For convenience which will become apparent, the square of the Mach number will

be used:

I_1 =c_ = (B.36)

Then

or

: <-7--j c +
(B.38)

The sonic velocity, c, is calculated from the static temperature of the wind from

c = kv/_ (B.39)

and

(Ac) 2 - kR'(AT)2
4T

(B.40)

where k = 1.4 is the ratio of specific heats for air, and/_ is the perfect gas constant

for air. Equation (B.40) can be rearranged from division by Equation (B.39) twice:

: :_(?)'
The static temperature is calculated from the Mach number and the total

temperature, To, of the air surrounding the vehicle from the relationship
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To= I_ k971M__T
(B.42)

Rearranging Equation (B.42) as

T=To(I+

-1

(B.43)

and substituting into Equation (B.I)

(ST)_= (_To)= + T_(_M_)= (B.44)

Equation (B.42) can be substituted back into Equation (B.44) for

(ATo) 2 T_(AMa2) 2

(AT) 2 = (To�T)2 + (k_2_(To/T)2)2
(B.45)

or

_ = \ To J + (k-1)=(l + !_!!l,/a2)z4

Since To is measured, To is an independent variable in the wind velocity calculations

and the value of AT° is dependent on the accuracy of the total temperature probe

used for that measurement.

'The Mach number is calculated as a function of the ratio of the dynamic and

static pressure measured at the aircraft for subsonic flight by"
k-1

2 --7--

(B.47)

If the system is flying supersonically, the free stream Mach number is calculated

with the Rayleigh pitot-tube formula:

- = -- / Ygi -M' _7P
(B.48)

where Mal : the supersonic free stream Mach number.

The uncertainty in the subsonic Mach number is calculated from Equation

(B.47):

(B.S0)
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The uncertainty in the pressure ratio _ is evaluated from the two remaining inde-

pendent variables in the wind velocity calculation

_x / = + _2q (B.52)

Likewise, the uncertainty in the supersonic Mach number can be shown to be

Finally, the uncertainty in wind velocity calculations from measurements made

from a airborne pIatform is determined by the measured parameters _'_, ¢, O, '_, To,

p, po, a, and 8, and their measurement uncertainties. This neglects an}" contribudon

to the wind velocity made by the rotation rate of the system, which is generally

small.

8_

'C:3



APPENDIX C

CAPABILITIES OF THE EGRKI'F II AIRCRAFT



This section covers some of the capabilities of the EGRET/" II developed by E-Systems,

Greenville Division. This aircraft is a high altitude, long endurance platform for engineering,

scientific, and environmental applications and research. This vehicle provides a cost effective

operational platform. The acquisition cost of this aircraft is in the $10M range.

This aircraft has participated in ICE. This vehicle holds several international records for

single engine turbo-propeller aircraft.

I
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PRESSURIZED L_EJ

COCKPIT

\

STANOARD /_

\t ,

RETRACTABLE '_ / '_'_/_ECIFtCATIONS
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LANDING // Win-g/// ;':,go,soan

GEA. /// Leng , 
ly Se ,,ceC ,,ing
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4-BLADE_

COMPOSITE
120" DIA. PROPELLER .

EGRETT II
DEMONSTRATOR

_C3 fee:
15 fee"
"C feet
45.2e0 :e_-: -

;_,3 _' -:-.::: fee:

;_:C _ ;-.::: fee:
; ._.50 f--- -
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2::00 i-_e:
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2.:00 sour, c_

22E cu:,c fee:

5_

3;s

28 VDC, zOO Amo S[arterzGenerator
250 VA. -'00 Hz S_atic Inverter

30 NVA AC Generator

24 VotE. 19 AH Lead Acid

Jet A.t. JR-5. JP-8. NATO F-34
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Tricycle (Re:ractab.le)
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tF RAci,'t.g

Figure C.1 EGRET'I" H characteristics (provided by E-Systems).
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Table C.1 Payload, Weight, Altitude, Time, Range, and Cost of Certain Aircraft

AIRCRAFT PAYLOAD ALTITUDE TIME MAX. RANGE OPERATIONAL

Weight 0bs.) (Feet) (Hrs.) (NM) _/I-IR. (ESI)

EGRE'IT II 2000 50 10.0 2338 $ 330

Super King Air 350 2438 35 7.5 1600 $ 500

Learjet 55C 827 41 5.6 2500 $ 700

Canadair Challenger 601-3A 2000 41 6.1 3700 $1,200

Lockheed TR-1 3000 75 12.0 5400 $10,000

Gulf Stream GIV 2000 45 10.5 3767 $ 2,400

Cessna Citatise III 2620 47 3.5 2300 $ 800

Table C.2 General Performance Capabilities, EGRETT H

Maximum Payload 2,200 lbs. (1000 Kg)

Endurance is in excess of 10 hrs

Range is in excess of 2000 NM

Certified operating altitude is 50,000 ft

Direct operating cost is approximately $330/hr

Take-off distance is less than 2000 ft (610 m)

Landing distance is less than 3500 ft (1067 m)

50 feet obstacle, 5000 feet altitude, ISA
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APPENDIX IV

COVER SHEETS FROM SEPARATELY REPORTED

WORK FOR DEFENSE INTELLIGENCE AGENCY;

REDSTONE ARSENAL, AL
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This appendix contains cover pages for the source code and user's manual for the digital

simulation of the FD system. Also included is the cover sheet of the final report for the

engineering analysis and technical studies involving specific radar tasks under Option 1. The

manual, computer code and final report have been distributed to the U.S. Army Missile and

Space Intelligence Center (AIAMS-X) at Redstone Arsenal, Alabama. Complete copies of the

report are available if requested.
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