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Summary

This paper presents the forward position kine-
matics (given the eight joint angles, how to find
the Cartesian position and orientation of the end ef-
fector) and forward velocity kinematics (given the
eight joint rates, how to find the Cartesian transla-
tional and rotational velocities of the end effector)
for the redundant eight-degree-of-freedom Advanced
Research Manipulator IT (ARMII).

Inverse kinematic solutions, required to control
the manipulator end effector, are also presented. For
a redundant manipulator, the inverse kinematic so-
lutions are not unique because they involve solving
for eight unknowns (joint angles for inverse position
and joint rates for inverse velocity) in only six equa-
tions. The approach in this paper is to specify two
of the unknowns and solve for the remaining six un-
knowns. Two unknowns can be specified with two
restrictions. First, the elbow joint angle and rate
cannot be specified. The elbow joint angle is deter-
mined solely by the commanded position of the end
cffector. Likewise, the elbow joint rate is determined
by the commanded Cartesian translational velocity
of the end effector. Second, one unknown must be
specified from the four-jointed wrist, while the sec-
ond unknown must be specified from one of the arm
joints (elbow joint excluded) that translate the wrist.

The inverse position solution has eight solutions
for each set of two specified joint angles. No alternate

inverse position solutions arc presented for singular

configurations. In the inverse velocity problem, with
two specified joint rates, the solution is unique pro-
vided that the Jacobian matrix is nonsingular. A
discussion of singularities is based on specifying two
joint rates and analyzing the reduced Jacobian ma-
trix. When the reduced Jacobian matrix is singular,
the generalized inverse can be used to move the ma-
nipulator away from the singularity region.

With two redundant joints, the methods of this
paper allow considerable freedom in solving the in-
verse kinematic problems. However, no control
strategies are developed to move the manipulator.
Control strategies are developed through ARMII
hardware experience.

A symbolic manipulation computer program was
used with existing standard methods in robotics for
the derivation of the equations. In addition, com-
puter simulations were developed to verify the equa-
tions.
forward and inverse solutions.

Examples demonstrate agreement between

1. Introduction

The Advanced Research Manipulator IT (ARMII),
a redundant research manipulator built by the AAI
Corporation for NASA, is well suited for space tele-
robotic applications and earth-based simulations of
space telerobotic applications. The ARMII has sev-
eral features that distinguish it from common indus-
trial manipulators: (1) two redundant degrees of free-
dom, (2) high payload-to-weight ratio with a 40-Ib
design payload at a 60-in. reach, (3) modular joint
design, (4) high joint and link stiffness with graphite-
epoxy composite link material, (5) continuous bi-
directional end-effector roll, (6) input and output
joint position encoders, and (7) space flight quali-
fiable components. This paper presents kinematic
equations that can be implemented for basic control
of the ARMIL

NASA Langley Research Center has two ARMIT's
for investigation of redundant dual arm control and
disturbance compensation for space operations. Fig-
ure 1 is a photograph and figure 2 is a schematic
diagram of the ARMII, a redundant serial manip-
ulator with eight revolute joints. For general spa-
tial tasks, six degrees of freedom are required. The
ARMII has two redundant joints; with this extra
freedom, performance criteria can be satisfied in ad-
dition to the commanded motion. The use of this
redundancy is not presented in this paper; how-
ever, references 1 to 8 present control methods for
redundant manipulators. These references use ma-
nipulator redundancy to satisfy performance crite-
ria, such as singularity avoidance, joint limit avoid-
ance, minimization of joint rates, minimization of
manipulator energy, and optimization of manipula-
tor configuration.

The ARMII forward position, inverse position,
forward velocity, and inverse velocity problems are
formulated and solved in this paper. The forward
solutions are given for all eight degrees of frecdom.
The term forward position transformation hereafter
indicates both position and orientation. The inverse
solutions involve six equations in eight unknowns.
The inverse solutions in this paper require that two
of the eight joint angles and rates are specified and
then the remaining six joint angles and rates are
solved. Joint angles and rates for different joints can
be specified at each calculation step. Therefore, this
approach is more general than one that locks two
joints for all motion.

The forward position transformation is presented
after a discussion of kinematic simplification. With
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the conventions of Craig (ref. 9), the Denavit-
Hartenberg parameters and the homogeneous
transformation matrices relating successive coordi-
nate frames are presented. The forward position
transformation is factored for efficient computation.

The inverse position solutions are presented next.
Two angles are specified and the remaining six are
solved. In this paper, one joint angle must be
specified from the arm joints (1-3) and one from
the wrist joints (5-8). Choosing two wrist joints
is possible, but it leads to an underconstrained set
of equations for the arm joints, and these equations
are not dealt with in this paper. The elbow joint

angle 4 is solved independently of the remaining

joint angles and cannot be specified. The length of
reach from the shoulder to the wrist determines the
elbow joint angle 64 with two possible configurations,
elbow up and elbow down. All twelve combinations
of specified joints are allowed in the methods of this
paper. For each combination, eight inverse position
solutions exist.

The velocity solutions follow the position solu-
tions. The forward velocity solution is a linear trans-
formation from joint rates to Cartesian rates through
the Jacobian matrix. The 6 x 8 Jacobian matrix is
presented with respect to the base frame and with
respect to the elbow frame. The Jacobian matrix
with respect to the elbow frame involves less sym-
bolic terms than any other frame for the ARMIL
The computation of either Jacobian matrix involves
terms from the forward position transformation.

The resolved motion rate, or inverse velocity,
problem (ref. 10) is solved in a manner similar to
the inverse position problem. Two joint rates are
specified, one from the arm joints (1-3) and one
from the wrist joints (5-8). The elbow joint rate 6,
cannot be specified because it is uniquely determined
by the Cartesian translational velocity command.
The resolved motion rate problem is solved in closed
form for the Jacobian matrix with respect to {4}.
The inverse velocity solution is unique, provided that
the Jacoblan matrix has full rank. In this paper,
singularity solutions are not presented; that is, the
Jacobian matrix is assumed to have a rank of six.

An identification of ARMII singularities is based
on specifying two joint rates in the resolved motion
rate problem and analyzing the reduced Jacobian
matrix. Singularity conditions are presented for all
specified joint combinations. No alternate singularity
solutions are developed.

Examples are presented to demonstrate the equa-
tions for all solutions given in this paper. For both

position and velocity kinematics, the forward solu-
tion output is the inverse solution input used to ver-
ify the results.

The methods used for derivation of the forward
kinematic equations in this paper are existing stan-
dard methods in robotics. A computer symbolic
manipulation program was used extensively for
derivation of the equations. In addition, computer

__simulations were developed to verify the equations.

The inverse position solutions are original work based
on an adaptation and extension of reference 11. The
principal contribution of this paper is the first pre-
sentation of efficient position and velocity kinematic

~ equations for the ARMIL

2. Symbols

ARMII Advanced Rescarch Manipulator 11

a;_1 Denavit-Hartenberg parameter

C; cos 8;

d; Denavit-Hartenberg parameter

ds,ds Denavit-Hartenberg parameters,
fixed manipulator lengths

Jij element (i, j) of Jacobian matrix
Moore-Penrose pseudoinverse of
Jacobian matrix

K; KK; factored terms

Ly length from base to shoulder

Lg length from wrist to end effector

mJ Jacobian matrix expressed in {m}

mIrL lower left partition of ™J

IR lower right partition of ™J

"I Rj ™J g with column j removed

"™{Jrrj} column j of ™J; i

Jur upper left partition of ™J

"JuRr upper right partition of ™J

™I} column i of ™Jyp with row 1

removed

MY ULia MJ ;1 with columns ¢ and 4, plus
row 1 removed

I Pl Euclidean norm of vector P

{"Pn} position vector from origin of {n}
to {m}, expressed in {n}

{Px, Py, Pz}T components of {"Pg}



{"ve}

Xm ' YHL) Zm

m{X}
-1
{6}
{6}4
{0}w
6,

{6}

{6} 4

{6} ai4
{Ow
{0}

{Mwr}

orthonormal rotation matrix of
{m} relative to {n}

element (i, j) of gR
element (4, 7) of 4S‘R
sin 8,

homogeneous transformation
matrix of {m} relative to {n}

tan 9,

linear velocity from origin of {k}
with respect to {0}, expressed in
{m}

unit direction vectors of {m}
m{j"vyy 2aw$7wy7wz}T:

T
{{"vs}, {"ws}}
Denavit-Hartenberg parameter
joint angle 1

eight ARMII joint angles, arm,
and wrist (1-8)

{6, 6., 85, 94}T, four arm joint
angles (1-4)

{05,06,07,63}", four wrist joint
angles (5-8)

joint rate 1

cight ARMII joint rates, arm, and
wrist (1-8)

arm joint rates

arm joint rates, excluding ¢ and 4
wrist joint rates

wrist joint rates, excluding j

angular velocity of {k} with
respect to {0}, expressed in {m}

Mathematical notation:

{}
(o 3T

Arm reference points:

S
E

Cartesian coordinate frame

vector components

shoulder

elbow

w wrist

Coordinate frames:

B base

H end effector

m dextral

0 base for simplified kinematic
equations

4 elbow

end effector for simplified kine-
matic equations

3. Kinematic Simplification

3.1. Base and End-Effector Coordinate
Frames

For telerobotic tasks, the position and orienta-
tion of the end-effector coordinate frame {H} are
controlled with respect to the base coordinate frame
{B}. The symbolic terms for the forward position
transformation and Jacobian matrix require signifi-
cantly less calculations when {8} is controlled with
respect to {0}. The origin of {8} is located at the
wrist point W and the origin of {0} is located at the
shoulder point S. (See fig. 3.) This removes L1 and Lg
from the basic kinematic equations. No loss of gener-
ality is incurred because control of {H} with respect
to {B} is transformed to control of {8} with respect
to {0} through equations (1), (2), and (3). Given
ET, OT is calculated by the following equation:

gr=fr ! T T 1)
where
r1 00 0 -
Beel |01 0 0
0T =19 01 -1,
o 0 0 1 |
10 0 0 -
8m-1_10 1 0 O
HT " =10 0 1 —Ig
L0 o 0 1 |

Given the Cartesian translational and rotational
velocities {Hvy} and {fwy}, the equivalent Carte-
sian velocity command at {8} is calculated as

{Pws} = {Twy) (2)
{®vs} = (Fv} - {Pws} x {*Py} (3)
where {8Py} = {0,0, Lg}Ti A velocity transforma-

tion is not required between { B} and {0} because no
relative motion occurs. Equations (1), (2), and (3)

b I (1[Nl



are written for the inverse position and velocity prob-
lems. The same equations can be modified for use in
the forward position and velocity problems.

3.2. Decoupling Position From
Orientation

An efficient method for calculating kinematic so-
lutions of manipulators with spherical wrist mecha-
nisms is to decouple the position from the orienta-
tion. The arm joint angles position W in space and
the wrist joint angles orient {8} with respect to {4}.
The wrist joint rotations do not affect the positioning
of the arm joints. The ARMII has a four-axis spher-
ical wrist. Decoupling the position from the orienta-
tion applies to both position and velocity problems.

From reference 9, the general form of gT is

Equation (4) gives the decoupling of the position
from the orientation as follows. Because the spheri-
cal wrist causes no translations, the position vector
{OPg} is a function of only the arm joint angles. The
manipulator orientation is provided by the wrist joint
angles relative to the orientation of {4}.

The terms for the forward position transforma-
tion, equation (4), are presented in the next section.
The position vector {?Pg} is expressed as a function
of 81, 6o, 03, and 4. The rotation matrix represent-
ing the manipulator orientation is given as a function
of all joint angles.

The Jacobian matrix used in velocity kinematics
has the following form when the wrist is spherical:

J=| 2 1___ (5)

The wrist joint rates do not affect the translational
Cartesian velocity of the end effector; thus, the
upper-right portion of the Jacobian matrix is the zero
matrix. The Cartesian angular velocity is a function
of all joint rates.

4. Position Kinematics
4.1. Forward Position Kinematics

4.1.1. Denavit-Hartenberg parameters. Fig-
ure 3 defines the coordinate frames for the ARMII.

Zs, 2g, Zyy
|
- "
X7, Xg x6
2,4

d3
Zy. Z4
S
ZQC%_> XO ) X1, X 2
Zgh
Ly
—— X B

Figure 3. ARMII coordinate frames. {6}={0,0,0,0,0,0,0,0}.

The manipulator pose in figure 3 is the initial po-
sition where all joint angles are 0. The Xg, Xj,
and X, axes are coincident in the initial position.
The same is true of X3 and X4 and also X7 and Xg.
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The Zq, Z4, and Z7 axes are directed outward, per-
pendicular to the plane of the paper. For these co-
ordinate frame definitions, the eight sets of Denavit-
Hartenberg parameters relating the nine successive
coordinate frames {0} through {8} are given in ta-
ble 1. With the simplification presented in sec-
tion 3.1, the parameters di and dg are both 0. In
figure 3, the lengths from the base to the shoulder
and the wrist to the end effector are labelled L; and
Lg to avoid confusion with the Denavit-Hartenberg
parameters d; and dg. The joint variables §; are the
angles from X;_; to X; measured about Z;. Joints
five, six, and seven require the offsets given in table 1
for 85, #g, and 97 to be 0 in the initial configuration
of figure 3.

Table 1. Denavit-Hartenberg Parameters

i ;-1 a;-1 d; ¢
1 0 0 0 01
2 90° 0 0 6
3 —90° 0 ds 03
4 90° 0 0 04
5 —-90° 0 ds fs5 — 90°
6 —90° 0 0 05 + 90°
7 90° 0 0 #; — 90°
8 90° 0 0 O3

Nominal values for the fixed lengths are d3 =
762.0 mm and ds = 495.3 mm. The fixed length
Ly depends on the manipulator mounting and Lg
depends on the end effector. Nominal joint limits
are given in appendix A.

4.1.2. Homogeneous transformation ma-
trices. The general homogeneous transformation
matrix (ref. 9) represents the position and orienta-
tion of {i} with respect to {i — 1} and is given as
follows:

cb; —s6; 0 a;_1
i—lp _ sficaj.1  cBicay_y —sa;_1 —disoy_q
t sO;saj1  clisoy_y cov;_ 1 d;505_

0 0 0 1

(6)
The Denavit-Hartenberg parameters are substituted
into equation (6) to produce eight homogeneous
transformation matrices (given in appendix B) that
relate successive coordinate frames.

4.1.3. Forward position transformation.
The forward position transformation is a unique
mapping from joint space to Cartesian space: -

9T ={T(6;) 3T(62) 3T(03).. . T(Bs) (7)

Substituting the matrices of appendix B into equa-
tion (7) yields

FKnsg — Krcg Krsg+ Kyeg Ky —dscysg —dsKy
KQSS — Kycg Kysg+ KQCS Ky —d3s;sg —dsK¢
Kgsg — Kxecg Kxsg+Kgeg Ky  dyep —dsKg

0o 0 0 1
(8)

Common terms K, reported in appendix C, are fac-
tored out to reduce computation time. Based on de-
coupling the position from the orientation, discussed
in section 3.2, the forward position transformation is
partitioned at {4} as follows:

0
gT =

9T =97(01,02,63,04)4T(05,66,67,65)  (9)

where
Kg —-Ky Ky —dicise
op— | KD —Kc Ki —d3sisy
4 Ky —Kg s2s3 dscy
0 0 0 1
[ s5ce88 — KKacg KKysg+ssceecs KKz 0
A — KKy KKg cgcr  ds
8 csc658 + K Kocg —K Kasg+ceseges KKy 0

0 0 0 1
The K K, terms are defined in appendix C.

4.1.4. Geometric arm joint mdundanéy.
Figure 4 presents the geometric interpretation of
the arm joint redundancy for the ARMIIL. The arm

Figure 4. Geometric interpretation of ARMII arm joint
redundancy.
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redundancy or self-motion is the rotation of the elbow
point E about {"Pg}. A given Cartesian position and
orientation is reachable at any of these locations of E.
The radius of this rotation r varies with {"Pg}. The
wrist joint redundancy provides a freedom in addition
to this self-motion behavior.

4.2. Inverse Position Kinematics

The inverse position problem is a mapping from
Cartesian space to joint angle space. This problem
is more complicated than the forward problem be-
cause it involves coupled transcendental equations
with multiple solutions. The inverse position prob-
lem calculates 8,6, ..
given the following Cartesian position and orienta-
tion command gT:

Ri1 Rip2 Rz Py

Ro1 Ry Rpz Py

R31 R3» R3z3 Pz
0 0 0 1

4T = (10)

Equation (8) expresses gT in terms of the unknown
joint angles. Equations (10) and (8) are equated to
obtain the inverse position equations. This equating
yields twelve scalar equations, only six of which
are independent. The six independent equations
come from the three position terms and three of the
possible nine rotation matrix terms.

The inverse position problem cannot be solved
for redundant manipulators without additional con-
straints. The specified Cartesian location has six de-
grees of freedom but eight one-degrec-of-freedom

joints. For the ARMII, the inverse position prob-_

lem is an underconstrained set of six equations in
eight unknowns. In this section, the inverse position
problem is solved by specifying two joint angles.

Decoupling of the position from the orienta-
tion is utilized in the inverse solutions. The arm
joint angles are solved from the position command
{OPg}. The oricntation command and the influ-
ence of arm joint angles on the orientation are then
used to solve for the wrist joint angles. Therefore,
the inverse equations are two sets of three equa-
tions in four unknowns. One joint angle is specified
from the arm joints and one from the wrist joints.
These methods are an adaptation and extension of
reference 11.

4.2.1. Inverse position solutions for arm
joint angles. Multiple solutions for {#, 62, 83,84}7
are obtained in this section with {"Pg} given. A
geometric approach is used to solve for 64 first,
independently of {#;,60s,03}7 and {85, 0, 07,05}7.

.,0g for the ARMII, when

‘The vector {"Pg} gives the position of the
wrist W with respect to the shoulder S, as shown
in figure 5. This length-of-reach constraint fixes the
value of 04. The plane of triangle SEW is perpen-
dicular to Z4 for all manipulator configurations. The

law of cosines is used to solve 84 so that
I{°Pg}|? = d3 + df — 2d3dscos ¢ (11)

where |{"Pg}||? = PZ + P% + P% and ¢ = 7 — 4.

The two 64 solutions to equation (11) are as follows:

1 [I1{Ps} > — df —
2dsds

04 = £ cos™ (12)

These solutions correspond to the elbow up and
clbow down configurations.

— Figure 5. Geometric method to calculate ;.

" A geometric method is used to determine whether
a given position command is within the manipulator
workspace. The maximum reach occurs when d3 and
ds align (64 = 0). At the minimum reach, ds folds
back upon d3 (64 = 7). Based on these conditions,
the following inequalities must be satisfied for {"Pg}
to be reachable:

|d3 — ds| < I{°Ps}|l < d3 +ds (13)
This analysis ignores joint angle €4 limits, which
cause a more restricted workspace.

The remaining arm joint angles {91,02,93}T are
solved with algebra and trigonometry. The wrist
mechanism is spherical; thus {°Ps} equals {°Pg}.
Equations for {61,92,93}T are obtained from the
identity

{°P;5} = JR (61,02, 85, 04){'P5} (14)

7



where {°P5} = {Px, Py, Pz}7 is the position com-
mand and {!Ps} = {0,d5,0}7 is known. Equa-
tion (14) is rewritten as

PR(61,02){Ps} = {R(63.61){'Ps}  (152)
and expands to the following three scalar equations:

(Pxcy + Pysi)ca + Pzsy = —dsc3sy (15b)
—(Pxcy + Pys1)sy + Pzcy = d3 + dseq (15¢)
Pys; — Pycy = dss3s4 (15d)

Equations (15b), (15¢), and (15d) can apparently
be solved for the three unknowns (#;, 62, f3) because
64 is known. However, squaring equations (15b),
(15c), and (15d) and adding them gives the cosine
law used previously to solve 64. Therefore, equa-
tions (15b), (15c), and (15d) are two independent
equations in three unknowns. One joint unknown is
specified and the other two are solved. Three cases
are presented that correspond to specified 8, 65,
or f3. For each casc, 84 is known from equation (12).

Case 1. With 8; specified, equation (15c), re-
written in the following equation, is solved for 8 as
follows:

Ecosfy + Fsinfy + G =0 (16)
where
E=-Pz
F = Pxc; + Pysi
G =d3+dses

Equations of the form in equation (16) arise often in
inverse position kinematics. The solution is obtained
with the tangent half-angle substitution (ref. 13).
Appendix D presents the two valid solutions for the
general form of equation (16) with this method.

A ratio of equations (15d) and (15b) is used to
solve for #3. The quadrant-specific inverse tangent
function is used to provide a unique result from the

following equation:

1 Pxs1 — Pycy (17)
—(Pxc1+ Pysi)ea — Pzsa

f3 = tan~

Two 64 solutions are given in equation (12). For each
8,4, two 03 solutions are obtained from equation (16).
Each 6, has one 83 solution (eq. (17)). Therefore,
four solutions exist for the arm joint angles, with
the joint limits ignored. The four solutions have the
structure shown in table 2.

8

Table 2. Arm Joint Solutions With 8, Specified

n 91 92 93 94
1 o1 821 b3 04
2 8, H9 —O34+m 64
3 &1 ) —05 —04
4 0 f21 3+ m —b

Case 2. With 8y specified, equation (15c¢) is solved
to yield two values of 6;:

Ecosty + Fsin6; +G=0 (18)
where
E = Pysy
F = Pyso

G =ds + dscqy — Pzea

The angle 3 is again calculated by equation (17). Ta-
ble 3 gives the solution structure when 6y is specified.

Table 3. Arm Joint Solutions With 8y Specified

n 6 [ 09 23 04
1 f11 ) b5 | O
2 012 ) —03 b4
3 011 09 O3+ 7 —64
4 612 02 —03 + 7 —684

Case 3. With 63 specified, both 63 and 6, arc
known. Equations (15) are rewritten to separate the
unknowns 8; and 65 as follows:

{R{"P;} = |R{*Ps} (19a)
Pxc1 + Pysy = —(dscgsa)cp — (d + dseq)s2 (19b)
Pyeip — Pxsy = —dss384 (19¢)

PZ = (d3 + d5C4)C2 — (d5C3S4)32 (lgd)

Equation (19¢) is solved for two values of 6;, inde-
pendently of 83, as follows:

Ecosf; + Fsinéy +G =0 (20)
where _
E=PF
F=-Pyx
G= d53354

Equation (19d) is solved for two values of 6o, inde-
pendently of 8;, as follows:

Ecosfy + Fsinfy + G =0 (21)

" NINIEYR T N TR RTINS OE TR T T T R N L VT T O IR T L, T AR L LA AR T



where is used to determine which #y value corresponds to
each #;. The solution structure is given in table 4.

E = —(d3 + dsca)

F = dsczsy Table 4. Arm Joint Solutions With 83 Specified
G=P
Z n 91 02 03 94
Equations (19¢) and (19d) are solved given each of ; ZH 321 23 24
the two 64 values from equation (12). There are eight P 12 ;2 63 3
possible solutions for sets of 61, 63, and 4, but only i 612 +7 - 922 93 - 94
four are valid. For each value of 84, equation (19b) n+7 —U2 3 U4

4.2.2. Inverse position solutions for wrist joint angles. This section presents an algebraic method
to solve the orientation part of the inverse position problem. Sets of {65,606, 67, 08}T are solved given gR and
{01302793704}7—" -

The wrist joint angles orient {8} with respect to {4}. The orientation of {4} depends on {01,62,03,04}T.
The wrist orientation command gR is calculated by the following equation:

4 0a—10 ™11 T12 Ti3
sR=4R7" gR=|[ro ma2 723 (22)
T3l 732 T33

The elements of gR are given in equation (9b). The wrist inverse position equations are obtained by equating
gR from equation (9) and equation (22). The unknowns are separated as follows:

IRTIR=5R (23)
The matrices for the left- and right-hand sides of equation (23) are

—rorcg — (3105 + T1185)s6  —T2206 — (T32c5 + T1285)86  —T23¢6 — (7335 + T1385)86
ro1se — (13105 + T1185)C6 72286 — (r32cs + T128s)cs  Ta3se — (r33¢5 + T1355)C6

711€5 — T3185 T12€5 — 73255 13¢5 — 73355
s7cg  —8788 —C7
—sg —cg 0
—C7C8 C788 —S7

Equation (23) contains nine scalar equations in four unknowns, three of which are independent. For solution,
one unknown joint angle is specified and the remaining three are calculated. Four cases are presented for
speciﬁed 95, 96, 67, or 98-

Case 1. With 85 specified, the joint angle g is solved from the (2,3) element of equation (23). The quadrant-
specific inverse tangent function is not required because f¢ and 6 + 7 are both valid solutions. The ¢ solution

is
06 = tan™! [T-———33C5 hi ”335} (24)
723
A ratio of equation (23) elements (3,3) and (1,3) yields 7. The quadrant-specific inverse tangent function
must be used because one valid 07 value exists for each 8. Similarly, 8g is solved from the ratio of the
elements (2,1) and (2,2) of equation (23):

S SIS -
ro3ce + (r33cs + 71355)56




fg = tan~! [(7'3165 + 71185)c6 — 72156 (26)
(r32e5 + T1285)C6 — T9256 :
Two wrist solutions exist for each {6;,82,83,04} re-

sult. The solution structure is demonstrated in
table 5.

Table 5. Wrist Joint Solutions With 65 Specified

n 95 96 97 08
1 o B¢ 67 fg
2 g Og + m —Or+7 O+

Case 2. With fg specified, the joint angle 05
is solved from the (2,3) element of equation (23).
The general solution for the following cquation is
presented in appendix D. Both 85 results are valid.

Ecosfs + Fsinfs +G =0 (27)
where
E = r33c4
F =ri3cq
G = —ro3s6

The wrist angles 67 and g are calculated by equa-
tions (25) and (26). One (87,0g) pair exists for
each #5. The two wrist solutions are given in table 6.

Table 6. Wrist Joint Solutions With 6g Specificd

n 35 66 97 98
1 G5 s 07 01
2 O52 b6 —b7 32

Case 3. With 87 specified, the (3,3) clement of
equation (23) gives the following equation:

Ecosfs + Fsinf5 +G =10 (28)
where
E=mr3;
F=-rsy
G =s7

Appendix D presents a solution method for equa-

tion (28). 5 has two valid solutions. The angle fg is

solved from the (2,3) element of equation (23) and is

6 = tan"! [w} (29)
723

10

The quadrant-specific inverse tangent function used
to calculate onc g is valid for each 65. The wrist
angle 6y is calculated by equation (26). One fg exists
for each #5. Table 7 gives the two wrist solutions with
8 specified.

Table 7. Wrist Joint Solutions With 87 Specified

n 7 %6 7, Os
1 0 51 06 0 7 98 1
052 —b b7 Bs2

Case 4. With 8y specified, two values for 45 are
solved from the ratio of the (3,1) and (3,2) elements
of equation (23) as follows:

r11t
05 = tan™! [—rw ki 8} (30)
T32 + 73118
Both 85 and 65 + 7 are valid results. The unique

fg is solved by equation (29). The wrist angle 5 is
calculated by equation (25). For each 65 there is a
unique #7. Table 8 gives the two wrist solutions with
Oy specified.

Table 8. Wrist Joint Solutions With 8g Specified

n 5 O 8- s
1 05 f6 07 g
2 O5 +m —0g +7 07+« fs

4.2.3. QOverall inverse position kinematic
solutions. The overall inverse position problem has
eight solutions: four arm joint solutions and two
wrist solutions for each. This is true for all specified
arm and wrist joint angle combinations. The overall
solution structure is greater than the individual arm
joint and wrist joint tables indicate. Table 9 presents
the eight solutions obtained with 8, and 85 specified.
Other combinations have a similar structure.

Table 9. Overall Solutions With #; and é; Specified

n 0) 92 93 04 95 95 07 08
1160y ) Ba |05] o1 071 51
216,69 O3 04 (65| O1+7 |—Opp+mibfsi 47
3161|002 ~O03+m| 04 |05 62 072 )
41011020 ~O3+m| 04 |05] Bgo+7 | ~Orp+7|0s0+ 7
501 0| 63 |—04|065| —b62 b2 |bs2+m
616y 022 —63 |—B4(8s5|-b2+7| Oa+7 B2
7|101|00| O3+7 | —04|605| —Be1 =87 |G+
8161 (02| O35+7 | —84 795 —Ogr+7w!| O+ 7 g1
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5. Velocity Kinematics
5.1. Forward Velocity Kinematics

The forward velocity problem calculates the Cartesian velocities given the joint rates. The J acobian matrix
is a linear operator that maps joint space velocities to Cartesian velocities as follows:

™{X}="3{} (31)

In equation (31), ™{X} is the vector of Cartesian linear and angular velocities of {8} with respect to {0},
expressed in {m}. The dimension of {6} is eight for the ARMII. The Jacobian matrix order is 6 x 8.

5.1.1. Jacobian matriz expressed in {0}. The Jacobian matrix form for m = 0 is as follows:

Jiui Jio Jig Jiu 0 0 0 0
Jon Jyg Joz Jqg O 0O 0 O
0y — 0 Jg J3z J3u O 0 0 0

32
Jao Jaiz Jua Jis Jee Jar Jas (32)

0
0 Js2 Js3 Jsa Jss Jse Jsr o s
1 0 Jez Josu Jos Jes Jer Jes

The upper-right Jacobian submatrix is the zero matrix because the spherical wrist joint rates 95 through 98 do
not affect the translational Cartesian velocity. The first column of the Jacobian matrix shows that 0, affects
only O, Oy, and %w,. The term Jg; equals 1 because 6, adds directly to 0w, in {0} coordinates. The term Jg2
equals 0 because f5 does not influence %w,. Because of the decoupling of the position from the orientation, the
form of the Jacobian matrix is that of equation (5). The Jacobian matrix terms are

[ d3s1s0 +ds Ko —dseica +dse1 K dsKasy  —dsKp

Oy = | —dscisg —dsKa —dszsica+dss1Ke  dsKasa —dsKp (33a)
| 0 —-Kz dssgs3sy  —dsKs
[0 51 —c159 Ko

0J,, =10 —c1 —s150 Ky (33b)
|1 0 co 5983

. [-K4 -Ky Ky Ky
JLR = _KC —KL KQ KW’ (33C)
| K¢ Kr Kg Ky

The terms K; from the forward position transformation (eq. (8)) are given in appendix C. The Jacobian
matrix 0J is independent of fg. However, if velocitics are transformed into {0} from velocities commanded
in {8}, g is involved. Of course, the end-effector Cartesian velocity depends on all joint rates, including fs.

5.1.2. Jacobian matriz expressed in {4}. problem. With this method, the simplest symbolic

The simplest symbolic form of the ARMII Jacobian form of the Jacobian matrix results when it is based
matrix is presented in this section. This form is de- on the middle coordinate frame. When cross prod-
sirable because it reduces computation time for real- ucts are taken from one end to the other (from {0}
time manipulator operations. In addition, closed- to {8} or vice versa), the terms compound greatly.
form solutions to the inverse Jacobian submatrices Starting from the middle and working to both ends
are less complicated. results in fewer Jacobian matrix terms.
A manipulator Jacobian matrix can be calculated

by many methods. The vector cross-product method With 9J given by equations (33), the Jacobian
in reference 11 provides good physical insight into the matrix referenced to any frame {m} is found and

11



Cartesian velocities expressed in {0} are transformed
into {m} as follows:

From properties of unitary orthogonal rotation
matrices,
§R =R =ORT

Substituting equation (31) for both ™{X} and {X}
in equation (34) and using the preceding rotation
matrix relationships yield the following equation:

0 1o
= {J} (35)

For the ARMII, {4} is the middle coordinate
frame. The general form of 4J is reported in equa-
tion (36), obtained from m = 4 in equation (35):

Ju Jig 0 Jig 0 0 0 0
Jo1 Joa 0 0 0 O 0 0
43 — J31 Jyp J3z O 0 O 0 0
Jao Jyo Jei3 00 0 Jye Jar Jsg
Js1 Js2 Jsz 001 0 Js7 Jss
Jo1 Je2 0 1 0 Jgg Jer Jgs
(36)

Equation (9) is a symbolic representation of the ma-
0 4 . . .
trix 4R, and the *J terms are given in the following

equation:

|
4
o e (37)
|
L ! TR
where
—Asgss —Acs 0 —dj
4JUL = d3528384 dscgsy 0 0

_d35203 +ds K5 —Bsy dssg 0

s [ K5 —s3c4 84 O
Jrip=|—-Kg 38354 ¢4 0O
| 5283 c3 0 1

K Ccs 85C¢ KK3
Ur=11 0 -s¢ coc7
|0 —s5 cs06 KKl_]

A=dzcq+ds
B =d3 +dsey

When equations (33) and (37) are compared, a great
reduction in symbolic terms is evident.

The terms K; and KK, from the forward posi-
tion transformation are given in appendix C. The
Jacobian matrix in {4} is independent of #; and fg.
However, if velocities are transformed into {4} from
velocities commanded in {8}, fg is involved; 0} is in-
volved when velocities are transformed into {4} from
velocities commanded in {0}.

5.1.3. Cartesian velocities expressed in {8}.
The Jacobian matrix in {0} involves fewer symbolic
terms than in {8}. In turn, 4J is significantly sim-
pler than 3. The symbolic form of 8J is not re-
ported. This section uses {8} as the coordinate frame
to present the necessary transformations for velocity
solutions.

The forward velocity problem using ™J yields
Cartesian rates expressed in {m}, where m = 0 or 4
in this paper. Equation (34) is used when these rates
are desired in {8} coordinates to give the following
equations:

{Bvg} = FRT{Mvg}
(38)
{Bws} = FRT {Mws}

The input to the inverse velocity problem is ™{X}.
When these rates are expressed in {8}, equations (38)
are inverted before ™J is used in the inverse velocity
solution as follows:

{"vg} = FR{3vs}

(39)
{"wg} = FR{Pws}
The rotation matrices J'R are contained in equa-
tion (8) for m = 0 and equation (9) for m = 4.

5.2. Inverse Velocity Kinematics

The inverse velocity problem solves the linear
equation (31) for the joint rates when given a Carte-
sian velocity command. Standard linear solution
techniques cannot be used for a redundant manipu-
lator because the Jacobian matrix is nonsquare. The
inverse velocity problem for the ARMII is undercon-
strained with six equations in eight unknowns. Equa-
tion (31) can be inverted with the well-known gener-
alized inverse (ref. 13) of the Jacobian matrix. This
redundant solution minimizes the Euclidean norm of
the joint rates.
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General redundancy resolution techniques are not
presented in this paper. Instead, two joint rates are
specified to solve the inverse velocity problem. The
remaining system is six equations in six unknowns.
A unique solution exists, when the manipulator is in
a nonsingular configuration, i.e., when the Jacobian
matrix has full rank. A square set of linear equations
results only when one joint rate is specified from
the arm joints and one from the wrist joints. This
behavior agrees with the inverse position behavior.
Specifying two wrist rates is possible, but it leads
to an underconstrained set of equations for the arm
Joint rates, and these equations are beyond the scope
of this paper. Additionally, joint rate 84 cannot be
specified independently of the translational velocity
command because of the structure of the ARMII.
The length of reach from the shoulder to the wrist
determines the elbow joint angle 4. A derivative of
this constraint dictates that the elbow joint rate 84
is uniquely determined by the Cartesian translational
velocity command.

5.2.1. Independent solution for ;. The
joint rate 84 is solved independently of the remaining
seven unknown joint rates from a time derivative of
equation (12). Equation (11) is rewritten as

P% + P} + P2 =d3 + d? + 2dydses  (40)

Simplifying the time derivative of equation (40) yields
the following solution for f4:

_ (px% + Py0y + PZOz)

0
4 d3dssq

(41a)

In equation (41a), the Cartesian velocity command
is expressed in {0}. When the frame of expression

is {4}, 64 is simplified as shown in the following

equation:

—1 7y, A 4.

ds [ o d3s4 y}
where A is defined following equation (37).

0y = (41b)

5.2.2. Inverse velocity solution for remain-
ing joint rates. The inverse velocity problem ex-
ploits decoupling of the position from the orientation.

Equation (31) is rewritten as

The upper three equations of equation (42) are
solved to yield the unknown arm joint rates. Ac-

{Mvs}

{"ws}

un

{6}w

i
™y |0 {

counting for the arm joint rates, the bottom three
equations are then used to find the unknown wrist
joint rates. The joint rate 84 is known from equa-
tions (41). Therefore, column four of ™Jy;y, is sub-
tracted from the right-hand side of equation (42),
multiplying by #;. The remaining system is three
equations in three unknowns. However, a unique
solution to this system does not exist because it is
always singular. The first two rows are dependent;
the rank is two and not three. Either row one or two
must be removed from the upper system of equations.
The remaining system is two equations in three un-
knowns, as for the arm angles in the inverse posi-
tion solution. In this paper, the solution is achieved
by specifying one joint rate from 8, 6, and 63 and
then solving for the other two. The wrist joint rates
are solved with the three equations in four unknowns
from the bottom of equation (42), after the arm joint
rates are obtained. One joint rate from 65, s, 07,
and #g is specified and the remaining three are solved
from the full-rank system, provided that the wrist is
not in a singular configuration.

_ Solution in frame {0} is obtained as follows. If
f; from the arm joints and 0 from the wrist are
specified, columns i and ] are removed from Jy 14
and Jrg. Joint rate 6; is likewise removed from
{6} 44, and 91 is removed from {8}y . In addition,
to achieve a consistent set of equations for the arm
joint unknowns, row 1 of Jyr4 is removed; row 1
of the Jacobian matrix in {0} or {4} is symbolically
more complex than row 2. For m = 0, the solution
is obtained with any linear solution method used for
the following equations:

OJ101ia{8} aia = {Ovs} — 6 Y{ Iy} - 85 "{iwra}  (43a)

31r; (0w = {"ws} — 8; {Jrr;} - "I.L{f}a  (43b)
The order of equation (43a) is 2 x 2. Row 1 of {Ovg}
is removed because the first equation of equation (42)
is removed. The order of equation (43b) is 3 x 3
because the wrist equations are of full rank for the
general case.

Solution in frame {4} is obtained as follows. The
symbolic form of 4J is simpler than ®J, as demon-
strated in section 5.1.2. When {4} is used as the

reference frame, the linear equations are solved in

closed form. The resolved motion rate solution for
this case is given by the following equations:

{0} aia = T} 10 ((Pvs} — 6 H{wri} - 65 HNwira)) (44a)

(44b)

{Bhw; ="T1k; ({fws} = 8; “{Irr;} - “T1{8)a)
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Row 1 is removed from {!vg} in equation (44a).
The symbolic terms for the inverse reduced Jacobian
submatrices are given in appendix E, for i = 1,2,3
and j =1,2,3,4

For either inverse velocity solution (egs. (43) or
(44)), the commanded Cartesian velocities must be
transformed into {0} or {4} coordinates, unless they
are specified in these frames. When Cartesian ve-
locities are expressed in {8}, this transformation is
accomplished with equations (39).

6. Manipulator Singularities

At a singular position, a manipulator loses one or
more degrees of freedom. A near singular configura-
tion mathematically requires infinite joint rates for
certain finite Cartesian velocity commands. Singu-
larity configurations for nonredundant manipulators
are determined by equating the Jacobian matrix de-
terminant to 0. For redundant manipulators, the Ja-
cobian matrix is nonsquare and thus its determinant
does not exist.

The least-squares redundant solution to the in-
verse velocity, or resolved motion rate problem, is
obtained by inverting equation (31).

{6y =m3* ™{X} (45)
In equation (45),
J*=J3Taah1 (46)

is the well-known pscudoinverse, or Moore-Penrose
inverse of the Jacobian matrix (ref. 5). The singu-
laritics for a redundant manipulator can be found by
setting the determinant of (JJT) equal to 0, as evi-
dent in equation (46). General redundant solutions
and singularities, however, arc beyond the scope of
this paper.

The singularities reported in this section corre-
spond to the inverse velocity solutions presented in
section 5.2. Singularities are divided into arm singu-
larities and wrist singularities for manipulators with
spherical wrists. For the ARMII, arm singularities
are identified from |™Jpp| and wrist singularities
from |™Jgl. The order of the reduced Jacobian
submatrices used in section 5.2 is 2 x 3 and 3 x 4.
When column 4 is removed from ™Jyy, the determi-
nant is 0 for any manipulator configuration. Thus,
joint angle §; and joint rate 4 cannot be specified
in the inverse position and velocity solutions. From
cquation (41a) or (41b), the joint rate 4 is infinite
when 84 = 0, 7. This characteristic is a singularity
condition for all arm joints, as shown in table 10.

14

Table 10. Arm Joint Singularities

Singularity

i "™ JvLil conditions
1 d3dsc3s? 93 =+%
04 =0,7

2 d3d55233s§ 6y =0,m
63 =0,7

84 =0,7

3 —d3sy Kz 0, =0,~7

Kz;=0

- To find the arm joint singularity conditions,
columns i = 1, 2, and 3 are removed individually
from ™J 11 and the remaining 2 x 2 determinants
are set to 0. Similarly, columns j = 1, 2, 3, and 4
are removed from " J g;; the 3 x 3 determinants are
equated to 0 to yield the wrist joint singularities.

Given a specific Jacobian matrix, such as 03, the
Jacobian matrix referenced to any other frame m is
found with equation (35). The singularity conditions
are identical for Jacobian submatrices expressed in
any coordinate frame because the determinant of a
matrix is invariant under rotation transformations.
In this paper, °J and *J are presented (egs. (33)
and (37)). The submatrices of either Jacobian matrix
yield the arm joint singularities in table 10 and the
wrist joint singularities in table 11. The condition
Kz = 0 under ¢ = 3 in table 10 is cquivalent to

ds = —dj (64 + 9};‘1)

Table 11. Wrist Joint Singularities

Singularity
J "I LR;l conditions
—C7 97 = :{:-72[
2 —cg 87 O =5
g7 =0,7w
3 —sgC7 6 =0,7
b7 = ﬂ:%
4 —cg B = 5%

The results of tables 10 and 11 are also singular-
ities for the inverse position solutions presented in
section 4.2. This section has identified the ARMII
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singularities associated with specifying one arm joint
rate (excluding the elbow) and one wrist joint rate
and solving the inverse velocity problem. Alternate
solutions for the neighborhood of singularities are not
presented. An alternative is to use the generalized in-
verse (ref. 5) of the reduced 6 x 6 Jacobian matrix
at or near singularities. At a singularity, the rank of
this matrix is less than 6. The determinant is cal-
culated at each calculation step. If it is near 0, the
generalized inverse of the reduced Jacobian matrix
is used to avoid infinite joint rates. This singularity
solution does not track the given velocity command
precisely, but it does move the manipulator out of
the singularity region so that the solution given in
this paper can be used again.

7. Examples

Examples are presented in this section for forward
position, inverse position, forward velocity, and in-
verse velocity problems to demonstrate the equations
in this paper. The units are millimeters, degrees,
millimeters per second, and radians per second for
length, angle, translational velocity, and rotational
velocity, respectively. The fixed manipulator lengths
for the examples are as follows:

Ly = 500.0
d3 = 762.0
ds = 495.3
Lg = 470.0

7.1. Position Kinematic Examples

7.1.1. Forward position transformation.
Two examples for the forward position transforma-
tion are given. The first is the initial position shown
in figure 3 and the second is a general configuration.
For each example, the partitioned solution (eq. (9a)),
the transformation from wrist to shoulder (eq. (8)),
and the transformation from end effector to base
(modified eq. (1)) are given.

Example 1. {#} = {0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}”

r—1.000 0.000 0.000 0.000 1
O — 0.000 —1.000 0.000 0.000
857 1 0000 0000 1.000 1257.300
L 0 0 0 |
r—1.000 0.000 0.000 0.000 1
Bp _ 0.000 -1.000 0.000 0.000
H= 710000 0000 1.000 2227.300
L 0 0 0 1 J

Example 2. {6} = {10.0,20.0,30.0,40.0,50.0,60.0, ~70.0,80.0}

r0.331 —0.717 0.613 —256.660
Op _ | 0447 —0453 —0.771 —45.256
477 10.831 0520 0.171  716.046

L 0 0 0 1

r 0.447 —0.331 0.831 0
4p _ | —0771 —0.613 0.171 4953
8-~ 1 0453 —0.717 —-0529 0

0 0 0 1

{0.979 —0.110 —-0.172 —611.9711
op . [ 0200 0683 0703 —269.549
85 7 10.041 -0.722 0.690 978.284

L 0 0 0 1

r0.979 —0.110 —0.172 —692.958 1
Bp_ | 0200 0.683  0.703 60.660
H™ 710,041 -0.722 0.690 1802.788

L 0 0 0 1

7.1.2. Inverse position kinematics. The in-
put for this example is gT from example 2 in the
previous section. Eight solutions are calculated from
the equations in section 4.2. The angles #; = 10 and
B = 60 are specified. Equations (12), (16), (17),
(24), (25), and (27) are used for the results of ta-
ble 12. The methods of sections 4.2.1 and 4.2.2 are
used to form the multiple solutions.

Table 12. Inverse Position Kinematic Solutions

r1.000 0.000 0.000  0.000
0p — | 0.000 0.000 —1.000 0.000
47710000 1.000 0.000 762.000

[ 0 0 0 1

r—1.000 0.000 0.000 0
4p _ | 0000 0.000 1.000 495.3
8571 0.000 1.000 0.000 0

L 0 0 0 1

n|6;] 6, 05 9, 0 |6s| 67 s
1[10{20.00] 30.00 | 40.00 | 50.00 |60|-70.00 | 80.00
2(10/20.00; 30.00 | 40.00 |—164.99 [60| 70.00 | 23.04
3[10(47.16 150.00 | 40.00 | 341.26 |60]|—-33.24 | 27.31
4/1047.16] 150.00 | 40.00 |—304.51 60| 33.24 |-7.81
5(10(47.16|—30.00 [-40.00 | 161.26 |60|—33.24 | 27.31
%10]47.16| —30.00 | —40.00 | -124.51 |60| 33.24 |-7.81
7/10{20.00| 210.00 | —40.00 | 230.00 {60|—70.00 | 80.00
8110/20.00| 210.00 |—40.00 |~344.99 |60| 70.00 | 23.04
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7.2. Velocity Kinematic Examples

The manipulator configuration for the velocity examples is the input to forward position transformation
(example 2):

{6} = {10.0,20.0, 30.0, 40.0, 50.0, 60.0, —70.0, 80.0}7

7.2.1. Forward velocity kinematics. Given {0}, 9J is calculated with equations (33), and given (6},
the forward velocity solution is calculated with equation (31):

269.549 —-963.422 195.192 —-163.903 0 0 0 0
-611.971 —169.877 —245.555 -221.538 0 0 0 0
0y — 0 —649.480  54.445  —411.556 0 0 0 0
0 0.174 —0.337 0.613 -0.717 -0.257 0945 -0.172
0 —0.985 —0.059 -0.771 -0.453 0878 0316 0.703
1 0 0.940 0.171 0.529  0.403 -—-0.085 0.690

{6} = {1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0}7
-1727.3 1.90
{Ovg} = { —2574.5 {Ows} =< 5.60
—2781.8 14.50

The Jacobian matrix relative to {4} is calculated with equation (37). The forward velocity solution is
calculated with 7 = 4 in equation (31), given the same {6} used previously. The resulting Cartesian velocities
still relatc {8} to {0} but are expressed in {4}:

—184.524 —-934.464 0 —495.300 0 0 0 0
83.761 424.183 0 0 0 0 0 0
4y _ 637.259 —570.711 318.373 0 0 0 0 0
0.831 —0.383 0.643 0 0 0643 0383 0.831
0.529 0.321 0.766 0 1 0 -0.866 0.171
0.171 0.866 0 1 0 -0.766 0321 —-0.529

—4034.6 15.18
{*vg} =< 932.1 {fwg} =¢ 3.78
451.0 —0.68

With YR from the forward position transformation (example 2), 4{X} transforms to the previous 0{Xx} results
and thus proves to be a consistent solution. The solution expressed in {8} is calculated with equation (38):

—2319.3 3.57
{Bvg} =< 440.2 {Bwg} = { ~6.85
—3431.8 13.62

7.2.2. Inverse velocity kinematics. Given {6} and the forward velocity results expressed in {0}, the
joint rates are calculated with equations (43). In this example, 63 = 2 and 85 = 5 are specified. Equation (41a)
results in 84 = 4.00. The terms for equation (43a) are

o _611.971 —245.555
Jwre = 0 54.445

—169.877
R { —649.480}
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0 _ [ —221.538
Uweal = { —411.556}

The solution for joint rates 1 and 3 is

{0} 424 = { :1388}

The terms for equation (43b) are

—0.257 0.945 —0.172
%J,pi=| 0878 0316 0.703
0.403 —0.085 0.690

-0.717
YIrr1} =< —0.453
0.529

0 0.174 -0.337 0.613
%J,, =10 -0.985 -0.059 —0.771
1 0 0.940  0.171

The solution for joint rates 6, 7, and 8 is

_ 6.00
{B}wy = { 7.00
8.00

The same inverse velocity problem is solved in

closed form with equations (44), with respect to the

elbow coordinate frame {4}. The input is the forward

velocity results expressed in {4}; 3 = 3 and fg =8

are specified. Equation (41b) yields 8, = 4.00. The
terms for equation (44a) are

4g-1 _ _ [0.0018 0.0013
WL = | 0.0020 —0.0003

4 . 0
wrsh = { 318.373 }

e} = {8}

The solution for joint rates 1 and 2 is

{6} 434 = {;:88}

The terms for equation (44b) are

s 1.3268 1 1.1133
J;L, = 106428 0 —0.7660

1.5321 0 1.2858
0.831
YIrp} =< 0171

-0.529

0.831 —0.383 0.643 0
43;.=10529 0321 0766 0
0171 0866 0 1

The solution for joint rates 5, 6, and 7 is
] 5.00
{0}ws = 6.00

7.00

8. Concluding Remarks

This paper presents the forward position kine-
matics (given the eight joint angles, how to find
the Cartesian position and orientation of the end ef-
fector) and forward velocity kinematics (given the
eight joint rates, how to find the Cartesian transla-

..tional and rotational velocities of the end effector)

for the redundant eight-degree-of-freedom Advanced
Reseach Manipulator IT (ARMII).

Inverse kinematic solutions, required to control
the manipulator end effector, are also presented. For
a redundant manipulator, the inverse kinematic solu-
tions are not unique because they involve solving for
eight unknowns (joint angles for inverse position and
joint rates for inverse velocity) in only six equations.
The approach in this paper is to specify two of the
unknowns and solve for the remaining six unknowns.
Two unknowns can be specified with two restrictions.
First, the elbow joint angle and rate cannot be spec-

"ified. The elbow joint angle is determined solely by

the commanded end-effector position. Likewise, the
elbow joint rate is determined by the commanded
end-effector Cartesian translational velocity. Second,
one unknown must be specified from the four-jointed
wrist, while the second unknown must be specified
from one of the arm joints (elbow joint excluded)
that translate the wrist.

In the inverse position solution, each set of two
specified joint angles has eight sets of solutions. No
alternate inverse position solutions are presented for
singular configurations. In the inverse velocity prob-
lem, with two specified joint rates, the solution is
unique, provided that the Jacobian matrix is not
singular. A discussion of singularities is based on
specifying two joint rates and analyzing the reduced
Jacobian matrix. When the reduced Jacobian ma-
trix is singular, the generalized inverse can be used
to move the manipulator away from the singularity
neighborhood.

With two redundant joints, the methods of this
paper allow considerable freedom in solving the in-
verse kinematic problems. Either joint angles or rates
must be specified for one of the three arm joints
and one of the four wrist joints at each calculation

17



step. Control strategies will be developed as actual
ARMII hardware experience is accumulated. A sim-
ple method for control would be to lock two joints
for all motion, for example, joints three and five or
joints three and six. To accomplish this method, the
locked joint angles and rates would be specified as 0
for all motion. However, the methods of this paper
allow more flexibility.

A computer symbolic manipulation program was
used with existing standard methods in robotics for

18

the derivation of the equations. In addition, com-
puter simulations were developed to verify the equa-
tions. Examples demonstrate agreement between for-
ward and inverse solutions. Research into applied
redundant control strategies is required to realize the
potential of the ARMII.

NASA Langley Research Center
Hampton, VA 23681-0001
June 3, 1992
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Appendix A
ARMII Nominal Joint Limits

The nominal joint limits for the ARMII are given in table Al. The wrist pitch angle, i = 7 in table Al,
is severely limited in the positive direction. The wrist roll is continuous and unlimited in both directions, as
shown for 7 = 8 in table Al.

Table Al. ARMII Joint Limits

0;

+165°

+105°

+165°

+105°

+165°

+165°
+22°,-130°
Continuous,

bidirectional

Q0 ~J O AN W QI BNy o
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Appendix B

Homogeneous Transformation Matrices

Eight homogeneous transformation matrices are given in this appendix, and they relate frame {i} to
{i — 1} for the ARMII, where i = 1,2,...,8. Substituting the Denavit-Hartenberg parameters of table 1

into equation (6) yields these matrices:

20
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Appendix C
Factored Kinematic Terms

This appendix presents the kinematic terms factored for efficient computation of the forward position
transformation matrices and the Jacobian matrices in {0} and {4}. The common terms for equation (8) and
equations (33) and (37) are as follows:

K1 = —s183 + c1ca9c3
K3 = c153 + 510203
Kr = ca54 + s9c3€4
K7 = s9cq4 + 20354
Kp = Kics — 15254
Kp = K3cq — 515254
Kp = Ksc5 — 525355
Ky =—Kpgcs + Kass
Ky =—~Kpcs + K435
Ky = Kgeg + K g56
Kg = Kjcs + Kcse
K¢ = Kgcg + Kgsg
Ky = Kpyer+ Kgst

Ko = s1¢c3+ c1c283
K4 = —cic3 + 810983
Kg = —cocq + 592¢354
Ka = Kis4+c182¢4
Ko = K3sq + 515204
Kg = K555 + s2s3¢s
Kq = Kpss + Kacs
Kj= Kpss + Kycs
Kpr = Kgse — K 4¢6
Kp=Kjs6 — Kccg
Kp = Kgsg — Kecs
Ky =Kpsr— Kycer
Ky = Kpsy — Ky

Kx = Kpst+ Kper
Kz =d3sg + d5 K7y

Kw = Kpey + K57
Ky = Kger — Kpsy

The terms for equation (9) and equation (37) are as follows:

KK = s557 + c586C7
KKy = s5c7 — c58657
KK3 = —c5s7 + 8586C7
KKy = c5c7 + 858657
KKy = —sgsg — cgs7€8
KKg = —sgcg + c5758
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Appendix D
Solution of Ecos 3+ Fsin3+ G =0

The general solution to the following equation is presented in this appendix:
Ecosf+ Fsing+G=0 (D1

In equation (D1), E, F, and G are constants and 3 is unknown. The tangent half-angle substitution is used
to transform equation (D1) from a transcendental to a polynomial expression:

t = tan g (D2)
—t2
cosff = 1172 (D3)
. 2t
sinf = T+ (D4)

Substituting equations (D3) and (D4) into equation (D1) yields the fqliowing pélynomial cquation:
(G-—E)X?+2Ft+(G+E)=0 (D5)

The equation has two solutions:

(D6)

—F:i:\/E?—FF'?—G2
t12= G_E

The first-order transcendental equation (eq. (D1)}) has been transformed into a sccond-order polynomial
equation (eq. (D5)). The two corresponding values of 3 are found by inverting equation (D2) and substituting
equation (D6). Both results are valid solutions for equation (D1):

—F+VEZfF2_ GQ]

Bro=2tan"! (D7)

G-FE

Because of the multiplying factor of 2 in equation (D7), the quadrant-specific inverse tangent function is not
required. The two-quadrant inverse tangent function suffices, unless G equals E.
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Appendix E

Inverse Jacobian Submatrices

The symbolic form of 4J requires the least computation for any ARMII ™J matrices, as demonstrated in
section 5.1.2. One advantage of 47 is the ability to apply closed-form solutions for the resolved motion rate,
or inverse velocity, problem in real-time computation. This appendix presents the inverses of the reduced

Jacobian submatrices 1714, i = 1,2,3, and 4JLRj.- j =1,2,3,4, for use in equations (44).

When the joint rate is specified for the first, second, or third arm joint, the following inverse matrices are
used. The order of the matrices in equations (E1) through (E3) is 2 x 2 because the elbow joint rate 0,4 is solved
(see eq. (41b)) independently of the remaining joint rates. Two of the three translational velocity equations
are independent; ¢ = 1, 2, or 3 is specified and the other two arm joint rates are solved. The first subscript 1

in the following equations indicates that row 1 was climinated from equation (42):

47-1 _
JIULM -

41-1
JIUL24

41-1
JIUL34

where

1
d3c3sy

Bitj 1

d3d5s4 a554

1 0 1
8352'5354

dasgcs + d5 K5 1
a534

dsdssas3sy

D= d3S4(BSQ + d5C2C3S4)

The term B is defined from 4J (eq. (37)):

B = d3 +d564

The terms K5 and Kz are defined in appendix C.

(E1)

(E2)

(E3)

The following inverse matrices are used when the joint rate is specified for the fifth, sixth, seventh, or eighth
manipulator joint (corresponding to j = 1,2,3,4):

41-1 _
']LRI -

41-1
JLRQ -

| =

KKy cgs7 —-KKo
S5cCT  —86CT  CHCECT

L 5556 5] €536

KKy | —KKp
e C6
KK 0 —KKj3
C6 6

(E4)

(E5)
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The order of these matrices is 3 x 3 because the three rotational velocity equations are independent. The terms

K K; are defined in appendix C.

24

4y-1
JLR3

47-1
JLR4

f—cgss 1 —cxeg
KK;j 0 —KKj
c7 c7
5 9 (£
c7 ey
s58¢ 1 cr5sg
creg 0 —ssc6
s5 O c5

(E6)

(E7)

AR LN TR}

L C N B TR A

[

Il



9.
L.

. Dubey, R. V.; Euler, J. A

References

Baker, Daniel R.; and Wampler, Charles W., II: On the
Inverse Kinematics of Redundant Manipulators. Int. J.
Robot. Res., vol. 7, no. 2, Apr. 1988, pp. 3-21.

. Colbaugh, R. D.: A Dynamic Approach to Resolving

Manipulator Redundancy in Real Time. Proceedings of
the IASTED International Symposium on Robotics and
Automation, M. H. Hamza, ed., ACTA Press, 1987,
pp- 100-104.

and Babcock, S. M.: An
Efficient Gradient Projection Optimization Scheme for a
Seven-Degree-of-Freedom Redundant Robot With Spher-
ical Wrist. Proceedings 1988 IEEE International Con-
ference on Robotics and Automation, Volume 1, IEEE
Catalog No. 88CH2555-1, Computer Soc. Press, c.1988,
pPpP. 28-36.

. Kazerounian, Kazem; and Wang, Zhaoyu: Global Versus

Local Optimization in Redundancy Resolution of Robotic
Manipulators. Int. J. Robot. Res., vol. 7, no. 5, Oct. 1988,
pp. 3-12.

. Klein, Charles A.; and Huang, Ching-Hsiang: Review of

Pseudoinverse Control for Use With Kinematically Re-
dundant Manipulators. IEEE Trans. Syst., Man, & Cy-
bern., vol. SMC-13, no. 2, Mar./Apr. 1983, pp. 245-250.

. Liegeois, Alain: Automatic Supervisory Control of the

Configuration and Behavior of Multibody Mechanisms.

- IEEE Tvrans. Syst., Man, & Cybern., vol. SMC-7, no. 12,

10.

11.

12.

13.

Dec. 1977, pp. 868-871.

Nakamura, Yoshihiko; and Hanafusa, Hideo:
Redundancy Control of Robot Manipulators.
Robot. Res., vol. 6, no. 1, Spring 1987, pp. 32-42.

Optimal
Int. J.

. Nenchev, Dragomir N.: Redundancy Resolution Through

Local Optimization: A Review. J. Robot. Syst vol. 6,

no. 6, Dec. 1989, pp. 769-798.

. Craig, John J.: Introduction to Robotics—Mechanics and

Control, Second ed. Addison-Wesley Publ. Co., 1989.

Whitney, Daniel E.: The Mathematics of Coordinated
Control of Prosthetic Arms and Manipulators. Robot
Motion: Planning and Control, Michael Brady, John M.
Hollerbach, Timothy L. Johnson, Tomdis Lozana-Pérez,

and Matthew T. Mason, eds., MIT Press, c¢.1982,
pp. 287-304.
Lee, Sukhan: Kinematic Solution for 8-Degree-of-

Freedom—AAI Arm. Interoffice Memo. EM 3_47—90—277,
Jet Propulsion Lab., Aug. 8, 1990.

Noble, Benjamin; and Daniel, James W.: Applied Linear
Algebra, Second ed. Prentice-Hall, Inc., 1977.

Mabie, Hamilton H.; and Reinholtz, Charles F.: Mecha-
nisms and Dynamzcs of Machmery John Wiley & Soms,
c.1987.

25



Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate %or information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project {0704-0188), Washington, DC 20503,

1. AGENCY USE ONLY{Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
August 1992 Technical Memorandum
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Kinematic Equations for Control of the Redundant Eight-Degree-
of-Freedom Advanced Research Manipulator IT WU 590-11-22-01

6. AUTHOR(S)
Robert L. Williams I

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
NASA Langley Research Center REPORT NUMBER
Hampton, VA 23681-0001 1-16944

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
National Aeronautics and Space Administration AGENCY REPORT NUMBER
Washington, DC 20546-0001 NASA TM-4377

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Unclassified-Unlimited

Subject Category 63

13. ABSTRACT (Maximum 200 words})

This paper presents the forward position and velocity kinematics for the redundant eight-degree-of-freedom
Advanced Research Manipulator II (ARMII). Inverse position and velocity kinematic solutions are also
presented. The approach in this paper is to specify two of the unknowns and solve for the remaining six
unknowns. Two unknowns can be specified with two restrictions. First, the elbow joint angle and rate cannot
be specified because they are known from the end-effector position and velocity. Second, one unknown must be
specified from the four-jointed wrist, and the second from joints that translate the wrist, elbow joint excluded.
There are eight solutions to the inverse position problem. The inverse velocity solution is unique, assuming
the Jacobian matrix is not singular. A discussion of singularities is based on specifying two joint rates and
analyzing the reduced Jacobian matrix. When this matrix is singular, the generalized inverse may be used as
an alternate solution. Computer simulations were developed to verify the equations. Examples demonstrate
agreement between forward and inverse solutions.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Manipulator; Redundant; Kinematics; Resolved rate control; Telerobotics 26
16. PRICE CODE
A03
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION] 19. SECURITY CLASSIFICATION] 20. LIMITATION
OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT
Unclassified Unclassified

-280- Standard Form 298(Rev. 5-53;
N 1 Prescribed by ANSI Sld( Z39-18

298-102
NASA-Langley, 1992

Ll

L U T TV AR T



