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Abstract

Nonlinear effects of parametric and of heating type, produced in a plasma

under the action of an electric field E = E0e i_'t, are considered in this work in

connection with the so called Tethered Magnetospheric Cloud (TMC) accom-

panying the Tether Satellite System (TSS). The theoretical results presented

below, particularly by some numerical calculations, show that these phenom-

ena should appear in the ionosphere at high altitudes Z > (150 - 200) krn,

particularly, at Z __ 300 km of the TSS system orbit. Therefore, it is

of a special interest to search these phenomena by such a unique experi-

ment as the forthcoming first TSS-I and by the future, perhaps modified

TSS missions. Because of the parametric decay instability, new branches

of waves may be excited both around the electron and ion Lengmuir fre-

quencies Wo = 27r f0 and _t0 = 2rrFo under the influence of high frequency

(HF), (f _ 106 to few 106 Hz), strong (IEI ~ V/m to tens V/m) electric

waves. The heating of all the kinds of particles is growing up very quickly in

the ionosphere with altitude in the extra low and very low (ELF and VLF)

frequency ranges F __ (1 to 104) Hz discussed below. The temperatures

(energies), for example, of the electrons accelerated by the electric field be-

come larger than the ionization potential in this frequency range already at

altitudes Z __ (150 - 200) km when the amplitude of the electric field is

]E0[ ~ (1 - 2) mV/m. The sources of these electric field may be in the TSS-I

mission the so called Phantom Loop (PL) - the Tethered Electrodynamic Tail

(TET), and different kind of e.m. oscillations produced by different kind of

instabilities in the TMC plasma. The growth rates of these instabilities will

become very high in the TSS surrounding magnetoplasma. However, in the

future TSS missions special artificial sources (generators) of electric fields

should be used for these investigations.



Section I. Introduction

The nonlinear behavior of a magnetoplasma, let us say, of the ionosphere,

under the action of an outer source of an electric field E = Eoe i_'t was studied

by many authors. This problem has a long history. It began by the papers

[1-4] (see Bonch Bruevich (1932), Tellegen (1933), Bailey and Martyn (1934),

F6rsterling (1935)) and by many others in (1933-38) - after the discovery of

the crossmodulation of radiowaves of different frequencies, reflected from the

ionosphere, due to the nonlinear interaction of these waves. Shortly after, it

was clear that the mechanism of this effect is created by the increasing of the

velocities of the electrons ve and of the other constituents of the plasma under

the influence of the electric field. Namely, the velocities of all the constituent

particles of the ionosphere and the collision frequencies u between them, and

their temperatures Te,i,,, i.e. the conductivity of the plasma become functions

of the amplitude E0 and of the angular frequency _o of the electric field E. I.e.

u = u(Eo,w), v = v_,c,_(Eo, w,u(Eo, w)) and T = T_,,,,_(Eo, u(Eo,a_)), where

the indexes e, i, n denote, respectively, electrons, ions, and neutral parti-

cles. Thus, all the equations which determine these values and describe their

behavior in the magnetoplasma become nonlinear. To learn theoretically dif-

ferent aspects of this problem, the selfconsistent solution of the adequate

systems of equations must be solved.

It is selfevident that these heating type phenomena, occurring in a colli-

sional plasma are acting in large plasma regions. The influence of the electric

field covers regions with linear scales much larger than the mean free paths

of the particles. These effects were described in dozens of papers and in some

monographs. Many references of these works can be found in the compre-

hensive monograph in this field by Gurevich (1978, [5]). Earlier references

are cited in the Russian book by Alpert (1947, [6]).

Another kind of nonlinear phenomena are the so called parametric wave

decay effects. They were discovered about three and more decades after the

discovery of the heating effects (see Silin 1965 [7], Du Bois and Goldman 1967

[8]). These phenomena are local in space and should not play a large role

in the heating effects. The general theory of these phenomena is described

in the comprehensive monograph by Silin 1973 [9]. These phenomena were

studied just a little in connection with the ionosphere. The known theoretical



results are used below, by considering some of these effects in the Tethered

Magnetospheric Cloud [10].

However, the theory of the heating effects, known from the literature

(see, for example, [5]), is working in a limited frequency band, namely when

032 >> W2L -_- UeUin (tO L = 27rFL, FL is the lower hybrid frequency), i.e. in the

ionosphere at frequencies F >_ (4 - 5)10 4 Hz. Additionally in these studies,

the influence of the velocities of the ions and of all neutral particles, and also

the influence of the collision frequencies ui,_ between the ions and neutral

particles, etc. were not taken into account in detail.

In this work, results of theoretical study of the heating of a magneto-

plasma in all the frequency range are given, taking into account all kinds

of collision frequencies and also their temperature dependencies, i.e. their

dependence on the electric field E = E0e i_'t. Some results of numerical cal-

culations of the temperatures T_, Ti and Tn of the electrons, ions and neutral

particles are presented here for the ionosphere in altitude, frequency and an-

gle O dependencies in the regions Z = (100- 1000)kin, F = (1 - 104)Hz

(O is the angle between the wave's electric field E0 and the geomagnetic

field Ho). Some of these calculations are based on the selfconsistent solution

of two systems of equations in the hydrodynamic (microscopic) approxima-

tion. One of these systems (see below (30)) consists of three vector (nine

scalar) Lorentz equations of the derivatives of the velocities V¢, Vi, Vn of

the particles. It is supposed that the magnetoplasma consists of one kind of

neutral particles. The second system of three equations (see (31)) is of the

derivatives of the temperatures dT_ dT_ dT.dt ' dt ' dt "

The general formulas of the selfconsistent solution are very complicated

and bulky: they are absolutely immense. Only numerical results should be

used to learn the T_,i,,_ and V_,i,_ dependencies in this case. However, in the

u = const approximation, i.e. when uci = u,i,o , Urn = Ucn,O, Uin = U_,,O,

and the electric field dependence of u is not taken into account, the ana-

lytical formulas obtained are sufficiently visible. These formulas were also

used for some calculations) It was important to evaluate the applicability of

the formulas recommended in the literature, obtained for u = const. For this

1I am very grateful to Dr. Bob Estes who did all the calculations by computer.
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purposeand alsofor the full study of this problem,the velocitiesand temper-
atures arecalculated, in somecases,both, with the full systemsof equations
(3 and 3) of (30) and (31), and with the shortenedsystemsof equations (3
and 2). In the last case,the neutral particles temperatureT_ = T,_0 = const.

The dependencies of the temperatures on time, namely, the process of

their transition to the stationary state is also illustrated by some examples.

The role of the neutral particles is important in this process. The system of

(d_LT_ has not. a stationary solution. Math-equations of the temperatures k at )_,i,,_

ematically it is clear: the determinant of this system A = 0. Therefore Tn is

growing up in time. It means that the temperature of the neutral particles

becomes even a source of the heating of the electrons and ions. From the

very beginning of the action of the electric field, the source of the heating

of the neutral particles is the energy transferred to them by the collisions

with the electrons and ions. The values (T_ - T_) and (Ti - Tn) are positive.

However, growing up in time, T,_ becomes equal to Ti. From that moment,

the degree of the growth of the temperatures becomes larger and larger, and

the temperature of the electrons becomes larger than it would be without the

influence of the neutral particles. The process as a whole has not a stationary

solution. To stop the growth of the temperatures, in addition to collisions,

other sources of loss of the energy accompanying the heating of the magne-

toplasma must be taken into account. (see below Section III.2).

Section II. Nonlinear parametric phenomena

The mechanism, called parametric decay instability in the strong pump

waves, Ep cos wpt can excite in a magnetoplasma resonance branches of waves

and oscillations in the extra low (ELF, 0 < w _< f_H), very low (VLF, f2n <

w <_ wc), low (LF, wL < to <_ toll), and high (HF, to > toll) frequencies. These

effects become active when the energy density of the electric field is much

larger than the pressure of the electrons, namely:

N_Te << --.E_ (1)
47r

It means that in the ionosphere, at the altitude Z -_ 300 krn, where the

electron density and temperature are equal to N_ -_ 1.8. 10Gcm 3, T_ _-
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1.5 • 103/(°, the electric field should be rather strong, namely Ep > (60 -

70) Vim. However, it is shown below that in our case, close to the resonance

region wp ,_ w0, namely when

3 2 2/2

0<w,-¢w02+fl_<_k D Vw0+fl_,

the amplitude E0 of the electric field becomes much smaller: E v is a few

Volts/m (see Section II.3). In (1 - 2) k = -_ is the wave number, A is the

wavelength of the parametric excited oscillations, D = ( _.______T1/2\4_N_2) is the De-
bye length, e and m are the charge and mass of the electrons, fi0 is the ion

Langmuir fi'equency, and the Boltzman's constant _ = 1.38.10 -a6 er 9. de9 -1.

Let us note here that when we are looking for the parametric effects in

the ionosphere or in the magnetosphere under the action of artificial sources

Epcoswpt, located on rockets or satellites, or excited in the surrounding

region of the magnetoplasma, the power of these sources should not be very

large. Let us note that the growth rates %o and %n of excitation by beams of

electrons of natural oscillations in the HF frequency band by the Cherenkov

and cyclotron resonances

-- OJO COS 20
7co -- Ne \re�

Nb Vb _ sin ®

7ell : 4 N_ v_ WH (3)

are very large. By discussing this problem for the TSS mission, the values

of the growth rates become even comparable with w0 (Alpert 1989, 1990 [10]).

In the theory of the parametric nonlinear effects, a characteristic param-

eter appears
eEp 2_r

P' = T (4)

(see Silin 1973 [9]). In the ionosphere at Z __ 300 krn

pp= Ep, s>O (5)



To give a general presentation of the parametric effects by considering

them at the altitude Z = 300 krn, some formulas for an isotropic plasma can

be used for simplicity, because w0 >> aJH.

II.1 Dispersion equations, strong electric field

E = Epcoswpt, a.,p >> w0,aJH, Z = 300 km.

The dispersion equation of longitudinal oscillations of a magnetoplasma,

excited under the action of a strong electric field of the angular frequency aJp,

which is much larger than the electronic angular Langmuir _o0 and gyro WH

frequencies, not taking into account the thermal velocities of the particles of

the plasma, is the following:

= - w2 1- 1- +

In (6), in addition to the notations given earlier, Jo is the Bessel function,

f_H is the angular ion gyrofrequency, and pp - see (4), (5).

The solution of (6), estimates, in the absence of the electric field, when

E0 = 0 and Jg(p) = 1, the wellknown three resonance branches of the plasma

waves

o = 0 : _f = a., _ = _,, _ = _o_+ ao_

7r
_ _ °

2

¢v f_

,4: o,4 :_=(_,-,n,,) i--_)'_÷_o_

Taking into account that n__ n__
_d H ' W02 --

frequencies are
_'_ HO$ H

+

_ = _ = (_o_+ao_+ _, + aS) (7)

M <_ 1 the lower and upper hybrid

_ __(.o_÷_) (s)
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In the presence of the electric field, the solution of (8) gives four resonance
branches

= a_,, J s coo_[2o_[1- J3(pp)]~ [28[1- Jg(pp)]
0 = 0 : col _,p = [2p = coo2 + [2_ -

coa2 = w]_, w b=co02+[20 _-_coo 2 (9)

and

:_ = 0,_g=0,

ao_[1_jg]
_g = col = co_+ _2 ,

_ = cob,=_ + _ + _h + _, + _L

In (6) - (10) fill, COL,COIl are the ion gyro, low hybrid and electron gyro fre-

quencies, _0 and coo are the ion and electron Lengmuir frequencies, wu is the

hybrid frequency and in the formula of cos is used the inequality [2_ << f_0_.
Lp,

Approximate theoretical dependencies of these branches of wave on the

angle O v between the wave vector k and the geomagnetic field Ho at the

altitude Z = 300 krn are given for illustration on Fig. 1 both for Eo = 0 and

Eo ¢ 0. The characteristic values of the frequencies used in these calculations

are

Wo = 7.6.10 7, [20 - 7.9.10 s, WH = 7.7" 10 6, [2H -_" 4.14.10 s

(see the Table in Section IV), and p, = 1, 0.1 and 5 • 104. For excitation of

the new parametric branch of oscillations ws,v = (_p ---+0), the amplitude Eo

2 >>w02of the electric field should be about a few hundreds Volts/m when %

By increasing pp, the frequency of fiT, is also increasing. For example,

when p, = 1, _2p "- 0.51120 and approaches quickly the ion Langmuir fre-

quency f_0. By decreasing p,, namely when pp << 1, Jg(pp) __ (1 - @) and

_, = _o [l _ j_)(pp)]l/2 p, 64 (__)- v_- ss E_ (11)
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(see (5)). The frequency f_p becomes small and can reach ELF frequencies

w <, << fin in the bound of the Alfven waves (see (5)). The amplitude of

the electric field needed for the excitation of these very low frequency waves

remains large when wp >> w0. However, by approaching the resonance region

wv "_ wo (see below II.3) the electric field becomes much smaller, namely,

E0 "_ a few Volts/re.

The new branch of oscillations w2,p = (fp _ 0) is of special interest.

Taking into account the thermal velocities of the charged particles ve and vi,

i.e. in the kinetic approximation, the equation of this resonance branch is

the following:

_ = cos_O [fl_,. K(...)+ 3k2v_] , (12)

where

fo211- Jo2(p_)] (1 + k2D_) -'

K(...) = f_4Wfo2sin20[ 1-J2o(pp)](l+k2D_) -'' (13)

(2_;) ,. v,vi kV_'/ sin O >>
w w fH

cos O >>

At Z = 300 kin, the Debye length D, = i_/2Wo "_ 0.2 cm and because of tile

k D e << 1 the second limitationlarge wave length of the excited oscillations 2 2

of (13) is fulfilled when

= • -- • n __ 10 -_ (14)sin 0 >> fH'

and equation (12) becomes simpler and similar to the adequate equation in

an isotropic plasma (O ,-, 0). Namely,

(15)

when

fl--'_Hsin2® << 1 , sin ® _< 5.2. 10 -4. (16)

In (14) and (15) the coefficient of refraction n = _ v_ = 1.5.10 _ cm/s andfill'

c = 3.10 m cm/s. From (15) it follows that, at the altitude Z = 300 kin, the

value of _ < 5.2 • 10 -2 is very small.
flH --

9



SuchELF and VLF parametric oscillationswerecalledby Aliev and Silin
(see1965 [7]) anisotropic sound waves. In our case in the ionosphere, they

are ELF longitudinal waves propagating along the direction of the electric

field E0. Indeed, when w2,p << fin << f_o equation (15) becomes

+ = a-°)w, = -_ "2 mw_] (kE°)2 + 3k:v2 = 3k2(1_ + v_), (17)

where (see (4) and (5))

gp
1 ef_o 5.10 _ E0 (18)

- 4-2-_ E0 = ---7-"

is the velocity of this new parametric wave.

The discovering of such waves in the ionosphere will be a very nice and

an important contribution to the plasma physics. This can also be one of

the methods of diagnostic of the parameters of the plasma.The wave vector

of these waves k = 2_r/A may be estimated by these experiments.

II.2 Resonance oscillations in the frequency band

SWp =w0,0.25 <s< 2, s= 1

Let us discuss here the behavior of the low frequency branch w2,p = (Ftp

0), when the frequency of the electric field is not large and crosses the first

resonance region up = swo (s = 1). The formulas of the isotropic plasma

are used for illustration of this dependence, particularly, becausew0 >> wH.

In this case, under the influence of the electric field the infinite spectra of

oscillation generated in the plasma are

= _o 1+ 7 _ g(P')(s_p + _0)_

and

_ = n°_ J_(P")(_¥ G,-7 - _ ' (20)

where in (19), (20) s = +1, 2, .... Taking into account that in (20)w << swp,

its denominator may be changed by [s_,[2 _ wo2 and far enough from the

10



resonanceregionswhereIswpl2___2, the LF branchof waves(20)is estimated
by the approximate equation

_; __120_[1 - _,.(pp)],
7'i"7"

_Ds- sin rrr Jr(Pp)J-r(Pp), (21)

where r = _. In the resonance regions
cop

_2 WoeA = 1 ± 1 4. _
8 s

(22)

where

As= Wo -1 , Ap 32J s(pp , A_<< 1 (23)

(Silin 1973 [9]).

It is selfevident from equations (20 - 23) that by crossing the resonance

2 the frequency w 2 becomes negative. I.e. that co = i 7regions COo2 = COsp

and becomes the growth rate of the increasing disturbances of the plasma.

Instabilities appear in the plasma when As < 0, 0 < (I)= and > 1 (see (21)).
COp

In the resonance region As < 1 and from (23) it follows that

COo ±-4"- _ 4" 1 4-i L,,S;j - 1
(24)

By using equations (21), the dependencies of _0 and -_ on r = _ sufficiently
_0 Up

far from the resonance region, were calculated for Z = 300 km and pp = 1.

The formulas (22) - (24) were used to calculate these dependencies around

the resonance region wp = COo,s = 1. They are given on Fig. 2. Let us note

here the following nice and important properties of this parametric branch

of oscillations.

When the frequency COpof the electric field Ep0 is comparable with the
0.1

electron Lengmuir frequency, then in the resonance region, close to ,op _ 1:

11



1. The frequency tip of the nonlinear parametric oscillations is no longer

comparable with the ion Lengmuir frequency f_0 (see Fig. 1). It reaches

in our case the value tip, r_. = 919t0 by w0 = 0.927wp. Really it will be

smaller in the collisional plasma (see II.3).

2. A narrow region of an instability appears with a maximum of the
¢0

growth rate 7,_ = 44fl0 by wp = 0.972w0. 3' = 0 when _,p = 1.

3. A broad region of an instability appears with a narrow maximum

3'r_ = 64fl0 by cop = 1.035Wo. Really, both the growth rates are
smaller when the collision between the electrons and ions are taken

into account (see next Section).

To search and to find these wave branches and instabilities will be an

important contribution to the TSS mission.

II.3 Excitation of oscillations close to the resonance region

For excitation of the parametric oscillation, in particular, of the inter-

esting for us here branches _ ,-, (-_0 --* 0), given on Figs. 1 and 2, thefl0

amplitude of the electric field is much smaller than when wp >> Wo, WH close

to resonance region. By the kinetic approximation it is determined by the

condition

0 • f102). (25)

Let us illustrate shortly this effect by the following.

In the frequency band (25), the characteristic parameters of this process

are described by the formulas (see [9])

r_ 8v_i 2 k 2 u_i + 2Aw 21rr_
=--D,,w0 - 3D_Aw ' E_- _ N, nT, (26)

where rE, cm is the amplitude of the oscillations of the electrons under the

influence of electric field E0e i_t, u_i is the collision frequency between the elec-

= = kD_<<l.trons and ions and it is taken that N_T_ Ni_Ti, De Di, and 2 2

12



When ie 0 theth  sho, value of
and E0 are determined by (26), the plasma becomes unstable and the process

of exciting the parametric oscillations of the plasma begins.

In the ionosphere, at the altitude Z __ 300 km (see the Table in Section

III)

v_i = 3" lO 3, N_T_"_ 3.7.10 -Terg, D_ "__O.2 crn 2 (27)

and from (26) and (27) it follows that the threshold values of the character-

istics of this process are

z_a) _- /]ei 1 /]ei
--_-- = -1.5.103 s -12 (1 - 3k D )

r_ = 6.10 -scm 2, E0=3.83.10 -sCGSE= 1.1 V/m (28)

and the maximum growth rate of these oscillation is estimated by

030 r_ _/'ei
7r_ --_ ...... (29)

16Do z- 2

Section III. Nonlinear heating of a magnetoplasma

In the following parts of this section, we give the results of the theoretical

study of the heating of a magnetoplasma under the action of the electric field

Eoe i_t in the microscopic (hydrodynamic) approximation. They are used

for some numerical calculations, mainly of the temperature dependencies of

the electrons at different altitudes Z of the ionosphere and different angular

frequencies w, in particular, in connection with the orbit (Z __ 300 kin)

of the TSS-1 mission (Section IV.l). However, by the general statement of

this problem, the microscopic theory has difficulties from the very beginning.

The appropriate system of equations has not a stationary solution.This point

becomes crucial at high altitudes of the ionosphere (Z > , >> 300 krn) and,

especially, in the magnetosphere and in a full ionized plasma, where the

collision frequency between the ions and neutral particles Ue,, "" , = 0. In

this case, the theory must be improved by introducing thermal losses in the

adequate equations. Some of this effects are discussing shortly below (see

III.4).

13



III.1 Statement of the problem. Microscopic theory

Let us considera magnetoplasmaunder the action of an alternative elec-
tric field E = E0ei_'t,characterizedat the starting point of this processt = 0,

E0 = 0 by the following.

• it is an isothermal plasma, T_o = Tio = T,_o - the temperatures of all

the particles are equal,

• it is a quasineutral plasma, N,0 = Nio - the densities of the electrons

and ions are equal, and

• it has one kind of neutral particles N,_. The effective mass of these

neutral particles and of the ions is equal to M,_ = Mi = P.N.M. where
Nn '

N,_ = _Ns and Ns, Ms are the densities and masses of neutral particles

of different kind.

Then the temperatures and velocities of the electrons, ions, and neutral

particles under the influence of E0 ei_t can be calculated by the following

systems of equations:

MN.

dV e

dt

dVi

dt

dVn

dt

eE e
- (V_ x B) - u.i(Ve - Vi) - u._(V_ - V_),

m mc

eE e V m
M + _c ( i x B) + _uei(V_ - Vi) - ui,,(Vi- V,_),

- mN, ue,_(V_ - V,_) + MNiui,_(Vi- Vn), (30)

and

dTe 2
- eVe" E - 5eiUei(Te - Ti) - 6¢nu¢n(T¢ - T,_o)

dt 3

dTi = 2eVi.E+6.iu_i(T _ Ti) - 6i.ui.(Ti - T.o)
dt 3

N dTn = Ne6.,,u.,_(T_ - T.o) + N,u,,,,5,_(T, - T.o) (31)
" dt

where 6_n, _i, 6i,, are, respectively, the energy lost by the electrons due to

their chaotic collisions with the neutral particles and ions and energy lost

14



by the ions due to their collisions with the neutral particles. In the calcu-
lation the values_,,____,i -_2.10.3 and 3in-_ 1wereused(seeGurevich [5]).

In addition to equations (30) and (31), the following formulas of the
collision frequenciesmust be used

T,0 "_
=

(t Te(S)_ 1/2

T_E

(T,(E) '_ 1/2

vi,_(Eo,w) = uin,o k, T,,o ] (32)

where v_i,o, ve,,o and ui,,o are the initial values of the collision frequencies

E0 = 0, and the members In[...] are the, so called, Coulomb logarithms.

Thus, the systems of equations are interconnected and a selfconsistent

solution of (30 - 32) should be used to study in sufficient completeness the

problem considered here. Namely this general statement is the crucial point,

both for a full and correct understanding of the process of heating of a mag-

netoplasma in the frames of the microscopic (hydrodynamic) approximation

and also for a correct quantitative estimation of the temperatures.

III.2 Velocities Ve, i, n. Approximation u = const

By solution of the system of equations (34), the formulas of the velocities

of the particles are visible when the dependence of the collision frequencies on

the electric field is not taken into account - it is the approximation u = Const.

The components of the electron velocities are the following:

Vex - --ewH E,,
mw

15



Yey

YeJg

me

Ey

-e
- Ez

rrl, o3

{i{(1+i_,n)[(1-_o_,o) rgllin , ,¢OtTTt_ _n

(1 - z)_k,,_-&_) + iz)_]2

.{ i(1 + i_i_) }(1 - _o_) + i_ "

-co_(1 + i_,,,,)2

(33

Ylx

The components of the ion velocity are

2 ini, _"" _(2 i_i,,)
--efiH Ey.

- ]_rnco [(1 -- DeDin -&_) + iD_ -&_(X + iDi,_) 2

/Vi_ - e/l E_. 2 -_i(...)

[ 2 r'_ "1- g rt b'i n ] j '

[(1__,___/+i4- _(1+_<,

V_, - rncoePE_. (1 - _) + i_ '

¢i(...)

and the velocity of the neutral particles V,, estimated by the velocities of

the electrons and ions Ve, Vi, is equal to

(V_ + -_-V .)
"_'" ' (as)

Vn (1+ _.__- i )
_Uen n_en

The equations (33 - 35) are calculated in the coordinate system (x, y, z)

where the magnetic field Ho = Ho(0, 0, H_) , i.e. it is parallel to the axis z,

and the electric field Eo lies in the plane (yz) i.e. Eo = Eo(0, Ey, E,),

(0, Eo sin @, Eo cos ®). Additionally, in (4) - (6) dimensionless collision fre-

quencies

(34)

16



Vei _ Yen _ btin _ lJei -3V lien ~ ~ VetJin

uei = -- , Ue,_= -- , Ui,_ = -- , Ue -- , t'eUin -- ,
c0 2

_H flH m 'oH - _r-- , --H =--, _'I. _- (36)

are used where f_H, WL _ (_HWH) x/_ and WH are, respectively, the angular

ion, lower-hybrid and electron gvrofrequencies, # = _ and n = N__ _ N.Nn -- N,,"

III.3 Temperatures Te(E) and Ti(E) of the electrons and ions

By calculating the temperatures, it is convenient and physically more

acceptable to use the dimensionless values w/u instead of u/w because _'e =

uei + ue,_ is never equal to zero. Then, for example, the components of the

velocities t_,z and Vi,_ (they are the same as in an isotropic plasma) are equal

to

2;,o
v_ = vez =

- - i ---_ (1eEz ue_ (1 _ _,) ----ua+in_inv_= v_z ..... -
Mue uin (1 _ )2 _2

_= i___)
"'"'" + "'" , (37)

and their real parts are

Re(v0) =
-_Eo _'e__- vi.(_ _- _'e_'.,)

m (,,,2 _ uev,,,) 2 + _'e2_2 '

-eEo _e__- _'e,,(,__- _e_'_.) (as)
Re(V,) = M (_ - .e._) _+ .o_

Let us note here that by the approximation used in the earlier studies

(see [5]), the following equations of the velocity Ve of electrons

e e i_'t ( w_4(Eono ) wH(EoHoVe
rnw]_+(u"_'-iw) 2 tE°(u'-iw)+ Ho-_ _- _.-_.)H Ho J

(39)
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and of Re(Ve), when H0 = 0,

-- e E 0 1/e

ne(V_) = _ . (40)
m _2 + v_

were used. By comparison of (39) and (40) with (33) and (38), it follows

that the equations of V_ and certainly also of the temperatures, used i1_

these studies, are effective only when

w>>vin, w 2>>v_vi,_, and w2 >>w_+v_vi,_. (41)

Visible, but rather complicated formulas of the temperatures of the elec-

trons and ions T_(Eo,w) and T_(Eo,w) can be obtained only by the approxi-

mation v = Conat from the selfconsistent solution of the system of equations

(30) and the shortened system of equation (31). Namely, when in the third

equation of (35) _ = 0. These formulas are as the following

To e2Eo2
- 1 + •_(...), (4'.))

T,_o 3mSe u_T,_o

where

(_(...) = {Al(v) [cos2ORe(Ve¢)-ksin2ORe(V_u)]} +

+ {A2(v)[cos2wtF¢,,(v,w) + sin 2wtF_,:(.,w)]} . (43)

In formula (43), the members proportional to ._. (R¢{V¢_,z}), and

• Im{V_} are omitted and the following notations are used:

(
A,(v) =

( )'6e ve i

Ae(v) = ue. + 6_ ] + 4v_i ' (44)

A3,1 B, - 2wB_ A3,_B1 - 2wB2

A23,1+ 4w _ A_.2 + 4w 2 '

A3,1 B2 + 2wB1 A3,2B2 + 2wB1
= +

A_,I + 4w 2 Aa2,2 + 4w 2 '
(45)
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v,,_ "_ [cos2 OR_{V¢= } + sin2 @R¢{14_,}] +

+ 2oa[cos2®Im{V,_} +sin2®Im{14_}] ,

( vin ')[cos2®lm{i4,} + sin20im{V,y}]_= 6_u,i l+,5_u_i/

- [cos=oRo{v 2}+ sin , (46)

In addition, the values R,{V_v}, R,{l/;z} , I_{V_v} and Im{Vez } are the real

and imaginary parts of the terms in braces of the appropriate components of

the velocity V, (see (33)).

It is seen from equations (42, 43) that the temperature T_ has two mem-

bers. One of them estimates the stationary (t --_ oc) temperature, not de-

pending on time. The establishment of the stationary temperature is illus-

trated below by some results of calculations. The second member of (43)

describes the harmonic periodical variation of the temperature; it is chang-

ing in time by the double frequency 2rrf of the electric field E .v ei2'rD. In

the following, we discuss only the stationary temperature.

It is useful to introduce a characteristic field Eh (see [5]), which can be, in

its own way, a measure of the intensity E_ of the field needed for a remarkable

heating of the magnetoplasma. When O = 0, i.e. in an isotropic plasma,

from equations (42) and (43) it follows that

E_ = 3m6_v_T,m A(v,w)
e2 At(u) ' (47)

and the stationary temperature of the electrons is determined by

E?,=1+ E-2
star

(4s)

The stationary (t --+ oo) temperature of the ions is determined by the

following equation

Ti(Eo,W)T,o -1+ E-"_Eg[1+ _"-_,1vi'_ (1 + _,_. )]-' , (49)
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whereAI(V)is given by (44) and

.o_,---) +
(5O)

Let us note here that by comparison of (42) and (49) we can see that the

temperature Ti(Eo,w) of the ions is smaller than the temperature T_(Eo,cO)

of the electrons. However, really in the ionosphere this is remarkable only at

the altitudes Z < (100 _ 200) kin. At Z _>200 _'m, T,(E0,_) -_ To(Eo,_).

The time-dependent part of the ion temperature is determined by the

same formulas as for the electrons (see (42, 43)), by replacing in the func-

tions F(...) an B(...) (see (45) and (46)) the values V_u , l_z of the velocity

components of electrons by the values Viy and Viz of the ions. The formulas

(33) - (35) given above were used by some numerical calculations of the tem-

peratures with the u = const approximation (see Section IV). Because of the

diverse character of the problem studied here, let us briefly emphasize again

some of its aspects.

III.4 Some peculiarities of the problem.

It is obvious that in the frame of the microscopic (hydrodynamic) approx-

imation used in this study, the magnetoplasma should be a collisional media.

However, if it would be, for example, a full ionized magnetoplasma, i.e. if it

is characterized only by the constituent particles Ne = Ni (N,_ = 0) - by one

kind of collisions u,i between the electrons and ions - then the used equations

of the temperature would not have a stationary solution. The temperatures

of the electrons would grow up continuously all the time of action of the

electric field. It is because the loss of the energy of the electrons accelerated

by the electric field is equal to the energy transmitted by them to the ions.

Mathematically it means that the determinant A 2 of the first two equations

of the system (2) becomes equal to zero. But this namely should happen,

for example, when we consider these processes in the magnetoplasma at fat"

distances from the Earth where ue,_ --* 0.
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Within the limits of this study, the problem of the absenceof a station-
ary solution of the three equationsof (31) exists from the very beginning if
the equation of the derivativeof the temperature @ of the neutral particles
are taken into account. Mathematically it is becausethe determinant of the
system (35) A3 = 0. The temperature Tn of the neutral particles is grow-

ing up continuously under the action of the electric field, and can become

even a source of heating of the electrons and ions. The crucial region of the

ionosphere, where this process becomes highly noticeable is at the altitudes

Z > 300 krn (see below). The values Te and T, become larger in this region

than they would be by the solution of the shortened system of equations (35).

Thus it was important to learn in this study the applicability of the mi-

croscopic approximation used in many studies and here by considering the

behavior of all the temperatures T_, T/, and Tn by the two approximations:

u = const and v(E). Especially it was important to search the role of the

neutral particles. Let us note shortly here how the continuous growth of the

temperatures of the plasma can be stopped.

The heating of the magnetoplasma is accompanied and regulated, in ad-

dition to the collisions u_i, ue,_ and ui,_, by many other processes. Their role

should be of different degree. However, for a complete solution of this prob-

lem, they should be taken into account. Then the general solution of this

task will become stationary. One of these most important processes is the

ionization of the neutral particles by the accelerated electrons under the ac-

tion of the electric field E0e i_t.

The velocity of the electrons becomes in the ionosphere, depending on

the frequency w and altitude Z, larger than the ionization potential Ei of

the neutral particles, namely, the thermal, chaotic velocity v_(E) plays the

prime role by this process. It is considerably larger than the directed velocity

V_(E). For instance, in an isotropic plasma

v_(E = (2aT_(--Em°'W) ) 1/2 "" R_{V_(E)} _20R_{V_(E)v_ (51)

(see (34) and (38)). The ionization potential of the atomic hydrogen H1 par-

ticles (they are the main constituent at the high altitudes of the ionosphere)
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is equal to Ei = 13.54 eV. Therefore, the process of the ionization begins

when rE(E) = re(0 > 2.2. 10 s crn/s. It becomes sufficiently remarkable, i.e.

that the additional density of the electrons Ne(E) can become even consid-

erably larger than the regular density of the plasma N, when the amplitude

of the electric field is rather small, even when E0 = (1 - "2,)mV/m. This is

seen from the following.

The dependence of the cross-section a,(Ei) of ionization of the atomic

hydrogen on the energy of the electrons is given in Fig. 3 (Massy at al. 1969

[12]). The value of a, increases rapidly with Ei up to a sharp maximum

cr_,m_x _ (7 - S)10 -17 crn 2 and then it is smoothly decreasing up to Oe,stat _'_

2- 10 -lr crn 2. I.e. that at the altitude Z = 300 krn, where the density of the

atomic hydrogen N,, _ 3 • 109, the production of the electrons

I, = a_. N,_. v_(E) > (10 to 50) s -1 (52)

and the additional ionization is described by the recombination equation

dN I_N a_N 2. (53)
dt

It follows from (53), that growing up in time the electron concentration

reaches a maximum by dN = 0 equal to N = 109, even if the coefficient of re-

combination a_ _ 10 -s, cm 3. s -1. However, in this region of the ionosphere,

a_ < , << 10 -9. Thus, under the action of the electric field, the surrounding

plasma can become full ionized i.e. Ne _ 109 cm -3. As a result, the collision

frequency between the electrons and ions u_i(E) o¢ N_(e)/T,(E) 3/2 becomes

very large (see (3), and the T_(E) dependencies given in IV.l). The growth of

Te is stopped very quickly because the electron concentration is very quickly

increasing. Indeed, in the point of inflection of the time dependence of the

N(E,t) where d2N -- O, N = 2,, Thus, at that point d..NN_ _ is very
' dt-''_ -- 2Or" dt -- 40_e

large and the tangential of N(E, t) is almost vertical. Other losses of energy

which can stop the growth of the temperature of the magnetoplasma are, for

example, the following.

The thermal emission of the constituent particles of the plasma i.e. the

volume Stefan- Boltzman emission of the plasma can play a remarkable role.
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The density of this emission is approximately equal to

_Tw 2

Ip(w) = 4rraca. ngr(w)n2(w), er9 . s . cm -3

In (54) n(w) is a coefficient of refraction of the plasma and ngr

the, so called, group velocity coefficient of refraction.

(54)

= n + w a'_ is
dw

The heating kinetic losses of the plasma should be considered and, in

some cases, they can also be remarkable. I.e. the electron-electron and ion-

ion collisions uee and uii and possibly other kind of kinetic thermal losses

which, in a sense, are similar to the Landau damping of e.m. waves in a

plasma, should also be taken into account.

To a certain extent, as it is seen below, we can omit in this work the

discussion in detail of the noted above points and some other processes, ac-

companying the heating of the magnetoplasma by an electric field. They are

beyond the frame of this study. They are also not of the decisive importance

at the altitudes of the ionosphere of the TSS Mission.

Section IV. Numerical results. Conclusions

Z = (10 2 to 10 a) km, F = (1 to 10 4) Hz

In the following section, we give results of numerical calculations mainly

of the temperature of the electrons and, for comparison, a few examples of the

temperatures of the ions and neutral particles. The following model of the

ionosphere (see Table) and the amplitude of the electric field E0 = 1 mV/m

are used in this calculations. The altitude dependencies of the electron and

ion densities and of the Lengmuir frequencies f0 = w0/2rr and F0 = fl0/2rr ,

given in the Table, correspond to the day-time conditions of the ionosphere.

The altitude, frequency and angle ® dependencies of the temperatures are

presented in plots (Figs. 4 to 11). The frequencies F = co/27r = 1 and 10 a Hz

and the angle between the magnetic and electric field ® = 0 and the altitude

Z = 300 km are selected by the calculations, because the orbit of the coming

in the future TSS Satellite should pass at this altitude.
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It is seenbelow, that the growth of the temperature with altitude in the
frequencyrangeF --- (1 to 100) Hz is very large. It becomes about 102 to 103

and more times larger than the initial temperature of the plasma already at

Z ,-_ (200 - 300) krn. Therefore, the frequency F = 1 Hz is used to illustrate

more dramatically the region where it is necessary to stop the temperature

growt h by including in the theory additional losses of energy (see above III.4).

The zone of ionization of the plasma by the accelerated electrons is therefore

marked on the plots by a thin line and vertical arrows. The frequency band

F = (1 to 104) Hz, that we have used, is much smaller, but also becomes

somewhat larger than the gyrofrequency FH = -_ of the ions in the altitude

range discussed. It is also smaller and much smaller than the low hybrid fre-

quency /V'L _-_ _ In addition, the value v, ui, = (vei + Uin)t/in is much larger
27r"

than this frequencies at low altitudes and becomes comparable and also much

larger than at high altitudes. Therefore, the formulas used in the literature

are ineligible for these calculations (see page 18 and (41)). The used angle

@ = 0 corresponds to the isotropic plasma and characterize the behavior of

the maximum values of the temperature. However, the evaluation of these

dependencies on different values of ® are also given and the influence of the

magnetic field H0 is shown by these data.

The results of the numerical calculations mainly correspond to the ap-

proximation u = const, i.e. that the shorted system of (31) is used and it

is assumed that _ - 0, T_ = T,0. However, results of the selfconsistent
dt

solution of the full systems of (30) to (32) are also given by some examples

and the role of the neutral particles is discussed.

Let us now describe in more detail the numerical results by the plots,

presented here.
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IV.1 Altitude dependencies of temperatures.
a dT_.T_a= 0 h d'l"n

" dt ' _" dt _ 0.

a d_._T = 0. First of all let us consider the altitude dependencies of the
• dt

ratio of the temperatures T_(Eo, w) and T_(Eo, w) to the initial temperature

of the plasma Tn0, shown on Fig. 4 for F = (1 and 103 Hz, calculated by the

shorted system of equations (31) and by the two approximations: v = const

and v = v(T) = V(Eo,W). How the collision frequencies v(E, t) reaches their

stationary values at the altitude Z = 103 krn and F = 1 Hz, is also shown

for sake of illustration, on Fig. 5.

The following is seen by examination of this figure.

. The temperatures of the electrons and ions are growing up quickly

on both frequencies. They become equal in the altitude region Z ---

(200 - 250) kin.

• The temperatures, when F = 103 Hz, have a maximum at Z ,-_ 200 kn_

by the approximation v = v(Eo,w). The same happens by approxima-

tion v = const when F = 1 Hz.

• At Z >_ 300 km the temperatures are smaller by the approximation

v = v(Eo,w) than by the approximation v = const.

. The process of ionization by the accelerated electrons is acting almost

in all the altitude region when F = 1 Hz and does not play a role,

when F = 10a Hz, especially at Z _> 300 krn. Thus, the process of the

ionization should be stopped when F = 1 Hz already at the altitude

Z = (120 - 150) kin.

The properties noted above of the nonlinear heating process of the iono-

sphere are typical. Namely, the behavior of Te and Ti for F = 1 Hz is

typical for the frequency band F = (1 to 102) Hz and at frequencies a lit-

tle higher. The behavior for F = 103 Hz is typical for the frequency band

F > (102 - 103) Hz up to the value F = 104 Hz used here. This is seen from

the following dependencies of Te(Eo, w)/T,_o on Z:

• in Figure 6, by the curves calculated by the approximation v = const

for F = (1, 102 , 10 a andlO 4) Hz,
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• in Figure 7, by the curves for the angles 19 = (0, 30, 60, 75, 85, and 90)

degrees also calculated by the approximation u = const,

• in Figure 8, by the curves, calculated for F = 103 Hz and the angles

6) = (0 and 75) degrees by the u - u(Eo,w) approximation•

The characteristics of these altitude dependencies of the temperature are

in agreement with the noted above points 1 to 4.

bdW_
• dt _ O. Some results of the selfconsistent solution of the full systems

of equations (30)- (32) are presented in Figure 9. Not to overload this figure,

only the Te and Tn dependencies are given in it. The main new important

characteristics of these dependencies in addition to the given above in a. of

this section are the following

° The temperature T,_ of the neutral particles is gTvwing up very quicldy

at altitudes Z > 200 kin. It approaches the temperature Tc of the

electrons at Z > (400 - 500) krn and becomes close to Tc similarly to

the temperature of ions, Ti.

. At the altitudes Z > 400 kin, the temperatures T_ are larger on both

the frequencies by the approximation @ ¢ 0 than by the approxima-

tion @ = 0.

. At least at Z _> 300 kin, the heating of the neutral particles becomes

a source of the heating of the electrons and ions. The growth of T,_

should be stopped, similarly to the case _ = 0 at these altitudes (see
dt

III.4).

4. In general, the heating o/the neutral particles is an important part ill

many cases of the process of heating of the plasma.

How the temperature Te(Eo, t) reaches the stationary temperature at the

altitude Z = 200 krnis shown on Fig. 10 for F = 1 Hz and 19 = 0. It is

seen how slow this process is going on when dT, 5¢ 0, in comparing with thedt

case a_T_r= O.
dt
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IV.2 Frequency dependencies of the temperature. Z = 300 kin.

For the interested to us altitude Z __ 300 km, the frequency dependencies

of Te are given on Fig. 11. They were calculated for the both approximations

and E0 = 1 mV/m. In a sense, this is a a transition region. The influence

of the heating of the neutral particles is still not too large in this region (see

Fig. 9).

The behavior of the frequency dependencies of Te is presented on Fig. 11,

for different angles O, are in agreement with the given above conclusions in

the sections IV.l.a and IV.l.b. The heating of all kind of particles is very

high in this region. Even by amplitudes of the field E0 --_ (10 -2 - 10 -1) V/m,

the temperatures of the electrons and ions can reach rapidly, at least, values

Te(Eo, w) > (10 - 102)T_0 in a broad range of angles 0 between the electric

field E0 and the Earth's magnetic field H0. Temperatures T,(Eo, w) > 102T_0

should, at least, be stopped by the ionization and recombination and other

processes, accompanying the heating of the plasma by the electric field E =

E0e _t. This does not mean that the temperatures of the electrons and ions

can not become larger than the critical temperature T_,(i) of ionization, let us

say, of the atomic hydrogenH1, which is equal to

T_,{i) = 13.5 eV = 1.16 • 104 • 13.5 = 1.57 • 105, K °. (55)

However, to answer this question, theoretical calculation must be done taking

into account losses of energy, in particular, noted in Section III.4.

Summary

Some nonlinear parametric and heating effects in a magnetoplasma were

considered in this work, particularly, in connection with the forthcoming

Tethered Satellite Mission (TSM). For this aim, the theory of nonlinear heat-

ing of a collisional magnetoplasma, was extended, taking into account the

heating of all the kinds of particles and all the kind of collisions between

them and also the interconnection of these processes. It seems to the author,

that at first the generating of parametric branches of oscillations due to the

decay instabilities are discussed first in this work in connection with iono-

sphere. This was done on the basis of the known theories.
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The numerical resultsdescribein detail the altitude, frequencyetc. tem-
perature dependencies.Conclusions,asthey follow by describingof different
aspectsof the discussedproblems,are given.

These phenomenacan play a great role in the plasma surrounding the
TSS System. It will be an important contribution both to plasma physics
field and for diagnostic of many properties of tile plasma to searchand to
investigate them in this unique experiment. By the theoretical treatment of
the related experimental data, the wave numbers and other local parame-
ters of different branchesof wavescan be estimated. The processesof the
growth of generationof different branchesof e.m. oscillationsand wavesand
of the artificial ionization of the plasma,and many other phenomenacan be
learned as they are developingin the courseof this experiment. Despite of
the fact, that the TS Systemwill not havespecial artificial sourcesof alter-
nating electric fields, the electromagneticoscillations, generatedin the TM
Cloud by other kinds of instabilities can become such sources. Possibly, they

will produce heating and parametric effects.

The great importance, for many reasons, to search for these effects in

the ionosphere and magnetosphere, makes it advisable, that generators of

alternating electric fields in the ELF, VLF and HF bands should be added

to the TSS System in the future TSS Missions.
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Figure 9. Altitude dependencies of the ratios of the tenq_eralure%

Al)l)roximation P = V(Eo,,_) , 0 = O.

r, lEo,,,,) . F= 1 Hz, 1. ---+ dT, = 0 IT--+ @ ¢ 0Trio dt '

F= l O3 Hz , 2. _ -_t = O , 2T + -_t #0

T,(Eo._ : F= l Hz, 3. _...___t = 0 3T+-_t #0T.o
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Figure 10. The establishment of the temperature T_(Eo.,z) ill lilll,'.
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Approximation V=const : 1. _19=0 ; 2, _ O = 75 ° . 3: ---. (-) = 55 °

Approximation W = V(Eo,_.') : 1E --* 19 = 0 : 2E _ @ = 75 ° " 3E --- (-) = b5 °




