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Abstract

Singular value analysis can give conservatiw. _ sta-

bility margin results. Applying structure to the un-

certainty can reduce this conservatism. This paper
presents flight-determined stability margins for the

X-29A lateral-directional, multiloop control system.

These margins are compared with the predicted un-

sealed singular values and scaled structured singular

values. The algorithm was further evaluated with [light

data by changing the roll-rate-to-ailcron-contnmnd-
feedback gain by -t-20 percent. Minimum eigenvalues of
the return difference matrix which bound the singular

values are also presented, l,;xtracting nmltiloop singu-

lar values from flight data and analyzing the feedback

gain variations validates this technique as a measure
of robustness. This analysis can be used for near-real-

time flight monitoring and safety testing.

Nomenclature

Abbreviations

FFT

GGS

MIMO

RI)M

SISO

SSV

USV

fast Fourier transform

ground-generated signal

multiple-input multiple-output

return difference matrix [I + HG] ,

[I + OH]

single-input single-output

structured singular values

unsealed singular values

Symbols

A general matrix

*Aerospace Engineer. Member A[AA.

Copyright @1992 by the American [nstilute of Aeronau-

tics and Astronautics, Inc. No copyright is asserted in the

United States under Title 17, U.S. Code. The U.S. Govern-

ment has a royalty-free license to exercise all rights under

the copyright claimed herein for Governmental purposes. All

other rights are reserved by the copyright owner.

BLEND

BMAX

Cl, C2, C3

CFDP3,
CFDP4

D

1) 1, 1)2, I)3

e

GH

C(s)

C g.s_6 _

Gga_5_

(ffp

9

HG

H(s), U(z)

tit

l/o

I

K2

K3

K13

blending table as a flmction of M,

h, and a

maximum yaw command, dee

yaw command tilter coefficients

roll command tilter coefficients

scaling matrix

roll command filter coelficients

actuating signal error vector

loop gain matrix

plant transfer flmction matrix

GGS telemetered from ground to

aileron path

GGS signal telemetered from ground

to rudder path

lateral stick gearing gain

acceleration caused by, gravity, ft/sec 2

loop gain matrix

controller transfer function matrices,

z = e sT

altitude., fl

input output

identity matrix

imaginary term, j = _-1

roll-rate-to-aileron-feedback gain,

deg/(deg/sec)

yaw-rate-to-aileron-feedback gain,

deE/(deg/sec)

latcral-acccleration-t o-aileron- feedback

gain, deg/g

lateral-st ick-command-to-aileron gain,

deg/percent



K14

K16

K17

K18

K27

K28

k_

L

Li

Lo

M

Ny

p

T

Suu

Sxu

S

T

t

U

VTRIM

Xu

XK[3

XKP3

XKP4

X

Y

2:

O_

;3

6_

6_cmd

_Sr

_Srcmd

A

A

-_-ANALY

rudder-pedal-command-to-aileron gain,

deg/percent

roll-rate-to-rudder- feedback gain,

deg/(deg/see)

yaw-rate-to-rudder-feedback gain,
deg/(deg/sec)

lateral-acceleration-to-rudder-feedback

gain, deg/g

lateral-stick-corn mand-to-rudder gain,

deg/percent

rudder-pedal-command-to-rudder gain,

deg/percent

structured uncertainty gain element of

L matrix (i = 1,n)

perturbation matrix

disturbance matrix at the input

disturbance matrix at the output

Math number

lateral acceleration, g

roll rate, deg/sec

yaw rate, deg/sec

autospectrum of input

cross spectrum of input-to-output

Laplace transform variable

sample period, 0.025 sec

time, see

external input command vector

trim velocity, ft/sec

control transfer function matrix

roll forward-loop integrator gain

roll forward-loop proportional gain

yaw forward-loop proportional gain

control system output vector

plant output vector

Z-transform variable

angle of attack, deg

sideslip, deg

aileron position

aileron command to actuator, deg

rudder position

rudder command to actuator, deg

eigenvalue

minimum eigenvalue

analytical minimum eigenvalue

_FLT

G

(7

O_.FLT

_SSV

_--U SV

¢

ILLL

Ll

in-flight minimum eigenvalue

singular values, an = V/A,_(A*A)

maximum singular values

minimum singular values

in-flight minimum singular value

analytical SSV

analytical USV

roll attitude, deg

structured uncertainty phase element
of L matrix (i = 1, n)

frequency, rad/see

Euclidean norm, 2 norm

absolute value

Introduction

Multivariable control systems have been used for

decades; however, the methodology to evaluate the sta-
bility margins was not developed until the last decade. 1

Classical frequency w analysis methods, such as Bode

or Nyquist techniques, work well for single-input-

single-output (SISO) systems but are inadequate for

multiple-input-multiple-output (MIMO) control sys-
tems. Classical methods do not allow for simultane-

ous variations of phase and gain in all of the feedback
paths. 1-3 Recently, singular value a norms of the re-

turn difference matrix (RDM) have been considered a

measure of the system stability margin for multiloop
feedback control systems) ,_,4 However, singular value

norms of systems with unstructured uncertainty can
be overly conservative, and a control system designer

could interpret the results as unsatisfactory when, in

fact, the system is robust, a A method for relieving

the excessive conservatism is derived by structuring the
uncertainties. 2'a,5 A control system design is robust

when it can perform well for substantial variations in

plant dynamics.

Although mathematically sound, singular value

methods require substantial evaluation using multiloop
control systems before these methods can be accepted

as adequate for determining the robustness of control

system design. Some insight into application of experi-

mentally determined singular values of a multiloop flut-

ter suppression control system for a wind-tunnel aeroe-
lastic model is presented in Ref. 6. In Ref. 6, singular

values of the RDM at the input and output locations
were used successfully to evaluate the performance of

the control system. Reference 6 also gives computa-

tions for the open-loop transfer matrix GH from open-

loop control system wind-tunnel operations. This ref-
erence concentrated on wind-tunnel aeroelastic control

performance. Evaluation is also needed for unsealed



singularvalue(USV)andscaledstructuredsingular
value(SSV)methodsfor analyzingmultiloopcontrol
systemsofmannedaircraftin flight.In addition,theo-
reticalandflight-determinedstabilitymarginsneedto
becompared.

Toevaluatethestabilityofanin-flightmultiloopsys-
tem,theNASADrydenFlightResearchFacilitycon-
ductedaflighttestprogramona MIMOflightcontrol
systemusingtheX-29Aaircraft(GrummanAerospace
Corporation,Bethpage,NewYork).TheX-29Ais an
experimentalaircraftdesignedto test the integration
of severaltechnologies.Thisaircraftwasidealforthis
studybecausethelateral-directionalcontrolsystemis
multiloopwith thecapabilityof controlledexcitation
andmeasuredresponseforMIMOanalysis.7

Thispaperpresentsanextensionof theevaluation
methodreportedin Ref.6bydeterminingsingularval-
uesfromflightdataandcomparingthevalueswiththe
predictedoranalyticalUSVandSSV,O'us v and ass v.
Flight results of the minimum eigenvalucs _k obtained

from the RDM and comparisons with the analytical

minimum eigenvalues ),ANAL Y are also presented. To
determine the sensitivity of the MIMO stability margin

algorithm, a lateral directional X-29A control system

feedback gain was changed during flight. Several flighl

conditions were flown and analyzed, but for the sake of

brevity, one representative case is reported here. The

flight test results are for three control law gain settings

(80-, 100-, and 120-percent K2) at a flight condition

of Mach number M 0.7 and an altitude h of 30,000 ft.

The technique described in this paper can be used to

obtain near-real-time stability margins during flight for

multiloop control systems.

Test Vehicle Description

The X-29A is an experimental aircraft designed to

test the feasibility of integrating several modern tech-

nologies into a highly maneuverable aircraft. This
single-seat aircraft is powered by an F404-GE-400 en-

gine (General Electric, Lynn, Massachusetts) with a

thin supercritical 30 ° forward-swept wing and close-

coupled canards. The wing contains full-span, double-

hinged, trailing-edge flaperons which also provide vari-
able camber. The wing structure includes aeroelasti-

cal]y tailored graphite-epoxy covers designed to provide

stiffness to overcome the structural divergence prob-

lems associated with h_rward-swept wings. Figure 1

shows the X-29A aircraft. For a more complete de-

scription of the aircraft, see Refs. 7, 8, and 9.

Longitudinal control of the aircraft is achieved with

canard, symmetric flaperons, and strake surfaces. The
aircraft was designed with a high degree of longitu-

dinal static instability, 35 percent at subsonic speeds.

This instability requires the vehicle to be continuously

stabilized by a fly-by-wire control system. Lateral
directional motion is controlled by a conventional

rudder and differential flaperon deflection. The X-29A

lateral directional control system is multiloop and in-
eludes aileron-to-rudder and rudder-to-aileron inter-
connects for turn coordination.

Flight Control System Description

The X-29A aircraft has a triplex digital flight con-

trol system with an analog backup for each channel.

The digital control law outputs are computed at 40 ttz

in dual-processor flight computers. The primary task

of the longitudinal control system is to stabilize the

motion of the aircraft. Since the longitudinal flight

control system is an SISO system, it is not evalu-

ated in this report. The X-29A high angle-of-attack

a, lateral directional control system is multiloop. Fig-

ure 2 shows the major digital and dynamic elements.
There are two pilot inputs: lateral stick and rudder

pedal. The four aircraft feedback signals are roll rate

p, yaw rate r, roll attitude ¢, and lateral accelera-

tion Ny. As Fig. 2 shows, seven paths are summed to

generate the aileron command, including the ground-
generated signal (GGS) command. Also, seven paths

are summed for the rudder command, including the

GGS command. The multitoop lateral directional con-

trol and GGS systems, which can be summed to the

actuated commands, make the X-29A ideal for MIMO

stability analysis.

Roll-rate-to-aileron-feedback gain K2 is a fimetion

of flight condition. The K2 was the only gain that

could be changed in flight that had any impact on the

closed-loop stability margins. The K2 shown in Fig. 2

could only be changed by +20 percent of the nominal
value to determine the sensitivity of the singular value

algorithm. The pilot could change the control system

software K2 in flight by selecting a set of predetermined

gains. The X-29A dynamics could also be excited by

remote signals from a ground-based computer using the

GGS system. For this study, the important control

system is located at the input node where the signals

are summed before being sent to the actuators (Fig. 2).
The aileron-command-to-actuator 6_crnd and rudder-

command-to-actuator &cad signals are the resultant
summed commands from the pilot, GC, S, and control

system feedback paths.

Ground-Generated Signal System

Description

The X-29A flight control system was designed with

the ability to remotely excite the aircraft dynamics

with sweeps, step inputs, and doublets using a ground-

based computer linked to the control system by teleme-

try transmission. The GGS system is used to repeat



maneuvers,providefor independentcontrolsurface
inputs,andproducewell-definedinputsfor frequency
responsecalculations.9 Figure2 showsthat theGGS
commandscanbe includedin the aileronor rudder
paths.Forthisanalysis,theGGSconsistedof asinu-
soidalfrequencysweepfrom40.0to 0.1tad/see.Refer
to Ref.9 for a moredetaileddiscussionof theC,(]S

system.

Data Acquisition System Description

The GGS, aileron, and rudder commands to the ac-

tuator are the only digital flight control system signals

needed for this MIMO analysis. These signals were

integrated with other data from a data bus and down-

linked to the ground at 40 samples/sec. Figure 2 shows
the GGS, aileron, and rudder commands to the ac-

tuator. The measured data were relatively noise free

because the pilot inputs and feedback paths included

antialiasing filters. For more information about the in-
strumentation, see Ref. 10.

Analytical Methods

Two methods of determining the analytical multi-

variable stability margins are discussed in this section.
The two analytically deterrnined robustness methods
are referred to as USV and SSV. a'5 The USV method

can be too conservative, and the results could be in-

terpreted as unsatisfactory stability margins when, in
fact, these margins are adequate. The SSV method

decreases the conservative nature of singular values.

Structuring or scaling was not added to the flight-

determined singular values because the flight data con-

tains the complete system, including nonlinear and

high-order system dynamic effects. The following sub-

sections provide background inforrr, ation on stability
margins using eigenvalues, flight data, and singular val-

ues as well as analytical structured and unscaled sin-

gular values.

Stability Margins Using Singular Values

Singular value analysis has been the focus of con-
siderable interest in the controls discipline. 1-6,11 This

analysis provides a way to determine how much uncer-

tainty can be tolerated betbre a multivariable system

becomes unstable and assumes that the system is ini-

tially stable. The singular values of the RDM are used

to measure the stability margins. 1-4 The RI)M at the

input node is [I + HG]. At the output node, the RI)M

is [I + GH]. As the minimum singular value a of the

input or output i{[)M approaches zero, the system be-

comes incr(:_singly less stable.

To analyze the RDM, a review of the general singular

value analysis is helpful, l_et A be a general [n × n] ma-

trix, then the minimum and rriaximmn singular values
a are

_ajAx] = rain l[Ax [[=_v/A_I.[A*A]

1!x II= 1 (1)

d[Ax] = max [I Ax ]1= V/Amax[ A'A]

II x II = 1 (2)

where 1] Ax 1] is the Euclidean norm; £[A'A] art, the

eigenvalues; and A* is the conjugate transpose of ma-

trix A. Note that the vector Ax depends on the units

of the control system output vector x variables; there-
fore, the singular values also depend on the scale units

of x variables. 2 Other useful properties of singular val-
ues are as follows: 2'a

a_iA -_] = 1/_[a] (3)

offAl <__[ A[A] { <_.6"[A] (4)

Equation (4) states that the magnitude of the eigenval-

ues of A is bounded by the minimum and maximum

singular values of A.

Figure 3 shows a typical control system. The G(s)

is the plant transfer function matrix, and H(s) is the

control system transfer function matrix. Bold-faced
variables, such as G and H, are multiple path input

and output matrices. The L i and Lo represent the
input and output perturbation matrices. The MIMO

systems have cross-feed interactions which cause the

locations of perturbations to impact the singular value

results. In classical SISO systems, locations of the dis-

turbances are unimportant. Ignoring the perturbation

matrices for now, the relationships of the RDM for the

input node [I + HG] and the output node [I + GH]

are usually different. Therefore, the singular values are
different because matrix multiplication is not commu-

tative, i.e., GH # HG.

If the multiloop system is stable when unperturbed,

then a sufficient but not n(;cessary condition for the sys-

tem to remain stable when L i is perturbed is that 2,11'12

O(Li -1 - I) < _[I + H(jw)G(jw)] (5)

When analyzing the input node, the output perturba-

tion matrix is set to identity, Lo = I. Likewise, the in-

put perturbation matrix L i is set to identity when ana-
lyzing the output node. The right-hand side of Eq. (5),

a_[l+ HG], is the minimum singular value of the input
node RDM arid is used as the basis of this robustness

analysis. Analysis of singular values will work for S[SO

systems for determining stability margins.

Analytical Unsealed Singular Values

A fully populated perturbation matrix L i produces

the most conservative stability margins. The robust-

hess of a system with a fully populatcd L i can give an
1 3

unrealistic measure of the stability margins. - Often,



these perturbations can be adequately (Mine.d using

the diagonal e.h,.mc.nts of L i. When the L i matrix is

diagonal, it, takes on the structure

L i = l)iag[k,e '¢' , k2e'_.., k,_e '¢'] (6)

where k, is the uncertainty gain element, and G is the

uncertainty phase element of the L matrix. Also, k,

and 0_ (i = 1, rt) may change, independently and simul-

taneously with respect to one another in each control

loop. This method allows fi)r the robustness analysis

of rnultiwiriable control systems.

Now that the ground work has been laid, the sys-

tem stability boundary can be delined by testing the

criterion

aI I + HGLi(J_)I = 0 (7)

as a function of frequency. This expression is the

neutral stability boundary thai produces a pure res-

onance at co. This relalionship means l]lal a pole of

the closed-loop system on the imaginary axis exists. In

addition, the minimum singular value' o1' the l{1)M is

zero. \Vhethcr the closed-h)op syslctn is stable or un-

stable, the singuh_r values are always r,mncgalive ;ks

l';q. (1) indicates. The singular values arc magnitudes

of a transformation that are always positive and define

the distanee to the neutral stability boundary. 3 The

reference for ne.utral stability is a minimum singular

value of 0.0, and the stability margins are related to the

magnitude of minimum singular value. The greater the

magnitude of the minimum singular wtlue, the greater

the robustness.

One goal of this research was to extend the well-

understood, classical stabilily margin methods from

SIS() to MIMO controlle.rs. Equation (7) represents

the inlbrmation needed to detcrTnine the stability mar-

gins of a system, ltowever in this lbrrrt, this equation

does not relate the magnitude of I}1(,.tr, inimum singular

wdue to traditional phase and gain margins. The rela-

tionship that expresses the gain and phase as a direct

fimeti,m of either the inplll or oulpllt perturbations

is shown in Eq. (8) and derived in Rcf. ,1, where L is

e.ither L i or Lo.

+ (z -cos(0,,)) (s)

Figure d shows a graphical represerltation of Eq. (8)

and presents minimum singular value as a function

of phase and gain margins. "Ib determine the stabil-

ity margins or nearness to instability, compute cr[I +

HG(jw)] for various frequencies. The minimum singu-

lar value plot traces the nearness to singularity of the

I{I)M and, thus, the system robuslness to perturba-

lions as a function of frequency. It is not necessary

to know the, pe.rturbation malrix L t,o compute the

minimurn singular value plot. For more information

regarding the stability boundary and its relationship

to the perturbation matrix L, see Ref. 3.

Analytical Scaled Structured Singular Values

Because the singular values of a flflly populated L-

matrix are conservative, it may be misle, ading to apply

these values to a control system. Such values may indi-

cate that the system is nol robust. The Analytical Un-

sealed Singular Values subsection structured the uncer-

tainty by making the L-matrix diagonal (see Eq. (6)).

The USV method reduces the conservatism; however,

scaling the system furthcr reduces the conservatism.

Scaling the system provides a way to reduce the con-

servatism and still maintain realistic margins. 1,a'5 This

reduction is accomplished by including a diagonal scal-

ing matrix D in the l{l)M expression. The scaling

should be chosen so a.s to maximize the minimum singu-

lar vahle across the freqnency range. Therefore, D(aJ)

is a function of frequency, and the algorithms are (easily

irrq)lerrt er_t ed. _3

__[I+ D(ja:){H(j=)G(j_,)}D(3_')-'] < SSV (9)

Equation (9) represents the singular values as a func-

tion of frequency in the presence of the matrix D(a0),

which re,(lucesthe sensitivity of cross-feed perturba-

tions. Implementation of lhe D matrix minimizes the

conservative nature of singular values of mu]tiloop ro-

bustness predictions. Equation (9) eliminates the con-

servatism for control systems where the dimension of

HG is three or less. 531 Scaled singular values are the

same as SSV and are used only for the analytical por-

tion of the analysis. The predicted singular values of

the R1)M, [1 + HG] as well as [1 + DHGD-'], can

be determined from linear frequency analysis.

Eigenvalue Analysis

As shown in the Stability Margins Using Singular

Values subsection, the node point location of the anal-

ysis can influence system stability. In addition, the

singular values of the RI)M can give a conservative

measure of the closed-loop stability margins, Note that

system singular values will always be upper bounded

by the eigenvalucs of the RI)M, see Eq. (4). The eigen-

values of the RI)M are identical at any location in the

control system 6 and can bc expressed as

I__(I+ HG) I= i __(I+ GH) I (10)

input node output node

Equation (10) represents the upper limit of the mini-

mum singular value and, therefore, the upper bounds

of the stability margins of a multiloop control sys-

tem. The eigenvalues of lhe RDM are not the same as

those of lhe closed-loop system. As a reminder, close(t-

loop cigenvalues thus; be stable before applying this



stability margin analysis technique because minimum
singular values only indicate how far from neutral sta-

bility the system is either stable or unstable.

Singular Value Analysis of Flight Data

The flight singular values and eigenvalues need to

be determined by using frequency response techniques.

This section describes the methodology used to deter-

mine singular values from flight test data. Transfer

function equation development, eigenvalues, and sin-

gular values of the RDM are included.

A complex frequency response of a system can be es-
timated from the autospectrum and cross spectrum of

the input and output time history variables by trans-

forming these time domain responses to the frequency

domain using fast Fourier transforms (FFT's). The

controller input-to-output, {u(t)}-to-{x(t)}, transfer

matrix (Fig. 3) Xu is defined as follows:

N

{Xu(jw))ij = _-_(Sxjui(jw))l {Su_ui(j:o)l }-_ (ll)
1=1

where, Sxu is the cross spectrum of the input u and

output x. The Suu is the autospectrum of the input,

and N is the number of time history arrays. The data

were loaded into arrays of 2048 points. A raised cosine

smoothing window was used to process the time history
data obtained from flight. See Ref. 8 for more details of

the FFT procedures. The transfer functions produced

by GGS excitation yielded good results.

Response matrix Xu can be used to construct the

RDM [I + HG]. The following development shows the

relationship of Xu to the RDM. Matrix terms HG or

GH are called the loop gain matrices. Closed-loop sys-

tem robustness is determined from the minimum singu-

lar values of the RDM at either the plant input node,

a[I + HG], or the output node, _a[I+ CH]. As the

minimum singular values approach zero, the stability

margin goes to zero. Perturbation matrices are not

required for flight-determined singular value analysis

because variations are inherent in the system dynam-
ics. The following closed-loop relationships can be de-

veloped from Fig. 3 if tile perturbation matrices are

ignored:

e = u - x (12)

x = HGe = HG[u - x] (13)

The complex frequency response of the open-loop

transfer function can be estimated from the autospec-

trum and cross spectrum of u and x.

Sxu = HG[Suu - Sxu] (14)

This relationship can be postmultiplied by the au-
tospectrum inverse Suu -_

SxuSuu -1 =HG[SuuSuu -l-SxuSuu -1] (15)

Combining Eqs. (11) and (15) produces

xu = Hcf1 - Xu) (16)

Therefore, the loop gain matrix as a function of fre-

quency is

HG(ja;) = Xu(j_)[I - Xu(jw)] -1 (17)

The response matrix Xu(jal) is square and has the

dimensions equal to the number of inputs. The ex-
pressions have now been developed to determine the

flight test singular values for the stability margins of

multiloop control systems. The spectral relationships

of this section can be rapidly evaluated using FFT's

which make it possible to determine, during flight, the

near-real-time stability margins of multiloop control

systems.

Flight Test Procedure

The maneuvers flown for the multivariable stabil-

ity margin analysis were designed to excite the mo-
tion of the lateral-directional axis. The pilot would

stabilize the aircraft at the desired flight condition.

Then, a GGS frequency sweep (Fig. 5) would be com-
manded to the roll axis to excite the X-29A dynam-

ics. The GGS maneuver was complete after approx-

imately 45 see, and the pilot would reestablish the

initial flight condition. Next, the same GGS frequency-

sweep signal would be commanded to the yaw axis

for approximately 45 see to complete the needed in-
puts for the transfer function estimation. The GGS

frequency-sweep signal started at 40 rad/sec and fin-

ished at 0.1 rad/sec. This type of signal sweep helped

to maintain the initial flight condition without re-

quiring pilot corrections. Ground-generated as well

as aileron- and rudder-commands-to-actuator signals

were recorded for the MIMO analysis at 40 samples/see

during the maneuvers. For the three K2 values, the pi-

lot would dial in the appropriate settings on the control

system panel, and the GGS maneuvers were repeated.
The X-29A flight control system with its interconnects

will not allow the pilot to generate independent con-
troller excitation. Such excitation is essential for multi-

loop frequency analysis. As a result, pilot-commanded

maneuvers were not used for this analysis.

Results and Discussion

This section presents flight results of singular values

as a function of frequency and compares these results
with the analytical USV and SSV. The minimum eigen-
values of the RDM and an evaluation of how the sin-

gular value analysis algorithm performed when a single

gain in the feedback path was changed by -t-20 percent

are also presented. As mentioned in the Flight Control
System Description section, K2 was the only gain that



couldbechangedeasilyin flightthat hadanyimpact
on thestabilitymargins.In addition,the[lightcondi-
tionswereM = 0.7 and tt = 30,000 ft with K2 of 80,

100, and 120 percent of the nominal value.

The ground-generated input signals to the roll and

yaw axes resulted in the response shown in Figs. 6 and

7. The robustness analysis for the X-29A was at the

input node [I + HG] and had two inputs (roll and

yaw GGS commands) and two outputs (aileron and

rudder commands to actuator). Therefore, the RDM
dimension will be a 2 x 2 matrix that is a bract[on of

frequency.

Figure 8 shows the flight-determined input node min-

imum singular values, _[I + HG], as a fimction of fie-

quency with the nominal K2 as well as analytical struc-

tured and unsealed singular values. The plot shows

that good agreement exists between the flight and ana-
lytical data. The analytical SS\Z's tend to agree slightly

better with the flight data than the analytical USV's.

This result is consistent with the theory. Figure 9

shows the scaling or structuring used on the analytical
system for the nominal K2 maneuw:r. The dimension

of the diagonal D is 2 × 2, which is the same size a.s

HG. The scaling algorithm set the D_2 clement to 1.0

and left the Dn element free to maximize Fq. (9). As

shown in Fig. 9, Dr1 is the same order of magnitude _s
D22. Theretbre, the scaling will not have as large an

impact on the results as it would if the scaling were to

differ by several orders of magnitudes. Another point

to note is that as the D matrix approaches unity I, the

SSV's become the same as the USV's. Comparing the
minirnum singular values in Fig. 8 using scaling D ele-

ments in Fig. 9 shows that the modeling of the X-29A

analytical system was good.

Obtaining good low-frequency results is ditt3cult

when the ttight maneuver is time limited (45 sec for

this analysis) because several periods at a given fie-

quency may be needed to accurately define the trans-

fer function. The X-29A flight data transfer functions
were tnmcated below 0.9 rad/sec because of increas-

ingly poor transfer function definition, llowew'.r, the

important location on a singular value plot is the global

minimum singular value, which is 0.72 at 8.0 tad/see
(Fig. 8), because this represents the worst closed-loop

stability margin. The universal phase and gain margin
plot, of Fig. 4 is required to relate the __ = 0.72 to a

stability margin. From Fig. 4, a singular value of 0.72

corresponds to gain margins of -4.8 and 11.5 dB and

to a phase margin of ±41 ° . The dashed lines high-

light the area of interest in this ligurc. These singular

values thus irnpiy that the gain in both paths can be

increased by 11.5 dB or reduced by 4.8 dB simu}tane-

ously before the systenl becomes unstable. S_rmlarls,

the phase in both paths can be changed by ±41 ° before

the system becomes unstable. Flight and analytical

scaled global minimum singular values are close to each

other. The analytical unsealed global minimum singu-

lar value is approximately 0.65 at 8 tad/see, which cor-

responds to a gain margin between -4 and 8.5 dB and

a phase margin of ±a5 °. The SSV method matched

the peak and valley of the [light minimum singular val-
ues better than the USV method. As expected, the

analytical USV stability margins were lower or more

conservative than the analytical SSV margins.

Figure 10 shows the minimum eigenvalue as a flmc-
tion of frequency of the RDM [I + HG]. Minimum an-

alytical eigenvalues compare very well with the flight-

determined RDM eigenvalues. The eigenvalues are in-

variant under scale changes (as mentioned in the Eigen-

value Analysis subsection (Eq. (10))). The minimum

eigenvalue is the tipper bound of the minimum singu-
lar value of the RDM, as expressed in Eq. (4). Fig-

ure 11 combines the flight-determined minimum eigen-

value from Fig. 10 and the minimum singular value

from Fig. 8. The singular value curves are equal to or

below the eigenvalue curve which agrees with Eq. (4)

[_q_< A]. Analytical USV's are not presented.

To investigate the ability of the algorithm to detect a

change in stability margins, K2 was changed in flight

by +20 percent, and the same flight maneuvers were
performed again, l"igure 12 shows the results for K2

of 80 percent of the nominal value flown at M = 0.7

and h = 30,000 ft. Figure 13 shows the results for K2
of 120 percent of the nominal value. The analytical

USV's are generally lowe.r than the flight singular val-

ues and are always less than or equal to the SSV's. The

SSV curve compares well with the in-flight values at the

lower frequencies. In addition, the USV and SSV are

in close agreement at the minimum singular valueslo-

cation.For comparison, Fig. 14 shows the threeflight-

determined singu]arvalues for the three I<2 settings:

80, 100, and 120 percent. The algorithm detected the

multiloop stability margin change caused by the single

K2 change of ±20 percent.

Since the analytical results matched the flight results

very well, it can be concluded that the flight minimum

singular value can be used as a measure of multiloop

stability margins. Although the near-real-time analy-

sis was not done in this report, the time used to gener-

ate flight-determined minimum singular value was less

than 30 sec and is considered insignificant. The size
of the RI)M [I + He] was 2 x 2 × 1024 frequen-

cies. These computation times are srnafl enough to sup-

port near-re.al-time, muir[loop stability margin analy-

sis. The near-real-time capability would minimize the

time required for erlvelope expansion of aircraft with

muir[loop control systems.



Concluding Remarks

Multiloopstabilitymarginsweredeterminedforthe
X-29Aaircraft from flight datausingthe methods
presentedin this paper.Theflight results compared

well with predicted stability margins. Analytical sta-

bility robustness was determined using unsealed and

scaled structured singular value analyses. The flight-

determined singular values were determined using the

closed-loop frequency responses. Data analysis com-

paring predictions of both methods showed good cor-
relation. However, the scaled structured singular value

method matched the flight minimum singular value

better at the lower frequencies. The predicted un-

scaled singular value minimums were always conserva-

tive compared with the scaled structured singular val-

ues throughout the entire frequency range. Predicted

and flight-determined minimum eigenvalues of the re-

turn difference matrix were also presented. Sensitivity
of the algorithm was evaluated by changing a feedback

gain by =t=20 percent, and the stability margins were

compared with the nominal gain results. The analy-

sis method is suitable for detecting changes in stability
margins.

Extracting multiloop singular values from flight data

and comparing the information with prediction val-
idates the application of the technique as a relative

measure of robustness. This comparison increases the

confidence of using singular values for stability assess-

ments of multiloop control systems. The technique de-

scribed in this report can be used on any multiloop
control system. Also, this technique extends the single-

loop gain and phase margin concepts to multiloop

systems. The methodology could be implemented in
near real time for flight-monitoring and safety require-

ments. Near-real-time capability would minimize the

time required for envelope expansion of aircraft with

multi]oop control systems.
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Fig. 1 The X-29A aircraft.
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Fig. 3 Control system diagram with disturbance ma-
trices at the input and output nodes.
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Fig. 4 Universal diagram for multiloop gain-phase
margin evaluation.
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Fig. 5 The ground-generated signal frequency-sweep input for roll and yaw axes,
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Fig. 6 Roll axis frequency-sweep time histories caused by ground-generated signals telemetered from the ground
to the aileron-path input for a Mach number of 0.7, an altitude of 30,000 ft, and a roll-rate-to-aileron-feedback
gain of 100 percent.
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Fig. 7 Yaw axis frequency-sweep time histories caused by ground-generated signals telemet, ered from the ground

to the rudder-path input for a Mach number of 0.7, an altitude of ',_0,000 ft, and a roll-rat, e-t<_aileron-feedback

gain of 100 percent.
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Fig. 8 l'light and predicted minimum singular values as a time,ion of frequency for a Mach number o_"0.7', an

altitoude of 30,000 ft, and a roll-rate-to-aileron-feedback gain of 100 percent.
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Fig. 9 Diagonal scaling matrix D(co) applied to the input return difference matrix for a Mach number of 0.7, an

altitude of 30,000 ft, and a roll-rate-to-aileron-feedback gain of 100 percent.
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Fig. 10 Flight and predicted mirfirnum eigenvalues of [I + HG] for a Math number of 0.7, an altitude of 30,000 ft,
and a roll-rate-to-aileron-feedback gain of 100 percent.
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Fig. 12 Flight and predicte(t minimum singular values of [I + HG] for a Math number of 0.7,

30,000 ft, and a roll-rate-to-aileron-feedback gain of 80 percent.
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Fig. 13 Flight and predicted minimum singular values of input node [I + HG] for a Mach number of 0.7, an
altitude of 30,000 ft, and a roll-rate-to-aileron-feedback gain of 120 percent.
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Fig. 14 Flight minimum singular values as a function of gain settings for a Mach number of 0.7, an altitude of
30,000 ft, and a roll-rate-to-aileron-feedback gain of 120, 100, and 80 percent.
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