
NASA Technical Memorandum 104258

,/

/
/"

f

A Rule-Based System for Real-Time
Analysis of Control Systems

Richard R. Larson and D. Edward Millard

(NASA-TM-104Z_8) A RULE-BASED

SYSTEM _ R_AL-TIME ANALYSIS OF

COnTrOL SYSTEMS (NASA) 15 p

N93-1161q

Unclas

G3/31 0123615

October 1992

National Aeronautics and

Space Administration

NASA Technical Memorandum 104258

A Rule-Based System for Real-Time
Analysis of Control Systems

Richard R. Larson

NASA Dryden Flight Research Facility
Edwards, California

D. Edward Millard
Computer Science Corporation
Edwards, California

1992

,,"

National Aeronautics and
Space Administration

Dryden Flight Research Facility
Edwards, California 93523°0273

A RULE-BASED SYSTEM FOR REAL-TIME ANALYSIS OF

CONTROL SYSTEMS

Richard R. Larson

NASA Dryden Flight Research Facility

Edwards, California 93523-0273

D. Edward Millard

Computer Science Corporation

Edwards, California 93523-0273

Abstract

An approach to automate the real-time analysis of

flight critical health monitoring and system status is

being developed and evaluated at the National Aero-

nautics and Space Administration Dryden Flight Re-
search Facility. A software package was developed in

house and installed as part of the extended aircraft in-

terrogation and display system. This design features

a knowledge-base structure in the form of rules to for-

mulate interpretation and decision logic of real-time

data. This technique has been applied for ground ver-

ification and validation testing and flight test moni-

toring where quick, real-time, safety-of-flight decisions

can be very critical. In many cases postprocessing and

manual analysis of flight system data are not required.
This paper describes the processing of real-time data

for analysis and the output format, which features a

message stack display. The development, construction,

and testing of the rule-driven knowledge base, along
with an application using the X-31A flight test pro-

gram, are presented.

AOA

BIT

EHSV

EU

FCC

FCS

I/o

ISV

LTEFO

LVDT

MCC

NZ

OFP

Nomenclature

angle of attack, deg

built-in test

electrohydraulic servo valve

engineering unit

flight control computer

flight control system

input/output

isolation solenoid valve

left trailing edge flap outboard

linear variable displacement transducer

mission control center

normal acceleration

operational flight pro_am

RM redundancy management

TM telemetry

XAIDS extended aircraft interrogation and dis-

play system

Introduction

Today's flight control systems are becoming increas-

ingly complex. The ground testing and flight support

in the mission control center (MCC) of these systems

continues to be more time consuming and costly. Two

problem areas are (1) the collection and processing of

data and (2) the limited availability of expertise to

analyze the information. A direct, raw data conver-

sion in real time into an analyzed result would reduce

the human-error element in interpreting the data while
also minimizing the amount of postprocessed data. For

flight test programs the benefits would result in re-

duced costs by increasing the sortie rate by minimiz-

ing the time to detect and analyze problems. An ear-

lier completion of the test objectives is possible while
improving the safety-of-flight monitoring and reducing

support personnel. This was a similar goal to sup-

port space shuttle flights in the MCC as described in
reference 1.

In the MCC traditional real-time displays provide

only limited information because of the screen size and

number of terminals (fig. 1). Expert knowledge of the

system also is required to interpret and analyze the in-
formation. An alternative approach would allow a large

amount of data to be proces_sed by using a knowledge
base which is constructed of rules to formulate conclu-

sions and decision logic. This technique would auto-
matically decide for the user what data to present on a

single message display. The term "rule" as defined in

this paper is a Boolean expression which may contain

any relational or logical operators supported by the

C programming language. This concept provides the

user the ability to quickly and accurately monitor sys-

tem parameters such as health, status, configuration,

andpilot advisoryinformation.Theevolutionof this
utility isconsistentwiththefindingsofthecasestudy
reportedin reference2.

Thesoftwareapplicationthatcouldsatisfythisneed
isatoolsuchastheextendedaircraftinterrogationand
displaysystem(XAIDS)describedin reference3. The
prototypeXAIDSwasdevelopedinhouseanddemon-
stratedusingthe F-18HighAlphaResearchVehicle
(HARV)ironbird simulationat NASADryden.An
improvedversionofthispackagewasreprogrammedin
ClanguageandinstalledonaUNIX@operatingsystem
for continueduseby theHARVprogram.Thispack-
agewasevaluatedin thecontrolroomfortheX-31A,
whichisdescribedbrieflyin reference4.

TheXAIDSpackageis generic;it canbeapplied
to anyspecificsystemandis easilyportableto any
UNIX-basedoperatingsystem.Theconversionfrom
theF-18HARVto theX-31Aprogramwaseasilydone.
Theprimarydifferencesarethedatabaseandthespe-
cificknowledge-baselogic.Thispaperdescribesthede-
velopment,knowledge-basearchitecture,testing,and
experienceusingtheXAIDSapplicationfortheX-31A
program.Portionsof datafromanX-31Aflightare
presentedandanalyzedusingtheXAIDSto demon-
stratethetool'scapabilitiesandeffectiveness.

XAIDS Messages Design

The XAIDS messages application is a software pack-

age which consists of four parts: the knowledge
base, parser, database, and message display window.
Figure 2 shows these four parts with the bold borders.

The database and knowledge-base source files are cre-

ated for a specific application which is processed by
a generic parser. The parser expands the knowledge

base into a stand-alone source code which is compiled
to form an executable file. This file interfaces with the

real-time data input stream and updates the XAIDS

messages display at the input data rate. A detailed

description of these elements of the system follows.

Knowledge Base

The knowledge base contains the rules which trigger

the messages for the message display. Figure 3 shows
its general structure. For the application presented in

this report the knowledge base consisted of three parts:

preprocessing, parameter typing, and rules computa-
tion and message generation.

In the preprocessing section the various tests per-

formed before further processing include the following:

.

.

4,

(FCC) frame counter be incremented each time

the rules file is called. If the counter is constant,

a message will be set to indicate a stale data con-
dition and the routine is immediately exited.

Test for telemetry (TM) dropouts. The TM data

are tested by checking ground station status words
to ensure a good signal lock. Data words are tested

also to ensure no bits are set in positions that

should always be zero. Finally, selected data words

are rate checked and compared against a reason-
able rate limit threshold. If any of these conditions

occur, the messages are not updated.

Compute the rule update rate. Determine the dif-
ference in the FCC minor frame counter and con-

vert to samples/sec.

Determine which FCC channel (1 or 2) is trans-

mitting the data and display that information in

a message.

The parameter typing portion of the knowledge file
converts desired signals from integer to floating point

or vice versa. Scale factors are applied for any raw,

fixed point signals to convert to engineering units
(EUs). Integers are created from bit masking opera-

tions to unpack discrete words for later use in the rule

computations.

Arithmetic and Boolean expressions are defined in

the rules-computation and message-generation section.
Messages are triggered in this section. The rules are

written so that they all update with each pass through
the knowledge file. Typical C functions are allowed by
the parser in these expressions. In addition, customized
functions are called in this section.

Parser

The parserisa program writteninC language which

expands the grammar and structureofthe knowledge-

base fileinto additionalC code for compilation into

an executablemodule. Itreduces the workload of the

knowledge-base developer by performing the following
tasks:

1,

2.

Eliminates explicit data typing

Coordinates message ID tags and message on/off

logic by appending C code to rules expressions for

the "else" path to reset messages

1. Verify that the incoming data are live. The live

data test requires that the flight control computer

@UNIX is a registered trademark of AT&T Bell Laborato-
ries, Whippany, New Jersey.

,

4.

Validates references to the data stream

Creates logic to permit data to be input from

the spreadsheet for testing or from real-time data
interfaces

Database

A databasefile containsa symbolicreferenceof
the datawordssetcontainingtheformattype. The
databaseis usedwith theknowledge-basefile to tell
the parserhowto interpretexternaldata(integeror
floatingpoint).Theinteger type also includes packed
discrete words. Scale factors are included for the raw
words for conversion to EUs if the scaled words are not

available from the database.

Message Display Window

The XAIDS messages are output to a display win-

dow in a stack format. Figure 4 shows an example.

As new messages are added at the top of the stack, old

messages are pushed down. The mouse is used to scroll

through the messages should it exceed the window size.

All messages are automatically appended with the time

of day as they are added to the stack to provide a log

of the events. Colored messages help distinguish cate-

gories of events. Rescinded messages change to white
for 5 sec before removal from the stack. The older mes-

sages below are then pushed up to fill the gap in the
stack.

The data display stack contains two types of mes-

sages. One type is a textual character string that pro-

rides interpreted information. This message is typi-

cally triggered by single or multiple logical flags. The

multiple-flag version is used for common messages ap-

plied to different channels such as quad I/O discretes

to eliminate duplication. A single message that con-

tains the embedded channel numbers signifies which

channels are triggering the message.

The second type of message is used to output data

values that continue to be updated. This type is gener-

ally used in combination with a textual message which

has been triggered to provide additional information.
A typical application of this message type is to send a

data value to the message stack whenever a particular

limit is exceeded. When that signal is less than the

limit, the message is removed from the stack.

An important feature of the XAIDS messages win-
dow is the option to write a message log file to a disk

for later printing. Other menu options are available to

(1) freeze the display, (2) prevent the removal of old

messages so they can be examined more thoroughly,

and (3) print the current message stack.

Knowledge-Base Generation and

Testing

The knowledge-base development process consists of

four steps as shown in figure 5. These steps are (1)

create a real-time database, (2) develop rules logic, (3)

test the rules, and (4) install rules with the real-time
interfaces.

The database file defines the symbol names and data
types for the parser. Any real-time data that can be

monitored by the XAIDS can be added to the database
file.

The rules logic are developed from documentation,

inspection of flight code, system experts, and from sys-

tem ground and flight testing experience. The logic
that triggers the messages was developed by answering

the question, "If event x happens, what information do

I want to see?" Figure 6 illustrates this logic. A large

amount of data is processed, but only limited informa-

tion needs to be displayed at a given time depending

on the display decision criteria.

The rules are verified statically from a spreadsheet

as shown in figure 7. This option is selected by clicking
the mouse first on the "rules" and then on the "test"

boxes. The spreadsheet is automatically loaded with

all the parameters used in the rules file. The values
for any parameter may be set from the spreadsheet to

verify the rules logic. As rules are satisfied, messages

appear in the XAIDS messages window.

Finally, the executable XAIDS file is installed on the

MCC real-time processors. Dynamic testing is done

by playing back a data file through the XAIDS. The

messages are compared with known events at specific
times on the file. The update rate of the rules can

be determined, and the logic to reject data from TM

dropouts is tested.

Rules Development Experience

The development of the rules for an MCC applica-

tion of a program like the X-31A involved a moderate
effort. The construction of rules from packed discrete

words and flight limit parameters was very mechani-

cal. Since the knowledge-base developer was not previ-

ously familiar with the X-31A FCS, however, consider-

able time was spent learning the system before trans-
lation into rules could be done. An inspection of the

flight code and FCC data was necessary to learn how
the system worked. The multiple-term expressions and

nesting of rules such as the actuator redundancy man-

agement (RM) logic was more difficult to construct. A

custom routine was written to process a table of 430
fail codes from the X-31A data words into a charac-

ter string. Another 200 messages were added to the

knowledge base to monitor the system health, status,
flight limits, and pilot advisories. Testing of the rules

logic using the spreadsheet was very easy and took less

than one day to complete.

Results and Discussion

The test data presented in this section was obtained

from a TM tape playback from an X-31A flight. A
message file was generated from that playback, and

portions of that data are presented from the preflight
built-in test (BIT) and events that occurred during

flight.

The X-31A preflight BIT program includes an actu-
ator RM test. To understand the actuator command

logic for the trailing edge flap logic, refer to figure 8.

Basically, isolation valve (ISV) discretes from FCCs 1

and 2 drive actuator 1, and FCC 3 drives actuator 2. If

either FCC 3 or hydraulic system A fails, a command

path from FCC 2 is opened to actuator 2 to provide re-

dundancy. These paths are all tested for each surface
during the actuator portion of preflight BIT. Table 1

shows the results of the preflight BIT for the left trail-

ing edge outboard flap.

The messages indicate which ISV discretes are failed

during preflight BIT and whether the actuator or sur-

face is still functioning. The dash (-) preceding the time
indicates that the message has been rescinded. This log

provides the engineer better insight and visibility into

what preflight BIT is doing and ensures confidence that

the actuator RM is working as designed.

To verifyifsome testsare missing or not working

properly iseasy.The rulesare designed as follows.If

both paths to a givenactuator are failed,a message for

a singlelinkfailisreplacedwith a message indicating
that the actuator has failed.Ifboth actuators have

totallyfailedfor a given surface,the actuator failed

messages are replaced with a singlesurfacefailmes-

sage. Should any of these paths failduring flight,the

appropriatemessage willimmediately be triggered.

Table 2 shows a portionof the XAIDS messages log

filefrom the flight.This segment of the log filecon-

tains a record of surface and flightlimitsthat were

exceeded. F_om 14:03:54to 14:31:05,FCS limitswere

exceeded four times: (I)NZ O 14:03:54,(2)VANE #I

@ 14:23:21,(3) AOA @14:31:01,and (4) VANE #i @

14:31:05.Messages were triggeredshowing what limit

was exceeded along with the currentvalue of that pa-

rameter. Other information contained in the log file

indicatesthat the pilotrequested the spin mode at

14:15:22. This mode was not engaged, however, be-

cause the airspeed was greaterthan 200 knots or the

airdatawas not failed.At 14:27:34a continuous igni-

tioncommand tothe enginecontrollerfrom FCC chan-

nel2 was generatedbecause the angleofattack(AOA)

exceeded 30 deg.

Table 1. Excerpt from preflight BIT message log file.

XAIDS Message Log File:

-= Message off

11:00:57:252

11:00:57:402

11:00:58:102

11:00:58:352
11:00:58:352

11:00:58:552

11:00:58:902

-11:01:03:152

- 11:01:03:752
-11:01:04:202

- 11:01:04:202

-11:01:04:602

- 11:01:04:812

-11:01:05:312

LTEFO ACT #2 IS FAILED
TOTAL LTEFO SURFACE FAIL; ALL ISV'S ARE DEENERGIZED

LTEFO ACT #1 FROM C2 DEENERGIZED; C1 STILL FUNCTIONAL
LTEFO ACT #2 FROM C3 DEENERGIZED; C2 STILL FUNCTIONAL
LTEFO ACT #2 FROM C2 IS ENERGIZED DUE TO FAILURE OF C3

LTEFO ACT #1 IS FAILED

LTEFO ACT #1 FROM C1 DEENERGIZED; C2 STILL FUNCTIONAL

TOTAL LTEFO SURFACE FAIL; ALL ISV'S ARE DEENERGIZED

LTEFO ACT #1 FROM C2 DEENERGIZED; C1 STILL FUNCTIONAL
LTEFO ACT #2

LTEFO ACT #2

LTEFO ACT #2

LTEFO ACT # I

LTEFO ACT #1

FROM C3 DEENERGIZED; C2 STILL FUNCTIONAL

FROM C2 IS ENERGIZED DUE TO FAILURE OF C3

IS FAILED

FROM CI DEENERGIZED; C2 STILL FUNCTIONAL

IS FAILED

Table 2. Excerpt from flight message log file.

XAIDS Message Log File:

-= Message off

14:03:54:227

14:03:54:227

- 14:04:02:767

- 14:04:02:767
14:15:22:431

14:15:22:431

14:15:22:431

14:15:22:431

14:15:22:431

14:23:21:683
14:23:21:683

- 14:23:30:133

- 14:23:30:133

14:27:34:965

14:27:34:965

-14:28:08:475

- 14:28:08:475

14:31:01:636
14:31:01:636

14:31:05:286

14:31:05:186

-14:31:09:636

-14:31:09:636

-14:31:10:846

-14:31:10:846

* NZ = 1.7

WARNING - NZ LIMIT EXCEEDED IN R3 MODE; > 1.5G

WARNING - NZ LIMIT EXCEEDED IN R3 MODE; > 1.5G
* NZ = 1.7
* AIRDATA HAS NOT FAILED

* VTAS = 385.6 KNOTS

* VTAS > 200 KNOTS

SPIN RECOVERY MODE REQUESTED, BUT NOT ENGAGED BECAUSE
C1 :SPIN RECOVERY SELECT

* VANE #l CMD = 26.4

*** CAUTION *** VANE #1 CMD >= 26 DEG

*** CAUTION *** VANE #1 CMD >= 26 DEG

* VANE #1 CMD = 27.7
* AOA > 30 = 30.4

C 2 :CONTINUOUS IGNITION BECAUSE

C 2 :CONTINUOUS IGNITION BECAUSE
* AOA > 30 = 30.0

* AOA > 30 = 30.5

WARNING - AOA LIMIT EXCEEDED IN BASIC MODE OF 30 DEG

* VANE #1 CMD = 28.3

*** CAUTION *** VANE #1 CMD >= 26 DEG
WARNING - AOA LIMIT EXCEEDED IN BASIC MODE OF 30 DEG

* AOA > 30=30.1

*** CAUTION *** VANE #1 CMD >= 26 DEG

* VANE #1 CMD = 28.3

Concluding Remarks

An in-house development of a rule-based, real-time

analysis application program for use on a UNIX-based

operating system was developed and demonstrated at
the NASA Dryden Flight Research Facility. The mo-

tivation for this effort was to improve the safety-of-

flight systems monitoring and to reduce the amount of

postflight data processing required for both flight and

ground testing.

A preliminary evaluation of this concept has proven

encouraging. Much of the pressure on control room

personnel for routine safety-of-flight monitoring prob-
ably will be reduced. The XAIDS detected that several

flight limits were exceeded from the flight portion pre-

sented. The time tagging of the messages has proven
usable in providing an automated time log of events

during the flight which is printed postflight. This log

helps in determining times for postflight analysis. It

would be premature to expect to reduce the number

of control room personnel, but certainly the types of

parameters that are monitored can be modified which

more appropriately require human interpretations.

References

1Muratore, John F., Troy A. Heindel, Terri B. Mur-

phy, Arthur N. Rasmussen, and Robert Z. McFarland,

"Acquisition at Mission Control," Communication of
the ACM, vol. 33, no. 12, Dec. 1990.

2Malin, Jane T., Debra L. Schreckenghost, David D.

Woods, Scott S. Potter, Leila Gohannesen, Matthew

Holloway, and Kenneth D. Forbus, Making Intelligent

Systems Team Players: Case Studies and Design Is-
sues, Volumes 1 and 2, NASA TM-104738, 1991.

3Glover, Richard D. and Richard R. Larson, A

Knowledge Based Application of the Extended Aircraft

Interrogation and Display System, NASA TM-4327,
1991.

4Mackall, Dale, Ken Norlin, Dorothea Cohen, and

Gary Kellogg, "Rapid Development of the X-31 Sim-
ulation to Support Flight Testing," AIAA Paper

92-4176, 1992.

I
I

I

Standard
data display

pages

j
I X-31A aircraft

1. FCS block diagrams
2. Flight manual
3. FCS description
4. Flight limits

+
I

Flight support requires I
interpretation by senior-level I

experts for each system I
I

m

I

_Replaced by

Traditional
MCC

monitoring

Fig. 1.

XAIDS

message
display

Flight support with
junior-level engineer

with greater efficiency

MCC support using XAIDS application.

920557

Application
specific

I*now_0e0aseI

Database

Application
specific

_l Parser

Generic

I

Fig.2.

_mm_mmmmm_mm_:

'- Real-time
U •

i data :

__ ii' '° ' Executable
Compiler _ _-- knowledge file

• |

XAIDS message application design.

I Messagedisplay window

920558

Preprocessing
• Test for live data

• Test for TM dropouts

• Compute update rate
• Identify transmitting channel

Parameter typing

• Convert to floating

• Scaling to EU if required

• Bit masking and unpacking

Rules computation and

message generation
• Rules definition

• Nested rules

• Calls to special functions
• Call to fail code routine

• Single logic messages
• Multiple logic messages

• Numerical outputs

92O559

Fig. 3. Knowledge-base execution sequence.

XaidsMessages
|

J Log Print Pause I

12:49:05.000 POST STALL IS REQUESTED, BUT NOT ENGAGED BECAUSE i,,_

12:49:05.000 * PITCH STICK CMD <= 1.0 = 0.0 _i_

12:49:05.000 ° LANDING GEAR IS NOT UP

12:49:05.000 * NOT IN BASIC MODE

12:49:05.000 * COMPRESSOR ROTOR SPEED INVALID

12:49:05.000 * EST LOAD FACTOR @ 30 AOA > 7.2 = 7.4 _:_:::_:_J_

12:49:05.000 * MACH > 0.7 = 0.71 _i

12:49:05.000 * COMPRESSOR ROTOR SPEED < 84 PERCENT = 0.0 r;'.,:'_:_i_/_:_i

12:49:05.000 * PRESSURE ALT < 10K FEET = 0 _i_l_i_

12:49:05.000 * THRUST VECTORING VANES ARE DISENGAGED _:_,:
12:49:05.000 POST STALL ENABLE:_':"

12:48:57.000 LANDING GEAR DOWN _!

12:48:14.000 TV VANES NOTTO BE USED |_Ii

12:48:14.000 ENGINE CORE SPEED FAILED

920617

Fig. zl. XAIDS message display window.

Fig. 5.

Create database

1. Parameter table

2. Define data types
3. Scale factors

4. Source

Develop rules
1. Documentation

2. Testing
3. OFP code

4. From system experts

5. User requirements
6. Raw a/c data

Test rules

Static (spreadsheet)

Install rules
1. Interface with TM

2. Verify Interface
3, Evaluate performance

4. Modify as required

92O56O

Knowledge-base development process.

Real-time
loop

_I Readdata I

Rescind rule I
message (s)

Update rule I
message (s)

Fig. 6. Real-time loop for rules update.

L
I:i+1

920616

I
Rules

loop

10

._o

.r_
0

11

, I

I
I I

I I I"
I I
I I I I

.E
°_

o6

12

