
N93-11925

A STATE-BASED APPROACH TO TREND RECOGNITION AND

FAILURE PREDICTION FOR THE SPACE STATION FREEDOM

Kyle S. Nelson

Research Scientist

Honeywell Systems and Research Center

3660 Technology Dr.

Minneapolis, MN 55418

George D. Hadden, Ph.D.

Research Fellow

Honeywell Systems and Research Center

3660 Technology Dr.

Minneapolis, MN 55418

1.0 ABSTRACT

A state-based reasoning approach to trend
recognition and failure prediction for the Attitude
Determination, and ConU'ol System (ADCS) of the Space
Station Freedom (SSF) is described. The problem domain
is characterized by features (e.g. trends and impending
failures) that develop over a variety of time spans,
anywhere from several minutes to several years. Our
state-based reasoning approach, coupled with intelligent
data screening, allows features to be tracked as they
develop in a time-independent manner. That is, each state
machine has the ability to encode a time frame for the
feature it detects. As features are detected, they are
recorded and can be used as input to other state machines,
creating a hierarchical feature recognition scheme.
Furthermore, each machine can operate independently of
the others, allowing simultaneous tracking of features.
State-based reasoning was implemented in the trend
recognition and the prognostic modules of a prototype
Space Station Freedom Maintenance and Diagnostic
System (SSFMDS) developed at Honeywell's Systems
and Research Center.

2.0 SPACE STATION APPLICATION

The Space Station Freedom Maintenance and
Diagnosis System (SSFMDS) project was established as a
feasibility study whose purpose was to illustrate how
Expert Systems could augment the Fault Detection,
Isolation, and Recovery (FDIR) of Freedom's Attitude
Determination and Control System (ADCS). The ADCS
comprises four subsystems, called Orbital Replaceable
Units (ORU), three of which are Honeywell's
responsibility: the Star Trackers (ST) and Inertial Sensor
Assemblies (ISA) for attitude determination and the
Control Moment Gyroscopes (CMG) for attitude control.
(The other subsystem is called the Reaction Control
System and is a set of hydrazine jets also used for attitude
control.)

SSFMDS comprises a set of two cooperating
expert systems, one running on Freedom and the other
running either on Freedom or on the ground. Since the

27

onboard expert system is in closer contact with the
environmental sensors, we call it the "On-line" system.
The other, of course, is called the "Off-line" system and
receives its information through the On-line system.
When running in the actual Freedom environment, the
two expert systems will communicate over the main
telemetry link.

In our prototype, we demonstrate the operation of
the On-line and Off-line systems by running each on a
separate machine. We have the ability to simulate the
telemetry link using either a serial RS232 or an ethernet
connection. The prototype currently runs in a Unix/
XWindows/Common Lisp environment and supports both
IBM PS/2 Model 70 portables and Sun workstations in
any combination. One of the reasons that we chose the
IBM as a prototype host is that it contains the processor
(the Intel 80386) that has been chosen to be the heart of
Freedom's Standard Data Processor (SDP).

An area that we do not cover in detail in this paper
but that nevertheless deserves some mention is that of data

filtering techniques. We have extended methods described
in [Washington and Hayes-Roth, 1989] to significantly
reduce the bandwidth required to communicate health
monitoring and other ADCS data between the On-line and
Off-line systems. Traditionally, bandwidth on spaceport
telemetry links has been very tight -- there is never
enough to go around and Space Station Freedom is no
exception. It uses these techniques (including, for
instance, dynamic thresholding) to send only the
necessary data between the On-line and Off-line systems.

SSFMDS has three areas of expertise: predictive
maintenance, diagnosis, and maintenance aiding. Of the
three, the first has received the least attention in the more
traditional Space Station Freedom software and thus has
been the area where we have concentrated most of our

efforts. Techniques we have developed for predictive
maintenance, including trend recognition and failure
prediction, form the main topic of this paper.

2.1 Why not use model-balN rsesoNng?

A word about model-based reasoning: although
we have built a number of expert systems, many of which
have been model-based, we found difficulty in applying
model-based techniques to the domain of predictive
maintenance on Freedom. One problem is that there are
conditions we predict which have no known physical
model. One example is the degradation of the mirror in
the ISA lasers. There is a relationship between the current/
output power curves such that prediction of a laser failure
is possible several months away. No one knows why this
relationship exists, which to say the least, makes it
difficult to model. Cases like this have caused us to look
for other methods.

3.0 STATE-BASED FEATURE RECOGNITON

One method we found, and the subject of this
paper, is to represent trends and predictive scenarios in the
ADCS as state machines. This technique, called State-
Based Feature Recognition (SBFR), will be discussed in
the following paragraphs.

3.1 FeatureRepresentation

GeneralState Machine //Transition: T2
/ conditiom:{cr2

Cr_ T2_ Acaom:{_l

Trmsiti°.ns"lTll_ T6_ /" .q-_ T5//

Actions: {Asl} LJ -J

Figure l Sample State Machine,

Features to be recognized using SBFR are
represented as finite state machines, with each feature
having its own state machine. The following refers to
Figure 1 which illustrates an example of a generic state
machine. The state machine is made up of a set of states,
{S1 $6} and transitions between those states,
{T!..,T6]. Each state in the machine represents a stage in
the identification of the feature. Each state has associated
with it a set of transitions and, optionally, an action to be
executed when the state is entered, called a state action.

Similarly, each transition may, optionally, have an action
associated with it, called a transition action. State actions
are useful if entering a state means something no matter
how it was entered. For example, suppose that entering
state $3 implied a dangerous engine condition, a state
action would handle this no matter how the state was
entered. Transition actions, on the other hand, are useful

28

in situations where entering a state means something
different depending on the transition traversed. For
example, in Figure 1, a notification may necessary when
entering state $3 from state $2, while no action is needed
when entering state $3 from state $4.

Each transition has a set of conditions associated

with it. The conditions define when the transition may be
traversed. In other words, when the condition for a
particul____tran_s!tionevaluates to true, the machine can
traverse the transition. For example, in Figure 1, Cn is ttie
eondhlon forT2, if the current state is $2 and Cn becomes
flue, $4 will become the next state. When that occurs, the
actions defined for T2, {An} will be executed. If $4 as
any state actions associated with it they will also be
executed.

The machines described above have their roots in

automata theory. State machines that specify actions on
the transitions are called Mealy machines and those whose

actions _ sp._¢c_ified 9n the staies _ Called Moore
machines. From automata theory, any Moore machine has
an equivalent Mealy machine and, conversely, any Mealy
machine has an equivalent Moore machine [Hopcroft and
UIIm_n, 1979]. Thus, only one type of action is required.
Transition actions can be replaced by adding more states
and associating actions with those, while state actions can
be fe-pl_-b_, defining the action on all of the transitions
entering the state. Eliminating either type of action,
however, has certain drawbacks when used in SBFR. A
transition action, replaced by a state action, increases the
complexitY of the machine by adding more states to the
machine, while a state action replaced by transition
actio/iS Wm m_ the machine harder to maintain. That is,
instead of maintaining one action for the state, actions
must be maintained for all of the transitions.

Consequently, supporting both types of actions is
recommended to preserve the intuitive nature of the
machines.

During operation, only one state of the machine is
active, called the current state. The transitional conditions
are, therefore, typically mutually exclusive to ensure that
two state transitions cannot simultaneously be true. Of

course, there may be_.c_umstances when it is reasonable
to have a machine be in two states at once, and siate
machines can be implemented to support that, but for the

applications discussed brow, _i t is more intuitive to limit
the machine to one currently active state. This paper

assum_es that _e _sidbns for given staie are mutually
exclusive and that there is only one currently active state

permachine,

The semantic meaning of a feature is captured by
the states and transitions, while the specifics of the feature
(i.e. the exact data which causes the state machine to
move from one state to another) are captured by the
transitional conditions. This results in a separation

between the general definition of a feature and its real
world implementation, allowing a general machine to be

instantiated in many different contexts. This, in effect,
permits the construction of a library of feature
descriptions that can be instantiated for many different
applications by only changing the specifics of the
transitional conditions. For instance, an increasing trend
in computer CPU utilization and daily air temperature
could have the same general definition (i.e. the same states
and transitions), but different transitional conditions. The
CPU trend will have a much smaller time span and
magnitude than the temperature trend. Since these trends
are so similar, the state machines will be identical except

of the magnitude and duration of the feature.

3.2 SBFR ApplicationCharacteristics

Each state machine moves from one state to

another in a well-defined order that depends on which
transitional conditions evaluate to true. Thus, features

recognized by a well-defined order of stages are those best
represented and recognized using SBFR. The stages are
usually ordered temporally, although other orderings may
also be possible. As will be discussed later, in section 4.0
and section 5.0, failure prediction and trend identification
are features whose stages are temporally ordered.

One case where the features are typically not well-
ordered is fault diagnosis. Faults are typically recognized
by the presence of a set of symptoms that appear at the
time of the failure. These symptoms usually do not appear
in any well-defined order (if they did then a state machine
could be used as a means to predict the failure), resulting
in a state machine of only two states, essentially an if-then
statement. So, while fault diagnosis could certainly be
implemented using SBFR, another approach would
probably be better.

3.3 SBFR Is Data-Driven

The fact that SBFR has a natural applicaticn to
features recognized by a well-defined sequence of events
implies that SBFR should execute in a data-driven
manner. That is, the SBFR module is invoked when new
data enters the system. The transitional conditions
associated with the current state are evaluated using the
new data and any required historical data. If a transition's
condition is true, the machine will move to the next state,
executing any actions defined on the transition and the
new state entered.

The data-driven nature of state machines allows
features to be detected concurrendy. The same data can be
used for any number of state machines, allowing a system
implementing SBFR to simultaneously track several
features in the incoming data. In many situations,
particularly when real-time data analysis is required, the
ability to track many features in parallel is not only useful
but necessary.

The following sections will illustrate in greater
detail how SBFR is implemented to recognize features in
parameter data. Two implementations of SBFR are

29

present in the SSFMDS, trend recognition and failure
prediction. Both implementations are based on the general
machines discussed above.

4.0 TREND RECOGNITION

One important implementation of SBFR is the
difficult, but important, task of trend recognition. Trends
can indicate many things about a particular device
including impending failures, environmental changes, and
other anomalies. It often takes an expert to decipher trends

and speculate as to their meaning, especially since the
significance of trends is dependent on many factors (e.g.
the feature's time span, the parameter's expected
behavior, etc.). For instance, fluctuating data for a

generally stable parameter would indicate a problem,
while the same data for an erratic parameter would be
considered normal behavior. Humans are very good at

analysis involving pattern detection in noisy, convoluted
data. Domain experts are even better at this sort of
analysis, since they know what parameter trends are
significant to the monitored device. Experts are, however,
a scarce commodity and their time is too valuable to
watch data scroll by on a screen. Furthermore, some
trends may occur too rapidly for a human to detect it,
some significant trends may happen in milliseconds.
These two problems have lead us to search for Ways to
automate the process using computers. The problem,
however, is programming the computer to both recognize
significant parameter trends and ignore the insignificant
ones. SBFR provides a representation scheme
encompassing an intuitive method for describing the trend
in human terms and an easy way to translate it into

computer terms.

4.1 SSFMDS Implementation

The state machines implemented to recognize
trends are cleverly called trend machines. Each trend
machine is built on the principles discussed in section 3.0,
with the addition of an initial state and a final state. The

initial state is the default starting state of the machine and
represents no trend being detected, i.e. no evidence of the
trend has been seen. The final state .is just the opposite,
entering this state indicates that a trend has been
identified. Like the general state machines, a trend
machine will remain in a state until incoming data causes
it to transition to the next state.

The final state, denoted by a double circle in
Figure 2 and Figure 3, is an important state of the trend
machine. When the machine enters this state, a trend has

been detected and a notification is sent to the knowledge
base, along with the information collected as the trend
was being detected. As long as the machine remains in the
final state, the trend notification is updated with the
current information, allowing the SSFMDS to monitor
long-term trends with a minimal amount of effort.

A setof trendmachines is associated with each

parameter and uses data local to that parameter as input. A
global view encompassing the entire ADCS could be
provided, but would dilute the intended function, which is
to provide information about ORU parameters to the

SSFMDS reasoning mechanisms at a higher level than
raw data. Features dependent on several ORU parameters
do exist and are considered in the discussion of failure

prediction, see section 5.0.

Since trend machines are associated with a single
parameter, they can be executed efficiently. When new
data enters the SSFMDS, the only transition condition
functions evaluated are those associated with the current

states of the parameter's machines. A global view would
require evaluating the transition functions of all trend
machines. This can be significant when the system being
monitored has several hundred parameters, each of which
has several mends identified for it,

A parameter's trend machines are implemented
hierarchically. Filtered data from the on-line system is
input into the first trend machine layer. The machines at
this level recognize simple trends like increases,
decreases, spikes, etc. Trends of this nature only require
raw data as input. These trends are used as input into the
next layer of trend machines which can recognize more
complex trends. Currently, the SSFMDS trend recognition
module implements the first layer of the hierarchy and has
the machinery to implement higher layers. This hierarchy
enables complex trends to be broken down into
components consisting of simpler trends. The following
two examples wlql illustrate trend machines at the fast and
second level of the hierarchy.

Increas_

ATtend

Magnilude__

Time

Figure2 SimpleIncreaseTrendand SampleData

Figu w 2 A shows a trend= machine used to
recognize a simple increase trend, like the one illustrated

30

in Figure 2 B. Note that this is just one example, the
transitions and states defined for this machine could be

changed to suit any situation. In this case, an increase is
defined as being two jumps in the data occurring greater
than 5 time units apart, or three jumps in the data if the
first two jumps happen in less than or equal to 5 time
units. The reason for the time limit is to differentiate
between an increase and a spike. Anytime a decrease in
the data is seen, the machine will transition back to the
initial state. When the machine enters the final state

(denoted by a double circle in the diagram) the knowledge
base is informed that an increasing trend has been
identified and is sent the information collected during the
trend identification (the start and stop times in this case).

B

Magnitu_

Tune

Figure3 IncreasingSpikesTrendandSampleData.

Figure_ 3 shows a mend machine defined at the

second level of the hierarchy. In this case, the machine is
used to recognize an increasing-spikes trend, i.e. a trend
of spikes with increasing magnitude, like the one in
Figure 3 B. This mend is at _e second level of the
hierarchy because it takes simple trends (spikes in this
case) as input and outputs trends made up Of those simple
trends. When a spike is noticed by the trend recognition
module, it is used as input into the machines at the next
level where the spike magnitude is used in the transitional
conditions. Notice that the only difference between the
machines of Figure 2 and Figure 3 is that the transitional
conditions are different, the states are otherwise identical.
In Figure 2 the Condifi0ns use the value of the incoming

filtered data, but in Figure 3 the magnitude of detected
spike trends is used. This illustrates how onebasic t/end
machine can be applied in different circumstances. The
trends detected provide information to personnel
monitoring the ADCS_ as well as information to other
modules of the SSFMDS, specifically the failure

prediction module.

5.0 FAILURE PREDICTION

Predicting when a failure will occur is a critical
factor in the maintenance of the ADCS. The ADCS is

characterized by functionally independent ORUs, low
failure rates, and extremely high replacement and repair
costs. Spare parts not stored onboard the station must be
flown up by space shuttle or rocket, and, regardless of
how the replacement arrived, EVA activity is currently

required to replace a failed ADCS ORU. Either of these
activities can cost millions of dollars and puts equipment
and, more importantly, personnel in danger. Forecasting
ORU failures can yield tremendous savings by allowing
EVA times to be scheduled to accomplish several tasks
and allowing spare parts to be flown up on scheduled
flights.

Predicting failures, however, is not a simple task
and a general approach is not yet available. Failure
prediction relys heavily on the experience of experts and
their ability to estimate the condition of the equipment.
During our research, we found that experts predict failures
by noticing certain features in the data over a period of
time. For example, features in the ISA laser output

current/power can indicate a failure several months before
it occurs, allowing plenty of time for repairs to be made. A
state machine can be used to capture this information.

5.1 SSFMDSImplementation

The technique is very similar to that used for
identifying data trends, discussed in section 4.0. A state
machine is defined for each predictive scenario. As data is
made available, it is fed into the state machine. The
actions associated with the states and transitions are

cautions and warnings indicating the estimated time to
failure and recommended actions. The data used by the
predictive machines includes raw data and trend
information from all parts of the ADCS. That is, a
predictive machine may monitor trends across different
parameters on one or more ORUs. This differs from the
approach taken for trend analysis that only considers data
for one ORU. For instance, one predictive machine can
monitor trends in the wheel unbalance of all ADCS

CMGs. These trends should be roughly equal, if one CMG
exhibits a different trend (i.e. it is increasing while the
others remain steady) a problem may be indicated.

To make this more concrete, consider an example

of a CMG predictive scenario that illustrates how a
predictive state machine can combine trends from
multiple parameters to predict a failure. This example, a
CMG spin bearing failure, is based on a failure that
occurred on Skylab, rendering one of its CMGs
inoperable. This type of spin bearing failure is
characterized by a series of zero or more spin motor
current spikes followed by a rise in the spin motor current,
shortly after this rise, the spin bearing temperature also
increases. If this continues, the CMG wheel will seize and

stop. The sequence of symptoms is important, if the same

31

sequence were seen in a different order it may indicate a
different problem, or no problem at all. If a different
problem were indicated, a separate state machine would
have to be created to monitor that problem in parallel with

the bearing failure machine.

CMG Bearing Failure

/__._pMCresaing Trend in
Current

Spike Trend(s) m..._ Spike4t-Nou'_d

Decr

SPM Curr_ [pem'ing_ -9_1 _ jJin eider

...... _ Bering Temperature

SPM = Spin Motor

Figure 4 Example Predictive State Machine

The state machine reflecting this behavior is
shown in Figure 4. After reading the section on trend
analysis, the machine should be fairly self-explanatory. As
data enters the system and CMG trends are detected, they
are fed into the state machine. For instance, if the machine

is currently in the WAIT state, the machine is monitoring
the data for either spin motor current spikes, or a spin
motor current increase trend. When this happens, it will
transition to the next state, executing whatever actions are
defined on the transitions.

In this case, if an increase was seen in the spin
motor current, a caution would be issued by the system
indicating that a beating failure may occur. Notice that the
detection of current spikes does not trigger an action.
Current spikes were detected prior to the Skylab failure,
but were also detected at different times on other Skylab
CMGs that did not fail. The presence of spikes, therefore,
would reinforce any subsequent conclusions but are not,
themselves, indicative of a bearing failure. In other words,
current spikes are used to increase confidence in the
prediction, but a prediction is not based solely upon their
presence.

6.0 FUTURE DIRECTIONS

This research could be extended in a number of
directions.

• Embed the state machines in the ORU's and the sensors.

Puuingthe inteBigenceat the sensor o¢ the ORUwould
reduce the bandwidthrequired to reporton problems
and potentialproblemsto a trickle, freeing itup for
other data.One particularavenue we are exploring in
thisareais makingsensors int_Bigentbyprovidingthem
with data filters and trend recognition[Wald, Schoess,
and Hadden,1991].

• Explore the relationship between the data filters and the

trend machines. It may be the case that ways can be

found in which the two subsystems can cooperate to

provide an even higher data rate and/or lower bandwidth

than they do now.

• Add higher level trend machines. Making tbe output of

one ltend machine available as the input to another one

turned out to be a good idea, yet no more than two layers

have been tested. Perhaps the logical extension of this

idea into more layers of trend machines would have

application.

• Implement the machines in a forward chaining rule-

based language like CLI_. CLIPS Cooth the original

and CLIPS-Ada) is emerging as a NASA standard. This,

coupled with thc facts that a forward chalninglanguage
=is wcll-sUhed to a state-hased system and the case of

extensibility such a language affords, make it an

attractive choice for an implementation vehicle.

• Learning. A number of trends are currently recognized,

yet specification of a complete set of "interesting"

trends in any one domain is a difficult task. Machine

learning techniques may ailow us to g_nerate the ability

to recognize these treads with a minimum of human

input. A more speculative idea is to use neural networks

to perform this learning.

Finally, perhaps the most important future

direction is the application of the Maintenance and

Diagnosis System to other space related projects. It is

clear that these systems must be man), times more

intelligent _an their earth-bound counterp_s -- a vessel

halfway between the Moon andMars cannot call a tow

truck. At the same time, power and space requirements

dictate their own constraints. We must use existing

technology and develop new technology to assure that our

astronauts' journeys arc safe.

7.0 Bibliography

Hopcroft, .'. and UItman, I.
Intwducdon to AutomataTheory,Languages, andComputation
Ad_s¢_ -Wesley, I979;

W_Id, J., Schness, J. and Haddcn, G.

Disin'beted tIe*_ Manageme_ Syae_s for GNAC Applic*tkmJ
!stIme-natlocmlCo¢_e_mcefor Guidance, Navigation, andControl,
1991

Noofdldj'k,TheNe,therhmds.

Washington, R. and Hayes-Roth, B.

Dmt_MmAg_mentin Real-'t_e AI Synems
Intemt_cud Idm Codermce on Ar6fidJdIntelligence, UCAI-I 1
1989 plx 250-255.

32

.!

|
i
i

=

=

-E_

1

i

i
!

i

.=

