
N93-1i928

An Embedded Rule-Based Diagnostic Expert System
in Ada.

Robert E. Jones
National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

Ada is becoming an increasingly popular
programming language for large
Government-funded software projects. Ada
with its portability, transportability, and
maintainability lends itself well to today's
complex programming environment. In
addition, expert systems have also assumed
a growing role in providing human-like
reasoning capability and expertise for

computer systems.

This paper discusses the integration of expert
system technology with Ada programming
language, specifically a rule-based expert
system using an ART-Ada (Automated
Reasoning Tool for Ada) system shell. The
Inference Corporation developed ART-Ada
under a program sponsored by the NASA
Johnson Space Center. The NASA Lewis
Research Center was chosen as a beta test
site for ART-Ada. The test was conducted

by implementing the existing Autonomous
Power EXpert System (APEX), a Lisp-based
power expert system, in ART-Ada.

Three components, the rule-based expert
system, a graphics user interface, and
communications software make up
SMART-Ada (Systems fault Management
with ART-Ada). The rules were written in
the ART-Ada development environment and
converted to Ada source code. The graphics
interface was developed with the
Transportable Application Environment (TAE)
Plus, which generates Ada source code to

45

Eugene M. Liberman
Sverdrup Technology Corporation

2001 Aerospace Parkway
Brook Park, Ohio 44142

control graphics images. SMART-Ada
communicates with a remote host to obtain
either simulated or real data. The Ada source

code generated with ART-Ada, TAE Plus, and
communications code was incorporated into
an Ada expert system that reads the data
from a power distribution test bed, applies
the rules to determine a fault, if one exists,

and graphically displays it on the screen.

The main objective of this study, to conduct
a beta test on the ART-Ada rule-based expert

system shell, was achieved. The system is
operational. New Ada tools will assist in
future successful projects. ART-Ada is one
such tool and is a viable alternative to the

straight Ada code when an application
requires a rule-based or knowledge-based
approach.

Keywords: Ada, Expert System, Rule-Based,
Knowledge-Based.

INTRODUCTION

Ada is becoming the language of choice for
large Government-funded projects" as
increasing software size and complexity
drives the cost of development and
maintenance upward. Ada (J.G.P Barnes,
1984) language offers standardization,
portability, maintainability, and readability. All
these features provide an excellent
environment for developing complex
software, increasing programmers'
productivity, and encouraging team work.

Many large-scale software projects targeted
toward space applications involve health
monitoring and control of mission-critical
systems. The necessary expertise to maintain
reliable space mission operations is often

unavailable due to limited resources. Even if
the expertise is available, routine system
health monitoring remains a time-consuming
and tedious task. Expert systems have been
taking an increasingly larger role in providing
knowledge for problem resolution and in
handling tedious tasks.

The integration of expert system technology
with Ada programming language results in a
powerful combination for use in many
large-scale computer applications. An expert
system shell that generates Ada code is one
such combination. ART-Ada is an expert
system shell that generates Ada code.

This paper describes the techniques for and
implementation of a rule-based expert system
using the ART-Ada expert system shell. The
Inference Corporation developed ART-Ada
under a program sponsored by the NASA
Johnson Space Center. The NASA Lewis
Research Center was chosen as a beta test

site for ART-Ada. The test was conducted by
implementing the existing Autonomous
Power EXpert system (APEX) (Ringer and
Quinn, 1990) with ART-Ada. APEX is a

Lisp-based power expert system designed as
a fault diagnostic adviser for the monitoring
and control of 20 kHz power distribution test
bed. APEX is being developed at the NASA
Lewis Research Center.

SYSTEM DESCRIPTION

The system description is limited to a
discussion of the software implementation of
SMART-Ada and the hardware on which the
software was implemented. SMART-Ada is
written on a SUN SPARCstation 1 equipped
with 16 megabytes of memory and
approximately 0.5 gigabyte of hard disk
capacity.

The operating system is SUN OS 4.0.3c
running X Window X11R3. The following
software packages were used to implement
SMART-Ada:

(1) ART-Ada
(2) Transportable Application

Environment (TAE) Plus
(3) Remote procedure call

protocol (RPC)
(4) X Window system
(5) X Window Ada bindings
(6) VE-RDIX Ada compiler

ART-Ada is an expert system shell for the
development of ruie-based or
knowledge-based expert systems. ART-Ada

is based on the Automated Reasoning Tool
for Information Management (ART-IM). One
important feature of ART-Ada is its ability tO
generate Ada source code from a
...... =

knowledge-based or rule-based application
written in ART-IM. The syntax of ART-Ada
is compatible with ART-IM, making code
developed in ART-IM transportable to
ART-Ada as long as no machine-dependent
features of either software are used.

TAE Plus is a S0ftware package developed by
the NASA Goclda_cl Space=Flight Center. :Fhe
package is an integrated environment for
creating and running window-based
applications with a graphical point-and-click
user interfac_e. TAE Plus is based on the X
Window System. TAE Plus was chosen for
the SMART-Ada graphical user interface
because it can generate Ada code.

RPC is a communications protocol developed
by Sun Microsystems. This protocol allows
machines of different types to interact with
each other on a procedure level. This
interaction means that one machine can call
a procedure on the other, pass arguments to
the procedure and then receive any returned
values. RPC software for SPARCstation 1

was developed in the C programming
language. An Ada-to-C interface is required
to allow SMART-Ada software to take full

_=-
=

i
B

m

i

Z

m

46

advantage of RPC protocol. This interface
was written for this project. The X Window
System, developed at MIT, has become the
industry standard and runs on a wide range
of computing and graphics machines. The X
Window System provides a powerful
windowing environment for producing
high-performance graphical interface. Since
the X Window System was developed in C
programming language, an interface between
the Ada code and the X Window C code is

necessary to take advantage of the X
Window System features.

Ada language bindings to the X Window
System are a package developed by Science
Applications International Corporation (SAIC).
The bindings provide the necessary interface
between X Window C libraries and the Ada

code in SMART-Ada. The use of bindings
allows the Ada code to take full advantage of
the powerful X Window System procedures.

The VERDIX compiler is used for compilation
and executable code generation. The VERDIX
compiler was recommended by the Inference
Corporation for development and
implementation of SMART-Ada. The VERDIX
compiler also allows for a good Ada-to-C
interface, which is an important feature
needed for accessing X Window System
procedures with the Ada code.

SMART-Ada system components

The SMART-Ada system consists of three

major components:

(1) A rule-based expert system
(2) A graphics user interface (GUI)
(3) Communications software

These three components were integrated to
make up the entire SMART-Ada system. All
components are implemented in Ada
programming language. However, in two
cases the interface between C libraries and
the Ada code is used to enable Ada to
access existing C software libraries. The
interface between X Window procedures and
the Ada graphics programs was implemented

with the SAIC Ada language bindings to the
X Window System.

The interface between RPC software and Ada
was a part of SMART-Ada development.
Each component and its implementation is
discussed in greater detail in the following
paragraphs.

Rule-Based expert system

The knowledge-based rule set was
developed with ART-IM because of its
user-friendly development environment.
ART-IM's powerful debugging features were
heavily utilized.

The rule-based expert system is responsible
for monitoring the operational state of a 20
kHz power distribution test bed. If an
abnormality occurs in the test bed, the expert
system detects the fault condition and
isolates the probable cause. It performs fault
detection by comparing measured operating
values to the expected values, accessing
information and rules contained within its
knowledge base in order to isolate the fault.

A collection of rules in the knowledge base
forms groups of logical subtasks. The logical
subtasks are connectivity, initialization,
detection, isolation, affected loads, and
recommended actions. The connectivity
subtask determines the power distribution
configuration of the 20 kHz power
distribution test bed. The initialization
subtask calculates expected values for
voltages, currents, and power on the basis of
the test bed configuration and the physical
properties of the test bed components. The
detection subtask compares the expected
values obtained in the initialization subtask

with the actual system values obtained from
the test bed. The isolation subtask isolates

the problem and assists the expert system in
determining where in the circuit problems
have occurred. The affected loads subtask
determines which load is affected by the
faults in the system. The recommended
action subtask, in the future development of
the system, will recommend a new

47

configuration for the power distribution or
will automatically reconfigure the power
distribution to alleviate existing problems.

The order of rule execution in a subtask is

determined by the salience of each rule. The
higher salience rules execute first and the
lower salience rules execute last. The last
rule in the subtask contains the lowest
salience so that it will execute only after all
the rules in the subtask have executed. In
SMART-Ada, the lowest salience rule in
each subtask is used to "clean up" the
current subtask and set the environment for
the next subta_sk: Since SM/_RT:A_ is a
monitoring system, the rule-based expert
system must execute continuously. The last
subtask sets the environment for the first

subtask, creating the effect of an infinite
loop.

Expert system and Ada Interface

In order to execute Ada language
subprograms from ART-Ada, an interface
between ART-Ada and Ada language is
required. The interface is accomplished by
defining an Ada USER package (Figure 1).
Within ART-Ada, USER is a reserved symbol
for accessing external Ada code from
ART-Ada rules. Parameter passing is also
possible between ART-Ada and subprograms
in the USER package. The parameters,
however, have to adhere to the syntax of
ART-Ada. SMART-Ada uses subprograms
contained in the USER package to control the
graphical user interface and to obtain data
from the 20 kHz power distribution test bed.

ART-Ada contains a feature that allows one
function to be specified as asynchronous. A
function defined as asynchronous is
automatically invoked before and after each
rule execution. The subprogram named
ASYNCH FUN in the USER package is
defined as an asynchronous function.

ASYNCH FUN is responsible for reading data
from the {-est bed or using simulated data and

providing data to the rule-based expert
system (Figure 2) as well as to the graphics
interface. All subprograms in the USER

48

package are capable of accessing and
modifying data in the ART-Ada code.

As the rules are being executed, the
asynchronous function waits until the last
rule has been completed. The last rule
execution is an indicator for ASYNCH FUN to

read new data from the 20 kHz power
distribution test bed and introduce the new

data to the expert system for evaluation. The
new data are also dispatched to the graphics
interface for a system status update. The
execution of the expert system then
continues with execution of the first subtask.

The WRITE TO FILE subprogram in the USER
package is re-sponsible for writing the
explanations of errors that occur as a result
of the rule-based expert system execution.
The rule-based expert system provides the
file name and the line-by-line text that is to
be entered in the file specified in the file
name parameter. The file name is
determined by which rule subtask is
executing at the moment. The detection rule
subtask, for example, writes to the
DETECT.DAT file, and the isolation rule
subtask writes to the ISOLATE.DAT file. The

text that goes in a file is determined by the
executing rule. The FLAG ERROR
subprogram is invoked when an error
condition is present. The rule that invokes
the subprogram must provide the switch
name and the faulty component to the
subprogram. The code in the FLAG ERROR
subprogram communicates by means of the
graphics interface and sets the visual alert in
the graphics module.

Graphics User Interface

The graphics user interface (GUI) for the
SMART-Ada was developed with TAE Plus.
TAE Plus was chosen for this application
because of its Capability to generate Ada

code for the developed graphics.

The DDO (data clr_ven object) feature of TAE
Plus is Used to achieve the dynamic display
of the system status. The screens and the
DDO's were created with the TAE Plus

=

i

i

=

..=

B

i

Iz

e

L=

i
B
m

I

graphics editor. The screens show the
system status at high and low levels. The
high- level screen shows the overall system
state and configuration. The faults with the
system components are shown with
appropriate cglor and a warning banner. The
lower-level screens provide a more detailed
look of a selected component. The currents,
voltages, and power indicators contain the
up-to-date values. The faults with any of the
values are also marked with appropriate
colors and a warning banner.

An explanation for the errors is also provided.
The Rule-Based expert System generates the
text corresponding to the system status.
The text is stored in the file set up for that

purpose. The file DETECT.DAT contains the
result of the detection subtask execution, the
file ISOLATE.DAT contains the results of the
isolation subtask execution, etc. The GUI

displays the contents of these files to provide
the user with the explanation of the system
status.

Communications Software

SMART-Ada communicates with a remote
host to obtain either simulated or real data.
The communications link between
SMART-Ada and the data acquisition
software on the remote host is accomplished
by using the transmission control protocol /
internet protocol (TCP/IP) and RPC protocol.
The remote host must contain the procedure
that is invoked to provide data to
SMART-Ada. The remote procedure returns
system status data that are interpreted by
the system.

BETA TEST RESULTS

properly in the development environment, but
when the rules were converted to Ada source
code and an executable code was generated,
the program failed to run. A constraint Ada
error was raised when execution was

attempted. The problem was reported to the
Inference Corporation who acknowledged
and fixed the problem and sent us corrected
version of ART-Ada. The second problem
was found with the ART-Ada package. A
variable contained no value after a value had
been assigned to it. The Inference
Corporation has acknowledged the problem
and promised to fix the package for the next
version of the software and has suggested a
way to work around the problem.

The SMART-Ada system which was
developed consisted of approximately 70
rules in ART-Ada. The code for manipulation
of the switches generated approximately
340 Ada statements. The interface between
ART-Ada and Ada consisted of approximately
200 Ada statements, while the Ada Graphics
interface produced about 2100 statements.
The completely deployed system including
system overhead produced 13,484 Ada
statements total. Further optimization of the
ART-Ada code could reduce this number

slightly.

The maintainability issues of the ART-Ada
code must be addressed. Unfortunately, the
tendency is to address maintainability of the
Ada code generated from the ART-Ada
application. The proper way to maintain the
ART-Ada application is through the ART-Ada
code itself. System maintenance will
become much easier if emphasis is placed on
ART-Ada code maintenance rather than on
Ada code maintenance.

The main objective of SMART-Ada
implementation was to conduct a beta test
on the ART-Ada rule-based expert system
shell. The beta test revealed that it is,
indeed, possible to implement an Ada-based
application by using the ART-Ada expert
system shell. However, a few problems were
found as the project developed. The first
problem occurred in an attempt to deploy a
set of rules. The set of rules was executing

49

CONCLUDING REMARKS

As Ada programming language becomes
more and more prevalent, new Ada tools will
assist in making Ada projects even more
successful. ART-Ada is the first rule-based

tool available for Ada programming language.
The ART-Ada package has its problems, like
any initial version of a major software

release.Butthe authors feel that ART-Ada is
a viable alternative to the straight Ada code

for an application that requires a rule-based
or knowledge-based approach.

ACKNOWLEDGMENTS

The authors would like Todd
Quinn of Sverdrup Technology Corporation
for his invaluable technical and editorial
assistance and the entireSpace Electronics
Division AI laboratory staff for their
comments and support.

REFERENCES

1. Barnes, J.G.P (1984). Programming in
Ada. 2nd ed., Reading, MA, Addison-Wesley.

2. Ringer, M.J. and Quinn, T.M. (1990),
Autonomous Power Expert System. NASA
CR-185263.

=

i

=-

|

z

=

__=

50

with ART;

package USER is

function ASYNCH_FUN;

procedureWRITE TO FILE

(NAME OF FILE :in ART.ART OBJECT;
STRING_VALUE:in ART.ART OBJECT);

procedure FLAG ERROR
(SWITCI-_NAME:in ART.ART_OBJECT;

COMPONENT:in ART.ART OBJECT);

end USER;

Figure 1. Ada USER Package

witl- USER; use USER;

(def-user-fun asynch-fun

:args ()

:returns :void

:compiler :verdix}

(def-user-fun write-to-file

:args (

(FILE-NAME :ART-OBJECT)

(STRING_VALUE :ART-OBJECT))
:returns :void

:compiler :verdix)

(def-user-fun flag-error

:args (

(SWITCH :ART-OBJECT)

(COMPONENT :ART-OBJECT))

:returns :void

:compiler :verdix}

(set-asynch-func async-func)

Figure 2. The rule-based expert system use of USER package

51

