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Abstract

This paper identifies the requirements and describes an
architectural framework for an artificial neural network-based

system that is capable of fulfilling monitoring and control

requirements of future aerospace missions. Incorporated into

this framework are a newly developed training algorithm and the

concept of cooperative network architectures. The feasibility of

such an approach is demonstrated for its ability to identify faults

in low frequency waveforms.

1.0 Introduction

As aerospace systems become more complex, the need to

quickly predict, identify, and correct faults becomes more critical

to mission success. Future systems on board spacecraft will

have requirements for longer lifetimes, higher reliabilities, and

lower maintenance than previously encountered. To meet these

requirements, Artificial Intelligence (AI) tools can assist human

operators in anticipating failures in equipment from trends in

sensed data. This paper examines the utility of artificial neural

networks and the architectures and implementations required for

monitoring real-time sensor telemetry signals.

Several methods are available for training neural networks to

perform pattern recognition tasks. The Self-Scaling Conjugate

Gradient method presented here is shown to be applicable for

training neural networks to solve the telemetry signal monitoring

problem. This method also demonstrates exceptional

performance, measured in terms of network convergence time,

when compared to other available training methods.

To monitor signal waveforms and generate an output

indicating waveform "health" four "cooperative" neural
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networks are used. These networks, each monitoring a specific

"part" of the signal of interest, are shown to be capable of

detecting faults in low frequency waveforms.
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1.1 Problem definition

A high priority in the design of real-time monitoring systems

is the reduction of large amounts of sensor telemetry data into

an immediately useable form for human operators and machine

interpretation. Serial instruction-based computation devices

monitoring simple limits on telemetry data will be replaced with

machines capable of parallel operations which are more adept at

pattern identification. Artificial neural networks, which have

been shown to be quite adept at identifying patterns in data will

play a large role in this effort. 13,14,16

Expert systems have been developed to perform "intelligent"

control or management of system configurations (i.e. the

optimum scheduling, switching, or control of devices, given a

set of resource constraints and available modes). 4,7 Sensor

data indicating the current state of the system is tested against

knowledge gathered from experts familiar with the given

system's operation. This knowledge may take the form of rules

specifying how the system should be configured for nominal

operations as well as in the event of a system fault.

Unfortunately, conventional expert systems, running on
today's hardware, cannot respond in real-time (defined here as

on the order of microseconds to milliseconds) to system faults

which require detailed analysis and immediate

reconfiguration. 2,20 For such applications, a network can be

designed to recognize specific sensor data patterns, associate

them with a specific output (much like the assertion of a

"consequent" of a conventional rule in an expert system) and
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Figure 1. Neural Network-based telemetry monitor reference system.
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output the result to some configuration manager or controller

interface. Implemented in hardware, neural network response

times may approach those required for real-time control. 10,19

The reference system illustrated in Figure 1 serves as a

model for developing and evaluating applications of artificial

neural networks to monitoring and control problems. An external

configuration manager commands the system to achieve the

desired result. Sensors determine the actions taken by the

system in response to the controlling input. Additional internal

controls may be employed to achieve localized regulation of the

system. Sensor data is also reported to an external telemetry

monitor (perhaps viewed by a human operator) and routed back

to the configuration manager.

2.0 Artificial Neural Networks

An artificial neural network can be defined as a "parallel

interconnected network of simple (usually adaptive) elements

and their hierarchical organizations which are intended to

interact with the objects of the real world in the same way that

biological systems do. "9 The simplest model of an artificial

neuron is drawn in Figure 2.
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Figure Z. Simplified artificial neuron.

The illustrated simplified artificial ne,Jron receives an

arbitrary number of input signals, x i, each weighted or

modulated by a gain, w i. These weighted signals are then

summed and characterized by an interior threshold or bias, 0.

Finally, the result is passed through a mapping function, f, to

generate an output signal, O. The mapping function generally

represents some continuous nonlinear (hard limiter, threshold

logic, or sigmoid) "activation" function through which the

weighted sum is passed before being expressed as an output.

Collections of connected neurons, making up a single layer

neural network, can be constructed by connecting several inputs

to more than one neuron. It is customary to index connection

weights as wij, meaning the weight value on the connection

from node i in a lower layer to node j in an upper layer.

In the single layer case, the output functions, O k, may be

computed as:

Ok = fk (_wijxi-e k) 1

Network architectures composed of several layers of nodes

are possible. Hornik has shown that these multilayer,

feedforward networks can be used as universal approximators

for various functions. 8 Cybenko has shown that arbitrary

decision regions (stored patterns) can be arbitrarily well

approximated by a continuous feedforward neural network with

only a single hidden layer and any continuous sigm0idal

if(x) =1/(1 + exp(-x)) mapping function. 1 This important result
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is the justification for concentrating on the so-called "three layer
feedforward network."

In this type of network, input signals are passed through an

input layer which scales the signals into the range 0.0 _< x <

1.0 for use by the network. The scaled signals are multiplied by

connective weights and input to a middle or "hidden" layer. At

each node all weighted values are summed and passed through

a sigmoid nonlinearity for output to the next layer. The process

is then repeated in the next highest layer of the network in order

to produce the desired output.

2.1 Training Neural Networks

Patterns may be stored in a network by varying the

connective weights between network nodes until the desired

associative outputs are generated in response to the

presentation of a training input pattern. Methods by which the

weights are iteratively updated are called "training" algorithms.

Introductory descriptions of these algorithms and several other

neuron models and network architectures can be found in the

literature.9,12

The training of an artificial neural network to properly

generalize and associate a desired output pattern when

presented with a given input pattern can be posed as a

multivariable optimization problem based on the "generalized

delta rule. "17 First, an objective or error function must be

defined which represents how well the network has learned its

task and is generally a function of the target and actual output
values. The optimization objective is to find a set of network

weights which minimizes the error function for all pattern

presentations.

One way of accomplishing this is to minimize the sum of the

squares of the difference between output node values and the

desired target values for each output node. In the following

expressions, k refers to nodes in the output layer, j refers to

nodes in the hidden layer, i refers to nodes in the input layer,

and p refers to the pattern presentation sequence number. For

each input pattern/output target pair, Equation 2 defines a

common variation of an error function, Ep, used as a starting

point for defining training algorithms for a neural networks. Here

tpk is the p'th target for the k'th node and Opk is the output for

that node.

Ep = _ (tpk-Opk) 2

k=l

A "presentation" or "function evaluation" takes place when

a single pattern is presented to a network's input nodes and this

input is then fed forward through the network to produce an
output at the output nodes. "Gradient" or "derivative

evaluations" are computed when the error resulting from this

presentation is fed-back through the network and weight

function gradients are calculated for each weight and bias. After

all patterns in a training set have been presented as inputs to a

network, a "step" or "epoch" is then said to have passed.

Depending on the training algorithm, "weight updates," or the

modification of the connecting weights, may take place after a

step or epoch.

2.2 Training Methods

Given the definition of an error function, an expression for

incrementally updating the connection weights to minimize this

function can be derived. The weight update is formulated as the



derivative of the error with respect to each weight and

proportional to some negative constant as given by Equation 3.

3
ApWkj = - 7/ dWkj

Various approaches have been taken to this ootimization

problem. Some of the most successful, and a new more efficient

method, are explained below.

2.3 On-line Back-propagation

On-line back-propagation is the name given to the scheme

where a weight update is computed after every individual

pattern is presented to the network input nodes and the error

(Equation 2) for each pattern is minimized. Thus, one function

evaluation, one gradient evaluation, and one weight update

occurs with every pattern presentation. While not a true descent

method, this robust algorithm has been quite successful in

solving a large variety of problems. 17,3 Equation 4 illustrates a

common weight update formula used for the hidden-to-output

layer connections.

AWkj(n+l) = _ (tpk-Opk) f'(netpk) Opj + a_wji(n) 4

The choice for c_k is made by finding the minimum value of the

error function through successive line searches (finding the

minimum of a function along search direction, dk). When m is

the number of iterations required to locate a minimum to a given

tolerance and p is the number of patterns in the training set,

each line minimization will require mp function evaluations. After

a suitable minimum has been found, p number of gradient

evaluations are then required in order to compute the next
search direction.

This study was concerned with methods in which storage

and computational requirements are minimized for possible

onboard spacecraft applications. Algorithms were considered if

only the last search direction and gradient need to be retained

from step to step and the overhead for computing iterative

search directions is low. Higher order methods (BFGS, quasi-

Newton, etc.), require storage of additional arrays in order to

build up approximations to the Hessian and sometimes incur a

significant overhead in search direction computation. 18

The primary objective here is to find a method which will

allow a neural network to reliably converge to a weight set with

a minimum amount of function and gradient calculations. These

evaluations are the means by which competing algorithms are

judged.

Here p is the pattern number, tpk is the target value for a
2.5 Self-Scaling Conjugate Gradient Method

given output neuron, Opk is the neuron's actual output, f' is the

derivative of the sigmoid function, and netpk is the sum of all

inputs to the neurc, n coming from the hidden layer. The training

rate, 17, and the momentum coefficient, a, are fixed for the

duration of the training session. "Optimal" values of these two

constants are usually determined in an empirical manner for

each problem.

Aside from its successes, this method has several

drawbacks, especially when applied to problems of large scale.

Since _/ is fixed, too large or too small a step may be taken in
the descent direction resulting in a violation of the descent

condition or an overshooting of the minimum. In the case of

back-propagation with momentum, a fixed a may result in a step

being taken in a non-descent direction where any _ may result in

an increase in the system error. Finally, because a weight

update is performed after each pattern is presented to the

network, the pattern presentation order can have an effect on

the rate of convergence.

2.4 Conjugate Gradient Methods

Conjugate gradient methods have a long history of solving

large dimensional problems where other methods fail. 5,18 For

the neural network training problem it is desired to iteratively

In his paper on conjugate gradient methods with inexact

searches, Shanno reviews several different conjugate-gradient-

type methods for application to several classes of problems.18

One such method, Shanno's Equation 26a, derived from work

carried out by Oren and Spedicato, represents a Self-Scaling

Conjugate Gradient (SSCG) algorithm which does not require the

storage of additional arrays. 15

With line minimizations performed as before to find the step

length, the new search direction for each iteration is given by
Equation 8.

T T T T 8

PkYk Pkgk+ 1 Ykgk+ 1_) Pkgk+ Idk+l = *_gk+l " (2 T _ Pk + _Yk
YkYk PkYk YkYk YkYk

where

Pk = _kdk and Yk = gk+l " gk

The SSCG algorithm represents a potentially powerful

method for carrying out neural network weight-updating training

algorithms. This gradient descent method is less susceptible to
minimize the network error function after each set of patterns certain local minimums. Finally, the order of presentation of the

has been presented to the network. New values for each input patterns is not critical.
connective weight w then are defined in terms of the gradient,

gk, and the search direction, d k at each step: 3.0 Temporal Windowing

where

Wk+l = Wk + c_kdk 5

dk+l = " gk+l + /_kdk 6

(gk+ 1 - gk)Tgk+ 1
7

_'k = (gk + 1 - gk)Tdk

One approach to formatting telemetry data for input to a

neural network is to sample the input signal at discrete time

intervals, scale this into a range acceptable by the network, and

feed this signal into the input nodes of the network. If the input

layer contains more than one node, successive input nodes may

be stimulated with time-delayed samples of the input data. Such

an approach is called "Temporal Windowing. "6

Figure 3 shows an example of three temporal windows of a

1.0 Hz sine wave sampled every 100 ms (10 Hz sampling rate).
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Figure 3. Temporal windows for a I Hz sine wave.

Pattern 1 shows the initial snapshot of 11 values making up one

complete period of the wave. Pattern 2 represents the next

available snapshot, taken 100 ms later. The rightmost data point

represents the most recently sampled part of the sine wave.

Pattern 8 represents the state of the wave 700 ms after the

initial snapshot (Pattern 1). Note that ten patterns are required

to show one complete period of the sine wave.

Another way to view temporal windowing is that a sample is

taken, displayed to the rightmost input node for a short delay

period (100 ms), and then displayed to the node immediately

left of the previous node. Figure 4 illustrates this sample, hold,

and shift input procedure.

.

}

Figure 4. Sample. hold, and shift sample inputs to input layer nodes.

To monitor the temporal integrity of the input waveforms,

other cooperative networks (Figure 5) can be constructed to

keep track of the temporal ordering of data being put into and

recognized by the signal recognition network, in the example

case, the phase angle recognition network can be trained to

output an analog value in the range (0,1} corresponding to the

phase pattern number of the rightmost node value. Another

network is then trained to detect the proper sequence of

patterns coming out of the phase recognition network and

provide an indicator signal whenever this order varies from the

prescribed sequence. A fourth network combines the phase

sequence indicator with the waveform recognition indicator to

produce an overall indication of signal health.

Figure 5, Cooperative signal recognition networks.

4.0 Telemetry Monitor Application

The application presented here is the monitoring of a simple

sine wave by a cooperative network set while providing an

indication of when it deviates from a nominal amplitude and

frequency. This example also demonstrates the utility of the

SSCG training method. When an [11,25,1 ] network was trained

with 40 sine wave patterns, a modified backpropagation routine

took 21440 function and 21440 gradient evaluations. The

SSCG method required 20664 function evaluations and only

2040 gradient evaluations to reach the same level of

convergence.

For this test application, it was desired to correctly identify a

simple, continuous 1.0 Hz, 0.5 amplitude sine wave and to

detect any deviations in amplitude or frequency. Any detected
deviations were to be called to attention by the loss of a "good"

signal indication.

The simulation takes advantage of the cooperative network

concept by using four networks (as illustrated in Figure 5) to

determine the input signal's "health." The first net is trained on

the temporally windowed input signal waveform and outputs a

"good/bad" (generally a one�zero output) signal depending on

the waveform's degree of match with the internally represented,

previously learned training set. A second net receives the same

signal simultaneously and outputs a value corresponding to the

phase angle of the input signal. This output value is temporally

windowed into a third timing network which looks for a regular,

repeating pattern of phase angles corresponding to a good

waveform. The fourth and final network has two input nodes.

One node receives the good/bad signal from the first signal

recognition net and the second receives the good/bad signal

from the phase timing network. This control network's single

output node then indicates the interpreted state of the original

input waveform.

This application made use of a PC-based program to train

the four required nets and another program to link the four nets

together cooperatively in a user-friendly (Windows 3.0)

environment. Reasonable net sizing was determined by a short

set of function evaluations studies.

Training sets for each of the four nets were defined as

follows. For the signal recognition [11,25,1] net, a set of ten

temporally related "bad" sine patterns of amplitude 0.45, ten

bad patterns of amplitude 0.55, and 20 good patterns of

amplitude 0.5 were constructed. For the phase recognition

[11,15,1] net, ten 0.9 Hz bad patterns, ten 1.1 Hz bad patterns,
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and 20 1.0 Hz good patterns comprised the training set. The

[11,10,1] phase timing network training set consisted of five

windows of bad random input values, ten windows of bad

constant input values in the range from 0.0 to 0.9, and ten

windows of properly phased timing values. The forth, [2,3,1]

control network was trained with four patterns. Whenever its

two input nodes received a good output from the signal and

phase timing networks, it would output a good signal (1.0).

When the signal network indicated trouble, the voting network

was trained to output a bad value of 0.75 indicating failure.

Phase timing failures would cause the network to output a bad
value of 0.5. The failure of both recognition nets would cause a

zero value to be output.

After training to an average system error of less than 1E-4,

the weight sets from the four networks were merged together

into a cooperative set and loaded into the Windows-based

program.

happens to the phase angle net's output. In this case, trained

only with constant amplitude waveforms, the phase net

mistracks the phase angle at the lower amplitude. Figure 6c

shows the phase timing net's output, as it loses its timing at the

lower amplitude. Note that it might be desired that for all cases

of amplitude failures, a phase network would still output a good

signal, as it would if it were truly measuring phase. Such a

response would be made possible by adding waveforms of

varying amplitudes to the training set. In this instance, the

Control net responded reasonably well (Figure 6d) with the

correct output (0.75) for the high amplitude failure, but the low

amplitude failure caused the net to oscillate between 0.0 and

0.75 as the phase timing net repeatedly lost lock.

A second test case was performed, this time with frequency

failures of _.+0.01 Hz injected at the five second mark. The

signal recognition network, trained with constant 1.0 Hz

frequency patterns indicated failure in an oscillatory manner

(Figure 7a). Likewise, the phase network and its cooperative

The results of this demonstration are best illustrated by timing network, whose output is plotted in Figures 7b-c, failed

examining the output from the four networks during normal to track the failed signal's phase. The resulting oscillating

operation and after induced failures (Figures 6 and 7). After an control network's output in Figure 7d diligently tracked the

initial startup transient, the signal recognition network outputs a

good value of 1.0 for an input amplitude of 0.5. The periodicity

of the output value, small though it is, may be the result of

incomplete training. If this is so, it can possibly be minimized by

using a larger training set and a smaller convergence tolerance.

The phase recognition network shows the periodic ramping of

the recognized phase angle of the signal, and the phase timing

network outputs a good signal for this. The control network's

concurring output stays at one for as long as the waveform is

correct.

phase timing and signal recognition output as best it could.

5.0 Future Applications

The work presented here demonstrates the feasibility of

using artificial neural networks to monitor low frequency real-

time processes. Additional studies reported elsewhere have

demonstrated the ability to use this network architecture to

actually control a single parameter dynamic system (e.g.,

spacecraft actuator spin rate). 11

Two cases, where failures are introduced at the five second

mark, demonstrate the ability of the network to detect small

deviations (__+0.05) in input signal amplitude. Figure 6a shows

the signal recognition net's failure signal. Figure 6b shows what

This new application of the SSCG algorithm makes it

possible tO train and examine several network architectures for a

specific application in a relatively short period of time. This is of

significant advantage until a more analytical approach to sizing
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Figure 6. One HZ sine wave with induced amplitude faults,
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neural networks becomes available. The availability of neural

networks implemented in hardware will also speed up the

training cycles and allow larger training sets to be presented in

shorter periods of time.

Other topics related to telemetry monitor design are also

open to further improvement and investigation. Real-time

performance is a critical concern in the development of an

intelligent space-borne configuration controller and telemetry

monitor for controlling multiple subsystems. With large amounts

of time-varying data, the validity and timeliness of conclusions

based on instantaneous data is constantly in question. First

attempts at using expert systems for real-time applications

involved taking a snap-shot of data and using a static expert

system to draw conclusions about system health. Conventional

pattern-matching paradigms which examine all possible
conclusions for the current data values are too slow for most

real applications. Yet expert systems may still play a role in
real-time controllers.

One approach would integrate a neural network front end

with an expert system configuration controller. When

performance exceptions are detected by the neural networks, an

inference engine might invoke a set of metarules which would

focus the attention of the inferencing system on the offending

subsystem. The benefit of this approach is that knowledge

bases with thousands of rules, properly gathered into smaller,

related sets of rules, can be run in real-time.

Before neural network-based systems see everyday

operations, the issues of verification and validation will also

need to be addressed. When neural networks are called upon to

generalize a desired response from an incomplete training set, it

must be verified conclusively that the proper generalization was

made. Accomplishing this within a finite amount of test time is a

difficult issue yet to be fully studied.

Finally, future work in this area should also address the

effects of input signal noise on the ability of the signal and

phase recognition nets to discriminate their desired waveforms.

Noise might also serve as a means to create a deadband or

wider acceptance region around some nominal patterns used to

train networks. Random amplitude noise, superimposed on top

of the repeating, temporally related patterns can make those

patterns appear to "cover more space" than the basic set. In

this manner, a significantly large deadband effect might be

learned by a network with only a small input pattern training

set.

Artificial neural networks and their successors will soon find

their way into the aerospace engineer's box of tools, much as

the serial digital computer did over forty years ago. Their pattern

recognition capabilities will complement the available tools,

methodologies, and techniques in an untold myriad of ways. The

SSCG training method presented here, along with cooperative

neural network signal recognition concepts, represents yet

another step in the exploration of the potential of using neural

networks to monitor and control a variety of aerospace and

other related systems.
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