
N93-1!937

On the Acquisition and Representation of Procedural Knowledge

*t

T. Saito °, C. Ortiz, and R.B. Loftin
Software Technology Branch (PT4)

NASA/Johnson Space Center
Houston, Texas

Historically knowledge acquisition has proven to be one of the greatest barriers to the development of intelligent systems.
Current practice generally requires lengthy interactions between the expert whose knowledge is to be captured and the
knowledge engineer whose responsibility is to acquire and represent the expert's knowledge in a useful form. Although
much research has been devoted to the development of methodologies and computer software to aid in the capture and
representation of some types of knowledge, little attention has been devoted to procedural knowledge. NASA personnel, on
the other hand, frequently perform tasks that are primarily procedural in nature. In this paper we will review previous work in
the field of knowledge acquisition and then focus on knowledge acquisition for procedural tasks with special attention
devoted to the Navy's VISTA*" tool. We will describe the design and development of a system for the acquisition and
representation of procedural knowledge--TARGET (Task Analysis and Rule Generation Tool). TARGET is intended as a tool
that permits experts to visually describe procedural tasks and as a common medium for knowledge refinement by the expert
and knowledge engineer. The system is designed to represent the acquired knowledge in the form of production rules.
Systems such as TARG!_T have the potential to profoundly reduce the time, difficulties, and costs of developing
knowledge-based systems for the performance of procedural tasks.

Introduction

In order to set the stage for a description of "yet
another" knowledge acquisition tool a brief review of our
evaluation of many existing knowledge acquisition tools is
presented below . Following this review a Navy-
developed program for task analysis is discussed in some
detail. The remainder of the paper is devoted to a
description of our own work in creating a knowledge
acquisition tool specifically for procedural tasks. In
addition to its role in aiding experts and knowledge
engineers in the process of knowledge acquisition, this
tool also provides mechanisms to support knowledge
refinement and its representation in the form of production
rules.

Processes and software designed to aid knowledge
acquisition can be characterized by the nature of their
delivery and implementation methods and styles as well as
their ability to extract knowledge. As with other types of
software tools and products, knowledge acquisition tools,
either on the market or under development, seem to come
in many "flavors', "colors," and "shapes'. Knowledge
acquisition tools operate as front-ends as well as
embedded modules within existing expert systems and/or
expert system development packages. Delivery platforms
range from PCs and Macintosh® computers to RISC and
symbolic workstations to IBM® plug-compatible
mainframe systems. As the size of the platform grows, so
often does the complexity and sophistication of the
knowledge acquisition tool or module that it supports.
Such commercial PC-based tools as GURU® (mdbs, Inc.),
VP-Expert TM (Paperback Software), and SocratesTM (CIM
Solutions) possess modest levels of knowledge
acquisition features generally oriented toward knowledge
representation in the form of rules. On the other hand,
mainframe compatible ADS® (Aion Development System
from Aion Corp.), Mercury KBETM (Knowledge Base
Enterprise from Artificial Intelligence Technologies) and
Knowledge Shaper (Perceptrics, Inc.) all provide more
elaborate knowledge acquisition functions and features
(e.g., object-oriented representation and management)

than the smaller systems. Tools under development such
as KART (Knowledge Acquisition Reasoning Tool from
IBM) and AKAT (Automated Knowledge Acquisition Tool
from Harris Corp.) represent tools that operate within the
less exotic workstation environments. However, other
institutional knowledge acquisition tools such as Aquinas
(Boeing) and KNACK (Carnegie-Mellon) provide
sophisticated examples of the future of knowledge
acquisition tools. DART (Design Alternative Reasoning
Tool - Boeing ATC) is one spinoff tool whose design
architecture was derived from its more renowned
predecessor, Aquinas.

Operating system environments range from Microsoft
DOS® (Disk Operating System) to the Macintosh® OS to
UNIX® to IBM's VM® (Virtual Memory) and MVS® (Multi-
Virtual System). Some knowledge acquisition tool
developers have released their tools under several
operating systems. Nextra, a commercial tool marketed
by Neuron Data as a front end to the Nexpert Object
expert system, functions under UNIX®, VM® (Virtual
Machine - IBM), VMS® (Virtual Machine System from
DEC®) and Macintosh® operating systems. Other tools,
as they evolve, may well follow these same
implementation and delivery strategies.

Various authoring tools have evolved to solve the
problems associated with the creation of a specific expert
system. 1. Originally, most knowledge-acquisition-
oriented tool designs were directed toward rating or
categorizing problems or knowledge. To capture specific
knowledge, the developer distinguishes between types of
knowledge methods�approaches. Although sharing many
of the same goals, the existing methodologies are
numerous--ranging from frame modeling to case-based
reasoning models to repertory-grid rating structures. The
various knowledge types, addressed by these systems,
range from semantic/taxonomic to declarative to
procedural, affecting the design and performance
decisions of researchers and implementers2. Knowledge
representations, including frames, objects, rules and
decision trees, are used to capture and execute

108

expertise. At this point, most would agree that no one tool
accommodates all of the cognitive styles needed to gather
the information/knowledge necessary for the creation of
an expert system in one contiguous process. It is clear
that viable standards have yet to be fully established and
accepted.

To further complicate the issue, getting a subject
matter expert's (SME) attention, time/commitment, help,
and data sources is usually difficult at best. SMEs tend to
differ In their communication abilities and styles,
willingness to cooperate/ayailability, and degree of
computer literacy, potentially affecting the overall
success of the knowledge acquisition process 3. The
strategy of providing the SME with a tool that can be used
to document his mission(s) or task(s), on his own and
within his schedule, would resolve some of the traditional
headaches associated with a knowledge engineer
constantly "hovering over" an SME. However, the
disadvantages of such a_strategy may be the lack of
positive reinforcement or external motivation (I.e., SMEs
might put off documenting their task/mission unless
periodically reminded or encouraged.).

As computer hardware power evolves, more latitude in
presentation methods will be available. Visual conception
and communication of abstract information will become
more common. The strategic fusion of graphical display
(bit-map, meta-graphic, etc.), and graphical input device
(mouse, light-pen, trackball, etc.) technologies will
facilitate visual, as well as textual representation, of

knowledge 4. Drawing tools already allow the user to
produce and manipulate complex graphics. The role of
these tools can also combine with organizational
algorithms to create more intelligent diagrams, flow charts,
interactive decision trees, etc. With users becoming more
adept at using systems with pictorial modeling
capabilities, the mode of knowledge acquisition will also
benefit from such advances.

Procedural knowledge acquisition via task analysis is
a reasonable candidate for graphical representation
modes. Decomposing a complex set of steps that makes
up a specific mission or task requires cognitive
visualization and the ability to formulate and reformulate
the decomposition of those steps or actions. The specific
heuristic procedures that most SMEs employ share
certain levels of organization and recall 5. The path in
which a procedure evolves starts with specific agendas
and goals. The last or final action of reaching or satisfying
those actual goals would end the procedure. On the other
hand, any actions that would restart a process (loop)
would occur before the goal oriented or last action.
Decisions may be made during a task that direct the
expert along alternative paths which may or may not be
taken In other performances of the same task, In cases
where the processes offer one or more options to
complete a task, the process diverges into as many paths
necessary to meet the optional requirements. Each path
would contain specific values for technique evaluation or
other modes of feedback. These types of complexities
lend themselves to representation in a visual form. Below
we explore two attempts to provide just such a visual
metaphor for knowledge acquisition and representation.

VISTA: The Graphical Predecessor

Of over twenty expert systems assessed by
NASA/Johnson Space Center, a graphically-oriented task
analysis tool developed by Robert Ahlers of the Naval
Training Systems Center (NTSC) showed the mostpromise
for addressing procedural knowledge acquisition. VISTA
(Visual Interactive System for Task Analysis) has proven
to be a tool an expert can use to easily define and
document specified tasks in a "comfortable" and
modifiable form.

The NTSC in Orlando, FI., participating in a
governmental tri-service project with the Air Force Human
Resources Lab (HRL) and the Army Research Institute
(ARI), directed a project that produced a prototype
knowledge acquisition tool called KA-1 (Knowledge
Acquisition-I). KA-1 was first designed and implemented
in Lisp within the Symbolics/Genera 6.x environment.
Recognizing the appropriateness of implementing their

own knowledge acquisition strategies to acquire task or
procedural knowledge, NTSC, after the end of the KA-1
project, started work on its first prototype (named
AFEAT--Automated Front-End Analysis Tool). NTSC later
redesigned and released an enhanced version, renaming
the knowledge acquisition tool VISTA. Both of these
applications have been developed on PC platforms using
Smalltalk-V.

The NTSC designed VISTA to compose task listsand
hierarchies from a graphical representation of a knowledge
base. VISTA identifies subsets of tasks meeting
specified selection criteria, training objectives, and/or
personal performance profiles. VISTA's strategy,
permitting the SME to establish task hierarchies and
relationships, yields a final report of procedural step data
with corresponding conditions and criteria.

The VISTA system is a graphical user interface (GUI)
oriented tool that builds box-flow style representations
that a user can utilize to document various task levels.
VISTA Is essentially a qualitative analysis tool directed
toward task and procedure decomposition into their
component parts, in a largely top-down style. In
knowledge acquisition mode, the knowledge engineer and
SME could conduct the decomposition process together
or the SME could essentially use the tool without direct
knowledge engineer support. The system also has a
knack for allowing a group of experts to huddle in front of
a VISTA screen for consensus verification and
modification.

VISTA maintains a fragile balance between ease of
usa and design complexity/intricacy. Although VISTA
does not possess the "bells and whistles" of more
sophisticated systems like Aquinas and Protege, it
provides enough knowledge modeling
(procedural/declarative) support to allow the SME or
knowledge engineer to build a fairly elaborate knowledge
base without sacrificing the attractiveness of its user
interface.

109

VISTA provides a "windows-icon-mouse-pointing •
(christened, WIMP) interface environment based on a grid-
marked Work Area in which the user builds task networks.
The WIMP approach facilitates the rapid selection and
execution of system functions to minimize user
keystrokes. The Work Area is lined on three sides with
icon and menu selectable functions:

1) System Command Menu Bar (top)
2) Function/Graphics Icons (left side)
3) Message/Explanation Bar (bottom)

Although VISTA provides no bona fide compilation
facilities to check the knowledge base for completeness
or accuracy, it does utilize some of the Smalltalk
inspection and reporting features to help the user confirm
the knowledge input into the system. VISTA provides a
windowed environment through which decomposition can
be organized and recorded. Ultimately the user,
knowledge engineer or SME, is responsible for the overall
quality checking of the knowledge base before its
representation in or transfer to other applications.
VISTA's report facilities offer some assistance in this
quality checking process. Reports can be generated to
provide moderately high-level feedback to the knowledge
engineer and SME. VISTA producesthe following reports:

• Hierarchical Statistics: counts nodes and subnets
at each level

• Task hierarchy: keeps a sequential/hierarchical
account of tasks

• Input grammar: maintains various types of
component titles in categorized form

• Notecards: keeps notes on conditions, states or
other user-supplied details

• Highlighted tasks: accounts for subnet levels

VISTA supports the identification and
conceptualization phases of knowledge acquisition with
its network approach to knowledge representation.
Duties, tasks/subtasks, or steps/substeps within a
process can be defined, documented and structured to
reflect these relationships to other duties,
tasks/subtasks, or steps/substeps.

Given its developmental state, VISTA provides a
fairly comprehensive mechanism for generating simple
representations at the very first knowledge acquisition
session. The next sessions may be used to embellish
what has already been elicited, or to create new or
modified versions of the knowledge base. The VISTA
knowledge acquisition interface gives the user the
freedom to generate as complex a hierarchy of knowledge
as necessary. However, the disadvantage to such
freedom is the ability to create a completely abstract
knowledge base with relatively little standards for input.
Some guiding controls from the VISTA interface could
provide structure to the knowledge acquisition process
and greatly enhance the ability of the user to create a
• useful"knowledge base.

Although VISTA has a grammar component within its
facilities, its ability to correlate domain terms and/or
concepts is limited. The open-endedness of the tool
design allows key domain definitions to be specifically

addressed within a notecard-like management facility
and/or defined in a box as a subpart within a process.
VISTA does not offer a true lexical facility or natural
language interface to accommodate concept definitions.

In addition to the creation of new knowledge base
versions, the system also offers the ability to mesh
existing VISTA knowledge bases into the current version
for incremental enhancements. As new ideas are evolved,
the VISTA interface allows the integration of old and new
knowledge bases for processing. Task progressions can
be devised from scratch or from existing task lists or
progressions. A VISTA grammar (task verbs and verb-
objects) must be defined in order for new tasks to be
created. Creating a grammar from scratch involves
building and naming a number of tasks. A significant
improvement would support the automatic extraction of a
grammar from an existing task description and its
integration into a new or different network.

The TARGET Approach

NASA Environment and Needs

The National Aeronautics and Space Administration
commits large funding and manpower effort to training new
and existing personnel. New recruits are trained to carry
out tasks for which they were hired. Existing staff must be
trained or retrained to upgrade/update abilities to perform
current and new tasks. Significant numbers of training
methodologies are utilized involving training manuals,
formal classes, instructional computer programs,
simulations and on-the-job training. On-the-job training is
usually the most effective training mechanism for the
more complex tasks requiring substantial autonomy on the
part of the task performer. However, this training style is
also the most expensive and impractical where trainees
significantly outnumber experienced staff.

The effort of educating and training NASA astronauts,
flight controllers, and other ground support personnel has
generally required extensive on-the-job experience in
order for individuals to acquire the knowledge and skills
necessary for acceptable performance and/or
certification. Current flight schedules, combined with the
loss of experienced personnel to retirement/transfer, have
significantly reduced the ability of traditional training
techniques to produce an adequate number of trained
personnel 6. Recently, it has been shown that
workstation-based, intelligent computer-aided training
(ICAT) systems can deliver intensive, personalized
training to large numbers of trainees, independent of
integrated simulations 7. Such systems can noticeably
reduce the amount of training time needed to achieve
acceptable levels of performance. After over four years of
experience in building such systems, the developers have
concluded that the greatest barrier to the large-scale,
efficient production of ICAT systems is the extent and
difficulty of the knowledge acquisition process. For some
time an effort has been underway to create a software tool
to aid in the capture of mission support procedural
knowledge both to preserve the existing corporate

110

knowledge base and to assist in the development of
decision support expert systems and ICAT systems.

The remainder of this paper details the design and
implementation of a knowledge acquisition system tailored
to the acquisition and representation of procedural
knowledge associated with the performance of complex
tasks. The goal of this effort has been the product/on of a
system with an easy-to-learn and "comfortable" user
interface that provides powerful mechanisms for the visual
expression of procedural knowledge. The ultimate goal of
this work is the expression of acquired knowledge in the
form of production rules to facilitate the use of the
acquired knowledge in expert systems for missionsupport
and training.

TARGET and Desi_anStrateg_v

Attempting to strike that delicate balance between
nonprogrammer usability, design sophistication, and
hardware universality, the Task Analysis Rule GEnerating
Tool (TARGET) is designed to provide a knowledge
acquisition environment for users of commonly-available
computer systems (IBM® PCs and Apple@
Macintoshes®). The forte of TARGET is the gathering of
task or procedural knowledge to be expressed and
analyzed graphically as well as contextually. TARGET
provides users the ability to graphically decompose a task
or mission using a box-flow presentation/manipulation
style within a windowed environment.

TARGET is designed to let the SME to start
documenting their job or task with minimal training in its
use and no absolute need for knowledge engineer
intervention. If the SME is not able to find time to work on
the knowledge acquisition process alone, TARGET does
allow the knowledge engineer and SME to work together in
iterative sessions. TARGET is tailored to accommodate a
wide range of users, from the novice to the expert. With
TARGET, users can develop a discrete representation of
tasks and their subtasks within their domains 8 The
system then manages the information entered and
represents the knowledge in a "top-down" reporting format
that can then be used for rule induction and generation.

Action Descriotions withinTARGET

W'_hin the NASA/Johnson Space Center environment,
CLIPS (C-Language Integrated Production System) is
widely used as an expert system development and
delivery vehicle. In order to support the development of
intelligent computer-aided training (ICAT) systems,
TARGET will implement its rule representations using the
rule types and structures originally developed for ICAT
systems.

Within the ICAT metaphor the overall mission or task
is decomposed into sets of tasks/subtasks that are
termed actions. For most effective use, actions are
expressed, within reason, at the lowest possible level. At
any point in an ICAT training session, the expert expects
the trainee to perform a valid action. Each valid action, as
defined by the expert, is represented as a CLIPS fact in
the following pattern:

(message-E-to-I <step number> <action type>
<argument> <argument> ...)

An action itself comprises at least two <argument>
fields that define one single action decomposed into a
hierarchical structure of two or more subactions of the
form (<action> <argument>). Each <argument> may itself
be an <action> at the next lower level. For example, (argl
arg2 ... argn) can be decomposed into at least two levels:
(argl arg2) and (arg2... argn). The first palr, (argl arg2),
is an (<action> <argument>) pair at the top level where the
action argl has one argument, arg2. In turn, (arg2 ...
argn) is another (<action> <argument>) pair at the second
level where arg2 has one or more arguments, depending
on the value of n. The structure for each action may be
different and the number of arguments that belong with
each action is variable. The expert is free to decompose
the actions and arguments into hierarchies that fit his or
her specific domain,

TARGET supports three action types: required,
optional and flexible (as defined inthe ICAT architecture).
Required actions are necessary task(s) and/or subtask(s)
performed at specific points in a mission or task. These
actions are then asserted to the factlist by the expert
module. The following pattern reflects the expected action
at a given point intime:

(message-E-to-I <step number> require <argument>
<argument> ...)

For example, Figure 1 shows the TARGET visual
representation of the action: "Ask the Navigation Officer
to give the status (good or bad) of the current state vector
(describing a specific orbiting vehicle) obtained from
ground- or space-based tracking stations." Following this
representation is the CLIPS fact produced to represent
the same knowledge.

IAsk NAV _am_'[
of trackingII

I vec|or II

(message-E-to-1150 require request nay nay-status)
Fig. 1 Required Task

The ICAT architecture prohibits the performance of
further actions if the current action cannot be achieved.
In cases where more than one alternative precedes a
required action, the alternatives may not all be equivalent.
Although they accomplish the same goal, one method may
be more suitablethan another in a given context. TARGET
distinguishes between these alternatives by labeling the
"less desirable" as an "other" required action, as opposed
to the previous "require" action. In the ICAT architecture,
only one "require" action, at any point, exists, with the
rest, if any, being "other" actions. When more than one
aJternativeexists for a required action (and none are more
suitable than the others), all alternatives are labeled as
"other" actions. Other actions are represented by
TARGET as:

(message-E-to-I <step number> other <argument>
<argument> ...)

111

Optional actions are those recommended by the SME
as good action or technique preferences in a given
context. However, the trainee is not prohibited from
advancing In the training session if the action is
disregarded. Optional actions should not be confused
with situations where more than one required action exists
at a given time. Optional actions are representerS,by the
following pattern:

(message-E-to-I <step number> optional <argument>
<argument> ...)

Figure 2 shows the TARGET visual representation of an
optional task.

;iiii_ii_i_iiiiill

Fig. 2 Optional Task

Since optional actions do not halt the training session
within the ICAT architecture, even if they are ignored by
the trainee, <step number> could be any future step
beginning from the current context. For example, if the
current step is 20 and the expert asserts (message-E-to-I
50 optional ...), that particular optional action remains
valid from step 20 until step 50. Validity checks for certain
values can be displayed In the user interface. For
example, a fact of the form

(message-E-to-I 260 optional check-display vector-
comp MET)

indicates that the expert recommends that the Mission
Elapsed Time field within the Vector Comparison Table
display be checked at any time from the current step
through step number 260.

TARGET will internally manage flexible actions, i.e.,
actions that must be completed by predefined times
(similar to a required action but operable over a span of
time or steps). Flexible actions operate identically to
optional actions inside specified range of steps. If the
deadline ardves and the flexible action still has not been
completed, it will be changed into a required action.
Flexible actions take the following pattern:

(message-E-to-I <step number> flexible <argument>
<argument> ...)

TARGET, following the current ICAT architecture, is
designed to deal with a series of tasks/subtasks that are
performed procedurally or in steps. Steps are defined as
the progression from one required action to the next.
Steps are represented by numerals and their values
increase with the progression of the task.

Task-Action Conceots !Buildina Biocks_

TARGET employs a free-form flow charting concept.
SME or knowledge engineers can explain procedural
processes by the use of various icons arranged in the

TARGET work area. The tasks can then be linked together
using directed arcs to show procedural flow. The task
icons are separated into five categories.

The first category consists of actions that are
required to complete a process. The required actions are
denoted by using a blue (or white, for monochrome
monitors) rectangular box on the screen. On the other
hand, optional tasks are represented using grey
rectangles. The use of color for representing various
forms of tasks has been reduced to just two, grey for
optional tasks and blue (white) for all others. The shape of
the task box is the most important key to determining its
function. By using shapes and not colors, TARGET,
although designed for color systems, also works
reasonably well on monochrome systems.

Fig. 3 Required and Optional Tasks

Hexagonal-shaped structures are used to show
processes where a decision is needed. The connections
leaving the decision structures are labeled to show what
action is to be taken. For example, a decision structure
may ask if a process has been completed. This decision
may be linked to two other tasks (see Figure 4). The first
arc leaving the decision is labeled "YES* and the other is
labeled "NO". The arc labels represent the only possible
answers allowed by the decision structure.

Fig. 4 Decision Task

The fourth basic structure that TARGET provides is a
control structure. Control structures are used as a "goto"
or looping mechanism. Controls can only jump to other
tasks that are on the current layer (see discussion of
layers below) and may not jump directly to other controls.
Control tasks are denoted by using an ellipse to
distinguish them from the other forms of tasks.

wulo!

Fig. 5 Control Structure

The fifth task type is called a Discretionary or D-Path
(Figure 6). D-Paths, defined as alternate paths when
taken, will not affect the final outcome of the procedure.
D-Paths are used when decision structures are too strong,
but a two or more options exist that can be explored.
Eating breakfast is an example of a D-Path. One could eat
a large breakfast, a small breakfast or skip breakfast
entirely and would not impact the process of "getting ready
to go to work'.

D-Paths are defined to start when two or more tasks

branch off from a single required or optional task.
(Decision structures are the only other task structures

112

that allow for multiple branching.) Tasks within a given D-
Path chain must be optional or required tasks and cannot
be connected to more than one task at a time. This rule
insures that no branching occurs from outside or withinthe
D-path itself. All D-Paths will end at a single common
(optional or required) task. The final specification for D-
Path structures regards the preference value for taking
one choice over another.

A numerical value is given to each D-path and is
termed that path's preference value. The preference
value Is a number that ral_ks each path choice from
highest to lowest preference. The path with the highest
numerical value is considered to be the "best"path by the
SME. Other paths represent processes that may be
performed but are not regarded as optimal by the SME.

Fig. 6 A Sample D-Path

In addition to the two-dimensional flow, TARGET
provides users with the ability to decompose required and
optional tasks into a task hierarchy. Task decomposition
is used to make complex tasks easier to understand and
complicated layers smaller. Tasks that are decomposed
are characterized by displaying a shadow and have "child"
tasks associated with them. The child tasks are not seen
at the "parent" layer but can be found when traversing
down the task hierarchy into lower levels (Figure 7).

Fig. 7 Task Chain Showing ChildTasks

Navigating through a task hierarchy is done simplyby
placing the cursor on a leveled task and double-clicking.
The screen will clear and be rebuilt showing the selected
child tasks. Moving up in the task hierarchy is just as
simple, it is done by double-clicking on an area where
there is no task. The screen will clear and tasks from the
level above will be displayed.

I[:=3 E PHZ3

Fig. 8 Decomposition of a Task Hierarchy

Inout Features

To facilitate its implementation on many hardware
platforms, TARGET was developed around the one-button
mouse concept. Using a single mouse button was
determined to be the best way of porting the TARGET
program to other platforms such as a Macintosh TM

computer. Double-clicking the mouse button will move up
or down a task hierarchy and single-clicking will activate
all other functions. Since single-clicking on a one-button
mouse is limiting, TARGET, like VISTA, was designed to
be a cursor-driven program.

Users may select a desired function from the main
menu, toolbox or keyboard (Figure 9). The cursor will
change to reflect the operation that is to be performed.
Located on the left-hand side of the screen, the toolbox is
one of the most important user interface functions
provided by TARGET. Using the toolbox, one can directly
manipulate task structures on the current screen by
editing, creating, deleting, moving, linking, and un-linking
tasks. Help and a display of the task hierarchy may also
be accessed through this toolbox.

Menu selections provide an interface for file I/O, for
task manipulation, to set user preferences for how
TARGET displays the task flow, to control output, and to
obtain help. File I/O deals with the reading and writing of
TARGET files (.TGT) to and from disk storage. In addition
to the .TGT files, .DMN files (generated from VISTA) can
also be directly imported. The EDIT menu helps to find
tasks as well as permit the moving of tasks up and down
the task hierarchy.

The VIEW menu is especially helpful. Using view, one
can display tasks in a horizontal or vertical orientation.
Optional tasks and the background grid can be hidden or
displayed. The entire layout may be redrawn using
automatic task placement. HELP provides information
regarding TARGET questions as well as an explanation of
the help facility itself. OUTPUT provides a mechanism to
generate reports or simple rule structures on the screen,
printer, or in ASCII format on disks.

113

Mn|a Menu ! _aty.w_#

'l:I Work Area

epea eyck.I on
eppeeJ_ eld¢

_= Elder Te4k NN_e

|o..,., o

Is o. B.,I
(_) +l LI "L_

Fig. 9 TARGET User Interlace

Documentation Strateoies

TARGET's overall visual representation style employs
directed graph strategies combined with the box-flow and
entity-relationship diagram structures. Task hierarchies
require large amounts of layout space while visual
analysis is performed 9. Previously, where most task
analysis efforts were done by paper and pencil, the
graphical medium provides a facility to organize and
manipulate various levels of tasks10.

Decomposing the task into single steps is the
recommended strategy within the TARGET environment.
TARGET provides features for organizing selected
missions or tasks into distinct hierarchical levels.
Individual steps can be laid out and studied interactively
by the SME and/or knowledge expert. Immediate
graphical feedback for analysis is possible. TARGET will
also accommodate the text editing process as well as
maintain box/task step order.

The basic human factors rule-of-thumb recommends
the "7 plus-or-minus 2" boxes/tasks per screen for
creating hierarchical box diagrams. When documenting
complex tasks, however, the user should not be limited
(especially in his initial effort) to a specific number of
boxes 11. What counts is the ability to keep track of the
task networks being developed. Within TARGET,
however, there is currently a limit, within a specific level,
of 100 boxes.

Cleate at Edit la_,k •

TARGET's documentation input requirements pose no
constraints at this time. The "Enter Task Name" function
allows free-form input. However, within the TARGET
environment, addressing another person would be the
most effective way to phrase a task. Communication with
that someone should be done in first person with an
implied "you'. For example, "You should':

• Turn on light
• Flip switch up
• Report to Commander
• Allocate extended memory to DOS
• Shut down all systems
• Fire missile

Edit _i¢lv

++
Ester Talk Name

"IEnler Task Type

=_ ; • Flequlred 0 Dcdalan

O 01_Jonal 0 Central

d + 1 1 : _ I "

_) *1 i

I SwveTuk J

I Cancel'ruk J

' U
Fig. 10 Editing a Task inTARGET

Once accustomed to the approach TARGET takes in
documenting task flows, the domain expert can establish
multiple mission/task levels hierarchically using his or her
own classification or categorization strategies to express
specific procedures. TARGET provides a traversing
mechanism in which the user can create, maintain, and
check task subnetworks with minimal keystrokes.

TARGET will provide a template, breaking down the
task steps into sequential dependencies, to facilitate the
construction of the left-hand and right-hand sides of a
CLIPS rule. For example, a step will have to be performed
before another step is executed. The previous step
becomes the dependency or left-hand condition for the
right-hand or current step. A task box will encapsulate all
of the necessary information that makes that particular
task significant, whether it be required or optional (Figure
12). The user need not be concerned with "keeping score"
on these issues, TARGET, through its graphical
maintenance facility, will manage the top-down
representation and coordination of tasks.

EnterTask Name

II I
"EnterTask Type

@ Required O Derision

0 Optional 0 Control

Save Task J

I CancelTask I

Fig. 11 Create/Edit Dialog

Within the CLIPS rule environment, steps
documented in the TARGET style will automatically
support the rule composition process. Each step will
operate as part of the left-hand or right-hand side of a rule
where applicable. TARGET manages context and
sequence from the user interface.

As knowledge acquisition iterations progress, the
task steps will have to evolve into executable forms of
knowledge for implementation within an expert system
environment. Generating rule representations induced

114

froma top-down, sequential list assumes that high-level
verification has been performed. TARGET will allow
specific levels of manual, visual, and list verifications
throughout the task hierarchies. However, with TARGET,
verification and validation will also have to be carried out in
CLIPS on the generated rule-base since TARGET has no
automated verification and validation component at this
point.

For rule propagation, TARGET will implement the ICAT
control structure guidelines where rules employ two parts,
the data and the task process, in general, facts will be
data equivalents. The process or task step will be
manifested in the form of a rule. Facts will be used to
specify the current context or environment and to
represent the "actions" taken by a user or the expert
system. All fact combinations must be matched against
rule patterns to determine which rules may fire. Then, one
rule would be used to generate potentially executable
actions and update the fact base. This process will be
repeated until no rules can fire. More specifically, the
ICAT control structure revolves around two significant
points.

1) Message passing protocols are used by
independent rule sets for communication and

2) Tasks are procedur,_l/step-by-step in structure.

Reoort Ger_eration withTARGET

TARGET provides several reporting mechanisms.

The first report that the average user will experience is the
graphical representation of tasks in a task hierarchy.

Figure 12 represents a sample graphical layer that would

be produced by a user in the graphical interface. Task
hierarchies in a textual form can also be generated from

TARGET to provide another look at the procedural process

being described (Figure 13). Files that store all the
information TARGET needs to build task networks are

called .TGT files (Figure 14)..TGT files are closely related
to the .DMN files created by VISTA. The file similarity is

intended to expedite the conversion from VISTA files into
TARGET representations. The last figure (Figure 15) in
this section shows CLIPS rules written in final form

produced by TARGET.

Fig. 12 Sample Task Chain Described Graphically in
TARGET

1.0

1.1 (f)

1.2 (f)
1.3 (f)

1.4 (f)

Request NAV tracking vector status
"toggle-offset-sign"
"enter orbiter PKM offset in Worksheet"
"enter deploy separation rate in Worksheet"

"enter deploy spin axis declination in
Worksheet"

1.5 (f) "enter PKM offset in Deploy Worksheet"
1.6 (f) "enter deploy relative right Ascension in

Worksheet"

1.7 (f) "enter Z component of deploy delta V in
Worksheet"

"inform SDP DYN of payload data"

"enter target PKM offset in Worksheet"

check Vector Comparison Table

1.e(f)

1.9(f)
2.0(o)

3.0 The NAV Tracking Vector is (Good)
4.0 Anchor ephemeris for shuttle

4.1 (o) inspect new ephemerides

4.2 (o) request Vector Compaiison Table
4.3 (o) request Trajectory Digitals display

for ascending node

4.4 (o) request Trajectory Digitals for
descending node

3.0 The NAV Tracking Vector is (Bad)

5.0 request Checkout Monitor w/o Traj Digitals

Fig. 13 Task Hierarchy Description Generatedfrom TARGET

REQUIRED

$10 Request NAV tracking vector status
2

273,139
1

11,10,9,8,7,6,5,4,3
13

OPTIONAL

<Task Key>

<X,Y Pos>
<Parent>

<Children>

<Connected_To>

020 Fill Display Vector components
13

402,140
1
14
DECISION

S20 The NAV Vector is Good

14

545,136
1

Good
18
Bad

12
REQUIRED

$30 anchor ephemeris for shuttle

<Task Key>
<X,Y Pos>
<Parent>

<Connected_To>

<Task Key>
<X,Y Pos>
<Parent>

<Connected_To>

<Connected_To>

115

18 <Task Key>
691,55 <X,Y Pos>
1 <Parent>

17,15 <Children>
12 <Connected_To>

I F'_, 14 .TGT Rle Derived from a VISTA .DMN File I

(defrule sl0-get-nav-info "Request NAV tracking vector
status"

(step ?s&10)
(checkpoint expert)

=>

(assert (message-E-to-I ?s require req-nav get-
nav-status)

(next-step 20))

(defruleo20-display-vector-comp"FillDisplayVector
components"

(step?s&20)
(checkpointexpert)

)

(defrule

=C=,

)

(defrule

=),

(assert
(message-E-to-I ?s optional check-display dis-
vector-compVC_CUR_TIME)
(message-E-to-I ?s'optional check-display dis-
vector-compVC_CUR_DESC)
(message-E-to-I ?s optional check-display dis-
vector-comp VC_CUR_A)
(message-E-to-I ?s optional check-display dis-
vector-comp VC_3RD_TIME)
(message-E-to-I ?s optional check-display dis-
vector-compVC_3RD_DESC)
(message-E-to-I ?s optional check-display dis-
vector-comp VC_3RD_A)
(message-E-to-I ?s optional check-display dis-
vector-comp VC_3RD_V))

s20-good-nav "The NAV Vector is Good"
(step ?s&20)
(environment 0 nav-tracking good)
(checkpoint expert)

(assert (message-E-to-I ?s require req-nav put-
nay-in-slot v39))
(assert (next-step 30))

s20-bad-nav *The NAV Vector is Bad"
?fl <- (step ?s&20)
(environment 0 nav-tracking no-good)
?f2 <- (last-step ?)
(checkpoint expert)

(retract ?fl ?f2)
(assert (step 40)

(last-step ?s))

F_]ure 15. TARGET Rule Generated File

Conclusion

TARGET will have the capability to significantly
impact the development of ICAT systems as well as the
development of other intelligent systems. For any
procedural knowledge acqulsition task TARGET can
enhance the ability of the expert to visualize and organize
a task or process. We believe that procedural
visualizationof this type willbecome more popular as more

tools with organizational diagnosis capabilities evolve12.

As knowledge acquisition, as a discipline within
artificial intelligence, evolves, more tools to assist in the
knowledge acquisition process will also become available
in useful forms. TARGET, and tools like TARGET, will be
employed within their own "niche* and will also be
integrated with other methodologies in the future.
Although TARGET models currently sequence within the
task hierarchy structure for rule induction, we will dedicate
additional efforts to encapsulating more peripheral
knowledge into the various steps within the network.
Particularly, for TARGET, such issues as gathering
artifact data, selected action rationale, and interactive
verificationand validationofruleswillbe addressedinthe
future,

° Computer Sciences Corporation

, ot Universityof Houston - Downtown Campus
(bloftin@ nasamall.nasa.gov)

VISTA (Visual Interactive System for Task
Analysis)
Naval Systems Training Center, Orlando, FI
Robert Ahlers, Project Manager

1Boose, J. H. (1989). A survey of knowledge acquisition
techniques and tools. Know�edge Acquisition, March,
1 (1), 3-37.

2Gaines, B. R. (1988). An overview of knowledge-
acquisition and transfer, in Know�edge Acquisition for
Know�edge-Based Systems, Gaines, B. R & Boose, J.
H., Eds., Know�edge-Based Systems, Vo/.1, New York:
Academic Press, 3-22.

3Littman, D. C. (1988). Modelling human expertise in
knowledge engineedng: some preliminary
observations, in Know�edge Acquisition for
Know�edge-Based Systems, Gaines, B. R. & Boose, J.
H., Eds., Know�edge-Based Systems, Vol.1, New York:
Academic Press, 93-104.

4Messlnger, E. B., Rowe, L. A. & Henry, R. R. (1991). A
divide-and-conquer algorithm for the layout of large
directed graphs. IEEE Transactions on Systems, Man,
and Cybernetics, 21 (1), 1-11.

5de Kleer, J., Doyle, J., Steele, G. L., Jr. & Sussman, G.
J. (1985). AMORD: Explicit Control of Reasoning. in
Readings in Know�edge Representation, Brachman, R.

116

J. & Levesque, H. J., Eds., Los Altos, CA: Morgan-
Kaufmann Publishers, Inc., 345-355.

6Loftin, R. B., Wang, L., Baffes, L. & Hua, G. (1988). An
Intelligent Training System for Space Shuttle Flight
Controllers. Proceedings of the 1988 Goddard
Conference on Space Applications of Artificial
Inte//_gance,held May 24, 1988, at NASA/Goddard
Space Flight Center, Greenbelt, Md, 3-10.

7Loftin, R. B., Wang, L., Baffes, P. & Hua, L. (1989). An
Intelligent System for Training Space Shuttle Flight
Controllers in Satellite Deployment Procedures.
Machine-Mediated Learning, 3, 43-47.

8payne, S., & Green. T. (1986). Task -action grammars: a
model of the mental representation of task languages.
Human-Computer Interaction, 2, 93-133.

9Wilson, M. (1989). Task models for knowledge elicitation. _
in Knowledge Elicitation; Principles, Techniques and
Applications, Diaper, D., Ed., New York: Ellis Horwood,
197-219.

10Bylander ' T. & Chandrasekaran, B. (1987). Generic
tasks for knowledge-based reasoning: the 'right' level
of abstraction for knowledge acquisition, International
Journal of Man.Machine Studies, 26, 231o243.

11Wilson' M. D., Barnard, P. & MacLean, A. (1985).
Analysing the learning of command sequences in a
menu system. Johnson, P., & Cook, S., Eds., People
and Computers: Designing the Interlace, Cambridge:
Cambridge University Press, 89-102.

12Akscyn, R. M., McCracken, D. L. & Yoder, E. A. (1988).
"KMS: A Distributed Hypermedia System for Managing
Knowledge in Organizations', Communications of the
ACM, July, 31 (7), 820-834.

117

